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Abstract

Biomacromolecules, including proteins and their complexes, adopt multiple
conformations that are linked to their biological functions. Though some of the
structural heterogeneity can be studied by methods like X-ray crystallography,
NMR, or cryo-electron microscopy, these methods fail to explain the detailed
conformational transitions and dynamics. The dynamic structural states in
proteins are covered in magnitude between 10�11 and 10�6 m and time-scales
from 10�12 s to 10�5 s. For a comprehensive analysis of the biomolecular
dynamics, molecular dynamics (MD) simulation has evolved as the most power-
ful technique. With the advent of high-end computational power, MD simulations
can be performed between μs to the ms time-scale that can accurately describe the
dynamics of any system. Various force fields like GROMOS, AMBER, and CH
ARMM have been developed for MD simulations. Tools like GROMACS,
AMBER, CHARMM-GUI, and NAMD are the most widely used methods
for MD simulation that can provide precise information on the motions and
flexibility of a protein, which contributes to the interaction dynamics of
protein–ligand complexes. MD simulation has several other practical
applications in diverse research areas, including molecular docking and drug
design, refining protein structure predictions, and studying the unfolding
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pathway of a protein. Combining MD simulation with wet-lab experiments
has become an indispensable complement in the investigation of several
important and intricate biological processes. Various tools like principal com-
ponent analysis, cross-correlation analysis, and residues interaction network
analysis are additional useful approaches for analyzing MD data. In this
chapter, we will discuss MD simulation for a layman understanding and
explain how it can be used for protein–ligand characterization as well as for
use in diverse biomolecular applications.
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7.1 History and Background

Proteins perform a wide range of cellular functions in living organisms, such as
catalysis of metabolic reactions, transport, and cell signaling; all those depend on the
structure and dynamics of the protein. Several non-covalent and covalent
interactions help to stabilize the native conformation of protein that dictates its
function (Singh and Tripathi 2020). In practice, the degree of folded nature is
generally determined by wet-lab experiments, including fluorescence and circular
dichroism studies. All-atom molecular dynamics (MD) simulation has been devel-
oped as a new tool to understand the dynamics of protein motions at the atomic level.
It provides information about the motion of an individual atom as a function of time,
and thus describes the dynamic behavior of a molecule. The advantage of MD
simulation is that it provides information about the folding/unfolding mechanism
like the final folded structure, the time dependency of these events, and the inter-
residue interactions. The pioneers of MD simulation were Alder and Wainright, who
introduced this technique in the late 1950s to study the interactions of a hard-sphere
(Alder and Wainwright 1957, 1959). In 1964, first simulation using the realistic
potential for liquid argon was carried out by Rahman (Rahman 1964). The first
realistic system (liquid water) was done in the 1970s to perform simulation (Rahman
and Stillinger 1971). However, the first simulation of protein was conducted in 1977
(McCammon et al. 1977). Soon in the 1980s, simulations on protein interacting with
small molecules, their thermodynamics (free energy calculations), and rapid
calculations of biomolecules were developed (McCammon et al. 1986). In 1998,
Duan and Kollman revealed the folding mechanism of the small sub-domain of villin
using a μs simulation (Duan and Kollman 1998). In 2013, the Nobel Prize in
Chemistry was awarded to Martin Karplus, Michael Levitt, and Arieh Warshel for
the development of multi-scale models for complex chemical systems, a technique to
simulate the behavior of molecules at various scales from single molecules to
proteins.
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MD simulation is an emerging field. We entered the keyword “molecular dynam-
ics simulation” to NCBI PubMed database (https://www.ncbi.nlm.nih.gov/pubmed/)
resulted in 56,833 articles as of 31/07/2020, suggesting the growing importance of
MD simulation. Development of techniques such as potential sampling methods,
force field advancement, and high-end computational power is allowing us to
perform simulations in a range of μs to ms time-scale. MD simulation can thus be
highly useful in the study of biomolecular dynamics. However, the use of MD
simulation requires optimal models that can mimic the cellular environment, physi-
cal applications that can provide the motions to the model, and large-scale
computations. However, recently MD simulations have been extended to cellular
scales, and simulations of an entire cell have been performed (Heidari et al. 2016).
The development of a more robust algorithm and theory for modeling, docking,
scoring, energy-calculations will make the MD simulation more effective. In this
chapter, we will discuss the principle, methods, tools, and important applications of
MD simulation.

7.2 Introduction

To date, it is not possible to accurately predict detailed biomolecular conformational
dynamics in vitro. Techniques like X-ray crystallography, nuclear magnetic reso-
nance (NMR), and recent cryo-electron microscopy (cryo-EM) methods have
provided breakthroughs in structural biology. Still, a vast gap exists between the
numbers of the available protein sequences and protein structures. There are
177,754,527 protein sequences in the latest release of UniProtKB as of 12/04/
2020, while the protein data bank (PDB) has only 1,62,259 protein structures on
12/04/2020, suggesting only a small fraction of the total sequences have known
structures. The PDB statistics, as on 12/04/2020, are shown in Table 7.1. Thus, the
prediction of protein structures is essential to fill this significant gap.

