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Abstract

In the post genomic era, the finding of new therapeutic targets has hugely been
accelerated by the use of bioinformatics tools. The availability of genome
sequences of pathogenic microbes has led to an increased finding of genes and
proteins that could be potential targets for drug or vaccine design. The tools made
available by bioinformatics have played a central role in the analysis of the
genome and protein sequences for finding immunogenic proteins among the
repertoire possessed by the organisms. The methods for prediction of immuno-
genicity are automated, and the whole proteome can be analyzed to find the top
candidates that could have immunity inducing properties. Not only finding of
immunogenic proteins has been achieved, but the mapping of the individual
epitopes is also being done. The availability of methods for finding T and B
cell epitopes can lead to the design of epitope-based vaccines. The description of
different bioinformatics tools that are available for determining the immunogenic
properties, finding of T and B cell epitopes, and in silico tools that are used in
vaccine design is given in here. An account of epitope-based vaccine design
employing bioinformatics methods reported in the literature is discussed. There
are many shortcomings associated with these methods, which are discussed in the
chapter. As is the case with other bioinformatics methods, there exist issues of
prediction accuracy. Achievement of higher accuracy in predictions and their
translation into in vivo/in vitro conditions still requires improvement. The chapter
intends to provide the list of freely accessible software for epitope prediction and
vaccine design with their merits/demerits and also throwing light on their appli-
cability in vaccine research.
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11.1 Introduction

Treatment for infectious diseases is one of the most important aspects to improve the
quality of human existence on the planet. However, the fight between the host and
pathogen is not static but of a highly dynamic nature. The major pathogens threat-
ening mankind are viruses, bacteria, and parasites. The co-evolution of pathogens
and the emergence of new diseases have made the battle against pathogens continu-
ous in nature. The issue has been further complicated by pathogens crossing the
generic barriers, and pathogens from other animals have been showing presence in
humans causing diseases. The most common pathogens that migrate from animals to
humans are viruses and events of such transfer are reported. Animal viruses have
infected humans, and caused diseases like SARS, MERS, SARS-CoV2
(coronaviruses), H1N1 (swine flu), and H5N1 (avian flu). SARS coronavirus
originated most probably in bats though many argue its origin as uncertain (Chen
et al. 2013) whereas MERS coronavirus was transmitted to humans from dromedary
camels and its probable origin may be bats (Mohd et al. 2016). The most recent
outbreak of pandemic novel coronavirus (SARS-CoV2) is still prevailing throughout
the world and the reports to date suggest its bat or pangolin origin (Andersen et al.
2020; Zhang et al. 2020). The origins of H1N1 and H5N1 viruses are believed to be
pigs and birds, respectively (Mena et al. 2016; Sims et al. 2005). All these viral
outbreaks have happened in the first 20 years of this century.

Following the discovery of penicillin, the treatment for bacterial diseases has
grown by leaps and bounds. With a battery of antibiotics available for therapy, the
mortality and morbidity caused by bacterial diseases have been controlled. However,
the drug resistance is increasing in bacteria and strains of multidrug resistant bacteria
have been found, particularly in Mycobacterium tuberculosis. The therapeutic
measures for parasitic disease treatment are limited by the availability of a few
drugs. For example, nifurtimox and benznidazole are the only two drugs available
for the treatment of Chagas disease. Furthermore, parasites have also started devel-
oping resistance against the current drugs used for treatment. Leishmania strains are
showing increasing resistance to antimonates used for treatment. In addition, many
of the drugs used for parasitic disease treatment are toxic including those mentioned
in preceding sentences. This necessitates the development of better methods for
finding a cure for pathogenic diseases and among these prophylactic measures like
vaccines find an important place. Vaccines can help in reducing the disease burden
by priming the immune system and inducing protective immunity against diseases.
The success of vaccines has been well proven in eradicating smallpox and near
elimination of polio from the world.
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The modern era of vaccines started with the observation of cross-protection of
smallpox through cowpox infection. It was Edward Jenner who observed that
dairymaids who contracted cowpox subsequently never suffered from smallpox.
He opined that cowpox somehow protected against smallpox and validated his
theory experimentally by inoculating a boy first with cowpox pustule followed by
smallpox pustule and the boy did not contract smallpox. This study published in
1798 was met with mixed reactions at that time (Riedel 2005). Louis Pasteur in 1879
accidentally discovered the “attenuation” while working on chicken cholera. His
observations that chicken injected with old cultures of disease causing bacteria
developed protection against subsequent injection of virulent cultures laid the
foundation for a vaccination with attenuated organisms. Attenuation may thus be
defined as the decrease in pathogenicity of a microbe without comprising its immune
response generating properties. Later on, he used the same principle to develop
protection against anthrax bacteria (Schwartz 2001). These discoveries towards the
end of the nineteenth century paved the way for advances in immunology and
vaccine development. In the forthcoming years, several new principles of develop-
ing vaccines were illustrated. Today vaccines based on various design platforms are
being used commercially in the immunization regimens all over the world.

11.1.1 Live Attenuated Vaccine

The vaccines developed on the attenuation principle include the BCG vaccine for
tuberculosis, Sabin polio vaccine (oral polio vaccine), measles vaccine, rotavirus
vaccine, mumps vaccine, and varicella zoster (chickenpox) vaccine. Attenuation is
generally achieved by growing the pathogen in abnormal conditions for long
durations. In the case of Pasteur’s chicken cholera vaccine, it was found subse-
quently that aerobic culture conditions were responsible for attenuation. These
vaccines though efficient, yet require considerable time for development. BCG is
an attenuated strain of Mycobacterium bovis, which took 13 long years for develop-
ment. The attenuation was achieved by growing Mycobacterium bovis in increasing
concentrations of bile salts by Albert Calmette and Camille Guerin (Luca and
Mihaescu 2013). Sabin polio vaccine was developed by culturing poliovirus in
monkey kidney epithelial cells. The reversion of attenuated organisms into virulent
forms can occur thereby causing disease rather than providing immunity. Sometimes
the administration of these vaccines has led to conditions like natural disease in a
small percentage of recipient population like in the measles vaccine (Kindt et al.
2007).

11.1.2 Inactivated Vaccine

Inactivated vaccines contain the killed pathogen and hence are also called killed
vaccines. This class of vaccines includes hepatitis A vaccine, Salk polio vaccine,
rabies vaccine, etc. Inactivation is generally mediated by chemicals like
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formaldehyde that was used for the inactivation of poliovirus to produce the Salk
vaccine. In the case of killed vaccines, the process involves killing or inactivation of
pathogens, thus the workers involved in the process are exposed to pathogenic
microbes posing a serious health challenge. Further, these individuals, if infected,
can serve as a reservoir for other populations and can lead to the spread of disease.
Sometimes, there can be a failure in the inactivation or killing of the pathogenic
organism, which leads to disease outbreak upon vaccination. This has happened with
the first Salk polio vaccine where the virus was not killed by formaldehyde, and a
high number of recipients of the vaccine developed paralytic polio (Fitzpatrick
2006).

