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Foreword

Ever since the cracking of the human genome in the beginning of the present
century, scientists have been engaged in locating the drug targets and designing
and developing novel drugs through the system’s approach. This has resulted in a
tremendous reduction in research and production costs. Earlier, the drug design
process used to take many decades and was carried out haphazardly without any
direction. Already the surge in bioinformatics solutions has redefined the way drug
trials are done and making a shift from in vitro to in silico. In this age of multiple
drug resistance, in silico drug design could be used to shorten the time of discovery
and this issue shall remain the biggest challenge for years to come. In the present fast
changing scenario, it is difficult to manage expressive coherence in this rapidly
growing area of drug designing.

I am happy that Dr. Dev has ventured to collect twelve well-written chapters and
has brought an edited book named “Computer-Aided Drug Design” to be published
by Springer Nature, Singapore. I feel that the authors are quite successful in “fusing”
the otherwise diverse topics of this fast-emerging area. I am sure that this book will
be exceedingly useful for not only under- and postgraduate students but also for
research scholars, scientists, and pharma industries involved in developing new
drugs.

I hope that the readers of this book shall contribute in the future for making the
text more useful for further development of this important field of computer-aided
drug design.

Hony. Professor, IIIT-Allahabad
Prayagraj, India

Krishna Misra
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Preface

The computer-aided drug design uses computational approaches for analysis of
target, screening, and interaction of ligands, simulation of target–ligand complex,
optimization of lead compounds, QSAR analysis, and ADMET studies. In structure-
based drug designing, ligand molecules are built keeping in mind the binding cavity
of the target by assembling small substructures in a stepwise manner. Ligand-based
drug designing involves the 2D/3D analysis and chemical modification of ligand
known to interact with a drug target of the disease. A large number of computational
tools have been developed to fulfill the different objectives in the way of drug
designing. There are many successful stories of computer-aided drug designing.
This field has attracted many researchers working in diverse fields of knowledge
such as chemistry, physics, biology, mathematics, and computer science. In drug
designing, systematic and sequential use of different computer-aided drug designing
tools/software is required. Much advancement has taken place in the algorithms and
approaches of computer-aided drug designing from time to time. The existing
limitations of the tools and approaches used for drug designing have also been
discussed which can motivate the readers and researchers to overcome such
challenges in the future.

The present book “Computer-Aided Drug Design” has been written considering
the need for researchers and students working in the domain of computer-aided drug
designing. This book not only represents the discussion of recent advances in the
field of computer-aided drug designing but also provides a basic knowledge of
principles, approaches, and tools used for drug designing. This book includes a
discussion of biological database resources used for drug discovery. One chapter is
focused on the computational approaches and resources used for vaccine designing.
Similarly, a basic discussion and application of machine learning approaches such as
genetic algorithm, artificial neural network, and support vector machine have been
included. It also explains the basics and use of different biological, physical, and
chemical parameters used for modeling, simulation, and ADMET prediction. The
chapters provide a summary of related case studies along with the application,
merits/demerits, limitations, and future perspectives related to the title. The steps
and use of different computational approaches have been explained with the help of
simple, suitable, and neat sketches and illustrations. This book is full of a lot of
resources that can guide and motivate a learner to proceed for drug designing.
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I hope this book will be very helpful in understanding the basics and recent
advances in computer-aided drug design. I tried my best effort to present a good
quality creation before the readers and other scientific communities. This book will
cover the need for a broad spectrum of subjects such as bioinformatics, biotechnol-
ogy, biochemistry, and pharmaceutical sciences. During the review and editing
process, many suggestions, corrections, and suitable addition of new topics have
been included. Still, I look forward to your valuable suggestions and feedback
related to the content quality of the book.

Kanpur, India Dev Bukhsh Singh

viii Preface



Acknowledgement

I am highly grateful to Prof. (Mrs.) Krishna Mishra (Prayagraj), a renowned scientist
and educator for her continuous support, guidance, and motivation. Prof.
J.V. Vaishampayan, former Vice-Chancellor of CSJM University, Kanpur has
encouraged me a lot to achieve academic excellence. I will always be highly thankful
to him for his inspiration, encouragement, and support. I would like to acknowledge
the effort of all the authors of this book for their extensive labor, vision, and planning
in writing the chapters. I thank the reviewers whose critical comments improved the
book in substantial ways. I am highly thankful to Dr. Pankaj Kumar Singh,
GBPUA&T, Pantnagar for his technical support and suggestions. I am highly
grateful to my parents Mr. Sudhakar Singh and Smt. Radhika Singh and other family
members for their wishes, valuable support, and encouragement.

I am also thankful to my colleagues Dr. Manish Kumar Gupta, Dr. Satendra
Singh, Dr. P. K. Yadav, Dr. Budhayash Guatam, Dr. Prashant Ankur Jain, Dr. Anil
Kumar, Dr. Durg Vijay Singh, Dr. Ajay Kumar Singh, Dr. K. K. Ojha, Dr. Pramod
Katara, Dr. Prem Kumar Singh, Dr. R. K. Kesharwani, other friends and staff
members for their support. I would like to appreciate the effort of Dr. Rajesh
Kumar Pathak, Mr. Rohit Shukla, Mr. Apoorv Tiwari, Mr. Himanshu Avasthi,
Mr. Ambuj Srivastava, and Ms. Shikha Agnihotri for their support. I am thankful
to Dr. Bhavik Sawhney and the entire team of Springer Nature for their continuous
support and cooperation during the entire process of publication.

ix



Contents

1 Computational Approaches in Drug Discovery and Design . . . . . . . 1
Rajesh Kumar Pathak, Dev Bukhsh Singh, Mamta Sagar,
Mamta Baunthiyal, and Anil Kumar

2 Molecular Modeling of Proteins: Methods, Recent Advances,
and Future Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Apoorv Tiwari, Ravendra P. Chauhan, Aparna Agarwal,
and P. W. Ramteke

3 Cavity/Binding Site Prediction Approaches and
Their Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Himanshu Avashthi, Ambuj Srivastava, and Dev Bukhsh Singh

4 Role of ADMET Tools in Current Scenario: Application
and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Rajesh Kumar Kesharwani, Virendra Kumar Vishwakarma,
Raj K. Keservani, Prabhakar Singh, Nidhi Katiyar,
and Sandeep Tripathi

5 Database Resources for Drug Discovery . . . . . . . . . . . . . . . . . . . . . 89
Anil Kumar and Praffulla Kumar Arya

6 Molecular Docking and Structure-Based Drug Design . . . . . . . . . . 115
Shikha Agnihotry, Rajesh Kumar Pathak, Ajeet Srivastav,
Pradeep Kumar Shukla, and Budhayash Gautam

7 Molecular Dynamics Simulation of Protein and Protein–Ligand
Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Rohit Shukla and Timir Tripathi

8 Computational Approaches for Drug Target Identification . . . . . . . 163
Pramod Katara

9 Computational Screening Techniques for Lead Design and
Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Pramodkumar P. Gupta, Virupaksha A. Bastikar, Alpana Bastikar,
Santosh S. Chhajed, and Parag A. Pathade

xixi



10 Advances in Pharmacophore Modeling and Its Role in Drug
Designing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Priya Swaminathan

11 In Silico Designing of Vaccines: Methods, Tools, and Their
Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Parvez Singh Slathia and Preeti Sharma

12 Machine Learning Approaches to Rational Drug Design . . . . . . . . . 279
Salman Akhtar, M. Kalim A. Khan, and Khwaja Osama

xii Contents



About the Editor

Dev Bukhsh Singh is an Assistant Professor at the Department of Biotechnology,
Chhatrapati Shahu Ji Maharaj University, Kanpur, India. He received his B.Sc. and
M.Sc. degrees from the University of Allahabad, Prayagraj, and his M.Tech. from
the Indian Institute of Information Technology, Prayagraj. Holding a Ph.D. in
Biotechnology with specialization in Bioinformatics from Gautam Buddha Univer-
sity, he has been actively involved in teaching and research since 2009, and his focus
areas include molecular modeling, chemoinformatics, inhibitor/drug design, and in
silico evaluation. He has authored numerous research articles and book chapters in
the fields of medicinal research, molecular modeling, drug design, and systems
biology. He also published a book on the title “protein structure, function, and
dynamics“ (Springer Nature, Singapore). He is a member of various national and
international academic bodies and is a reviewer for several international journals.

xiiixiii



Computational Approaches in Drug
Discovery and Design 1
Rajesh Kumar Pathak, Dev Bukhsh Singh, Mamta Sagar,
Mamta Baunthiyal, and Anil Kumar

Abstract

Drug discovery is an expensive and complicated process. The drug must fulfill
some criteria of being nontoxic, bioavailable, and potent. In the view of evermore
stringent demands about efficacy, potency, and safety, the finding of the new
drug-like molecule has become a complex and resource-intensive undertaking.
Now, the availability of 3D structures of molecular drug targets and advances in
computational approaches and bioinformatics speed up the application of molec-
ular modeling in discovery. In this chapter, several molecular modeling strategies
employed in modern drug discovery program are discussed. The concepts of
structure- and ligand-based drug designing, protein modeling and visualization,
molecular docking, virtual screening, molecular dynamics simulation,
pharmacophore modeling, and QSAR approaches have been explained. Besides,
we also provide important database resources and tools available for drug
research. Finally, we present case studies conducted in our lab, showing how
computational approaches can be implemented in reality for the discovery and
designing of novel drugs from natural sources.
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1.1 Introduction

Generally, new drugs were discovered from plants and other natural sources through
accidental observations and analysis (Singh et al. 2012). The field of drug discovery
is extremely challenging and requires adequate infrastructure and lab facilities.
People in every nation have used drugs derived from plant or animal origin to treat
and prevent disease. The quest for substances to fight sickness and to alter mood and
consciousness is nearly as fundamental as search for food and shelter. Various drug
molecules derived from plants or animals are highly valued, but most of the drugs in
the modern medical system are synthetic chemistry and biotechnology products.
Thus a drug is said to be a substance of either natural or synthetic origin that is
employed in the prevention, treatment, and diagnosis of disease or modulation of the
target or function of the biological systems. Thus, generally, we can say that a drug is
a chemical that affects the biological systems and its processes at molecular to the
cellular level (Huang et al. 2010). However, the traditional approach utilized for the
discovery of novel drug molecules is time-consuming and cost-intensive. Therefore,
the new approaches exceed the limitations of traditional research in the field of drug
discovery. It evolved based on the following consideration, i.e. the molecular target
present in the body and the potential bioactive compound are directly related to each
other.

For designing a drug, understanding about the disease and molecular mechanism
of infectious processes is a must. For structure-based drug design, investigating a
molecular target is a first step that is essential to a disease process and an infectious
pathogen (Nag and Dey 2010). The next key step is to determine the molecular
structure of the target through experimental or computational approaches. The
success of structure-based drug discovery depends on accurate target structure
with detail information of amino acid residues present in binding sites, which are
further utilized by molecular docking program for screening of small molecules
database (Kesharwani et al. 2018).

Drugs have historically been developed to target a single biological object,
usually a protein generally known as the target, with high selectivity to prevent
any unintended effects arising from mis-targeting other biological targets. Based on
this, the concept of multi-targets drugs has long been marked as undesirable, as it
was naturally linked with harmful effects (Bolognesi and Cavalli 2016; Ramsay et al.
2018). Parallel to this, several evidences confirmed that molecules that strike more
than one target have a safer profile compared to single targets. Therefore, the idea of
multi-target drugs made rapid and dramatic progress from an evolving paradigm
when first laid out in early 2000, to one of the hottest drug research topics for the year
2017 (Roth et al. 2004; Ramsay et al. 2018).
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In multifactorial diseases such as cancer and Alzheimer’s disease, there is an
urgent need to find multi-target inhibitors. As essential for Alzheimer’s develop-
ment, β-amyloid cleavage enzyme (BACE-1) and acetylcholinesterase (AChE) were
considered promising targets for the drug (Goyal et al. 2014). Besides, numerous
pathological manifestations also contribute to cancer. In fact, the medications also
lead to serious side effects with their treatments. Thus, multi-indication therapies are
required, which can simultaneously inhibit multiple targets and minimize side effects
(Lim et al. 2019). Some multi-target drugs are available in the market for the
treatment of the diseases. The recently approved (April 2017) multi-target drug is
midostaurin; it is a well-known multi-kinase inhibitor for the treatment of those
newly diagnosed adult patients with acute myeloid leukemia who have a particular
FLT3 gene variant. A study has shown that it can inhibit the activity of protein kinase
C alpha, KIT, VEGFR2, WT and PDGFR and/or FLT3 tyrosine kinases mutant
(Levis 2017; Ramsay et al. 2018).

Drug discovery is based on the screening of small molecule databases on a
receptor, whereas designing is based on modification in the structure of a lead
compound when the lead compound having some therapeutically undesirable side
effects. In addition to the above, quantitative structure–activity relationship (QSAR)
is one of another potential area in molecular modeling that has helped medicinal
chemists in drug designing process. In previous years, the identification of a new
drug molecule is a very complex and time-consuming process. After studying more
than 5000–10,000 compounds, only a single drug molecule comes to the market.
The cost of each drug is about $156 million in the discovery phase. I, II, and III
clinical trial and Food and Drug Administration (FDA) processes the cost is another
$75 million. This brings the total amount is about $231 million for each drug that
comes to the market for benefits of the society. Then, for gaining FDA approval, an
extensive and expensive procedure also needs to be followed (Huang et al. 2010; de
Ruyck et al. 2016).

Considering the high failure levels, considerable costs, and slow speed of new
drug identification research, repurposing “existing” medicines to treat common and
rare diseases is becoming increasingly desirable as it requires the use of low-risk
compounds to develop drugs in a shorter time with cost-effective manner
(Pushpakom et al. 2019). Generally, three kinds of approaches that are widely
used in drug repositioning include computational, experimental, and mixed
approaches (Xue et al. 2018; Talevi and Bellera 2020). The first case of drug
repositioning, in the 1920s, was an accidental discovery. After a century of progress,
further strategies for accelerating the drug repositioning cycle have been suggested.
In this scenario, machine learning algorithms have been implemented to boost drug
repositioning efficiency. Over the computational methods, the experimental method
was established that provide clear evidence of linkages between drugs and diseases,
such as target screening, cell assays, animal model, and clinical approaches. These
are effective and trustworthy methods. In recent years, growing numbers of
researchers have merged computational and experimental methods for identifying
new drug indications, called mixed approaches. Biological experiments and clinical
studies confirmed the findings of the computational methods. Mixed approaches
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provide incentives for the successful and rapid discovery of repositioned drugs (Xue
et al. 2018). Some successful repositioned drugs are Zidovudine, Minoxidil, Silden-
afil, Thalidomide, Celecoxib, Atomoxetine, Duloxetine, Rituximab, Raloxifene,
Fingolimod, Dapoxetine, Topiramate, Ketoconazole, and Aspirin (Pushpakom
et al. 2019). However, there are also major technical and regulatory issues that
need to be tackled. It is an intricate process involving several factors including
technology, business models, patents, and investment as well as consumer demands.
While several medical databases have been developed, it is still a challenge to
choose the best approach to make full use of vast amounts of medical data.

There is an urgent need to develop a novel approach for drug repositioning.
Another highlighted issue to address is the intellectual property (IP). IP safety is
limited for repositioning of the drugs. For example, some novel associations of drug-
target-disease discovered by repositioning researchers were verified by publications
or online databases; however, because of the law, it is difficult to obtain IP protection
for these associations. The IP problem prohibits the entry of such repositioned drugs
into the market. In fact, some repositioning research initiatives are forced to give up,
which is wastage of money and time. Therefore, developing a new commercial
model is essential because the current model is a serial model which causes problems
related to funding and investment (Xue et al. 2018).

Molecular modeling is a data-driven science branch, with many of the algorithms
and databases being created or adapted as a response to new data forms (Xia 2017).
Today computer experiments play an increasingly important role in research. The
advent of high-performance computing has allowed in silico experimentation as a
tool for interpolating laboratory experiments and theory (Aminpour et al. 2019). Due
to advances in computational algorithms and the development of efficient software,
the time requires in the identification of lead compounds reduced dramatically. A
detailed flowchart highlighting the different approaches of molecular modeling in
drug discovery and design is demonstrated in Fig. 1.1.

1.2 Structure-Based Drug Designing

Structure-based designing is a multidisciplinary and iterative process that is well-
established in the research institution and pharmaceutical industry. It played a
tremendous role in the discovery and development of several registered drugs and
clinical candidates, for example, zanamivir, nelfinavir, and aleglitazar. In contrast,
structure-based designing is relatively new in the agrochemical industry and at
present, no products in the market that are directly investigated with the use of this
approach. However, there are several databases and software programs where
structure-based design has a strong impact (Huang et al. 2010). The major database
resources used in a drug discovery program are listed in Table 1.1. Different
approaches used in the discovery of lead molecule through computational are
discussed in the following sections.

4 R. K. Pathak et al.



1.2.1 Target Identification

Drug target identification and its validation is the initial step of the drug discovery
process. It is a macromolecule that has an established function in the pathophysiol-
ogy of a disease. Four major drug targets are found in organisms, i.e. proteins,
including receptors and enzymes, nucleic acids (DNA and RNA), carbohydrates,
and lipid. The majority of drugs available in the market are addressed to proteins as a
target. However, due to the decoding of several genomes of pathogens, nucleic acids
could gain big importance as drug targets in the future (Gashaw et al. 2012). The

Fig. 1.1 Application of molecular modeling approaches in drug discovery and design
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selection of potential drug targets from thousands of candidate macromolecules is a
challenging task. In the post-genomic era, genomics and proteomics approaches are
the most important tools for target identification (Singh et al. 2016). Besides,
advances in high-throughput omics technologies generated a huge amount of data
for host–pathogen interaction. These available data are also integrated and analyzed
by the scientific community through network and systems biology approaches to
accelerate the process of target identification in drug discovery program.

1.2.2 Modeling and Visualization of Macromolecule Structure

Determination of three-dimensional structure through experimental approaches is a
costly and time taking process. Therefore, comparative modeling or homology
modeling using sequence information is an accurate method for the prediction of
three-dimensional structures, yielding appropriate models for a wide range of
applications in the area of drug discovery (Bodade et al. 2010; Pathak et al. 2016).
It is generally a choice of an algorithm when a homology among the target protein
and a template structure exists (Sussman et al. 1998). This approach is based on the
assumption that two identical sequences adopt similar three-dimensional structures.
A higher sequence identity between the sequence of the target and template structure
promises the generation of a more reliable model. Modeling the 3D structure of a
protein from a sequence, in the absence of an X-ray or NMR verified structure is
necessary for drug designing (Hekkelman et al. 2010; Bagaria et al. 2012). Besides,
threading or fold recognition and ab initio are other methods used in modeling of 3D

Table 1.1 Availability of major compound database resources for molecular modeling

S. No. Database Description Availability References

1 ZINC It is a freely available database of
commercially available compounds for
molecular docking and virtual
screening

http://zinc.
docking.org/

Irwin and
Shoichet
(2005)

2 PubChem It is a database of small chemical
molecules, their biological activities

https://
pubchem.
ncbi.nlm.nih.
gov/

Kim et al.
(2016)

3 ChemSpider It is a chemical structure database used
for drug discovery

http://www.
chemspider.
com/

Pence and
Williams
(2010)

4 ChEMBL It is a small molecule database that
contains information about ADMET
and binding for a huge number of
bioactive compounds

https://www.
ebi.ac.uk/
chembldb/

Gaulton
et al.
(2012)

5 DrugBank It is a comprehensive database resource
containing information about drugs,
their targets, and other useful
information

https://www.
drugbank.ca/

Wishart
et al.
(2006)
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structure when no appropriate template detected in the PDB database (Singh and
Tripathi 2020).

CASP (critical structure prediction assessment) playing a key role in protein
structure prediction. It is a biennial collective project designed to evaluate the state
of the art in protein structure modeling. Participants are provided with target protein
amino acid sequences, and model the corresponding 3D structures. The independent
assessors equate submissions with the experiment. It is a double-blinded experiment,
participants do not have exposure to the experimentally determined structures, and
the evaluators do not know the identity of those who apply. A variety of other
aspects of protein modeling are also tested, in addition to structure models: optimi-
zation of an estimated structure similar to the experimental one, estimates of the
accuracy of the overall structural model and residue, modeling of the protein
oligomer structure, the ability to develop models using a range of sparse data
types, and the accuracy of protein structure characteristics relevant to the deduction
of functional aspects (Kryshtafovych et al. 2019). CASP studies were designed to
achieve an objective for evaluation and assessment of different servers used of
protein 3D structure prediction.

RasMol, PyMol, Chimera, and other visualization tools play a significant role in
viewing and analyzing the predicted and experimentally determined 3D structures of
macromolecules at the atomic level. Many efforts have been made in recent years to
develop user-friendly simulation environments based on computer graphics for the
structural biologist. It is widely used in biology for the presentation of simulation
results in post-processing or experiments and by graphic editors for building models
for a better understanding of atomic data of 3D co-ordinates (Seeliger and de Groot
2010; Mamgain et al. 2018).

1.2.3 Binding Site Prediction and Analysis

The determination of binding sites is not a simple task; researchers have suggested
some criteria for selecting a binding site. It is investigated that the functional activity
of any protein is governed by such highly conserved cluster of amino acid residues
present in binding site pocket. The most available algorithms are based on similarity
searches of the molecular surface for functional site databases such as PDB that
contain fully reviewed and experimentally validated information of protein
structures. Besides, some methods are also developed based on phylogenetic
profiling of residues and several other models such as HMM, SVM, and CASP9
(Schmidt et al. 2011; Liu et al. 2014).

Generally, binding site residues are highly conserved among closely related
proteins. Identification of such binding site residues is also done through the
superimposition of the predicted model with their template that provided integrity
for homology and assisted in the positioning of conserved active site residues (Nag
and Dey 2010; Bajorath 2015). However, many protein–ligand complex structures
are also available in public databases as a signature for the binding site where ligand
was bound in binding site cavity of a protein. Usually, researchers separate bound
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ligand from protein, and this area is considered as binding site area for molecular
docking studies using ligand structures because it is an experimentally determined
complex structure and yielded significant outcome. Advances in the area of bioin-
formatics provide several computational tools that can able to predict novel binding
site residues present in the cavity of the predicted protein model, which are further
utilized in drug discovery research.

1.2.4 Molecular Docking

Docking intends to precisely fit the structure of a ligand inside the requirements of a
receptor binding site and to accurately evaluate the strength of binding (Adrian-
Scotto and Vasilescu 2008). When the binding site is not known in target protein
structure, in such case, blind docking is helpful because in which whole protein
structure is considered as binding site area, whereas if the binding site is known, site-
specific docking is useful to predict the interacting nature of ligand molecule.
Generally, the results of blind docking are less accurate and take more time and
memory than site-specific docking because it targets only selected amino acid
residues present in the binding site cavity. Nevertheless, the majority of available
literature represents case studies where molecular docking has been used to deal with
specific issues related to ligand design or target recognition (Huang et al. 2010;
Yuriev and Ramsland 2013; Pathak et al. 2016; Rana et al. 2019). A summary of the
highly cited molecular docking programs used in drug discovery has been listed in
Table 1.2.

Table 1.2 A summary of the highly cited molecular docking programs used in drug discovery

S. No. Programs Description Availability References

1 AutoDock Used for molecular docking. It
predicts the binding affinity and
poses of a small molecule to a 3D
structure target protein

http://
autodock.
scripps.edu/

Goodsell
et al.
(1996)

2 AutoDock
Vina

Used for virtual screening and
molecular docking

http://vina.
scripps.edu/
index.html

Trott and
Olson
(2010)

3 Glide
Schrodinger

A complete package for molecular
modeling and computer-aided drug
discovery (CADD)

https://
www.
schrodinger.
com/

Friesner
et al.
(2004)

4 Hex Used for docking studies http://hex.
loria.fr/

Ritchie
(2003)

5 Molecular
operating
environment
(MOE)

A complete package for molecular
modeling and computer-aided drug
discovery

https://
www.
chemcomp.
com/

Vilar et al.
(2008)
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1.2.4.1 Flexible Docking
In this model, both the ligand and receptor side chain are kept flexible as well as the
binding energy for different poses of the ligand fits into the receptor is calculated.
For induced-fit docking, the main chain is also moved to integrate the conforma-
tional changes of the receptor upon ligand binding (Huang et al. 2010; Yuriev and
Ramsland 2013). Whereas it is time taking and computationally expensive, yet this
method can estimate many different probable conformations, which make it more
extensive and perhaps simulate the phenomenon of real-life and hence trustworthy.
Therefore, flexible docking is considered as a good approach because it yielded
better prediction than conventional docking. The major drawback of other docking
approaches is that it may provide poor docking scores due to incorrect ligand binding
modes.

1.2.4.2 Rigid Docking
It is another method of molecular docking, in which the internal geometry of the
ligand and receptor is kept fixed during docking simulation (Huang et al. 2010;
Yuriev and Ramsland 2013; de Ruyck et al. 2016). The DOCK program based on
rigid docking applied to the aspartic protease of HIV yielded a candidate inhibitor
molecule with higher potency, and this molecule can be used as a lead for designing
more powerful inhibitors. Besides, with simple bound and unbound target cases,
ZDOCK correctly predicted 47% of interface contacts, demonstrating its strength in
predicting binding sites. SOFTDOCK, on the other hand, predicted 66 of
83 (Pagadala et al. 2017).

1.2.5 Structure-Based Virtual Screening

Virtual screening involves the docking and screening of a compound database
against the drug target, followed by scoring based on their binding free energy
with the target. Many softwares are available for screening of compound databases
against the selected target. Some are commercially available, and some are free for
academic uses (Pathak et al. 2017). This method plays a key contribution to the drug
discovery program for the identification of efficient lead compounds from small
molecule databases. It also enables to boost lead identification process.

1.2.6 Validation of Molecular Docking

A variety of methods for validating the molecular docking have been published. One
widely used approach is pose selection by which docking programs are used to
re-dock a compound with a known conformation and orientation into the target’s
active site, usually from a co-crystal structure. Programs that are capable of returning
poses below a pre-selected root mean square deviation (RMSD) value from the
known conformation (generally 1.5 or 2 Å depending on the size of the ligand) are
considered good. Pose selection is then accompanied by scoring and ranking to
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analyze which of the available scoring functions rank the poses most accurately in
relation to their RMSD values (Hevener et al. 2009).

Another strategy of validation is to dock, a decoy set of inactive or suspected
inactive, compounds that have been “seeded” against the target with compounds
having known activity. Enrichment can be measured after ranking the docked decoy
set by scores, and enrichment plots or receiver operating characteristic (ROC) curves
can be plotted. The ROC curves map the sensitivity of a given docking/scoring
combination against specificity and area under the curve for comparison can be
determined (Jain 2008; Hevener et al. 2009). These approaches provide us an
amazing opportunity for validation of docking results.

1.3 Ligand-Based Designing

The ligand-based drug designing is an alternative protocol, and plays a tremendous
role when the structure of the target protein is unknown or cannot be predicted by
available modeling methods. It uses statistical methods to correlate the activity of
ligand to structural information (Huang et al. 2010). The different approaches used
in ligand-based drug designing are discussed in the following sections.

1.3.1 Pharmacophore Modeling

Pharmacophore mapping is one of the real components in the drug designing
program, without basic information of the target receptor. The tool at first applied
to the identification of lead compounds now reaches out to lead optimization (Bauer
and Stockwell 2008). Lead optimization is the mechanism by which a drug candidate
is designed after having searched an initial lead compound. The method involves
iterative rounds of synthesis and characterization of a putative drug to construct a
picture of how chemical structure and its behavior are associated in terms of
interaction by targets and its metabolism.

Pharmacophoric features can be used as a query for searching and retrieving the
potential leads from chemical compound databases (discovery of lead molecules),
for designing molecules with precise attributes (lead optimization). It also evaluates
comparability and diversity of compounds by utilizing pharmacophore fingerprints.
It can likewise be utilized to align compounds dependent on the 3D arrangement or
to create prescient 3D QSAR models (Huang et al. 2010; Singh et al. 2013).

1.3.2 Quantitative Structure–Activity Relationship (QSAR)

Quantitative structure–activity relationship (QSAR) is an approach used to predict
the biological activity of chemical compounds in drug designing. It uses statistical
and mathematical tools to find the relationship between structures of the compound
and their corresponding biological behaviors. Therefore, the QSAR model is built

10 R. K. Pathak et al.



using structural parameters to predict the biological properties of a drug. The
two-dimensional QSAR (2D-QSAR) uses 2-D structural properties of descriptors
such as steric, electrostatic, hydrophobicity, and geometric behavior to interpret the
molecular biological activity using multiple regression analysis. One of the foremost
unremarkably used 2D QSAR strategies was given by Hansch (Clayton and Purcell
1969). 2D-QSAR techniques are not able to accurately explain the correlation
between the physicochemical properties and 3D spatial arrangement as well as
biological activities. Therefore, recently, 3D-QSAR approaches are introduced to
overcome the limitation of 2D QSAR (Singh et al. 2013). In recent years the concept
of multidimensional QSAR is introduced. It is more useful in predicting the
biological properties of the chemical molecules. It includes HQSAR, G-QSAR,
MIA-QSAR, and multi-target QSAR. It has made remarkable success in the drug
discovery program (Wang et al. 2017). Comparative molecular field analysis
(CoMFA) and comparative molecular similarity indices analysis (CoMSIA) are the
two most important methods introduced for designing drug molecules (Huang et al.
2010).

1.3.2.1 CoMFA
CoMFA technique is based on a concept that the biological activity of a small
molecule depends on the molecular fields. It uses Lennard-Jones and Coulombic
potential to calculate steric and electrostatic fields, respectively. Both potential
functions change dramatically close to the van der Waals surface of the molecule,
which often requires cut-off values. Additionally, ligands must be aligned before
calculating energy, but superimposed compounds orientation is correlative to the
grid. It could cause key changes in the results of CoMFA. Further, a scaling factor
must be added to the steric field to determine both fields in the same PLS analysis
(Cramer et al. 1989; Huang et al. 2010).

1.3.2.2 CoMSIA
CoMSIA technique has recently been developed as an addition to CoMFA. This
technique includes extra field properties that include steric, hydrophobic, electro-
static, hydrogen bond donors, and hydrogen bond acceptors. This technique is not
sensitive to the alignment of compounds, their 3D-orientation. Besides, the
improved functional algorithm is less affected by the relative distance to the surface
of the van der Waals. Therefore, this model is more precise and accurate as compared
to CoMFA (Klebe et al. 1994; Huang et al. 2010).

1.4 Computation of HOMO and LUMO Energy

These are the molecular orbitals playing a key role in drug discovery and design.
HOMO (highest occupied molecular orbital) energy offers the small molecules area
that can donate electron during the formation of the complex, whereas lowest
unoccupied molecular orbital (LUMO) energy refers the ability of molecules to
take electrons from the associated protein. The difference in energy of HOMO and
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LUMO, referred to as HOMO–LUMO gap energy, designates the electronic excita-
tion energy required to measure stability and chemical reactivity of the compounds
(Banavath et al. 2014).

1.5 ADMET Prediction and Analysis

ADMET is one of the essential steps in any drug discovery program because it
provides pharmacokinetics (ADME, i.e. Absorption, Distribution, Metabolism, and
Excretion) and pharmacodynamics, i.e. toxicity (T) of lead molecules before going
to wet-lab experimentation. Therefore, it reduces the risk of experimental cost, time,
and drug failure. Literature studies showed that poor pharmacokinetics and pharma-
codynamics are the major causes of costly and late-stage drug development failures,
and it is widely recognized that computer-based ADMET prediction must be con-
sidered in the drug discovery program before going to in vitro and in vivo studies.
Presently it is limited to Lipinski’s rule and some other principle descriptors such as
polar surface area (2D), polarizability, van der Waals surface area, refractivity, etc.
Advances in combinatorial chemistry and high-throughput screening have exten-
sively augmented the number of small molecules for which early data on ADMET
are available as reference. Further, the accuracy of ADMET tools can be improved
by including new principle descriptors and use of computational tools developed by
the implementation of improved algorithms, the most relevant pharmacokinetics and
pharmacodynamics information of any molecules can be modeled to accelerate the
drug discovery process for identification of novel drug-like compounds in a cost-
effective manner (Pathak et al. 2018; Singh and Pathak 2020).

1.6 Molecular Dynamics Simulation

Molecular dynamics simulation (MDS) is one of the key tools for the theoretical and
computational study of biomolecules. Since molecular systems usually contain a
large number of particles, the analysis of such complex systems is extremely
challenging. Molecular dynamics simulation can prevent this analytical intractability
by using numerical methods. The atoms and molecules can interact for a period of
time during the simulation. The motion is calculated for each atom and can be used
to check the overall behavior (Huang et al. 2010). It has many advantages over
docking because docking gives only binding free energy of ligand with the receptor.
Additionally, we can predict the actual interaction of the ligand with receptors
through MDS at the atomic level. Besides, deciphering their binding mode via
several bonds and amino acid residues involved in the interaction for time. During
MDS, root mean square deviation (RMSD) is calculated for predicting the stability
of receptor or ligand–receptor complexes, and it describes the conformational
changes. Besides, root mean square fluctuation (RMSF) analysis is used to deter-
mine the flexibility with respect to time (Singh and Dwivedi 2016). It yielded novel
information about the receptor or ligand–receptor complex that is further utilized for
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the next step in the drug discovery program. The background of the MD simulation
algorithm is generally based on three steps; (1) determining the initial positions and
speeds of each atom; (2) calculating the forces applied to the identified atom using
inter-atomic potentials; (3) the progression of atomic positions and speeds over the
short period. These new positions and speeds are then transformed into new inputs in
step 2, and each repetition forms an additional time step when steps 2 and 3 are
repeated (Huang et al. 2010).

1.7 Identification of New Drug-Like Molecules
for Hyperuricemia from Millets: A Case Study

Xanthine oxidoreductase (XOR) plays a key role in the formation and regulation of
uric acid during purine catabolism. Over expression of XOR results in the deposition
of uric acid in the blood which causes damage to DNA and protein molecules.
Human xanthine oxidoreductase (HsXOR) has been used as a therapeutic target
against hyperuricemia. Febuxostat and allopurinol are inhibitors of HsXOR, but they
have major toxic effects in the body. Millet grains contain higher levels of phenolic
compounds and other phytochemicals than the major cereals (Taylor and Duodu
2015).

Bioactive compounds found in millet have enormous potential and can be used to
prevent and treat hyperuricemia (Fig. 1.2). Some bioactive compounds of millets
were studied of their interactions with HsXOR using docking, ADMET, and molec-
ular dynamics simulation. The compounds derived from millet (luteolin and querce-
tin) showed �9.7 kcal/mol binding free energy (Fig. 1.3). Molecular dynamics
simulation studies demonstrated that the luteolin forms a more stable complex
with HsXOR than the quercetin. Luteolin has a high potential for testing as an
HsXOR inhibitor because it can control the pathway by inhibiting HsXOR (Pathak
et al. 2018).

Fig. 1.2 Millets: a power house for identification of bioactive molecules through computational
approaches; the figure depicted that compound luteolin is taken from millet plants and its interaction
study was done through molecular docking (protein–ligand complex: HsXOR-green; luteolin-red)
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1.8 Discovery and Designing of Natural Lead Compounds
for Liver Cancer: A Case Study

The compounds derived from natural sources such as plants, animals, microbes, etc.,
and having biological responses towards particular diseases are generally said to be
natural lead compounds. It plays a significant role because it is a starting point of
drug discovery where thousands of natural compounds are screened on a particular
receptor for the identification of suitable lead compounds as new natural drugs with
least or side effects. Therefore only selected compounds will be used for experimen-
tal verification. Further, lead optimizations are also done if any adverse activities are
observed during wet-lab experimentation to increase the affinity, efficacy, and
potency of a lead compound in which the targeted functional group of a lead
compound is replaced by appropriate functional group. Molecular docking studies
are also done to check its affinity with target followed by ADMET, MDS, and
experimental studies to produce efficient derivatives from natural lead compounds
(Pathak et al. 2014).

The hepatitis B virus x protein (HBx) of the Hepatitis B virus activates the AP-1
protein, and it causes the downregulation of tumor suppressor genes PTEN and p53
(Bouchard et al. 2006). Therefore the interactions of AP-1 with known natural
anticancer compounds such as curcumin, epigallocatechin gallate (EGCG), genis-
tein, luteolin, ellagic acid, lupeol, resveratrol, betulinic acid, and lycopene were
studied using docking (Amin et al. 2009). EGCG has shown a very high affinity for
its binding with AP-1 as compared to other compounds taken in the study. EGCG
has shown interaction at the DNA binding domain of AP-1 that can minimize the

Fig. 1.3 Protein–ligand interaction diagram generated through Ligplot: (a) Luteolin-HsXOR
docked complex showing the contribution of hydrogen bond (green line) and hydrophobic interac-
tion (red) (b) Quercetin-HsXOR docked complex showing the contribution of hydrogen bond
(green line) and hydrophobic interaction (red)
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downregulation of the p53 and PTEN genes. Therefore derivatives were designed to
improve the binding affinity and bioavailability of EGCG by imitating the positions
of the H and OH groups (Fig. 1.4). One of the EGCG15 acetylates produced by
replacing the OH group with OCOCH3 shows better affinity than other derivatives
and binds to amino acids Asp 163(G), Ser 278(F), Lys 282(F), and Arg 288(F) with
six H-bonds, and have shown �5.60 kcal/mol of binding free energy. The affinity of
EGCG with AP-1 protein was greatly enhanced in the EGCG05 methoxy derivative,
which forms eight H-bonds with �6.30 kcal/mol binding energy, and binds with
amino acid residues Asp 163, Asp 170, Ser 278, Arg 281, and Arg 288. The
substitution by OCOCH3 increases bioavailability during computational analysis
after sequential addition at different positions in EGCG. Replacement by the NH2
group does not result in changes in oral absorption or bioavailability. The study is,
therefore, informative to develop natural drugs against liver cancer using
EGCG obtained from green tea, and its chemically synthesized derivatives for
human welfare (Sagar et al. 2014).

1.9 Examples of Drugs Synthesized Using CADD

Molecular modeling has also been used in the development of drugs that have passed
clinical trials and in the treatment of a number of diseases have become modern
therapies. In 2003, the quest for novel transforming growth factor-β1 receptor kinase
inhibitors was one of the most compelling examples of the possibilities presented by
molecular modeling methods in drug discovery. One group at Eli Lilly used a
conventional high-throughput screening method to investigate a lead compound,
which was subsequently improved by analyzing structure–activity relationship via

Fig. 1.4 (a) 2D view of EGCG: pyrogallol type structure and galloyl moiety (b) Position of
structural modification in EGCG shown by labels (R1–R9) (c) Interaction view of EGCGwith AP-1
protein
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in vitro assays. While the Biogen Idec group used a molecular modeling approach
involving virtual high-throughput screening based on the structural interactions
among the weak inhibitor and altering growth factor-β1 receptor kinase. The
group at Biogen Idec found 87 hits after the virtual screening of compounds, the
best hit being similar in structure with the lead compound discovered by Eli Lilly’s
conventional high-throughput screening approach. In this case, molecular modeling,
a process with reduced costs and tons of effort, was able to investigate the same lead
for drug development (Sawyer et al. 2003; Singh et al. 2003; Sliwoski et al. 2014).
Some of the earliest examples of drugs synthesized after their discovery through the
molecular modeling methods are listed in Table 1.3.

1.10 Success and Limitations

Discovery of new drug molecules using computational approaches has a focused
research area due to advances in integrated omics, i.e. genomics, proteomics,
metabolomics, and bioinformatics, it has many successful stories. Recently, the
concept of pharmacogenomics is introduced to focus on personalized medicine.
The key advantages of pharmacogenomics are to produce drugs based on the

Table 1.3 List of drugs identified through computational approaches

S. No. Drug Drug target Disease
Approved
year References

1 Captopril Angiotensin-
converting
enzyme (ACE)

Hypertension 1981 Talele et al.
(2010)

2 Dorzolamide Carbonic
anhydrase (CA)

Glaucoma and
ocular
hypertension

1995 Vijayakrishnan
(2009)

3 Saquinavir HIV-1 and
HIV-2
proteases

AIDS 1996 Van Drie
(2007)

4 Indinavir HIV protease AIDS 1996 Van Drie
(2007)

5 Ritonavir HIV protease AIDS 1996 Van Drie
(2007)

6 Tirofiban Glycoprotein
IIb/IIIa receptor

Blocked
coronary artery,
antiplatelet drug

1998 Hartman et al.
(1992)

7 Zanamivir Neuraminidase Influenza 1999 Kim et al.
(1997)

8 Oseltamivir Neuraminidase Influenza 1999 An et al. (2009)

9 Raltegravir Integrase AIDS 2007 Schames et al.
(2004)

10 Aliskiren Renin Hypertension,
high blood
pressure

2007 Cohen (2007)
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organizational structures of individual genomes. It is mainly used to address difficult
tasks. It should not surprise that success is sometimes limited. Furthermore, several
key problems related to computational complexities that have been on the agenda for
decades remain to be resolved (Bajorath 2015; Hassan Baig et al. 2016; Singh 2014).

• In drug discovery practice, the potential of in silico methods should not be
overestimated because it affects the credibility of serious computer work in the
academic and pharmaceutical industries.

• In many cases, computational approaches can advance drug discovery projects
significantly only if they are carefully selected and employed to problems, such as
the selection of small molecules with a probability of displaying a specific
activity, identification of novel compounds for optimization, or design of analogs
that positively interact with a specified binding site in the cavity of a receptor.

• Biological systems are very complex and directed by numerous significant
parameters. So there are certain restrictions, and it is not possible to copy and
simulate the whole biological system on a PC using cutting edge techniques.

• One of the major challenges in drug discovery is target flexibility because most of
the software provides only ligand flexibility.

• It is exceptionally hard to give total molecular flexibility to the protein as this
augments the time and space complexity of the computation.

• Besides, the major limitation of pharmacophore modeling is dependent on
pre-computed databases that hold a less number of low-energy conformations
per compound.

1.11 Conclusion

The identification of targets for active compounds depends heavily on computational
approaches for complex biological screening systems. Besides, such types of soft-
ware and their applications are growth areas for molecular modeling and drug
discovery. Besides, further computational research is required to reduce human
bias in the creation and assessment of molecular property spaces for lead optimiza-
tion and ADME analysis. For the future of computational drug discovery, further
emphasis should be given on the development of new tools with more accuracy and
improvement of already existing molecular modeling methods is required. Addition-
ally, these methods have the tremendous potential to be broadly used in drug
discovery practices, which is a prerequisite for success.
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Abstract

The three-dimensional modeling of protein structure is a reliable approach for
understanding the biochemical functions along with the dynamics of protein
interactions, which provides useful applications in developing drug molecules
for curing diseases as well as certain other applications in biological and agricul-
tural sciences. The conventional laboratory methods such as NMR and X-ray
crystallography which are standard approaches for analysis of different proteins of
interest are labor-intensive, expensive, and time-consuming. To address these
challenges, the bioinformatics tools and approaches may open up new avenues
for investigating the protein structures and functions. In the recent past, molecular
modeling has been successfully used in various projects for 3D structure predic-
tion of some therapeutically important proteins having applications ranging from
medicine to agriculture. The approach of molecular modeling is based on the
understanding of algorithms of protein structure prediction. This chapter illustrates
the salient features of molecular modeling methods for a reliable and accurate
structure prediction of the proteins in the field of drug designing.
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2.1 Introduction

Molecular modeling is an important approach in computational biology. For
addressing the problems at the interface of biological and physical sciences, molec-
ular modeling starting from its inception with applications of physics and computer
science has been used rampantly by biological scientists. The advancements in
computational biology have made molecular modeling a reality (Kumar and Chordia
2017). The current chapter discusses different methods available for protein three-
dimensional structure predictions. As we know that proteins determine the biological
functions of a cell and also are considered the building blocks of the cells. The
dynamic processes including replication, maintenance, defense, and reproduction in
living beings are encoded in the form of protein structures and functions (Berg et al.
2002).

There are 20 amino acids determined by the genetic codes. Proteins are the
polypeptides that are made up of amino acids (Lodish et al. 2000). There are
20 regular amino acids in the configuration of the polypeptide chain, which
determines the structure and function of the protein. Proteins are technically the
end products that are decoded from cellular DNA information. Proteins are the main
structural and transporter elements in a cell, which function as the workhorse of the
cell unit and biocatalyst (Alberts et al. 2002). Interestingly, the functions that protein
monitors in a cell are determined by genetic code. The protein structure and function
depend on the genetic code encoded by DNA molecule(s), which is the building
block of a gene. Different sequences of amino acids assemble to give rise to specific
proteins with particular functions based on their three-dimensional configuration.
The folded form or confirmation of a protein is directly dependent on the protein’s
linear amino acid sequence (Hooft et al. 1996, 1997).

2.1.1 Amino Acids

Amino acids are the basic units of the proteins, and each amino acid has a variable
side chain (Berg et al. 2002). Multiple amino acids combine to form a long chain that
is tied together with a peptide bond. The biochemical reactions govern the peptide
bond formation where water (H2O) molecule is extracted by joining the NH2 of one
and COOH of a neighboring amino acid in the polypeptide chain. A simple linear
sequence of amino acids in a protein is known as the primary structure (Alberts et al.
2002). Amino acids have both polar and non-polar side chains (Lodish et al. 2000).
The polarity of the side chains determines the amino acid and protein structure or
conformation. The hydrogen bonding involves polar side chains, while the charged
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side chains of amino acid can participate in the formation of ionic bonds. Weak
interactions are formed between the hydrophobic side chains to give rise to the van
der Waals interactions. Cysteine is the only amino acid involved in the formation of
disulfide covalent bonds, which is formed within or between two polypeptide chains
that provide stability to the proteins (He et al. 2006; Neil and Bulleid Ellgaard 2011).

The 3D structure of a protein is governed by folding and intra-molecular bonding
of the amino acids. The folding of the peptide chain is determined by hydrogen
bonding between two neighboring amino acids. The specific patterns of this folding
are termed as alpha helices and beta sheets, which are involved in the formation of a
secondary structure of a protein (Voet and Vote 1990). Finally, multiple polypeptide
chains join together and create the quaternary structure of a protein (Brown et al.
2003). The most energy-efficient and stable configuration of protein lies in its final
form. A given protein attains its final form through a rigorous process of undergoing
a variety of formations with the folding ability, which is unique and compact. A
protein fold is stabilized by thousands of non-covalent bonds. The form and stability
of proteins are determined by the chemical forces between a protein and its
surrounding medium. Proteins inserted in the cell membranes have some hydropho-
bic chemical groups on their surface (Hooft et al. 1997).

2.1.2 Basic Principles of Protein Structure

The 3D structure of a protein is an atomic model of interaction of a large number of
atoms (Wooley and Lin 2005). The 3D structure of protein represents a complex
level of the group of atoms. In this type of arrangement, four different levels of
protein structures exist, which are known as the primary, secondary, tertiary, and
quaternary structures. Usually, two additional levels of intervention between sec-
ondary and tertiary structures are known as super-secondary structures and domains.
The amino acid sequence itself does not directly encode disulfide bonds and other
rare types of covalent bonds formed between side chains (Bailey 2018) (Fig. 2.1).

The secondary structure of protein results due to the folding of a protein sequence
in a systematic form, and this fold is stabilized by the contribution of repetitive
hydrogen bonding (Fig. 2.2). For the first time, Linus Pauling and Robert Corey
described the chemical nature and secondary structures of proteins. The secondary
structure includes alpha helix (α-helix) on the right, parallel, and antiparallel beta
(β-) plated sheets and turns (Serafini 1989).

Tertiary structure is formed by a stable and compact packing of elements of
secondary structure (Breda et al. 2008). The folding results in the complete three-
dimensional polypeptide structure, which depends on the sequence of amino acids
and atomic details (Berg et al. 2002). However, this process leads to the formation of
a hydrophobic core for soluble proteins that are represented by the polar residues,
which maintain its side chains inside the protein, and as a result, hydrophilic residues
get exposed to the solvent. There are different types of protein folds available in
nature, and two of the most common protein fold classification are SCOP and CATH
(Csaba et al. 2009). The tertiary structure view for nsp10/nsp16 complex of SARS
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coronavirus has been shown in Fig. 2.3. The nsp16 causes sequence-dependent
methylation and for successful methylation of viral mRNAs, nsp16 requires the
interaction of nsp10 to initiate its methyltransferases activity (Chen et al. 2011). The
nsp16 may serve as a potential drug target against corona disease. A potential
inhibitor of nsp16 can serve as a therapeutic agent for the treatment of this disease.

The quaternary structure of the protein is formed by two or more identical or
different polypeptide chains. Since two or more subunits are present, hence such
proteins are termed as oligomers. The characterization illustrating how subunits of
the native protein are arranged is based on the quaternary structure. The oligomeric
subunits are held together by non-covalent forces, and therefore, can undergo rapid
transformations affecting the biological activity of the protein. Hemoglobin, alloste-
ric enzymes, actin, and tubulin are some examples of oligomeric proteins (Berg et al.
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2002). The protein function depends on the manner how the protein surface interacts
with the other molecules through bonding. Structurally similar proteins similarly
interact with certain molecules and thus, represent a protein family (Alberts et al.
2002). The structural similarity of proteins within a family contributes a similar
function to the family. Proteins with similar amino acid sequences belong to the
same protein family, and their protein sequence remains conserved during evolution.
Proteins with similar functions have a similar set of amino acid residues that interacts
and binds with the substrate or signal (Cohen et al. 2009).

2.2 Explosion of Protein Related Data

Many databases are available with the sequence level information of the protein.
Protein Data Bank (PDB) is an important database of protein structure. Currently,
PDB has become the most popular protein databank with an archive containing more
than 1,60,000 structures determined by different experimental methods like nuclear
magnetic resonance (NMR) spectroscopy, crystallography, nuclear and electron
cryo-microscopy (3D-EM), etc. PDB data and resources are very useful in the
development of an experimental method, training, and testing of predictive models
and drug discovery projects (Horiuchi et al. 2000). In recent years, different database
resources have been developed which provide information about the classification
and clustering of proteins, structural characterization, localization, phosphorylation,
family and domain, active site, binding related information, protein disorder, con-
formational diversity, pathway, structure, function, etc. (Burley et al. 2017).

Fig. 2.3 Tertiary structure
view: nsp10/nsp16 complex
of SARS coronavirus (PDB:
3R24)
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2.3 Protein Structure Determination

Several methods, including X-ray crystallography, NMR spectroscopy, and electron
microscopy, are currently used to determine the 3D structure of a protein, and each
method has its uniqueness and limitations (Kendrew et al. 1958). The user has access
to several pieces of information for each of these methods to generate the final
atomic model (Wang and Wang 2017) and this could be due to the X-ray diffraction
pattern in X-ray crystallography (Callaway 2015). In electron microscopy, this could
be the image representing the shape of the molecule. However, only experimental
information is not enough to build an accurate atomic model, additional molecular
structural knowledge is often required is the amino acid sequence of a protein along
with geometrical features such as bond lengths and bond angles (Rankin et al. 2014).
The creation of a consistent protein model requires a set of experimental data and
modeling related parameters (Carroni and Saibil 2016).