Most wet-lab experimental methods provide structural information of proteins in
static form, while practically proteins are highly dynamic (Dror et al. 2012). Molec-
ular docking only provides a static pose, and it cannot illustrate the dynamics of the
protein–ligand complex (Kalita et al. 2018b; Mamgain et al. 2015). In addition to the
prediction of the dynamic behavior of biological systems, MD simulations can also
help to explore the kinetic behavior and assemblies of molecules at the atomic level

Table 7.1 The PDB statistics as on dated 12/04/2020

Experimental method Proteins Nucleic acids Protein/NA complex Others Total

X-Ray 135,436 2044 6562 460 144,502

NMR 11,344 1284 264 49 12,941

Electron microscopy 3638 35 1029 114 4816

Other 32 1 0 4 37

Hybrid methods 155 5 3 1 164

Total 150,605 3369 7858 628 162,460
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(Alder and Wainwright 1959; Rajendran et al. 2018). The conformational dynamics
in proteins cover large ranges in both magnitude and time-scale (Vogeli et al. 2012),
and due to the conformational changes proteins can function in a variety of ways
including acting as transporters, signaling molecules, sensors, and mechanical
effectors and also interact with the substrate, drugs, and hormones through confor-
mational changes (Sonkar et al. 2017; Pandey et al. 2017). Structural dynamics in
protein conformations are fast, covering a magnitude from 10�11 to 10�6 m, within
of time-scale between 10�12 s and 105 s (Boehr et al. 2006; Wolf and Kirschner
2013; Krishnamoorthy 2012). The local motions: loop and side-chain motions take
10�15 s to 10�1 s to complete, while the helix, domain (hinge bending), and subunit
motions take 10�9 s to 1 s. Processes, such as helix-coil transitions, association/
dissociation, and folding/unfolding, come under large-scale motions and may take
10�7 s to 104 s to complete. Practically, it is challenging to study such changes as
they take place in a very short time, however, but by resembling the in vivo
conditions computationally, these processes can be examined, visualized, and
analyzed (Shukla et al. 2018a, d).

In MD simulation, a molecule can be understood as a series of charged points
(atoms) linked by springs (bonds). Now, to describe the time evolution of bond
lengths, bond angles, torsions, and also the non-bonding interactions between atoms,
the force field is used. In MD simulation, an in-vivo like environment is created
using protein and water molecules, and the atoms of protein and water move with a
short time step (in the fs time duration), where forces of every atom are computed,
and written in a file using a force field. This force field is a collection of equations
and associated constants and includes the potential energy functions with bonded
and non-bonded potential terms. It reproduces molecular geometry and selected
properties of test structures. Cammon et al. performed the first MD simulation of
biological macromolecules in 1977 at 9.2 ps for bovine pancreatic trypsin inhibitors.
Before advances in MD simulations, experimental observations like hydrogen bond
exchange were already studied (Berger and Linderstrom-Lang 1957). The role of
thermal factor (B) in internal motions of proteins was investigated (Jeremy Smith
et al. 1986; Brunger et al. 1985; Brooks and Karplus 1983) by that time. From the
MD simulation data, we can also deduce and calculate principal components (PCs)
and perform its analysis (Wolf and Kirschner 2013; David and Jacobs 2014). The
calculated PCs are arranged according to their contribution to the total fluctuation
along with the ensemble of conformations. The global and correlated motions can be
predicted using the computed data. MD simulation also provides information on the
conformational flexibility of macromolecules as well as in understanding the exper-
imental results, such as the analysis of fluorescence depolarization (Frauenfelder
et al. 1987), dynamics of NMR parameters (Brunger et al. 1987), and effect of
solvent and temperature on protein stability (Nilsson et al. 1986; Colonna-Cesari
et al. 1986). The simulated annealing is a widely used method for the refinement of
X-ray structures (Harvey et al. 1984) and the determination of NMR structure (Case
and Karplus 1979).
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7.3 Principle of MD Simulation

The underlying principle of MD simulation is based on Newton’s law for molecular
mechanics (Adcock and McCammon 2006). For the computational study of biomo-
lecular dynamics, MD simulation is the most important established technique
(Adcock and McCammon 2006; Levitt and Warshel 1975; Karplus and Kuriyan
2005). In MD simulation, the interaction between the atoms and the molecules is
examined for a time period by approximations of known physical attributes (Levitt
and Warshel 1975; Karplus and Kuriyan 2005). Presently, significant progress has
been made in the simulation of biomolecules. By now, we can examine the move-
ment of atoms, the side-chain conformation of residues, and predict secondary
structure and domains in a protein, as well as the binding pattern of nucleic acids
and lipid membranes (Perilla et al. 2015). The binding free energy and conforma-
tional changes of systems can also be predicted by MD simulation as they are based
on statistical mechanics. Due to this reason, the MD simulation has been used in the
field of drug designing also (Paquet and Viktor 2015). Using the force field, the
displacement of the particles, and energy values in each time step is calculated to
define the new position of the atom (Adcock and McCammon 2006). The bonded
(angles and atom bonds) and non-bonded contributions are included in the forcefield
as an energy function in the classical MD simulation (Fig. 7.1).

The later contributions are made mainly by the van der Waals interaction, which
is built by the Lennard-Jones 6-potential (Jones 1924). Coulomb’s law is employed
for the calculation of the electrostatic interaction (Cornell et al. 1995). Several
algorithms involving Monte Carlo (MC) simulations, and Langevin dynamics, and

Fig. 7.1 The constituents of
a force field, which represents
bonded and non-bonded
interactions
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MD with their corresponding particularities and advantages have been reported
(Adcock and McCammon 2006). The designed force field parameters and defined
equations are well fitted and can reproduce the data from higher-level calculations
or/and experiments. Most biomolecules, including proteins, nucleic acids, lipids, and
sugars, are well parameterized in the force field for general use (Paquet and Viktor
2015). The parameters of force field for new ligands can be calculated using
quantum chemistry treatment, along with many web servers, like PRODRG (van
Aalten et al. 1996; Schuttelkopf and van Aalten 2004), ATP topology builder (Malde
et al. 2011), and SwissParam (Zoete et al. 2010) that can generate the topology of the
ligand. The bond lengths, bond dihedral angles, bond valence angles, and
non-bonded interactions like van der Waals and electrostatic interactions contribute
to the total energy of the systems (Hernandez-Rodriguez et al. 2016). Several force
fields, like AMBER, GROMOS, and CHARMM, have also been developed
(MacKerell et al. 1998). Every force field has a unique property, and a user defines
the force field according to his choice based on the objective of the work (Ponder and
Case 2003; Salsbury 2010). Once the force field and solvation of the proteins in an
MD simulation are fixed, several parameters are also set by the users, which are
defined below in brief.