11.1.3 Subunit Vaccine

The dangers associated with killed and inactivated vaccines have led to the develop-
ment of vaccines that do not use the whole organism but the parts of the organism,
which are sufficient to generate immunity. The subunit vaccines have been devel-
oped, which use macromolecules like protein (Hepatitis B vaccine) or carbohydrates
(Pneumococcal vaccine) for inducing protective immunity. Hepatitis B virus surface
antigen (HBsAg) gene has been cloned into yeast and mammalian cells and this
recombinant protein is used as a licensed vaccine. There is no handling of the virus
involved during vaccine production (WHO Data n.d.). However, in the case of
subunit vaccines comprised of carbohydrate moieties like a pneumococcal vaccine,
the bacteria Streptococcus pneumonia is cultured and the polysaccharides are
purified for use in vaccine formulations (Morais et al. 2018). Thus, handling is
involved during the production process, which can make workers involved in
production exposed to the pathogen. The subunit vaccines involving the use of
immunogenic proteins are preferable as genes for proteins can easily be cloned in
high expression vectors, and the production of such vaccines can be carried out with
ease. Toxoid vaccines are produced by inactivating the exotoxin produced by
bacteria. Tetanus and diphtheria toxoid vaccines were developed by inactivating
the exotoxin with formaldehyde.

11.1.4 Recombinant Vector and DNA Vaccines

The knowledge that the proteins rather than the whole organism can provide
immunity has led to the development of recombinant vector and DNA vaccines.
The genes for immunogenic proteins can be cloned into attenuated viral or bacterial
strains and are expressed for longer duration as the vector used replicates in the host.
Adenoviruses, vaccinia virus, attenuated strains of Salmonella, BCG strain of
Mycobacterium bovis are some examples of the vectors that can be used. The
vaccine for SARS-CoV-2 being developed by Prof. Sarah Gilbert at the University
of Oxford contains a gene sequence of spike glycoprotein cloned into the chimpan-
zee adenovirus vector. This vaccine is undergoing accelerated clinical trials for the
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remedy of the current prevailing COVID-19 pandemic (https://www.ovg.ox.ac.uk/
news/covid-19-vaccine-development). The development of DNA vaccines involves
the cloning of a gene for an antigenic protein in a plasmid that can be directly
injected into a muscle. The muscle cells take up the DNA and express the protein to
induce protective immunity by priming the immune system. Though there are no
licensed vaccines based on these approaches yet they are very promising for future
vaccine applications (Kindt et al. 2007).

11.1.5 Epitope-Based Vaccines

From the preceding two sections (Sects. 11.1.3 and 11.1.4) it becomes clear that
bio-macromolecules particularly proteins alone are capable of generating protective
immunity provided they are good antigens. Antigens may be defined as those
molecules that can be recognized by B cell receptors (antibodies/immunoglobulins)
or T cell receptors. The antigen-antibody binding is direct without the mediation of
any other molecule. However, the recognition of the antigen by the T cell receptor
requires that the antigen is presented by MHC (Major histocompatibility complex)
protein molecule. The antigen loaded in the MHC molecule cleft interacts with the T
cell receptor present on T cells. Immune cells, both B and T cells do not interact with
the whole antigen molecule but on certain discrete sites present on the antigen called
epitopes. Epitopes may be defined as antigenic determinants present in the antigen
that directly interact with the antigen-specific receptors present on B and T cells.
Epitopes are of immense importance as they can be potentially used in epitope-based
vaccine design. Epitopes are regions of immune specificity within a protein and can
elicit a protective immune response. Epitope-based vaccines comprise immuno-
dominant epitopes of a pathogen. Epitope-based vaccines are considered to be
safer than traditional vaccines and focus on the most crucial antigenic elements of
the pathogen to generate protective immunity (De Groot et al. 2009). Furthermore,
epitope-based vaccines have provided the opportunity to design multi-epitopic
immunogens that contain epitopes from different proteins. Such chimeric vaccines
generated can have a combined protective effect, which otherwise would have
required all the proteins whose epitopes are incorporated in the vaccine, which is a
difficult process. This approach derives the benefit of using epitopes derived from
multiple proteins rather than focusing on a single protein molecule. The use of
bioinformatics has been extensively made in designing such vaccines. There are
no commercially available vaccines based on this strategy yet epitope-based
vaccines hold a great promise for the future.

11.2 B and T Cell Epitopes

The prerequisite for epitope-based vaccines is the availability of epitopes. The nature
of epitopes present in an antigen needs to be understood for such vaccine design.
There is a difference between the recognition of epitopes by B and T cells. B cell

11 In Silico Designing of Vaccines: Methods, Tools, and Their Limitations 249

https://www.ovg.ox.ac.uk/news/covid-19-vaccine-development
https://www.ovg.ox.ac.uk/news/covid-19-vaccine-development


receptors can bind to epitopes in antigen present either in soluble form or on the
surface of pathogen and there is no requirement of mediation by any other molecule
for this binding. However, the binding mechanism for T cell epitopes is different, as
they require an epitope to be presented by MHC molecules for binding to the T cell
receptor. The nature of B and T cells of epitopes and their interactions are detailed in
the next sections.

11.2.1 B Cell Epitopes

B cell epitopes are located on the native protein and are both continuous and
conformational. The continuous epitopes are also known as linear, or sequential
epitopes comprise amino acids present sequentially in the protein. The conforma-
tional epitopes also called structural or discontinuous epitopes can comprise amino
acids that are located distantly in sequence, but because of protein folding come
close together to form a particular protein structure. B cell epitopes are mostly
surface accessible, hydrophilic, polar regions of the antigens that can readily bind
to the respective antibody molecule (Zobayer et al. 2019). The epitope and the
antibody binding site are complementary and the epitope fits into the complemen-
tarity determining region (CDR) of the antibody molecule. The interactions between
them are stabilized by weak forces like electrostatic interactions, hydrogen bonds,
van der Waals forces, and hydrophobic interactions.

11.2.2 T Cell Epitopes and Their Processing

Unlike B cell epitopes that can be recognized directly, T cell epitopes require
presentation of epitope with MHC molecules. T cell epitopes are only linear or
sequential and the antigens need to undergo processing before being recognized by
their receptors. The protein is first degraded into small peptides; these peptides bind
to MHC molecule and subsequently form a trimolecular complex with T cell
receptors. There are two types of T cells viz Tc cells or cytotoxic T cells that display
CD8 protein molecule on their surface and Th cells or helper T cells displaying CD4
surface protein. The epitopes that are presented to Tc cells are displayed by Class I
MHC molecules whereas Th cell epitopes are displayed by Class II MHC molecules.
The pathways of processing and presenting epitopes to both types of T cells are
different.

Tc cells recognize epitopes arising from proteins processed by the cytosolic
pathway, which involves processing through proteasome and subsequent binding
of the cleaved peptides to class I MHCmolecule before presentation and recognition.
Concisely, the proteasome (a multimeric protein complex) cleaves the protein into
small peptides; these peptides are transported by TAP proteins (transporters
associated with antigen processing) into the ER (endoplasmic reticulum) lumen.
Class I MHC molecules are undergoing folding in the ER lumen where they bind to
these transported peptides with the help of tapasin. The MHC-peptide complex is
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then transported by the secretory pathway to the cell surface (Hewitt 2003). Class I
MHC glycoproteins are expressed by all nucleated cells and present antigen to
cytotoxic T (Tc) cells. The peptide binding cleft of Class I MHC molecule is closed
at both the ends and can bind peptides with 8–10 amino acids in length with
nonamers showing best binding. The structure of Class I MHC with peptide bound
in its cleft is shown in Fig. 11.1, whereas its antigen processing pathway is shown in
Fig. 11.2.