2.3.1 X-Ray Crystallography

For X-ray crystallography, the protein is purified and crystallized under suitable
conditions, and then subjected to an intensive X-ray beam (Burley et al. 2019). The
diffraction of an X-ray beam by the protein crystals into one or other patterns is
examined to determine the distribution of electron density. Finally, a map of the
electron density is generated and interpreted to determine the location of each atom.
The electron density map is analyzed to locate the position of each atom in 3D space.
X-ray crystallography is a powerful tool that can provide coordinate information of
each atom, which can illustrate the position of each atom in a protein. It is a
challenging method with limitations on certain proteins but an excellent method to
study and determine the structures of rigid crystals (Wang and Wang 2017). It is
difficult to study the structure of a flexible protein using X-ray crystallography. The
accuracy of this method depends on the quality of the crystals used for X-ray
crystallography. Resolution and R-value are the two important parameters used to
represent the accuracy of crystallographic structure (Haywood 1997).

X-ray crystallography is the most practical method for determining the structure
of the biomolecules. Some of the salient features that this method offers include:

1. Accuracy of models for atomic resolution, also the method enables the user to
solve relatively large structures and complexes.

2. Different solvents crystallize the same protein into different conformations. Thus,
the method facilitates the study of the whole mechanism mediated by a single
protein using XRD. Prominent examples include viral capsid structures and the
ribosome, each made up of tens of thousands of atoms (Haywood 1997).

X-ray crystallography can resolve the structure of protein and protein–ligand
complexes with good accuracy. But this method has some major limitations as given
below:
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1. The data provide only one protein position or confirmation but not dynamic
behavior.

2. Contacts between molecules of crystal and the dense packaging can affect the
structures.

3. The procedure is time-consuming.
4. Challenging for the analysis of highly hydrophobic or flexible proteins.
5. Difficulty in determining hydrogen positions, which requires very high resolu-

tion, thus, unfortunately, limits the reliability of this method.

2.3.2 NMR Spectroscopy

NMR spectroscopy is used to determine the 3D structure of molecules. However,
during this procedure, the molecule should be pure and placed in a robust magnetic
field. A distinguishable set of measured resonances can be analyzed to provide a list
of nearby atomic nuclei to describe the composition of atoms that are linked together
(Serdyuk et al. 2007). This list of restraints is used for model creation that indicates
the location of each atom. NMR spectroscopy is used for determining the structure of
proteins in solution and requires aqueous crystal. It is the first method used for the
study of flexible protein structures (Snyder et al. 2005). A typical NMR structure
includes a set of protein structures that are consistent with the list of experimental
restraints observed.

The advantages of NMR spectroscopy are as given below:

1. The sample does not need to be in crystalline condition (which limits the
applications of X-ray crystallography).

2. It provides better dynamics of the molecule.

There are some limitations associated with NMR spectroscopy that are mentioned
here:

1. The technical accuracy of NMR is less as compared to X-ray crystallography.
2. MNR generates a good result for small size molecules, proteins with less than

300 residues.

2.3.3 3D Electron Microscopy

Electron microscopy is also used to determine the 3D structures of large molecular
assemblies, often referred to as 3DEM. A beam of electrons and an electron lens
system are used to directly image the biomolecule (Orlova and Saibil 2011). In a
limited number of cases, electron diffraction from 2D or 3D crystals can be used for
determining the 3D structures with an electron microscope (Rabl et al. 2010).
Finally, 3DEM techniques are in advance importance for studying the biological
assemblies inside the cryo-preserved cells and tissue by using electron tomography.
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In terms of molecular and atomic details, both single-particle 3DEM and electron
diffraction methods now provide structures with resolution limits comparable to
macromolecular crystallography (i.e., enabling visualization of amino acid side
chains, surface water molecules, and non-covalently bound ligands). Cryo-electron
tomography provides slightly lower resolution structural information (protein
domains and structural elements). In the calendar year 2016, the PDB deposition
of the 3DEM structures for the first time exceeded that of NMR spectroscopy (Jonic
2016).

To investigate the very large macromolecular assemblies where lower resolution
is normal, 3DEM data are increasingly being combined with information from X-ray
crystallography, NMR spectroscopy, mass spectroscopy, chemical cross-linking,
fluorescence resonance energy transfer, and various computational techniques to
sort out the atomic details. This practice of using multiple experimental approaches
is referred to as integrative or hybrid methods (I/HM) (Jonic 2016). This approach of
integration has been proved much useful for investigating multimolecular structures
such as complexes of ribosomes, t-RNA, protein factors, and muscle actomyosin
structures, among others. A prototype data repository known as PDB-Dev, operating
in parallel with the PBD, is now available for archiving of I/HM structures and data
(Dever and Green 2012; Masters and Beyreuther 1998).

Structural resolution is the main limitation of EM. The EM resolution is approxi-
mately 3.5 Å, which is not enough to determine the location of side chains
(Wohlgemuth et al. 2008). The advantages of electron microscopy are given below:

1. EM can solve very large biological complexes that are not accessible to crystal-
lography with X-rays.

2. It can be used as a reference for interpreting X-ray diffraction patterns.
3. EM structures and X-ray data can be combined for determining the structure of

large molecules.

2.4 Protein Structure Prediction

Three computational methods widely used for protein structure prediction are
(1) homology modeling, (2) fold recognition, (3) ab initio method. Several tools
for protein structure predictions are available, which utilizes different approaches
and methods for modeling and refinement of the protein structure (Table 2.1).

2.4.1 Homology or Comparative Modeling

Comparative modeling is a template based modeling consists of five main steps:
(a) identification of similar sequences with known structure, (b) alignment of the
target sequence with template structures, (c) modeling of structurally conserved
regions using templates, (d) modeling of lateral chains and loops, (e) the quality of
the model being refined and evaluated by conformational sampling (Fig. 2.4). The
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Table 2.1 Tools for protein structure modeling using different approaches of prediction

S. No. Name Description Weblink

1 RaptorX Remote homology detection,
protein modeling, prediction of the
binding site

http://raptorx.uchicago.edu/

2 ESyPred3D Template search, better
performance of alignment, used
for 3D modeling based on
homology

https://www.unamur.be/sciences/
biologie/urbm/bioinfo/esypred

3 FoldX Energy calculations and protein
modeling integrate protein
fragment libraries of different
length

http://foldxsuite.crg.eu

4 Geno3D Comparative protein modeling
uses geometrical restraints
(dihedral angles and distances)

https://geno3d-prabi.ibcp.fr

5 HHpred Homology detection and template
search, alignment, 3D modeling,
based on hidden Markov model
(HMM)

https://toolkit.tuebingen.mpg.de

6 LOMETS Local meta-threading server for
tertiary structure prediction

https://zhanglab.ccmb.med.
umich.edu

7 Modeller Comparative protein modeling,
satisfaction of spatial restraints,
optimization of various models of
a protein

https://salilab.org

8 MOE Molecular operating environment
(MOE), template identification,
use of multiple templates, loop
modeling, side-chain modeling by
rotamers

https://www.chemcomp.com

9 Prime Homology modeling, assessment,
and refinement of the generated
model, based on the energy
function

https://www.schrodinger.com/
prime

10 ROBETTA Homology modeling and ab initio
fragment assembly can model
multi-chain complexes

http://robetta.bakerlab.org/

11 Swiss
model

Homology modeling based server,
template search, local similarity/
fragment assembly, model
evaluation by comparison to X-ray
verified structures

https://swissmodel.expasy.org/

12 I-TASSER Combination of ab initio folding
and threading methods, template-
based fragment assembly

https://zhanglab.ccmb.med.
umich.edu

13 NovaFold Combination of threading and ab
initio folding based on iterative
assembly simulations, also
predicts ligand binding site

https://www.dnastar.com/
manuals/protean3d/15.3/en/
topic/run-nova-applications-
through-the-dnastar-website

(continued)
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accuracy of comparative modeling predictions depends on the degree of sequence
similarity between template and target. If the target and template sequence share a
high degree of similarity, then the accuracy of the predicted model is very high. For a
sequence identity of 30–50%, more than 80% of C-α atom is expected to be within
3.5 Å of their true positions while significant errors are likely to occur for less than
30% of sequence identity (Rodriguez et al. 1998; Krieger et al. 2003). Comparative
modeling is based on the principle that similar evolutionary sequences have similar
three-dimensional folded structures.

The goal of protein modeling is to predict the structure of a target protein from its
sequence information using the related known structure as a template. This would
enable the rapid use of in silico protein models in all fields, such as structure-based
drug prediction, protein function investigation, network analysis, antigenic behavior,
and protein structure with increased soundness or novel capacities. In the case where
experimental strategies are limited, one of the best ways to obtain the auxiliary data
is protein modeling. Several proteins are very large and insoluble and hence cannot
be studied by NMR and X-ray diffraction. Homology modeling is one of the easiest
approaches to the 3D structure prediction elaborated in this chapter (Peach et al.
1994; Blundell et al. 1987).

If we have to know the structure of any protein that contains 200 amino acids, we
use the BLAST tool of NCBI to compare the sequence of this protein in the PDB
database and fortunately, we found a structure B with a total of 400 amino acids
which aligns 50% identical residues with structure A. In this case, we can regard
structure B as a template and structure A as a target, so that we can model the protein
using structural information of template protein B. The homology modeling can only
be used to model 3D structures of a target protein if it shares more than 30%
sequence similarity with the template (Sanchez and Sali 1997; Peitsch 1997).
Homology modeling is a multi-step process that includes template search, database
searches, sequence alignment, structural refinement, loop search, side-chain
modeling, coordinate assignment, energy minimization, and structure validation to
create a quality structure (Johnson et al. 1994).

The modeler cannot make the finest protein structure, and therefore the main task
of the modeling process involves genuine thinking as to how to play between

Table 2.1 (continued)

S. No. Name Description Weblink

14 MUSTER Threading algorithm, sequence-
template alignments by profile–
profile alignment

https://zhanglab.ccmb.med.
umich.edu/MUSTER/

15 EVfold Calculates evolutionarily coupled
residues, evolutionary couplings
calculated from correlated
mutations in a protein family,
ranks the models on geometric
criteria and clustering

http://evfold.org/
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Fig. 2.4 A sequence of steps involved in homology modeling
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different considerably similar choices. To construct the homology models, consid-
erable efforts and research have been done to train the computational models to make
better decisions (Peitsch et al. 2000). A sequence of steps involved in homology
modeling is discussed here.

2.4.1.1 Template Recognition and Initial Alignment
The percentage identity between target protein sequence and the template is calcu-
lated using searching tools such as BLAST (Altschul et al. 1990) or FASTA
(Pearson 1990). Two main matrices are used to identify these hits by comparison
of the query sequence to all the known structures.

1. A matrix of residue exchange: The probability of alignment of two of the
20 amino acids is determined by the elements of this matrix.

2. A matrix of alignment: The two aligned sequences are represented by the axes of
this matrix.

One needs to feed the query sequence to BLAST servers available on the web,
followed by the selection of the PDB database for search. Finally, a list of templates
and their alignment score with the query or target protein is received.

2.4.1.2 Alignment Correction
Several templates can be used for modeling. However, it is time to acquire better
alignment using more sophisticated methods. It is difficult to model regions with a
low percentage of sequence identity. Another sequence of homologous proteins can
be used to find a suitable solution. Multiple sequence alignment programs such as
CLUSTALW can align several related sequences (Thompson et al. 1994) and a huge
amount of data can be retrieved from the resulting alignment. If only exchanges
between hydrophobic residues are observed at a certain position, then there are high
chances of the residue being buried. Position-specific scoring matrices referred to as
profiles are derived by multiple sequence alignments (Taylor 1986). Insertions
(additional residues in the model) or deletions (missing residues in the model) can
be achieved by multiple sequence alignments merely at the places where we find
quite different sequences.

2.4.1.3 Modeling Structurally Conserved Region (SCR) and Backbone
Generation

The important step in homology modeling is to determine the regions that are
structurally conserved among the structures related to templates. Structurally
conserved region (SCR) or core is determined by computing the C-alpha distance
matrix for each structure and then small portions of the distance matrix are compared
to find the peptide segments with lower root mean squared difference (RMSD) for
related structures. In this way, all SCRs are determined and related SCRs share very
high sequence and structural similarity. The generation of the model starts with the
alignment of target and template protein. Template-target alignment indicates the
residue blocks in the target which corresponds to SCRs of template. Coordinates of
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the amino acid residues of the template for structurally conserved regions between
the template and target protein are taken from the template structure and assigned to
the target model. There may be some varying residues within SCR region of aligned
template and target, and if only their side chains differ, then the backbone (N, Cα, C,
and O) coordinates of these residues are copied template and assigned to target
model. Experimental protein structures are better than modeled. Choosing the
template with the fewest errors is a simple way to build a good model. But what if
there are two templates and each with a region that is poorly determined, but these
regions are not the same, and then both templates can be used for model building
using multiple templates approach. This approach is also used if there are good
matches in different regions between alignments between the target sequence and
templates. Multiple template modeling is done by servers like Swiss model (Peitsch
et al. 2000).

2.4.1.4 Loop Modeling
During template-target alignment, gaps occur between the aligned model and the
template sequence. These gaps represent the insertion/deletion between template and
target. The structural fold of these gap residues or loop needs to be determined and
incorporated in between the two conserved core region. It requires modification of
the backbone. In the regular secondary structural elements, orientation or conforma-
tional changes are not found. Thus, it is safe to remove all the insertions or deletions
within the alignment form helixes and strands and put them in turns and loops. We
frequently realize different loop configurations within the template and target even
while not insertions or deletions. There are the following reasons behind this
problem (Krieger et al. 2003):

1. Surface loops lead to a major modification within the conformation of the
template, and therefore the target.

2. Beneath the loop, the exchange of little to large side chain pushes it away.
3. The mutation of proline or glycine to the other residue in the loop.

In all cases, the residue must be placed in the loop considering the
Ramachandran plot.

Two main approaches used for modeling the loop region are given here.

Knowledge-Based
Here, we search for the structure of the loops region with endpoints reminiscent from
the known structures, and then the coordinates of loop structure are placed in
between two cores. Most of the molecular modeling programs such as Modeller
(Sali and Blundell 1993), Insight (Dayringer et al. 1986), Swiss model (Peitsch et al.
2000) or 3D-Jigsaw (Bates and Sternberg 1999) support knowledge-based approach
for loop modeling.
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Energy-Based
The energy function is employed to assess the loop quality and uses Monte Carlo or
molecular dynamics simulation methods (Fiser et al. 2000) to generate the most
accurate loop form. The energy function can be modified to generate a better loop
structure that can best fit in the core (Tappura 2001). For small loops (up to 5–8
residues), the various strategies are available to predict a loop configuration that well
overlaps the important structure.

2.4.1.5 Side-Chain Modeling
During the coordinate assignment in core modeling, coordinates of all amino acids
are copied from template to target except those amino acids where side chain differs.
At the position of the varying side chain, only the backbone coordinate of amino acid
is assigned to target, and the related side chain is modeled using rotamer libraries.
Rotamer libraries contain the biologically active conformation of side chains for
different amino acids. As we know that all conformation of an amino acid is not
biologically active, so it becomes important to determine and place the correct
conformation of the side chain (Sanchez and Sali 1997).

It uses rotamers libraries derived from high-resolution X-ray structures. These
rotamers are validated with a range of energy functions for their fitness (Scouras and
Daggett 2010). The selection of an explicit rotamer mechanically affects the
rotamers of all near residues. With a 100 residues and a median of five rotamers
per residue, 5100 different mixtures would be scored already. There has been a great
deal of analysis into developing strategies to create this vast search space traceable
(Desmet et al. 1992). For a given backbone configuration, just one powerfully
inhabited rotamer may be modeled immediately, so providing an anchor for addi-
tional versatile side chains within the surroundings. There are mainly two reasons for
low prediction accuracy.

1. Flexible side chains on the surface can form several conformations.
2. Rotamers in hydrophobic packaging in the core can be easily scored, but ionic

interactions on the surface, hydrogen bonds with water, and related entropic
effects are challenging (Sliwoski et al. 2014).

It is vital to notice that in nearly all publications, the prediction accuracy cannot
be achieved in real-world applications. The algorithms, therefore, accept the proper
backbone that is not offered within the modeling of homology. The template’s
backbone is commonly significantly different from the target (Fiser 2010). The
rotamers should be predicted based on the wrong backbone, and the predictive
accuracy, in this case, tends to be lower.

2.4.1.6 Model Optimization
The right backbone is needed for the prediction of high-precision side-chain
rotamers, which relies on the rotamers and their packaging. The main approach to
a tangle of this kind is the re-iterative prediction of rotamers, then the ensuing
backbone shifts, and the new backbone rotamers until the process converges. This

36 A. Tiwari et al.



method reduces the series of rotator predictions and steps of energy reduction
(Hansen and Kay 2011).

The methods described above are used not only in the loop modeling but also for
model optimization and should be applied for the entire protein structure (Hintze
et al. 2016). At each minimization step, a few major errors, such as bumping due to
atomic clashes, are eliminated, whereas several tiny mistakes are created. When
small errors begin to accumulate, the model becomes less accurate. Better optimiza-
tion of a model can be achieved by more accurate energy functions for force field
calculation. Precision can be achieved by using the following approaches.

Quantum Force Fields
The force field calculation method should be fast and efficient to cover large protein
molecules. The recent advancement in computational biology enabled methods of
quantum chemistry to attain a more accurate interpretation of the charge distribution
for the whole protein molecule (Liu et al. 2001).

Self-Parameterizing Force Fields
Force field accuracy depends on its variables (e.g., atomic loads and van der Waals
radii). These variables are generally derived from small molecules quantum chemi-
cal calculations and fitting of these values to experimental data (Krieger et al. 2002).
This method results in a rather expensive computer procedure. Take starting
parameters for the force field, modify the parameter, minimize the energy of models,
and save the new force field if the quality of the model improved otherwise return to
the previous parameter of force field. This approach can increase the accuracy of the
force field in the correct direction during energy minimization. A protein model can
be optimized using molecular dynamics simulation, and it samples trajectory of the
motions of the protein at a duration of 10 fs and generates the true folding dynamics
of the protein (Adcock and McCammon 2006). It is therefore considered that during
the simulation, the model will approach to real structure (Hospital et al. 2015).

2.4.1.7 Model Validation
Each model generated by homology contains some errors. The number of errors (for
one particular method) depends primarily on two points.

1. A highly accurate protein model can be generated if the target shares very high
similarity with the template. If the accuracy of the model is greater than 90%, then
it can be compared accurately equivalent to an X-ray determined structure
(Chothia and Lesk 1986; Sippl 1993). If the sequence identity between template
and target lies below 25%, then alignment becomes meaningless for homology
modeling, and the resulted model may have a high error.

2. There might be some errors in the template structure, which may result in the
modeled protein. Structural errors can be estimated by the following methods:
(a) Force field-based methods evaluate the bond angles, bond lengths, and

bumps within the atoms. Lower energy models do not guarantee for the
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accuracy of protein structure because sometimes the misfolded inaccurate
models also achieve the low energy folds (Novotny et al. 1988).

(b) Normality indices can be used to compare the feature in the model that
resembles the real structures. Many characteristics of protein structures are
suitable for the analysis of normality. Many of these are based directly or
indirectly on interatomic distance and contact analysis. It is important to
observe the normality of torsion angles, bond angles and bond lengths and
quality parameters of determined structures, but are less appropriate for
model assessment (Czaplewski et al. 2000; Morris et al. 1992). Polar and
non-polar residue distributions inside/outside can be used to predict
misfolding in the protein model (Baumann et al. 1989). Most of the methods
used to verify models can be applied to X-ray and NMR verified structures.

2.4.2 Fold Recognition or Threading Method

This method of prediction is used when there exists a low degree of similarity
between template and target sequence as we cannot proceed for homology modeling
due to low similarity (>30%). There is still no complete understanding of the
relationship between the sequences, structure, and function. The only reliable fold
prediction tools are currently the analogy based prediction algorithms. The threading
approach is able to identify the most distant homologs and unrelated proteins with
similar structures in some cases (Jaroszewski et al. 1998). The main challenge in the
field of fold recognition is to develop tools to comply with structure, function, and
analysis (Pruisner 1996) (Fig. 2.5).

The threading approach is used when the similarity between the target and
template lies below 30% (Hendlich et al. 1990; Sippl 1993). In such cases, homology
modeling may not generate a reliable model, so it is necessary to consider detailed
structural parameters in the alignment (Jones et al. 1992). Threading methods
consider structural information that is missed in the alignment process by sequence

Fig. 2.5 Prediction of potential structure through threading approach
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comparison. Structural details can be included in various ways (Bowie et al. 1991).
The 3D profile is another method used for threading, which is based on the structural
environmental class of each amino acid residue and generates a matrix for the
probability of each amino acid to stay in each environmental class (Shi et al. 2001;
Bowie et al. 1991). Each amino acid has a probability to reside in a particular
environmental class.

Another approach calculates the contact residue potential of the pair and
maximizes the hydrophobic core score. This method identifies the core of the protein
structure that is essential for maintaining the structural integrity. This can be done
directly, including contact potentials in pairs (Bowie et al. 1991; Jones et al. 1992).
Threading is based on environmental class and uses a dynamic programming
algorithm but has some limitations related to the preservation of environmental
class. Contact residue potential approach considers the formation of hydrophobic
core on contacts between hydrophobic residues. Threading utilizes two approaches:
(1) profile of structural environmental classes (2) the contact potentials directly in
pairs.

In the 3D profile method, a template structure is represented as a descriptor string
that describes the structural environment. There are three basic environment classes;
(1) area of the lateral chains buried by other protein atoms, (2) fraction of the lateral
chains covered by polar atoms, and (3) secondary local structure. Here, a 3D protein
structure is represented in the form of an ID string, which represents each residue’s
environmental class in the folded protein structure. The environment of a side chain
is first classified as buried (B), partially buried (P) or exposed (E) depending on the
area exposed to solvent. The buried and partially buried residue environments are
further subdivided into P and Pi and B, Bi, B3, respectively (Peterson et al. 2014).
The E, P, Pi, B, Bi, and B3 are the basic six environmental classes. In this way, there
are a total of 18 environmental classes for all three secondary structures: helix, sheet,
and coil. The 3D-ID scoring table where the pairing residue score i is given as
follows with the environment j. P (i, j) represents the probability of amino acid
residue i in environment j, and Pi is the overall probability of amino acid residue i in
any environmental class (Ihm 2004). Here, the 3D-1D scoring table is used to
generate the profile of a template structure. This is also known as sequence-structure
because in this approach target and template both are represented in the form of
string. The target protein is represented as a string of amino acids and the template
structure represented as a string of the environmental classes (Jones 1999). The
fitness score between the target and template environment class is calculated using a
dynamic programming algorithm.

I-TASSER, a Yang Zhang Lab structure prediction threading method primarily
identifies the structural template or fragment from the PDB subset using multiple
threading approaches. Second, the initial conformations generated from the
templates replica-exchange Monte Carlo simulations to produce a large number of
reduced models. Third, all the models are grouped by SPICKER43 and the centroid
cluster is formed by averaging the coordinates of each cluster of all decoys. Fourth,
the simulation of the fragment assembly is carried out again starting from the
selected cluster centroids of the cluster. Fifth, FG-MD reconstructs and refines the
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all-atom structures. Finally, five full-length atomic models are produced along with
models of approximate accuracy. As a comprehensive process, even for new fold
targets, I-TASSER performs pretty well (Yang et al. 2016).

2.4.3 Ab Initio Methods

This approach generates a protein model from sequence information due to the
unavailability of structural counterparts or structural folds. The ab initio method
enables us to understand the physicochemical principle related to the nature of
proteins. The accuracy of ab initio modeling is low as compared to other methods
of structure prediction (Simons et al. 1999). If the target sequence does not share
structural similarities with structures in the database, then protein structure can be
generated by determining the configuration space of atoms in amino acids. This
method utilizes the knowledge of various principles of physics, chemistry, and
mathematics. The use of reduced protein representations makes the computation
easy. Some of the models represent a residue using only two locations, such as
backbone one and side chain (Cohen et al. 2009). Others use several sites, including
heavy backbone atoms and a side link. The main driving force for protein folding is
known to be hydrophobic interaction, and there is some empirical energy function
for the calculation of interactions in protein. For the ab initio prediction, three factors
must be established: (1) reduce the representation of proteins, (2) a potential energy
function for interaction, (3) method for searching the conformation space.

Simulated annealing is used for searching the configuration space of the fragment
structures. A move is taken to replace the torsion angles of a randomly selected
neighbor in a randomly selected position with the current configuration. Movements
that bring two atoms closer within 2.5 Å are discarded, and other movements are
evaluated. Baker and colleagues predicted the tertiary structure of a protein using the
sequence information of amino acid, and no template details were considered.

Most structure prediction methods currently depend on the information provided
by the structures predicted by experimental methods, which is not much supportive
in exploring the basic law of protein folding. Template-free methods are guided by
the practical application as well also consider the fundamental principles of protein
folding. Template-free methods are based on information from known structures,
their development may better reflect the prediction of the theoretical and technical
level of protein structure than template-based methods. ROSETTA one of the
efficient ab initio modeling approaches (Han and Baker 1995; Shortle et al. 1998)
is a template-free method created by the David Baker Lab, assembling a complete
structure based on fragments of 3–9 residues from PDB. Similar to the template-
based methods, the selection of fragments is based on the similarity between known
and predicted secondary structure. Monte Carlo method simulates the assembly
process with the annealing search technique. QUARK is an incredible Yang
Zhang Lab fragment assembly tool. The fragments used for QUARK vary from
1 to 20 residues and the simulation of the assembly is performed under the guidance
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from a knowledge-based atom level force field by Monte Carlo replica-exchange
simulation.

Many other approaches, including Scrape, PROFESY, FRAGFOLD, etc. are also
based on fragment assembly. The main distinction between these approaches and the
template-based approaches is that they are not based on any global structural
blueprint and they also do not utilize homology or structural similarities between
the target and the proteins from which the fragments derive. It is more capable of
modeling the target of new folds for template-free methods. However, due to the
high computational requirement and low force field accuracy, it is still a major
challenge for template-free methods for modeling proteins with a length of >150
residues. Prediction of contact map based on a co-evolution approach has recently
shown progress to break down such a length limit of ab initio structure folding.

2.5 Evaluation and Validation of Modeled Structure

The final predicted model has to be evaluated to make sure that the structural features
of the model are consistent with the physicochemical rules. This involves checking
anomalies in φ–ψ angles, bond lengths, close contacts, and so on. Another way of
checking the quality of a protein model is to implicitly take these stereochemical
properties into account. This is a method that detects errors by compiling statistical
profiles of spatial features and interaction energy from experimentally determined
structures. By comparing the statistical parameters with the constructed model, the
method reveals which regions of a sequence appear to be folded normally and which
regions do not. If structural irregularities are found, the region is considered to have
errors and has to be further refined.

SAVES server is a set of programs, which offers to check the model accuracy by
just uploading the predicted structure. Procheck program is one of them that is able
to check general physicochemical parameters such as φ–ψ angles, chirality, bond
lengths, bond angles, and so on. The parameters of the model are used to compare
with those compiled from well-defined, high-resolution structures. If the program
detects unusual features, it highlights the regions that should be checked or refined
further. WHATIF is another comprehensive protein analysis server that validates a
protein model for chemical correctness. It has many functions, including checking of
planarity, collisions with symmetry axes (close contacts), proline puckering, anom-
alous bond angles, and bond lengths. It also allows the generation of Ramachandran
plots as an assessment of the quality of the model.

Atomic non-local environment assessment (ANOLEA) is a web server that uses
the statistical evaluation approach. It performs energy calculations for atomic
interactions in a protein chain and compares these interaction energy values with
those compiled from a database of protein X-ray structures. If the energy terms of
certain regions deviate significantly from those of the standard crystal structures,
then it suggests that the corresponding region has not been modeled correctly. The
threshold for unfavorable residues is normally set at 5.0. Residues with scores above
5.0 are considered regions with errors. Verify3D is another server using the
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statistical approach. It uses a pre-computed database containing 18 environmental
profile based on secondary structures and solvent exposure, compiled from high-
resolution protein structures. To assess the quality of a protein model, the secondary
structure and solvent exposure propensity of each residue is calculated. If the
parameters of a residue fall within one of the profiles, it receives a high score,
otherwise a low score. The result is a two-dimensional graph illustrating the folding
quality of each residue of the protein structure. The threshold value is normally set at
zero. Residues with scores below zero are considered to have a non-favorable
environment.

The assessment results can be different using different verification programs.
Although the full-length protein chain of this model is declared favorable by ANO
LEA, residues in the C-terminus of the protein are considered to be of low quality by
Verify3D. Because no single method is clearly superior to any other, a good strategy
is to use multiple verification methods and identify the consensus between them. It is
also important to keep in mind that the evaluation tests performed by these programs
only check the stereochemical correctness, regardless of the accuracy of the model,
which may or may not have any biological meaning. Some tools predict the accuracy
of the predicted model based on the Ramachandran plot of amino acid residues. It is
a two-dimensional scatter plot showing torsion angles of each amino acid residue in
a protein structure. The plot delineates preferred or allowed regions of the angles as
well as disallowed regions based on known protein structures. This plot helps in the
evaluation of the quality of a new protein model.

2.6 Recent Advances in Prediction Approaches

Two types of qualitatively different approaches for structural modeling are available:
comparative modeling and de novo methods. Comparative modeling uses structural
templates, while de novo methods model the protein without the detail of structural
templates. The computational assessment of structural prediction (CASP)
categorizes targets into two groups: (1) template-based modeling (TBM) and
(2) free modeling (FM) (Moult et al. 2018).

Several parameters have been considered to improve the accuracy of prediction
by TBM. PSI-BLAST and the profile-to-profile alignment methods have improved
the accuracy of template identification and alignment. A composite structure assem-
bly simulation utilizes the information from multiple templates, which refined the
individual templates to be more similar to the native structures (Yang et al. 2015). In
recent years, the availability of vast experimental sequence and structural databases
has made it easier to get close homology templates for a target sequence. FM
approaches are also referred to as ab initio or de novo structure prediction. Fragment
assembly is also a type of FM approach (Dukka 2017). Some recent advances in the
FM approach have been made, which considers the evolutionary constraints, contact
information, and correlated mutation in scoring functions to improve the accuracy of
the predicted protein model.
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2.7 Applications

Accessibility of protein 3D structures and other structural analysis tools is
facilitating the integration of an immense amount of information, which could be
useful to further explore the possibilities to strengthen understanding of protein
structure and function in the future. The 3D structures of a protein provide a better
insight into the binding site and other functionally important regions, which could be
utilized for drug designing. The availability of a target structure is the prerequisite
condition to proceed for structure-based drug designing, and it also guides the
changes in lead molecules. A 3D complex structure of a protein with a ligand
provides better information about the residues involved in the interaction. Interaction
of a receptor with a small molecule explains the mechanism of the pharmacological
activity of a drug, binding affinity, and lead modification.

Computational modeling also explains how the mutation of an amino acid causes
loss of function by destroying the native structure of protein required for its normal
function. It can also explain the mechanism of drug resistance by depicting structural
changes in the mutant target protein, which causes loss of proper binding or
interaction of a drug with the target protein. Numerous forces such as hydrophobic
interaction, Van der Waals, hydrogen bonding, and electrostatic are involved
between the protein–ligand complexes to provide stability. Modeling of intermolec-
ular connections in the protein–ligand complex is a very complex process due to a
large number of degrees of freedom and inadequate information related to the impact
of water on the binding.

2.8 Conclusion

Molecular modeling has turned into a significant and fundamental approach avail-
able to restorative scientific experts in the field of drug designing. Molecular
modeling reveals the three-dimensional structures of proteins to unravel its related
physicochemical properties. The protein modeling makes efficient use of computer
science algorithms, theoretical science principles, and experimental information to
uncover the structural and biological properties of a macromolecule. The selection of
different tools for protein structure prediction depends on the nature of the problem
to be addressed. This chapter has described the basic approaches and the recent
advancements in methods of protein structure prediction. Required emphasis has
also been given to the type of errors that may emerge and accumulate during protein
modeling work. The development of a highly accurate and precise modeling tool
should be the prime necessity as the applications of X-ray crystallography or NMR
spectroscopy which being time-intensive do not seem to be the practical approaches
for determination of the structure of every given protein. The accuracy of protein
structure prediction is a crucial step because it is the basis of structure-based drug
designing.
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Cavity/Binding Site Prediction Approaches
and Their Applications 3
Himanshu Avashthi, Ambuj Srivastava, and Dev Bukhsh Singh

Abstract

The binding site of a protein governs its function by allowing binding of small
and macromolecules such as nucleic acids, proteins, and other molecules. These
binding molecules, also known as ligands, generally form non-covalent bonds
and have transient interactions and dissociate after performing a function. The
binding sites are unique and have shape complementarity to its ligands to
maintain the specificity and affinity. For example, molecules such as hormones,
activators, inhibitors, neuro-transmitters, and toxins have specificity in their
binding sites. A ligand-binding site entails vast information about its biological
function, such as the geometry, physicochemical properties, and electrostatic
charge, which in turn allows binding for the highly specific ligand. Various
experimental methods such as X-ray crystallography, mass spectrometry, nuclear
magnetic resonance, and isothermal titration calorimetry are used to determine
the binding site of proteins. For drug discovery, it is inevitable to use high
throughput screening of binding sites of proteins, and computational methods
give an efficient and cost-effective way of analyzing the same. Several
algorithms, tools, and software are available to detect protein cavities computa-
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tionally. The study of binding sites is relevant to various fields of research,
including computer-aided drug design, agrochemical design, cancer mechanisms,
drug formulation, and physiological regulation.

Keywords

Ligand · Binding site · Cavity · Protein–ligand interaction · Receptor · Binding
affinity

3.1 Introduction

Knowledge of the ligand-binding site gives important information about the nature
and function of a protein. It is important for performing molecular docking and also
for computational drug design and screening (Bradford and Westhead 2004). The
information about binding sites improves the prediction of protein–ligand and
protein–protein interactions. These interactions can be predicted through a docking
approach. Ligands usually bind at specific sites of target proteins, and these sites are
known as pockets/cavities (Schmitt et al. 2002).

In general, enzymes and hormones are protein molecules and have a particular
shape, which speeds up biochemical reactions within the body and ultimately behav-
ing as a catalyst (Gropper and Smith 2012). The activity of an enzyme depends upon
several variables, such as temperature, pH, and concentration. Enzymatic reactions
are carried out with the binding of the substrate to the active site of the enzyme (Kirby
1996). The active site is the specific region of an enzyme where the substrate binds
and causes changes in the reaction that lead to the formation of the product (Klibanov
2001). The active site has a unique geometric shape which is complementary to the
geometric shape of another molecule called substrate (Lehn 1988). The action of
an enzyme with a substrate is based on lock and key and induced fit theory.
Lock and key theory was postulated in 1894 by Emil Fischer. In this theory, the
enzyme acts as a lock, and the substrate acts as a key. Only the exact sized
substrate (key) fits into the hole of the key (active site) of the lock (enzyme).
Substrate molecule with smaller, larger, or incorrect shape and size does not fit
into the active site of the lock (Koshland 1995). Only the exact shape key opens
a particular lock, as illustrated in Fig. 3.1.

On the other hand, the induced fit model was proposed by Daniel Koshland in
1958 (Koshland 1995). In the induced fit model, initially, active site and substrate
have no matches for each other. The final shape of the enzyme is determined after
binding of a ligand with its active site. After binding, many structural rearrangement
and conformational changes take place in the enzyme structure.

In the era of industrialization, peoples are getting susceptible to various infections
and diseases and excessive use of antibiotics making micro-organisms resistant to
these molecules (Walker 1996). To combat and keep pace with these organisms, we
have to find new ways or new drugs to limit their propagation and survival.
However, a drug takes 15–20 years to come up to society with a very complex
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process of screening and clinical trials (Bleicher et al. 2003). The computational
techniques are known to help in pacing the process of drug discovery. The branch of
bioinformatics, which helps in designing the drug using a computational approach, is
known as computer-aided drug design (CADD) (Schneider and Fechner 2005). The
first step of drug design is target identification and selection. When we confirmed
that the target is protein, then we identify the binding site/cavity in that protein
(Bleicher et al. 2003).

Experimental methods such as X-ray crystallography, NMR, electron micros-
copy, and binding essays help determine the binding sites; however, these
techniques are time-taking and cost-intensive. The growth of experimentally deter-
mined structure in protein data bank (PDB) allows using the knowledge to develop
tools for the binding site prediction. The coordinate information of proteins available
in PDB gives us information about the binding site and its surrounding residues.
These information can be exploited further to understand the binding sites of
unknown proteins. There are many tools available to identify these binding sites in
a receptor molecule. The binding sites can also be predicted by estimating the site
prone to make hydrogen bonds and electrostatic interactions (Singh and Dwivedi
2016). The hydrophilic and charged residues generally help in making these
interactions and are also important for post-translational modifications including
phosphorylation. Phosphorylation mainly happens in residues carrying hydroxyl
group, i.e. serine, threonine, and tyrosine. These phosphorylation sites along with
charged patches are often involved in binding, hence are also used for the prediction.

After recognizing the cavity site, we take ligand and receptor molecules through a
process that we know by the name of docking. In the docking process, the ligand
molecule forms a non-covalent bond with some amino acids of the protein molecule.
Remember that these cavity sites are specific to each ligand. Every single ligand
cannot bind on every cavity site. Specificity and affinity are two such features that
determine the strength of the chemical bond and the nature of ligand that will bind
(Ladbury 1996). To find the cure for a disease, we must first identify those target
molecules and identify the cavity/binding site present in the target. So all together,
recognizing the cavity or binding site in the protein molecule is a complex step.
Since, as long as we do not know about the cavity present in the target, we cannot

Fig. 3.1 Mechanism of lock and key for the formation of enzyme–substrate complex
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design any drugs. Thus everything depends on the target’s cavity site. So, in this
chapter, we will talk about what are the cavity or binding sites, their roles, methods,
and approaches to identify them, etc.

3.2 Target Molecule

Drug target identification is one of the important steps in drug designing. A ligand or
drug binds to a specific site on the 3D structure of a protein or target to generate the
therapeutic response. In computer-aided drug designing, the 3D structure of a drug
target is retrieved from the PDB database or can be modeled using sequence
information, if 3D structural details not available in PDB. Protein, nucleic acid,
carbohydrate, or lipids can serve as a drug target but in most cases, drug targets are
protein. Exact and accurate prediction of the binding site in a drug target is very
essential and important to guide the process of drug discovery. A receptor is a
bio-molecule (DNA or protein) that receives chemical signals from ligand
molecules. A ligand molecule binds to a protein or receptor to produce a physiologi-
cal response. Receptors are found on the surface of target cells, which interact with
ligands. Sometimes, binding of a ligand to a receptor does not generate an appropri-
ate physiological response, due to only the wrong selection of ligand molecule
(Keiser et al. 2009). A receptor is a flexible molecule, and as a result, some structural
and conformational changes occur due to the binding of a substrate on its active site.
Computational tools mostly consider the flexibility of ligand or substrate interacting
with the binding site of a target molecule but do not consider the receptor flexibility.
There are limited docking tools that give a certain extent of flexibility to the receptor
active site along with ligand.

3.3 Binding Site and Active Site

The active site is the specific region of a target enzyme formed by the composition
and 3D arrangement of certain amino acids, which is occupied by a specific substrate
to catalyze a chemical reaction. The active sites are present in binding regions of a
substrate so they can also be called binding sites. These binding sites mostly have a
pocket to provide the base to a ligand molecule to bind, and these pockets are also
known as cavity sites. Note that an active site is always a binding site while all
binding sites do not perform catalysis, hence cannot always be an active site. For
active site prediction, the size of different cavities in a protein is measured, and then
in most cases, cavity with the largest area and volume is considered to be used as a
binding site for a ligand or substrate. There are many approaches for validation of
binding site, which utilizes the information of known cavity composition in the
functionally and evolutionary related proteins. It is a structural part of the protein that
determines whether the protein is functional or non-functional. The active site
consists of a few numbers of residues that form temporary bonds with the
substrate-binding site. It is also referred to as the binding site. The site at which
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the catalysis reaction takes place is known as the catalytic site (Mattos and Ringe
1996; Tiwari et al. 2016).

3.4 Ligand Molecule

It is a small chemical molecule, ion that forms a complex with a bio-molecule (DNA
or protein) to serve a biological purpose. In protein–ligand interaction, ligand
produces a signal by binding to a site on a receptor protein. Typically binding results
change the conformation of the target molecule (Hansch and Klein 1986). There are
many natural ligands present in the human body. Plants are also able to synthesize
many natural small chemical molecules, which show interaction with different
natural targets or receptors. Detailed physicochemical and biological property of
many ligand molecules is available in chemical compound databases, which can be
utilized for drug designing. Accurate and precise information about the ligand-
binding site is required to understand the mechanism of binding and other dynamic
perturbations in the target when a ligand binds to it.

3.5 Binding Affinity

The strength of the binding interaction between a single bio-molecule (protein or
DNA) to its ligand or binding partner is known as binding affinity. The ligand can be
any drug or inhibitor molecule (Aqvist et al. 1994). In CADD, the binding affinity of
a ligand with a molecular drug target is predicted using docking tools that utilize
energy scoring function for calculation of binding energies of complex and binding
affinity. Different docking tools use a different algorithm, scoring function, and
parameters for calculation of binding energy of protein–ligand complex, as a result,
binding energy calculated using different docking tools is not the same. Binding
affinity can be used as a parameter to screen the potential compounds, which can be
used for further structural optimization or in vitro testing. In a real system, binding
interaction of a ligand not only depends on the target protein but also on the other
factors and environments such as temperature, solvent, pH, ions, and presence of
cofactor or other molecules.

3.6 Chemical Specificity

The ability of a protein’s binding site to bind a specific ligand depends upon the
complementarity of both molecules. That is why few numbers of ligands can able to
bind with a single protein. It depicts the binding strength between a protein and
ligand (Chargaff 1950). Specificity plays a very important role in the recognition and
binding of a ligand with a target molecule. A small structural change or mutation in
the binding site of a protein can result in the loss of binding because, in mutant
protein, the ligand is not able to recognize the 3D shape or spatial arrangement of
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amino acids required for its binding. In CADD, if a target protein has undergone
mutation, then a new potential drug molecule is designed, keeping in mind the new
shape and spatial arrangement of amino acids in the binding site of a mutant or
resistant protein.

3.7 Binding Site and Molecular Interactions

The binding site provides a base for the interaction of two molecules and describes
the ability of the receptor to form bonds with other substances. Based on the bound
molecule, the binding site can be protein–protein, protein–nucleic acid, protein–
carbohydrate, protein–lipid, and protein–small molecule binding sites. The binding
of the drug molecule to plasma proteins (albumin, lipoproteins, and globulins) is a
major determinant of drug distribution (Macalino et al. 2015).

3.7.1 Protein–Drug Interactions

DNA and protein are molecules that show interaction with other small molecules
such as substrate, drug, or other ligands. Proteins are an important molecule in all
living cells and play an essential role in various cellular processes in the form of
enzyme, hormone, and receptor. Each protein performs a specific function that is
governed by its 3D structure (Alberts et al. 1998). Protein–ligand interactions are
vital for all biological processes that occur in living organisms. The function of a
protein depends upon the specific sites that are designed to bind with a specific
ligand molecule. Ligand-binding interactions can alter the protein conformations and
its function. To perform its function properly, binding of a protein with other
molecules should be very specific. A drug is a small organic molecule, which
binds to the receptor and forms a protein–drug complex and controls the function
of biological receptors. Binding can be of two types: intracellular or extracellular
(Silverman and Holladay 2014). Based on the drug binding mechanism, drug
binding may be of reversible or an irreversible type.

3.7.1.1 Reversible Binding
In reversible binding, usually, the drug binds the proteins with weaker chemical
bonds such as hydrogen bonds, hydrophobic bonds, ionic bonds, and van der Waals
interactions. The binding of drugs to plasma protein is a reversible process.

3.7.1.2 Irreversible Binding
In the case of irreversible binding, a drug or inhibitor permanently binds with the
binding site of the drug target. Irreversible binding of drugs rarely takes place. As a
result of covalent bonding or strong force of interaction between drug and target
protein, the event of carcinogenicity or cellular toxicity takes place.
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3.7.1.3 Factors Affecting Protein–Drug Binding
(a) Drug-related factors: It includes physicochemical characteristics of the drug,

concentration of drug in the body, and affinity of a drug.
(b) Protein/tissue-related factors: It includes physicochemical characteristics of

protein or drug and concentration of protein or drug.
(c) Drug interactions: It contains allosteric changes in a protein molecule, competi-

tion between drugs to occupy the binding site, and competition between drug
and biological components.

(d) Patient-related factors: It includes the age of the patient, inter-subject
variabilities such as due to genetics, environmental factors, and disease states.
Altogether, more protein binding disturbs the absorption and also decreases the
distribution and metabolism of drugs (Nayal and Honig 2006).

3.7.1.4 Role of Water Molecules
In the last 10–15 years, the significance of water molecules in drug design and
protein structures has become of extensive interest. Traditionally, water molecules
play two crucial roles in ligand binding (de Beer et al. 2010). Water molecules
stabilize a protein–ligand complex by contributing hydrogen bond interaction
between a ligand and a protein. The second role is that water can be displaced by
ligands on binding with the target protein. The role of the water molecule in binding
interaction of a ligand with the active site of the target protein can be studied using
the molecular dynamics simulation. Slight changes in water-based hydrogen bond-
ing networks affect ligand–protein interaction energies and show the effect of
solvation or water molecule on the binding. Water molecules also determine the
binding or rejection of ligand to the binding site of protein (Sousa et al. 2006). Water
molecules can mediate to direct interactions or may cause an effect of electrostatic
screening.

3.7.2 Drug–Nucleic Acid Interactions

Nucleic acids are the carrier of genetic information, and hence they are an important
molecule for disease prevention. Nucleic acids are targeted for various diseases,
including various types of cancer (Sheng et al. 2013). DNA, the carrier of genetic
information in humans, is mutated in various diseases, which often result in gene
expression alteration. The structures of DNA can be used for designing small
molecules to regain the gene expression pattern. The small molecules which bind
to DNA can be categorized into two major classes: (1) covalent binder and
(2) non-covalent binder. The non-covalent binders can further be classified into
major groove binders, minor groove binders, and intercalators (Boer et al. 2009). On
the other hand, RNA itself regulates various activities from catalysis to gene
expression, which makes RNA a suitable target for binding. Since the structure of
RNA is highly variable, designing a small molecule against them is a challenging
task. The advancement in technology and growth in the structures of protein–nucleic
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acid complexes help the computational tools to predict the binding of small
molecules with nucleic acids.

3.7.3 Protein–Protein Interactions

Among the following, the protein–protein binding site is most studied and is
involved in almost all essential function including replication, transcription, and
translation. Protein–protein complexes can be categorized based on the type of
subunits, the strength of interactions, and the time of interactions (Jones and
Thornton 1996). Based on subunit types, protein–protein complexes can be hetero-
oligomer or homo-oligomer. Hetero-oligomers are having different chains, whereas
homo-oligomers have the same chains. Based on the strength of interactions, the
protein–protein complexes are categorized into weak and strong binding complexes.
Strong binding complexes have better shape and chemical complementarity than
weak binding complexes, which could be because of various reasons such as the
presence of charged residues at the interfaces, presence of interaction coordinating
metal ions, and evolutionary selection of the shape of the protein molecule. Based on
the time-duration of interactions, the protein–protein complexes can be categorized
as transient and permanent complexes (Steed et al. 2007). Transient complex
interacts for a short period, whereas once permanent complexes are formed, they
cannot be separated into their monomeric forms. Transient complexes are often
involved in signaling and regulation and show cascading effect while permanent
complexes are important for catalysis, transport, structure protein formation,
etc (Singh and Tripathi 2020).

An accurate analysis of protein–protein interaction using docking approaches is a
complex problem due to flexibility and conformational space related issues of
macromolecules (Gabb et al. 1997). In protein–protein docking, the complexity of
considering the flexibility of two macromolecules is challenging. To establish a
relationship between two proteins, a few number of search algorithms are available
(Table 3.1).

3.7.4 Interaction of Protein with Nucleic Acid, Lipid,
and Carbohydrate

Protein–nucleic acid interactions are crucial for various biological processes such as
replication, transcription, translation, DNA repair, RNA processing, splicing, and
DNA packing (Von Hippel et al. 1984). Based on the flexibility of interacting
molecules, the interactions can be categorized into direct and indirect interactions
and also known as direct and indirect readouts, respectively. In a direct readout
mechanism, there is no flexibility in the molecules, where indirect readout involves
conformational change before or during binding.

In proteins, various metal ions are present, which helps in some favorable
interaction or regulates the binding by activating or inhibiting proteins. Based on
their function, these metal ions or small molecules can be classified into agonists and
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antagonists. An agonist molecule is known to an activator, whereas an antagonist
molecule inhibits a protein. This activation and inhibition process is chiefly explored
in the drug discovery process. Drug discovery is a knowledge-based approach, in
which first we understand the molecular processes involved in a disease. Subse-
quently, we choose our protein target, which is directly involved in the disease, and
then we activate or inhibit the target molecule, with the help of a small molecule,
depending upon the function of the target protein.

Protein–carbohydrate and protein–lipid interactions are also involved in various
important biological processes such as the immune system, digestive system, carbo-
hydrate transport, membranes, and in anabolism and catabolism of carbohydrates
and fats (Vyas 1991). Despite having a lot of functional applications, these
interactions are not much explored because of the problems in getting the structure
of these proteins solved by crystallographic and spectroscopy techniques.

3.8 Binding Site Prediction

Based on the role of protein, the binding site can be categorized into active and
regulatory sites. The active site of a protein binds to the ligand molecules and
performs the enzymatic activity, whereas the regulatory site binds to the regulator
molecule, which either activates or inhibits the process of binding at the active site of
the proteins (Bradford andWesthead 2004). Binding sites determine the strength and
type of interactions between protein and ligand molecules. To predict protein

Table 3.1 Different types of protein–protein interaction prediction approaches

Search
Algorithm Scoring Parameters Principle References

DOT Global rigid search: Fast
Fourier transform (FFT)

Shape complementarity,
electrostatics, and VDW

Norel et al. (1994)

GRAMM-X Global rigid search: FFT Shape complementarity and
Lennard-Jones potential

Tovchigrechko
and Vakser (2006)

HADDOCK Global rigid search Electrostatic, VDW, and
desolvation energy

Dominguez et al.
(2003)

HEX Global rigid search Shape complementarity Pagadala et al.
(2017)

ICM Global rigid search: Monte
Carlo

Empirical scoring function Huang et al.
(2010)

MolFit Global rigid search Shape complementarity Redington (1992)

PatchDock Global rigid search Shape complementarity Schneidman-
Duhovny et al.
(2005)

M-ZDOCK Global rigid search Shape complementarity Pierce et al. (2005)

3D-dock
suite

Global rigid search: FFT Shape complementarity and
electrostatics

Smith and
Sternberg (2003)

3D garden Global rigid search in
ensemble

Shape complementarity and
Lennard-Jones potential

Lesk and
Sternberg (2008)
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binding sites, mostly machine learning-based approaches are used. The machine
learning models are developed using structural, sequence, or evolutionary informa-
tion (Liang et al. 2006). Protein complexes modeling and docking software are a few
examples of using evolutionary and structural information. The evolutionary algo-
rithm of binding site prediction utilizes the information of multiple sequence align-
ment and assumes that binding site residues are conserved in evolutionarily related
proteins, whereas the energy-based methods calculate the interaction potential
between the protein and the ligand, and utilizes the 3D structural information of
proteins and protein–ligand complex from PDB (Fig. 3.2). Binding site prediction
methods are based on evolutionary algorithms, energy-based algorithms, and geo-
metric algorithms.