7.3.1 Periodic Boundary Conditions

The periodic boundary condition (PBC) is an approach by which one can define a set
of rules for the boundary of a simulation box so that atoms cannot move beyond the
defined boundary during MD simulations. If the user does not define the PBC, the
simulation box is repeated infinitely in every path and result in forming a lattice. For
better computational efficiency, most MD simulations use this potential. Each
particle interacts with adjacent images of the other particle in all these cut-off
schemes (Holden et al. 2013). The long-range interactions are calculated in the
case of molecular modeling and simulation by the isotropic periodic sum (IPS)
method (Wu and Brooks 2009). Four significant advantages of using the IPS
methods are as (1) it can eliminate the unnecessary symmetry artifacts, which
originates in the PBC condition, (2) in the case of any functional form of the
potential, it can be applied, (3) it can be used easily in the parallelized multi-
processor computer, which indicates that it is computationally more efficient, and
(4) it can predict the estimation of self-diffusion coefficient at the cut-off radius
greater than 2.2 nm (Takahashi et al. 2010). Here, the long-range interactions are
calculated based on the homogeneity of the simulation systems in the IPS method.
Long-range interactions are represented by interactions with IPS images of a defined
local region and can be reduced to short-range IPS potentials (Wu and Brooks 2009).
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7.3.2 Ewald Summation Techniques

The calculation of long-range Coulombic interactions is time-dependent and labor-
intensive in most of the MD simulation methods. Here, the Ewald summation
method developed in 1921 for the prediction of long-range interactions is mostly
used (Ewald 1921). Long-range interactions are estimated as sums that converge
very slowly. Figure 7.2 shows that the conversion of the summation of two series of
potential energy is the principal to obtain the Ewald sum in MD simulation.

7.3.3 Particle Mesh Ewald Method

In the particle mesh Ewald (PME) method, the potential energy is divided into two
sums- Ewald’s standard direct sum and the reciprocal sums. The classical Gaussian
charge distributions are used in the PME method (Norberto de Souza and Ornstein
1999; Sagui and Darden 1999). The direct sum is computed directly utilizing
cut-offs. In contrast, the reciprocal sum is determined by Fast Fourier Transform
(FFT) with convolutions on a grid where charges interpolate in the grid points
(Fig. 7.3) (Darden et al. 1993; Dessailly et al. 2007). Additionally, it does not
interpolate while the forces are calculated by analytically differentiating energies.
This significantly reduces the memory requirements for computation (Norberto de
Souza and Ornstein 1999).

Fig. 7.2 Charge splitting into discrete and smeared distributions in the direct and reciprocal space
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7.3.4 Thermostats in MD

There are several thermostat methods for adding and removing the energy from the
boundaries in the MD simulation system in a comparatively rational manner, for the
approximation of classical ensemble (Fuzo and Degreve 2014). The number of
particles (N), fixed volume (V), and the defined temperature (T) are conserved in
the canonical ensemble. In a thermostat method, the energy exchange occurs
between the endothermic and exothermic processes (Fuzo and Degreve 2014).

7.3.5 Solvent Models

Biomolecular MD simulation is performed in a realistic type water environment
where the explicit solvent model is used (Nguyen et al. 2014). Several solvent
models (mostly water models) are used in MD simulation as available: SPC/E,
TIP3P, TIP4P, and TIP5P (Jorgensen and Tirado-Rives 2005). These water models
are well optimized with one or many physical properties of water, such as density
anomaly, diffusivity, and radial distribution function. To mimic the real cell-like
environment, the MD simulation system contain explicit water molecules.

Fig. 7.3 The particle-mesh Ewald technique. A 2D representation, which is used by the majority of
the Fourier-based methods. (a) The charged particle system, (b) Interpolation of charge in a 2D grid,
(c) The forces and potential are computed at grid points by using FFT, (d) The coordinate updates
and interpolate forces back to particles
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7.3.6 Energy-Minimization Methods in MD Simulations

There are different energy minimization approaches for MD structural data. By using
a grid search method, the low energy regions are identified by the use of energy
function in the zero-order method. In the case of gradient as an energy function, the
conjugant gradient or steepest descent method is the first derivative technique. The
Newton–Raphson algorithm uses the Hessian function for locating the energy
minima as it is a second derived method (Kini and Evans 1991). Two main methods
for energy minimization are (1) steepest descent method and (2) conjugant gradient
algorithm method.

To remove the bad contacts and correction of bad geometries, the steepest descent
method is widely used (Kini and Evans 1991). This method is particularly useful
when the molecular system is farther from the minimum energy state, and it
drifts down to the steepest slope on the potential energy surface by inducing minor
structural modifications. In this method, the gradient is computed from its initial
location and moves in the opposite direction to reach the minimum state. When the
atoms are moving in a small increment pattern from one direction to another in
coordinated systems, then for the initial geometry, the energy is computed. This
process repeats for all the atoms, that eventually move to a new position downhill on
the energy surface where every new step is at right angles to the one before it. This
process occurs in the smaller steps to proceed down along a narrow valley and
halts when the condition of a predetermined threshold value is achieved. The
steepest descent method is used as the first rough and introductory run, followed
by the subsequent minimization.