Antigen processing for epitopes binding to Th cells takes place by the endocytic
pathway involving phagocytosis and lysosomal cleavage of protein followed by
binding to the Class II MHC molecule for presentation and recognition. Briefly,
antigens are internalized into the cell by phagocytosis and it proceeds sequentially
through early endosomes, late endosomes, and finally to lysosomes. In these
increasingly acidic compartments, antigen gets cut into small peptides by the
inherent proteases present there. Class II MHC molecules are transported from the
Golgi complex to the endocytic pathway by an invariant chain. As the MHC II
molecule moves through the endocytic pathway invariant chain gets cleaved leaving
CLIP (class II-associated invariant chain peptide) occupying the peptide binding
cleft of MHC II. HLA-DM catalyzes the exchange of CLIP with antigenic peptide
and finally, Class II MHC molecule moves to the cell surface (Kindt et al. 2007).
Class II MHC glycoproteins expressed on the surface of antigen presenting cells
(dendritic cells, macrophages, and B cells) present antigen to helper T cells (Th). The

Fig. 11.1 Class I MHC
molecule with peptide bound
in the cleft (α chain: green,
β2 microglobulin: blue and
the peptide: purple color)
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Fig. 11.2 Processing of antigen, binding of epitope to Class I MHC, and its display on cell surface

Fig. 11.3 Class II MHC molecule with peptide bound in the cleft (α chain in blue, β chain in
orange, and the peptide in yellow color)
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peptide binding site of Class II MHC is open at both ends and can bind peptides of
13–18 amino acids length. Figure 11.3 depicts the Class II MHC molecule with a
bound peptide in its cleft and its antigen processing pathway is depicted in Fig. 11.4.
Thus, the prerequisite for any protein which can be a possible T cell antigen is that it
should be comprised of peptides that show binding affinity to MHC molecules. The
proteins that upon passing through the antigen processing pathway generate peptides
having an affinity for binding to the cleft of MHC molecules can be classified as T
cell antigen proteins.

11.3 Bioinformatics in Vaccine Design

With the advance in genomic technologies in the recent past, the genomes of
organisms are being sequenced at an unprecedented pace. The amount of the data
available is immense and can provide insights into finding unexplored genome
regions in search of novel targets for the treatment of diseases. The wealth of
available genomic data has to be analyzed for deciphering the encoded proteins,
and for vaccinology purposes. The total proteins encoded by the genome can be
screened for finding out immunogenic proteins using bioinformatics tools. These
antigenic proteins can further be used to find out epitopes located in them. Many of
the genome databases have constructed proteomes of the sequenced genomes by
automated methods. The repertoire of proteins encoded by the genome can be
analyzed by bioinformatics servers to find antigenic proteins. The filtered antigenic

Fig. 11.4 Processing of antigen, binding of epitope to Class II MHC, and its display on cell surface
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proteins can be used to find specific B and T cell epitopes in these proteins by the
available epitope prediction methods. A new branch called immunoinformatics has
come into existence, which deals with the application of computational tools to
immunologic problems (Backert and Kohlbacher 2015).

Locating T and B cell epitopes in the proteins of a pathogen is the major job of
immunoinformatics. The tools for finding B and T cell epitopes among the cohort of
proteins encoded by the genome of an organism have been available in the public
domain for almost more than two decades now. These tools are based on various
machine learning methods. The availability of experimental data about T and B cell
epitopes has also increased, which has also enhanced the accuracy of prediction
methods as most of the methods use this data as a training set for developing tools.
The mechanisms of recognition of B and T cell epitopes are different and their
properties also vary. T cell epitopes are linear in nature and need to bind with MHC
molecules for their presentation to T cell receptors whereas B cell epitopes are linear
and conformational, and are recognized in their native position in the protein. The
prediction methods, therefore, have to take into account these different properties of
the epitopes.

For any T cell epitope, the binding affinity to the MHC molecule is immensely
important, as this is the first step that qualifies it to be an epitope. The prediction
methods for finding such an affinity of peptides first progressively break antigenic
protein into peptides and analyze their affinity for a particular MHC molecule. The
diversity of MHC molecules further complicates the situation as the affinity for
peptides changes with change in the molecule. The studies on the peptides eluted
from MHC molecules reveal that there are differences in the properties of peptides
bound in the cleft of different MHC proteins. The alleles for MHC are designated as
HLA alleles; for class I these alleles are HLA- A, B, and C and for class II HLA-DP,
DQ, and DR. In the human population, the number of HLA class I alleles is 14,800,
and that of HLA class II alleles is 5288 (Statistics of HLA alleleshttps://www.ebi.ac.
uk/ipd/imgt/hla/stats.html). Further, the distribution of HLA alleles differs among
different population groups of the world. Thus, any software tool that is developed
for the T cell epitope determination needs to consider these points. The epitope
prediction tools used for B and T cell epitopes are discussed in subsequent sections.
The B and T cell epitope prediction process is shown in Fig. 11.5.

11.4 Prediction Tools for Class I and II MHC Binding

A comprehensive list of the freely accessible tools available for determining the
binding affinity of peptides in a protein to different MHC molecules is listed in
Table 11.1. These tools are based on different machine learning methods like support
vector machine (SVM), artificial neural networks (ANN), hidden Markov models
(HMM), and position-specific scoring matrices (PSSM). Some tools can carry out
the peptide binding predictions for both class I and II MHC molecules, whereas
some of the tools are exclusive. Tools like NetMHC, NetMHCPan, ProPred-I,
EpiJen, and nHLAPred carry out the binding affinity prediction of peptides to
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class I MHCmolecules, and NetMHCII, NetMHCIIPan, and ProPred are exclusively
used for class II MHC binding predictions. Most of the other tools have the
capability of carrying out a prediction for both classes of MHC molecules. The
number of alleles available for running predictions is different in each tool.

11.4.1 NetMHC

NetMHC utilizes the ANN approach to predict the binding affinity of a peptide for
different class I MHC molecules. This predictive model has been trained for
81 different MHC alleles of humans, including HLA-A, HLA-B, HLA-C, and
HLA-E (Andreatta and Nielsen 2016).

11.4.2 NetMHCPan

It predicts the binding affinity of peptides to any MHC of the known sequence. This
ANN-based method is trained by more than 180,000 binding data, and MHC eluted
ligands. The binding affinity data covers 172 MHC molecules from human, mouse
(H-2), Cattle (BoLA), primates, and swine (SLA). It provides information about the
likelihood of a peptide to be a natural ligand or the binding affinity (Jurtz et al. 2017).

Fig. 11.5 Schematic process flow of B and T cell epitope prediction for epitope-based vaccine
design
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11.4.3 SYFPEITHI

This database contains MHC class I and class II ligands, peptide motifs of humans
and other species, natural ligands, and T cell epitopes. It also provides connectivity
to resources available at EMBL and PubMed databases (Rammensee et al. 1999).

11.4.4 ProPred-I

ProPred-I is used to identify the MHC class-I binding regions in antigens. It also
helps the researcher to identify the promiscuous regions (Singh and Raghava 2003).