3.8.1 Evolutionary Algorithms/Sequence-Based Predictions

With the advancement in sequencing technique and a growing number of protein
sequences, it is in demand to predict the binding site of proteins using only sequence

Fig. 3.2 Development of
binding site prediction tools
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information. Evolutionary methods work on an assumption that sequence similarity
leads to structural similarity. Hence, the binding site in a protein can be predicted by
obtaining similar proteins with known binding sites. The multiple sequence align-
ment, conservation score, and substitution matrix can be used to obtain the sequence
similarity.

Sequence-based binding site prediction can find out a ligand-binding motif in
non-similar proteins (Ahmad et al. 2004). Different sequence-based approaches were
developed, including ConSeq, conservation score, miner, and so on (Hwang et al.
2007). In another sequence-based approach, multiple sequence alignment (MSA) is
constructed from homologous sequences of a target protein, and conserved residues
among all the sites in the MSA are determined. Sequence-based methods use majorly
two kinds of properties for binding site prediction.

3.8.1.1 Single Residue Based Approach
Various physiochemical properties such as hydrophobicity, side-chain pKa, solubil-
ity, solvent accessibility, etc. are associated with binding and non-binding residues
and are used to develop machine learning-based model. Few models use only one
binding partner structure to predict binding sites, whereas others use both partners
information.

3.8.1.2 Window Based Approach
In a window based approach, properties of neighboring residue are considered
important for the predictions (Capra and Singh 2007). Although just by using the
features from the sequence, it is difficult to predict binding residues. Various
methods use evolutionary information to increase the accuracy of their prediction
model. To associate the evolutionary information, first homologous sequences are
obtained by performing alignment of all the known binding proteins with the query
sequence, and then the scoring matrix is developed for binding and non-binding
residues in homologous sequences.

3.8.2 Energy-Based Algorithms

This method considers the interaction potential between protein and ligand. Here, a
simple probe is used to determine the different interaction potential on protein, and
favorable binding regions are mapped based on the energy. Energetically favorable
probe interaction sites are clustered using their spatial proximity, and the total energy
of interaction for probes within each cluster is calculated (Laurie and Jackson 2005).
Q-SiteFinder is an energy-based method which determines clusters of energetically
favorable methyl probe to locate the binding site. Energetically favorable sites
indicate the location on a protein where a ligand could interact and bind. Some
scoring function of binding site prediction uses three different probe types to locate
the hydrophobic site, hydrogen bond donor, and hydrogen bond acceptor and
considers the probe site related to favorable interaction energy (Ruppert et al. 1997).
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3.8.3 Geometry-Based Algorithm/Structure-Based Predictions

If the structure of ligand and receptor is available, we can accurately estimate the
interface residue by using distance and solvent accessibility based calculations. In
the distance-based method, we can choose a cut-off and see if distances between the
residues of the receptor and ligand molecules are less than the cut-off value. In the
solvent accessibility method, we can calculate the solvent accessibility of complex
and separated ligand and receptor molecules and check if there is a change in solvent
accessibility in free and complex form, then the residue should involve in binding.
When the structure of receptor and ligand is not solved as a complex, we can predict
binding site from structure information such as the shape of the protein, hydrophobic
patches on the surface, number of charged residues on the surface, compactness of a
protein, etc. (Gabb et al. 1997).

3.9 Approaches

Binding site prediction of protein–protein, protein–nucleic acids, and protein–small
molecule is targeted by several research groups, and significant accuracy is achieved
(Laurie and Jackson 2006). Various methods are developed for prediction of the
binding site, which can be broadly categorized as follows.

3.9.1 Statistical Approach

Statistical methods used various features to distinguish between binding and
non-binding residue using a statistical approach. This approach is fast and may
achieve significant accuracy. However, it needs detailed knowledge about the factor
responsible for the occurrence of binding and non-binding sites.

3.9.2 Machine Learning

Machine learning approaches are highly accurate and train themselves for the
prediction if the well-labeled dataset is provided. Here various features can be
combined for the prediction method development.

3.9.3 Meta-Predictors

Finally, meta-predictors use multiple predictors for predicting the binding and
non-binding residues and derive consensus results and try to associate confidence
with the prediction. Since meta-predictors are the combination of various
approaches, it works well for various prediction problems.
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3.10 Prediction Tools and Servers

Several computational tools for pocket and cavity prediction have been developed,
which are based on evolutionary algorithms, energy-based algorithms, and geometric
algorithms. Some other approaches have also been developed, which combines the
two or more methods to improve the accuracy of cavity or pocket prediction (Zhang
et al. 2011). Binding site prediction tools use different parameters and methods for
prediction and have different accuracy. Some docking tools also provide the facility of
the cavity and binding site prediction, before proceeding for docking. In the recent
decade, various ligand-binding site prediction and analysis tools have been developed.

The CASTp is a cavity/pocket prediction tool that is based on 3D α-shapes
methods. This method generates two α-shape envelopes in a protein, and space
between these two envelopes measures the size of the pocket (Liang et al. 1998). A
pocket is a concave protein surface region accessible to the outer solvent, whereas a
cavity is an inner void inside the protein surface that is not accessible to the outer
solvent (Fig. 3.3). For cavity prediction, the probe radius is set to 1.4 Å, i.e. the
radius of the water molecule.

To understand protein interfaces and interactions, docking, the accurate predic-
tion of pockets and cavities in a protein is essential. PoCavEDT is a geometric
technique used to predict binding pockets and cavities in proteins using Euclidean
distance transform (Daberdaku 2019). In this approach, probe spheres are used to
identify pocket regions between two solvent-excluded surfaces, and the probe size
used depends on the size of the binding ligand. This is a simple geometrical method
used to predict the ligand-binding site. The prediction accuracy of this method was
evaluated by applying it to a set of protein–ligand complexes and their
corresponding unbound protein structures. The comparison of ProBiS, a binding
site detection tool, was made with some other tools such as DaliLite, MolLoc, and
MultiBind by calculating the RMSD between similar binding site residues of a
protein by structural superimposition (Konc et al. 2015). After comparison, the
lowest average RMSD value was obtained for ProBiS. The tools and servers used
for the prediction of the binding site are listed in Table 3.2.

Fig. 3.3 Showing pockets in
three different colors,
predicted by CASTp. Red
color shows pocket 1, orange
color pocket 2, and green
color pocket 3
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Table 3.2 Tools and servers used for the binding sites prediction

Tool/Servers Description References

CASTp Used to locate and measure concave surface regions such
as cavity or pockets on 3D structures of proteins

Tian et al.
(2018)

LigASite Collection of biologically relevant binding sites in protein
structures

Dessailly et al.
(2008)

PDBeMotif Analysis of binding sites in a protein and conserved
structural features within the same species or across
different species

Inhester et al.
(2017)

fPOP fPOP refers to footprinting pockets of proteins. It is a
collection of spatial patterns of protein binding sites
identified by shape analysis

Tseng et al.
(2010)

metaPocket It is a type of meta-predictor used to predict ligand-binding
sites or pockets on the protein surface

Huang (2009)

PocketQuery Web service for interactively exploring protein–protein
interactions

Koes and
Camacho (2012)

IBIS It observes experimentally determined biological structures
such as protein–protein, protein–nucleic acids, protein–
small molecule, and protein–ion interactions

Shoemaker et al.
(2012)

KBDOCK Identify spatially clusters protein binding sites for
knowledge-based protein docking

Ghoorah et al.
(2014)

Pocketome Conformational ensembles of all druggable binding sites An et al. (2005)

sc-PDB It identifies binding sites suitable for the docking Meslamani et al.
(2011)

The
FunFOLD

This tool accurately predicts ligand-binding residues from
protein sequences

Roche et al.
(2011)

ProBiS It detects the structurally similar protein binding sites
through local structural alignment

Konc and
Janezic (2010)

DEPTH It calculates the depth of a residue from the protein surface Tan et al. (2013)

FINDSITE It is a threading-based binding site prediction tool Skolnick and
Brylinski (2009)

PocketDepth It is a geometry-based method and uses depth based
clustering to predict the ligand-binding sites

Kalidas and
Chandra (2008)

GHECOM
1.0

This is a program for finding multi-scale pockets on the
protein surface

Payandeh et al.
(2018)

Pocket-finder It is based on the Ligsite algorithm Hetényi and van
der Spoel (2011)

Screen2 It is a tool for identifying protein cavities Xie and Hwang
(2015)

ConCavity This tool identifies functional sites of proteins

MultiBind
and MAPPIS

It is a web server for multiple alignments of protein 3D
binding sites and their interactions

Shulman-Peleg
et al. (2008)

MolAxis It reads files in the standard PDB format. Yaffe et al.
(2008)

Fpocket It is a very fast and open source protein pocket detection
tool

Le Guilloux
et al. (2009)

SuMo It is a tool for finding ligand-binding sites Jambon et al.
(2005)

(continued)
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Various other web servers and databases related to binding pockets are available
to analyze the shape, size, structural properties, and descriptors in protein–protein,
protein–RNA, protein–DNA, and protein–ligand complexes. For example, posi-
tively or negatively charged patches can be studied to analyze the binding of charged
molecules such as protein and nucleic acids. Similarly split pocket is a tool to
identify the charged patch and pockets including the residues present, accessible
surface area, pocket volume, and residues present at the pocket mouth (i.e. residues
present on the edges of the pocket). To analyze membrane proteins, ChExVis is a
channel visualization platform where users can calculate channels and active site
information such as pores and transmembrane pores, channel length, and residues
location in the proteins (Masood et al. 2015). In addition, PockDrug is a pocket
drugability prediction, i.e. finding the probability of a pocket present in a protein to
bind to a drug molecule (Hussein et al. 2015). These servers are used in understand-
ing the drugability of various compounds such as diarylamine derived from
anthranilic acid and are tested for blocking the ZIKA virus infection by binding
with RNA polymerase. Moreover, the drugable sites of essential phosphatase
proteins of Aspergillus fumigatus were also identified using PockDrug for the
prevention of fungal infections.

3.11 Validation of Binding Site

Binding residues predictions are validated by comparing the predicted output with
the experimentally labeled dataset. A residue is true positive (TP), if it is predicted as
binding when it is actually binding, true negative (TN) if predicted as non-binding

Table 3.2 (continued)

Tool/Servers Description References

CAVER It is a tool for the accurate and fast prediction of tunnels and
channels in protein or nucleic acid. Tunnels are void buried
in a protein core, whereas channels are exposed to the
surrounding solvent

Petrek et al.
(2006)

SiteHound This program identifies protein regions that are likely to
interact with ligands

Hernandez et al.
(2009)

SURFNET This program generates surfaces and void regions Laskowski
(1995)

MSPocket It is a tool for the detection and graphical representation of
protein surface pockets

Zhu and
Pisabarro (2010)

Phosfinder It is a method for the prediction of phosphate-binding sites
in the 3D structure of a protein

Parca et al.
(2011)

VOIDOO It is a program for cavity prediction in macromolecular
structures

Kleywegt and
Jones (1994)

PocketPicker It is a tool for the prediction and evaluation of surface
binding pockets

Weisel et al.
(2007)

McVol This tool is based on the Monte Carlo algorithm. It can
recognize internal cavities as well as surface clefts

Till and
Ullmann (2010)
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when it is a non-binding, false negative (FN) if predicted as non-binding but it is
binding, and false positive (FP), if predicted as binding but actually is non-binding
(Wang et al. 2002). Using these variables, we make several measures to further
cross-validate the residues. Prediction of binding sites can be validated by sensitiv-
ity, specificity, and accuracy measure which is given by

Sensitivity ¼ TP=TPþ FN

Specificity ¼ TN=TNþ FP

Accuracy ¼ TPþ TN= TPþ TNþ FPþ FNð Þ
Often a balance between sensitivity and specificity is assumed to be a good

predictor; therefore, balanced accuracy is also calculated by estimating the average
between specificity and sensitivity.

Balanced accuracy ¼ sensitivityþ specificityð Þ=2
Precision ¼ TP= TPþ FPð Þ
Recall ¼ TP= TPþ FNð Þ

Finally, the area under the receiver operator characteristic (ROC) curve is also
used to define if there is a fine balance between true positive rate and false positive
rate for a prediction model. Precision and recall calculation is often used in the
validation of prediction models. There is always a trade-off between precision and
recall, and a model having a balance between the two is considered as a good model.

Geometry-based methods provide an accurate prediction of the binding site in a
protein. This approach can be further improved by combining the other information,
such as the evolutionary conservation of residues in the known binding site.
Geometry-based methods return the pockets or cavities based on the size, area, or
volume, but the largest cavity is not always associated with the binding site. Later
on, a support vector machine-based model has been developed, and their prediction
results were found better than the methods based on pure geometry or evolutionary
conservation (Wang et al. 2013).

3.12 Role of the Binding Site in Drug Designing

The binding site plays a key role in computer-aided drug design. To predict binding
sites, we should know the 3D structure of the drug target (Henrich et al. 2010). So the
identification and selection of drug targets is a very crucial and critical step. In this
process, we identify a drug target that is present in our body in the form of protein
and nucleic acid (Hopkins et al. 2006). A protein may be used as a drug target if it is
intrinsically associated with a particular disease mechanism. For structure-based
drug design, a disease-related and functional protein can be used as a drug target,
and it should have a binding site for a small molecule. Binding site details of the drug
targets should be available to proceed for the drug designing. In most of the cases,
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we select protein molecule as a drug target, but sometimes we prefer nucleic acids.
Specific recognition of DNA sequence is achieved by the small molecule, via the
combination of hydrogen bond donor/acceptor site available at the minor groove or
major groove. These drugs are called minor groove binder, major groove binder, and
an intercalator.

Protein–ligand or protein–small molecule interactions are crucial for almost all
the biological processes. The interactions of small molecules with proteins are useful
for providing stability, which helps in catalyzing reactions (Burgoyne and Jackson
2006). Various small molecules are natural inhibitors that provide a feedback loop to
pathways, which help in maintaining a balance. Exploiting this process, we design
small molecules to increase or decrease the activity of a protein for balancing the
disturbance in a pathway.

3.13 Recent Advances and Future Perspective

Protein–protein interactions are widely studied, and as a result, several prediction
servers are available to predict binding site, affinity, and thermodynamics features of
such interactions. The absence of data in protein–nucleic acid interactions leads to
less availability of servers to predict affinity and other thermodynamics properties of
these complexes. Also, it should be noted that we mainly talk about well-structured
regions of proteins while discussing protein interactions. On the other hand, intrinsi-
cally disordered regions of proteins that lack well-defined 3D structures in solution
are also observed to be important for protein–protein and protein–nucleic acid
interactions. Intrinsically disordered regions are also found to be present in hub
proteins, which are in the center of the biological networks. Various databases such
as DisProt, D2P2, DisBind, and MobiDB provide information about intrinsically
disordered proteins. Few servers such as ANCHOR, DIBS, and IDPpi are available
for protein–protein interactions in disordered regions, whereas, for nucleic acid
binding, very few servers are available such as DisoRDPbind. The availability of
structures and experimentally validated disordered regions will provide more
insights into these interactions and will also give scope for the development of
servers and databases.

3.14 Conclusion

Protein interactions are crucial to every living organism, and a single amino acid
change in the interaction sites can lead to devastating diseases. Hence, interaction
sites should be studied carefully, and computational methods give a reliable and
cost-effective approach to predict such interactions. Here we have presented differ-
ent tools and servers to identify the ligand-binding sites, pocket volume, protein
cavity, phosphorylation sites, etc. Although each method has its advantages, the
growth of the data in every field allows us to improve the performance of these
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methods. Finally, these methods are developed for different purposes with different
datasets and approaches; hence, they should be chosen carefully for a study.

Competing Interest The authors declare that they have no competing interests.
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Abstract

High rates of drug failure cases are a challenge for the pharmaceutical industry to
improve preclinical testing. For the ADMET prediction, selection of suitable
experimental data and its use in the form of physiological parameters is a
challenging task. Nowadays, ADMET prediction is performed at an early stage
of drug designing to remove the pharmacokinetic (PK) property of poor
compounds. Various ADMET prediction models have been developed using
computational algorithms. Experimentally validated ADMET datasets have
been analyzed, and related classification features and descriptors were used for
the development of in silico models. The current chapter describes the role of
ADMET analysis in drug designing, approaches used for model development,
existing tools for ADMET prediction, and limitation of predictive models.
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4.1 Introduction

There is a high-risk investment in current pharmaceutical research and development
due to increasing cost and risk of failure in the drug discovery process and develop-
ment (Khanna 2012). The pharmaceutical industry has always been a major concern
about balancing the risk and productivity of research and development (Paul et al.
2010). With the advancement in multidisciplinary approaches for any drugs, there
are chances of improvement with the application of computational algorithms and
data analysis methods (Kesharwani et al. 2019). Every day, a huge amount of new
drug-like compounds generated, but they do not become part of usable medicines.
The threshold feature like absorption, distribution, metabolism, elimination/excre-
tion (ADMET) of any drug is more important for its successful use. Computer-aided
drug discovery methods are very helpful in guiding the development of the new drug
candidates and also screening some potential compounds based on binding interac-
tion, selectivity, ADMET, etc. (Kesharwani and Misra 2011; Singh and Dwivedi
2019). Various computational methods and approaches are being used in drug
development, and it is expected that the cost of drug development may be reduced
by up to 50% through the use of computational approach (Tan et al. 2010).

The drug discovery process can be divided into two important classes:
(1) strategies for lead discovery and its optimization for the development of a
potential drug against the selective targets and (2) strategies for the prediction of
compounds with druggability, which can be used for evaluating the therapeutic
utility of the leads. Most of the drugs have reliable values that are related to
assimilation, appropriation, digestion, and discharge properties and different
toxicities (T) or unfavorable reactions. The traditional methods used to evaluate
ADMET properties are time-consuming, costly, and create management problems
for large batch chemicals.

4.1.1 ADMET Prediction

In like manner, top to bottom ADMET investigation will not be performed until the
point that a set number of inhibitor compounds have been distinguished. In many
cases, it has been seen that some set of compounds rejected during in vitro study
because of poor druggability and its ADMET property is not within the threshold
value. Natural compounds and their metabolites may also have toxic effects, and the
labels regarding the safe and secure use of these compounds should be issued.
During the drug discovery process, some potential compounds are screened at a
different level based on certain criteria and filters. Virtual screening is the most
efficient throughput screening system to choose some compounds and is based on
the binding affinity of compounds to the target structure. One objective of ADMET
screening ought to be the improvement of a database corresponding to synthetic
structures and organic chemicals.

It is not possible to perform ADMET related in vitro or in vivo studies for a large
set of compounds. Therefore, the development of in silico ADMET prediction model
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is a good strategy to evaluate the PK of many compounds, and it can guide the
necessary structural changes in the lead compounds (Fig. 4.1). The development of
efficient and accurate in silico ADMET models will allow the parallel improvement
of compound feasibility and druggability (de la Nuez and Rodríguez 2008). In the
most recent decade, countless toxicity expectation models have been accounted for,
and a few surveys concerning the advancement of these models have been conducted
(Cheng et al. 2013). To tackle these issues, a few arrangements have been accounted
for concerning how to grow more compelling models and where these models can be
utilized (Huang et al. 2013). The accuracy of ADMET models can be improved by
integrating the other important parameters or by considering more clinical data and
results (Singh 2014).

4.1.2 ADMET Parameters and their Role

Absorption of any drug is a complicated procedure which is affected by various
components, including not only the natural properties of the substance (atomic

Fig. 4.1 Role of ADMET
prediction in optimizing the
activity of a lead compound to
qualify as a drug candidate
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size, aqueous solubility (logSaq), ionization constant (pKa), and octanol/water
segment coefficient (logP) values), but also physiological conditions inside the life
form (nearby pH, absorptive surface zone), function of catalysts, transporters, and
receptors along with the gastrointestinal (GI) tract (George 1981). Human intestinal
absorption (HIA) is typically estimated as the amount of the drug that absorbed via
intestine into the circulatory system, and this is most challenging for the in silico
model developer. The amount of compound which remains after retention and first-
pass hepatic digestion is characterized as the oral bioavailability (F) of that
compound.

The blood/brain (BB) barrier coefficient typically communicated as logBB and
characterized as the proportion between the substance present in the blood and brain.
The entry of compounds over the blood/brain barrier (BBB) is an essential determi-
nant of neurotoxicity and depends predominantly on uninvolved dissemination over
the BBB layer (Chen et al. 2009). The dynamic transport likewise might be vital. For
supplements and endogenous chemical compounds, e.g. monocarboxylic acids,
amino acids, amines, thyroid hormones, hexoses, purine bases, and nucleosides, a
few transport frameworks controlling the passage of the separate compound classes
into the brain have been distinguished.

Digestion is one of the fundamental variables impacting the destiny and danger of
synthetic compounds. Digestion incorporates an arrangement of substance responses
(set of metabolic pathways) inside the living being, which convert xenobiotic with
more polarity and effortlessly discharged via excretion in less lethal forms. Com-
monly, digestion is divided into two stages—stage I and stage II. Stage I, it is
described as the fictionalization stage, majorly affects lipophilic atoms, rendering
them more polar and all the more promptly excretable. In stage II, usually suggested
as a detoxification phase, such functionalized moieties are in this way conjugated
with profoundly polar particles. The two stages are catalyzed by particular chemicals
that are either present in the cytosol (cytosolic or dissolvable compounds) or
membrane bound protein (microsomal proteins) or the superfamily of cytochrome
P450 (CYP450).

Family cytochrome P450 are more than 70 groups of proteins, catalyze the
oxidative stage I metabolic responses of different compounds (Werck-Reichhart
and Feyereisen 2000). Stage II digestion is represented by different chemicals
following up on various sorts of particles. The most noteworthy among them is
glutathione S-transferase (GST), N-acetyltransferase (NAT), methyltransferase
(MT), sulfotransferase (SULT), and UDP-glucuronosyltransferase (UGT). Other
than stage I and stage II digestion, the liver causes particular pre-fundamental
(first-pass) impacts, particularly following the oral admission. What’s more, stage
III digestion alludes to the discharge of cellular metabolites with efflux transporters.
Discharge is the way toward wiping out waste metabolic items, the significant course
of which is renal (urinary) discharge using the kidneys. The major non-metabolic
courses of freedom (CLtot) incorporate bile and urinary end of unaltered
compounds.

Drug lethality is a significantly essential drug property. The potential for lethality
remains the most variable property of a drug. Toxicity is a level when a chemical
compound is harmful to the human or animal. If short-term or one-time exposure of

74 R. K. Kesharwani et al.



any chemical is harmful to the human or animal is called acute toxicity. Some drugs
are in its preliminary preclinical phase and if it harms human health, it will be back to
its initial phase of drug development.

Toxicity is the most important property for any type of chemotherapy. Since it
could be species-specific, organ-specific, and could include different host factors and
dose values. Nonetheless, as hepatotoxicity is a noteworthy sign of drug lethality,
compounds produced after the metabolism of drugs can also be toxic. The identifi-
cation and cataloging of toxic entities or substructure can guide a person to avoid the
addition of these toxic entities on a pharmacophore (Singh 2018).

4.2 Importance of ADMET

Since 1990, various studies were focused on physicochemical properties defining the
molecules drug-likeness to find the importance of lipophilicity, size, and H-bonding
nature of drug molecules and their bioavailability in the subject system (Navia and
Chaturvedi 1996; Lipinski et al. 2001). From these investigations, a few dependable
guidelines have been drawn to help scientific experts in the structure and choice of
atoms that ought to have an improved probability of getting to be effective oral drugs
(Muchmore et al. 2010). The objective of the biological analysis is to survey the
general ADME attributes of the new substance compounds. Bioanalytical techniques
can be used to determine the PK of a compound/drug (Jamalapuram et al. 2012). The
role and facilities provided by ADMET predictor tools are shown in Fig. 4.2.

Fig. 4.2 Facilities available at ADMET predictor
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4.3 The Evolving Science of ADMET

Since 1950, scientific experts relied on in vivo testing for drug effects on the human
body. Bioavailability, tissue appropriation, PK, digestion, and poisonous quality are
surveyed in one rat, and one non-rat animal category. Biodistribution is evaluated
utilizing radioactively marked chemicals later being developed because it is costly
(Oldendorf 1970). Pharmacodynamic (PD) adequacy of test compounds is regularly
surveyed through in vitro models, e.g. receptor official, trailed by affirmation
through in vivo viability models in mice or rodents. In vivo PK study is utilized
for lead improvement to drug trial digestion and retention. Understanding the PK–
PD relationship is essential in building up a comprehension of the system of activity
and metabolic destiny of compound. In any case, there are huge contrasts in assimi-
lation and digestion among species. In vivo models are commonly used for an
investigational new drug application, yet these have shortcomings. The toxicity
testing model should be designed for components of human models to avoid the
risk of adverse reactions.

4.4 Blood–Brain Barrier Models

A very new drug able to work in the CNS may demonstrate extraordinary remedial
guarantee because of their high intensity at the target site. A lot of BBB data
available in literature and databases could be connected by analysts to create in
silico models of brain infiltration. Different datasets related to drugs were analyzed
and many models have been proposed for assurance of logBB for compounds. Thus,
there is need of large and more diverse datasets for exact estimations of logBB.

There are various in silico models providing logBB prediction around 0.35–0.45
log units that could be utilized for screening purposes. By inspecting the wide range
of valuable sub-atomic descriptors, some essential speculations for further
examinations can be made. It is acceptable to recognize two classifications of
descriptors. The principal descriptors of size (i.e. molar refraction, network and
topological lists, sub-atomic mass, surface zone) while the second descriptors of
the extremity (i.e. polar surface region, incomplete charges, elements of hydrogen
bond corrosive or hydrogen bond base gatherings). The descriptors of size are vital
indicators for the transportation of non-polar compounds in the brain, though the
descriptors from the second class express the highlights of polar particles, which
decide their liking to segment in the blood.

4.5 ADMET Prediction

Prediction of ADMET property is very important because about 60% of drugs fail in
the clinical trials due to poor ADME. Nowadays, ADMET prediction is done at an
early stage of drug designing to remove the compounds with the poor PK property.
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Several new approaches, such as toxicogenomics, data-integration, and decision
making systems could be used for in silico ADMET prediction (Cheng et al. 2013).

BBB is a highly selective barrier which can be used to decide the compounds or
drug that can pass the BBB and reach their target. CYP450 enzymes play an
important role in the metabolism and detoxification of drugs and other toxic
chemicals. A drug should not be rapidly metabolized by CYP450, and it should
not inhibit CYP450. If a drug inhibits CYP450, then the level of another
co-administered drug will be raised, which may have toxic effects (Brown et al.
2008). The in silico models can predict the interactions between CYP450 and a drug.
The human hERG gene codes for a potassium ion channel, which plays an important
role in the activity of the heart. hERG blockage can cause arrhythmia and death.
Therefore, a drug must qualify the hERG test in in silico models. P-glycoprotein
(Pgp) extracts many foreign substances from the cell and decides the PK properties
of drugs. Pgp may efflux the drug from the cell surface, and reduce the concentration
of drug to target. Therefore, computational models can be used to predict a drug is
Pgp substrates or Pgp inhibitors. Mutagenicity or mutation causing the capability of
a drug or chemical should also be predicted to ensure its role (Tripathi et al. 2015).

4.6 Strategies for the Designing of ADMET Model

4.6.1 Selection of Experimental Data

Prediction of an accurate ADMET model is a challenging task with respect to time,
speed, and accuracy. Before the start of model prediction, the selection of dataset and
prediction parameters play a key role to derive desired models with more accuracy
and reproducibility. For any predictive model, the initial step is to get accurate
experimental data.

4.6.2 Calculation of Physicochemical Parameters or Descriptor
Values

Traditionally physiochemical features of chemical compounds or descriptors are
mainly 3 types, one-dimensional, two-dimensional, and three-dimensional. Due to
the advancement of technology, a huge number of descriptors are available in
various tools, e.g. 1800 descriptors described by Todeschini and Consonni (2008).
The selection of suitable descriptors is a key factor in ADMET model development
after getting suitable experimental data. The representation of the descriptor in the
form of mathematical equations using a statistical or machine learning approach is
used to identify the molecular properties of chemical compounds. Many scientists
have discovered some new class of descriptor as physicochemical (measured or
calculated), geometrical, constitutional (including group contributions), topological,
electro-topological, quantum chemical and molecular fingerprints, together with
some others. Interestingly, a molecule can be represented in the form of a molecular
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fingerprint or terms of computer language binary string. The descriptor representa-
tion in the form of binary string for any structure and substructure is given in
predefined SMART format files. Currently, many free and proprietary tools/servers
are available to calculate the descriptor values for any chemical compounds,
e.g. Open Babel (O'Boyle et al. 2011), ChemDraw (Li et al. 2004), and ACD
ChemSktech (Spessard 1998) (Table 4.1).

4.6.3 ADMET Prediction Methods and Tools

The development of the ADMETmodel prediction tool is designed with the help of a
statistical and machine learning approach. In the present book chapter we have
discussed seven most usable methods (Fig. 4.3).

Table 4.1 Tool/server for the calculation of descriptors

Tool Description References

E-Dragon It is used for the calculation of 1600 molecular
descriptors

Tetko et al.
(2005)

MOLE db—Molecular
descriptors data base

It is a free web online database contains 1124
molecular descriptors

Ballabio
et al. (2009)

EPISUITE This is an estimation program interface suite for
the calculation of property and environmental
fate estimation programs

Epa (2012)

Online Chemical Modeling
Environment (OCHEM)

It is a web-based platform which calculates
descriptor and used for designing of in silico
model

Sushko
et al. (2011)

The Chemistry Development
Kit (CDK)

It is an open source database with the chemical
processing features

Steinbeck
et al. (2006)

ChemDraw It is a chemical drawing tool having descriptor
calculation features

Mills
(2006)

Fig. 4.3 Representation of
ADMET prediction methods
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4.6.3.1 Recursive Partitioning Regression
The recursive partitioning regression analysis approach is a statistical method used
in multivariable analysis (Breiman et al. 1984). It is a partitioning method to split the
study data or population and sub-population recursively in certain class until and
unless the process terminates due to stopping criteria is reached (Cook and Goldman
1984). Recursive partitioning regression techniques are nonparametric and it does
not depend on the variable of the predictor. It is widely used for data analysis and in
silico model development since the 1980s (Chen et al. 2011). With the generation of
a large amount of biological data, e.g. microarray data, DNA sequencing, etc. it gains
more popularity due to its capability to analyze multivariate data exploration.

4.6.3.2 Partial Least Square (PLS) Regression
It is a statistical method similar to principal components analysis (Abdi 2010). The
relation between the two matrices can be easily derived using the PLS method. It is
generally used to find the direction (multidimensional) in one axis space, e.g. x-axis
space which explains the maximum variance (multidimensional) in the y-axis space
(Bookstein 1994). It has been founded that PLS regression generates good results
when the matrix of predictors consists of several variables than observations, and
when there is multicollinearity among x values. The development of PLS methods is
initially for the social science study, but it gains more importance in other fields too
including in silico ADMET model development, biological data analysis, bioinfor-
matics, neurobiology, etc. (Boulesteix and Strimmer 2007; Nikolić et al. 2013).

4.6.3.3 Random Forests (RF)
Random forest is an ensemble learning method used for data analysis and data
classification (Breiman et al. 1984). Here, data are in the form of a regression tree,
and the selections of features are based on random selection. A Berkeley (California,
USA) based statistician Leo Breiman first introduced the RF algorithm in 2001
(Altmann et al. 2010). In these methods, aggregation of a large number of decision
trees using ensemble learning techniques results in the reduction of variance com-
pared to single decision trees (Dong et al. 2018).

4.6.3.4 Decision Trees
Decision trees based on sorting techniques are powerful nonparametric supervised
learning algorithms for the data classification (Kamiński et al. 2018). The decision
trees algorithm is used for classification and regression analysis. This algorithm can
simply represent and classify data. Currently, many scientists are using this method
in their studies (Quinlan 1987). It is highly useful in many fields like computer
science, neuroscience, bioinformatics, etc. Among the data mining methods, deci-
sion trees continue to be mainly applied in ADMET prediction, especially in the
form of ensemble-based random that predicts the value of a target variable based on
several input variables (descriptors) (Dong et al. 2018). Compared with other
machine learning methods, decision trees have several advantages such as easy to
understand and interpret, requiring little preparation, and low computational cost.
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4.6.3.5 Naive Bayes Classifiers
Naive Bayes classifiers are a machine learning method based on Bayes’ theorem (Shi
et al. 2015). It is not a single algorithm, but a family of algorithms where all of them
share a common principle, i.e. every pair of features being classified is independent
of each other (Fang et al. 2013). It is a probabilistic classifier and has been frequently
used since the 1960s. Due to its appropriate prepossessing ability, it is a competitive
and interesting algorithm for the scientist irrespective of the presence of many
advanced algorithms like the support vector machine (Lian et al. 2016). It has a
broad range of applications in many streams including computational biology, drug
designing, and ADMET prediction (Klon et al. 2006).

4.6.3.6 k-Nearest Neighbour (k-NN)
k-NN is a supervised learning method and used for pattern identification (Altman
1992). It is widely useful for real-life problems. vNN Web Server is based on the
k-NN algorithm and available free of cost for public use (Schyman et al. 2017). It is
nonparametric and is not based on the assumption of the distribution of data
(Jaskowiak and Campello 2011). The complexity of k-NN is simpler than that of
SVM. In k-NN, an object is classified by majority votes of its neighbors, with the
object being assigned to the class most common among its k nearest neighbors
(Coomans and Massart 1982).

4.6.3.7 Support Vector Machine (SVM)
SVM is a supervised learning algorithm used for data classification and regression
analysis (Zhang 2001). For a few decades, it is used frequently due to its good
prediction of the model using training and test sets. The biggest challenge in
ADMET prediction using dataset is classification and regression (Fradkin and
Muchnik 2006; Ivanciuc 2007). The classification and regression models developed
by SVM are widely used in ADMET prediction, and have several limitations such as
SVM training needs high computational cost for the large sample classification
problem. The model built by SVM is like a black box, which lacks interpretation
of biological mechanisms for medicinal chemists or biologists. SVM based classifi-
cation models were originally developed for binary problems (Steinwart and
Christmann 2008). The sampling unbalanced problem of classification often reduces
the application of SVM (James et al. 2013; Schölkopf et al. 2002).

4.7 ADMET Tools

In silico ADMET prediction is an important component of drug discovery (Singh
et al. 2013). Estimation of ADMET in the early phases of drug discovery is
important for screening the drug candidate and optimizing the lead. Quantitative
structure-property relationships (QSPR), quantitative structure-activity relationships
(QSAR) are used to predict drug toxicity. The carcinogenicity, mutagenicity, and
liver toxicity should be evaluated during drug designing. Emphasis has been given to
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develop in silico tool because it reduces animal testing, reduces cost and time, and is
reliable.

vNN is a tool for assessments of the PK and toxic properties of a drug. vNN has
15 ADMET models, which predict the important properties of drug compounds such
as cytotoxicity, mutagenicity, cardiotoxicity, drug–drug interactions, microsomal
stability, and drug-induced liver injury (Schyman et al. 2017). Another tool,
ADMETopt is used for ADMET screening for lead optimization. This tool uses
the information of 50,000 unique scaffolds extracted chemical compounds deposited
in ChEMBL and Enamine database (Yang et al. 2018). It predicts 7 physicochemical
and 8 biological properties. Recently, admetSAR 2.0 has been released for ADMET
prediction, which is based on 47 models for drug discovery, while an earlier version
had only 27 models (Yang et al. 2019). This tool has been developed by the
optimization of existing models by considering large and precise training data.
Another module ADMETopt has been added to this tool, which can be used for
lead optimization based on predicted ADMET properties. Several tools are available
for ADMET prediction (Table 4.2).

Many ADMET models have been developed, but still, it is not easy to accurately
predict so many ADMET properties. ADMET-score, a scoring function has been
generated using 18 ADMET properties to evaluate the drug-likeness of a compound
(Guan et al. 2019). The weight of each ADMET property was based on the accuracy
rate of the model, the importance of the endpoint in PK, and the usefulness index.
The performance of this scoring function was evaluated using FDA-approved drugs,
ChEMBL compounds, and withdrawn drugs.

Many studies also indicate that there is no linear correlation between the ADMET
score and the quantitative estimate of drug-likeness. admetSAR is used in chemical
and pharmaceutical fields for predicting ADMET related outcomes. In admetSAR
2.0, the predictive model is more optimized as it has been developed by considering
a large amount of training data (Yang et al. 2019). Now, this tool includes 47 models
for assessment of drug discovery or environmental risk. Also, another module
ADMETopt has been added for lead optimization based on ADMET properties.

The pharmacokinetics knowledge base (PKKB) has been developed to provide
detailed information about ADMET properties. PKKB includes 10,000 experimental
ADMET data of 1685 drugs (Cao et al. 2012). It provides information about octanol/
water partition coefficient, solubility, the dissociation constant, intestinal absorption,
Caco-2 permeability, bioavailability, plasma protein binding, blood-plasma
partitioning ratio, the volume of distribution, metabolism, half-life, excretion, uri-
nary excretion, clearance, toxicity, half lethal dose.

QikProp tool is developed by Schrödinger, which is used for the prediction of
ADMET related properties such as logPs, logS, BBB, CNS activity, Caco-2, and
MDCK cell permeability, log KHSA for human serum albumin and log IC50 for
HERG K + channel blockage. QikProp predictions are based on the full 3D
molecular structure and provide accurate predictions similar to analogs of well-
known drugs (Kesharwani et al. 2015). QikProp is also used for screening/filtering
out candidates with unsuitable ADME properties. ProTox-II tool is used for the
prediction of acute toxicity, hepatotoxicity, carcinogenicity, mutagenicity,
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cytotoxicity, immunotoxicity, adverse outcomes pathways, and toxicity targets
(Banerjee et al. 2018). This tool is based on molecular similarity, pharmacophores,
fragment propensities, and machine learning models. ProTox-II considers the data

Table 4.2 Computational web server/tools for ADMET prediction

Tools Description References

DSSTox It is a public database about distributed structure-
searchable toxicity

Richard and Williams
(2002)

CPDB It is the carcinogenic potency database, which is
unique and widely used the international
resource

Nehlin et al. (2018)

Pre-ADMET
ADMET
prediction

Analysis of binding and permeability across
different cellular conformation like MDCK cell,
Caco-2 cell and blood–brain barrier, human
intestinal absorption, and skin permeability

Rashid (2020)

Pre-ADMET
toxicity
prediction

This online tool predicts the probability of
carcinogenicity as well as toxic potency

Rashid (2020)

Molinspiration This is used in the mathematical measurement of
molecular properties and the likeness of drugs

Qi and Ding (2018)

ChemTree It is used in prediction of ADMETox properties Is et al. (2018)

VolSurf Using energy grid map this software generates
2D molecular characteristic using 3 D molecular
interaction

Filipponi et al. (2001)

MetaSite Using the 3D structure of xenobiotic molecules
this software calculates the precise location about
their metabolic site

Ajitha et al. (2018)

GRID Calculate and determine the suitable binding site
of a molecule on the known structure

Castellano et al. (2010)

MoKa It is used in the calculation of pKa values Milletti et al. (2010)

Shop Uses in scaffold hopping procedure in
discovering the drugs

Tjoe-Nij et al. (2018)

Tsar 3.2 Structure based activity calculation for the
identification of new drugs

Li et al. (2009)

Metabase It is a low-cost radio analytical LIMs based on
excel in ADME/PK studies

Bolser et al. (2012)

ADME/toxicity
property
calculator

It is used for the screening of toxic chemicals
through ADMET analysis

Livingstone (2003)

TOPKAT Used for prediction of toxicology Beard et al. (2019)

Metabolism It reflects various metabolic pathways in
different species

Johnson et al. (2016)

ADMET It helps to eliminate unfavorable compounds for
ADMET

Ferreira and
Andricopulo (2019)

QikProp Used for the prediction of ADMET related
properties

Ioakimidis et al. (2008)
and Manidhar et al.
(2012)
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from both in vitro assays and in vivo studies. This is a free web server for toxicity
prediction. It requires a 2D chemical structure as an input and predicts the toxicity
based on 33 models.

4.8 Challenges in Present Scenario and Future Prospective

In the last 15 years, an incredible advancement has been performed in the field of
ADMET profiling. This advancement has diminished the rate of drug failure in
clinical preliminaries for ADME reasons. The important boundary presently is the
poisonous quality segment of ADMET. The prediction for human toxicology must
be made strides. The drug development method and ADMET optimization need
more open databases and the sharing of experimental prohibitive datasets available
in pharmaceutical companies. Accuracy of ADMET prediction relies upon the
availability of comparable data related to the model. A high rate of drug failure
cases is a challenge for the pharmaceutical industry to improve preclinical testing. In
vivo and in vitro ADMET evaluations are time-consuming, costly, and laborious. In
silico ADMET prediction tools have been developed to estimate the parameters
related to these properties. The accuracy of these prediction tools can also be
improved for the reliability of predictions. The accuracy of ADMET tools can be
improved by carrying out more PK studies for available drugs, and then including
structural information of the drug and related ADMET data into existing models.

4.9 Conclusions

With the advancement of technology, research grants are increasing every year
around the world, and very few drugs are available for the safe use of humans.
The pharmaceutical companies are more focused to address PK optimization of any
drug-like molecules. ADMET prediction is an important step in the drug designing
process, which is responsible for the PK optimization for any drugs. As part of an
integrated strategy of various approaches used in drug development, the in silico
ADMET model can help in better prediction of drug responses in humans and thus
can improve the clinical success rates.
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Database Resources for Drug Discovery 5
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Abstract

Drug discovery aims to find such molecules that bind and modulate the function
of a molecular target involved in a certain disease. A drug molecule must have
certain geometry and physicochemical properties for high binding affinity against
a given molecular target. Database searches considering required parameters for
biological activity can find molecules suitable for further studies to achieve the
desired activity. Chemical databases, as well as molecular target databases, are the
backbone of drug discovery, which catalyze the development of computational
methods to reduce the time and cost and to build a hypothesis for discovery and
design of new drug molecules.

A huge amount of chemical information is available in public domain
databases for use by researchers. However, due to limitations of curated resources
and software, and dissimilarities in database applications, the exact molecule
equivalence among databases is not possible. Advances in methodology to find
molecules with a similar structure are now possible due to the hyperlinking of
similar molecules in various databases. This chapter discusses the chemical and
molecular target databases in detail, which play a vital role in drug discovery in
recent times.
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5.1 Introduction

In the drug discovery process, novel therapeutic molecules are identified, which
involves several scientific disciplines, including chemistry, biology, and pharmacol-
ogy. Historically, serendipitous experiments or identification of the active ingredient
from traditional remedies led to the discovery of several drugs. Later, libraries of
natural products and chemically synthesized small molecules were screened against
cell lines to find molecules with a promising therapeutic potential in a process called
classical pharmacology. Completion of the human genome project allowed cloning
followed by synthesis of enough quantities of purified proteins, which were utilized
for high-throughput screening of chemical libraries against biological targets. Hits
from these screening results were then tested in cells and animals, respectively, for
efficacy.

The modern drug discovery process includes the identification of potential hits
and their optimization to improve the affinity, selectivity, efficacy, and oral bioavail-
ability. Once a molecule with all of these required properties has been identified, the
process of drug development followed by their clinical trials begins. One or more
steps of the drug discovery process involve computer-aided drug design. Thus, the
modern drug discovery process involves a huge amount of investments by the
pharmaceutical industry. Even after rapid advances in technology and a deep
understanding of biological systems, drug discovery is still a lengthy and difficult
process with few therapeutic discoveries (Mohs and Greig 2017). The research and
development cost for each new therapeutic molecule or drug was around US$1.8
billion in 2010 (Paul et al. 2010). The end product of the drug discovery process is a
patent on the potential therapeutic molecule that needs a very expensive phase I, II,
and III clinical trials. The commercial success of newly discovered drugs involves a
typical interaction between industry, academia, investors, patent laws, and market-
ing, which also require maintaining secrecy with communication (Warren 2011).

In silico analysis accelerates the identification of drug targets followed by a
screening of drug candidates and their refinement. It also facilitates the prediction
of potential side effects and drug resistance. High-throughput data such as genomic,
transcriptomic, proteomic, and ribosome profiling have made an important contribu-
tion to drug discovery and drug repurposing. Development of homology model and
protein structure simulation coupled with databases of small molecules and
metabolites have provided the way for more informative virtual screening for drug
discovery. In this chapter, we discuss databases for therapeutic targets, chemical and
drug molecule, metabolic pathways, disease and physiology, and peptide informa-
tion, as depicted in Fig. 5.1.

5.2 Therapeutic Target Information

Biological macromolecules such as proteins and nucleic acids are potential thera-
peutic targets. Pharmaceutical agents bind to a therapeutic target to show their effect.
Increased understanding of genetic, structural, and functional information of
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disease-related genes and proteins raised strong interest in the search of new thera-
peutic targets and also promoted the study of the underlying mechanism of their
binding agents. Algorithms and parameters of drug designing approaches have been
refined and tested using more datasets. Therefore, a free database can provide more
detailed information about the target. Some important databases providing informa-
tion about these therapeutic targets are listed in Table 5.1.

5.2.1 Universal Protein Resource (UniProt)

The Universal Protein Resource (UniProt) consortium is formed by the Swiss
Institute of Bioinformatics (SIB), the European Bioinformatics Institute (EBI), and
the Protein Information Resource (PIR) (UniProt Consortium 2015). It provides
information on protein sequences and their functions.

Fig. 5.1 Database resources for drug discovery

Table 5.1 Databases for therapeutic target information

S. No. Database name Description

1 Universal protein
resource (UniProt)

UniProt consortium maintains the UniProt
KnowledgeBase, UniProt reference clusters, and UniProt
archive

2 Protein data Bank (PDB) 3D database of X-ray or NMR determined biomolecules

3 Molecular Modeling
database (MMDB)

Collection of experimentally determined 3D bio-molecular
structures

4 Therapeutic target
database (TTD)

Collection of information of known therapeutic protein and
nucleic acid and corresponding drugs targets

5 Herbal ingredients
targets database (HIT)

Curated database on protein targets and precursors for
FDA-approved drugs

6 SuperTarget Collection of information for drug–target interactions
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5.2.1.1 UniProtKnowledgeBase (UniProtKB)
It is a database for protein sequences. It consists of two sections, UniProtKB/Swiss-
Prot and UniProtKB/TrEMBL. UniProtKB/Swiss-Prot contains manually annotated
entries that are curated by researchers and provides hyperlinks to more than
100 related databases with access to additional tools. However, UniProtKB/
TrEMBL stores computer-annotated entries (Apweiler et al. 2004).

5.2.1.2 UniProt Reference Clusters (UniRef)
It is clusters of the protein sequences based on sequence identity that have been
stored in different databases. The examples of these databases are UniRef100,
UniRef90, and UniRef50, which share 100, 90, and 50% identity, respectively
(Suzek et al. 2007).

5.2.1.3 UniProt Archive (UniParc)
UniParc database provides data about all protein sequences, which also includes
obsolete data, which is excluded from UniProtKB (Leinonen et al. 2004). The
UniProt databases are freely accessible online, and their data are available for
download in several formats from the FTP server (ftp://ftp.uniprot.org/pub). New
releases are included at every 2 weeks.

5.2.2 Protein Data Bank (PDB)

PDB is a freely accessible resource for the three-dimensional (3D) structures of
biological macromolecules such as proteins and nucleic acids (Berman et al. 2000).
The data submitted to PDB is obtained by 3D-structure elucidation techniques such
as NMR spectroscopy, X-ray crystallography, or cryo-electron microscopy.
3D-structure of proteins alone and their complexes with other molecules are avail-
able with different resolutions at PDB, which can be used as a target for drug
designing. PDB is available on the internet through the websites of its member
organizations (PDBe, PDBj, and RCSB) (Berman et al. 2000; Mir et al. 2018; Kinjo
et al. 2018). Its archive is maintained by an organization called Worldwide Protein
Data Bank (wwPDB) (Berman et al. 2007). The PDB is an important resource for
researchers working in the areas of structural biology and drug discovery. Funding
agencies and major scientific journals require researchers to submit their structural
data to PDB, which is used by several other databases.

5.2.3 Molecular Modeling Database

The Molecular Modeling Database (MMDB) is a freely available repository of
experimentally determined 3D structures of biological macromolecules maintained
by the National Center for Biotechnology Information (NCBI), USA. MMDB is
integrated with NCBI’s Entrez search and retrieval system and presents the contents
of PDB. MMDB provides detailed and pre-computed structural alignments obtained
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by the Vector Alignment Search Tool (VAST). It also provides tools for 3D structure
visualization and structure/sequence alignment with molecular graphics tool Cn3D
(Madej et al. 2012).

5.2.4 Therapeutic Target Database

Therapeutic Target Database (TTD) is a comprehensive repository maintained by
Bioinformatics and Drug Design Group (BIDD) at the National University of
Singapore and Innovative Drug Research and Bioinformatics Group (IDRB) in
Zhejiang University, China (Li et al. 2018). TTD includes information on protein
and nucleic acid targets, related disease, pathway-related information, and available
drugs against each of these targets (Hopkins and Groom 2002; Overington et al.
2006; Zheng et al. 2006). This database is well referenced to related databases
storing information of target function, sequence, 3D structure, enzyme nomencla-
ture, drug structure, ligand properties, therapeutic class, and status of clinical
development (Li et al. 2018). Multi-target agents have been explored to increase
the therapeutic activity, improved safety profiles, and less resistance by modulating
the activity of a primary target (Larder et al. 1995; Keith et al. 2005; Smalley et al.
2006). These agents are available for download from the multi-target agent’s page.
TTD 2018 update includes 3101 targets, which include 445 successful targets, 1121
clinical trial targets, and 1535 research targets. The total number of drugs included in
the database is 34,019, which include 2544 approved drugs, 8103 clinical trial drugs,
and 18,923 investigative drugs (Li et al. 2018).