The conjugant gradient algorithm method is another method for energy minimi-
zation and is a primary order of minimization. This method performs minimization
by using a mutually current gradient and preceding search command (Kini and
Evans 1991). As compared to the steepest descent method, this method is
congregated faster because it computes the search direction by using the history of
minimization. It is the first derivative rate of change of the total energy in relation to
the atomic positions with units of the gradient (kcal.mol�1 Å�1). An array of
directions is produced by which it succeeds over the oscillatory actions in the narrow
valleys for the steepest descents method. In each minimization step, the gradient
calculation is done for vector computations to predict the new direction for the
minimization procedure as additional information (Feyfant et al. 2007). For the
prediction of minimum energy, the direction is defined by each consecutive step.
This method is preferred for larger systems (with a high number of atoms), and more
storage space and calculation efforts are required. The expense of total computa-
tional and the long time period per iteration is compensated by efficient convergence
to the minimum (Kini and Evans 1991). For illustrating convergence, there are
various types of minimization procedures for molecular structures. For
non-gradient minimizers, the augmentations in the energy and the coordinates can
be measured to find the real geometry of the particular molecular system. All the
gradient minimizers use atomic gradients.
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7.4 Current Tools for MD Simulation

Several tools are available to investigate the atomic-level changes in the
biomolecules using the MD simulation method (Khan et al. 2016). Some provide
the graphical user interface like Desmond, while some run in command lines like
GROMACS and AMBER. Some famous and widely used tools for MD simulation
are GROMACS (Pronk et al. 2013; Oostenbrink et al. 2004), (AMBER) (Case et al.
2005; Salomon-Ferrer et al. 2013), Nanoscale MD (NAMD) (Phillips et al. 2005),
and (CHARMM-GUI) (Brooks et al. 2009). For running such MD simulations,
increased hardware power and software are essential components.

7.4.1 Recent Advances in Hardware to Run MD Simulation

Rapid development in computer hardware is a crucial part of MD simulation. Two
reasons have an impact on trajectory analysis. The first one is the run of the long
simulation result in GBs to TBs data storage, and the other is to develop the new
rendering engines for the visualization effects using the latest video chipsets. Due to
the advancement in the computer hardware, simulations can be performed from ns to
μs with the help of GPUs (graphics processing units) that is configured with the
molecular simulation suite (Hernandez-Rodriguez et al. 2016; Gotz et al. 2012;
Salomon-Ferrer et al. 2013). The GPU cards are replacing the CPU (central
processing unit) and becoming commodity software and play a crucial role in
decreasing the time for MD simulation. The CUDA (Compute Unified Device
Architecture) is a newly invented parallel computing platform, and its use in GPU
increases the number of cores to run a long simulation within time (Zhou et al. 2012;
Krieger and Vriend 2015; Ge et al. 2013). Due to the emergence of GPU-CUDA
technology, vigorous and massively parallel clusters are developed, such as special-
purpose supercomputer Anton and Blue waters (David et al. 2007). They are precise
for running the MD simulation of biomolecules from μs to ms time-scale. But such
resources are limited for limited researchers. To remove the time-scale gap, there is
an urgent need to develop newer algorithms that allow enhanced sampling in the
defined areas of conformational space and access long time-scale actions using
necessary hardware. The purpose of this algorithm is to collect sufficient sam-
pling that could result in the Boltzmann distribution of the diverse conformational
states for the accurate calculation of the thermodynamic and kinetic properties of the
system (Doshi and Hamelberg 2015). By the modification of the Hamiltonian
method is to add a bias potential, several approaches have been developed like
hyper dynamics (Voter 1997), local elevation (Huber et al. 1994; Voter 1997), and
accelerated MD (Rodriguez-Bussey et al. 2016). In the case of hyper dynamics
simulation, the identification of transition state required, but it is not necessary for
classical MD simulation. Several tools are available to perform the MD simulation
study with CPU or GPU. A few of the widely used tools are described in brief below.
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7.4.2 GROMACS

GROMACS is the most widely used software for MD simulation. It is a freely
available tool, and a brief tutorial of this tool can be accessed by this link (http://
www.mdtutorials.com/gmx/) (Pronk et al. 2013). In the GROMACS simulation kit,
MD simulation can be performed at various temperatures and pH values. In this
simulation tool, several commands are available to perform a distinct function and
calculate specific structural parameters. GROMACS, which is one of the MD
simulation software, can read only the 20 natural amino acids, i.e., the
non-standard amino acids are not read by GROMACS algorithms. Sometimes,
there are force field limitations, for instance, Gromos and Amber cannot read the
nicked DNA, but the same force field can read the same non-nicked DNA. The brief
methodology for MD simulation using GROMACS is shown in Fig. 7.4.

To start, the user creates a box and fills the solvent (water). The solvent model
depends on the force field. After placing the protein in the defined box in the solvent,
the charge of the system is neutralized either by the addition of Na+ or Cl�ions; this
is followed by the minimization of the system using the steepest descent method.
Then, NVT (the constant Number of particles, Volume, and Temperature) simula-
tion is run to maintain the volume and temperature of the defined system. The

Fig. 7.4 Schematic representation showing the methodology of the MD simulation steps for
GROMACS

7 Molecular Dynamics Simulation of Protein and Protein–Ligand Complexes 143

http://www.mdtutorials.com/gmx/
http://www.mdtutorials.com/gmx/


temperature of the system arises from 0 and attains the desired temperature that is set
by the user. After that, NPT (the constant Number of particles, Pressure, and
Temperature) simulation is run to maintain the pressure of the defined systems.
Several parameters are set by the addition of the .mdp file. Finally, MD simulation is
performed that provides the coordinates of each step in the form of a trajectory. The
trajectory can be analyzed by using various tools that are embedded in GROMACS,
like gmx–rms, gmx–rmsf, gmx–gyration, and gmx–hbond. These data can be plotted
in an interactive form by using GRACE (Graphing Advanced Computation and
Exploration of data), a Linux based software. For example, a water embedded
protein molecule, placed in a box visualized by VMD (Visual Molecular Dynamics)
shown in Fig. 7.5.

7.4.3 AMBER

AMBER simulation suite is a collection of programs that are used to carry out and
analyze the MD simulations for proteins, carbohydrates, and nucleic acids. Three
main components of the AMBER tool are preparation, simulation, and analysis. The
Antechamber and LEaP are the main program for the preparation of
macromolecules. The Antechamber tool prepares the files into the force filed
descriptor files, which is read by the LEaP program for molecular modeling. The
LEaP program then creates the topology files and Amber coordinates, which is then
used in the MD simulation. The Sander program performs the MD simulation by
fixing the temperature, pressure, and pH of the defined system. Lastly, the analysis
part is performed by the ptraj module, which calculates the RMSD, RMSF, radius of
gyration (Rg), H-bonds, and cross-correlation functions.