Table 11.1 Tools for prediction of MHCI andMHCII binding peptides from the protein sequences

Prediction for MHC
class Prediction method Tool References

Class I MHC ANN NetMHC Andreatta and Nielsen
(2016)

Class I MHC ANN NetMHCPan Jurtz et al. (2017)

Both class I and II
MHC

Published motifs SYFPEITHI Rammensee et al. (1999)

Class I MHC Addition/multiplication
matrices

ProPred-I Singh and Raghava
(2003)

Both class I and II
MHC

PSSM RANKPEP Reche et al. (2002)

Class I MHC Additive method EpiJen Doytchinova et al.
(2006)

Both class I and II
MHC

Additive method MHCPred Guan et al. (2003)

Class I MHC ANN and QM nHLAPred Bhasin and Raghava
(2007)

Both class I and II
MHC

SVR SVRMHC Liu et al. (2007)

Both class I and II
MHC

SVM SVMHC Dönnes and Kohlbacher
(2006)

Both class I and II
MHC

Multiple methods IEDB analysis Zhang et al. (2008)

Both class I and II
MHC

ANN
MULTIPRED

2 Zhang et al. (2011)

Class II MHC ANN NetMHCII Jensen et al. (2018)

Class II MHC ANN NetMHCIIPan Jensen et al. (2018)

Class II MHC QM ProPred Singh and Raghava
(2001)

Class II MHC SVM MHC2Pred Lata et al. (2007)
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11.4.5 RANKPEP

It predicts the peptide binders to MHCI and MHCII from protein sequence informa-
tion. It also identifies the MHCI ligands, whose C terminal end is likely to be the
result of proteasomal cleavage (Reche et al. 2002).

11.4.6 MHCPred

This method assumes that each substituent present in a molecule has an additive and
independent contribution to the biological activity. It considers the interaction
between individual amino acids and the binding site, the interaction between adja-
cent and every second amino acids, and their effects on binding (Guan et al. 2003).

11.4.7 EpiJen

This method considers proteasome cleavage and TAP binding and can mimic the
MHC binding mechanism in a real way (Doytchinova et al. 2006).

11.4.8 SVMHC

This tool is based on the SVM approach and used to predict both class I and class II
MHC binding epitopes. This server is based on (Dönnes and Kohlbacher 2006).

11.4.9 MULTIPRED2

It is used to screen peptide that binds to multiple alleles belonging to HLA class I and
class II DR super types. It performs binding predictions on 1077 alleles related to
26 HLA super types (Zhang et al. 2011).

11.4.10 ProPred

ProPred predicts class II MHC binding regions in the antigenic sequence. It assists in
locating promiscuous binding regions which are useful in screening vaccine
candidates (Singh and Raghava 2001).

11.4.11 MHC2Pred

This tool is used to predict promiscuous class II MHC binding peptides. For
algorithm designing, the information of binders and non-binders for different alleles
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were taken from the MHCBN and JenPep database. The average accuracy of this
method is ~80% (Lata et al. 2007).

11.5 CTL Epitope Prediction

Though multiple tools are available for prediction of binding affinity of peptides to
different class I MHC molecules, yet only binding to a particular MHC is not
sufficient to qualify a peptide to be a Tc cell epitope. In other words, not all class I
MHC binders are Tc cell epitopes, whereas all Tc cell epitopes are good MHC
binders. Also, the peptide should be amenable to the antigen processing pathway of
class I MHC i.e. cytosolic pathway. Proteasomal cleavage and transport of peptides
into the rough endoplasmic reticulum (RER) by TAP are other important steps
involved in the cytosolic pathway of antigen processing and presentation (Hewitt
2003).

All intracellular proteins after spending a fixed time in the cell are marked for
degradation by a small protein called ubiquitin. The marked proteins are then
cleaved by proteasome into small peptides within its central hollow. The immune
system modifies proteasome by the addition of extra protein molecules called LMP7,
LMP2, and LMP10 to generate peptides having a preferential affinity for class I
MHC molecules. Thus, for any peptide to act as a Tc cell epitope, it should be
processed by the proteasome. The transport of peptides generated by the proteasome
to RER is carried out by the transport by TAP. TAP also shows preference to
transport peptides of 8–13 amino acid residues in length (Kindt et al. 2007). The
peptide should have these properties to get transported from the cytosol to RER.
These requirements are not as specific as binding to class I MHC molecule yet play
an important role in making a peptide a Tc cell epitope.

There are bioinformatics tools that carry out proteasomal cleavage and TAP
transport prediction and are listed in Table 11.2. Some of the class I MHC binding
prediction tools have these two functions inbuilt in them. EpiJen server, in addition
to MHC binding also uses proteasomal cleavage and TAP transport for predicting Tc
cell epitopes (Doytchinova et al. 2006). nHLAPred also uses proteasomal cleavage
matrices to refine the results of epitope prediction. ProPred-I uses the proteasomal
model and immunoproteasome models for finding the epitopes. RANKPEP predicts
class I MHC binding peptides whose C terminal end is likely to be the result of
proteasomal cleavage. The description of tools that exclusively serve the purpose of
proteasomal cleavage and TAP transport prediction is provided below.

11.5.1 NetCTL

It is used to predict peptide MHC class I binding, proteasomal C terminal cleavage,
and efficiency of TAP transport. MHC class I binding and proteasomal cleavage is
based on the ANN approach while the efficiency of TAP transport uses a weight
matrix (Larsen et al. 2007).
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11.5.2 CTLPred

This tool uses a quantitative matrix, SVM, and ANN approach for prediction. It has
been developed by training and testing the results from the dataset of T cell epitopes
and non-epitopes (Bhasin and Raghava 2004a).

11.5.3 NetChop

NetChop is based on the ANN method to predict the cleavage sites of the human
proteasome. Since the method is trained using human data, therefore, it shows better
performance in predicting sites of proteasomal cleavage for humans. The method is
used by NetCTL for predicting proteasomal cleavage sites (Keşmir et al. 2002;
Nielsen et al. 2005).

11.5.4 MAPPP

MAPPP is used to predict antigenic epitopes on the cell surface by class I MHC to
CD8 positive T lymphocytes. It also predicts the proteasomal cleavage with peptide
anchoring to MHC I molecules (Hakenberg et al. 2003).

11.5.5 Pcleavage

It is an SVM based method used to predict constitutive and immunoproteasome
cleavage sites in the antigenic molecule. The method only predicts proteasomal
cleavage sites, but no prediction of TAP transport is available (Bhasin and Raghava
2005).

Table 11.2 Prediction tools for accessing amenability to antigen processing pathway

Server Application References

NetCTL Integrated Larsen et al. (2007)

CTLPred CTL prediction Bhasin and Raghava (2004a)

NetChop Proteasomal cleavage Keşmir et al. (2002) and Nielsen et al. (2005)

MAPPP Integrated Hakenberg et al. (2003)

Pcleavage Proteasomal cleavage Bhasin and Raghava (2005)

PAProC Proteasomal cleavage Nussbaum et al. (2001)

TAPPred Binding affinity for TAP
transporter

Bhasin and Raghava (2004b)

EpiJen Integrated Doytchinova et al. (2006)
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11.6 B Cell Epitope Prediction

B cell epitopes are recognized by the B cell receptors i.e. antibodies without the
process of processing and presentation, unlike T cell epitopes. Linear B cell epitopes,
in principle, can be predicted by the same methods as used for T cell epitopes.
However, the prediction of conformational or structural epitopes is a challenging
job. The requirement of structural data of a protein is absolute for finding discontin-
uous epitopes. There are methods available for prediction of both continuous and
discontinuous B cell epitopes (Table 11.3), but the efficiency of these methods is less
when compared to T cell epitope prediction methods. The methods use many
different approaches like ANN, SVM, HMMs for predictions.