5.2.5 Herbal Ingredients Targets (HIT) Database

HIT is a curated database of protein targets and precursors for FDA-approved drugs.
Currently, it contains 1301 known protein targets curated from 3250 literature
reports, which include around 586 active molecules from more than 1300 herbs.
IC50 and Ki values are also collected from the literature reports (Ye et al. 2011).

5.2.6 SuperTarget

SuperTarget is a web-based resource dedicated to drug–target interactions. It
provides important information on drug molecules, such as side effects of drug,
metabolism, pathways, and gene ontology for target proteins. Most of the
interactions have binding affinities that are cross-linked to the related published
reports. The user interface enables the user to make complex queries and provides
tools for drug screening (Hecker et al. 2012).
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5.3 Chemical Information

Chemical databases are considered as a powerful tool in drug design and discovery.
Possible requirements based searches in the database can find molecules with desired
biological activity that might be an appropriate candidate for further analysis. Some
important resource databases for chemical information are summarized in Table 5.2.

Table 5.2 Chemical databases

S. No. Database name Description

1 PubChem A freely available database of chemical molecules and
their biological response

2 ZINC Curated collection of chemical compounds which are
commercially available

3 ChEMBL A manually curated repository of bioactive compounds
with drug-like properties

4 Chemical entities of
biological interest (ChEBI)

Explicitly referenced database and ontology of
molecular entities focused on small molecules

5 NCI database Collection of more than 250,000 small molecule
structures

6 ChemDB A public database of small molecules built using
catalogs of more than 150 vendors and other public
sources

7 ChemSpider Collection of more than 63 million unique chemical
entities

8 BindingDB A publicly available database of small molecules which
currently contains about 1.2 million binding data for
5500 proteins and over 0.52 million drug-like
molecules

9 PDBbind Collection of binding affinity data of bio-molecular
complexes

10 Toxin and toxin-target
database (T3DB)

Database of common substances toxic to humans

11 BIAdb Collection of 846 benzylisoquinoline alkaloids (BIAs)

12 SuperNatural II A freely available database of more than 325,508
natural compounds

13 NPACT Collection of plant-derived anti-cancerous compounds

14 Dictionary of natural
products online

Collection of natural products

15 Ligand expo Collection of chemical/structural information of small
molecules from the PDB entries

16 SuperLigands Collection of ligand structures derived from the PDB
entries

17 Toxicology data network (
TOXNET)

Collections of toxicology databases freely available
online
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5.3.1 PubChem

PubChem is a public database that provides information on chemical compounds
and their therapeutic roles (Kaiser 2005). It stores small molecules and substances
with less than 1000 atoms and 1000 bonds from more than 80 database vendors,
which can be download via file transfer protocol (FTP). It consists of three primary
databases. PubChem has:

• Compounds: 96.5 million entries for compounds containing pure and
characterized chemical compounds.

• Substances: 247.4 million entries for substances containing extracts, complexes,
mixtures, and uncharacterized substances.

• BioAssay: Several million bioactivity values from 1.25 million high-throughput
screening programs.

This database provides different searching criteria and has a molecule editor
facility with SMILES and InChI. Here, each hit provides the information on
synonyms of the compound, IUPAC name, chemical formula, 2D/3D chemical
structure, molecular weight, logP, H-bond donor and acceptor, SMILES, therapeutic
role, and hyperlinks to other related resources.

5.3.2 Zinc

The ZINC database is a vast collection of chemical compounds, which can be
searched using different query parameters. These compounds can be downloaded
from the ZINC, and used for virtual screening against a target of the disease. It is
used by researchers in pharmaceutical and biotech companies as well as in research
universities. ZINC database contains over 35 million purchasable molecules avail-
able for virtual screening. Data is freely available for download in several file
formats, including SMILES, mol2, 3D SDF, and DOCK flexibase format. Searching,
browsing, and molecular drawing interface facility are available on the ZINC
database (Irwin and Shoichet 2005).

5.3.3 ChEMBL

ChEMBL is a repository of bioactive compounds with drug-like properties managed
by the EBI. It is accessible through a user-friendly web interface. Bioactivity data of
compounds against drug targets can also be downloaded by FTP (Mok and Brenk
2011; Gaulton et al. 2012). Data can be used to develop compound screening
libraries for lead identification in the drug discovery process (Brenk et al. 2008).
In total, this database provides more than 1.6 million compounds with 14 million
biological activity values from approximately 1.2 million assays. These assays are
mapped to approximately 11,000 targets, including 9052 proteins, out of which 4255
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are from humans (Gaulton et al. 2017). The ChEMBL group also provides several
tools and resources for data mining purposes, which are summarized in Table 5.3.

ChEMBL tools and resources include Kinase SARfari and GPCR SARfari, both
of which are integrated chemogenomics workbench focused on kinases and GPCR,
respectively. ChEMBL-NTD contains data related to endemic tropical diseases of
Asia, Africa, and America (Bender 2010; Bellis et al. 2011). Medicines for Malaria
Venture (MMV) stores the information of compounds from the malaria box screen-
ing set. It also includes malaria data stored in ChEMBL-NTD. ADME SARfari is
used for predicting and comparing cross-species ADME targets (Davies et al. 2015).
There is need to explore and validate the traditional knowledge of medicinal herbs
and their bioactives using modern proteomics, genomics, and metabolomics
approaches (Singh et al. 2019).

5.3.4 Chemical Entities of Biological Interest (ChEBI)

ChEBI is an open access referenced repository for molecular entities and their
ontology based on small chemical compounds. This database is a part of the Open
Biomedical Ontologies (OBO) effort, which does not include nucleic acids and
peptides (Degtyarenko et al. 2008; de Matos et al. 2010).

5.3.5 NCI Database

The NCI database has more than 250,000 small molecule structures. Its graphical
user interface has been developed using the chemistry information toolkit CACTVS
to perform rapid searches by numerous criteria. It includes all structures, anticancer
and anti-HIV screening data supplemented by predicted data such as logP, and
biological activities. This database can be searched by using Boolean searches and

Table 5.3 ChEMBL tools and resources

S. No.
Database
name Description

1 UniChem Provides the cross-referencing between identifiers from different
chemical databases

2 SureChEMBL A database for patent information

3 Malaria data Compounds, targets, assays, and data for the malaria-related study

4 ChEBML-
NTD

Primary screening and medicinal chemistry data of tropical diseases

5 ADME
SARfari

Tool for prediction and comparison of (absorption, distribution,
metabolism, and excretion) ADME targets

6 Kinase
SARfari

A chemogenomics workbench for kinases incorporating and linking
kinase sequence

7 GPCR
SARfari

Chemogenomics workbench for G protein-coupled receptor (GPCR)
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flexible substructure searches. The user can perform 3D pharmacophore-based
queries. 2D and 3D visualization and numerous output format options are available
(Ihlenfeldt et al. 2002).

5.3.6 ChemDB

ChemDB is a public database of small molecules built using the digital catalogs of
more than 150 vendors and other public resources. It is a database of more than five
million chemicals annotated with physicochemical properties such as three-
dimensional structure, melting temperature, and solubility. It is periodically updated
and supports multiple molecular formats. This database includes chemical reaction
capabilities as well as unique search capabilities (Chen et al. 2005). Text-based
efficient searches can be performed based on more than 65 million annotations. It
utilizes fuzzy text matching algorithms to produce better results (Chen et al. 2007).

5.3.7 ChemSpider

ChemSpider is a database of chemical structures, which stores more than 67 million
entities collected from different resources (Pence andWilliams 2010). These sources
include databases of curated literature, vendor catalogs, molecular properties, toxic-
ity, and analytical data. ChemSpider is maintained by the Royal Society of Chemis-
try. Its objective is to store all chemical structures and also to provide the hyperlink
to the related information.

5.3.8 BindingDB

BindingDB is a publically available database of small molecules, which currently
contains about 1.2 million binding data for 5500 proteins and over 0.52 million drug-
like molecules. It facilitates several search options such as query by protein target
name, journal citations, chemical similarity, and substructure. It also provides data
download tools which help the user to download the data by target or query results
(Liu et al. 2007). This database provides binding affinity data based on protein–
ligand (chemical/drug-like molecule) complexes (Chen et al. 2001). It includes data
extracted from the scientific reports, PubChemBioAssays, and ChEMBL entries for
established targets (Chen et al. 2001b). The purpose of BindingDB is to help
researchers from various disciplines such as computational chemistry, medicinal
chemistry, chemical biology, and drug discovery (Chen et al. 2002).
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5.3.9 PDBbind

It is a collection of binding affinity data derived from the bio-molecular complexes
available in PDB (Wang et al. 2004; Wang et al. 2005). It stores valuable informa-
tion on protein–ligand complexes, which is useful for understanding various
interactions occurring in biological systems. The 2017 release of PDBbind provides
binding data of 17,900 bio-molecular complexes, which include 14,761 protein–
ligand, 121 nucleic acid–ligand, 837 protein–nucleic acid, and 2181protein–protein
complexes. All binding data are curated from over 32,000 original references. Free
registrations are provided to the users to access all the functionalities of the database,
which also include PDBbind content download (Liu et al. 2015).

5.3.10 Toxin and Toxin-Target Database (T3DB)

T3DB is a collection of common substances, which are toxic to humans. Currently,
this database contains approximately 3700 toxic compounds or poisons along with
their synonyms. Common pollutants, food toxins, pesticides, household, industrial,
and cigarette toxins are aggregated in the database. Each toxin is linked to respective
molecular targets. There are 42,433 toxin–toxin target pairs recorded in T3DB. Each
entry (ToxCard) in the database stores detailed information of the toxin, which
includes its chemical properties, mechanisms of action, toxicity dose values, molec-
ular and cellular interactions, symptoms and treatment, spectral information, and
modulated genes. All the information is curated from thousands of scientific reports,
books, and related databases (Wishart et al. 2015). Its objective is to develop a better
understanding of the mode of action of toxins and identifying their molecular targets.
T3DB can be queried based on keyword, sequence, chemical structure, and spectral
searches. It is linked to the related databases such as DrugBank and Human
Metabolome Database (HMDB) (Lim et al. 2010).

5.3.11 BIAdb

BIAdb is a collection of benzylisoquinoline alkaloids (BIAs) that stores information
of around 846 unique BIAs. Many BIA’s possess therapeutic properties and can be
considered as potential lead molecules. Hence BIAdb can be useful to the
researchers working on natural alkaloids as potential therapeutic agents. These are
produced by a variety of organisms, such as bacteria, fungi, plants, and animals.
These are known to have pharmacological properties and have been traditionally
used to treat several diseased conditions. Cocaine as a local anesthetic and stimulant;
caffeine and nicotine as a stimulant; morphine as an analgesic; and quinine as an
antimalarial drug are good examples of BIAs (Singla et al. 2010).

98 A. Kumar and P. K. Arya



5.3.12 Super Natural II

Super Natural II is a freely available database of natural compounds (NCs). It stores
more than 325,508 compounds with information on 2D structures, physicochemical
properties, and toxicity. The structural diversity of natural products provides an
opportunity for research and innovations in drug discovery, nutrition, and agrochem-
ical research. Most of the current drugs and beauty products are derived from natural
products (Banerjee et al. 2015).

5.3.13 Naturally Occurring Plant-Based Anti-Cancer
Compound-Activity-Target Database (NPACT)

NPACT is a collection of anti-cancer compounds derived from plant sources. It
contains more than 1574 entries of compounds. Each entry/record provides infor-
mation on a compound’s structure, inhibitory values such as IC50/ED50/EC50/GI50,
physical and topological properties, drug-likeness, cancer types, target information,
references, and vendors of compounds. It provides various options for browsing,
searching for users. An online similarity search can also be performed. Further, each
record is hyperlinked to related databases so that the users can refer to existing data if
interested (Mangal et al. 2013).

5.3.14 Dictionary of Natural Products Online

The Dictionary of Natural Products Online includes all compounds contained in the
dictionary of natural products (http://dnp.chemnetbase.com). It is derived from a
Dictionary of Organic Compounds (DOC), a repository of natural product informa-
tion since its inception in 1930. Its information has been aggregated by a team at
Chapman and Hall, UK. Its online version provides information on all known natural
products. Similar compounds are organized into a single entry simplifying the
relationships of those closely related compounds. Each compound is indexed by
its structural/biogenetic type. There is extensive coverage of natural products of
unknown structure, which is being enhanced by various retrospective searches.

5.3.15 Ligand Expo

Ligand Expo is an updated version of Ligand Depot. It aggregates the chemical as
well as structural information of small molecules from the entries of PDB. It
provides various tools to search for chemical components in the PDB dictionary.
Structural entries with a specific small molecule can also be identified. It also
provides a sketch tool that can be used to build new chemical definitions (Feng
et al. 2004).
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5.3.16 SuperLigands

SuperLigands is a repository that stores small molecule structures present as ligands
in the PDB database. It aggregates information about drug-likeness and binding
properties. The structural similarity of these compounds can be estimated by calcu-
lating Tanimoto coefficients and by 3D superposition. 2D similarity search for
compounds based on fingerprints can be also performed. This database could be a
useful resource for prediction and analysis in the field of biological research
(Michalsky et al. 2005).

5.3.17 Toxicology Data Network

The Toxicology Data Network (TOXNET) is one of the world’s largest collections of
toxicology databases freely available online (TOXNET, 2020). It provides effective
access to the online group of databases developed by the National Library of
Medicine (NLM). These databases are the resource for information on toxicology,
environmental health, hazardous chemicals, and toxic releases. Some of the popular
databases of TOXNET are listed in Table 5.4.

5.4 Drug Molecule Information

The internet is becoming the first port for all kinds of information searches. Drug-
related resources that are currently available online provide researchers a convenient
path to the information. The diversity of the information that is accessible today
online is growing at an exponential rate, and freely available resources are making a
very significant contribution in terms of the benefits to research as well as to the
society. With the recent explosion in biological and chemical information, our
knowledge about drugs and their molecular targets and their mechanism of action
cannot be compiled in a few encyclopedic books. There is a huge amount of data
from many sources available through different public databases, which were
accumulated over the past half-century. Some important drug resource databases
are listed in Table 5.5.

5.4.1 DrugBank

The DrugBank is a freely available online comprehensive database of drugs and their
target information. DrugBank associates detailed chemical and pharmacological data
of drugs with corresponding drug target data such as sequence, structure, and
pathway information. The information in the drug bank is very well referenced to
the published scientific reports and other related databases, which make it more
useful to the researchers as well as to the pharmaceutical industry. Nearly all drugs
listed in Wikipedia have links to DrugBank. It supports the drug discovery and
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Table 5.4 TOXNET databases (https://toxnet.nlm.nih.gov/)

S. No. Database name Description

1 HSDB Toxicology data of more than 5000
hazardous chemicals

2 TOXLINE Collection of literature references on
biochemical, pharmacological, and
toxicological effects of drug molecules

3 ChemIDplus Repository of more than 400,000
chemicals

4 LactMed Drugs and other chemical molecules to
which breastfeeding mothers may be
exposed

5 Dart References to developmental and
reproductive toxicology reports

6 TOXMAP A tool for exploring environmental health
data

7 Toxics release inventory (TRI) TRI stores data of annual environmental
releases of toxic chemicals

8 Comparative Toxicogenomics database
(CTD)

CTD is a collection of data describing
relationships of chemicals, genes, and
human diseases

9 Household products database Health effects of chemicals in household
products

10 Haz-map Database of occupational diseases and
their symptoms

11 Integrated risk information system
(IRIS)

Provides dose-response assessment for
hazardous chemicals

12 International toxicity estimates for risk
(ITER)

Provides risk information for more than
600 chemicals

13 Resources on alternatives to the use of
live vertebrates in biomedical research
and testing (ALTBIB)

Use of live vertebrates in biomedical
research

14 Chemical carcinogenesis research
information system (CCRIS)

Provides carcinogenicity and mutagenicity
test results for more than 8000 chemicals

15 Carcinogenic potency database (CPDB) Stores results of 6540 chronic, long-term
animal cancer tests

16 GENE-TOX It stores genetic toxicology test data for
more than 3000 chemicals

Table 5.5 Drug molecule databases

S. No.
Database
name Description

1 DrugBank A freely accessible comprehensive database of drugs and drug targets
information

2 SuperDRUG2 SuperDRUG version 2.0 is a unique resource for more than 4600
approved/marketed drugs

3 PharmGKB Pharmacogenomics related resource, managed at Stanford University
since its inception

5 Database Resources for Drug Discovery 101

https://toxnet.nlm.nih.gov/


repurposing of many existing drugs to treat rare and newly identified diseases
(Wishart et al. 2006; Wishart et al. 2018a). Each entry comprises more than
200 data fields, out of which 50% are dedicated to drug/chemical information and
the rest to drug target information.

5.4.2 SuperDRUG2

SuperDRUG Version 2.0 is a notable resource for approved and marketed drugs.
Currently, it provides more than 4600 drugs/pharmaceutical agents (Siramshetty
et al. 2018). Each entry for the drug is annotated with 2D and 3D chemical structures,
dosage, biological targets, physicochemical properties, side effects, and other nec-
essary details. A database search can be performed with different methods. It is
provided with a 2D chemical structure search and a 3D superposition feature that
superposes a drug with known ligand molecules found in the protein–ligand
complexes. Simulation of “physiologically-based” pharmacokinetics of drugs can
also be performed. Potential drug–drug interactions can be identified by the interac-
tion check feature, which also provides alternative recommendations for elderly
patients. SuperDRUG2 is freely available for academic users. It needs a free browser
plugin “Chime” for visualization (Goede et al. 2005).

5.4.3 PharmGKB

The Pharmacogenomics Knowledgebase (PharmGKB) provides information on the
impact of human genetic variation on drug responses. It is funded by the National
Institutes of Health (NIH) and managed at Stanford University since its inception. It
is a partner of the NIH Pharmacogenomics Research Network (PGRN). It includes
data from clinical as well as basic pharmacokinetics and pharmacogenomics
research in cardiovascular, cancer, pulmonary and metabolic pathways domains.
Its goal is to explore the role of genetic variation among individuals in contributing
to differences in drug reactions. Currently, it provides information on 645 drugs with
variant annotations, 132 pathways, 100 dosing guidelines, 509 annotated drug labels
(Mcdonagh et al. 2011; Whirl-Carrillo et al. 2012).

5.4.4 Search Tool for Interactions of Chemicals (STITCH)

Small molecules play a very crucial role in biological systems by their interaction
with target biomolecules (Sharan et al. 2007). Interaction network is even more
important for drug development as diseases occur due to several changes in the same
pathway. The interaction network leads to a better understanding of a drug’s impact
in a biological system (Hopkins 2008; Barabási et al. 2011). To provide access to
this data, which is important for computational steps in drug discovery, STITCH
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aggregates information on interactions from pathways, crystal structures, binding
studies, and drug–target relationships. A network of chemical relations in associated
binding proteins can also be explored. Each proposed interaction is well referenced
to the original data sources (Kuhn et al. 2008). Its chemical space has also grown
more than 430,000 compounds (Szklarczyk et al. 2015). It is available online
through a newly redesigned web interface and via an extensive application program
interface (API) (Szklarczyk et al. 2016).

5.5 Metabolomic Pathway Information

The role of metabolomics in drug discovery is undeniable. The metabolic profile is a
footprint of phenotype and biochemical activity following any irregularities in the
system. Small molecules found in a biological system, as well as drugs and their
metabolic by-products, are called metabolites. Metabolomics can suggest interesting
molecular targets for drug discovery and provide information about possible novel
therapeutic agents. Metabolomics, as well as compound databases, is growing
exponentially with the incorporation of more molecular and spectral information.
More numbers of biological systems are being represented by metabolic network
models (Gupta et al. 2012). A combination of experimental as well as computational
tools with high-throughput screening experiments can provide new promising lead
molecules. Important metabolic databases are listed in Table 5.6.

5.5.1 Kyoto Encyclopedia of Genes and Genomes (KEGG)

KEGG is a collection of resources for genomes, biological pathways, diseases,
drugs, and chemical substances (Kanehisa and Goto 2000). It is utilized for research

Table 5.6 Metabolomic pathway databases

S. No. Database name Description

1 KEGG Databases for genomes, pathways, diseases, and chemical
compounds

2 HMDB Collection of information about small molecule metabolites

3 SMPDB A comprehensive, repository of more than 30,000 small molecule
pathways

4 BiGG Provides free biochemical, genetic, and genomic knowledgebase

5 MetaboLights
database

MetaboLights is a manually curated, freely accessible database of
metabolomics experiments and derived information at EMBL

6 BioCyc BioCyc is a collection of 13,075 (as of April 2018) Pathway/
Genome Databases (PGDBs)

7 Reactome Biological pathways which include metabolic pathways (pathways
related to protein trafficking and signaling)

8 WikiPathways Collection of manually curated biological pathways created using
MediaWiki software
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in various fields of biological sciences, including data analysis in genomics,
metabolomics, systems biology, and translational research in drug discovery and
development (Table 5.7). KEGG integrates genetic building blocks and pathways of
the biological system together, which includes genes, proteins, small molecules,
chemical reactions, and reaction networks.

5.5.2 Human Metabolome Database (HMDB)

HMDB is an online freely accessible database, which provides information on
experimentally verified small molecule metabolites. HMDB stores chemical,

Table 5.7 Resources available at KEGG database

S. No. Database name Description

A. Systems information

1 PATHWAY Contains pathway maps with molecular interaction, and reaction

2 MODULE KEGG modules are manually defined functional units identified by
the M numbers. These are used for annotation of sequenced
genomes

3 BRITE A collection of hierarchical text (htext) files storing functional
hierarchies of biological objects (KEGG objects)

B. Genomic information

1 GENOME A collection of organisms with complete genome sequences and
selected viruses with relevance to diseases

2 GENES A collection of gene catalogs from NCBI RefSeq and GenBank

3 ORTHOLOGY A database of molecular functions as functional orthologs

C. Chemical information

1 COMPOUND A repository of small molecules, biopolymers, and other chemicals
relevant to biological systems

2 GLYCAN A collection of experimentally determined glycan structures

3 REACTION A repository of chemical reactions from KEGG metabolic pathway
maps enzyme nomenclature

4 ENZYME Collection of information about enzyme nomenclature (EC number
system) based on ExplorEnz database

D. Health information

1 DISEASE A collection of disease entries focusing only on the perturbation
basis

2 DRUG Collection of approved drugs in the USA, Europe, and Japan

3 NETWORK To capture knowledge on diseases and drugs in terms of perturbed
molecular networks

4 MEDICUS An integrated resource of diseases, drugs, and health-related
substances

5 ENVIRON A collection of health-promoting natural products of plants such as
crude drugs, essential oils, etc.
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clinical, and biochemical data. Currently, it provides information on more than
114,100 metabolites and 652 diseases. Additionally, 5779 proteins are linked to
these metabolite entries. This database is connected with other resources such as
KEGG, PubChem, ChemSpider, ChEBI, PDB, and DrugBank (Wishart et al. 2007;
Wishart et al. 2009). The HMDB is considered to be the first metabolomics database
dedicated to human metabolomics research. The chemical data includes 135,138
compounds with spectra along with 3897 NMR spectra, 22,247 experimental
LC-MS/MS spectra, and 7418 experimental GC-MS spectra (Wishart et al. 2018b).

5.5.3 Small Molecule Pathway Database (SMPDB)

SMPDB is a high-quality and freely available repository storing more than 30,000
small molecule pathways found in humans. Most of these pathways are not available
in any other database. It facilitates research in pathway elucidation in humans by
providing data of metabolic, physiological disease, signaling, drug metabolism, and
drug-action pathways. Each small molecule is hyperlinked. SMPDB is a user-
friendly database and facilitates text, sequence, and chemical structure-based
searches. It can be queried with lists of metabolite names, drug names, and genes,
or protein names. The query can also be made using various identifiers such as
UniProt, GenBank, and Affymetrix or Agilent microarray IDs (Frolkis et al. 2010;
Jewison et al. 2014).

5.5.4 BiGG

BiGG database is a biochemical genetic and genomic knowledgebase of metabolic
models that utilize the Constraint-based Reconstruction and Analysis (COBRA)
framework (Schellenberger et al. 2010). It is freely available for academic use. It
aggregates various genome-scale metabolic networks into a single resource and
follows standard nomenclature so that components can be compared across different
organisms. Data is hyperlinked to several related databases for more information on
genes, proteins, metabolites, reactions, and references. This database addresses the
need for systems biology researchers by providing 75 genome-scale high-quality
metabolic models (King et al. 2016).

5.5.5 MetaboLights Database

MetaboLights is a manually curated and freely accessible online database for
metabolomics research maintained at the EMBL-EBI (Kale et al. 2016). This
database provides experimental data from the metabolomics experiments, which
are Metabolomics Standards Initiative (MSI) compliant. It has strong reporting
capabilities and also offers user-friendly submission tools. Studies are assigned
with a unique identifier for reference. The reference layer of the database combines
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metabolites with metabolomics experiments. The database also provides a guide to
downloading and using experimental data as well as for data submission.

5.5.6 BioCyc

BioCyc is a cluster of 13,075 (as of April 2018) Pathway/Genome Databases
(PGDBs). Each database provides the genome and metabolic pathways of a specific
organism. These databases are organized into tiers based on the amount of manual
review and update. Tier 1 PGDBs are manually curated and frequently updated. Tier
1 PGDBs include HumanCyc, EcoCyc, MetaCyc, and the BioCyc Open Compounds
Database (BOCD) (Krieger et al. 2004; Romero et al. 2005). Tier 2 PGDBs are
generated computationally and have moderate manual updating. However, Tier
3 PGDBs were computationally generated and receive no manual updates.

This database serves as a reference for the genomes and metabolic pathways of
thousands of sequenced organisms. It also compiles protein features and gene
ontology information from the UniProt database. A suite of software tools has also
been provided with the website for various purposes, such as database searching and
visualization, data analysis and comparative genomics, and pathway queries.

5.5.7 Reactome

Reactome is an open-source database for metabolic pathways and other pathways
related to protein trafficking and signaling. It provides pathway data on humans and
some other organisms. Reactome provides data for proteins, reactions, and pathways
for humans (Croft et al. 2011). It includes experimentally established, manually, and
electronically deduced reactions in its pathway diagram collection. It also provides
tools for the visualization and analysis of biological pathways.

5.5.8 WikiPathways

WikiPathways is an open biological pathways curation platform. It also provides
tools for data analysis and visualization. It provides a tool for graphical pathway
editing and well hyperlinked to databases covering major gene, protein, and small-
molecule systems. Currently, it has over 2300 pathways for 25 species. It contains
more than 640 pathways from human covering more than 7500 genes. It also stores
pathways with more than 1000 metabolites (Kutmon et al. 2016; Slenter et al. 2018).
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5.6 Disease and Physiology Information

Disease and physiology information is useful for physicians, genetics researchers in
science and medicine, and other professionals concerned with genetic disorders.
Disease and physiology databases provide information on a medical or genetic
condition used for the diagnosis of a certain disease. Some of the important
databases of this kind are listed in Table 5.8.

5.6.1 Online Mendelian Inheritance in Man (OMIM)

OMIM is a comprehensive database for human genes and genetic disorders. OMIM
provides referenced data on known Mendelian disorders and more than 15,000
genes. The entries are updated daily and contain many links to other genetic
resources. OMIM has approximately 24,667 entries, out of which 8704 entries
represent phenotypes, and the rest 15,963 entries represent genes related to known
phenotypes (Amberger et al. 2011).

5.6.2 METAGENE

METAGENE is a knowledge base supporting the diagnosis of inborn errors of
metabolism. It provides comprehensive information about 428 metabolic diseases,
differential diagnoses, associated laboratory findings, and recent publications. It
helps health professionals dealing with rare metabolic disorders in diagnosing or
treating patients with these disorders. It is updated regularly. It has a tool for
facilitating the treatment of patients with phenylketonuria/hyperphenylalaninemia
who may be responsive to tetrahydrobiopterin (BH4) by knowing the genotype.
Information is based on published cases in the literature or on patients documented in
Rare Metabolic Diseases Database (RAMEDIS) (Trefz et al. 2008).

Table 5.8 Disease and physiology databases

S. No.
Database
name Description

1 OMIM A comprehensive knowledge base for human genes, genetic
phenotypes, and genetic disorders

2 METAGENE A database which facilitates the diagnosis of inborn errors of
metabolism in a practical approach

3 RAMEDIS A web-based repository for rare metabolic diseases

4 OMMBID A web-based comprehensive encyclopedia which covers genes and
genetic mechanisms involved in human disease states
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5.6.3 RAMEDIS

RAMEDIS is a web-based repository for rare metabolic diseases. Information on rare
metabolic diseases with all possible details, which include symptoms, laboratory
findings, molecular data, and therapy, was collected in close cooperation with
clinical partners to develop this database. The database content is simple to compare
and to analyze by using standard medical terms and conditions. Using RAMEDIS,
doctors, biochemists, and scientists can publish their case studies electronically in a
comfortable way. So far, it stores data of 93 genetic metabolic diseases from
818 patients. It is a universal resource that allows researchers/medical practitioners
to extract diverse clinical, biochemical, and molecular data (Töpel et al. 2006; Trefz
et al. 2008).

5.6.4 Online Metabolic and Molecular Basis of Inherited Disease
(OMMBID)

OMMBID is a web-based encyclopedia that covers about genes and genetic
mechanisms involved in human disease states. It describes the metabolism, diagno-
sis, and treatment of metabolic disorders. It also stores detailed pathways informa-
tion, chemical structures, and physiological data, useful for clinical biochemists.

5.7 Peptide Information

Bioactive peptides are widely distributed in nature, with a variety of biological
activities which have attracted researchers/scientists from biological/medical fields
and pharmaceutical industry. The information on the structure of bioactive peptide is
important for the development of peptide-based therapeutic agents. Many bioactive
peptide databases were designed by mining literature information. Some popular
peptide databases are listed in Table 5.9.

Table 5.9 Peptide databases

S. No. Database name Description

1 PepBank PepBank is a peptide sequence database with 21,691
individual entries as of September 2018

2 StraPep StraPep is a structure database for bioactive peptides with a
user-friendly browser and search engine

3 Antimicrobial peptide
database (APD)

APD is a manually curated database of natural antimicrobial
peptides (AMPs) with their biological activity

4 CAMPR3 Collection of antimicrobial peptides with family-specific
sequence composition

5 CancerPPD A manually curated collection of anticancer peptides
(ACPs) and anticancer proteins
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5.7.1 PepBank

PepBank is a peptide sequence database with 21,691 individual entries. It has a user-
friendly interface with the advanced search function, text-based search, BLAST, and
Smith-–Waterman search facilities. MEDLINE abstracts were mined as a major
source of peptide sequence data in this database. Public databases (Artificial Selected
Proteins/Peptides Database (ASPD) and UniProt) and full-text articles were the other
sources of peptide sequence data in the PepBank. The database can be used to
discover peptide-based drugs (Shtatland et al. 2007).

5.7.2 StraPep

StraPep is a structure database for bioactive peptides with a user-friendly browser
and search engine. Currently, it provides bioactive peptide structures, which include
toxin and venom peptide, cytokine and growth factor, neuropeptide, hormone, and
antimicrobial peptide (Wang et al. 2018). Each entry related to cystine knot provides
detailed information of a particular peptide, which includes the location of disulfide
bonds, experimental structure, secondary structure, classification, and post-
translational modification. Several user-friendly tools have been provided for brows-
ing as well as sequence and structure-based searching, which make this database
very useful for the researchers (Wang et al. 2018).

5.7.3 Antimicrobial Peptide Database (APD)

APD is a manually curated database dedicated to natural AMPs with a known
sequence and biological activity (Wang and Wang 2004; Wang et al. 2009). Cur-
rently, it contains a total of 3016 AMPs, which include 2533 antibacterial,
182 antiviral, 109 anti-HIV, 1083 antifungal, 47 antiparasitic, and 217 anticancer
peptides. AMPs with antioxidants, anti-biofilm, spermicidal, antimalarial, insecti-
cidal, chemotactic, and wound healing are also available in this database. It can also
be searched based on molecule-binding partners, target pathogens, post-translational
modifications, and animal models (Wang et al. 2016).

5.7.4 CAMPR3

CAMPR3 database has been created to support antimicrobial peptide family-based
research. These peptides have family-specific conserved sequences, which can be
mined to design novel AMPs. It contains information on sequence signatures that are
captured as patterns and Hidden Markov models (HMMs). It also provides
hyperlinks to UniProt, PubMed, and other related databases. Presently, it holds
more than 8000 sequences, more than 700 structures, and above 100 family-specific
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signatures of AMPs. This database also provides web-based tools for sequence
alignment, pattern creation, and HMM-based search (Waghu et al. 2016).

5.7.5 CancerPPD

CancerPPD is a manually curated database of ACPs and anticancer proteins. It
contains 3491 ACPs and 121 anticancer proteins. Each peptide entry provides
information about the origin, nature, anticancer property, N- and C-terminal
modifications, etc. It also includes the information of 249 types of cancer cell lines
and 16 assays that were used for testing the ACPs. Tertiary structures of peptides
were predicted and stored using PEPstr, and secondary structures were assigned
using the database of secondary structure assignments (DSSP). Several web-based
tools such as keyword-based search, browsing, sequence, and structural similarity
search have been integrated to assist the users. CancerPPD could be very useful in
finding novel anticancer therapeutics (Tyagi et al. 2015).

5.8 Challenges and Future Perspective

In this digital era, databases are an infrastructural need for the research, which is
utilized by the high-performance computing platforms. The huge amount of data is
being generated from various research areas such as genomics, transcriptomics,
proteomics, metabolomics, and metagenomics. This data requires the creation of
new databases and advanced bioinformatics tools for data analysis. The future of
database development is bright. However, the annotation of existing data available
through these databases is a challenge for the researchers. The integration of a huge
number of databases available is also crucial. Problems of nomenclature and
standardization are needed to be addressed to resolve this issue. The growth of
databases will pave the way for further research in biological, pharmaceutical, and
related fields.

5.9 Summary

With the use of high-throughput technologies, research laboratories have started
generating huge amounts of data. This data is being stored and managed in various
databases. Depending on the information stored, these databases can be categorized
into several groups. This chapter provides an overview of databases useful for drug
discovery and development. Most of these databases are user-friendly and freely
accessible online. It discusses the kind of information stored in these databases and
the way it can be retrieved and used by various bioinformatics tools for analysis.
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Molecular Docking and Structure-Based
Drug Design 6
Shikha Agnihotry, Rajesh Kumar Pathak, Ajeet Srivastav,
Pradeep Kumar Shukla, and Budhayash Gautam

Abstract

Computer-aided drug designing (CADD) relates to drug discovery, also
characterized as a cost-effective and active tool that manages or creates theoreti-
cal models that would be used by large databases for discovery and virtual
screening. Till now, several algorithms have been developed and managed
through CADD to study different prospects like protein structure and function
prediction, identification of ligands interaction, residues of the active site, and
study of protein–ligand interactions, which possibly leads to the discovery of
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newer therapeutic agents or drugs. As per in terms of new medicine discovery,
designing and binding of small molecules (ligand) with DNA, RNA, or protein
(target) is the key step, defined as docking. Docking actively identifies specific hit
from large data libraries through simple rigid or flexible docking approaches with
the receptor to maximize hit rates in virtual screening. The calculated scores of
free energy of binding (poses) define the active compounds involved in
interactions. Different new prospects in docking programs are now being used
that more focuses accuracy on molecular interaction energy calculation without
stringent parameters. The quantum-chemical methods, implicit solvent models,
and new global optimization algorithms are now being used to improve flexibility
and mobility of ligands and proteins, respectively. This chapter presents some
basic algorithms, molecular docking programs based on rigid and flexible
receptor/ligand-based on various machine learning techniques used in CADD
and molecular docking.

Keywords

Computer-aided drug designing · Molecular docking · Ligands · Molecular
interaction · Genetic algorithm

6.1 Introduction

The molecular biology and genomic sciences have largely contributed research
related to drugs, chemistry, pharmacology, and clinical sciences for progressing
and the development of medicine. The process of both drug discovery and develop-
ment is very tedious (Drews 2000). Consequently, the application of computational
resources to chemical and biological space is under large-scale research. Molecular
docking is a computational method and a simulation procedure to study molecular
recognition, molecular interaction, and conformation of a receptor–ligand complex.
Protein or nucleic acid is usually the receptor, and the ligand is another protein or a
small molecule (Meng et al. 2011). More recently, docking is also applied to predict
the binding mode between two macromolecules, for instance, protein–protein
docking.

Computer-aided drug discovery is employed to escalate the processes of hit
identification, lead selection and optimization, analysis of absorption, distribution,
metabolism, excretion, and toxicity (ADMET) profile for a lead compound (Qidwai
2017). Bioinformatics tools, along with genomic sciences, have provided better
insight into the genetic basis of multifactorial diseases. These approaches reveal
more suitable targets for designing future medicines and increasing therapeutic
options (Qidwai 2017). For reproducing the experimental data, molecular docking
simulations may be used involving docking validations algorithms in which the in
silico protein–ligand conformations are compared with the complex structure of
protein–ligand obtained from X-ray crystallography or NMR (Mattick et al. 2014).

As per reports, biological activity data and structure and inhibition data availabil-
ity has enhanced considerably. Potential drug targets and thousands of protein
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structures are available in structural databases like Protein Data Bank (PDB)
(Ferreira et al. 2015) and Worldwide Protein Data Bank (wwPDB). Structures of
binary complexes with their binding affinities are also available in some specific
databases such as PDBBIND (Wang et al. 2005), PLD (Puvanendrampillai and
Mitchell 2003), AffinDB (Block et al. 2006), and BindDB (Livyatan et al. 2015).
The three-dimensional experimental structure and affinity data are important as a
source of information for docking algorithms development and validation (Dias et al.
2008). Currently, molecular mechanics is the basis for most docking programs.
Molecular mechanics involves the description of a polyatomic system using classical
physics. As such, molecular force fields are sets of equations with different
parameters for systems description (Young 2004). Mostly force fields based on
five terms having physical interpretation: potential energy, torsional terms, bond
geometry, electrostatic terms, and Lennard-Jones potential. Examples of prominent
force fields are Assisted Model Building and Energy Refinement (AMBER) (Case
et al. 2005), Groningen Molecular Simulation (GROMOS) (Scott et al. 1999), Merck
molecular force field 94 (MMFF) (Halgren 1996), Chemistry at Harvard Macromo-
lecular Mechanics (CHARMM) (Brooks et al. 1983), and Universal force field
(UFF) (Rappé et al. 1992). For the protein–ligand binding, two general
methodologies were developed: (1) the rigid body approach that relates to the classic
model of Emil Fischer. In this model, the ligand and receptor are regarded as two
independent bodies that recognize each other based on shape and volume. (2) the
flexible docking approach considers a reciprocal effect of protein–ligand recognition
on the conformation of each part (Meng et al. 2011). It is generally advisable to use
more than one docking program. Different studies have shown that, overall, taking a
consensus from various docking protocols yields a better assessment of protein–
ligand interactions and more reliable pose ranking (Hevener et al. 2009).

6.2 Docking Guidelines

6.2.1 Hardware and Software Requirements for Molecular Docking

Molecular docking and docking-based virtual screening of public repositories may
escalate quickly requiring more computing resources to finish in a couple of weeks
(Vyas et al. 2015). The most notable example and success case for this are molecular
dynamics, as many pioneering efforts were made to make these calculations scal-
able. Noteworthy examples include AMBER, GROMACS , Desmond (Higham
2001), NAMD (Phillips et al. 2005), and CHARMM, all of which have been ported
to make use of Compute Unified Device Architecture (CUDA) developed by NVI
DIA Corporation. With the use of GPUs, a workstation may process the same
amount of information as a CPU-cluster enabling the simulation of large systems
or conducting longer simulations. Following the success of these approaches, other
methods were optimized for CUDA are the ab initio (GAMESS, Firefly), semiem-
pirical calculations (MOPAC), FEP calculations (Desmond), and similarity
searching (FastROCS) (Brooijmans and Kuntz 2003).
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6.2.2 Docking Process

The docking process may be divided into three main parts: (1) ligand and macro-
molecule preparation. This is made based on force fields allowing for surface
representation and cavities as potential ligand sites; (2) defining the docking type:
rigid or flexible; and (3) setting the search strategy for ligand conformations:
systematic or stochastic (Guedes et al. 2014). Different scoring functions and search
algorithms applied in molecular docking have been highlighted in Fig. 6.1.

6.2.3 Ligand and Protein Preparation

Protein and ligand selection and preparation is an important process for any calcula-
tion. The very first step is to obtain a three-dimensional with a high-resolution
structure of the protein. For some proteins, structures with previous reports of
docking or structural studies may be used (Elokely and Doerksen 2013). Several
parameters assignment for docking includes: a selection of the parameterization
method depends on the software; for example, AutoDock and SwissDock use an
in-house force field, whereas MOE (25) and LeDock (Zhang and Zhao 2016) use
AMBER and CHARMM charges and atom types, respectively. Consequently, the
same preparation protocol should be used for all the docking calculations. In ligand
preparation the first step often involves its extraction from the protein structure, or
PDB (e.g., Public repositories like PubChem (Wang et al. 2009), organic synthesis,
or virtual compounds) or involves the construction of such molecule from its
simplified molecular input line entry (SMILES) format or sketching the molecule

Fig. 6.1 Search algorithms and scoring functions used in molecular docking
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performing several optimizations: geometry and/or charge assignment using ab
initio or semiempirical methods, energy minimization, or conformational/tautomer
search.

Protein structures may also be prepared similarly, and the complex optimization
and the use of detailed parameters significantly improve results and modeling of
interactions. Following the ligand and protein preparation, the binding site must be
selected and delimited. This step can be done manually by specifying the coordinates
or automatically using the coordinates of any bound ligand. Additionally, some
programs allow for the calculation of cavities or probable binding sites. This is
especially useful in cases when the binding site is not known. Also, some programs
are capable of blind docking, and the search space involves the entirety of the
macromolecule. Binding site mapping is performed through the GRID methodology.
In a study, the influence of box size on the identification of hits and virtual screening
time is defined (Feinstein and Brylinski 2015). Examples are AutoDock and
AutoDock Vina that need the pre-calculation of the GRID for molecular docking
(Trott and Olson 2010).

Defining different parameters such as the generation of grid box size, energy
range, and exhaustiveness is the fundamental and necessary task before conducting
molecular docking. Here, we can generate a grid box size based on amino acid
residues found in the binding site cavity for scoring and accurately predicting the
binding nature of the ligand. Besides, defining energy range and exhaustiveness
especially in the case of AutoDock Vina is helpful in the investigation of the correct
conformation with good probability (Trott and Olson 2010; Mamgain et al. 2015).

In the rigid molecule docking problem, we will relate to the molecules as a rigid
body, which cannot change its 3D spatial shape during the docking, whereas in
flexible docking molecules have the flexibility to rearrange within a defined region in
response to the receptor. After ligand binding, flexibility in the receptor can range
from small side-chain reorganization to large-scale backbone rearrangements. Rigid
docking contributes to the development of several computational concepts that play
important roles in flexible docking and design: (a) shape descriptors, (b) local
minimization, (c) soft potentials, (d) grid-based energy evaluation, and
(e) multiple-copy techniques.

Molecular docking involves several search algorithms, such as fragment-based,
genetic algorithm, Monte Carlo, and dynamics algorithms. There are some important
basic tools such as FlexX, DOCK, GOLD, and internal coordinate mechanics (ICM),
which are specifically used for high throughput docking simulations. Based on the
objectives of docking simulations, the different molecular docking procedures
involve either a rigid or flexible docking approach. Softening the interaction poten-
tial involves the modification to the parameters of interaction that involves the
Lennard-Jones potential (Honeycutt and Andersen 1987).
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6.2.4 Ligand Conformations Strategies

Docking algorithms play an important role in ligand conformation and placement,
which involves systematic or random conformational search and the selection of the
optimal solution per the scoring function. Systematic search evaluates conformers
individually and also involves a comprehensive sampling of conformations and a
combination of structural parameters. Stochastic search used randomly by using two
algorithms: Monte Carlo (MC) (Liu and Wang 1999) or genetic algorithms
(GA) (Jones et al. 1997). Each develops different conformations based on bond
rotations as degrees of freedom. After that, the structures are submitted to the scoring
function for pose selection and filtering.

6.2.5 Scoring Functions

Scoring functions are used to discriminate between different solutions evaluating a
broad range of properties including, but not limited to, intermolecular interactions,
desolvation, electrostatic, and entropic effects. It can be classified as force field-
based, empirical, and knowledge-based (Wang et al. 2002). For operational perfor-
mance, two theoretical aspects of the scoring function are being described. First is
the degree to which a scoring function has a global extremum within the ligand pose
landscape at the proper location. The second is the degree to which the magnitude of
the function at the extremum is accurate. This function predicts the absolute binding
affinity between protein and ligand. An ideal scoring function would rank the
experimentally determined binding mode most highly. Once the binding mode of
ligand is determined, this interaction map can be used to understand the changes
required in ligand to achieve better binding affinity. This can also help in depicting
the site of all modifications, such as insertion or extension, deletion, and
replacement.

The scoring function terms are hydrophobic complementarity, polar complemen-
tarity, and entropy (Jain 1996). The four equations related to steric score, polar score,
polar repulsion score, and entropy score are used to define the scoring function.
Variables used for defining steric score and polar score are based on pair-wise Van
der Waals surface distance r between coupled atoms including data regarding the
status of atoms (H bond acceptor or donor), charge, and type of element. Both the
polar and hydrophobic interactions are distance-dependent and made of sigmoid
Gaussian term. Polar repulsion term calculates the penalty of arranging atoms of
similar polarity near to each other and is scaled by direction. Entropic term encodes
the rotational and translational degrees of freedom lost to the ligand on the binding.

6.2.5.1 Force Field
Force field scoring function uses the parameter contribution for bond stretching,
electrostatics, and non-bonding interactions (Vanommeslaeghe and Guvench 2014).
These approaches usually involve longer computing times, and the need for distance
cut off decreases the accuracy of long-range effects. According to physics principles,
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quantum mechanics calculation, and experimental data, both are required to generate
force field functions and parameters. Solvent treatment in ligand binding is a major
point of concern.

6.2.5.2 Empirical Scorings
Empirical scoring functions involve experimental values reproduction and predic-
tion is based on the count of interaction between interacting molecules by observing
change in solvent accessible surface area (SASA) value (Durham et al. 2009). It
calculates the binding affinity of a structural complex based on the weighted energy
set of terms. The empirical scoring functions are much faster in comparison to force
field scoring functions due to their simple energy terms. 3D structures and binding
affinities data for several protein–ligand complexes are available, which can be used
to generate more precise and general empirical scoring function by training with
mining the information from known protein–ligand complexes.

6.2.5.3 Knowledge-Based Scoring
Knowledge-based scoring functions are for structures rather than energies; it is based
on statistical observations of intermolecular contacts in 3D databases. The structure
is constructed using pairwise potentials from known receptor–ligand complexes
(Neudert and Klebe 2011). In knowledge-based scoring functions, pairwise
potentials are taken from the occurrence frequency of atom pairs in a structured
database using the inverse Boltzmann relation.

The major approaches of molecular docking are discussed below.

6.2.6 Ensemble Docking

In the early-stage field of drug discovery, this docking corresponds or relates to the
drug target conformations generation in computational structure-based drug discov-
ery that involves important factors like molecular dynamics simulation and also
considered as four-dimensional (4D) docking (Amaro et al. 2018). This type of
docking is based on multiple docking simulations on different protein conformations
and relates to protein flexibility.

6.2.7 Consensus Docking

The consensus method in docking uses data selection from a dynamic benchmark
and through multiple docking programs to determine the best program combinations
to improve the docking success rate. Consensus scoring improves pose selection,
pose enrichment, rank-based, and intersection but directly depends on the scores that
are combined, e.g., a strong correlation among them may increase the error rate.
Besides, scoring functions are sensitive to specific features of the binding sites. The
following sections address crucial topics in molecular docking and some
perspectives on the field. In different biological processes, molecular interactions
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including enzyme–substrate, protein–protein, protein–nucleic acid, drug–nucleic
acid, and drug–protein play important roles.

6.3 Different Types of Docking Based on Interactions

The selection of appropriate algorithms, tools, and parameters for docking is an
important challenge in molecular docking. In nature, different types of molecular
interactions such as protein–ligand (small molecule), protein–peptide like molecule,
protein–protein, protein–nucleic acid, or nucleic acids–ligand take place. Different
types of docking tools have been developed keeping in mind the nature of interacting
molecules, possible forces, and other parameters. In the field of medicinal chemistry,
ligand promiscuity is the topic of discussion. Different folding patterns and structural
arrangements were deposited in large repositories like PDB, etc. The search for
patterns and similarities in binding sites and protein pockets allows the detection of
structural changes and behavior. Docking has been classified into many categories
based on the nature of the molecules involved in the interaction.

6.3.1 Protein–Ligand Docking

Structure-based design is a very powerful approach to druggable targets. Docking
predicts the pose or orientation of a ligand on the binding site of a target molecule or
enzyme (Fig. 6.2). For flexible proteins, protein-energy landscape exploration

Fig. 6.2 Structure-based drug design: guiding the process of drug designing based on residue
composition of target binding site

122 S. Agnihotry et al.



(PELE) is used for the correct assessment of binding sites and poses (Borrelli et al.
2005). Through machine learning and molecular dynamics using techniques, like
self-organizing maps (SOMs) or k-means determines the complementarity of protein
and ligand conformations (Tamayo et al. 1999). For free energy calculation, MTflex
uses Monte Carlo integration and generating rotamers for binding residues based on
low-energy values along the free energy surface.

6.3.2 Protein–Peptide like Ligand Docking

The peptide as a sample is highly variable due to high flexibility. Nowadays,
peptides are being used in the medicinal areas proving their polypharmacological
effects and suitability of protein–protein interaction. It involves calculations that
relate to confirmations and poses highlighted in Fig. 6.3. Protein–protein interaction
networks can be perturbed by differential gene expression and disease mutations.
Molecular modeling approaches play an important role in optimizing the activity of
known peptide and also in designing the novel peptide as an inhibitor.

6.3.3 Protein–Protein Docking

In protein–protein docking, protein complexes are determined through sequence
alignments, structural comparisons, and multiple protein–protein interactions, within
their defined confirmations and docking positions. Protein structure initiative

Fig. 6.3 Flowchart describing conformational search space and scoring function algorithm used in
the molecular docking
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provides significant structural information for the community assessment of struc-
ture prediction (CASP) (Moult et al. 1999). For protein–protein docking and macro-
molecular interactions, critical assessment of protein interactions (CAPRI; http://
capri.ebi.ac.uk) acts as a contest-space to challenge different human groups (Janin
et al. 2003), software, and servers into correctly predict the conformation of
interacting protein–protein pre-chosen targets. Protein–protein docking can be
approached as a prediction for the whole complex minimizing each protein by coarse
grain models and using local search for the binding sites. Thus, the major challenge
for protein–protein docking is the flexibility of the backbone. For this reason,
comprehensive computational studies need to be conducted to successfully distin-
guish realistic complexes from unrealistic predictions.