Fig. 7.5 A protein placed in a
cubic box in the water system.
The red color shows water
molecules, while the blue
color represents the ions
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7.4.4 CHARMM-GUI

CHARMM-GUI is a simulation tool for the analysis of macromolecular dynamics
and associated mechanical attributes. It performs standard MD simulations by using
state-of-the-art algorithms for time stepping, long-range force calculation, and peri-
odic images. Various analyses, such as energy minimization, crystal optimization,
and normal mode analysis, can be performed using CHARMM.

7.4.5 NAMD

The simulations of much large biomolecular systems are performed using NAMD.
The NAMD is available free of charge. The source code documentation including a
set of compiled binary files configured with various parallel source software for
calculations are freely available to the user. It supports massively parallel CUDA
technology. NAMD can be used with graphical user interface software VMD. The
simulation can be set and analyzed using the VMD as an interface. It is also
compatible with AMBER and CHARMM (Khan et al. 2016).

7.4.6 Quantum-Mechanics/Molecular-Mechanics (QM/MM)

The QM/MM methods are a widely used approaches for biomolecular systems
modeling (Groenhof 2013; Warshel and Levitt 1976). The various processes and
charge transfer can be described using the QM method, but the QM methods are
restricted to only a few hundred atom systems. Though simulations of a large system
and a long-time period are performed by highly efficient force field-based MM
methods. For modeling of the large biomolecules, the hybrid QM/MM method is
very efficient (Senn and Thiel 2009). The QM/MM method is widely used with
various applications, such as MD simulation, free energy calculation, geometry
optimization, and computational spectroscopy (Groenhof 2013).

7.4.7 HyperChem

The HyperChem tool is also a tool for molecular modeling (Froimowitz 1993). It is
an attractive commercial programming product manufactured by Hypercube Com-
pany and also given for free 30 days trial. It has a set of tools for molecular
mechanics, quantum chemistry, and MD of the biological systems. The attractive-
ness of this software is attributed to the availability of complete documentation
supported by examples, making this package ideal for studying the principle and
practical approaches to molecular modeling (Gutowska et al. 2005). However, this
program is comparitively slow as it cannot use multiprocessor support. An efficient
strategy to use this tool is to employ it as an interactive molecular designer.
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7.5 Other Advance Methods for MD Simulation

The MD simulation is a very progressive field. Several advancements have hap-
pened, and several other new methods are also introduced regularly to reduce the
time complexity.

7.5.1 Metadynamics

It is an advantageous and powerful method of MD simulation to enhance sampling.
The collective variables (CVs) define the free energy landscape reconstruction as a
function of a few selected degrees of freedom. In this method, the sampling is
accelerated by the history-dependent bias potential (Barducci et al. 2011). The
space of collective variables is used for the adaptive construction of bias potential.
In recent times, considerable improvements have been made to the actual algorithm,
leading to a well-organized, flexible, and precise method that has found many
successful applications in several domains. There are various examples of
metadynamics study, and the most common umbrella sampling method is discussed
below (Barducci et al. 2011).

The main challenge in computational biology is to predict the accurate binding
free energy difference between two or more systems. For this problem, a new
method umbrella sampling introduced, which is a biased MD simulation method,
and it calculates free energy using the reaction coordinates. In this method, the
system is driven from one thermodynamic state to other thermodynamics states. For
example, reactant and product by using the bias potential reaction coordinate along
with one or more directional (Kastner 2011). The intermediate steps are covered by a
series of windows, at every stage of which an MD simulation is performed. Any
functional form can represent bias potential. The harmonic potential is used in this
method. Using the reaction coordinates, with the sampled distribution of a system,
the free energy change in each window can be calculated. By using the umbrella
integration or weighted histogram analysis method, the obtained windows are
combined. The bias directly gives the free energy change between the two systems.
The replica-exchange method can be used to improve the sampling of each window,
either by replacing between successive windows or by running additional
simulations at higher temperatures (Kastner 2011).

7.6 Analysis of MD Trajectories Through GUI-Based Software

The resulting output trajectories of any MD simulation can be visualized using
GUI-based software. In the section below, we will discuss a few most popular
software.
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7.6.1 Visual Molecular Dynamics

VMD is developed at the University of Illinois (Hsin et al. 2008; Falsafi-Zadeh et al.
2012; Humphrey et al. 1996; Knapp et al. 2010). It is a potent tool for analysis and
visualization of various biological systems such as proteins, nucleic acids,
carbohydrates, and lipids. It is compatible with a large number of file formats,
such as PDB and GROMOS. It can process a large amount of data for the visualiza-
tion of trajectory movements (Falsafi-Zadeh et al. 2012). The molecules can be
viewed in the animated form, and a movie can also be created from the input
trajectory. It can be operated from a remote computer and also compatible with
any operating systems with basic computer configuration. It is included with NAMD
also. The additional functions of this tool are given below (Likhachev et al. 2016).

1. The visualization and analysis of macromolecules.
2. The atoms and amino acids can be selected.
3. Two structures can be aligned.
4. Support of user’s action recording in the scripts.
5. The Raster3D format support (This format can give a high-quality image).
6. Ramachandran plots can be generated.
7. Support various types of molecular images.
8. Stereoscopic output.
9. Command-line support.

10. Working with arrays and vectors.
11. Support of JavaScript.

7.6.2 PyMOL

The PyMOL is among the most widely used software in the field of structural
biology. It can accept various formats like PDB, Mol2, SDF, and several other file
formats. The user can import the trajectory and analyze the simulation result. The
user can generate a surface view model. Several additional plug-ins are also available
to analyze the result of MD simulation. The user can create high-quality figures and
animated movies from this tool.