11.6.1 BCPred

In BCPred server, the user can select the method such as amino acids pair scaling
(AAP), BCPred, and FBCPred for prediction. AAP has good accuracy in the
prediction of antigenicity, hydrophilicity, and flexibility (Chen et al. 2007;
EL-Manzalawy et al. 2008).

Table 11.3 B cell epitope prediction tools

Server Type of epitope References

BCPRED Linear/continuous Chen et al. (2007) and EL-Manzalawy et al.
(2008)

LBtope Linear/continuous Singh et al. (2013)

ABCpred Linear/continuous Saha and Raghava (2006a)

BepiPred Linear/continuous Jespersen et al. (2017)

Bcepred Linear/continuous Saha and Raghava (2004)

SVMTriP Linear/continuous Yao et al. (2012)

Discotope Conformational/
discontinuous

Kringelum et al. (2012)

BEpro Conformational/
discontinuous

Sweredoski and Baldi (2008)

ElliPro Conformational/
discontinuous

Ponomarenko et al. (2008)

Epitopia Both linear and
conformational

Rubinstein et al. (2009)

CBTOPE Conformational/
discontinuous

Ansari and Raghava (2010)

PEASE Conformational/
discontinuous

Sela-Culang et al. (2014a, b)

EpiPred Conformational/
discontinuous

Krawczyk et al. (2014)

EPSVR and
EPMeta

Conformational/
discontinuous

Liang et al. (2010)
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11.6.2 LBtope

LBtope is based on data of B cell epitopes and non-B cell epitopes from the immune
epitope database. Models like SVM and K-nearest neighbor are used in discriminat-
ing epitopes and non-epitopes. The features like binary profile, dipeptide composi-
tion, AAP (amino acid pair) profile have been used in design of the method, and the
accuracy of prediction ranges from 54% to 86% (Singh et al. 2013).

11.6.3 ABCPred

It is an ANN-based approach used to predict continuous B cell epitopes using a fixed
length pattern. This tool is developed using the dataset of epitopes from parasites,
viruses, bacteria, and fungi from the BciPep database, and it has a prediction
accuracy of 65.9% (Saha and Raghava 2006a).

11.6.4 BepiPred 2.0

It is based on the random forest algorithm and developed from a dataset of epitopes
annotated from the antibody-antigen structure from PDB. This tool requires a
FASTA format of the protein as input (Jespersen et al. 2017).

11.6.5 Bcepred

Bcepred predicts the linear B cell epitopes using physicochemical properties, such as
hydrophilicity, accessibility, flexibility, polarity, exposed surface, etc. The accuracy
of this server is 58.7% (Saha and Raghava 2004).

11.6.6 DiscoTope

This server is used for the prediction of discontinuous B cell epitopes from protein
3D structures using surface accessibility and a novel epitope propensity score of
residues (Kringelum et al. 2012).

11.6.7 ElliPro

ElliPro is used for prediction and analysis of antibody epitopes in a protein structure.
Here, PDB ID or a PDB file of a protein is used as input. It has been designed using
the information of discontinuous epitopes present in antibody-protein complexes
(Ponomarenko et al. 2008).
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11.6.8 PEASE

This server predicts antibody-specific epitopes using sequence information of the
antibody. The epitopes related information is provided at the residue level and also
on the structure of antigen (Sela-Culang et al. 2014a, b).

11.7 Methods for In Silico Designing of Epitope-Based Vaccines

Vaccines designing using immunoinformatics tools have come a long way, and
many strategies have been employed for this purpose. Before the advent of such
tools and precedent to the availability of genome, the classical vaccinology
approaches were used which required more time and labor. The prime requirement
in the case of subunit vaccines is a biomolecule, mostly proteins that have the
potential to induce immunity. In the case of epitope-based vaccines, epitopes from
more than one protein can be amalgamated in a single construct for enhancing
immunity. The general account of approaches used is given below. The process
and tools used for epitope analysis and selection of epitopes for vaccine design are
displayed in Fig. 11.6.

11.7.1 Selection of Proteins

As mentioned earlier, the requirement of immunogenic proteins is prime for
epitope-based vaccine designing. The databases like NCBI Protein and UniProt
can serve as the source of proteins for analysis. NCBI Protein database is a
collection of protein sequences from SwissProt, PIR (Protein Information
Resource), PRF (Protein Research Foundation), and PDB (Protein Data Bank)
in addition to translated sequences obtained from annotated coding regions of
GenBank sequences. UniProt contains protein sequences obtained from SwissProt
and translated EMBL (trEMBL) database. The finding of immunogenic proteins
from the genome can be achieved by using various criteria. The total proteins
encoded by the genome of a pathogen i.e. its proteome can be analyzed for
immunogenic proteins by using servers like VaxiJen (Doytchinova and Flower
2007). This server can take as input multiple protein sequences from bacteria,
viruses, fungi, parasites, and the threshold value can be controlled by the user. The
total proteome of an organism can be provided as input and depending upon the
threshold, antigenic proteins can be selected. Proteomics approaches to find the
stage-specific expression of proteins can also aid in vaccine development (Soria-
Guerra et al. 2015). The other approach for fishing proteins from the proteome is
to find the surface proteins. The surface proteins are easily accessible to immune
effector molecules particularly to antibodies and can suffice the purpose. The
servers like CELLO (Yu et al. 2006), Cell-PLoc (Chou and Shen 2008) that
predict the subcellular localization of proteins can help in finding the surface
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proteins from the proteome. The combined approach in which first surface
proteins are predicted from the proteome and these proteins are then subjected
to immunogenicity prediction by VaxiJen has also been employed (Pritam et al.
2019). There is another server by the name of Vaxign which provides two modes
of usage; one in which pre-computed results of more than 350 genomes are
available and can be used for finding immunogenic proteins, and the second
involves the protein input to be provided by the user and results are computed
by the server (He et al. 2010). This server can also assist in protein selection.
Literature studies are also a good source for finding immunogenic proteins. The
previously reported proteins capable of generating immunity can also be used for
epitope prediction and a vaccine can be designed from the epitopes derived from
multiple proteins.

In some cases, several variant sequences exist for a single immunogenic protein.
This could be due to the protein sequences arising from different strains of a
pathogen or the variability induced by the pathogen itself in its surface proteins for
evading the immune response. This variability provides an advantage to the patho-
gen and poses a major hindrance in vaccine development. The conserved regions in
such a protein are deciphered by multiple sequence alignment of the different variant
sequences. Tools like Clustal Omega, TCOFFEE, etc. can be employed to carry out
multiple sequence alignment. These conserved regions can then serve as the source
for the prediction of epitopes.

Fig. 11.6 Graphic representation of steps involved in the analysis of predicted B and T cell
epitopes for designing of in silico vaccines
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11.7.2 Epitope Prediction and Analysis

Once the protein/proteins have been selected the subsequent step involves the
prediction of B and T cell epitopes. The prediction of epitopes can be carried out
using the tools mentioned in Sects. 11.4, 11.5, and 11.6. Tc cell epitope prediction
involves predicting the affinity of peptides (by tools in Sect. 11.4) for the respective
HLA allele (Class I MHC) followed by the proteasomal cleavage and TAP transport
prediction (tools in Sect. 11.5). The epitopes qualifying these criteria are generally
selected for the vaccine designing process. For helper T cells the epitope prediction
involves ascertaining the binding affinity of peptides for HLA alleles (Class II MHC)
and there are no methods available for determining the antigen processing and
presentation prediction by endocytic pathway. The tools presented in Sect. 11.6
can predict continuous and discontinuous B cell epitopes. Thus, a pool of B and T
cell epitopes can be generated which can be further analyzed.