6.3.4 Protein–Nucleic Acid Docking/Nucleic Acid–Ligand Docking

Proteins and nucleic acids are the two main biological macromolecules which act as
a target for many processes/functions. Protein–RNA and protein–DNA interactions
are very important for replication, transcription, splicing, translation, and nucleic
acids degradation. Abnormalities in protein–nucleic acid interactions are associated
with a number of neurological diseases, cancer, and many other metabolism
associated issues (Tuszynska et al. 2015). Protein–nucleic acid complexes are
being solved by the researchers which may help in understanding different
interactions. NPDock is a protein–nucleic acid docking tool and it uses the DARS-
RNP and QUASI-RNP statistical potentials for scoring interactions of protein–RNA
complexes (Vakser and Aflalo 1994; Tuszynska and Bujnicki 2011).

RNA molecules have recently got an attraction as a drug target due to their
importance in biological key processes. However, as of now, the structure-based
docking that involves RNA molecules binding with a small molecule (ligands) is not
well established that lies under the protein ligand docking category. LigandRNA is a
scoring function used for predicting the RNA–small molecule interactions. It is
based on a grid-based algorithm, and a knowledge-based potential for scoring is
derived from sites of ligand-binding interactions in the known RNA–ligand
complexes. LigandRNA takes RNA receptor file and ligand pose file as an input
and provides the ranking poses consistent with their score as an output. The modified
version of Dock6 also includes RNA–ligand docking facility (Lang et al. 2009).
Ligand–RNA docking related problems were solved by incorporating classical
molecular mechanics force field for calculating the interaction between the RNA
and ligand (Guilbert and James 2008).

6.4 Water Solvation and Docking

Removal of water molecules or solvent has been a constant problem in docking and
is not just limited to the inclusion of water molecules during calculations, but to
correctly evaluate water contribution to binding and its implications. First efforts to
include water molecules during docking calculations suggested that no significant
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improvement in scoring was obtained. However, some ligands are specially
designed to displace water. In such cases, docking simulations are more accurate
with the correct treatment of water molecules. Currently, most docking programs can
assess the presence of water molecules during calculations (Meng et al. 2011).

6.5 Docking Tools

Covalent inhibitors or modifiers are mostly not prioritized to use as potential drug
candidates due to toxicity factors. Notable examples are modulators of acetyl-
cholinesterase. Covalent modifiers may be more selective and effective and more
specific for infectious diseases. The overall interest towards rational design and
development of covalent inhibitors is expanding. Current programs for covalent
docking include AutoDock (Morris et al. 1998), Glide (Halgren et al. 2004), DOCK
(Ewing et al. 2001), FlexX (Schellhammer and Rarey 2004), GOLD (Verdonk et al.
2003), etc. A list of some software and their docking algorithms is presented in
Table 6.1.

Table 6.1 Software used for molecular docking and their search algorithm

Software name Search algorithm References

AUTODOCK4 Lamarckian genetic algorithm Morris et al. (1998)

DOCK Shape matching Ewing et al. (2001)

SWISSDOCK Evolutionary optimization Grosdidier et al. (2011)

GOLD Genetic algorithm Verdonk et al. (2003)

GLIDE Hybrid Halgren et al. (2004)

VINA Local optimization Trott and Olson (2010)

RDOCK Hybrid Li et al. (2003)

LEDOCK Simulated annealing Wang et al. (2016)

HADDOCK Hybrid Dominguez et al. (2003)

SURFLEX-DOCK Shape matching Jain (2007)

FLEXX Shape matching Schellhammer and
Rarey (2004)

LIGANDFIT Shape matching Venkatachalam et al.
(2003)

MTiOpenScreen Lamarckian genetic algorithm Labbé et al. (2015)

ZDOCK Fast Fourier transform
algorithm

Pierce et al. (2014)

HEXSERVER Fourier transform (FFT)
algorithm

Macindoe et al. (2010)

UCSF DOCK Geometric matching algorithm Allen et al. (2015)

Internal coordinate mechanics
(ICM) software

Stochastic global optimization
algorithm

Neves et al. (2012)

FRED Shape-based Gaussian
docking function

Mcgann et al. (2003)

MOE-Dock Hybrid Corbeil et al. (2012)
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6.6 Virtual Screening

In our quest to discover novel drug like molecules, virtual screening emerged as one
of the key tools. It plays a tremendous role in the drug discovery program. It is a
powerful computational approach used for screening of a set of compounds or
chemical compounds database to a target macromolecular structure. It facilitates
researchers to select appropriate molecule(s) as a lead from the available chemical
compounds database based on lead–target interaction, i.e. binding free energy and
interacting amino acid residues through non-covalent bonding (hydrogen and hydro-
phobic bond) for further validation. Docking is used to perform an interaction study
using a single ligand against the binding site residues of the target macromolecular
structure at a time while in virtual screening, a set of compounds of the library is used
for screening purposes (Pathak et al. 2017, 2018).

6.7 Analysis of Docking Results

Analysis of docked complex structure obtained from molecular docking study is one
of the essential tasks for visualization of protein–ligand interaction at the atomic
level using molecular modeling tools in 2D or 3D. In this analysis we can identify the
number of hydrogen bonds formed among a different functional group of the ligand
with amino acid residues present in the binding site of protein along with their bond
length, because hydrogen bonding plays a significant role in protein–ligand interac-
tion (Singh and Dwivedi 2016). Besides, we can also analyze hydrophobic and
cation–pi interaction. This analysis facilitates researcher to choose the best
interacting ligand because in some cases, the binding energy of two or more ligands
is the same but the number of interacting amino acid residues are less or more.
Therefore, in such a situation, generally we choose ligand having more interaction
with the target in terms of interacting amino acid residue numbers. PyMOL and
Chimera are widely accepted tool analyses of docking results by selecting different
poses of ligand generated during molecular docking and visualization of interacting
residues in 3D. Besides, LigPlot is one of the highly cited and recommended tools
for analysis of docking results in 2D format (Fig. 6.4) (Mamgain et al. 2015; Pathak
et al. 2018; Rana et al. 2019).

6.8 Limitations of Docking Algorithms and Future Scope

Several protein–ligand complexes determined by X-rays are available in databases,
which have greatly improved the scoring function of docking. Still, it is challenging
to generate an accurate pose by docking. A large number of docking tools have been
developed to measure and understand the different types of interaction between the
protein–ligand complex. The accuracy of different docking tools has been compared
and still exists the chance to refine the scoring function of docking. Different
docking tools estimate the different value of the binding energy of the protein–
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ligand complex (Singh 2014). Energy minimization algorithms also rely on these
scoring functions. Therefore, an accurate and precise scoring function is required to
achieve the correct binding mode and ranking of a ligand. Besides, a hybrid
algorithm is considered more effective to tackle the protein–ligand docking problem
because it uses the combination of algorithms (Guan et al. 2018).

6.9 Major Developments in Docking

A small molecule that can bind to the protein responsible for a disease is the main
step of the complete process of the new concept discovery. To improve the effec-
tiveness of such design, atomistic computer modeling can work significantly. The
accuracy in the calculation of the free energy of binding to the target protein is the
most important problem of such modeling. Several important and well-known
conventional docking programs are being in consideration. Their search method is

Fig. 6.4 Daphnoretin docked with E6 protein of HPV-16, showing hydrogen bond interaction with
TYR39, CYS58, SER78, GLN114, ARG138, CYS58 (green line), whereas amino acid residues
participated in interaction through hydrophobic bonding are depicted as arcs (red color), generated
by LigPlot
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based on the problems related to global optimization. To solve this problem,
different algorithms are being used, and the heuristic genetic algorithm is distin-
guished and acknowledged by its elaborate design and popularity among other
algorithms. On the bottom, more possible accurate approaches of solvent implicit
models are being used often for more clear separation energy calculations. Recently,
the new generation programs of docking are developed. They detected the low
energy minima spectrum of a ligand–protein complex. These should be more
accurate programs because they do not use a pre-calculated grid of ligand–protein
interaction potentials. New docking algorithms designed and they work by docking a
versatile active ligand into a versatile active protein with many dozen mobile atoms
on the bottom of the surrounding energy minimum search (Sulimov et al. 2019).
Such docking algorithms improve the accuracy of ligand positioning in the docking.
The advancement within the quantum chemistry methods has improved the accuracy
of docking. Much advancement has been made in molecular energy calculations,
including implicit solvent models and quantum-chemical methods, as well as in
ligands flexibility and mobility of atoms of the protein.

6.10 Conclusion

The augmentation of modeling tools and growth in structures determined through
X-ray crystallography of the target alone, or in the complex has become important
for drug discovery. Structure-based drug design techniques are important and appli-
cable to target-based therapies. The new approaches are being prioritized in the
computational database and optimizing compounds having drug-like features. Drug
discovery projects should be more focused, and specific so that compounds with
druggable activity can be screened easily using docking and other approaches.
Along with the availability, studies are being constantly running for providing
improvements related to ligand/protein selection, virtual screening, molecular
docking, dynamics simulation, and score calculation for drug design and
optimization.
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Molecular Dynamics Simulation of Protein
and Protein–Ligand Complexes 7
Rohit Shukla and Timir Tripathi

Abstract

Biomacromolecules, including proteins and their complexes, adopt multiple
conformations that are linked to their biological functions. Though some of the
structural heterogeneity can be studied by methods like X-ray crystallography,
NMR, or cryo-electron microscopy, these methods fail to explain the detailed
conformational transitions and dynamics. The dynamic structural states in
proteins are covered in magnitude between 10�11 and 10�6 m and time-scales
from 10�12 s to 10�5 s. For a comprehensive analysis of the biomolecular
dynamics, molecular dynamics (MD) simulation has evolved as the most power-
ful technique. With the advent of high-end computational power, MD simulations
can be performed between μs to the ms time-scale that can accurately describe the
dynamics of any system. Various force fields like GROMOS, AMBER, and CH
ARMM have been developed for MD simulations. Tools like GROMACS,
AMBER, CHARMM-GUI, and NAMD are the most widely used methods
for MD simulation that can provide precise information on the motions and
flexibility of a protein, which contributes to the interaction dynamics of
protein–ligand complexes. MD simulation has several other practical
applications in diverse research areas, including molecular docking and drug
design, refining protein structure predictions, and studying the unfolding
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pathway of a protein. Combining MD simulation with wet-lab experiments
has become an indispensable complement in the investigation of several
important and intricate biological processes. Various tools like principal com-
ponent analysis, cross-correlation analysis, and residues interaction network
analysis are additional useful approaches for analyzing MD data. In this
chapter, we will discuss MD simulation for a layman understanding and
explain how it can be used for protein–ligand characterization as well as for
use in diverse biomolecular applications.

Keywords

Molecular dynamics · Principal component analysis · Cross-correlation analysis ·
Virtual screening · Mutational analysis · Structure-function relation · Protein
unfolding · Force fields

7.1 History and Background

Proteins perform a wide range of cellular functions in living organisms, such as
catalysis of metabolic reactions, transport, and cell signaling; all those depend on the
structure and dynamics of the protein. Several non-covalent and covalent
interactions help to stabilize the native conformation of protein that dictates its
function (Singh and Tripathi 2020). In practice, the degree of folded nature is
generally determined by wet-lab experiments, including fluorescence and circular
dichroism studies. All-atom molecular dynamics (MD) simulation has been devel-
oped as a new tool to understand the dynamics of protein motions at the atomic level.
It provides information about the motion of an individual atom as a function of time,
and thus describes the dynamic behavior of a molecule. The advantage of MD
simulation is that it provides information about the folding/unfolding mechanism
like the final folded structure, the time dependency of these events, and the inter-
residue interactions. The pioneers of MD simulation were Alder and Wainright, who
introduced this technique in the late 1950s to study the interactions of a hard-sphere
(Alder and Wainwright 1957, 1959). In 1964, first simulation using the realistic
potential for liquid argon was carried out by Rahman (Rahman 1964). The first
realistic system (liquid water) was done in the 1970s to perform simulation (Rahman
and Stillinger 1971). However, the first simulation of protein was conducted in 1977
(McCammon et al. 1977). Soon in the 1980s, simulations on protein interacting with
small molecules, their thermodynamics (free energy calculations), and rapid
calculations of biomolecules were developed (McCammon et al. 1986). In 1998,
Duan and Kollman revealed the folding mechanism of the small sub-domain of villin
using a μs simulation (Duan and Kollman 1998). In 2013, the Nobel Prize in
Chemistry was awarded to Martin Karplus, Michael Levitt, and Arieh Warshel for
the development of multi-scale models for complex chemical systems, a technique to
simulate the behavior of molecules at various scales from single molecules to
proteins.

134 R. Shukla and T. Tripathi



MD simulation is an emerging field. We entered the keyword “molecular dynam-
ics simulation” to NCBI PubMed database (https://www.ncbi.nlm.nih.gov/pubmed/)
resulted in 56,833 articles as of 31/07/2020, suggesting the growing importance of
MD simulation. Development of techniques such as potential sampling methods,
force field advancement, and high-end computational power is allowing us to
perform simulations in a range of μs to ms time-scale. MD simulation can thus be
highly useful in the study of biomolecular dynamics. However, the use of MD
simulation requires optimal models that can mimic the cellular environment, physi-
cal applications that can provide the motions to the model, and large-scale
computations. However, recently MD simulations have been extended to cellular
scales, and simulations of an entire cell have been performed (Heidari et al. 2016).
The development of a more robust algorithm and theory for modeling, docking,
scoring, energy-calculations will make the MD simulation more effective. In this
chapter, we will discuss the principle, methods, tools, and important applications of
MD simulation.

7.2 Introduction

To date, it is not possible to accurately predict detailed biomolecular conformational
dynamics in vitro. Techniques like X-ray crystallography, nuclear magnetic reso-
nance (NMR), and recent cryo-electron microscopy (cryo-EM) methods have
provided breakthroughs in structural biology. Still, a vast gap exists between the
numbers of the available protein sequences and protein structures. There are
177,754,527 protein sequences in the latest release of UniProtKB as of 12/04/
2020, while the protein data bank (PDB) has only 1,62,259 protein structures on
12/04/2020, suggesting only a small fraction of the total sequences have known
structures. The PDB statistics, as on 12/04/2020, are shown in Table 7.1. Thus, the
prediction of protein structures is essential to fill this significant gap.

Most wet-lab experimental methods provide structural information of proteins in
static form, while practically proteins are highly dynamic (Dror et al. 2012). Molec-
ular docking only provides a static pose, and it cannot illustrate the dynamics of the
protein–ligand complex (Kalita et al. 2018b; Mamgain et al. 2015). In addition to the
prediction of the dynamic behavior of biological systems, MD simulations can also
help to explore the kinetic behavior and assemblies of molecules at the atomic level

Table 7.1 The PDB statistics as on dated 12/04/2020

Experimental method Proteins Nucleic acids Protein/NA complex Others Total

X-Ray 135,436 2044 6562 460 144,502

NMR 11,344 1284 264 49 12,941

Electron microscopy 3638 35 1029 114 4816

Other 32 1 0 4 37

Hybrid methods 155 5 3 1 164

Total 150,605 3369 7858 628 162,460
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(Alder and Wainwright 1959; Rajendran et al. 2018). The conformational dynamics
in proteins cover large ranges in both magnitude and time-scale (Vogeli et al. 2012),
and due to the conformational changes proteins can function in a variety of ways
including acting as transporters, signaling molecules, sensors, and mechanical
effectors and also interact with the substrate, drugs, and hormones through confor-
mational changes (Sonkar et al. 2017; Pandey et al. 2017). Structural dynamics in
protein conformations are fast, covering a magnitude from 10�11 to 10�6 m, within
of time-scale between 10�12 s and 105 s (Boehr et al. 2006; Wolf and Kirschner
2013; Krishnamoorthy 2012). The local motions: loop and side-chain motions take
10�15 s to 10�1 s to complete, while the helix, domain (hinge bending), and subunit
motions take 10�9 s to 1 s. Processes, such as helix-coil transitions, association/
dissociation, and folding/unfolding, come under large-scale motions and may take
10�7 s to 104 s to complete. Practically, it is challenging to study such changes as
they take place in a very short time, however, but by resembling the in vivo
conditions computationally, these processes can be examined, visualized, and
analyzed (Shukla et al. 2018a, d).

In MD simulation, a molecule can be understood as a series of charged points
(atoms) linked by springs (bonds). Now, to describe the time evolution of bond
lengths, bond angles, torsions, and also the non-bonding interactions between atoms,
the force field is used. In MD simulation, an in-vivo like environment is created
using protein and water molecules, and the atoms of protein and water move with a
short time step (in the fs time duration), where forces of every atom are computed,
and written in a file using a force field. This force field is a collection of equations
and associated constants and includes the potential energy functions with bonded
and non-bonded potential terms. It reproduces molecular geometry and selected
properties of test structures. Cammon et al. performed the first MD simulation of
biological macromolecules in 1977 at 9.2 ps for bovine pancreatic trypsin inhibitors.
Before advances in MD simulations, experimental observations like hydrogen bond
exchange were already studied (Berger and Linderstrom-Lang 1957). The role of
thermal factor (B) in internal motions of proteins was investigated (Jeremy Smith
et al. 1986; Brunger et al. 1985; Brooks and Karplus 1983) by that time. From the
MD simulation data, we can also deduce and calculate principal components (PCs)
and perform its analysis (Wolf and Kirschner 2013; David and Jacobs 2014). The
calculated PCs are arranged according to their contribution to the total fluctuation
along with the ensemble of conformations. The global and correlated motions can be
predicted using the computed data. MD simulation also provides information on the
conformational flexibility of macromolecules as well as in understanding the exper-
imental results, such as the analysis of fluorescence depolarization (Frauenfelder
et al. 1987), dynamics of NMR parameters (Brunger et al. 1987), and effect of
solvent and temperature on protein stability (Nilsson et al. 1986; Colonna-Cesari
et al. 1986). The simulated annealing is a widely used method for the refinement of
X-ray structures (Harvey et al. 1984) and the determination of NMR structure (Case
and Karplus 1979).
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7.3 Principle of MD Simulation

The underlying principle of MD simulation is based on Newton’s law for molecular
mechanics (Adcock and McCammon 2006). For the computational study of biomo-
lecular dynamics, MD simulation is the most important established technique
(Adcock and McCammon 2006; Levitt and Warshel 1975; Karplus and Kuriyan
2005). In MD simulation, the interaction between the atoms and the molecules is
examined for a time period by approximations of known physical attributes (Levitt
and Warshel 1975; Karplus and Kuriyan 2005). Presently, significant progress has
been made in the simulation of biomolecules. By now, we can examine the move-
ment of atoms, the side-chain conformation of residues, and predict secondary
structure and domains in a protein, as well as the binding pattern of nucleic acids
and lipid membranes (Perilla et al. 2015). The binding free energy and conforma-
tional changes of systems can also be predicted by MD simulation as they are based
on statistical mechanics. Due to this reason, the MD simulation has been used in the
field of drug designing also (Paquet and Viktor 2015). Using the force field, the
displacement of the particles, and energy values in each time step is calculated to
define the new position of the atom (Adcock and McCammon 2006). The bonded
(angles and atom bonds) and non-bonded contributions are included in the forcefield
as an energy function in the classical MD simulation (Fig. 7.1).

The later contributions are made mainly by the van der Waals interaction, which
is built by the Lennard-Jones 6-potential (Jones 1924). Coulomb’s law is employed
for the calculation of the electrostatic interaction (Cornell et al. 1995). Several
algorithms involving Monte Carlo (MC) simulations, and Langevin dynamics, and

Fig. 7.1 The constituents of
a force field, which represents
bonded and non-bonded
interactions
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MD with their corresponding particularities and advantages have been reported
(Adcock and McCammon 2006). The designed force field parameters and defined
equations are well fitted and can reproduce the data from higher-level calculations
or/and experiments. Most biomolecules, including proteins, nucleic acids, lipids, and
sugars, are well parameterized in the force field for general use (Paquet and Viktor
2015). The parameters of force field for new ligands can be calculated using
quantum chemistry treatment, along with many web servers, like PRODRG (van
Aalten et al. 1996; Schuttelkopf and van Aalten 2004), ATP topology builder (Malde
et al. 2011), and SwissParam (Zoete et al. 2010) that can generate the topology of the
ligand. The bond lengths, bond dihedral angles, bond valence angles, and
non-bonded interactions like van der Waals and electrostatic interactions contribute
to the total energy of the systems (Hernandez-Rodriguez et al. 2016). Several force
fields, like AMBER, GROMOS, and CHARMM, have also been developed
(MacKerell et al. 1998). Every force field has a unique property, and a user defines
the force field according to his choice based on the objective of the work (Ponder and
Case 2003; Salsbury 2010). Once the force field and solvation of the proteins in an
MD simulation are fixed, several parameters are also set by the users, which are
defined below in brief.

7.3.1 Periodic Boundary Conditions

The periodic boundary condition (PBC) is an approach by which one can define a set
of rules for the boundary of a simulation box so that atoms cannot move beyond the
defined boundary during MD simulations. If the user does not define the PBC, the
simulation box is repeated infinitely in every path and result in forming a lattice. For
better computational efficiency, most MD simulations use this potential. Each
particle interacts with adjacent images of the other particle in all these cut-off
schemes (Holden et al. 2013). The long-range interactions are calculated in the
case of molecular modeling and simulation by the isotropic periodic sum (IPS)
method (Wu and Brooks 2009). Four significant advantages of using the IPS
methods are as (1) it can eliminate the unnecessary symmetry artifacts, which
originates in the PBC condition, (2) in the case of any functional form of the
potential, it can be applied, (3) it can be used easily in the parallelized multi-
processor computer, which indicates that it is computationally more efficient, and
(4) it can predict the estimation of self-diffusion coefficient at the cut-off radius
greater than 2.2 nm (Takahashi et al. 2010). Here, the long-range interactions are
calculated based on the homogeneity of the simulation systems in the IPS method.
Long-range interactions are represented by interactions with IPS images of a defined
local region and can be reduced to short-range IPS potentials (Wu and Brooks 2009).
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7.3.2 Ewald Summation Techniques

The calculation of long-range Coulombic interactions is time-dependent and labor-
intensive in most of the MD simulation methods. Here, the Ewald summation
method developed in 1921 for the prediction of long-range interactions is mostly
used (Ewald 1921). Long-range interactions are estimated as sums that converge
very slowly. Figure 7.2 shows that the conversion of the summation of two series of
potential energy is the principal to obtain the Ewald sum in MD simulation.

7.3.3 Particle Mesh Ewald Method

In the particle mesh Ewald (PME) method, the potential energy is divided into two
sums- Ewald’s standard direct sum and the reciprocal sums. The classical Gaussian
charge distributions are used in the PME method (Norberto de Souza and Ornstein
1999; Sagui and Darden 1999). The direct sum is computed directly utilizing
cut-offs. In contrast, the reciprocal sum is determined by Fast Fourier Transform
(FFT) with convolutions on a grid where charges interpolate in the grid points
(Fig. 7.3) (Darden et al. 1993; Dessailly et al. 2007). Additionally, it does not
interpolate while the forces are calculated by analytically differentiating energies.
This significantly reduces the memory requirements for computation (Norberto de
Souza and Ornstein 1999).

Fig. 7.2 Charge splitting into discrete and smeared distributions in the direct and reciprocal space
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7.3.4 Thermostats in MD

There are several thermostat methods for adding and removing the energy from the
boundaries in the MD simulation system in a comparatively rational manner, for the
approximation of classical ensemble (Fuzo and Degreve 2014). The number of
particles (N), fixed volume (V), and the defined temperature (T) are conserved in
the canonical ensemble. In a thermostat method, the energy exchange occurs
between the endothermic and exothermic processes (Fuzo and Degreve 2014).

7.3.5 Solvent Models

Biomolecular MD simulation is performed in a realistic type water environment
where the explicit solvent model is used (Nguyen et al. 2014). Several solvent
models (mostly water models) are used in MD simulation as available: SPC/E,
TIP3P, TIP4P, and TIP5P (Jorgensen and Tirado-Rives 2005). These water models
are well optimized with one or many physical properties of water, such as density
anomaly, diffusivity, and radial distribution function. To mimic the real cell-like
environment, the MD simulation system contain explicit water molecules.

Fig. 7.3 The particle-mesh Ewald technique. A 2D representation, which is used by the majority of
the Fourier-based methods. (a) The charged particle system, (b) Interpolation of charge in a 2D grid,
(c) The forces and potential are computed at grid points by using FFT, (d) The coordinate updates
and interpolate forces back to particles
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7.3.6 Energy-Minimization Methods in MD Simulations

There are different energy minimization approaches for MD structural data. By using
a grid search method, the low energy regions are identified by the use of energy
function in the zero-order method. In the case of gradient as an energy function, the
conjugant gradient or steepest descent method is the first derivative technique. The
Newton–Raphson algorithm uses the Hessian function for locating the energy
minima as it is a second derived method (Kini and Evans 1991). Two main methods
for energy minimization are (1) steepest descent method and (2) conjugant gradient
algorithm method.

To remove the bad contacts and correction of bad geometries, the steepest descent
method is widely used (Kini and Evans 1991). This method is particularly useful
when the molecular system is farther from the minimum energy state, and it
drifts down to the steepest slope on the potential energy surface by inducing minor
structural modifications. In this method, the gradient is computed from its initial
location and moves in the opposite direction to reach the minimum state. When the
atoms are moving in a small increment pattern from one direction to another in
coordinated systems, then for the initial geometry, the energy is computed. This
process repeats for all the atoms, that eventually move to a new position downhill on
the energy surface where every new step is at right angles to the one before it. This
process occurs in the smaller steps to proceed down along a narrow valley and
halts when the condition of a predetermined threshold value is achieved. The
steepest descent method is used as the first rough and introductory run, followed
by the subsequent minimization.

The conjugant gradient algorithm method is another method for energy minimi-
zation and is a primary order of minimization. This method performs minimization
by using a mutually current gradient and preceding search command (Kini and
Evans 1991). As compared to the steepest descent method, this method is
congregated faster because it computes the search direction by using the history of
minimization. It is the first derivative rate of change of the total energy in relation to
the atomic positions with units of the gradient (kcal.mol�1 Å�1). An array of
directions is produced by which it succeeds over the oscillatory actions in the narrow
valleys for the steepest descents method. In each minimization step, the gradient
calculation is done for vector computations to predict the new direction for the
minimization procedure as additional information (Feyfant et al. 2007). For the
prediction of minimum energy, the direction is defined by each consecutive step.
This method is preferred for larger systems (with a high number of atoms), and more
storage space and calculation efforts are required. The expense of total computa-
tional and the long time period per iteration is compensated by efficient convergence
to the minimum (Kini and Evans 1991). For illustrating convergence, there are
various types of minimization procedures for molecular structures. For
non-gradient minimizers, the augmentations in the energy and the coordinates can
be measured to find the real geometry of the particular molecular system. All the
gradient minimizers use atomic gradients.
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7.4 Current Tools for MD Simulation

Several tools are available to investigate the atomic-level changes in the
biomolecules using the MD simulation method (Khan et al. 2016). Some provide
the graphical user interface like Desmond, while some run in command lines like
GROMACS and AMBER. Some famous and widely used tools for MD simulation
are GROMACS (Pronk et al. 2013; Oostenbrink et al. 2004), (AMBER) (Case et al.
2005; Salomon-Ferrer et al. 2013), Nanoscale MD (NAMD) (Phillips et al. 2005),
and (CHARMM-GUI) (Brooks et al. 2009). For running such MD simulations,
increased hardware power and software are essential components.

7.4.1 Recent Advances in Hardware to Run MD Simulation

Rapid development in computer hardware is a crucial part of MD simulation. Two
reasons have an impact on trajectory analysis. The first one is the run of the long
simulation result in GBs to TBs data storage, and the other is to develop the new
rendering engines for the visualization effects using the latest video chipsets. Due to
the advancement in the computer hardware, simulations can be performed from ns to
μs with the help of GPUs (graphics processing units) that is configured with the
molecular simulation suite (Hernandez-Rodriguez et al. 2016; Gotz et al. 2012;
Salomon-Ferrer et al. 2013). The GPU cards are replacing the CPU (central
processing unit) and becoming commodity software and play a crucial role in
decreasing the time for MD simulation. The CUDA (Compute Unified Device
Architecture) is a newly invented parallel computing platform, and its use in GPU
increases the number of cores to run a long simulation within time (Zhou et al. 2012;
Krieger and Vriend 2015; Ge et al. 2013). Due to the emergence of GPU-CUDA
technology, vigorous and massively parallel clusters are developed, such as special-
purpose supercomputer Anton and Blue waters (David et al. 2007). They are precise
for running the MD simulation of biomolecules from μs to ms time-scale. But such
resources are limited for limited researchers. To remove the time-scale gap, there is
an urgent need to develop newer algorithms that allow enhanced sampling in the
defined areas of conformational space and access long time-scale actions using
necessary hardware. The purpose of this algorithm is to collect sufficient sam-
pling that could result in the Boltzmann distribution of the diverse conformational
states for the accurate calculation of the thermodynamic and kinetic properties of the
system (Doshi and Hamelberg 2015). By the modification of the Hamiltonian
method is to add a bias potential, several approaches have been developed like
hyper dynamics (Voter 1997), local elevation (Huber et al. 1994; Voter 1997), and
accelerated MD (Rodriguez-Bussey et al. 2016). In the case of hyper dynamics
simulation, the identification of transition state required, but it is not necessary for
classical MD simulation. Several tools are available to perform the MD simulation
study with CPU or GPU. A few of the widely used tools are described in brief below.

142 R. Shukla and T. Tripathi



7.4.2 GROMACS

GROMACS is the most widely used software for MD simulation. It is a freely
available tool, and a brief tutorial of this tool can be accessed by this link (http://
www.mdtutorials.com/gmx/) (Pronk et al. 2013). In the GROMACS simulation kit,
MD simulation can be performed at various temperatures and pH values. In this
simulation tool, several commands are available to perform a distinct function and
calculate specific structural parameters. GROMACS, which is one of the MD
simulation software, can read only the 20 natural amino acids, i.e., the
non-standard amino acids are not read by GROMACS algorithms. Sometimes,
there are force field limitations, for instance, Gromos and Amber cannot read the
nicked DNA, but the same force field can read the same non-nicked DNA. The brief
methodology for MD simulation using GROMACS is shown in Fig. 7.4.

To start, the user creates a box and fills the solvent (water). The solvent model
depends on the force field. After placing the protein in the defined box in the solvent,
the charge of the system is neutralized either by the addition of Na+ or Cl�ions; this
is followed by the minimization of the system using the steepest descent method.
Then, NVT (the constant Number of particles, Volume, and Temperature) simula-
tion is run to maintain the volume and temperature of the defined system. The

Fig. 7.4 Schematic representation showing the methodology of the MD simulation steps for
GROMACS

7 Molecular Dynamics Simulation of Protein and Protein–Ligand Complexes 143

http://www.mdtutorials.com/gmx/
http://www.mdtutorials.com/gmx/


temperature of the system arises from 0 and attains the desired temperature that is set
by the user. After that, NPT (the constant Number of particles, Pressure, and
Temperature) simulation is run to maintain the pressure of the defined systems.
Several parameters are set by the addition of the .mdp file. Finally, MD simulation is
performed that provides the coordinates of each step in the form of a trajectory. The
trajectory can be analyzed by using various tools that are embedded in GROMACS,
like gmx–rms, gmx–rmsf, gmx–gyration, and gmx–hbond. These data can be plotted
in an interactive form by using GRACE (Graphing Advanced Computation and
Exploration of data), a Linux based software. For example, a water embedded
protein molecule, placed in a box visualized by VMD (Visual Molecular Dynamics)
shown in Fig. 7.5.

7.4.3 AMBER

AMBER simulation suite is a collection of programs that are used to carry out and
analyze the MD simulations for proteins, carbohydrates, and nucleic acids. Three
main components of the AMBER tool are preparation, simulation, and analysis. The
Antechamber and LEaP are the main program for the preparation of
macromolecules. The Antechamber tool prepares the files into the force filed
descriptor files, which is read by the LEaP program for molecular modeling. The
LEaP program then creates the topology files and Amber coordinates, which is then
used in the MD simulation. The Sander program performs the MD simulation by
fixing the temperature, pressure, and pH of the defined system. Lastly, the analysis
part is performed by the ptraj module, which calculates the RMSD, RMSF, radius of
gyration (Rg), H-bonds, and cross-correlation functions.

Fig. 7.5 A protein placed in a
cubic box in the water system.
The red color shows water
molecules, while the blue
color represents the ions
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7.4.4 CHARMM-GUI

CHARMM-GUI is a simulation tool for the analysis of macromolecular dynamics
and associated mechanical attributes. It performs standard MD simulations by using
state-of-the-art algorithms for time stepping, long-range force calculation, and peri-
odic images. Various analyses, such as energy minimization, crystal optimization,
and normal mode analysis, can be performed using CHARMM.

7.4.5 NAMD

The simulations of much large biomolecular systems are performed using NAMD.
The NAMD is available free of charge. The source code documentation including a
set of compiled binary files configured with various parallel source software for
calculations are freely available to the user. It supports massively parallel CUDA
technology. NAMD can be used with graphical user interface software VMD. The
simulation can be set and analyzed using the VMD as an interface. It is also
compatible with AMBER and CHARMM (Khan et al. 2016).

7.4.6 Quantum-Mechanics/Molecular-Mechanics (QM/MM)

The QM/MM methods are a widely used approaches for biomolecular systems
modeling (Groenhof 2013; Warshel and Levitt 1976). The various processes and
charge transfer can be described using the QM method, but the QM methods are
restricted to only a few hundred atom systems. Though simulations of a large system
and a long-time period are performed by highly efficient force field-based MM
methods. For modeling of the large biomolecules, the hybrid QM/MM method is
very efficient (Senn and Thiel 2009). The QM/MM method is widely used with
various applications, such as MD simulation, free energy calculation, geometry
optimization, and computational spectroscopy (Groenhof 2013).

7.4.7 HyperChem

The HyperChem tool is also a tool for molecular modeling (Froimowitz 1993). It is
an attractive commercial programming product manufactured by Hypercube Com-
pany and also given for free 30 days trial. It has a set of tools for molecular
mechanics, quantum chemistry, and MD of the biological systems. The attractive-
ness of this software is attributed to the availability of complete documentation
supported by examples, making this package ideal for studying the principle and
practical approaches to molecular modeling (Gutowska et al. 2005). However, this
program is comparitively slow as it cannot use multiprocessor support. An efficient
strategy to use this tool is to employ it as an interactive molecular designer.
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7.5 Other Advance Methods for MD Simulation

The MD simulation is a very progressive field. Several advancements have hap-
pened, and several other new methods are also introduced regularly to reduce the
time complexity.

7.5.1 Metadynamics

It is an advantageous and powerful method of MD simulation to enhance sampling.
The collective variables (CVs) define the free energy landscape reconstruction as a
function of a few selected degrees of freedom. In this method, the sampling is
accelerated by the history-dependent bias potential (Barducci et al. 2011). The
space of collective variables is used for the adaptive construction of bias potential.
In recent times, considerable improvements have been made to the actual algorithm,
leading to a well-organized, flexible, and precise method that has found many
successful applications in several domains. There are various examples of
metadynamics study, and the most common umbrella sampling method is discussed
below (Barducci et al. 2011).

The main challenge in computational biology is to predict the accurate binding
free energy difference between two or more systems. For this problem, a new
method umbrella sampling introduced, which is a biased MD simulation method,
and it calculates free energy using the reaction coordinates. In this method, the
system is driven from one thermodynamic state to other thermodynamics states. For
example, reactant and product by using the bias potential reaction coordinate along
with one or more directional (Kastner 2011). The intermediate steps are covered by a
series of windows, at every stage of which an MD simulation is performed. Any
functional form can represent bias potential. The harmonic potential is used in this
method. Using the reaction coordinates, with the sampled distribution of a system,
the free energy change in each window can be calculated. By using the umbrella
integration or weighted histogram analysis method, the obtained windows are
combined. The bias directly gives the free energy change between the two systems.
The replica-exchange method can be used to improve the sampling of each window,
either by replacing between successive windows or by running additional
simulations at higher temperatures (Kastner 2011).

7.6 Analysis of MD Trajectories Through GUI-Based Software

The resulting output trajectories of any MD simulation can be visualized using
GUI-based software. In the section below, we will discuss a few most popular
software.
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7.6.1 Visual Molecular Dynamics

VMD is developed at the University of Illinois (Hsin et al. 2008; Falsafi-Zadeh et al.
2012; Humphrey et al. 1996; Knapp et al. 2010). It is a potent tool for analysis and
visualization of various biological systems such as proteins, nucleic acids,
carbohydrates, and lipids. It is compatible with a large number of file formats,
such as PDB and GROMOS. It can process a large amount of data for the visualiza-
tion of trajectory movements (Falsafi-Zadeh et al. 2012). The molecules can be
viewed in the animated form, and a movie can also be created from the input
trajectory. It can be operated from a remote computer and also compatible with
any operating systems with basic computer configuration. It is included with NAMD
also. The additional functions of this tool are given below (Likhachev et al. 2016).

1. The visualization and analysis of macromolecules.
2. The atoms and amino acids can be selected.
3. Two structures can be aligned.
4. Support of user’s action recording in the scripts.
5. The Raster3D format support (This format can give a high-quality image).
6. Ramachandran plots can be generated.
7. Support various types of molecular images.
8. Stereoscopic output.
9. Command-line support.

10. Working with arrays and vectors.
11. Support of JavaScript.

7.6.2 PyMOL

The PyMOL is among the most widely used software in the field of structural
biology. It can accept various formats like PDB, Mol2, SDF, and several other file
formats. The user can import the trajectory and analyze the simulation result. The
user can generate a surface view model. Several additional plug-ins are also available
to analyze the result of MD simulation. The user can create high-quality figures and
animated movies from this tool.

7.6.3 Chimera

UCSF Chimera is an advanced software (Pettersen et al. 2004). It is widely used and
freely available for academics. It was developed by Resource for biocomputing,
visualization, and informatics (RBVI) and funded by the National Institutes of
Health. The UCSF ChimeraX is also available, which is more advanced than
Chimera. The Chimera 1.13.1 is released on 14-08-2018 and accepts the
GROMACS and AMBER trajectory formats. After importing these trajectories,
the user can make an animated movie with the time frame and generate high-
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quality pictures. The user can align two or more structures. The user can also
generate the surface for cavity analysis during trajectory run. It has several features
and supports the command line option also.

7.7 Structural Parameters for Analysis of MD Simulation

The MD simulation produces the result in the form of a trajectory. The trajectory
contains all the parameters that were generated during each step movement of atoms.
Various structural parameters that can be used to analyze the results are the
following:

7.7.1 RMSD

The root mean square deviation (RMSD) is the most important and first parameter to
analyze any MD trajectory (Kuzmanic and Zagrovic 2010). RMSD is used to
measure the difference between the backbones of a protein from its initial structural
conformation to its final position. The stability of the protein relative to its confor-
mation can be determined by the deviations produced during the MD simulation
process. RMSD is calculated with respect to the reference native conformation rref
using the following formula:

RMSD tð Þ ¼ 1
M

XN
i¼1

mi ri tð Þ � ri
ref

�� ��2" #1=2

whereM¼∑imi and ri(t) represents the atom, i position at the time t after least square
fitting the structure to a reference structure.

The RMSD for all residues, backbone, side-chain, and Cα atoms can be calcu-
lated. RMSD is calculated with respect to the simulation time. Smaller deviations
indicate a more stable protein structure and vice versa. In general, an RMSD value
for a macromolecule should be less than 2 Å to extract any meaningful data. A
comparative study of RMSD for native isocitrate lyase from Mycobacterium tuber-
culosis (MtbICL) and its mutant has been performed (Fig. 7.6a). A major difference
in the RMSD of native (black) and mutant MtbICL (red) has been observed, and it
indicates that a single mutation L148A in MtbICL protein (MtbICLL148A) causes
structural perturbations in the enzyme and reduces its stability (Shukla et al. 2018c).

7.7.2 RMSF

The root mean square fluctuation (RMSF) is the best way to study the residue-wise
fluctuation of the protein from the MD trajectory. It describes the fluctuation of each
residue or domain in a protein. The RMSF can be plotted as RMSF (nm) vs. residue
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number (Kuzmanic and Zagrovic 2010). The RMSF of a protein is measured by the
deviation between the position of particle i with its reference position, and
T represents the time, and riref is the reference position of particle i.

RMSFi ¼ 1
T

XT
t j¼1

ri t j
� �� ri

ref
�� ��2

2
4

3
5
1=2

Well organized and rigid structures, like helix and sheets, show low RMSF, while
loosely structure like bends and coils showed higher RMSF value because atom can
have more fluctuation in the bends and coils as compared to helix and sheet. RMSF
of the Cα atoms for native and mutant MtbICL was calculated from the MD
trajectory to compare the residue-wise fluctuations (Fig. 7.6b). A high degree of
residue-wise fluctuations observed in mutant MtbICL as compared to the native
structure, and this happens due to a single mutation L148A, which causes more
fluctuations and instability in the mutant. This mutation can also deform the shape of
the binding site and which in turn can prevent the function of the enzyme (Shukla
et al. 2018c).

7.7.3 Radius of Gyration

The radius of gyration (Rg) of a protein describes the compactness of the folded
protein. For the same size proteins, ideal Rg value should be less for the globular
folded state, while in expanded form or protein form with more number of loops and
turns, the Rg value should be relatively high. The Rg value of a structure is calculated
from the following equation:

Fig. 7.6 (a) RMSD of native and mutant MtbICL. (b) RMSF of the Cα atoms calculated from the
last 30 ns of the MD trajectory. Black and red lines represent MtbICL and MtbICLL418A,

respectively

7 Molecular Dynamics Simulation of Protein and Protein–Ligand Complexes 149



Rg ¼
P

i rij j2miP
imi

 !2

In this equation, the mi represents the mass of atom i and ri is the position of atom
i with respect to the center of mass of the molecule. The system total mean energy is
calculated by the following equation:

Eh i ¼ 1
N

XN
i¼1

Ei

In the above equation, Ei represents the energy of atom i.

7.7.4 Protein–Ligand Contacts

Non-covalent bonds play a significant role in determining the stability of the protein
and ligand. These bonds play a pivotal role in protein structure folding and protein–
ligand stability. During the folding, the hydrogen bonds provide a path for proper
folding of a protein. Other interactions, such as hydrophobic bonds, make the inner
patches and the catalytic triad of a biomacromolecule. The hydrogen bonds between
residues can be calculated with respect to time during the simulation. In MD
simulation analysis of apo-protein and protein–ligand, the hydrogen bonds, as well
as other interactions, can be calculated during simulation time to find the potential
residues necessary for ligand stabilization. The protein–ligand contact map is
generated to find the residues that are in contact (interaction) with ligand during
most of the simulation time.

7.7.5 SASA

The solvent accessible surface area (SASA) defines the area of the protein
that interacts with the solvents in a simulation box (Mazola et al. 2015). For the
same size proteins, the folded globular state shows lesser SASA value, while the
expanded form of the protein shows higher SASA value. It is well-known that an
increase in the temperature of the system will lead to protein unfolding, and the
hydrophobic core of protein gets exposed toward the solvent. As a result, the SASA
value increases upon unfolding.

7.7.6 Principal Component Analysis or Essential Dynamics

Essential dynamics (ED) reflect the overall increase of the motions in a protein
during the time-scale of simulations (Maisuradze et al. 2009). The principal compo-
nent analysis (PCA) predicts the collective motions of the protein and reveals the
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atomic fluctuations in the structure (David and Jacobs 2014). Every atom is related to
each other in the MD simulation. The correlation motion analysis is very important
for predicting the behavior of the molecules. The covariance matrix of atomic
fluctuations is diagonalized for predicting the eigen values. The first eigenvectors
play an essential role in the overall motions of the protein. The PCA analysis is used
to compare the correlated motions of a protein under various conditions.

7.7.7 Secondary Structure Analysis

The secondary structure is a crucial parameter in the analysis of the MD results, and
it describes the contents of secondary structure with respect to time. It clearly
describes the structural contents to understand the stability of each domain. It is
instrumental in mutational and protein unfolding studies, as it can explain the
unfolding of a domain and its stability during a simulation.

7.8 Application of MD Simulation

MD simulation is a widely used technique for studying biological systems. It is
applicable in several fields like mutational analysis of protein, protein–ligand com-
plex stability prediction, protein unfolding studies, conformational protein stability
prediction, etc. It is a potent tool that requires high computational power to reveal
biological mysteries. In the following sub-sections, we will briefly discuss the
applications of MD simulation in all these above-stated fields using case studies.

7.8.1 Mutational Analysis

MD simulation can be used to confirm the results of in vitro mutational studies, as it
can predict the conformational movement of the atoms after and before mutation. It
can also predict the alternate binding site. A case study of mutational analysis from
our previous works is presented here. In these studies, the role of structurally distant
amino acids (>10 Å) that are away from the active site signature motif
(189KKCGH193) was studied (Fig. 7.7). We showed that point mutations brought
the vast extent of conformation changes in the active site conformation, which
results in loss of activity of the enzyme. Three mutations (F345A, L418A, and
H46A) were introduced in the structure by the in silico approach, and then MD
simulation was performed to see the effect of the mutation on the structure and
function of the enzyme. Here, we take an example of several MD simulation
analyses of an enzyme isocitrate lyase from Mycobacterium tuberculosis (MtbICL)
and its three point mutants and extract structural and dynamic information from the
MD simulation trajectories. Using MD simulation studies, we showed that distant
point mutations at H46, F345, and L418, which are structurally distant (>10 Å) to
the active site sequence (189KKCGH193), completely abrogates the enzyme activity.
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MtbICL is an important anti-tubercular drug target that catalyzes the first step of
the glyoxylate shunt and is required for survival of the pathogen under dormancy
condition. To understand the role of structurally distant amino acids in regulating the
structural dynamics and conformational flexibility of MtbICL, several point mutants
were created by site-directed mutagenesis, and their structure–activity relationship
was studied. Three mutations, F345A (Shukla et al. 2018b), L418A (Shukla et al.
2018c), and H46A (Shukla et al. 2018f), were made. The experimental data revealed
that these mutants were causing complete loss of enzyme activity, though these
residues were not present within or near the active-site. Structurally, these residues
were present more than 10 Å from the active site (Fig. 7.6).

To study the structural changes upon mutation and its effect on the dynamics of
the enzyme, MD simulations were performed. A comparative study of RMSD for
native and the three point mutants of MtbICL was done. The RMSD for the native,
H46A, F345A, and L418A MtbICL mutant was found to be 0.12 nm, 0.13 nm,
0.14 nm, and 0.21 nm, respectively. The RMSD of F345A and H46A mutation
shows an insignificant difference in the average RMSD values, thereby indicating
that they do not significantly influence the overall stability of the protein. The RMSD
value of L418Amutation suggests that it negatively affects protein stability, inducing
destabilization in the mutant protein structure.

For understanding the effects of the mutations on the structural fluctuation of the
entire protein and also on individual residues, the RMSF of Cα atoms was analyzed
for all the proteins. RMSF of the native and the three mutants was calculated from
the MD trajectories to compare the residues wise fluctuations. In H46A and F345A
mutant, minor changes were observed in the RMSF (Shukla et al. 2018c; Shukla
et al. 2018f), while the L418A mutant showed significant fluctuations (Shukla et al.
2018f). The data suggest that H46A and F345A mutation does not induce changes in
the overall protein structure. In contrast, a high degree of residue wise fluctuations
observed in the L148A mutant, which causes more fluctuations and instability in the
structure (Shukla et al. 2018c).

Fig. 7.7 Barrel structure of
MtbICL. The distance of the
mutated amino acids from the
active site catalytic residues is
shown in red lines
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H46A mutation did not show any global structural alternations; it caused changes
in the catalytic site (Shukla et al. 2018f). The PCA and cross-correlation analysis
showed that H46A mutation caused a change in conformational stability and collec-
tive motions of the protein, particularly in the active site region. The residue
interaction network (RIN) analysis indicates that the active site geometry was
disturbed in the H46A mutant. These results suggest that due to the mutation, the
dynamic perturbation of the active site leads to enzyme transition from its active
form to inactive form (Shukla et al. 2018f).

The mutation in F345 induced structural flexibility and conformational
rearrangements near the active site. This mutation increased the collective motions
and residual mobility of the enzyme, resulting in a decrease in the mutant enzyme
stability. The result was confirmed by the lower free energy in the mutant enzyme
indicating the destabilized structure (Shukla et al. 2018b).

The L418A mutation also nullifies the activity of the protein. The correlated
motions, residual mobility, and flexibility in the enzyme increased upon mutation.
Upon L418A mutation, the global conformational dynamics and the RIN of the
protein changed. The RIN depicts that several hydrogen bonds, hydrophobic bonds
were distorted due to the mutation. This alteration in RIN brings conformational
changes in the active site leading to the loss of enzyme activity (Shukla et al. 2018f).

Ultimately, molecular docking data indicated that all three mutations affected the
substrate interactions with the active site residues of MtbICL. These results reveal
the internal dynamics of the enzyme structure and feature the importance of residue-
level interactions in the enzyme.

7.8.2 Application in the Drug Designing

The protein–ligand docking is a significant phase in the field of drug designing.
Nowadays, several software are available for structure-based virtual screening. The
PDB entries are increasing due to newer structure determination methods. Most of
the docking software considers the protein as a rigid body, while ligand is always
considered as flexible. Some docking software recognizes the protein and ligand
both as a flexible molecule, and they can produce a better pose with a binding
affinity. The question arises now is: will this docking pose exist in the cell because
every protein is dynamic? To solve this problem, MD simulation is an excellent
approach used to predict the stability and dynamics of the protein–ligand complexes.

7.8.2.1 Inhibitor Designing Against MtbICL
Several MtbICL structures are available in the PDB in complex with inhibitor and
substrates. An inhibitor-bound structure was retrieved from the PDB (PDB ID:
1F8I), and 167,674 compounds were screened in various runs. Following rounds
of screening and docking refinement, 340 compounds were selected. For validation
of the docking results and to study the dynamics of the system, MD simulation was
performed as docking does not provide insight into the dynamics of the system. The
MD simulation data of three compounds were compared and only one compound
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was found to have high potential to inhibit MtbICL. Thus, the MD simulation can be
used to remove the false positive binders and provides information on the detailed
mechanism of ligand-induced inhibition of enzyme function (Shukla et al. 2018e).

7.8.2.2 Inhibitor Designing Against Fasciola gigantica Thioredoxin
Glutathione Reductase

Fasciola gigantica thioredoxin glutathione reductase (FgTGR) is a key drug target
against fascioliasis caused by the helminth parasite Fasciola gigantica. We reported
some novel inhibitors of FgTGR using the structure-based virtual screening
approach, and the selected hits were validated by MD simulation. The compounds
were screened against FgTGR in several runs. The selected compounds were
evaluated through ADMET, and some compounds were chosen for further docking.
Ultimately, three compounds were used for the MD simulation that resulted in one
highly potent compound with a high affinity towards FgTGR. Thus, the MD
simulation can play an important role in the screening of potential inhibitor against
a target considering the physiological conditions of the interaction environment
(Shukla et al. 2018b).