7.6.3 Chimera

UCSF Chimera is an advanced software (Pettersen et al. 2004). It is widely used and
freely available for academics. It was developed by Resource for biocomputing,
visualization, and informatics (RBVI) and funded by the National Institutes of
Health. The UCSF ChimeraX is also available, which is more advanced than
Chimera. The Chimera 1.13.1 is released on 14-08-2018 and accepts the
GROMACS and AMBER trajectory formats. After importing these trajectories,
the user can make an animated movie with the time frame and generate high-
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quality pictures. The user can align two or more structures. The user can also
generate the surface for cavity analysis during trajectory run. It has several features
and supports the command line option also.

7.7 Structural Parameters for Analysis of MD Simulation

The MD simulation produces the result in the form of a trajectory. The trajectory
contains all the parameters that were generated during each step movement of atoms.
Various structural parameters that can be used to analyze the results are the
following:

7.7.1 RMSD

The root mean square deviation (RMSD) is the most important and first parameter to
analyze any MD trajectory (Kuzmanic and Zagrovic 2010). RMSD is used to
measure the difference between the backbones of a protein from its initial structural
conformation to its final position. The stability of the protein relative to its confor-
mation can be determined by the deviations produced during the MD simulation
process. RMSD is calculated with respect to the reference native conformation rref
using the following formula:

RMSD tð Þ ¼ 1
M

XN
i¼1

mi ri tð Þ � ri
ref

�� ��2" #1=2

whereM¼∑imi and ri(t) represents the atom, i position at the time t after least square
fitting the structure to a reference structure.

The RMSD for all residues, backbone, side-chain, and Cα atoms can be calcu-
lated. RMSD is calculated with respect to the simulation time. Smaller deviations
indicate a more stable protein structure and vice versa. In general, an RMSD value
for a macromolecule should be less than 2 Å to extract any meaningful data. A
comparative study of RMSD for native isocitrate lyase from Mycobacterium tuber-
culosis (MtbICL) and its mutant has been performed (Fig. 7.6a). A major difference
in the RMSD of native (black) and mutant MtbICL (red) has been observed, and it
indicates that a single mutation L148A in MtbICL protein (MtbICLL148A) causes
structural perturbations in the enzyme and reduces its stability (Shukla et al. 2018c).

7.7.2 RMSF

The root mean square fluctuation (RMSF) is the best way to study the residue-wise
fluctuation of the protein from the MD trajectory. It describes the fluctuation of each
residue or domain in a protein. The RMSF can be plotted as RMSF (nm) vs. residue

148 R. Shukla and T. Tripathi



number (Kuzmanic and Zagrovic 2010). The RMSF of a protein is measured by the
deviation between the position of particle i with its reference position, and
T represents the time, and riref is the reference position of particle i.

RMSFi ¼ 1
T

XT
t j¼1

ri t j
� �� ri

ref
�� ��2

2
4

3
5
1=2

Well organized and rigid structures, like helix and sheets, show low RMSF, while
loosely structure like bends and coils showed higher RMSF value because atom can
have more fluctuation in the bends and coils as compared to helix and sheet. RMSF
of the Cα atoms for native and mutant MtbICL was calculated from the MD
trajectory to compare the residue-wise fluctuations (Fig. 7.6b). A high degree of
residue-wise fluctuations observed in mutant MtbICL as compared to the native
structure, and this happens due to a single mutation L148A, which causes more
fluctuations and instability in the mutant. This mutation can also deform the shape of
the binding site and which in turn can prevent the function of the enzyme (Shukla
et al. 2018c).

7.7.3 Radius of Gyration

The radius of gyration (Rg) of a protein describes the compactness of the folded
protein. For the same size proteins, ideal Rg value should be less for the globular
folded state, while in expanded form or protein form with more number of loops and
turns, the Rg value should be relatively high. The Rg value of a structure is calculated
from the following equation:

Fig. 7.6 (a) RMSD of native and mutant MtbICL. (b) RMSF of the Cα atoms calculated from the
last 30 ns of the MD trajectory. Black and red lines represent MtbICL and MtbICLL418A,

respectively
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Rg ¼
P

i rij j2miP
imi

 !2

In this equation, the mi represents the mass of atom i and ri is the position of atom
i with respect to the center of mass of the molecule. The system total mean energy is
calculated by the following equation:

Eh i ¼ 1
N

XN
i¼1

Ei

In the above equation, Ei represents the energy of atom i.

7.7.4 Protein–Ligand Contacts

Non-covalent bonds play a significant role in determining the stability of the protein
and ligand. These bonds play a pivotal role in protein structure folding and protein–
ligand stability. During the folding, the hydrogen bonds provide a path for proper
folding of a protein. Other interactions, such as hydrophobic bonds, make the inner
patches and the catalytic triad of a biomacromolecule. The hydrogen bonds between
residues can be calculated with respect to time during the simulation. In MD
simulation analysis of apo-protein and protein–ligand, the hydrogen bonds, as well
as other interactions, can be calculated during simulation time to find the potential
residues necessary for ligand stabilization. The protein–ligand contact map is
generated to find the residues that are in contact (interaction) with ligand during
most of the simulation time.

7.7.5 SASA

The solvent accessible surface area (SASA) defines the area of the protein
that interacts with the solvents in a simulation box (Mazola et al. 2015). For the
same size proteins, the folded globular state shows lesser SASA value, while the
expanded form of the protein shows higher SASA value. It is well-known that an
increase in the temperature of the system will lead to protein unfolding, and the
hydrophobic core of protein gets exposed toward the solvent. As a result, the SASA
value increases upon unfolding.

7.7.6 Principal Component Analysis or Essential Dynamics

Essential dynamics (ED) reflect the overall increase of the motions in a protein
during the time-scale of simulations (Maisuradze et al. 2009). The principal compo-
nent analysis (PCA) predicts the collective motions of the protein and reveals the
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atomic fluctuations in the structure (David and Jacobs 2014). Every atom is related to
each other in the MD simulation. The correlation motion analysis is very important
for predicting the behavior of the molecules. The covariance matrix of atomic
fluctuations is diagonalized for predicting the eigen values. The first eigenvectors
play an essential role in the overall motions of the protein. The PCA analysis is used
to compare the correlated motions of a protein under various conditions.