Many a time the epitopes particularly, T cell epitopes predicted for different HLA
alleles can share considerable sequence similarity. Such epitopes can be clustered
together and a single representative of this cluster can be used in the final design. The
process of clustering removes the unwanted repetitiveness of epitopes and prevents
the vaccine construct from unnecessary elongation. Epitope cluster analysis tool
(Dhanda et al. 2018) can be used to carry out this step as the epitopes are clustered
together based on the sequence identity threshold set by the user. Another important
aspect is to check the similarity of the epitopes with the host proteins and this can be
achieved by using BLAST (Basic Local Alignment Search Tool) available at NCBI
(National Center for Biotechnology Information). After BLAST analysis the
epitopes sharing similarity with host proteins need to be omitted, as they may not
generate any response. Population coverage tool helps in finding the predicted
immune response to T cell epitopes in a population group based on HLA allele
distribution (Bui et al. 2006). The Allele Frequency Net Database is the source of
HLA allele distribution frequencies in different populations of the world used in the
tool. The epitopes should be able to provide a higher percentage of population
coverage to be used in vaccine design as this ensures immune response generation
in most of the individuals in a population group. To check the conservancy of
epitopes across the variants of a protein, Epitope conservancy analysis tool can be
used which calculates the degree of the conservancy of a particular epitope in the
cohort of protein sequences (Bui et al. 2007). This tool becomes an important asset
when different variants of a protein exist as mentioned in Sect. 11.7.1.

The epitopes can also be checked for the presence of any allergenic and toxic
peptides among them. The tools for allergenicity prediction like AlgPred (Saha and
Raghava 2006b), AllergenFP (Dimitrov et al. 2014a), AllerCatPro (Maurer-Stroh
et al. 2019), and AllerTop (Dimitrov et al. 2014b) are freely available and can be
used to remove the epitopes possessing allergenic nature from the group to be used in
vaccine design. The toxic peptides can be predicted by the ToxinPred server (Gupta
et al. 2013) and any epitopes that are toxic in nature have to be omitted from the final
construct. The epitopes after filtration by the above methods can be used further.
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11.7.3 Molecular Docking and Molecular Dynamics Simulation

The use of molecular docking and simulation to find interactions between epitopes
and immune effector molecules is an important aspect of in silico vaccine designing.
T cell epitopes should bind to MHC molecules for presentation to T cell receptors.
This binding can be studied by molecular docking, for which the structure of epitope
needs to be determined. The servers like PEPFOLD (Lamiable et al. 2016), QUARK
(Xu and Zhang 2012), etc. are freely available for modeling of small peptides and
can provide models of T cell epitopes. The structures of MHCmolecules (Class I and
II) can either be obtained from Protein Databank (PDB) if available or models of
these proteins be generated by homology modeling servers like SwissModel
(Waterhouse et al. 2018) and many others. The docking of the epitopes with
respective MHC molecule/HLA allele can be carried out by protein-protein docking
servers like ZDOCK (Pierce et al. 2014), ClusPro (Kozakov et al. 2017), etc. The
docking results can validate whether the epitope binds in the cleft of the MHC
molecule. The docked complexes can further be analyzed by molecular dynamics
simulation to explore the interaction between the epitope and MHC molecule in
conformational space. These results, if positive can further strengthen the possibility
of epitopes being presented by MHC molecules to T cells. Software suites like GR
OMACS (van der Spoel et al. 2005) are freely available that can be used for
simulation studies. T cell epitopes that dock into the peptide binding cleft of MHC
molecules are selected for vaccine designing. The docking and simulation studies for
B cell epitopes are not required as they bind directly to the antibody molecules and
are not presented through MHC molecules. The complementarity determining
regions (CDRs) of antibody molecules are highly diverse and thus binding studies
cannot be carried out.

11.7.4 Construction of Vaccine

Many studies culminate at the finding of epitopes that qualify the processes men-
tioned in Sects. 11.7.1–11.7.3 and the resultant cohort of epitopes is left for the
designing of vaccines in future studies followed by experimental validations. In
some studies, the epitopes are used for cell culture based studies, and their ability to
initiate an immune response is validated by the cytokine response generated by them
in peripheral blood mononuclear cells (PBMCs). However, in silico vaccine design-
ing based on the predicted epitopes is also widely carried out. The epitopes are
joined in tandem with the insertion of specific linkers for efficient processing of
epitopes such as AAY linker is generally used between two CTL epitopes. AAY
linker possesses the cleavage site of proteasomes, which leads to the generation of
natural epitopes and it can also reduce the unwanted joining of two neighboring
epitopes in the vaccine construct. Similarly, the GPGPG linker is used for the
separation of T helper cell epitopes as this linker is reported to facilitate immune
processing and prevent the joining of two epitopes. In many of the vaccine constructs
protein adjuvants like cytokines have also been fused with the epitopes and in these
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constructs linker like EAAAK has been widely used. The linker EAAAK causes the
separation of fusion proteins (Arai et al. 2001) and can prevent the interaction
between the vaccine and adjuvant domains of the vaccine protein construct. Thus,
the final fusion protein obtained as vaccine consists of epitopes, linkers, and may be
adjuvants in certain cases. The structure of this fusion protein can be deduced using
web-based protein modeling severs like I- TASSER (Roy et al. 2010). In some
instances, homology modeling servers can successfully model the vaccine protein
structure, whereas for some structures ab initio modeling approaches have to be
used. The protein sequence can be reverse translated into DNA and thus gene
constructs of vaccine can be made. JCat tool can be used for reverse translation as
well as for codon optimization for efficient translation in the host cells (Grote et al.
2005). The protein sequence of the vaccine construct can be reverse translated using
codon bias for expression in eukaryotic or prokaryotic cells for heterologous pro-
duction of the vaccine. Alternatively, the gene for human expression can be codon
optimized for direct use as a DNA vaccine in humans. Thus, this section summarizes
the methods that can be used for designing of in silico vaccines. Some examples of
the development of vaccines using these approaches are depicted in Sect. 11.8.

11.8 Case Studies of Vaccine Designing

There have been various studies on vaccine designing using bioinformatics tools.
Immunoinformatics has been widely used for in silico designing of vaccines for
various pathogens like viruses, bacteria, and parasites. The details of these vaccine
designing studies are given in the forthcoming sections.

11.8.1 Vaccine Designing for Viral Pathogens

Viruses are nucleoprotein particles, which have imposed a heavy disease burden
throughout human history. Since, viruses use the host cell machinery for their
replication and other functions, it limits the availability of drug targets in them.
Vaccines have been the prime means for the treatment of viral diseases. Recently,
vaccines for viruses have been designed using in silico methods. The vaccines have
been designed based on epitopes derived from a single viral protein. The criteria
used for the selection of protein are either immunogenicity or surface accessibility.
Ebola virus vaccine was designed using predicted B and T cell epitopes present in
the glycoprotein of the virus. VaxiJen server was used to find immunogenic protein
followed by epitope predictions, which were further validated by molecular docking
and molecular dynamics simulation approach (Dash et al. 2017). T and B cell
epitopes (linear and discontinuous) were predicted in the Spike protein of MERS-
COV using bioinformatics tools, which could be used in vaccine design (Ul Qamar
et al. 2019). In some cases, epitopes have been predicted from more than one viral
protein for use in vaccine design. The proteins E, prM, NS1, NS3, and NS5 of
Japanese Encephalitis Virus (JEV) were used in a recent study for the prediction of T
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and B cell epitopes. Based on different parameters assessed four T cell and one B cell
epitope were found to have potential in inducing immunity and could be used in
vaccines against the virus (Chakraborty et al. 2020). B and T cell epitopes from five
structural polyproteins (capsid, E2, 6K, E3, and E1) of the Mayaro virus were
predicted using immunoinformatics tools. Multi-epitope vaccine was designed,
molecular docking with TLR-3 was done, and finally in silico expression was carried
out in E. coli (Khan et al. 2019). The phenomenon of cross reactivity found among
related viruses has earlier led to the development of immunity as in the case of
smallpox (details in Sect. 11.1). With this background, attempts have been made to
find common epitopes present in two or more related viruses for designing vaccines
that could generate immunity across these viruses.