7.8.3 Unfolding Studies

MD simulation is a compelling technique to study the protein unfolding mechanism
at an atomic level (Prakash et al. 2018; Sonkar et al. 2018). We can track the
mechanism of unfolding as a result of chemical-, pH-, or temperature-induced
denaturation using MD simulation, which provides a clear view of structural
alternations taking place at a particular time-scale. Protein unfolding by pH, urea,
GdnHCl, and temperature has already been performed using MD simulation.

7.8.3.1 Urea Induced Unfolding of FgGST1
Urea is a widely used denaturant to study the mechanism of protein unfolding. It has
been proposed to disrupt the hydrophobic interactions, as a result of which the
hydrophobic patches of proteins open and come into contact with water (Kalita
et al. 2018a). We took an 8 M urea environment for analysis and performed 100 ns
simulation at 300 K and 400 K temperature to understand the unfolding mechanism
of a protein. The dynamics of protein were recorded at an interval of 40 ns; the data
indicate that 8 M urea induces unfolding, and finally leads to the disruption of the
complete protein 3D structure (Fig. 7.8). The RMSD, RMSF, Rg, and PCA analyses
suggest that urea induces the unfolding of the protein. Different secondary structure
alternations, such as loss of alpha-helices, loss of bends, and beta-sheets, were
observed in the protein during MD simulation (300 K), which indicates the loss of
native structure. In MD simulation at 400 K, a greater extent of unfolding in protein
structure was observed.
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7.8.3.2 GdnHCl-Induced Unfolding Analysis
Syed et al. performed the denaturation study of a protein using GdnHCl at 300 K
(Syed et al. 2018). 100 ns MD simulation was run to investigate the atomic-level
changes. Various structural parameters such as RMSD, RMSF, Rg, SASA, the
number of hydrogen bonds, and PCA were calculated and revealed the unfolding
mechanism of the protein (Syed et al. 2018).

7.8.3.3 pH-Induced Effects on the Structure and Stability of the Protein
MD simulation can also be performed in different pH values to model the structural
rearrangement pattern in different pH conditions. Syed et al. also used pH in MD
simulation (2, 4, 6, 8, 10, and 12) to study protein unfolding. Their analyses on a
particular protein suggest that it can maintain the secondary and tertiary structure in
the alkaline pH. In contrast, in the acidic condition (pH 2.0–5.5), significant struc-
tural changes occur (Syed et al. 2015).

Fig. 7.8 Different time frame snapshots of unfolding at 40 ns time interval for a protein with water
and urea at (a) 300 K (b) at 400 K temperature. ProteinH2O and Protein8.0 represent the protein in
water and 8 M urea, respectively (Kalita et al. 2018a). The MD simulation was run for 200 ns
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7.9 Conclusions

Proteins are dynamic entities, and the dynamic nature defines its function. The
availability of an accurate 3D structure is essential to understand the protein dynam-
ics and function. The 3D structure may be solved using X-ray crystallography,
NMR, or computational methods. Although these methods provide detailed infor-
mation on protein structure, they still fail to provide sufficient information on protein
dynamics and motion. MD simulation has a history of more than 43 years. It is a
widely used technique for predicting the dynamic picture of any biological system.
Development of GPUs based high computational capability system is a milestone for
the MD simulation to reduce the time for predicting the dynamics of biological
molecules such as nucleic acids, proteins, carbohydrates, and many more and their
molecular interactions with each other or with small molecules inhibitors. MD
simulation is a potent tool to solve difficult biological problems, which happen in
second to millisecond time-scales like molecular interaction of protein–protein,
protein–ligand interaction, protein folding, and unfolding analysis. It considers the
biological pH, the surrounding molecules for creating the cell-like environment like
water and lipids, as well as co-enzymes, ions, and nucleic acid. MD simulations
provide atomic-level details of atom interaction that are associated with the function
of the molecules. The binding free energy, various energy constituents, and residue-
wise binding contribution with a ligand can be predicted using the MM-PBSA tool.
This information is beneficial for further improvement in the binding affinity. The
QM and MM method implementation in the MD simulation has drastically changed
towards the enhancement of accuracy of the binding free energy. By using these
methods, we can easily find out the role of polarization and electronic effects in
protein–protein and protein–ligand interactions. MD simulation can be used to
reveal the chemistry and dynamics of a biological system by providing an appropri-
ate model and physical conditions.
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Computational Approaches for Drug Target
Identification 8
Pramod Katara

Abstract

It is assumed that due to the enormous investment in terms of time, money,
human volunteers, and other resources, sometimes failure at the later stage mostly
put pharmaceutical companies on the back foot. For the last two decades,
pharmaceutical companies felt that the traditional drug designing process should
be optimized to avoid huge financial loss and save time. Thus, despite its
limitations, the use of computer-aided drug design (CADD) techniques in drug
discovery and development process is successful. CADD approaches support
almost all phases of the drug designing process, including drug target identifica-
tion, lead identification, optimization of leads, and simulations. Drug target
identification and characterization is a first and most essential step that begins
with identifying the function of a possible molecular target (gene/protein) and its
role in the disease. The availability of the huge amount of molecular data, i.e., big
data, for human as well as pathogens with applications of knowledge-based data
mining approaches can provide a list of probable drug targets which further can
be validated through experiments can save time and cost of pharmaceutical
companies and boost their research towards the development of new drugs.
This chapter focuses on the computational approaches for drug target identifica-
tion, which play a crucial role in the drug discovery and development process.
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8.1 Introduction

Drug designing deals with the discovery and development of therapeutic molecules
for a drug target. The drug is a small molecule that has potential to modulate the
function of drug targets, such as a protein and sometimes nucleic acid tool, i.e.,
regulatory RNAs (Dersch et al. 2017). Drug design involves the design of molecules
that are complementary in shape to the chosen drug target and modulate in the
desired manner (Zauhar et al. 2003). Nowadays various drug designing approaches
are in practice, broadly they can be classified into two types: (1) traditional methods:
traditional methods involve trial and error method of testing for chemicals on
cultured or animals cell, and observe the outcome of treatments, and (2) rational
drug design: this approach is based on the hypothesis that modulation of a specific
biological target which will be considered as drug targets, may have therapeutic
value. In this approach, a potential therapeutic target is identified and purified. The
purified protein is used to develop a screening assay. In rational drug design, 3D
structure of the drug target should be available. The small bioactive searched by
screening libraries of a drug or bioactive compound. This can also be performed by
the screening assay, which also known as chemical or wet screening assay.

Nowadays computational methods are also in practice to screen compounds
virtually and are well known as virtual screening (McInnes 2007). After library
screening, the molecules are subjected to biological screening to test toxicity and
those who show positive screening enter into the clinical trials where they try on
human volunteers/patients to check pharmacokinetics (ADMET) of the drug. In the
case of the successful completion of the clinical trials, a molecule passes to the
approval agency and then finally hits the market (Fig. 8.1). This whole drug
designing process is very time consuming and expensive, and at any stage of the
process, a lead molecule can fail. Failure of leads at a later stage is responsible for the
loss of millions of dollars for pharmaceutical companies (Hughes et al. 2011).

To reduce the chance of later-failure and speed up the molecular screening
process, computational approaches are in practice for the last one and a half decade.
Nowadays, designing drug using computational approaches is well known as
computer-aided drug designing (CADD). CADD involves various approaches
such as QSAR, virtual screening, docking, etc. (Katsila et al. 2016). Computational
approaches have speed up the process of drug discovery and have provided novel
drug targets and lead structures (Katara 2013). The computational method can
identify drug targets and leads against them, affinity and efficacy between them
before clinical trials and saving enormous time and cost (Shekhar 2008; Katara
2017).

8.2 Drug Targets

The term drug target describes the native biomolecule in the human body whose
function can be modulated by a drug molecule, which may have a therapeutic effect
against the disease or some adverse effect. Mostly these drug targets are biological
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targets in nature. Various protein drug targets are currently utilized by available
drugs, most of them belong to one of four major drug target protein classes
(Table 8.1), in some cases, nucleic acids are also utilized by drugs as a target.

Fig. 8.1 The flow of drug designing process (Katara 2017)

Table 8.1 Details of frequently used drug target protein classes

S. No.
Target
classes Description

1 GPCRs G protein-coupled receptors (GPCRs) play a central role in various signal
transduction pathways responsible for cellular responses. Due to its
indispensable role, GPCRs make up a large portion of the targets of
approved drugs. Presently, more than hundreds of GPCRs are already in
practice as targets of�34% FDA approved drugs (Sriram and Insel 2018)

2 Ion
channels

Ion channels play a very crucial role in controlling a very wide range of
physiological processes in humans, and their dysfunction can lead to
abnormalities, thus they are reported as one of the important drug targets
(Kaczorowski et al. 2008)

3 Kinases Kinase plays a pivotal role in the regulation of many cellular and
biological processes. Abnormal kinase activity has been well reported to
be linked with a variety of diseases and human cancers (Cohen 2002;
Klaeger et al. 2017)

4 Proteases Deficient or abnormal protease function is linked with many pathological
conditions. An estimated 5–10% of all drugs under progress target the
proteases (Docherty et al. 2003)
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8.3 Drug Target Identification

After identifying the biological nature and origin of a disease, identification of
potential drug targets is the first step in the discovery of a drug. Drug target
identification follows the hypothesis that the most promising targets are tightly
linked to the disease of interest, and have an established function in the underlying
pathology, which can be observed with high frequency in the disease-associated
population. By definition, it is not necessary for potential drug targets to be involved
in the disease-causing process, or responsible for a disease, but they must be disease-
modifying. Currently, various strategies are in practice for drug target identification,
which is either based on experimental approaches or computational approaches.

Experimental approaches are mainly based on comparative genomics (expression
profiling) and supplemented with the phenotype and genetic association analysis.
Mostly, all experimental approaches provide reliable results, and theoretically, they
should be the first choice methods for target identifications. Even though experimen-
tal approaches are more precise, they are suffering from some practical limitations,
i.e., relatively high costs and intensive scientific labor required for experimental
profiling of the full target space (>20,000 proteins, nucleic acid) of chemical
compounds and they often end with few drug targets in hand. Due to all these
limitations, mostly scientists and pharmaceutical companies utilize the computa-
tional methods for first-line research and then use the experimental approaches for
further validation and other purposes.

8.4 Computational Approaches for Drug Target Identification

The development of bioinformatics has come up with various bioinformatics
resources, including the database, algorithm, and software, which push the CADD
in every aspect of the drug designing process (Table 8.2). One of the most important
contributions is computational drug target identification, as discussed earlier that
identification of the drug target is a very crucial and most decisive step of the drug
designing process. In this regard, for the last one and half decades, various scientific
studies carried out with the aim of drug target identification with the help of
bioinformatics resources and proposed various approaches for drug target
identifications. These approaches easily handle and deal with a huge amount of
genomics, transcriptomics, and proteomics data, and also process it efficiently, and
at the end provide potential drug targets in a short period at a low cost.

Currently, several computational approaches are available which utilized differ-
ent molecular information, i.e., gene and genome sequence, molecular interaction
information and protein 3D structure. Most of these approaches are interlinked. Still,
based on their concept, they have broadly classified into two types: (1) homology-
based approaches and (2) network-based approaches. The major features which are
checked for drug target prediction are listed in Table 8.3 (Kim et al. 2017).
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8.5 Homology-Based Approaches

Homology-based approaches utilize sequence similarities among genes and proteins,
further based on predicted homology, it takes the decision just like decision tree
analysis. Mostly these methods consider the various level of homology test, which
follows top-down direction. Each level of homology test scale down the data,

Table 8.2 Bioinformatics resources for drug target identification and CADD

S. No.
Database/
method Description

1 DbMDR It provides a collection of multidrug resistance genes and their
orthologs, acting as potential drug targets (Gupta et al. 2011)

2 DEG It contains all known essential genes from a different organism (Zhang
et al. 2004)

3 DFVF Collection of fungal virulence factors which collected>2000
pathogenic genes from a wide range of fungal sp. (Lu et al. 2012)

4 DrugBank DrugBank is a richly annotated database, which provides detailed
information about the drugs along with their target and drug action
information (Wishart et al. 2008)

5 GEO The database provides transcriptomics data (mainly array- and
sequence-based) useful for functional genomics (Clough and Barrett
2016)

6 KEGG KEGG offers information about the pathway, gene, and ligands in three
different databases, i.e., Pathway, Gene, and Ligand (Kanehisa and
Goto 2000)

7 MvirDB Microbial protein toxins, virulence factors, and genes related to
antibiotic resistance (Zhou et al. 2007)

8 PDTD Database of potential proteins for in silico drug target identification
(Gao et al. 2008)

9 TDR targets Identification and prioritization of molecular targets for drug
development (Magariños et al. 2012)

10 TTD Publicly accessible cross-links database that provides inclusive
information about known therapeutic targets with related information,
i.e., pathway information and the corresponding drugs/ligands (Chen
et al. 2002)

11 VFDB Database contains virulence factors (VFs) of various medical significant
bacterial pathogens (Chen et al. 2005)

12 Daspfind Interactions between drugs and target proteins based on the similarities
among them (Ba-Alawi et al. 2016)

13 iDTI-
ESBoost

Evolutionary and structural feature-based model for identification of
drug–target interactions (Rayhan et al. 2017)

14 NetCBP Drug–target interaction prediction with the help of networks. It also
predicts some new drugs without any known target interaction
information (Chen and Zhang 2013)

15 SELF-BLM It predicts drug–target interactions using a self-training support vector
machine (SVM) based bipartite local model; SELF-BLM (Keum and
Nam 2017)
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starting from complete genes or proteome, and step by step either eliminate those
which fitted in “inappropriate” or select only those which fitted in “appropriate.”
Homology-based approaches always ended with countable potential drug targets
(Fig. 8.2), and because of their scale down nature, these approaches are also known
as subtractive (genomic or proteomic) approaches.

Table 8.3 Important features utilized in drug target identifications

S. No. Features Description

1 Essentiality of targets To find out the indispensable nature of probable
target for disease/pathogen

2 Gene ontology, biological
process, involvement in
pathways

To find out the biological process, pathways, and
functional involvement of probable targets

3 Cellular localization To find out the accessibility of probable target for a
drug

4 Structural availability,
druggability

To find out the binding pockets along with various
physiochemical features involved in binding. It also
helps to predict binding affinity and drug–target
interaction mode

5 Gene expression patterns Expression patterns play a significant role to check
the availability of targets in given conditions. It also
helps to predict the chance of adverse drug reaction,
especially in the case of polypharmacological drugs

Fig. 8.2 Schematic diagram of the standard flowchart for drug target identification using
homology-based approach
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The term “inappropriate” and “appropriate” are conditional, and they are tested
on various biological conditions that play a decisive role in target selection. The
following are the major conditional tests that help to decide the further consideration
of molecules for drug target identification.

8.5.1 Human Homologs

It is assumed that humans have various genes, and few of them are playing an
indispensable biological role, considered as housekeeping genes. The use of human
housekeeping genes or homologs of human housekeeping genes as a drug target can
create lethal conditions and result in the death of human patients. To avoid such
accidental use of the housekeeping gene as well as some important pathway-related
gene as a drug target genes of the microbial pathogen are generally compared against
the human, and those genes which show significant similarities with human
housekeeping or crucial genes will be considered as “inappropriate” and mostly
eliminate from rest of the process.

8.5.2 Human-Microbiome Homologs

The human body, especially, the gut has a lot of microbes that are already listed by
the human microbiome project. Most of these microbes are involved in the biological
process, which is beneficial for humans and thus considered beneficial microbes.
Use of homologs from these beneficial microbes as a drug target can harm these
bacteria, which can affect the related biological process in the human host, i.e.,
digestion, respiration process, etc., because of the above said reason, human-
microbiome homologs are considered as “inappropriate” and eliminated from the
further process.

8.5.3 Essentiality

Identification of drug targets against the microbial pathogen assumes that the
essentiality of the target protein for pathogen-microbes is one of the advantageous
and “appropriate” features. Without the function of essential proteins, microbial-
pathogen will not able to survive. Various essential genes and proteins are identified
by experimental approaches and enlisted in various databases. The database of
essential genes (DEG) is one of the most active databases providing a collection of
essential genes and protein sequences. Based on the above concept, those pathogenic
genes/proteins which show homology with essential genes/proteins are considered
as “appropriate” and include for the further process.
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8.5.4 Virulence Factor Homologs

Those proteins whose role in virulence and pathogenicity is reported through the
experiment are considered as virulence factors. Various such proteins are available,
especially for microbes, and their molecular information is stored in various
databases, i.e., virulence factor database (VFDB) and database of fungal virulence
factors (DFVF). Genes/proteins of the pathogens that show homology with these
virulence factors can be considered as “appropriate” and utilized as a potential drug
target.

8.5.5 Drug Target Homologs

Information about known and explored drug/therapeutic targets is available, i.e.,
therapeutic target database (TTD). Homology mining with TTD is in practice, and
those candidate molecules which show significant homology with these known
targets are considered as “appropriate” and included for further exploration.

8.5.6 Cellular Location

The cellular location of the target protein is one of the very important features and
plays a crucial role in target selection. In a homology-based approach, sequence-
based gene ontology (GO) and annotation are in practice to look at the sub-cellular
location along with the cellular component, biological process, and molecular
function. Generally, those targets whose access is easy are preferable over others.

8.5.7 Role in the Biological Pathway

Biological pathways are responsible for the synthesis or metabolism of various
bio-products. Few of these pathways are very important and unique, and they are
solely responsible for their processes and products. The blockage of these pathways
creates a scarcity of their products and finally reduces the chance of survival of the
pathogen. Various pathway databases are available to conduct such checks. Current
literature shows that the KEGG pathway is one of the richest and preferable pathway
databases utilized for this purpose. Those pathways which are unique for pathogen
are considered as appropriate pathways, and gene/proteins involved in them were
considered for the further process. In contrarily those pathways which are also
shared by human/host and their gene/proteins are “inappropriate” and excluded
from further consideration.

It has been observed that homology-based approaches are very fast and almost
cover the entire target space, and it only needs sequence information as input.
Available reviews suggest that uses of homology-based approaches are very
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common for microbial disease and generally restricted with them only. Their use for
other types of infection or disease is not in common practice.

8.5.8 Case Study: Subtractive Approach for Drug Target
Identification

The subtractive approach is one of the very famous approaches that have been
utilized for target identification against various pathogens. In 2011 Katara et al.
presented a subtractive approach exploiting the knowledge of global gene expression
along with sequence comparisons to predict the potential drug targets in Vibrio
cholerae, cholera causing bacterial pathogen, efficiently. Their analysis was based
on the available knowledge of 155 experimentally proved virulence genes (seed
information) (Fig. 8.3). For target identification, they utilized co-expression based
gene mining and multilevel subtractive approach. At the end, they reported 36 gene
products as a drug target, to check the reliability of the predicted targets they also
performed gene ontology through Blast2GO. They observed these targets for their
involvement in a crucial biological process and their cellular location. They found all
these 36 gene products as reliable targets and conclude them as potential drug
targets.

Fig. 8.3 Subtractive approach for drug target identification
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8.6 Network-Based Approaches

It examines the effects of drugs in the context of molecular networks (i.e., protein–
protein interactions, gene networks, transcriptional regulatory networks, metabolic
networks, and biochemical reaction networks). In molecular network models,
molecules refer as nodes, and each edge corresponds to an interaction between
two molecules, based on the direction and importance of interaction between
nodes, sometimes edges also mention the direction and weight (Fig. 8.4). Drug
target identification through the network is based on the fact that networks have
many important nodes that are vulnerable and can be targeted in many ways. Most of
the time, these nodes are very crucial, and sometimes essential for the whole network
structure, inhibition of such nodes can reduce their efficiency and damage of these
nodes can shut down the complete network. Network inhibition process follows one
of the following two models: (1) partial inhibitions: Partial knockout of the
interactions of the target nodes, and (2) complete inhibition: all interactions around
a given target node are eliminated.

In the drug designing process, these target nodes can be considered as potential
drug targets. Various molecular networks (Table 8.4), including protein-interaction
networks, regulatory, metabolic, and signaling networks individually or in integrated
form can be subjected to a similar analysis (Imoto et al. 2007; Sridhar et al. 2008;
Kotlyar et al. 2012; Shin et al. 2017).

8.6.1 Centrality Based Drug Target

Network centrality can be used as a potential tool for network-based target identifi-
cation. Network centrality can prioritize proteins based on the network centrality
measures (i.e., degree, closeness betweenness). It can be used to characterize the
importance of proteins in the biological system.

Fig. 8.4 Various components of a standard network
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8.6.1.1 Hubs as Target
Real-world networks almost show a scale-free degree distribution, which means that
in these networks, some nodes have a tremendous number of connections to other
nodes (high degree), whereas most nodes have just a few. Here, nodes with a great
number of connections than average called hubs. It assumes that the functionality of
such scale-free networks heavily depends on these hubs, and if these hubs are
selectively targeted, the information transfer through networks gets hindered and
results in the collapse of the network (Pinto et al. 2014).

8.6.1.2 Betweenness Centrality Based Target
Hubs are the centers of local network topology, thus only provide the local picture of
the network. Betweenness centrality is another approach that can be used to explain
network centre, unlike, hub it provides central elements of the network in the global
topology, thus, provide a global picture of network connections. Conceptually,
betweenness is the number of times a node is in the shortest paths between two
other nodes (Fig. 8.4), thus higher the betweenness means more importance of the
node in quick network communication. Such higher betweenness centrality nodes
can be utilized as a potential target against drugs (Melak and Gakkhar 2015).

8.6.1.3 Mesoscopic Centrality Based Target
Considering the advantage of both local and global centers of network topology for
drug target identifications, the third class of centrality called mesoscopic centrality
has also been reported. Mesoscopic centrality is neither fully based on local

Table 8.4 Types of the biological network for drug target identification

S. No. Network Description

1 Protein–protein
interactions (PPIs)

Here, proteins are nodes, and their interactions are edges.
Proteins with high degrees of connectedness are likely to be
more crucial than proteins with lesser degrees (Zheng et al.
2013; Shin et al. 2017; Verma et al. 2020)

2 Gene regulatory
networks (GRN)

Transcription factors bind to multiple binding sites in a
genome. As a result, all cells have complex networks
between transcription factors (with respect to their target
gene) that form a GRN (Imoto et al. 2007)

3 Gene co-expression
network (GCN)

GCN is an undirected graph network that shows connectivity
between co-expressed genes that supposed to be regulated by
the same transcriptional regulatory system (Cheng et al.
2012; Yang et al. 2014)

4 Metabolic networks The network of biochemical reactions is called metabolic
network. Flux-balance analysis of these networks provides
information about potential targets (Sridhar et al. 2008)

5 Cell signaling
networks

Signaling networks represent connectivity between cellular
signals typically, by combining PPIN, GRN, and metabolic
networks (Behar et al. 2013)

6 Composite network Composite cellular (transcriptional, signaling, PPI) networks
identify the susceptible nodes which can act as a potential
target (Pinto et al. 2014)
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information (such as hubs) nor global information (such as betweenness centrality)
on network structure. It mainly considers long-range connections between high
degree nodes, which make a profound effect on small-world networks.

8.6.1.4 Weight-Based Drug Target
Recently, the weighted-directed network is also reported for drug target identifica-
tion studies (Wang et al. 2013). The weighted-directed network is closer to the real,
cellular scenario, where PPIs are characterized by their affinity and dominance (link
weight) as well as direction (e.g., in form of signaling), as mentioned in Fig. 8.5. It
has been assumed that the deletion of the links with the highest weighted centralities
is often more disturbing to network behavior than the removal of the most central
links in the similar un-weighted network topology.

Utilization of the complex structural information of real-world networks to
measure the centrality is not an easy task, and it requires more sophisticated methods
to overcome these challenges. Bioinformatics provides various tools to support
network construction, visualization, and network-based analysis, i.e., weight, cen-
trality, interaction directions (Table 8.5).

Fig. 8.5 Molecular network with a different type of connectivity between nodes (a) undirected (b)
directed (c) weighted, and (d) weighted directed
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8.6.2 Limitations

Drug target identification through the biological network is an empirical approach,
which relies on available information on molecular networks. However, numbers of
molecular interaction databases are available, and most of them suffer from
uncertainties, false-positive entries, and the average probability of particular interac-
tion along with nomenclature as well as interpretation problems. However, to
overcome these issues, recently, PPI databases are linked with protein structure
data, which provides more reliable and validated interactions. At the same time,
scientists also propose some alternative, i.e., use of the curated database and
low-resolution network to surmount the above-mentioned problems (De-Alarcón
et al. 2002).

8.7 Properties of an Ideal Drug Target

Identification of potential drug targets is not the last step. Nowadays, through various
computational approaches, a huge number of probable targets are reported against
different diseases and are available in databases and literature (Katara et al. 2011). It
is not a good idea to recommend them directly for testing, its recommendation that
first, we check them for an ideal property (Table 8.6), and then for druggability. Only
those targets which fulfill most of them are considered as an ideal drug target and
recommended them for further validation and testing (Gashaw et al. 2011).

Table 8.5 Tools supporting molecular network analysis for drug target identification

S. No. Resource Description

1 BioGRID It is a repository of biological network information that can be
visualized by Cytoscape (Oughtred et al. 2019)

2 BioMart It contains data, software, and provides data services to facilitate
scientific interactions and drug target discovery (Haider et al. 2009)

3 Connectivity
map

It is a collection of genome-wide expression data from bioactive
treated cultured human cells. It provides transcriptome based
functional connections between drugs, genes, and diseases (Lamb
et al. 2006)

4 MetaboAnalyst It is an analysis tool for high-throughput metabolomics data,
including data processing, biomarker discovery, and pathway
analysis (Xia et al. 2015)

5 Netpredictor Netpredictor is an R package that dealing with a unipartite or
bipartite network. It can utilize to explore interactome and
enrichment analysis for disease pathway and ontology (Seal and
Wild 2018)
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8.8 Druggability of Drug Target

In drug designing process, the potential of any target is defined by its druggability
(affinity of the target to bind with drug-like molecules), thus the target must be
druggable (Fauman et al. 2011). Biomolecules (i.e., protein, nucleic acid) with an
activity that can be modulated by a drug are considered as a druggable target. These
targets must have binding sites with typical structural and physicochemical
properties that favor binding interaction with high affinity and specificity.

8.8.1 Importance of Druggability

Despite technological advancement in the drug designing process, most drug dis-
covery projects fail because of the druggability problem. To avoid the failure of a
drug discovery project, which is mostly very expensive, it is very important to
understand the difficulties associated with a potential target. Druggability has
become part of the target identification and validation process, more significantly
in the case where targets do not belong to traditional classes (Finan et al. 2017).

8.9 Computational Methods for Druggability Assessment

To date, various targets are reported and documented through various methods, and
few of them are already in practice (drugs are available against them), such targets
are druggable. If no drug available for a target, then predict druggability is required.
Various computational methods are available to evaluate the druggability of target
protein, mainly rely on either sequence-based or 3D-structure based properties of
proteins (Fauman et al. 2011).

Table 8.6 Important properties to assess the ideal drug targets

S. No. Property Detail

1 Disease-modifying Target should be disease-modifying with proven function in
disease pathophysiology

2 Disease specific
modulation

Modulation of the target must be explicit to the targeted disease,
should not affect standard physiology in normal or other disease
conditions

3 Druggability
assessment

Target druggability should be observable

4 Assay ability Target should have favorable assay ability, specifically through
high-throughput screening

5 Tissue-specific
expression

Target expression should be tissue-specific, it should not affect
unrelated tissue or organs
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8.9.1 Sequence-Based Methods

A protein is druggable if its other family members are known to be targeted by drugs.
For such analysis, sequence alignment can be used to predict sequence similarity
(homology) between probable target (query) proteins and database of known
druggable targets (Finan et al. 2017). The sequence-based concept provides a
significant approximation of druggability, but it suffers from the following
limitations: (1) its predictions are limited to known drug target families, it does not
attempt for those potential targets, which belong to the novel “un-drugged” protein
family; and (2). It assumes that all members of the protein family are equally
druggable, which is not true.

8.9.2 Structure-Based Methods

Structure-based methods rely on the availability of 3D structure information, thus
only can apply to those proteins whose structures are available. Along with experi-
mentally determined 3D structures, it also considers high-quality structure models
through homology modeling. Several structure-based methods are available for the
assessment of target druggability, irrespective of their different algorithms; all of
them consist of the following three common components.

8.9.2.1 Identifying Cavities and Binding Pockets
Many computational methods and tools have been developed for binding pocket
identification, which scans 3D surface and interior of the target protein for potential
cavities (possess suitable properties for binding a ligand) that can act as binding
pockets. These tools mainly tend to look for cavities with suitable size, shape, and
composition to accommodate drug-like molecules.

Working of binding pockets detection methods depends on either energy-based or
geometry-based detection algorithms (Nisius et al. 2012; Zheng et al. 2013). Energy-
based detection predicts pockets by computing the interaction energy between atoms
of protein and a probe molecule (Ghersi and Sanchez 2011). Geometry-based
detection predicts the solvent accessible area that is embedded in the protein surface.
Comparative studies suggest that both types of detection algorithms have good
performance and advantages (Schmidtke et al. 2010). It has been observed that
geometry-based detections are more suitable for large-scale pocket detection. Their
inherent advantages, i.e., high speed and robustness against structural variations or
missing atoms and residues in the input structures, provide the edge over an energy-
based detection algorithm (Schmidtke et al. 2010). With the increasing availability
of binding cavity information, recently, one new class of methods called
information-based detection methods are developed. These methods utilize available
cavity information from its neighbor and similar proteins whose binding cavities are
known.
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8.9.2.2 Druggability of Binding Pocket
This second step aims to calculate the physicochemical and geometric properties of
the pocket to check whether these properties are complementary with the properties
of drug-like molecules. Lipinski’s rule of five (RO5) connects the physicochemical
properties of a drug with its pharmacokinetic properties (Lipinski 2000). It is a well-
known fact that the physicochemical properties of the druggable pocket should be
the mirror image of the physicochemical properties of the drug-like molecule itself.
This analogy gave the concept of a druggable pocket. Therefore, the complementary
properties of the pockets reflect the Lipinski’s rule of five of “drug-likeness”
(H-bond donors >5, H-bond acceptors ¼ 10, molecular weight > 500, and the
Log P (CLog P) is >5).

The major features which define and affect the druggability of pockets are pocket
descriptors. Characteristic features of a binding site play a very crucial role in
druggability calculation, and the selection of those descriptors, which are crucial
for binding drug-like molecules, needs to be described as accurate as possible.
Observations suggest that none of the individual pocket descriptors is sufficient for
druggability explanation, and a group of descriptors is required to describe and
calculate pocket druggability. Both physiochemical and geometrical features play a
crucial role as descriptors. Physiochemical descriptors and frequently used
physiochemical pocket descriptors include size, shape, electrostatics, hydrogen
bonding, hydrophobicity, polarity, amino acid composition, rigidity, and secondary
structure (Halgren 2009; Krasowski et al. 2011). Geometrical descriptors: Along
with physicochemical properties, geometrical properties, i.e., the shape and size of
the binding pocket, play a crucial role in suitable interactions with a small molecule
(Zheng et al. 2013). The following are the major geometrical features involved in
pocket druggability measurement.

Position of the Atoms
It has been observed that the position of the atoms in pockets affects the contribution
of an atom in interaction. Atoms located at the contact surface considerably give a
major contribution in contact energy (hydrophobic interaction) than those who lie
outside of the surface, i.e., within the bulk of the protein cavity.

Cavity Size
Large spherical cavities are more exposed to the solvent, thus not suitable for
binding, especially with small drug molecules. Narrow (micro) cavity pockets are
less exposed to the solvent and offer more van der Waals contact, thus they are more
druggable. These micro-cavities are also defined as hot spots, which are characteris-
tic of highly druggable targets.

8.9.2.3 Target Specificity Assessment
Drug target must be specific; structure similarity of drug target molecules with other
unwanted molecules will create problems in the drug development process. Struc-
tural similarity of the binding sites could make the design of selective inhibitors
difficult. During target selection, it is very important to assess the structural
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landscape of the primary binding sites of the target to confirm the druggability.
Sequence and structural alignment based computational methods are available to
perform specificity assessment.

Sequence Alignment Based Assessment
It is based on the sequence information of binding sites of the target protein. It
assumes that when the degree of conversation between the two sequences is suffi-
ciently high, then identical amino acids in the sequence will likely correspond to
identical binding site structure.

Structure Alignment Based Assessment
These methods are based on either structural superposition or pharmacophore
features. Structural superposition generally utilizes a 3D grid force field around the
binding sites, which can be calculated using various types of energy terms, i.e.,
electrostatic, hydrophobic, and hydrogen bonding. In the grid approach, the field
potentials can be calculated for each suspicious protein and are used for comparing
their binding sites. The structural similarity between a pair of proteins can be studied
by correlation functions of the various molecular interaction fields (MIFs) of the two
grids or by utilizing the Fourier transformation of correlation functions or related
approaches. Another approach consists of identifying pharmacophore features that
generally summarized with the help of surface chemical features (SCF), including
hydrophobic centers, H-bond donors and acceptors, positive and negative charges,
and aromatic centers, etc. This SCF based on the consideration can be determined on
the whole protein surface or a chosen cavity. Binding sites with the highest SCF
matches show the highest similarity with the query binding site. Various computa-
tional tools are already available, which provide the facilities to evaluate binding site
similarities and assess the specificity (Table 8.7). Almost all tools rely on the
available entries at the protein structural database.

8.9.3 Quantification of Druggability

Quantification of druggability could provide the best criteria for target selection, but
till now, none of the standard explanation is available for this purpose. Each method
has its measures for druggability, thus a druggability score of a specific target might
vary. However, irrespective of an individual’s weaknesses and strengths, all major
druggability measures can classify targets into druggable, non-druggable, medium
druggable, and difficult-druggable.

8.9.4 Major Concern

8.9.4.1 Size of Training Sets
Most of the druggability assessment methods are based on the machine learning
algorithm, thus highly dependent on available training sets (ChEMBL, BindingDB,
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PubChem, etc.) used to train them. The size and quality of the available datasets in
databases directly affect the reliability and scope of the assessment methods.

8.9.4.2 Binding Site Flexibility
The identification of the binding cavity in a rigid target is based on the assumption
that the cavity already exists. There are some proteins whose binding pockets do not
exist in their native structure, and their active pockets behave like inducible allosteric
sites, which only revealed after protein conformational changes. In such a case, it is
very difficult to assess the binding pockets, and this situation is considered as a
binding site “flexibility problem.” The presence of multiple X-ray conformers for a
specific target can help us to handle binding site flexibility. Multiple conformers
allow us to assess the relative variability of certain residues within the binding site
pockets. Based on such relative variability information, it is possible to assess the
plasticity of the binding site.

Table 8.7 Bioinformatics resources for druggability detection and evaluation

S. No.
Tool/
algorithm Description

1 CavityPlus Protein cavity detection and functional analyses (Xu et al. 2018)

2 Dr. PIAS A druggability assessment system. Along with druggability, it also
provides functional annotation of interacting proteins (Sugaya and
Furuya 2011)

3 DrugEBIlity It evaluates the druggability of targets. The server can search with a
sequence, PDB id, or uploaded structure (https://www.ebi.ac.uk/
chembl/drugebility)

4 DrugPred Structure-based druggability predictor that relies on the affinity
between known drugs and their target proteins (Krasowski et al. 2011)

5 IsoCleft Detection of local geometric and chemical similarities between
potential binding cavities for small molecules (Kurbatova et al. 2013)

6 IsoMIF
finder

Detection and comparison of binding site molecular interaction field
(MIF) (Chartier et al. 2016)

7 MultiBind Recognize the common spatial chemical binding patterns along with
shared physicochemical binding site properties (Shulman-Peleg et al.
2008)

8 PockDrug-
server

Pocket druggability with and without ligand proximity information. In
both cases, it provides consistent druggability results using different
pocket estimation methods (Hussein et al. 2015)

9 SiteAlign Align, compare druggable ligand-binding sites, and to measure
distances between druggable protein cavities (Schalon et al. 2008)

10 SiteMap’s Provide prediction of the target’s binding sites with druggability. It also
provides quantitative and graphical information about the target
(Halgren 2009)
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8.10 Target-Based Drug Discovery

As discussed, drug targets are the most crucial element of the drug designing
process, and selection of the targets decides the fate of the drug designing process
that it will succeed or get fail at a later stage. For several decades, pharmaceutical
companies are successfully using well established one drug-one target approach for
drug designing purposes. By realizing the scenario, the central dogma of the drug
designing process has now shifted from one drug-one target to one drug-multi-target
concept and considers multiple targets for a single drug.

8.10.1 Multi-Target Drug Designing

Computational approaches specifically those, which are based on system biology
concepts are very crucial in the identification of multi-targets, thus play a major role
in the success of the multi-target-based drug designing (Vasaikar et al. 2016). Multi-
target-based drug designing approach is, to some extent, similar to single target-
based drug designing, but it initiated with the set of targets multi-targets (Fig. 8.6).
The following are the main steps of multi-target drug designing.

8.10.1.1 Identification of a Set of Targets “Multi-Targets”
This is the most crucial step which decides the fate of the whole following process.
System biology-based molecular networks are in practice to identify multi-targets.

8.10.1.2 Generation of Multi-Target Pharmacophore
Computational methods are available to design multi-target (structure) based
pharmacophore, which utilizes combinatorial algorithms (Kumar et al. 2018;
Ramsay et al. 2018). The most common steps in multi-target pharmacophore
generation include (1) interaction profiling (MIFs) of all targets, (2) identification
of common MIFs/features, and (3) multi-target specific and selective ensembles
development.

8.10.1.3 Virtual Screening
Pharmacophore generation is followed by virtual screening of chemical libraries to
find suitable compounds against multi-target pharmacophore.

8.10.1.4 Generation or Selection of Multi-Target Compound
Multi-target compounds are generated through the integration of pharmacophore of
above-selected molecules (already known drugs or drug candidates).

8.10.1.5 Evaluation and Optimization of Multi-Target Specific
Compound

Evaluation and optimization process mainly includes multi-target specific interac-
tion assay (to avoid off-targeting), QSAR, and degree of modulation. Though multi-
target drugs seem promising and designing of these compounds is not a
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straightforward task. It needs to deal with various crucial issues, i.e., right target-sets
selection, balanced activity towards them, and excluding activity at off-target(s),
while at the same time retaining drug-like properties (Hopkins 2008; Bottegoni et al.
2012). Available experimental methods are not enough to handle these issues, thus
the feasibility of multi-target drugs profoundly depends on computational
approaches and resources. Various databases are also there, i.e., DrugBank, STITC
H, BindingDB ZINC, PubChem, KEGG DRUG, which provide required informa-
tion about molecular pathways, 3D structure, chemical reactions, side effects, and
known drug targets, thus help in the success of poly-pharmacologic drugs.

8.11 Summary

Now day’s computational biology becomes an indispensable tool for almost every
aspect of biology and related fields, and drug designing is not an exception. CADD is
now a mature field, and its success influenced by its first and pivotal step that is the

Fig. 8.6 Target-based drug designing (a) single target-based drug designing, (b) multi-target-
based drug designing and (c) major steps involve in multi-target-based drug designing
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identification of drug targets. This chapter provides an overview of various compu-
tational approaches available for drug target identification. It also discusses various
bioinformatics resources, i.e., database, methods, and software, which can be handy
for drug target identification purposes.
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Abstract

Virtual screening is a computational screening technique used to screen drug-like
compounds from vast libraries of chemicals based on the binding energy of
compounds with a target. To discover new plausible drug candidates, computa-
tional chemistry tools are used for studying the absorption, distribution, metabo-
lism, excretion, and toxicity (ADMET) of potential drugs, as well as also decipher
the mechanisms of drug action and its interaction mode with the target. Many
drug designing tools are available, which can assist in the design and discovery of
new drugs for the treatment of diseases with fewer or no side effects. The
objective is to evaluate several millions of compounds saving time and cost of
discovery. The quantitative structure-activity relationship (QSAR) analysis has
made it possible to theoretically correlate the biological activity of a compound
with its physicochemical properties, and the predictive equation has been derived
for the assessment of the biological response of a compound using molecular
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descriptors. Bioinformatics and Cheminformatics database in houses several
million of compounds with similar architecture and biological properties. Screen-
ing and identification of potential candidates for the appropriate term and target is
a difficult mining task in terms of cost and time. Virtual screening tools developed
by various bioinformatics and cheminformatics groups are contributing to the
field of open source drug discovery project. Online computational resources in
drug discovery research are a helping hand to the community, with remote and
free access to the resources.

Keywords

ADME · Virtual screening · QSAR · Molecular modeling · Toxicity

9.1 Introduction

Biological “trial and error” experiments trying huge gatherings of small molecules
for a precise pharmacological consequence is the conventional way to discover new
lead complexes, which consequently assist as models for additional optimization in
medicinal chemistry platforms. In the course of last few decades, the introduction of
recombinant DNA technologies joint along through developed assay methods and
high-performance laboratory mechanization intensely altered the pharmacological
screening progression. Nowadays, high-throughput screening (HTS), QSPR, QSAR,
ADME, and toxicity profiling have been increased by many considerations. The
drug design process makes use of computational methods to develop drugs at a faster
rate with low cost. The most fundamental goal in drug design is to predict whether a
given molecule will bind to a target and if so how strongly. Molecular mechanics or
molecular dynamics is most often used to estimate the strength of the intermolecular
interaction between the small molecule and its biological target. These methods are
also used to predict the conformation of the small molecule and to model conforma-
tional changes in the target that may occur when the small molecule binds to
it. Semi-empirical, ab initio quantum chemistry methods, or density functional
theory are often used to provide optimized parameters for the molecular mechanics
calculations and also provide an estimate of the electronic properties (electrostatic
potential, polarizability, etc.) of the drug candidate that will influence binding
affinity.

9.2 High-Throughput Screening

The quick rise in the field of molecular biology brings about an expansion of quick,
effective, drug analyzing schemes. Approaches developed through schemes remain
jointly recognized as high-throughput screening (Thomas 2007). High-throughput
screening techniques gives a precise conclusion even after vastly minute quantities
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of scrutinize substance are existing. Though if it is to be used in an economic
approach as well as proficiently, this technology needs the fast manufacture of a
big amount of materials for examining which cannot be seen through the
old-fashioned method toward organic synthesis, frequently adapt to manufacture
of single synthesis blend at a time.

Fundamentally it is a procedure of selection and examining the massive quantity
of living modulators as well as effectors contrary to selected and accurate marks. The
codes as well techniques of HTS discover along with its claim aimed at the selection
of combinatorial harmony, genetics, protein, and peptide archives. The principal
effort of this performance remains toward accelerating drug finding procedure by the
selection of great complex archives through quickness, which might exceed a
somewhat thousand compounds in the single day time or for every week. For
some assay or screening by HTS to be productive certain stages similar object
recognition, compound management, component composition, test expansion also
high-throughput assortment selection ought to remain approved available by highest
attention and accuracy.

HTS is a very huge part of the study and progress having unlimited openings
comprising enzyme analysis, entire organ analysis, and even complete animal
examination over cassette dosing. Cassette dosing is a technique for HTS permitting
to speedily evaluate the pharmacokinetics of great figure drug applicants. Unlike,
additional methods to measure pharmacokinetics, in these technique solitary animals
are given instantaneously, and blood trials composed to evaluate the same. The
foremost lead is pharmacokinetics of an unlimited extent of complexes can be
measured speedily and precisely. Nevertheless, the crucial drawback is that concur-
rent administration can lead to drug–drug interaction. No doubt, HTS is a new
technique aimed at drug discovery. However, it is not the lone technique, and it
also benefits the development of current drug moieties to enhance their activity. This
too relates to screening the continuously growing compound libraries coming up to
be selected owing to upsurge equivalently also combinatorial compound blend. An
investigation is correspondingly approved available to expurgate the drug develop-
ment expenses. Therefore, industries hold up-to-date through increasing competi-
tion. It is expected that along with the overview of human genomes as latent
applicants the compound library will be as big as 100 million applicants, which
would necessitate around 1012 assays to create their structure-activity relationship
(SAR). Primarily the assays stood approved in 96-well plates nevertheless through
development currently nearby 1586-well plates accessible. Distinctive HTS
sequencers have great capacities for screening up to 10,000 complexes per day,
although certain research laboratories with ultra-high-throughput screening (UHTS)
can attain 100,000 assays for every day (Carnero 2006).

9.2.1 Assay Design

HTS as an explanation computed toward quick partially computerized prompt chief
selection through giant figures of blends used for vigorous complexes. Procedure for
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the usage of bio micro-assays has grounded, which are speedy to perform and also
involves usage of a small number of chemicals and trial compounds. Such tests
remain approved available through 96-along with larger-well plates using specific
treatment equipment. They are constructed on trial composite interrelating through
an object, like protein molecules, chemical messenger, and ligand-activated tran-
scription factors, which remain connected with the ailment phase, which is under-
neath the inspection (Thomas 2007). Subsequently, it might be essential to
recognize, purify, and separate target earlier a reference library stay curtained.
Additionally, tests are recurrently as well predominantly proposed aimed at study,
therefore they need to remain confirmed. Such early explorations would be expen-
sively collected in terms of money and period. Contribution by living objects in tests
said so tests remain frequently accepted in water media. Accordingly, test determi-
nation simply is operative, if a considerable amount of product below examination
liquefies in aqueous solution. Therefore, maximum tests remain conducted in water.
Dimethyl-sulfoxide (DMSO) is recurrently combined to test combinations for
upsurge solubility of the test compound in water (Thomas 2007).

The price of specialized chemicals used for screening big libraries of lonely
mixtures can be costly. Therefore, frequent companies and researchers reduce
funds by screening enormous archives using combinations of compounds. Though,
this could prime for misleading consequences. For case, improper assertive
consequences might ascend afterward combination under test covers a huge quantity
of distinct compounds through a frail activity (Tate and Ward 2004). As a conse-
quence, the mixture delivers a decent overall reply to trial. Therefore outcome would
be erroneously unspecified through specialist by way of a mixture having a sturdily
vigorous composite. This avoids active complexes obligatory to object accordingly,
allowing a decent test reply. Due to the strength of the trial composite, this
incorporated in the test compound leads to incorrect acceptances and rejections.
As spending furthermore great application of trial compound similarly contributes
incorrect confidence since attentiveness determined non-discerning obligatory to
object. Equally, unreasonably minor deliberation can stretch an untruthful deleteri-
ous after an insufficient amount of dynamic trial complex been extant toward
fixation of the object. Supplementary fundamentals of precisions like-wise ascend
in particular kinds of micro-assay.

The micro-assays castoff in HTS might remain categorized as aimed at suitability
as any biochemical founded assays. Biochemical examines are depend on the
collaboration of trial complex over certain biochemical things inaccessible after
cells like protein molecules, chemical messenger and ligand-activated transcription
factors, whereas complete cell tests remain founded through the usage of inte-
gral compartments. Though, it’s emphasized that HTS is castoff as a chief moni-
tor for vigorous mixtures. Some vigorous mixtures (hits) that appear routine of
extra inspection requirement remain exposed to a wider diversity of action trials
earlier which might be measured for experimental expansion (Broach and Thorner
1996).
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9.2.2 Biochemical Assays

These are also called as mechanism founded tests generally, it is established on
obligatory of ligand to a receptor or the reserve of an enzyme-catalyzed response by
an object which has been recognized using existence relevant to stated ailment phase
(Singh et al. 2006). Target has been typically separated as of cell and is not at all
extended portion of a cell. The experimental complex has been bind to object, which
is counted through the usage of radioactive elements plus conventional investigative
approaches like spectroscopic means of a variety of protocols similar by determining
fluorescence in scintillation proximity assays (SPA). SPA usage resin globules
whose exterior has remained contrived, therefore it accomplished binding to the
wide variability of constituents. Bead too contains a sparkle that only fluorescence at
the time of low-slung energy radioactive source ascends inside about 20 mm of the
exterior of the beads (Glickman et al. 2008). The radioactive elements cast off in
SPA tests release little energy discharges that need exact small trails in water
solution.

Numerous SPA enzyme-based assays are conducted using radio-labeled ligands.
Assume, for instance, an enzyme reserve assay established on the practice of a
substrate A-B aimed at enzyme wherever, B as a serving of substrate which
comprises the radioactive element and A comprises a termed capture cluster,
which covers constructions bind to SPA globules. The action of substrate A-B
through an enzyme along with certain significant co-enzymes in the absenteeism
of inhibitor, consequences in the breakdown of entirely substrate A-B. After SPA
beads remain, further not any fluorescence is detected as individual non-radioactive
A binds to the beads (Acker and Auld 2014). Superior the reticence, fewer the
fragment of substrate A-B. Subsequently, during SPA beads are added, the
non-reacted radioactive substrate A-B and the non-radioactive A fix to beads.
Subsequently, the strength of fluorescence is in a linear relationship with bead-
bound A-B. Simply it means, maximum fluorescence, maximum the mark of
enzyme inhibition of substrate A-B by the trial complex (Acker and Auld 2014).

9.2.3 Whole-Cell Assays

When the condition of disease is not been clear, in such cases, whole-cell assays
have favored, which also gives many other benefits upon biochemical investigations.
This test might recognize a composition that can work on sites except for the target
site. Such test carried out below situations those are further identical come across if
the test sample remained used in a patient. Those test compounds having a more
hydrophobic property, which leads to toughly binding properties with serum albu-
min and in such case compound not crosses the cell membrane until it’s been active.
So it has been comparatively easy to find these compounds and eradicate them from
the examination. Besides, poisonous test compounds are frequently recognized for
their consequence on the cells used in the test.
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Cell-based assays aimed at HTS can be classified below subsequent classes
(Du et al. 2016). Signal transfer through activated cell-surface receptors is regulated
by the second messenger assay. The speed of measurement of signals infraction of
seconds is done by the second messenger assay. Second messenger assays typically
measure fast passing fluorescent signals that arise in a fraction of seconds or
milliseconds. Several luminous molecules are recognized to reply variations in
intracellular concentration of calcium ion, and several other parameters, henceforth
they are used for receptor stimulus and ion-channel initiation in an extension of
second messenger assays. The improvement of hydrophobic voltage-sensitive
probes has been serving the progression of the screening method for ion-channel
in the discovery of a new drug. A response from the transformation level for a cell
has been regulating by reporter gene assays. It specifies the occurrence or deficiency
of a genetic factor creation that imitates variations in an indication transduction
corridor. Such measurement of the reporter gene is generally conceded through
biological approaches just like by determining the activity of the enzyme.