7.7.7 Secondary Structure Analysis

The secondary structure is a crucial parameter in the analysis of the MD results, and
it describes the contents of secondary structure with respect to time. It clearly
describes the structural contents to understand the stability of each domain. It is
instrumental in mutational and protein unfolding studies, as it can explain the
unfolding of a domain and its stability during a simulation.

7.8 Application of MD Simulation

MD simulation is a widely used technique for studying biological systems. It is
applicable in several fields like mutational analysis of protein, protein–ligand com-
plex stability prediction, protein unfolding studies, conformational protein stability
prediction, etc. It is a potent tool that requires high computational power to reveal
biological mysteries. In the following sub-sections, we will briefly discuss the
applications of MD simulation in all these above-stated fields using case studies.

7.8.1 Mutational Analysis

MD simulation can be used to confirm the results of in vitro mutational studies, as it
can predict the conformational movement of the atoms after and before mutation. It
can also predict the alternate binding site. A case study of mutational analysis from
our previous works is presented here. In these studies, the role of structurally distant
amino acids (>10 Å) that are away from the active site signature motif
(189KKCGH193) was studied (Fig. 7.7). We showed that point mutations brought
the vast extent of conformation changes in the active site conformation, which
results in loss of activity of the enzyme. Three mutations (F345A, L418A, and
H46A) were introduced in the structure by the in silico approach, and then MD
simulation was performed to see the effect of the mutation on the structure and
function of the enzyme. Here, we take an example of several MD simulation
analyses of an enzyme isocitrate lyase from Mycobacterium tuberculosis (MtbICL)
and its three point mutants and extract structural and dynamic information from the
MD simulation trajectories. Using MD simulation studies, we showed that distant
point mutations at H46, F345, and L418, which are structurally distant (>10 Å) to
the active site sequence (189KKCGH193), completely abrogates the enzyme activity.
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MtbICL is an important anti-tubercular drug target that catalyzes the first step of
the glyoxylate shunt and is required for survival of the pathogen under dormancy
condition. To understand the role of structurally distant amino acids in regulating the
structural dynamics and conformational flexibility of MtbICL, several point mutants
were created by site-directed mutagenesis, and their structure–activity relationship
was studied. Three mutations, F345A (Shukla et al. 2018b), L418A (Shukla et al.
2018c), and H46A (Shukla et al. 2018f), were made. The experimental data revealed
that these mutants were causing complete loss of enzyme activity, though these
residues were not present within or near the active-site. Structurally, these residues
were present more than 10 Å from the active site (Fig. 7.6).

To study the structural changes upon mutation and its effect on the dynamics of
the enzyme, MD simulations were performed. A comparative study of RMSD for
native and the three point mutants of MtbICL was done. The RMSD for the native,
H46A, F345A, and L418A MtbICL mutant was found to be 0.12 nm, 0.13 nm,
0.14 nm, and 0.21 nm, respectively. The RMSD of F345A and H46A mutation
shows an insignificant difference in the average RMSD values, thereby indicating
that they do not significantly influence the overall stability of the protein. The RMSD
value of L418Amutation suggests that it negatively affects protein stability, inducing
destabilization in the mutant protein structure.

For understanding the effects of the mutations on the structural fluctuation of the
entire protein and also on individual residues, the RMSF of Cα atoms was analyzed
for all the proteins. RMSF of the native and the three mutants was calculated from
the MD trajectories to compare the residues wise fluctuations. In H46A and F345A
mutant, minor changes were observed in the RMSF (Shukla et al. 2018c; Shukla
et al. 2018f), while the L418A mutant showed significant fluctuations (Shukla et al.
2018f). The data suggest that H46A and F345A mutation does not induce changes in
the overall protein structure. In contrast, a high degree of residue wise fluctuations
observed in the L148A mutant, which causes more fluctuations and instability in the
structure (Shukla et al. 2018c).

Fig. 7.7 Barrel structure of
MtbICL. The distance of the
mutated amino acids from the
active site catalytic residues is
shown in red lines
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H46A mutation did not show any global structural alternations; it caused changes
in the catalytic site (Shukla et al. 2018f). The PCA and cross-correlation analysis
showed that H46A mutation caused a change in conformational stability and collec-
tive motions of the protein, particularly in the active site region. The residue
interaction network (RIN) analysis indicates that the active site geometry was
disturbed in the H46A mutant. These results suggest that due to the mutation, the
dynamic perturbation of the active site leads to enzyme transition from its active
form to inactive form (Shukla et al. 2018f).

The mutation in F345 induced structural flexibility and conformational
rearrangements near the active site. This mutation increased the collective motions
and residual mobility of the enzyme, resulting in a decrease in the mutant enzyme
stability. The result was confirmed by the lower free energy in the mutant enzyme
indicating the destabilized structure (Shukla et al. 2018b).

The L418A mutation also nullifies the activity of the protein. The correlated
motions, residual mobility, and flexibility in the enzyme increased upon mutation.
Upon L418A mutation, the global conformational dynamics and the RIN of the
protein changed. The RIN depicts that several hydrogen bonds, hydrophobic bonds
were distorted due to the mutation. This alteration in RIN brings conformational
changes in the active site leading to the loss of enzyme activity (Shukla et al. 2018f).

Ultimately, molecular docking data indicated that all three mutations affected the
substrate interactions with the active site residues of MtbICL. These results reveal
the internal dynamics of the enzyme structure and feature the importance of residue-
level interactions in the enzyme.

7.8.2 Application in the Drug Designing

The protein–ligand docking is a significant phase in the field of drug designing.
Nowadays, several software are available for structure-based virtual screening. The
PDB entries are increasing due to newer structure determination methods. Most of
the docking software considers the protein as a rigid body, while ligand is always
considered as flexible. Some docking software recognizes the protein and ligand
both as a flexible molecule, and they can produce a better pose with a binding
affinity. The question arises now is: will this docking pose exist in the cell because
every protein is dynamic? To solve this problem, MD simulation is an excellent
approach used to predict the stability and dynamics of the protein–ligand complexes.