A study on four antigenically important proteins (HA, NA, NP, and M2) of
H1N1, H2N2, H3N2, and H5N1 viruses revealed the presence of 18 conserved
epitopes across these viruses which have the potential for future vaccines (Muñoz-
Medina et al. 2015). Hendra virus and Nipah virus proteins (F, G, and M), when
subjected to B and T cell epitope prediction, showed common epitopes which could
be used for vaccine design against both the viruses (Saha et al. 2017). In the envelope
protein of the Japanese Encephalitis virus and West Nile virus, a common conserved
epitope was detected which contained both B and T cell epitopes that could find use
in designing epitope-based vaccines (Slathia and Sharma 2019).

11.8.2 Vaccine Designing for Bacteria

Since the discovery of penicillin, the therapeutic interventions for bacterial diseases
have increased by leaps and bounds, and antibiotics remain the most important
treatment for bacterial infections. Prophylactic vaccines like DTP (Diphtheria,
Tetanus, Pertussis), Hib (Haemophilus influenzae type B), pneumococcal are
included in immunization schedules throughout the world and have been helpful
in reducing the disease burden considerably. Bacteria have a larger genome and
proteome as compared to viruses, therefore finding immunogenic proteins is a little
laborious job. The full proteome of bacteria has been studied to find immunogenic
proteins, which can be used for vaccine design. The total proteome of
M. tuberculosis H37Rv, when used for finding the best vaccine candidates by in
silico methods, revealed six novel vaccine candidates, EsxL, PE26, PPE65,
PE_PGRS49, PBP1, and Erp, which could be used to design new TB vaccines
(Monterrubio-López and Ribas-Aparicio 2015). In another study proteomes of three
serotypes of Shigella: S. dysenteriae type1 (sd197), S. flexneri 2a (str. 301 and str.
2457T), and S. sonnei (ss046) were investigated to determine the common proteins
of these three bacteria. The epitope prediction for these common proteins was done
and five peptides were used for in vivo animal and human serum studies. The
peptides elicited antibody and cytokine (Th1 and Th2) response confirming that
these cross protective and conserved peptides have the potential to be used in future
vaccines (Pahil et al. 2017). Studies have also been focused on a group of proteins or
even a single protein for epitope prediction and vaccine design. Essential
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hypothetical proteins of five Salmonella strains were studied to find out drug and
vaccine targets. Out of 106 proteins, 4 proteins were found to be immunogenic for
which conserved B and T cell epitopes were predicted which can be used for future
vaccine design (Sah et al. 2020). Nine epitopes were predicted from 11 multidrug
resistance (MDR) proteins of Salmonella typhi that had the potential to generate B
and T cell response and can find use in vaccine design (Jebastin and Narayanan
2019). A DNA vaccine based on cytotoxic T cell epitopes predicted from a single
protein Listeriolysin-O of Listeria monocytogenes was constructed using in silico
methods. T cell epitopes were fused in tandem, human and mouse gene constructs
were made in addition to determining posttranslational modifications like phosphor-
ylation and glycosylation (Jahangiri et al. 2011). An outer membrane protein of
Vibrio cholera was used for epitope prediction by different tools and one surface
exposed peptide was found containing both B and T cell epitopes, which could have
future vaccine design applications (Rauta et al. 2016).

11.8.3 Vaccine Designing for Other Parasites

Parasitic diseases caused by helminths and protozoans are difficult to treat, as these
organisms are eukaryotic in nature and drug targets that are non-homologous with
host tend to be less in number. The therapeutic measures for their treatment are
limited and there are no licensed vaccines for use in humans. A vaccine against
Plasmodium falciparum “RTS, S” has been introduced under the aegis of WHO in
Ghana, Kenya, and Malawi and is undergoing pilot scale trials since 2019. The
efforts, therefore, are required to develop vaccines against parasitic diseases. The use
of bioinformatics tools has been made to design vaccines for these diseases. A multi-
epitope peptide vaccine derived from epitopes obtained from six proteins of
Onchocerca volvulus was designed using in silico methods. The epitopes used in
the peptide vaccine showed varying degrees of conservation in related species
Onchocerca ochengi, Loa loa, Onchocerca flexuosa, Brugia malayi, and
Wuchereria bancrofi indicating its cross protective capability. The peptide vaccine
was reverse translated, codon optimized, and conceptually cloned in the pET vector
after carrying out other analysis like docking, immune simulation (Shey et al. 2019).
The proteome of Taenia solium was used to find surface accessible immunogenic
proteins for which B and T cell epitopes were predicted. A peptide construct based
on the epitopes was made and the structure was determined by modeling and after
that, it was docked with immune receptors and finally, a gene was constructed to
express the peptide vaccine (Kaur et al. 2020). B and T cell epitopes were predicted
from the enolase protein of Echinococcus granulosus and a multi-epitope vaccine
was designed after analyzing its immune response generating properties (Pourseif
et al. 2019). Triosephosphate isomerase from the same organism has also been used
to predict epitopes for use in vaccines (Wang and Ye 2016).

From the total proteome of Plasmodium falciparum, five surface accessible
antigenic proteins were selected for the prediction of T cell epitopes. These epitopes
upon docking and population coverage revealed their efficiency to be used in
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epitope-based vaccines (Pritam et al. 2019). B and T cell epitopes from AMR1, a
surface exposed protein of Plasmodium falciparum have been predicted in a study
that has the potential for use in future subunit vaccines (Sanasam and Kumar 2019).
An approach for developing epitope-based vaccine Trypanosoma cruzi involved
epitope prediction from the proteome of the pathogen. mRNA construct and the
structure of the peptide vaccine comprising epitopes were made (Michel-Todó et al.
2019). Conserved T cell epitopes were predicted from variants of an amastin protein
of Trypanosoma cruzi for future vaccine designing (Slathia and Sharma 2018). In
silico prediction of T cell epitopes from promastigote surface antigen (PSA),
LmlRAB (L. major large RAB GTPase), and histone (H2B) proteins of Leishmania
was done followed by testing of these epitopes for inducing different cytokines in
peripheral blood mononuclear cells (PBMCs) isolated from cured and healthy
individuals. The epitopes were able to induce specific cytokine producing helper
and cytotoxic T cells and could be used in future vaccine design (Hamrouni et al.
2020).