Reagents perform always vital part during the chemical synthesis or testing of
compound, HTS is also no exemption in this regard. Characterization and optimiza-
tion of reagents are essential before usage. The study revealed that nucleic acid,
aptamers which bind to further molecules with greater affinity. Therefore this nucleic
acid may be used as useful chemicals in competition binding HTS assays to
recognize and improve minor ligands to protein targets. Speed of aptamer identifi-
cation as compared to other more aptamer-protein interaction surfaces, the greater
affinity of other protein targets towards aptamer. These are a few important benefits
of aptamers usage in HTS assays. Aptamers could be predominantly beneficial in
HTS assays through protein targets, which have no recognized obligatory followers
like orphan receptors.

A hit arises after the action of a test composite showing significance better than
the random smallest worth fixed through the agents by utilizing that assay. Like an
enzyme reserve test, a hit can record during the action of the enzyme is reserved
through the appeared worth of 60 percent. It’s significant to establish standards
intended for a hit formerly conduct the assay subsequently hit tolls remain repeatedly
cast off as per the extent of the rationality of test method. Hit duties remain distinct as
the number of vigorous mockups exposed by test stated using the percentage of
whole models cast off now that monitor. Tests through standards of around 0.2% hits
are generally stared as existence usable. Nevertheless, great hit tolls might be of use
after emerging an assay (Du et al. 2016).

9.2.4 Automatic Methods of Library Generation and Robotics
in HTS

Conventional carbon-based mixture and tests remain work rigorous. Beginning of
HTS and combinatorial chemistry proceeds engaged to amplified usage of mechani-
zation in drug-related chemistry through numeral companies generating “of the self”
involuntary complex synthesizers then HTS analyzers, also norm constructed
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machines. Synthesis is regularly conceded about in sequence of computerizing
monitored phases using the suitable arrangement of reaction vessels at stand-alone
work locations (Michael et al. 2008). Operations in the synthesis like filling the
reaction containers with chemicals and diluents, pipetting, washing, warming, sepa-
ration, etc. usually maintained by a mechanical limb fixated through a software
governing synthesizer. Mechanical arms and pathway organizations are cast-
off toward rearrangement of microplates among work locations. Auto analysis
remains supported in an identical overall way, which was, at work stations using
mechanical supports, etc. to hand over models and chemicals.

Robotic HTS systems recurrently need humidified CO2 incubators and are
surrounded by tissue culture work. Like to gathering track manufacturing,
microplates are accepted route in a consecutive way toward successive dispensation
components. Every one component has its individual modest preference and keeps
the robotic arm (permit plates to the subsequent unit) and microplate treating
scheme. Consequently, by every component, a unique phase of the assay is accom-
plished. Such preparation, attached through Windows NT™ (Microsoft, Redmond)
along with ethernet TCP/IP linkage amongst components, delivers a considerable
modest and extra firm stage than robot-centric HTS systems (Li Pira et al. 2010).

9.2.5 Profiling

The first objective of HTS is the identification of little authenticated HITS per big
compound libraries. The conclusion as to whether a specific hit is a rate pursuing as a
chemical lead in a drug discovery development rest on numerous influences, signifi-
cant ones present chemical features and its pharmacodynamics and pharmacokinetic
properties. The technology involved in reduction, mechanization, and assay data
desired for HTS is ongoing to improve quickly, and as it does so, the laboratory
provisions associated with HTS facilities are progressively developing their
capabilities external their key determination of recognizing hits (Zhong et al.
2015). As this occurs, it turns out to be conceivable for HTS methods to be applied
to additional miscellaneous compound profiling assays linking not only to the target
discrimination of the compound libraries but also to their pharmacokinetic
characteristics. Progressively, hence, initial compound summarizing jobs on hit
compounds are actuality conceded out in the HTS laboratory wherever the essential
technical proficiency is focused. Minor devoted robotic workstations are desired,
somewhat than the fast but, stubborn factory-style robotic assembles used for large-
scale HTS. It is clear that pharmacological outlining will be a growing activity of
HTS units in upcoming, and will help to add more cost in the drug discovery
sequence (Hann and Oprea 2004).
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9.2.6 Screening Expense and Outsourcing Screening

Uncommonly, a certain corporation desires to screen 100,000 compounds each day
domestic. The motive behind this comprises boundaries of several drug discovery
procedures, apparatus/robotic necessities, infrastructure investment, and insufficient
pre-condition to participate in altering technologies. Certain definite charges
connected to screening are assay chemical charges (chemicals, cell culture
overheads, etc.), microplates expenses, pipette tip box charges, screening worker
expenses, record management/investigation period, databank budgets, robot earning
charges, and workroom interplanetary expenses. Owing to combine difficulties of
overhead, a rising amount of arrangement screening corporations are developing
(such as Tropix, Panlabs, and Evotec). The facilities provided by these corporations
regularly consist of assay expansion with screening, statistics examination, besides
additional archive establishment necessities for HTS (Wildey et al. 2017). Contract
screening corporations are also being used for their capability to deliver assay data
over-accurate fast development period. They attain this by running 24-hr changes
and using HTS robotic technologies. This retains the advanced value, additional
registered minor screening internally, and permits the upkeep of a high ratio of hit
production resulting since the authorized primary screening. The cost of total
screening such a large compound library for a single assay might amount to over $
300,000 (Liu et al. 2004; Mayr and Bojanic 2009).

9.3 QSAR Theories

QSAR studies have a very important application in modern chemistry and biochem-
istry. QSAR helps in finding the compounds with desired properties using chemical
information and its association with biological activity. The physicochemical
properties such as partition coefficient, and presence or absence of certain chemical
features are taken into consideration (Roy et al. 2015). QSAR attempts to correlate
structural, chemical, statistical, and physical properties with biological potency
using various methods. QSAR models are used to predict and classify the biological
activities of new chemical compounds. QSAR guides the process of lead optimiza-
tion and also used as a screening and enrichment tool to remove the compounds that
do not possess drug-likeness properties or predicted toxic (Tropsha 2010).

9.4 Molecular Descriptors Used in QSAR

Molecular descriptors are a numerical representation of chemical information pres-
ent within a molecule (Caruthers et al. 2003). There are many parameters such as
hydrophobic, electronic, and steric parameters, as well as associated descriptors used
for QSAR (Roy and Das 2014). Descriptors associated with hydrophobic parameters
are Partition coefficient (log P), Hansch’s substituent constant (π), hydrophobic
fragmental constant (f), distribution coefficient (log D), apparent log P, capacity

194 P. P. Gupta et al.



factor in HPLC (log k, log kW), and solubility parameter (log S). Hammett constant
(σ, σ+, σ -), Taft’s inductive (polar) constant (σ*), ionization constant (pKa, ΔpKa),
and chemical shifts are the descriptors used to define electronic parameters. Simi-
larly, steric parameters are defined by Taft’s steric parameter (Es), molar volume
(MV), Van der Waals radius and volume, molar refractivity (MR), and Parachor.
Atomic net charge (Qσ, Qπ), super delocalizability, energy of highest occupied
molecular orbital (EHOMO), energy of lowest unoccupied molecular orbital
(ELUMO) are known as quantum chemical descriptors. Spatial descriptors such as
Jurs descriptors, shadow indices, radius of gyration, and principle moment of inertia
are also used in developing a QSAR model. The information about molecular
descriptors depends on the representation of a molecule and algorithm used for
calculations of descriptors.

9.5 Methods of QSAR

Several methods are available for QSAR analysis which depends on the following
criteria or factors related to study (Fig. 9.1):

1. Structural features or parameters (2D structure of a chemical compound to 3D
conformations) that are derived from a series of molecules.

Fig. 9.1 QSAR methodology, mathematical models, and validation procedures
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2. Mathematical approach used for establishing the relationship between the struc-
tural parameters and biological activity. Figure 9.1 explains the methodology of
QSAR employed for any general QSAR type. Structures are fragmented to
establish their relevant descriptor properties. With the help of various mathemati-
cal analysis tools, the data is trained to establish a mathematical QSAR model,
which will correlate with the biological activity. The model developed is
validated by various validation methods and tested for external prediction.
Finally, a robust QSAR model is established that takes into account the relevant
parameters for the biological activity for the given set of compounds.

9.5.1 2D QSAR Methods

There are many approaches used for 2D QSAR models. Different types of models
can be used for the generation of any 2D QSAR. This approach can predict the
biological activity and other molecular properties of compounds without having any
experimental data related to the activity. QSAR analysis is based on computational
and mathematical approaches, and it requires no use of in vivo and in vitro
experiments, which are costly and time-taking. There are many related QSAR
models as given below:

1. Free energy models—Hansch analysis: linear free energy relationship (LFER).
2. Mathematical models.

(a) Free Wilson analysis.
(b) Fujita-Ban modification.

3. Other statistical methods.
(a) Discriminant analysis (DA).
(b) Principal component analysis (PCA).
(c) Cluster analysis (CA).
(d) Combine multivariate analysis (CMA).
(e) Factor analysis (FA).

4. Pattern recognition.
5. Topological methods.
6. Quantum mechanical methods.

9.5.1.1 Free Energy Models—Hansch Analysis Linear Free Energy
Relationship

In 1969, Corwin Hansch extended the concept of LFER to describe the effectiveness
of a biologically active molecule. It is used to quantify the therapeutic response of a
drug molecule on the biological system (Hansch 1969). It takes into account the
effect of various substituents in electronic, steric, hydrophobic, and dispersion data
in the non-covalent interaction of a compound and target. In this approach, a set of
parameters (descriptors) derived from a series of compounds and then used for
activity prediction. The distribution of a drug depends on the partition coefficient
(lipophilicity, log P) of the drug molecules. Hansch proposed that the biological
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activity of a drug molecule depends on two parameters, i.e. bulk of substituent
groups (steric factor) and electron density on an interacting group (electronic factor)
(Roy and Das 2014).

9.5.1.2 Mathematical Model

Free Wilson Analysis
It is a structure-activity analysis method that considers the contribution of various
structural fragments to the biological activity of a molecule. It is used to find the
presence or absence of a particular structural feature in a molecule that can be used as
a parameter for the determination of biological activity. This mathematical model
considers the symmetry equation to minimize linear dependency between variables.
In this method, the structural features of a molecule are used to predict biological
activity. But in the case of Hansch analysis, physicochemical parameters of the
molecules are used to predict the biological activity (Kubinyi 1988).

Statistical Methods
Statistical methods such as multivariate analysis, classification, and regression
analysis are used for interpretation and theoretical prediction of biological activity
for new compounds. Statistical methods are very useful in finding a correlation
between variables, building a model between associated variables, and also in
assessing its accuracy. Regression generates a model in the form of an equation
which represents a relationship between dependent variables or output variable
(usually activity) in terms of independent variables or input variable (descriptors).
This equation can be used to predict the biological activity of unknown set which can
be further helpful in the screening of potential compounds with a good predicted
activity (Everitt and Dunn 1992).

Discriminant Analysis
Discriminant analysis is used to separate molecules based on their constituent
classes. It finds a linear combination of factors that best discriminates between
different constituent classes. In this method, molecules are categorized as active
and inactive based on the value of their biological activity parameters (Fisher 1936).

Cluster Analysis
Clustering is the process of dividing a set of objects into groups so that each cluster
contains highly similar objects, and object in one cluster are dissimilar objects of
other clusters. When cluster analysis is applied on a compound data set, the number
of clusters provides information about the number of structural types present in a
compound set. A diverse subset of compounds can be prepared by taking one or
more compounds from each cluster (Kriegel et al. 2011). It is applied to sample
diverse subset of compounds from a larger compound dataset. Hierarchical cluster-
ing, k-means clustering, and non-hierarchical clustering are the methods used for
compound clustering.
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9.5.1.3 Principal Component Analysis (PCA)
The number of variables used to describe an object is known as dimensionality. PCA
is used to reduce the dimensionality of data set when a significant correlation exists
between some or all of the variables (descriptors). PCA gives information about the
significant principal components and represents most information on independent
variables (Shaw 2003).

9.5.1.4 Quantum Mechanical Methods
• Quantum mechanical methods are used to analyze the electrostatic potential and

ionization potential. In this method, electronic descriptors are derived from
molecular wave function and used in the QSAR analysis (Roy and Das 2014).
Hence there is a need for more advanced QSAR methodologies. There are certain
demerits of predicting biological activity of compounds from QSAR analysis as it
does not provide detailed and accurate knowledge about the mechanism of
biological response and may also lead to wrong predictions associated with the
biological activity of a compound.

9.5.2 3D-QSAR

3D-QSAR generates the quantitative relationship between the biological activity of a
set of compounds and their 3D structural properties (Fig. 9.2). 3D-QSAR uses a

Fig. 9.2 3D-QSAR methodology: molecular alignment, generation of descriptors and model
building
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probe to determine values of 3D properties such as steric and electrostatic of
molecules and then correlate and build a relationship model between 3D descriptors
of molecules and its biological activity (Verma et al. 2010).

9.5.2.1 Molecular Shape Analysis (MSA)
MSA is an approach that includes conformational flexibility and molecular shape
data in 3D QSAR analysis. In MSA, the 3D structure of many compounds is
superimposed to find the commonly overlapping steric volume, and common poten-
tial energy fields between superimposed molecules are also identified to establish a
correlation between the structure and activity of a set of compounds. This analysis
also provides structural insight into the shape and size of the receptor-binding site.

9.5.2.2 Self-Organizing Molecular Field Analysis (SOMFA)
SOMFA divides the entire molecule set into actives (+) and inactive (�), and a grid
probe maps the steric and electrostatic potentials onto the grid points. The biological
activity of molecules is correlated with steric and electrostatic potentials using linear
regression.

9.5.2.3 Comparative Molecular Field Analysis (CoMFA)
CoMFA is a grid-based 3DQSAR technique (Cramer et al. 1988). It assumes that in
most cases, the drug–receptor interactions are governed by non-covalent interaction.
COMFA considers that a correlation exists between steric and electrostatic fields of
molecules and their biological activity. Here, the steric and electrostatic fields of the
ligands at the various grid points in a 3D lattice are calculated. Partial least square
(PLS) analysis is used to correlate steric and electrostatic fields with biological
activities of molecules.

9.5.2.4 Comparative Molecular Similarity Indices Analysis (CoMSIA)
In COMSIA, molecular similarity indices serve as a set of field descriptors. This
technique of 3D QSAR is used to determine the common features that are important
for binding with the target molecule. Here, not only steric and electrostatic features,
but also hydrophobic fields, hydrogen bond donors, and hydrogen bond acceptors
are also taken into account for predicting the biological activity of a compound.

9.5.2.5 3D Pharmacophore Modeling
In pharmacophore modeling, the features governing the biological activity are
determined from a set of known drugs that binds to a specific target. The entire
structure of a molecule is not responsible for carrying out the biological activity. It is
the only pharmacophore, which decides the biological response. Pharmacophore
modeling is used for searching new potential drugs that share the same
pharmacophore as available in other biologically active drugs of the same target.
Pharmacophore models are hypothesis on the 3D arrangement of structural features
such as hydrophobic groups, aromatic rings, hydrogen bond donor, and acceptor.
Structurally diverse molecules bind with the receptor in a similar pattern, and their
pharmacophore interacts with the same atom or functional groups of the receptor
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molecule (Virupaksha and Alpana 2012) (Fig. 9.3). In the 3D QSAR model,
molecules are aligned and superimposed with the core structure, and the molecular
descriptors are calculated based on their conformation in the 3D space. The
descriptors are correlated with biological activity, and a mathematical model is
established. The descriptors in the 3D QSAR are the steric properties of the
molecules, electrostatic forces, and force field descriptors.

Advantages of 3D QSAR over 2D QSAR

1. No dependent on experimental values.
2. Can be applied to molecules of unusual substituents.
3. Not restricted to molecules of same structural class as in case of pharmacophoric

mapping.
4. Predictive ability.

9.5.3 4D-QSAR

The 4D-QSAR considers the conformational and alignment flexibility for training
sets of structure-activity data by performing ensemble averaging. The fourth dimen-
sion in 4D-QSAR considers that each molecule can be represented by an ensemble
of conformations, orientations, and protonation states (Damale et al. 2014). The 4D
QSAR takes into account the conformational analysis of the molecule (Fig. 9.4). The
different conformations of the molecules in the 3D space are designed and based on
those conformations, the 3D descriptors are calculated.

Fig. 9.3 3D-QSAR:
expressing each molecule in
its steric and electrostatic
force field
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9.5.4 5D-QSAR

The fifth dimension in 5D-QSAR is the possibility to represent an ensemble of up to
six different induced-fit models (Ducki et al. 2005). The 5D QSAR adds a fifth
dimension to the QSAR models by taking into account the docked complexes of the
molecules with their receptors along with their different conformations. This leads to
the development of active site specific QSAR models that help to identify active site
molecular fragments that are responsible for the biological activity of the molecule.

9.5.5 4D vs 5D-QSAR

The 4D-QSAR and 5D-QSAR are the multidimensional QSAR used in drug discov-
ery. The performance of 5D-QSAR is evaluated using the analyzing residual test. In
4D and 5D-QSAR, multiple representations are used as ensembles and native
conformations are chosen from a set of conformations using the concept of genetic
algorithm (Damale et al. 2014). It is one of the best theoretical approaches to assess
the relationship between substituent’s physicochemical property and biological
activity. Much advancement has occurred in the field of QSAR study, and a lot of
molecular descriptors have been identified. COMFA and COMSA are the 3D-QSAR
approaches, which are used for studying a large number of 3D descriptors for
molecules to find a QSAR model. 3D-QSAR approaches have a certain limitation,
which can be overcome by the use of 4D, 5D, and 6D-QSAR. 5D-QSAR analysis
can be performed using Biographics Laboratory 3R, Quasar, and Raptor. 6D-QSAR
has been developed to include one more parameter/dimension in the analysis,
i.e. salvation function for different salvation states (Damale et al. 2014).

Fig. 9.4 4D QSAR:
generating different
conformations of molecule in
its steric and electrostatic
force fields
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9.6 ADME Screening

ADME is well defined and studied terminology in pharmacology and describes the
disposition of pharmaceutical compounds in an organism. In pharmacology, the term
Pharmacokinetic gives an idea about ADME/T of a drug molecule. More than 50%
of drug candidate falls out during the clinical trial experiments due to their poor
ADME properties. Modern techniques and advancements to the entire drug discov-
ery process have generated enormous potential therapeutic molecules and are in the
pre-clinical ADMET assessment (Balakin et al. 2005; Morya et al. 2012). The
complex route of any new chemical entity (NCE) to influence its target and achiev-
ing an optimum therapeutic index, commonly engages with the passage through
numerous barriers and survival into complicated biological systems too. This collec-
tive process determines the bioavailability of NCE and several factors influence its
pharmacokinetic properties (Bocci et al. 2017; Prentis et al. 1988). Pre-clinical
ADME studies help in the identification of poor performer from the pool of chemical
entities and reduce the breakdown induced by PK, yet the drug toxicity continues a
big issue to the filtered one (Schuster et al. 2005). Non-optimal ADME and toxicity
(ADMET), in a pair may end up with late-stage collapsation, accounts for a massive
desecrate of time, money, and resources, unlucky cases like rofecoxib (Vioxx) and
troglitazone (Rezulin) persuades the paradigm to fail early, fail cheap (Bocci et al.
2017; McNaughton et al. 2014).

To reduce the late-stage failure of a drug candidate, and early reach in the market,
extensive studies of ADME processes is conceded out at an initial stage of drug
discovery phases. Computational approaches are still pursued by biopharmaceutical
investigators to foresee the consequences of drugs in the organism, and to determine
the premature liability of toxicity (Singh and Dwivedi 2019). Prediction and simula-
tion of various ADME properties are significantly less in cost than in vitro screening
(Czarnik and Mei 2007; Van de Waterbeemd and Testa 2007). Currently, numerous
pharmaceutical industry, third-party consultancy services, research groups, and
academic institutions have their web-based chem-informatics services, private
databases of compounds, ADME prediction tools and online servers deployed via
the mode of standalone applications, Internet of Things and cloud-based applications
for the users and giving medicinal chemists easy access to web-based and stand-
alone based easy screening.

9.6.1 Absorption

How much of the drug is absorbed and how quickly? (Bioavailability). Absorption
defines the amount of drug is absorbed, and its time taken to be absorbed, the amount
of drug reaching the systemic circulation in an unchanged form is called bioavail-
ability. Drugs cross biological membranes by facilitated diffusion down the concen-
tration gradient, which involves two types of membrane transport proteins: carrier
proteins and channel proteins (Bocci et al. 2017; Jenkinson 1991). Factors affecting
the absorption of the drug are as discussed below;
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9.6.1.1 Biologic Factors
Several drugs need to cross one or more cell membranes to reach their effective site
of action. A most common feature of all cell membranes is the phospholipids layer
about 10 mm in thickness, a lipophilic region facing inside and a hydrophilic head
outside, giving a sandwich effect. The cell membranes are semi-permeable with
lipoid sieve region and aqueous channels and a variety of special carrier molecules
(Jenkinson 1991).

9.6.1.2 Passive Diffusion
Molecules less than 150–200 molecular weights were supported to pass through
channels using passive aqueous diffusion in tissues. In an exceptional case, where
endothelial capillary linings with large pore size help in a molecule with 20–3000
molecular weight to pass. Due to the absence of these large size pores in the brain
capillaries, it makes difficult to big size molecule pass through. Passive lipid
diffusion is the uttermost significant and widely used adsorptive mechanism. Lipid
soluble drugs get dissolve into these membranes and are induced by concentration
gradient across the membrane (Cocucci et al. 2017).

9.6.1.3 Carrier-Mediated Facilitated Transport
Drugs those are structural analogs of endogenous compounds for which specific
carrier membrane is well established and known uses carrier-mediated assisted
transport system. For example, anticancer drug methotrexate is structurally similar
to folic acid and is successfully transported by the folate membrane transport system
(Pratt et al. 1990).

9.6.1.4 Local Blood Flow
As the local blood flow continuously maintains the concentration gradient, important
for passive diffusion hence an important factor for the rate of absorption. In the case
of orally administered drugs, the blood supply demanding the gut passes via the liver
before entering the systemic circulation and achieving its maximum bioavailability.
Since the liver is the most vital site for the drug metabolism, and this first-pass
reaction may diminish the quantity of drug reaching the target tissue and in achieving
its therapeutic challenges. In certain cases, the first-pass effect may result in the
activation of prodrugs, too (Jenkinson 1991; Pratt et al. 1990).

9.6.1.5 Gastric Emptying Time
It varies from patient to patient and adds significantly to intersubject uncertainty in
drug absorption. Numerous factors such as meal composition and consistency, phase
of the menstrual cycle, body position, smoking, gender, and time of day the study is
performed are dependent variables and used to calculate the gastric emptying values
(Vasavid et al. 2014).

9.6.1.6 pH-Partition Theory
For an ideal drug candidate, it should be able to cross the membrane barrier and must
be soluble in both the phases, i.e. lipid layer and aqueous phase. For better
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absorption and distribution, a drug should contain polar, non-polar characteristics or
either weak acids or bases. The solubility of the drugs is controlled by the following
factors such as drugs with either weak acids or weak bases, pKa of a drug, pH of the
bloodstream, pH of GI tract fluid, and the membrane lining of the GI tract (Shore
et al. 1957). In 1957, the pH-partition theory was explained, and the extent of drug
transfer or drug absorption under the influence of GI, pH, and drug pKa. The ration
D is calculated by Eq. (9.1).

D ¼ Total Concentration in Blood
Total Concentration in GI tract

ð9:1Þ

9.6.1.7 Ion Trapping
It is the condition, which favors the non-ionized form of the drug in enhancing its
drug permeation (absorption). In the case where weak acidic drug (aspirin; pKa 3.5)
crosses the gastric mucosa at pH 2.0, further reverts to an ionized form within the cell
at pH 7.0, and therefore deliberately it passes to the extracellular fluid (Sharma and
Sharma 2011).

9.6.1.8 Chemical Modifications Affect the Absorption
Modification of drug structure without altering its pharmacological activity is one of
the profitable ways to improve the absorption of a drug. The modification has been
commonly used to modify the physicochemical property of a drug such as molecular
weight, molecular size, pKa, solubility, lipophilicity (hydrophobicity), hydrophilic
nature, and related activity. For example, chemical modification of salmon calcitonin
to elcatonin (bond replacement from (C–N) to (S–S)) shows better bioavailability of
elcatonin over salmon calcitonin (Liu et al. 2019).

9.6.1.9 Optimizing Absorption
Absorption of a molecule is highly dependent on above discussed factors,
optimizing each factor including chemical modification is time-consuming and
tedious task. Many computational methods were developed to understand and
support in optimizing the drug absorption rate. Log Po/w estimation a classical
descriptor was designed with a various recital on diverse chemical sets. In
SwissADME, five predictive models help in optimizing the compound lipophilic
activity i.e. XLOGP3 using a knowledge based library. WLOGP is an atom based
method for lipophilicity prediction that uses the fragmental system of Wildman and
Crippen. MLOGP prediction is based on the topological method, whereas the SILI
COS-IT is based on a hybrid method that uses fragments and topological descriptors
both. Another lipophilicity prediction approach, iLOGP depends on free energies of
solvation in n-octanol and water. Optimizing all the properties is a major and tedious
task and may fail to achieve the desire pharmacological target (Daina et al. 2017).
Considering the optimizing lead molecules physicochemical properties like solubil-
ity, lipophilicity (hydrophobicity), pKa, and hydrophilic is a trial and error based
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approach, Computational optimization helps in time saving and reduce in false
landing to the desire target.

9.6.2 Distribution

A drug is distributed through the blood system to reach a target site, they may also
distribute to different muscles and organs. The distribution of drugs mainly depends
on the binding and free bound form from enzymes and proteins present in the
bloodstream. The effective distribution of a drug is affected by its binding to the
plasma proteins. If a less amount of drug binds to plasma proteins, then a higher
amount of drug disseminates across cell membranes and achieve higher bioavail-
ability. Human serum albumin, lipoprotein, glycoprotein, and α, β‚ and γ globulins
are the most common/typical proteins into the blood that drugs bind (Bocci et al.
2017). The rate of distribution is highly affected by the molecular size, smaller ones
pass through easily and have a high rate of distribution, whereas one with larger
molecular size finds it difficult to cross biological membranes and hence have a
lower rate of distribution. Polar drugs (e.g. penicillin class) are not capable to cross
biological barriers, except they are taken by pinocytosis (e.g.: insulin) or either with
the help of carrier proteins (Bocci et al. 2017; Thomas 2008). There are numerous
factors that affect drug distribution.

1. Tissue permeability of the drug.
(a) Physiochemical property of a drug.
(b) Physiological barriers to diffusion: simple capillary endothelial barrier,

blood–brain barrier, simple cell membrane barrier, placental barrier, cerebro-
spinal fluid barrier, and blood–testis barrier.

2. Organ/tissue size and perfusion rate.
3. Binding of drugs to tissue components: binding to blood components, and

extravascular tissue proteins.
4. Miscellaneous factors: age, obesity, diet, pregnancy, and drug interaction (Pavan

2013).

9.6.2.1 Optimizing Distribution
Appropriate absorption and distribution are prerequisites for a chemical entity to act
as a drug. Poor bioavailability and pharmacokinetics are major concerns and hurdles
in drug design processes. Gastrointestinal absorption and blood–brain barrier per-
meability are two vital pharmacokinetic aspects which are essential to estimate at
different stages of the drug discovery process (Daina et al. 2017; Daina and Zoete
2016). Computationally Boiled-Egg method helps in the prediction of gastrointesti-
nal absorption and blood–brain barrier (BBB) permeation (Daina and Zoete 2016)
and Lipinski filter helps in stabilizing the drug-like properties (Lipinski et al. 2001).
Factor like solubility is responsible for solute dissolution in an aqueous/solvent
medium to achieve a homogenous system. It is a vital parameter to study and
optimize the drug concentration in systemic circulation for an anticipated
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pharmacological response or to achieve its desired bioavailability. Technically
solubility of any compound can be improvised by the following ways and they are
categorized into physical modification, chemical modifications, and other
techniques. In physical modification: particle size reduction akin to nanosuspension
and micronization. Crystal modification such as cocrystallization, polymorphs, and
amorphous is form of a compound. The use of a buffer, chemical derivatization,
complexation, salt formation, and change of pH comes under chemical modification.
Miscellaneous methods include the use of novel adjuvant like surfactants,
solubilizers, co-solvency, and supercritical fluid process (Savjani et al. 2012). 2D
and 3D Quantitative structure-property relationship (QSPR) and quantitative
structure-activity relationship (QSAR) based models help us to identify the suitable
functional group for desire activity and their possible interaction in optimizing drug-
related affinities. Significant advancement has been carried out in computational
based methods to predict the solubility of a compound by considering numerous
models from high-throughput assay based model, highly accurate small scale ther-
modynamics based measurements using pure water or in the non-complex buffer,
molecular dynamics based simulations to study and understand the compound
behavior in the complex system (Bergström and Larsson 2018).

9.6.3 Metabolism

Once the drug is entered into the body of an organism, the process of catabolism and
anabolism commonly known as metabolism is started with the help of numerous
enzymes supported by various chemical moieties, and solvent systems. The main
objective of the drug metabolism is to convert these drug compounds into a more
polar, water-soluble intermediates, or final products that can be easily excreted from
the organism’s body (Thomas 2008). The metabolism phase is divided into two
parts.

9.6.3.1 Phase I
Usually, the liver is the prime site for drug metabolism, including other organs such
as lungs and kidneys that also carry out drug metabolism. Phase I metabolism
reaction is carried out in the liver where oxidation, reduction, hydrolysis, cyclization,
and decyclization process are done. In phase I reaction, the C–H bond converts into a
C–OH, transforming an inactive compound to an active form, exhibiting pharmaco-
logical actions including conversion of non-toxic compounds into a toxic one. A
variety of enzymes binds the drug or NCE as their substrate and introduces reactive
and polar groups into it. The most common class of enzyme cytochrome P-450
includes all the following processes listed below (Akagah et al. 2008; Guengerich
2001; Schlichting et al. 2000).
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Oxidation
Reactions resulting in the removal of hydrogen and, or addition of oxygen is known
as an oxidation reaction. Cytochrome P450 monooxygenase, flavin-containing
monooxygenase, alcohol dehydrogenase, aldehyde dehydrogenase, monoamine oxi-
dase, and peroxidases enzyme system carry out the oxidation process in an organism.

Reduction
Reactions resulting in the removal of oxygen and, or addition of hydrogen are known
as a reduction process, the following enzyme carries out a reduction process in an
organism.

NADPH-cytochrome P450 reductase.
Reduced (ferrous) cytochrome P450.

Hydrolysis
Hydrolysis is a reaction in the presence of water where one compound breaks into
two separate compounds. Simultaneously the water molecule splits in two and
transfers the hydrogen atom to one compound, and the hydroxide group to another
is known as hydrolysis. In a cytochrome P-450, a reliant mixed-function oxidase
system catalyzes a hydroxylation process within its substrates as a common modifi-
cation. The enzyme complexes act to integrate an oxygen atom into non-activated
hydrocarbons, i.e. the addition of hydroxyl groups or N–, O–, and S-dealkylation of
substrates (Schlichting et al. 2000).

O2 þ NADPHþ Hþ þ RH ! NADPþ þ H2Oþ ROH

9.6.3.2 Phase II—Conjugation
Phase II is commonly known as the conjugation process, and the reactions include
stimulated xenobiotic metabolites are associated with charged species like as gluta-
thione (GSH), sulfate, glycine, or glucuronic acid. The phase II reactions produce
less reactive products compared with their substrates. Phase I products associate the
inclusion of highly polar molecules to a functional group and form more soluble
compounds, which can be easily eliminated (Akagah et al. 2008; Guengerich 2001;
Schlichting et al. 2000).

9.6.3.3 Factors Affecting the Metabolism of a Drug
Numerous factors may affect the influence of drug metabolism such as:

1. Chemical factors: (a) Enzyme induction, (b) Enzyme inhibition,
(c) Environmental chemicals.
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2. Biological factors: (a) Age, (b) Diet, (c) Sex difference, (d) Species difference,
(e) Strain difference, (f) Altered physiological factors.

3. Physiochemical properties of a drug (Jenkinson 1991; Pratt et al. 1990).

9.6.3.4 Optimizing Metabolism
Drug metabolism is an important link between chemistry and biological reactions,
yet a complex mechanism. Drug molecule goes under a series of chemical
transformations like in Phase I oxidation, reduction, hydroxylation, dealkylation to
conjugation process of reaction followed by in phase II reactions predominantly
conjugation reactions like glucuronide, sulfate, and acetate conjugation.

The optimization process of metabolism reaction can be counteracted by using
the prodrug concept and alteration of the physicochemical properties of a lead
compound (Singh 2018). Chemical alteration, such as the introduction of the ester
group can be performed to increase the metabolic rate. N-dealkylation can be
prevented by replacing N-methyl group by N-t-butyl group and oxidation of aro-
matic rings be reduced by the introduction of –Cl, –NR3, –COOH and sulfate to
decrease the metabolic rate. Prodrugs are compounds that are biologically inactive
(or maybe less active) but are metabolized to a bioactive molecule known as a
metabolite. A number of prodrugs have also been designed to be site specific and in
order to improve the biopharmaceutical, pharmacokinetic, and poor drug-like
properties (Sanches and Ferreira 2019). Salicylic acid is one of the oldest analgesics
known. However, its use can cause gastric irritation because of free carboxylic acid
functionality present. Masking of the carboxylic group will be carried by acetylation
reaction to form an acetylated prodrug known as aspirin. Aspirin is known for
producing less degree of gastric irritation (Mahfouz et al. 1999). This reduces the
amount of salicylic acid in contact with the gut wall lining. RH1 anticancer drug,
RH1 therapy is based on the prodrug conversion by cancer cells into the more active
by enzyme NQO1 (Gupta et al. 2017; Parkinson et al. 2013).

9.6.4 Excretion

The process of removal or elimination of unwanted products or metabolic waste
from an organism’s body is called excretion. In vertebrates, the process is principally
carried out by the lungs, kidneys, and skin (Beckett 1987). The metabolized or
un-metabolized components should be excreted from the organism’s system. The
overall complex process of elimination is carried out via the kidneys as urine, feces,
and sometimes through sweats.

9.6.4.1 Factors Affecting ADME Properties and Modeling Process
To be an effective and pocket-friendly drug, a sufficient amount of a drug must reach
and modulate the drug target with minimal toxic effect, including the low cost in
terms of time, money, resources to the innovator. Traditional methods including
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in vitro testing and late phase drug failure cause numerous loss in terms of subject
health hazards and loss of overall resources including time. In silico ADME-Tox
prediction plays an essential role in assisting the selection of experimental ligands or
drugs by pharmaceutical industries before initiating an expensive clinical trial
(Alqahtani 2017; Sliwoski et al. 2014). As numerous groups are working on the
modeling of the ADME process, considering the major factor of drug profit and loss
business focuses point. Collateral study and comparison of various ADME factors,
including gene, protein, and reactions in silico modeling, and prediction are useful in
an early phase drug retraction. Molecular and physiochemical properties persuade
both pharmacokinetic and pharmacodynamic processes, including drug safety. The
theories and concept of drug likeness characterize the borderline of fundamental
properties of a drug to aid the medicinal chemists in superiorizing the drug
candidates. Core competence is considered for the Molecular weight and
lipophilicity of an NCE as it changes widely according to its size, and the nature
of the functional group attached to the scaffold (Vallianatou et al. 2015).

9.6.4.2 Drug Likeness
Drug Likeness qualitatively assesses the chemical entity to develop into an oral drug
with due recognition to its bioavailability (Daina et al. 2017). The assessment was
customized from a structural or physicochemical examination of the selected
compounds. This concept is regularly engaged to perform filtering of chemical
libraries to suspend out the molecules with properties most apparently unsuitable
with an acceptable pharmacokinetic profile (Daina et al. 2017). Online tools or web
servers such as SWISS ADME,ADMETSAR, and related are used as a standard tool
for filtering the compounds (Yang et al. 2018). SWISS-ADME provides access to
five different rule-based filters. The most prominent approaches used as Lipinski
filter are (Pfizer) (Lipinski rule of five) (Lipinski et al. 2001) and followed by Ghose
(Amgen) (Ghose et al. 1999), Veber (GSK) (Veber et al. 2002), Egan (Pharmacia)
(Egan et al. 2000), and Muegge (Bayer) (Muegge et al. 2001).

9.6.4.3 Lipophilicity
Lipophilicity is defined as the competence of a compound to dissolve or diffuse in
fats, oils, lipids, non-polar solvents like hexane and toluene. As the cell membranes
are composed of lipid bilayers, including phospholipids and glycolipids, hence it is
necessary to study and analyze the lipophilic activity of the drug, and the environ-
ment of the system (Schroeder 2018). The affinity of a drug for a lipid environment is
known as the Lipophilicity log P equation and is a critical parameter to study the
pharmacokinetic and pharmacodynamic parameters of a drug and receptor
interactions. Log P, one of the primitive and model-based descriptors for
lipophilicity are considered as a partition coefficient among n-octanol and water
(log Po/w) (Arnott and Planey 2012; Mannhold et al. 2009). As octanol represented
the most optimum behavior to cell membranes, tissue lipids, and other lipophilic
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components of cells, hence it has not been yet replaced by cyclohexane and artificial
lipids.

The Log P measurable range generally lies between �2 and 6, but these range
values are not constant and can be varied depending on the detection techniques
were used (Stoner et al. 2008). Numerous in silico tools for log P calculation have
been developed from the large chemical dataset. Cheminformatics tools such as
ACD Chemsketch, Marvin sketch, Molecular design suite (V Life sciences),
QikProp (Schrodinger) are among the few that give a good prediction over the set
of molecules Eq. (9.2).

Log P ¼ Concentration of Compound in Octanol
Concentration of Compound in Water

ð9:2Þ

9.6.4.4 Solubility
The absorption and distribution activity of a drug is significantly supported by the
aqueous solubility of a compound. A low soluble compound exhibits poor absorp-
tion. Soluble compounds facilitate the drug development process, including the ease
of handling, formulation, and support discovery projects aiming an oral and paren-
teral administration (Ottaviani et al. 2010; Ritchie et al. 2013). Online tools such as
Osiris, SWISS-ADME, databases such as PubChem, drug bank, and related provides
the information for the typically entered compound.

9.6.4.5 Pharmacokinetic Process
In the early phase of the drug discovery process, one should know the compounds
that may be a substrate, non-substrate, or an inhibitor to numerous enzymes that play
an essential role in drug transportation and metabolism. CYP and P-gp operate small
molecules synergistically to improve the protection of tissues. Around, 50–90% of
drugs act as a substrate for major CYP isoforms (CYP1A2, CYP2C19, CYP2C9,
CYP2D6, CYP3A4), whereas P-gp plays an important role in protecting central
nervous system (CNS) from xenobiotics. Inhibition of CYP superfamily isoenzymes
may widely affect drug elimination through metabolic biotransformation, and drug–
drug interactions (Montanari and Ecker 2015).

Lower clearance or accumulation of the drug or its metabolites results in a toxic or
adverse effect (Sharom 2008; Szakács et al. 2008). While evaluating a large data size
of compounds, one has to be cautious about the selection of drug and CYP family
isoenzyme interaction selections. Some compounds might act as an inhibitor to one
or more CYP isoenzyme, and might be a selective substrate for the other (Testa and
Krämer 2007; van Waterschoot and Schinkel 2011; Wolf et al. 2000). Hence, it is
important to select the most optimum CYP interactions that would be beneficial for
the process of discovery (Huang et al. 2008; Kirchmair et al. 2015; Veith et al. 2009).
Tools used for ADME screening of compounds are listed in Table 9.1.
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9.7 Toxicological Screening

Toxicity is an evaluation of the measure of any unwanted or unfavorable effect of
any chemical or substance on the human body or environment. It can be quantifiable
(like LD 50-lethal dose) or qualifiable (toxic or non-toxic). The toxicity is calculated
in terms of various endpoints such as Genotoxicity, carcinogenicity, skin sensitiza-
tion, irritation, ecotoxicity, etc. The studies identify the effects of chemicals on
humans, animals, plants, or the environment through single dosing or multiple
dosing (Stephens 2010). Several factors that determine the toxicity of chemicals
are taken into consideration while calculating the toxicity such as route of exposure
like oral, dermal, inhalation, amount of dose, frequency of exposures like single or
multiple exposure, duration and time of exposure, ADME properties of the drug,
biological characteristics of the patients, and chemical properties (Raies and Bajic
2016).

In silico toxicity testing uses computer-based methods, software, algorithms to
analyze and predict the various toxicity endpoints for a given chemical. This
information can be used to modify or discard a given chemical entity. It helps in

Table 9.1 Online and offline tools for ADME screening

S
No. Tools Description URL

1 ADMETlab Systematic ADMET using
ADMET database

http://admet.scbdd.com/

2 ADMET
predictor

ADMET property estimation https://www.simulations-plus.com/
software/admetpredictor/

3 ADVERPred Prediction of adverse effects
of drugs

http://www.way2drug.com/adverpred/

4 eMolTox Prediction of molecular
toxicity

http://xundrug.cn/moltox

5 LIVERTOX Hepatotoxicity https://livertox.nih.gov/

6 Molinspiration Molecular properties http://www.molinspiration.com/

7 MouseTox Cytotoxicity assessment for
small molecules

http://enalos.insilicotox.com/
MouseTox/

8 PreADMET ADME properties https://preadmet.bmdrc.kr/

9 Pred-hERG Predict hERGcardiotoxicity http://labmol.com.br/predherg/

10 Pred-skin Chemically-induced skin
sensitization

http://labmol.com.br/predskin/

11 QikProp Schrodinger tool for
ADMET

https://www.schrodinger.com/qikprop

12 SOM
prediction

Knowledge based method
for prediction

http://www.scfbio-iitd.res.in/software/
drugdesign/som.jsp

13 SwissADME ADME parameters http://www.swissadme.ch/

14 vNN ADMET predictions https://vnnadmet.bhsai.org/vnnadmet/
login.xhtml
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designing and developing molecules that may have no or less toxic effects, reduce
the cost and time of in vitro and in vivo toxicity studies. Also, it has an added
advantage of predicting the toxicity of a given chemical moiety even before it is
synthesized, just by knowing its structure, thus also reducing the cost of the synthesis
of such molecules whose toxicity is high.

Various tools are involved in the toxicity prediction. Generally, the prediction
consists of the following points:

1. Databases that store the toxicity information of various endpoints can be manu-
ally curated and literature referenced.

2. Software that generate molecular properties and descriptors.
3. Simulation and systems biology tools for molecular dynamics and computational

drug design.
4. Modeling algorithms for toxicity prediction.
5. Statistical packages for prediction model generation.
6. Expert systems for reasoning and analysis.
7. Visualization tools.

Unique toxicity prediction software comprises of the above tools and properties
to give a comprehensive overview of a particular prediction of a unique molecule
(Gramatica 2013). The molecule prediction methods consist of 6 main steps to
develop a prediction model (Fig. 9.5).

1. Collecting biological information that can associate the chemical structure to the
molecule with the toxicological endpoints.

2. Comparing the chemical with similar chemicals in the database.

Fig. 9.5 Steps in toxicity prediction models
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3. Calculate molecular descriptors for the chemical.
4. Generate a prediction for the chemical.
5. Evaluating the accuracy of the prediction.
6. Interpreting the model.

A compound database is created containing all the possible toxicological features,
from the literature or through user input. The data is curated and stored. A query
compound is searched against all the features in the database using various
algorithms and similarity searches. Rule-based structural alerts are matched with
the fragments in the query structure, and statistical-based QSAR predictions done
based on the descriptors and similarity indices. Both methods give their respective
predictions, and the compound is categorized accordingly.

9.7.1 Acute Systemic Toxicity

Acute systemic toxicity testing is the evaluation of the dangerous potential of the
chemical by short-term exposure by determining its systemic toxicity. The results are
given as median lethal dose LD50 for acute oral exposures and as median lethal
concentration LC50 for inhalation exposures (Botham et al. 2002).

9.7.2 Toxicological Endpoints

The following are some of the toxicity endpoints predicted by various prediction
software (Richard et al. 2008).

1. Carcinogenicity—cancer-induced due to harmful chemicals may be due to
genotoxic compounds or non-genotoxic compounds.

2. Dermal penetration- the rate at which a chemical enters the skin.
3. Ecotoxicity—harmful effects on different life species in the environment due to

chemicals. Commonly studies are conducted on fish, systemic, dietary, and
reproductive systems as well as bioaccumulation.

4. Eye irritation/corrosion—reversible or irreversible eye damage caused due to
chemicals.

5. Genotoxicity—induced mutations or changes in the structure, number or content
of the DNA, or segregation of the genetic material caused due to harmful
chemicals that may or may not lead to carcinogenicity.

6. Neurotoxicity—harmful effects on the brain, brain tissue, spinal cord, or any
part of the nervous system caused due to chemicals.

7. Phototoxicity—toxic changes induced in the substance due to exposure to light
or skin irradiation.

8. Organ toxicity—these are caused due to repeated daily exposure to harmful
chemicals.
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9. Reproductive and developmental toxicity—harmful effects on fertility, the
sexual function of an individual caused due to chemicals.

10. Skin irritation/corrosion—skin damage that can be reversible or irreversible due
to harmful chemicals.

11. Skin sensitization—allergic reactions and responses due to contact with any
harmful chemicals.

9.7.3 Structural Alerts and Rule-Based Method

Structural alerts are also known as toxicophores or toxic fragments. These are small
molecules fragments present as a part of the root structure that is toxic. These toxic
fragments attribute to the toxic nature of the overall root compound (Table 9.2).
Different structural alerts are associated with different endpoints. Thus if a particular
structural alert giving rise to genotoxicity is present in a compound, then it is likely
that the entire compound is genotoxic. The following are some of the examples of
common toxicophores associated with genotoxicity (Plošnik et al. 2016).

Various software uses structural alerts or rule-based methods to predict toxicity
endpoints. These software incorporate structural alerts manually curated by human
experts. The structural alert list for skin sensitization was published in 1982 by
Dupius and Benezra (Payne and Walsh 1994). Another structural alert list to predict
carcinogenicity and mutagenicity was developed by Ashby and Tenant in 1988
(Ashby and Tennant 1988). One of the most developed and widely used structural
alert lists is of carcinogenicity and mutagenicity proposed by Benigni et al. (2008).
Other lists of alerts and rule-based methods are developed for endpoints like
hepatotoxicity, cytotoxicity, irritation, corrosion of skin and eye, and skin sensitiza-
tion. There are many software that employs rule-based methods such as oncologic
cancer expert system (OCES), toxtree, Derek Nexus, Hazard Expert, and Meteor
(Raies and Bajic 2016).

9.7.4 Read Across Methods Using Chemical Category

A chemical category is a cluster of molecules whose toxicity effects follow a similar
pattern. The chemicals or molecules are grouped into categories depending on a
particular property such as ADME or mechanism of action, physicochemical
properties, interactions, or structural similarity (Berggren et al. 2015). The structural
similarity is regarded as a starting point to group the chemicals into a similar
category. The toxicity of an unknown molecule is predicted using these similar
chemicals whose toxicity is known. Read across models are developed using two
approaches-

• Analog approach—one molecule is compared to one or a few molecules.
• Category approach—one molecule is compared to many molecules (Raies and

Bajic 2016).
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Table 9.2 Genotoxicity structural alerts and compounds

Alkyl esters of phosphonic acids Alkyl esters of sulfonic
acids Aromatic nitro groups

Aromatic mono- and dialkylamino
groups

Alkyl hydrazines Aromatic N-oxides

Simple aldehydes N-methylol derivatives Monohaloalkenes

N-mustards Acyl halides

S-mustards

Alkyl and aryl N-nitroso group
Propiolsultones

Epoxides

* ¼ Halogens
Aliphatic halogens

Alkyl nitrite
Aziridines

Aliphatic N-nitro group
Aromatic nitroso group Quinones
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A read across approach can be both qualitative as well as quantitative. The major
advantages of read across methods are that it is transparent, easy to deduce and
execute. A broad range of descriptors or parameters can be calculated in the read
across the technique. Read across methods are applied for various endpoints such as
carcinogenicity, hepatotoxicity, reproductive toxicity, skin sensitization, and envi-
ronmental toxicity (Berggren et al. 2015). Various tools and software that implement
read across techniques are OECD QSAR toolbox, ToxMatch, Toxtree, AMBIT,
AMBITdiscovery, AIM, and DSSTox.

9.7.5 Quantitative Structure Activity Relationship Model Using
a Statistical Method

This model is also known as the Quantitative structure-toxicity relationship model
(QSTR) as it deals with the prediction of toxicity for a given compound. Just as in the
case of traditional QSAR, a mathematical equation is derived to correlate the toxicity
of the compound with its structure. The statistical method gives a probability score
as to the compound being toxic or non-toxic in case of qualitative endpoints, and the
model predicts a value in case of a quantitative toxicological endpoint. The statistical
QSTR models are used in predicting the toxicity of various aromatic nitro
compounds, nitrobenzene compounds, cytotoxicity of TIBO derivatives, and carci-
nogenicity of sulfa drugs (Morales et al. 2006). The advantages of QSAR models are
that they are easy to interpret and more meaningful. They can model endpoints with
the help of molecular descriptors. Various software, which uses the statistical QSAR
method are OECD QSAR Toolbox, Topkat, Sarah nexus, Hazardexpert, VEGA, and
METEOR.

9.7.6 Organization for Economic Cooperation and Development
(OECD) Guidelines

Many new chemicals that are used as drugs, pesticides, food additives, and biotech-
nological products are launched into the market every year, and they require safety
testing all over the world. The OECD has developed certain guidelines for the
chemical testing, and safety of the chemicals (Fritsche et al. 2017; Milstein and
Schreyoegg 2016; Sakuratani et al. 2018). They cover safety testing concerning
physical and chemical properties, the effect on biological systems, environmental
fate (degradation, accumulation), and health effects on individual living beings.
Each organization, before launching its chemical product into the market has to
abide by these rules and have to submit a complete data report of the chemical testing
of these molecules. To reduce the time and cost of toxicity studies, the regulatory
bodies accept the in silico toxicity reports of the chemicals generated through
validation and evaluation. These reports should be generated based on the OECD
principles laid down by the OECD committee. For the submission of a genotoxicity
report for a particular molecule, the studies should comply with the ICH M7
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guidelines and should satisfy the OECD principles. To consider a QSAR model for
the regulatory purpose, it should satisfy the following points:

Principle 1: any QSAR model should possess a well-defined endpoint, which can
be the physicochemical, biological, or environmental effect.

Principle 2: the algorithm used for the development of the prediction model
should be unambiguous, which ensures transparency.

Principle 3: the prediction model should have a definite domain of applicability,
ensuring that the predicted molecule does not go beyond the domain of prediction.

Principle 4: the QSAR model should be robust and have an internal performance
training set, and external predictivity test set.

Principle 5: the model should have a mechanistic interpretation wherever possible
and applicable.

The ICH guidelines recommend a QSAR prediction of toxicity by both rule-
based and statistical approaches. A joint report of these predictions, along with an
expert review is accepted by the regulatory authority. The software used for such
predictions should be duly validated and accepted by regulatory bodies. Thus the
field of in silico toxicity is under development, and novel methods are introduced
and applied. If used appropriately, these tools are effective to predict the toxicity of a
chemical. However, these models need continuous evaluation, validation, and
improvement. Hence, there is a need to understand their current strengths, weakness,
and their specific applications.