7.8.2.1 Inhibitor Designing Against MtbICL
Several MtbICL structures are available in the PDB in complex with inhibitor and
substrates. An inhibitor-bound structure was retrieved from the PDB (PDB ID:
1F8I), and 167,674 compounds were screened in various runs. Following rounds
of screening and docking refinement, 340 compounds were selected. For validation
of the docking results and to study the dynamics of the system, MD simulation was
performed as docking does not provide insight into the dynamics of the system. The
MD simulation data of three compounds were compared and only one compound
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was found to have high potential to inhibit MtbICL. Thus, the MD simulation can be
used to remove the false positive binders and provides information on the detailed
mechanism of ligand-induced inhibition of enzyme function (Shukla et al. 2018e).

7.8.2.2 Inhibitor Designing Against Fasciola gigantica Thioredoxin
Glutathione Reductase

Fasciola gigantica thioredoxin glutathione reductase (FgTGR) is a key drug target
against fascioliasis caused by the helminth parasite Fasciola gigantica. We reported
some novel inhibitors of FgTGR using the structure-based virtual screening
approach, and the selected hits were validated by MD simulation. The compounds
were screened against FgTGR in several runs. The selected compounds were
evaluated through ADMET, and some compounds were chosen for further docking.
Ultimately, three compounds were used for the MD simulation that resulted in one
highly potent compound with a high affinity towards FgTGR. Thus, the MD
simulation can play an important role in the screening of potential inhibitor against
a target considering the physiological conditions of the interaction environment
(Shukla et al. 2018b).

7.8.3 Unfolding Studies

MD simulation is a compelling technique to study the protein unfolding mechanism
at an atomic level (Prakash et al. 2018; Sonkar et al. 2018). We can track the
mechanism of unfolding as a result of chemical-, pH-, or temperature-induced
denaturation using MD simulation, which provides a clear view of structural
alternations taking place at a particular time-scale. Protein unfolding by pH, urea,
GdnHCl, and temperature has already been performed using MD simulation.

7.8.3.1 Urea Induced Unfolding of FgGST1
Urea is a widely used denaturant to study the mechanism of protein unfolding. It has
been proposed to disrupt the hydrophobic interactions, as a result of which the
hydrophobic patches of proteins open and come into contact with water (Kalita
et al. 2018a). We took an 8 M urea environment for analysis and performed 100 ns
simulation at 300 K and 400 K temperature to understand the unfolding mechanism
of a protein. The dynamics of protein were recorded at an interval of 40 ns; the data
indicate that 8 M urea induces unfolding, and finally leads to the disruption of the
complete protein 3D structure (Fig. 7.8). The RMSD, RMSF, Rg, and PCA analyses
suggest that urea induces the unfolding of the protein. Different secondary structure
alternations, such as loss of alpha-helices, loss of bends, and beta-sheets, were
observed in the protein during MD simulation (300 K), which indicates the loss of
native structure. In MD simulation at 400 K, a greater extent of unfolding in protein
structure was observed.

154 R. Shukla and T. Tripathi



7.8.3.2 GdnHCl-Induced Unfolding Analysis
Syed et al. performed the denaturation study of a protein using GdnHCl at 300 K
(Syed et al. 2018). 100 ns MD simulation was run to investigate the atomic-level
changes. Various structural parameters such as RMSD, RMSF, Rg, SASA, the
number of hydrogen bonds, and PCA were calculated and revealed the unfolding
mechanism of the protein (Syed et al. 2018).

7.8.3.3 pH-Induced Effects on the Structure and Stability of the Protein
MD simulation can also be performed in different pH values to model the structural
rearrangement pattern in different pH conditions. Syed et al. also used pH in MD
simulation (2, 4, 6, 8, 10, and 12) to study protein unfolding. Their analyses on a
particular protein suggest that it can maintain the secondary and tertiary structure in
the alkaline pH. In contrast, in the acidic condition (pH 2.0–5.5), significant struc-
tural changes occur (Syed et al. 2015).

Fig. 7.8 Different time frame snapshots of unfolding at 40 ns time interval for a protein with water
and urea at (a) 300 K (b) at 400 K temperature. ProteinH2O and Protein8.0 represent the protein in
water and 8 M urea, respectively (Kalita et al. 2018a). The MD simulation was run for 200 ns
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7.9 Conclusions

Proteins are dynamic entities, and the dynamic nature defines its function. The
availability of an accurate 3D structure is essential to understand the protein dynam-
ics and function. The 3D structure may be solved using X-ray crystallography,
NMR, or computational methods. Although these methods provide detailed infor-
mation on protein structure, they still fail to provide sufficient information on protein
dynamics and motion. MD simulation has a history of more than 43 years. It is a
widely used technique for predicting the dynamic picture of any biological system.
Development of GPUs based high computational capability system is a milestone for
the MD simulation to reduce the time for predicting the dynamics of biological
molecules such as nucleic acids, proteins, carbohydrates, and many more and their
molecular interactions with each other or with small molecules inhibitors. MD
simulation is a potent tool to solve difficult biological problems, which happen in
second to millisecond time-scales like molecular interaction of protein–protein,
protein–ligand interaction, protein folding, and unfolding analysis. It considers the
biological pH, the surrounding molecules for creating the cell-like environment like
water and lipids, as well as co-enzymes, ions, and nucleic acid. MD simulations
provide atomic-level details of atom interaction that are associated with the function
of the molecules. The binding free energy, various energy constituents, and residue-
wise binding contribution with a ligand can be predicted using the MM-PBSA tool.
This information is beneficial for further improvement in the binding affinity. The
QM and MM method implementation in the MD simulation has drastically changed
towards the enhancement of accuracy of the binding free energy. By using these
methods, we can easily find out the role of polarization and electronic effects in
protein–protein and protein–ligand interactions. MD simulation can be used to
reveal the chemistry and dynamics of a biological system by providing an appropri-
ate model and physical conditions.
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