11.9 Limitations and Challenges

The major step involved in epitope-based vaccine designing using bioinformatics
tools is the prediction of epitopes. Therefore, the accuracy of epitope prediction
methods is of prime importance, as this will govern the success of vaccines in the
real world. More is the accuracy of the epitope prediction methods greater are the
chances of success of inducing protective immunity by the vaccine. The methods
available for epitope prediction have been benchmarked using the experimental steps
in many studies. The limitations and their prediction efficiency have been studied.
Many new methods have been redesigned as new data becomes available. Generally,
it has been observed that modern machine learning methods like SVM and ANN
perform better than linear methods like PSSM. The prediction efficiency achieved in
class I MHC epitope prediction is better as compared to predictions for class II MHC
and B cell epitope prediction. The benchmarking of automated servers for class I
MHC prediction is carried out weekly, and the results are available on the immune
epitope database (IEDB). These benchmarking results show that among the
participating servers, NetMHCPan is the best performing server.

The next best performing methods are SMM and ANN. The ranking scores are
indicative of the performance of methods among each other and do not indicate the
absolute predictive performance. The ranks are concerning each other and not in the
context of their prediction efficiency (Trolle et al. 2015). Many of the binding
peptides are not immunogenic, and even if they are amenable to processing and
presentation, they do not act as epitopes. There are still loopholes in the methods,
and the binding stability of peptide and HLA molecule has also to be taken into
account. The only tool available for this is NetMHCstab (Jørgensen et al. 2014)
which is an ANN-based tool and has only been trained on 13 HLA alleles. With the
increase in data about HLA alleles and their binding peptides, these tools are bound
to increase their efficiency in the future.
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The prediction methods for class II MHC are yet to achieve the efficiency of class
I MHC predictors. In most of the methods, the prediction is limited to HLA-DR
alleles, and few servers like NetMHCII 2.3, RANKPEP, NetMHCIIPan carry out
predictions for HLA-DP and HLA-DQ as well. The nature of peptides binding to
class II MHC is different from that showing binding to class I. Peptides binding to
class II MHCmolecules have a binding core rather than anchor residues seen in class
I MHC binding peptides. Besides, the peptides binding to class II MHC are longer,
and the position of the binding core is not fixed (Kindt et al. 2007). The peptide
binding mode of class II is less specific than class I, and the genotype structure of
class II allotypes is more complicated. This makes designing of class II MHC
binding prediction methods more challenging. The tools need to address these
issues, and the lack of data available makes these prediction tools less efficient.

The benchmarking of class II predictors is also done weekly, and among the
different prediction tools, the NN-align method which is the basis of NetMHC2.0
(Nielsen and Lund 2009) outperforms the other methods. NetMHCIIPan is the next
best performing method followed by Comblib matrices, (Sidney et al. 2008) a
method available at IEDB analysis resource and SMM-align. Next-generation
sequencing (NGS) has increased the inflow of genomic data in an unprecedented
manner, and the data for HLA alleles is now being generated at a high pace. This data
along with other high throughput experimental data about the class II MHC-peptide
binding is required to increase the efficiency of prediction tools.

Prediction of continuous B cell epitopes follows the same principles, albeit the
length of epitopes is not fixed. For discontinuous epitopes, the prediction requires
different approaches as the classic machine learning methods need continuous
sequence data (Backert and Kohlbacher 2015). There are fewer benchmarking
studies for B cell epitope predictors, and most of them conclude that the efficiency
of these methods is yet far from meeting the requirements in the biological context.
Since there are no universal properties that are present in antigenic epitopes but
absent in other protein surfaces, therefore, designing methods for prediction is a
challenging job. The methods for linear epitope prediction are based on the hypoth-
esis that certain amino acids occur more frequently in the epitopic regions. A
benchmarking study for linear B cell epitope prediction concluded that these
methods require improvement, and new approaches need to be taken into account
for devising more efficient methods (Blythe and Flower 2005).

In a study on discontinuous epitope prediction tools, it was found out that
DiscoTope and PEPITO have the highest predictive performance (Kringelum et al.
2012). The prediction efficiency of different discontinuous epitope predictors was
done by Yao et al. (Yao et al. 2013), wherein they found out that the highest
prediction accuracy obtained was only 25.6% by the EPMeta server. In the case of
lowering the threshold for prediction, the prediction accuracy rose to 31.6%. There is
a huge scope of improvement in the B cell epitope prediction methods to reach the
accuracy levels of T cell epitope prediction methods. An important consideration for
designing epitope-based vaccines is the prevalence of HLA alleles in the target
populations. HLA alleles have a varied affinity towards the binding peptides and
their distribution also varies in different population groups. The selection of epitopes
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for vaccine designing without taking this into account may fail vaccine to provide
immunity (Oyarzun and Kobe 2015).

The challenge in vaccine design using only epitopes is that the peptides mostly
fail to generate the immune response required for producing long lasting immunity.
Because of their small size, the peptides are often weakly immunogenic and this
thwarts the basic function of designing vaccines. Epitope-based peptide vaccines
are mostly known to initiate antibodies (humoral response) and fail to induce T
cell-mediated immunity. The generation of humoral immunity is not enough to
protect against disease (Li et al. 2014). Since the molecular size is an important
feature for immune response development such as small-sized peptides harboring
epitopes need to be conjugated with carriers/adjuvants. The “RTS, S” vaccine for
Plasmodium falciparum developed recently is based on truncated (C terminal end)
of circumsporozoite protein (CSP) containing B and T cell epitopes. However, this
188 amino acid part of CSP has been fused with HBsAg protein to generate an
immunogenic construct (Oyarzún and Kobe 2016). The CSP alone is weakly
immunogenic predominantly generating antibody response but its fusion with
HBsAg enhances its immunogenicity (Collins et al. 2017). Therefore, suitable
carriers are required for vaccines based on epitopes as most of the times they are
not enough immunogenic to induce both cell-mediated and humoral immunity.

The use of carriers/adjuvants becomes critical in designing epitope-based
vaccines and many studies involving in silico designing of vaccines have taken
this into account by the addition of adjuvant in the final vaccine construct (Shey et al.
2019; Khatoon et al. 2017). The usage of adjuvants like toxoids, Freund’s incom-
plete adjuvant, and the most recent TLR (Toll-like receptor) agonists enhances the
immunogenicity of vaccines. These adjuvants are an essential requirement for the
success of epitope-based vaccines; however, in silico studies can only design a
construct using protein-based adjuvants and for other adjuvants, lab studies need
to be undertaken.

11.10 Conclusion

In silico methods can provide a huge impetus to vaccine design and development.
The B and T cell epitope prediction methods form the core of in silico epitope-based
vaccine designing. The prediction of epitopes reduces the huge cost and labor
involved in experimentally finding out the epitopes. These methods ease out the
efforts involved in deducing T and B cell epitopes. The methods for T cell epitope
prediction are more advanced in terms of prediction accuracy when compared to B
cell epitope prediction tools. These methods need to be improved so that prediction
accuracy can be increased, and we may be able to design more efficient vaccines in
the future. The tools and methods for the analysis of the predicted epitopes though
appear to be subsidiary yet their importance cannot be ignored. The checking of
epitope clusters to avoid undue repetition of epitopes, checking their conservancy,
finding toxic and allergic epitopes are essentiality that cannot be done away with.
Analyzing the population coverage that can be achieved by the epitopes has far
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reaching consequences for the success or failure of vaccines in different population
groups. Molecular docking and dynamics simulation strengthen the chances of
epitope binding to MHC molecules. Finally, the construction of vaccines using
these rational approaches can strengthen the possibility of it being successful,
which of course needs to be validated by laboratory studies.
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