9.7.6.1 Optimizing Toxicity
In silico approaches can rapidly screen and optimize pharmacokinetics and toxicity
profile of a drug like compounds. Several toxic substructures have been reported
from experimental studies, and information about these toxic alerts should be kept in
mind while designing a derivative or analog of compounds. We should avoid the
addition of toxic group or substructure on a pharmacophore. The toxicity of a
compound can be predicted using computational toxicity models generated from
the known dataset. If a compound possesses very high toxicity, then it needs to be
modified by either changing the scaffold or by changing the substituents of the
molecules (Singh 2018).

9.8 Limitations and Future Scope

In silico techniques have supplied numerous and powerful toolbox for screening a
large set of compounds, target identification and validation, optimization of
compounds and lead molecules, toxicity modeling, and evaluation. Still, it limits
further validation and can be only assessed by in vitro and in vivo experiments. Due
to poor or unreliable data sets as an input to ADME or drug toxicity may limit the
accuracy of outcomes. With the advancement in techniques and reliable datasets as a
training set to the prediction, systems will surely increase the reliability of models.

Futuristic drug discovery techniques will highly depend on the accuracy of data
models where input will comprise from disease-specific genomic and proteomic
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expressions, information regarding potential drug targets, active natural compounds,
pharmacophore, and physiochemical properties, QSAR, QSPR (Quantitative
Structure-Property Relationship), and ADMET models will help us to avoid the
causes of drug failure.

9.9 Conclusions

Traditionally computers were extensively used in solving various biological com-
plex problems. Numerous computational tools used in drug discovery approach
suggest that the chance of improvisation is always open. New data descriptors
based modeling and precise toxicity prediction will help to identify better tolerable
drug candidates to market. Novel technologies and computational algorithms are
required to move the computer-aided drug designing forward, as new developments
are likely to lead to tools for disease identification and the screening of potential lead
compounds.
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Advances in Pharmacophore Modeling
and Its Role in Drug Designing 10
Priya Swaminathan

Abstract

Pharmacophore modeling is a central method in the ligand-based drug designing
module. Its basis lies in developing a scaffold or an empirical molecule based on a
group of known inhibitors to a target. The empirical molecule will contain features
that are common to the known inhibitors and specified as donors, acceptors, rings,
positively charged, or negatively charged. These five features or a combination of
some of these features at specific distances make a pharmacophore. This
pharmacophore facilitates the identification of other novel compounds that are
specific and sensitive as well as effective inhibitors to a receptor. This method is
particularly effective when the structural annotations are unavailable for the
target. Thus pharmacophore modeling is a tool in drug discovery where screening
of the pharmacophore built leads to the discovery of novel compounds against
the target. Using these techniques as well as variations of these techniques,
millions of compounds can be screened in a matter of hours to shortlist actives.
Variations might be based on building a pharmacophore by the energy contribu-
tion of features in a single molecule against a specific target. Otherwise, based on
only the geometric features of the active site in a target, a pharmacophore can be
designed. Thus a designed pharmacophore can be used to screen novel agonists
and antagonists that are specific to targets, to screen toxicants, to identify
unknown targets, and to screen out best molecular docking results.
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10.1 Introduction

Conventional drug discovery is a very tedious process with higher expenditure and
lower success. The meaning of conventional is synthesizing novel compounds in a
chemical lab and then developing an assay to check its efficacy against a said target.
Under such high stakes, the pharma industries, as well as the disease specialist, were
forced to find other cost-effective means to find new cures. Computer-aided drug
designing (CADD) deals with finding new drugs against a target to be less random
and more efficient (Dalkas et al. 2013). The rationale is based on the structure of the
target active site or the structure of the molecules active against the target structure.
Both these approaches tend to seek diverse or similar compounds that might be
active against the target. A pharmacophore is a group of features that spell specificity
against a target. Its advent was propelled when structure activity based analysis
gained momentum in CADD (Böhm 1993). A definition that is widely used by
medicinal chemists states that a pharmacophore is the ensemble of steric and
electronic features that are necessary for the optimal supramolecular interactions
with a specific biological target structure and to generate a biological response (Testa
2012).

Pharmacophore modeling is popular in the industry as it chalks a roadmap of
preferred as well as unsought functional groups that are to yield good results. The
first pharmacophore was built in as early as, 1940 where a 2D pharmacophore was
developed to inhibit tetrahydrofolic acid. The basis of the pharmacophore was
p-aminobenzoic acid (PABA), which was substituted with a sulphonamide at a
distance of 2.4 Å from the para amine group (Woods 1940). This and many
other studies led to the development of pharmacophores. The realization of the
empirical features of a group of compounds is called pharmacophore mapping.
Pharmacophore mapping is a prime method under ligand-based drug design
(LBDD) where a group of active compounds is superimposed together to gather
3-dimensional (3D) empirical feature coordinates that spells out features that are
active in the original group of compounds. The pharmacophore helps to fetch other
diverse compounds with similar distanced features.

10.2 Features in a Pharmacophore

Pharmacophore is not chemical molecules, but just specification of the physico-
chemical features desired in a structure. A typical pharmacophore will be a 3D
coordinate system specified feature table. The pharmacophore can be considered as
the largest common substructure shared by a set of active molecules.

The most common features in the feature table are shown in Fig. 10.1.

• Hydrogen bond donor (HBD).
• Hydrogen bond acceptor (HBA).
• Aromatic Rings(R).
• Hydrophobic groups(H).
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• Positively charged groups(P).
• Negatively charged groups (N).

Other features like chiral centres, bulky groups, metal ions, and solvation penalty
areas can be indicated.

These features are essential for understanding the active site of the protein if the
protein structure is unavailable. The pharmacophore obtained is a mirror image of
the active site (Soliman 2013). As the features help to identify the amino acids and
the specific type of interaction it could have with a small molecule. A hydrogen bond
acceptor in the pharmacophore specifies a hydrogen bond donor in the active site like
serine or threonine. A ring feature specifies a pi-pi type of interacting group in the
active site from an aromatic amino acid.

10.3 Pharmacophore Modeling

The two distinct types of pharmacophore models are ligand-based and structure-
based pharmacophore models (Kaserer et al. 2015).

Fig. 10.1 A typical pharmacophore (cartoon representation)
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10.3.1 Ligand-Based Pharmacophore

This method is used specifically when the structure of the protein macromolecule is
absent. Under such a scenario, a group of a known active small molecule is aligned
together to find common features that would help to find other molecules that could
be active against the target. The small molecules are conformationally rotated to
get alternate forms of the same ligand. This is then stored into a database of ligands,
which is superimposed to get features common among the set. The alternate forms of
the same ligand are created to take into account the flexibility of a small molecule in
a reaction.

The resultant model is a 4–7 featured pharmacophore that specifies the required
properties that a novel new small molecule should have against the target. This
pharmacophore is valid to be searched against another ligand database to identify
new active molecules. The limitation of this method is finding additional
conformations for each ligand (Yang 2010). Different algorithms such as Monte
Carlo and genetic algorithms are applied to generate the additional conformations of
the proteins. Another big limitation is that the conformation used for the
pharmacophore might not be a free energy-based active form of the ligand. This
risk is carried by all ligand-based pharmacophore.

10.3.2 Building a Pharmacophore

Pharmacophore modeling uses certain structured steps to build a rational scaffold
that is useful to find other chemical moieties that have the same property against the
target of interest in the disease (Fig. 10.2).

The steps include:

• Ligand preparation.
• Pharmacophore feature mapping.
• Searching for common pharmacophore.
• Scoring the common pharmacophore.

10.3.2.1 Ligand Preparation
Ligand preparation is a prerequisite for building a pharmacophore. This step
provides a group of compounds in its active conformations. The catch in this step
is to predict the conformationally active one. This knowledge is generally not known
for most chemical compounds. The torsion angles of actives that are taken for
pharmacophore development are rotated to get different conformations of each
active, and among them, the thermo stable conformations are retained (Merz et al.
2010). This preparation yields plausible low-energy minima conformations of the
actives that are near real to the actual conformation of the ligands. Thus any
pharmacophore tool will incorporate an algorithm to generate conformers and a
force field to predict the energy minima of each conformer.
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In PHASE, the different conformers are generated by using a Monte Carlo
multiple minimum (MCMM) sampling methods to explore actives for the torsion
angles that are possibly rotatable. Then using the optimized potential for liquid
simulations (OPLS) force field, the energy minima is obtained.

A typical structure with more than 10 rotatable bonds can generate tens of
thousands of meaningful structures. But this can be computationally taxing,
employing multiple days to months of CPU time. Thus, under such cases where
databases of million compounds have to be handled, an empirical torsion sampling
algorithm is employed to give not only the most accurate energy minima but, in the
near range enabling lesser CPU time consumption (Dixon et al. 2006).

10.3.2.2 Pharmacophore Feature Mapping
In this step of the pharmacophore development, the tool is having a set of a prepared
conformationally active dataset in hand. Now the compounds have to be individually
screened for ligand binding features such as non-bonded interactions such as hydro-
gen bonding and hydrophobic bonding groups. Each structure has to be individually
screen to map out its groups that might participate in the bond formation in the active
site of the protein. The most common features, as mention earlier, are hydrogen bond
donors and acceptors, ring atoms, atoms that can take part in hydrophobic
interactions, as well as charged atoms that are useful for electrostatic interactions.

Fig. 10.2 Steps in pharmacophore modeling
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The mapping will result in identifying interacting groups in a conformer as well as a
vector to indicate the directionality of the interaction.

In a tool like PHASE, the rules needed to identify features are given as SMARTS
to an algorithm called feature definition. These feature definitions can be customized
to the user’s viewpoint, and only those features will be recognized for the
pharmacophore. SMARTS (Daylight systems) is a format to describe feature
patterns in computational chemistry. It is a simple set of rules that help to perceive
and develop new pharmacophore patterns to search by the user. The pharmacophore
feature sites, as well as vectors, are represented uniquely in PHASE with points
indicating their interaction directionality. Figure 10.3 shows how a typical hydrogen
bonding will be represented after a mapping step. Further, the mapped
pharmacophore for a complete molecule is given in Fig. 10.4 taken from Levit
et al. (2011), who used a ligand-based pharmacophore approach to elucidate binders
for prokineticin receptors.

10.3.2.3 Searching Common Pharmacophore
This step involves searching the features exhaustively in the other actives to perceive
a common feature list with a similar distance vector. These common features have to
be searched in all the conformers of the dataset and then some features are shortlisted
for being at a similar cut off distance from other features.

In PHASE, the algorithm starts with a k-point feature search in all the actives of
the dataset. Bear in mind the k-points are zeroed in based on a set of features that are
common in a small subset of active conformations. This is an exhaustive and
recursive search that employs heuristic algorithms to search faster. The tolerance
of the match can be user-defined. Thus, now this K-point feature list that matches a

Fig. 10.3 The vector representation of a typical HBD and HBA in the form of a coloured sphere
and its position
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minimum subset of actives is passed through a tree-based partitioning algorithm
where the tree is divided based on the intersite distance of the features. This tree
partitioning checks whether every feature shares a common distance with other
features (Lin 2000).

Suppose a partitioning tree is used to check the distance between an HBD and R
feature for an intersite distance range of 1–6 Å in a subset of 30 active conformers,
the tree would look something like in Fig. 10.5.

Here, those actives that fall in the same partition box of the tree or the
neighbouring box of the tree can be accountably treated as a feature of a common
pharmacophore. So supposedly, if all the 30 actives in the subset have an intersite
distance between 2.6 Å and 2.9 Å, then in the partition tree, they would arrive in the
box node 2 < d < 3. Since this pair of the feature is contained in one box or its
neighbouring box (sometimes due to overlapping conditions), thus these features are
perceived as a common feature in the pharmacophore.

This partitioning is continued for all pairs of features in the k-site pharmacophore,
and those that pass the partition tree are gathered as common pharmacophore. At this
point, more than one common pharmacophore can be obtained.

10.3.2.4 Scoring the Common Pharmacophore
The surviving nodes in the partition tree are known to contribute as a common
feature in the pharmacophore. But this cannot be taken on the face value as false
positives may arise. For example, the mirror image of an active also gives rise to a
surviving node in the tree. Thus these false positives have to be removed by
comparing it to a reference score.

The reference score in the PHASE tool is a score based on RMSD and the average
cosine of the angles formed by the corresponding features. Each pharmacophore
from the surviving node in the tree is called as reference pharmacophore and is

Fig. 10.4 The two
conformations of a chemical
structure and the
pharmacophoric features in it
(Levit et al. 2011). Green
spheres represent hydrogen
bond acceptors, red—positive
ionizable, light blue—
hydrophobic, and orange—
aromatic ring
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compared with all other pharmacophore pairs in the surviving node of the partition
tree (called as non-reference pharmacophore). The RMSD is calculated, and a cut-off
is set (default is 1.2 Å), which helps to identify good reference pharmacophore as
well as avoid false positives. The calculations are done to find a reference score.
Equation (10.1) is the site vector score where the parameters wsite, wvector, and
cut-off RMSD are used, and these parameters are user-adjustable. Propref in
Eq. (10.2) is the value of the conformationally independent property for the ligand
contributing to the reference pharmacophore.

Site�Vector�Scorei ¼ wsiteSite�Scorei þ wvectorVector�Scorei ð10:1Þ
Where

Site�Scorei ¼ 1� RMSDi=cutoffRMSD

Vector�Scorei ¼ 1
nv

Xnv
j¼1

cos θij

Reference�Scorei ¼ Site�Vector�Scorei þ wpropPropref ð10:2Þ
The reference score for each of the 30 ligands in the surviving node is calculated,

and the one that gives the highest becomes the reference ligand. Thus all partition
trees are scored, and the reference score is refined iteratively. At this point, multiple
reference ligands with equivalent reference scores might occur, where the user has to

Fig. 10.5 A partition tree for an intersite distance of 1–6 Å between two hypothetical features of
ring atom and hydrogen bond donor in 30 actives subset
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use some selectivity scores or the number of total actives matched to choose a good
pharmacophore. The pharmacophoric sites in the chosen reference ligand are now
called the pharmacophore hypothesis.

All of the above steps will be carried out by the pharmacophoric tools with slight
variations like different algorithms and extra steps to improve the sensitivity of the
hypothesis.

10.3.3 Algorithms Used to Build a Pharmacophore

The algorithms used to build ligand-based pharmacophore are

• Phase.
• Catalyst.
• Dantes.
• Disco.
• Galahad.

Phase algorithm uses a binary decision tree to cluster the 3D Cartesian space of
ligands. It also produces a scorecard with geometric and heuristic scores to allow the
user to choose the features in the pharmacophore model. The structure-based module
in phase allows the generation of an energy-based pharmacophore that calculates the
free energy contributions of each feature in the ligand and allows the user to choose
the features for the pharmacophore (Van Drie 2012).

Catalyst uses two algorithms, Hypogen and HipHop algorithms, which develop
the pharmacophore based on features with or without related IC50 values of the
ligands, respectively. It gives an empirical value called as a cost, which allows the
user to correlate structure to activity. Dantes uses a special algorithm to identify
regions in the coordinate space of ligands that are intersecting with the coordinate
space of all other ligands. Disco uses clique detection to identify all possible
candidate pharmacophores as well as allows the user to sort the best pharmacophore.

Galahad, on the other hand, finds 3D similarity-based scores to manually overlay
the molecules, and build a hyper molecule which has a less cost function to it. The
hyper molecule with the least cost is the pharmacophore (Van Drie 2012).

10.3.4 Structure-Based Pharmacophore

The structure of the macromolecular target is used to locate the features for the
pharmacophore. The features are based on the single X-ray crystallized target-ligand
structure. The single ligand and its interactions with the protein are used to build the
pharmacophore features. The main other difference between the former and the latter
methods are the numbers of ligands used to build the pharmacophore. The ligand-
based method requires a minimum of 30 actives, while structure-based can be done
with a single ligand and its interaction map with the receptor. Also, the
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pharmacophore in the latter method is from an active conformation of the ligand
(Qing et al. 2014).

Another way to build a structure-based pharmacophore is by using an APO target
structure where the active site amino acids are identified, and based on their interac-
tion property a feature list is generated that is suitable to be used in the
pharmacophore (Thangapandian et al. 2011). The only limitation is where too
many features are predicted in the list (greater than 7 features). Under such cases,
the features have to be selected based on weight-based analysis or knowledge-based
analysis using additional algorithms.

The structure-based method is unique, with its pre-set of the X-ray structure of a
ligand–protein complex. This structure availability cuts down the step of finding
active conformers of the ligand in the ligand-based method. Thus the steps involved
are:

• Redocking of the co-crystal ligand.
• Scoring for pharmacophoric sites.
• Building a pharmacophoric hypothesis.

10.3.4.1 Redocking of Co-Crystal Ligand
The PDB protein structure with the bound ligand is used as the starting material. The
bound state of the ligand gives an idea on the active conformer of the ligand, thus the
prediction of the correct conformer is unwarranted in this type of method. However,
redocking helps to calculate the energy related to each group in the ligand. Also, the
refinement in the interactions of the ligand with the protein can be accurately
measured. Structure-based pharmacophore is also known as energy-based
pharmacophore (E-Pharmacophore). The name stands for building a hypothesis
based on the energy contribution by each of the functional groups in the ligand.
This is calculated by a docking program. In the E-Pharmacophore module of
Schrodinger, the docking is performed using the Glide tool, and then the docked
output is imported into the E-Pharmacophore module to predict the hypothesis
(Pirhadi et al. 2013).

10.3.4.2 Scoring for Pharmacophoric Sites
The E-Pharmacophore module imports the docked file and assigns the energy
function to each pharmacophore feature. The rule in this module of Schrodinger is
that any functional group that has less than half of its heavy atom contributing to the
glide score is not considered to be pharmacophoric features. For example, a ring
structure with only two of its 5/6 atoms is contributing to the Glide score can be
disregarded as a pharmacophoric feature. Thus, only the functional groups with a
maximum contribution of energy to the glide score are considered for the
pharmacophore hypothesis (Loving et al. 2009).

10.3.4.3 Building a Pharmacophoric Hypothesis
The identified features are ranked according to their glide contributions. The features
that have a maximum contribution to the glide score are ranked first, and the features

232 P. Swaminathan



that are low contributors are ranked last. In this way, at least a list of a minimum of
3 or a maximum of 7 features will be generated. All the features predicted in the list
can be used to build a hypothesis, or the user can use his/her discretion to leave out
some features in the hypothesis. This will generate a single hypothesis along with its
intersite distance that marks as the scaffold for a chemical structure that might be a
suitable ligand for the given target (Langer and Wolber 2004).

10.4 Tools for Pharmacophore Building

There are many tools available for pharmacophore modeling or the mapping of
common features. Each of the tools has its unique features in the way the
pharmacophore is represented or in the way the algorithm is used to find common
features (Sanders et al. 2012; Fei et al. 2013).

The pharmacophore generated by these tools can be cited for further studies that
help to search new novel ligands for receptors or targets.

10.5 Validation of a Pharmacophore Hypothesis

Once the features have been selected, the pharmacophore is called a hypothesis. This
hypothesis has to be tested for its robustness. The pharmacophore is validated for the
features that were chosen.

The most common method is to take the actives from which the pharmacophore
was built and mix it with a set of decoy molecules. The rationale is like a
bootstrapping method where thousands of decoy molecules will be made to screen
along with real active molecules to check the accuracy of the pharmacophore in
screening out the actives among the decoys (Mysinger et al. 2012).

Decoys are computed based on similar physical properties but different chemical
structures. For each active, 50 decoys with similar 1-D physicochemical properties
to remove bias (molecular weight and calculated LogP) but dissimilar 2D topology
to be likely non-binders are included (Li et al. 2015). This type of decoys can be
obtained from the decoy database called directory of useful decoys and enhanced
(DUD-E) (Mysinger et al. 2012). The compounds from the database can be
downloaded, and a virtual screening protocol can be used to obtain hits using
these compounds along with the actives. The ratio of actives in the top 1% of the
total hits indicates the enrichment factor (EF) of the pharmacophore hypothesis. EF
indicated in percentage where a high percentage means maximum actives were
recovered in the top 1% of the hits, and then the pharmacophore is validated as
efficient.

Another method called Güner–Henry (GH) scoring method is also used to
indicate the efficiency of the pharmacophore in screening actives only.
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GH SCORE ¼ Ha
4HtA

� �
3Aþ Htð Þ

� �
� 1� Ht � Hað Þ

D� Að Þ
� �

where D is the total number of molecules in the database. A is the total number of
actives in the database. Ht represents the total number of hit molecules from the
database, and Ha represents the total number of active molecules in the hit list. An
ideal score will be closer to 1 and ideally above 0.7. A value closer to zero indicates a
null hypothesis.

The other measure of a robust pharmacophore is a receiver operating characteris-
tic (ROC), which predicts a curve that can discriminate true positives and false
positives, i.e. (sensitivity) and (1-specificity) in the X- and Y-axis, respectively. The
curve formed that is closer to the Y-axis indicates 0 or near-zero false positives and
higher true positives (Wang and Chen 2013). If the curve was farther away from the
y-axis, then it would suffice to construe that the hypothesis is not efficient enough
to screen true positives. Also, a term called area under the curve (AUC) helps
to quantify the ROC results. AUC, when closer to 1 indicates a sensitive
pharmacophore.

AUC ¼
X

i
Seiþ1ð Þ Spiþ1 � Spi

� �
2

� 	

where Spi and Sei are specificity and sensitivity values of the ith data. In other words,
the area under the curve is a sum of areas of all rectangles formed below the curve
(Triballeau et al. 2005).

10.6 A Case Study of Structure and Ligand-Based
Pharmacophore

Matrix metalloprotease is a zinc metal based enzyme that degrades collagen and
implicates itself in pannus formation in rheumatoid arthritis. The authors use a
combination of structure-based and ligand-based techniques to design and screen
potent non-zinc binding inhibitors of MMP8 (Kalva et al. 2014).

Step I—Generation of Selective Pharmacophore Hypothesis
In the Phase tool, using the two ligands of MMP8 which are non-zinc binding, a
seven point structure-based pharmacophore was built (AADDRR). This seven point
pharmacophore was refined using ligand-based pharmacophore knowledge like an
acceptor and a donor of the seven featured pharmacophore shared by a conserved
residue in all MMPs were excluded to avoid non-specific binding. Another ring
feature which did not form any specific interaction in the S1 loop of MMP8 was
removed. Further excluded volumes were added to avoid ligands that might bind
to zinc metal, as metal based docking analysis is highly unreliable. Finally, a
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hydrophobic group was added to the pharmacophore based on already known ligand
studies of MMP8. This leads to a refined five featured pharmacophore with excluded
volumes included (AADRH).

Step II—Validation of the Pharmacophore Hypothesis
Already known zinc metal binding and non-zinc metal binding ligands were pooled
to make a 181 compound database and then using the AADRH pharmacophore to
screen them. The pharmacophore screened out 15 compounds out of which the two
known non-zinc binding inhibitors showed top fitness scores. This proves the
efficacy of the pharmacophore to screen specific non-zinc binding compounds.

Step III—Database Screening, ADME, Docking, and Dynamics
The validated pharmacophore was screened with the ZINC database and 1000
compounds were obtained as hits. Using these ADME properties, 81 compounds
were shortlisted and further these compounds were docked and validated with other
MMP proteins. It was seen that 6 ZINC hits passed the tests among which ZINC
00673680 showed stable binding through validation and molecular dynamics. Thus
the paper indicates a probable inhibitor for MMP8, and also sets a common
pharmacophore that is specific to MMP8, non-zinc metal binding, and has only
useful features using Pharmacophore mapping.

10.7 Uses of Pharmacophore

The importance of pharmacophore lies in finding new novel actives with the same
physicochemical groups in its structure as in the hypothesis. Figure 10.6 gives the
various avenues of searching the hypothesis to obtain novel compounds that are
active against a receptor. The other way to phrase this is that a pharmacophore gives
an insight into important interactions in the active site of the target. This is helpful to
find new or novel compounds against the target. Based on this insight, applications
of pharmacophore are:

10.7.1 Virtual Screening

The pharmacophore hypothesis is screened against a 3D database of chemical
structures to find hits that match the template of the pharmacophore. It is used as a
screening tool, which virtually clusters compounds that are similar in activity to the
known actives. The hits receive a fitness score, which gives the extent of matching
with the pharmacophore (Horvath 2011). The fitness score is a linear combination of
site and vector alignment scores and the volume scores. A good hit to the hypothesis
means, a fitness score nearest to 3 while a bad hit would have a score lesser than
1. The general norm is to take a cut-off of 1.5 and above as good hits (Kalva et al.
2016). One of the main factors that are unique in pharmacophore screening is that the
molecules screened out are not necessarily belonging to the same class or analogs of
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each other, hence not structurally related to the original actives. This leads to the
clustering of a diverse group of compounds having an affinity towards the same
active site. Another challenge in virtual screening is the conformers of the database
structures. Depending upon the size of the database, each structure has to be
energetically minimized by generating conformers. This task is no less complicated
than the conformer generation step in ligand-based pharmacophore.

The tools in Table 10.1, along with building a pharmacophore hypothesis, also
perform virtual screening. While the tools Pharmer (Koes and Camacho 2011) and
Molsign (VLifeMDS 2010) allow only virtual screening to be performed on an
already existing pharmacophore hypothesis.

Fig. 10.6 Application of pharmacophore modeling

Table 10.1 Pharmacopho-
re mapping tools

S. No. Tool Company Availability

1 Phase Schrödinger Paid

2 Catalyst Accelrys-Biovia Paid

3 Sybyl Tripos-Certara Paid

4 OSPPREYS MOE Paid

5 PharmaGist Tel Aviv University Web server

6 LigandScout Inte:ligand Paid

7 Align-It Silicos-it Free
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10.7.1.1 An Instance of Virtual Screening and Its Workflow
In this work, a structure-based pharmacophore was built based on a known inhibitor
of dihydroorotate dehydrogenase, a target for rheumatoid arthritis. This
pharmacophore hypothesis had four features described in it. The hypothesis was
validated using decoys, and further screened in the KEGG phytochemical subset.
Eighteen hits were further filtered through docking protocols to obtain four diverse
compounds from natural origins that have features important to inhibit
dihydroorotate dehydrogenase (Swaminathan et al. 2014).

10.7.2 Pharmacophore Fingerprint

In this day and age, where technology gives unbound power to virtually screen and
shortlist compounds, and move from lead to drug development in a short period,
there is a need to quickly search for similarity between ligands (Choudhari et al.
2012). The computational expense of virtual screening is very high therefore, the
natural language of bits and bytes are used to store the pharmacophoric features and
then used for similarities searches. This method saves time and memory for the
computational process. Initially, it starts with a triplet based hypothesis, where P1,
P2, and P3 can be any of the pharmacophoric features like HBD, HBA, R, P, and
N. The set of 3 edges are given different distance ranges between 6 and 14 ranges
based on current knowledge. Now, using the different edges, the pharmacophore is
converted to a bit map for each structure in the database. The bitmaps are weighted
sometimes based on the hydrophobic capacity. Triplet fingerprints generated with
the parameter set of 3 vertices of 5 types and 3 edges of 14 possible lengths imply
53� 143 distinct combinations, including the geometrically impossible ones, which
will be 275,674 bits in length. These bits can be shortened to bitmaps where the
number of zeroes followed after a 1 can be summed up like this 0,100; 1,1; 0,200; 1;
0, 1000;. . .where “,” followed by a number represents the number of times the
number is repeated. This bitmap can then be matched with other bitmaps in the
database to get a Tanimoto coefficient indicating similarity between the fingerprints
(Juan Alvarez 2005). This bit similarity by a Tanimoto score is always between the
ranges 0 and 1, and the 1 indicates the highest similarity. Tanimoto coefficient for
two molecules A and B (Salim and Kinghorn 2008),

SIMA,B ¼ c=aþ b� c

c: bits set common in the two fingerprints.a and b: bits set in the fingerprints for
A and B respectively.SIMA,B: Tanimoto coefficient for the similarity between
molecules A and B.

The same can be applied to molecules in the training set of QSAR to obtain a
partial least equation (McGregor and Muskal 1999). An algorithm like PharmPrint
or a tool like ChemAxon is efficient to perform pharmacophore fingerprint screening
(McGregor and Muskal 2000). These fingerprints can also be used as a descriptor in
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comparative molecular field analysis (COMFA) and comparative molecular similar-
ity index analysis (COMSIA) analysis of QSAR (Verma et al. 2010).

10.7.2.1 An Instance of Pharmacophore Fingerprint Searching
In this 2013 work, the authors have compared manual 2D fingerprints and 3D
pharmacophore fingerprints to search and cluster the most active molecules for a
rational pharmacophore hypothesis. 5-HT1A receptor ligands (serotonin receptor)
were used to cluster the actives into different groups. The workflow was applied in
such a way that each clustering method tried to cover a different aspect in grouping
the actives. One method among them was based on 3D fingerprints using the Canvas
tool of Schrodinger. The Canvas tool used the pharmacophoric fingerprints of each
5-HT1A receptor to group them into 28 clusters. The segregation into clusters is
based on the Tanimoto coefficient for any two pharmacophoric fingerprints. Each
cluster had a chosen representative molecule selected as a pharmacophore hypothe-
sis. These approaches lead to the discovery of new novel binders of serotonin
receptors (Sharma et al. 2016).

10.7.3 De Novo Ligand Design

De novo ligand designing is building a chemical structure from scratch.
Pharmacophoric features will help in the development of a new molecule that
does not coincide with any patented molecules or already known toxic
molecules (Warszycki et al. 2013). A set of disconnected molecular fragments
that are specified by a pharmacophore hypothesis is joined by linkers such as
chains, rings, or atom moieties. The pharmacophore acts as a feature guide to
build novel molecules by taking fragments to match every feature of the
pharmacophore and then adding linkers to make whole molecules
(Hartenfeller and Schneider 2011). The problem here lies in finding the steric
imbalance regions in the active site as well as synthesizing the molecule built
by the de novo program. The knowledge of the receptor-binding region is a
must to design new compounds. Also, abstract pharmacophoric features will not
be useful for ligand construction. LUDI is a well-known tool for de novo
synthesis based on pharmacophore (Böhm 1993).

10.7.3.1 An Instance of De Novo Ligand Design
In 2008, a few researchers employed fragment-based drug design using
pharmacophore to build a novel ligand against cannabinoid receptors to combat
obesity. Fragments were created from known cannabinoid receptor ligands, and
then these ligands were pharmacophorically classified into different regions in
the receptor site. These were then linked together to give novel ligands that are
antagonists or inverse agonists to the constitutive drug designing (Alig et al.
2008).
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10.8 Success Stories in Pharmacophore-Based Drug Designing

Pharmacophore-based drug designing is commonly seen in many drug designing
projects. The pharmaceutical companies use this methodology either to discover new
targets for already available drugs or to find new candidates for already known
targets.

Renin is a good target in the renin-angiotensin pathway for hypertension. This
rational drug design target was used by Novartis pharmaceuticals to develop a renin
inhibitor. This inhibitor had to be a non-peptidic source as peptide inhibitors have
less pharmacokinetic properties. Using the structure of the S3-S1 pocket in renin, a
pharmacophore was designed, and a dipeptide like transition state mimetic was
developed. Further optimizations in the structure of the dipeptide with the change
of bulky groups to smaller alkyl ester groups resulted in better pharmacokinetic
values. Further, the X-ray structure of renin revealed the presence of Tyr14 and
Arg74 in the S3 pocket of renin and was important to make hydrogen bonds as
hydrophobic interactions (Talele et al. 2010). Thus, all these structural and func-
tional analysis lead to the development of Aliskiren (Norvatis) that passed the
clinical trials in 2007 to become a pharmacophore-based drug for hypertension
(Cohen 2007).

For drug target HIV 1 Integrase, inhibitors were screened out by building DKA
pharmacophore. DKA pharmacophore was transferred to a naphthyridine
carboxamide core, a class of n-alkyl hydroxypyrimidinone carboxylic acids, which
was the result of the success with the DKA structural analog, and the drug named
raltegravir became the first integrase inhibitor approved by the FDA (Summa et al.
2006).

To cite another example, an FDA approved drug against Ebola was taken to build
a common pharmacophore and compared to a structure-based pharmacophore of
VP35 protein. The pharmacophore, when compared were similar with one hydrogen
bond acceptor feature and 1–4 hydrophobic features. This confirms that the FDA
approved drugs of the Ebola virus might have VP35 as a primary target of action
(Ekins et al. 2014).

10.9 Significance of Pharmacophore

Pharmacophores can be used to design rational drug candidates. It can also be
used for optimizing already discovered drug candidates for better pharmacody-
namics and lesser toxicity (Liu et al. 2013). It can be used to predict other
receptors that the pharmacophore can react with, thus build more specific ligands
to the target (Thai et al. 2013). Further, the pharmacophore can be built to specify
and check ADMET properties of drugs, where a scaffold specifying the likable
moieties for drug absorption, drug toxicity, and other properties can be built to
predict the same in other chemical molecules (Guner and Bowen 2013). Another
Study in recent times uses 3D pharmacophores to screen the safety of drugs
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against a specific receptor (Fan et al. 2019). Pharmacophores of virus epitopes
can be reverse predicted to find drugs that might antagonize a virus receptor
(Wadood et al. 2017). Techniques like pharmacophore mapping based on molec-
ular dynamics could be the way to pharmacophore design, which predicts a
tailored pharmacophore (Choudhury et al. 2015; Machaba et al. 2017). The
pharmacophores can also be used to distinguish between the different active
conformations of a protein active site (Shiri et al. 2019). In a recent paper, the
pharmacophore and QSAR data were combined to a genetic algorithm to have a
4D-QSAR that can be used to predict the potential of a compound as anti-cancer
leads (Sahin and Saripinar 2020).

Thus all these studies and examples reinstate that pharmacophores are important
for increasing the accuracy of a prediction model in drug discovery as it takes into
consideration the features or pairs of features and its contribution to the activity
rather than the functional groups. This also serves to train a prediction workflow with
diverse compounds that produce better results in combination with other in silico
methods like QSAR and Docking.

10.10 Downside of Pharmacophore Modeling

Unlike docking or virtual screening, pharmacophore queries do not have a reliable
general scoring metric, which indicates a good match or effective match. The
identification of the actives depends on a pharmacophore-based screening on con-
formational databases. These databases only contain a limited number of low-energy
conformations per molecule where an active molecule is missed due to conformation
limitations. No clarity on the construction of a pharmacophore query is available,
where two similar pharmacophores to the same target will give different molecules
as hits when screened in the same database (Qing et al. 2014).

10.11 Conclusion

Pharmacophore analysis tools are powerful approaches in drug designing that are
used as a template to find desirable drug features for a target. If used judiciously, it
will group or help build a dataset of new novel drug-like molecules. The hypothesis
can also be applied to steps like lead optimization, core hopping, and active site
structural analysis. Thus, the use of ligand-based and structure-based
pharmacophore design can yield important hits, but the level of false positives is
also high in this technique. Thus rationale and a previous knowledge base can
certainly guide to shortlist novel lead compounds. Pharmacophore modeling plays
an important role in CADD, and any medicinal chemist should focus on
pharmacophore during lead optimization.
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In Silico Designing of Vaccines: Methods,
Tools, and Their Limitations 11
Parvez Singh Slathia and Preeti Sharma

Abstract

In the post genomic era, the finding of new therapeutic targets has hugely been
accelerated by the use of bioinformatics tools. The availability of genome
sequences of pathogenic microbes has led to an increased finding of genes and
proteins that could be potential targets for drug or vaccine design. The tools made
available by bioinformatics have played a central role in the analysis of the
genome and protein sequences for finding immunogenic proteins among the
repertoire possessed by the organisms. The methods for prediction of immuno-
genicity are automated, and the whole proteome can be analyzed to find the top
candidates that could have immunity inducing properties. Not only finding of
immunogenic proteins has been achieved, but the mapping of the individual
epitopes is also being done. The availability of methods for finding T and B
cell epitopes can lead to the design of epitope-based vaccines. The description of
different bioinformatics tools that are available for determining the immunogenic
properties, finding of T and B cell epitopes, and in silico tools that are used in
vaccine design is given in here. An account of epitope-based vaccine design
employing bioinformatics methods reported in the literature is discussed. There
are many shortcomings associated with these methods, which are discussed in the
chapter. As is the case with other bioinformatics methods, there exist issues of
prediction accuracy. Achievement of higher accuracy in predictions and their
translation into in vivo/in vitro conditions still requires improvement. The chapter
intends to provide the list of freely accessible software for epitope prediction and
vaccine design with their merits/demerits and also throwing light on their appli-
cability in vaccine research.
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11.1 Introduction

Treatment for infectious diseases is one of the most important aspects to improve the
quality of human existence on the planet. However, the fight between the host and
pathogen is not static but of a highly dynamic nature. The major pathogens threat-
ening mankind are viruses, bacteria, and parasites. The co-evolution of pathogens
and the emergence of new diseases have made the battle against pathogens continu-
ous in nature. The issue has been further complicated by pathogens crossing the
generic barriers, and pathogens from other animals have been showing presence in
humans causing diseases. The most common pathogens that migrate from animals to
humans are viruses and events of such transfer are reported. Animal viruses have
infected humans, and caused diseases like SARS, MERS, SARS-CoV2
(coronaviruses), H1N1 (swine flu), and H5N1 (avian flu). SARS coronavirus
originated most probably in bats though many argue its origin as uncertain (Chen
et al. 2013) whereas MERS coronavirus was transmitted to humans from dromedary
camels and its probable origin may be bats (Mohd et al. 2016). The most recent
outbreak of pandemic novel coronavirus (SARS-CoV2) is still prevailing throughout
the world and the reports to date suggest its bat or pangolin origin (Andersen et al.
2020; Zhang et al. 2020). The origins of H1N1 and H5N1 viruses are believed to be
pigs and birds, respectively (Mena et al. 2016; Sims et al. 2005). All these viral
outbreaks have happened in the first 20 years of this century.

Following the discovery of penicillin, the treatment for bacterial diseases has
grown by leaps and bounds. With a battery of antibiotics available for therapy, the
mortality and morbidity caused by bacterial diseases have been controlled. However,
the drug resistance is increasing in bacteria and strains of multidrug resistant bacteria
have been found, particularly in Mycobacterium tuberculosis. The therapeutic
measures for parasitic disease treatment are limited by the availability of a few
drugs. For example, nifurtimox and benznidazole are the only two drugs available
for the treatment of Chagas disease. Furthermore, parasites have also started devel-
oping resistance against the current drugs used for treatment. Leishmania strains are
showing increasing resistance to antimonates used for treatment. In addition, many
of the drugs used for parasitic disease treatment are toxic including those mentioned
in preceding sentences. This necessitates the development of better methods for
finding a cure for pathogenic diseases and among these prophylactic measures like
vaccines find an important place. Vaccines can help in reducing the disease burden
by priming the immune system and inducing protective immunity against diseases.
The success of vaccines has been well proven in eradicating smallpox and near
elimination of polio from the world.
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The modern era of vaccines started with the observation of cross-protection of
smallpox through cowpox infection. It was Edward Jenner who observed that
dairymaids who contracted cowpox subsequently never suffered from smallpox.
He opined that cowpox somehow protected against smallpox and validated his
theory experimentally by inoculating a boy first with cowpox pustule followed by
smallpox pustule and the boy did not contract smallpox. This study published in
1798 was met with mixed reactions at that time (Riedel 2005). Louis Pasteur in 1879
accidentally discovered the “attenuation” while working on chicken cholera. His
observations that chicken injected with old cultures of disease causing bacteria
developed protection against subsequent injection of virulent cultures laid the
foundation for a vaccination with attenuated organisms. Attenuation may thus be
defined as the decrease in pathogenicity of a microbe without comprising its immune
response generating properties. Later on, he used the same principle to develop
protection against anthrax bacteria (Schwartz 2001). These discoveries towards the
end of the nineteenth century paved the way for advances in immunology and
vaccine development. In the forthcoming years, several new principles of develop-
ing vaccines were illustrated. Today vaccines based on various design platforms are
being used commercially in the immunization regimens all over the world.

11.1.1 Live Attenuated Vaccine

The vaccines developed on the attenuation principle include the BCG vaccine for
tuberculosis, Sabin polio vaccine (oral polio vaccine), measles vaccine, rotavirus
vaccine, mumps vaccine, and varicella zoster (chickenpox) vaccine. Attenuation is
generally achieved by growing the pathogen in abnormal conditions for long
durations. In the case of Pasteur’s chicken cholera vaccine, it was found subse-
quently that aerobic culture conditions were responsible for attenuation. These
vaccines though efficient, yet require considerable time for development. BCG is
an attenuated strain of Mycobacterium bovis, which took 13 long years for develop-
ment. The attenuation was achieved by growing Mycobacterium bovis in increasing
concentrations of bile salts by Albert Calmette and Camille Guerin (Luca and
Mihaescu 2013). Sabin polio vaccine was developed by culturing poliovirus in
monkey kidney epithelial cells. The reversion of attenuated organisms into virulent
forms can occur thereby causing disease rather than providing immunity. Sometimes
the administration of these vaccines has led to conditions like natural disease in a
small percentage of recipient population like in the measles vaccine (Kindt et al.
2007).

11.1.2 Inactivated Vaccine

Inactivated vaccines contain the killed pathogen and hence are also called killed
vaccines. This class of vaccines includes hepatitis A vaccine, Salk polio vaccine,
rabies vaccine, etc. Inactivation is generally mediated by chemicals like
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formaldehyde that was used for the inactivation of poliovirus to produce the Salk
vaccine. In the case of killed vaccines, the process involves killing or inactivation of
pathogens, thus the workers involved in the process are exposed to pathogenic
microbes posing a serious health challenge. Further, these individuals, if infected,
can serve as a reservoir for other populations and can lead to the spread of disease.
Sometimes, there can be a failure in the inactivation or killing of the pathogenic
organism, which leads to disease outbreak upon vaccination. This has happened with
the first Salk polio vaccine where the virus was not killed by formaldehyde, and a
high number of recipients of the vaccine developed paralytic polio (Fitzpatrick
2006).

11.1.3 Subunit Vaccine

The dangers associated with killed and inactivated vaccines have led to the develop-
ment of vaccines that do not use the whole organism but the parts of the organism,
which are sufficient to generate immunity. The subunit vaccines have been devel-
oped, which use macromolecules like protein (Hepatitis B vaccine) or carbohydrates
(Pneumococcal vaccine) for inducing protective immunity. Hepatitis B virus surface
antigen (HBsAg) gene has been cloned into yeast and mammalian cells and this
recombinant protein is used as a licensed vaccine. There is no handling of the virus
involved during vaccine production (WHO Data n.d.). However, in the case of
subunit vaccines comprised of carbohydrate moieties like a pneumococcal vaccine,
the bacteria Streptococcus pneumonia is cultured and the polysaccharides are
purified for use in vaccine formulations (Morais et al. 2018). Thus, handling is
involved during the production process, which can make workers involved in
production exposed to the pathogen. The subunit vaccines involving the use of
immunogenic proteins are preferable as genes for proteins can easily be cloned in
high expression vectors, and the production of such vaccines can be carried out with
ease. Toxoid vaccines are produced by inactivating the exotoxin produced by
bacteria. Tetanus and diphtheria toxoid vaccines were developed by inactivating
the exotoxin with formaldehyde.

11.1.4 Recombinant Vector and DNA Vaccines

The knowledge that the proteins rather than the whole organism can provide
immunity has led to the development of recombinant vector and DNA vaccines.
The genes for immunogenic proteins can be cloned into attenuated viral or bacterial
strains and are expressed for longer duration as the vector used replicates in the host.
Adenoviruses, vaccinia virus, attenuated strains of Salmonella, BCG strain of
Mycobacterium bovis are some examples of the vectors that can be used. The
vaccine for SARS-CoV-2 being developed by Prof. Sarah Gilbert at the University
of Oxford contains a gene sequence of spike glycoprotein cloned into the chimpan-
zee adenovirus vector. This vaccine is undergoing accelerated clinical trials for the
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remedy of the current prevailing COVID-19 pandemic (https://www.ovg.ox.ac.uk/
news/covid-19-vaccine-development). The development of DNA vaccines involves
the cloning of a gene for an antigenic protein in a plasmid that can be directly
injected into a muscle. The muscle cells take up the DNA and express the protein to
induce protective immunity by priming the immune system. Though there are no
licensed vaccines based on these approaches yet they are very promising for future
vaccine applications (Kindt et al. 2007).

11.1.5 Epitope-Based Vaccines

From the preceding two sections (Sects. 11.1.3 and 11.1.4) it becomes clear that
bio-macromolecules particularly proteins alone are capable of generating protective
immunity provided they are good antigens. Antigens may be defined as those
molecules that can be recognized by B cell receptors (antibodies/immunoglobulins)
or T cell receptors. The antigen-antibody binding is direct without the mediation of
any other molecule. However, the recognition of the antigen by the T cell receptor
requires that the antigen is presented by MHC (Major histocompatibility complex)
protein molecule. The antigen loaded in the MHC molecule cleft interacts with the T
cell receptor present on T cells. Immune cells, both B and T cells do not interact with
the whole antigen molecule but on certain discrete sites present on the antigen called
epitopes. Epitopes may be defined as antigenic determinants present in the antigen
that directly interact with the antigen-specific receptors present on B and T cells.
Epitopes are of immense importance as they can be potentially used in epitope-based
vaccine design. Epitopes are regions of immune specificity within a protein and can
elicit a protective immune response. Epitope-based vaccines comprise immuno-
dominant epitopes of a pathogen. Epitope-based vaccines are considered to be
safer than traditional vaccines and focus on the most crucial antigenic elements of
the pathogen to generate protective immunity (De Groot et al. 2009). Furthermore,
epitope-based vaccines have provided the opportunity to design multi-epitopic
immunogens that contain epitopes from different proteins. Such chimeric vaccines
generated can have a combined protective effect, which otherwise would have
required all the proteins whose epitopes are incorporated in the vaccine, which is a
difficult process. This approach derives the benefit of using epitopes derived from
multiple proteins rather than focusing on a single protein molecule. The use of
bioinformatics has been extensively made in designing such vaccines. There are
no commercially available vaccines based on this strategy yet epitope-based
vaccines hold a great promise for the future.

11.2 B and T Cell Epitopes

The prerequisite for epitope-based vaccines is the availability of epitopes. The nature
of epitopes present in an antigen needs to be understood for such vaccine design.
There is a difference between the recognition of epitopes by B and T cells. B cell
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receptors can bind to epitopes in antigen present either in soluble form or on the
surface of pathogen and there is no requirement of mediation by any other molecule
for this binding. However, the binding mechanism for T cell epitopes is different, as
they require an epitope to be presented by MHC molecules for binding to the T cell
receptor. The nature of B and T cells of epitopes and their interactions are detailed in
the next sections.

11.2.1 B Cell Epitopes

B cell epitopes are located on the native protein and are both continuous and
conformational. The continuous epitopes are also known as linear, or sequential
epitopes comprise amino acids present sequentially in the protein. The conforma-
tional epitopes also called structural or discontinuous epitopes can comprise amino
acids that are located distantly in sequence, but because of protein folding come
close together to form a particular protein structure. B cell epitopes are mostly
surface accessible, hydrophilic, polar regions of the antigens that can readily bind
to the respective antibody molecule (Zobayer et al. 2019). The epitope and the
antibody binding site are complementary and the epitope fits into the complemen-
tarity determining region (CDR) of the antibody molecule. The interactions between
them are stabilized by weak forces like electrostatic interactions, hydrogen bonds,
van der Waals forces, and hydrophobic interactions.

11.2.2 T Cell Epitopes and Their Processing

Unlike B cell epitopes that can be recognized directly, T cell epitopes require
presentation of epitope with MHC molecules. T cell epitopes are only linear or
sequential and the antigens need to undergo processing before being recognized by
their receptors. The protein is first degraded into small peptides; these peptides bind
to MHC molecule and subsequently form a trimolecular complex with T cell
receptors. There are two types of T cells viz Tc cells or cytotoxic T cells that display
CD8 protein molecule on their surface and Th cells or helper T cells displaying CD4
surface protein. The epitopes that are presented to Tc cells are displayed by Class I
MHC molecules whereas Th cell epitopes are displayed by Class II MHC molecules.
The pathways of processing and presenting epitopes to both types of T cells are
different.

Tc cells recognize epitopes arising from proteins processed by the cytosolic
pathway, which involves processing through proteasome and subsequent binding
of the cleaved peptides to class I MHCmolecule before presentation and recognition.
Concisely, the proteasome (a multimeric protein complex) cleaves the protein into
small peptides; these peptides are transported by TAP proteins (transporters
associated with antigen processing) into the ER (endoplasmic reticulum) lumen.
Class I MHC molecules are undergoing folding in the ER lumen where they bind to
these transported peptides with the help of tapasin. The MHC-peptide complex is
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then transported by the secretory pathway to the cell surface (Hewitt 2003). Class I
MHC glycoproteins are expressed by all nucleated cells and present antigen to
cytotoxic T (Tc) cells. The peptide binding cleft of Class I MHC molecule is closed
at both the ends and can bind peptides with 8–10 amino acids in length with
nonamers showing best binding. The structure of Class I MHC with peptide bound
in its cleft is shown in Fig. 11.1, whereas its antigen processing pathway is shown in
Fig. 11.2.

Antigen processing for epitopes binding to Th cells takes place by the endocytic
pathway involving phagocytosis and lysosomal cleavage of protein followed by
binding to the Class II MHC molecule for presentation and recognition. Briefly,
antigens are internalized into the cell by phagocytosis and it proceeds sequentially
through early endosomes, late endosomes, and finally to lysosomes. In these
increasingly acidic compartments, antigen gets cut into small peptides by the
inherent proteases present there. Class II MHC molecules are transported from the
Golgi complex to the endocytic pathway by an invariant chain. As the MHC II
molecule moves through the endocytic pathway invariant chain gets cleaved leaving
CLIP (class II-associated invariant chain peptide) occupying the peptide binding
cleft of MHC II. HLA-DM catalyzes the exchange of CLIP with antigenic peptide
and finally, Class II MHC molecule moves to the cell surface (Kindt et al. 2007).
Class II MHC glycoproteins expressed on the surface of antigen presenting cells
(dendritic cells, macrophages, and B cells) present antigen to helper T cells (Th). The

Fig. 11.1 Class I MHC
molecule with peptide bound
in the cleft (α chain: green,
β2 microglobulin: blue and
the peptide: purple color)
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Fig. 11.2 Processing of antigen, binding of epitope to Class I MHC, and its display on cell surface

Fig. 11.3 Class II MHC molecule with peptide bound in the cleft (α chain in blue, β chain in
orange, and the peptide in yellow color)
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peptide binding site of Class II MHC is open at both ends and can bind peptides of
13–18 amino acids length. Figure 11.3 depicts the Class II MHC molecule with a
bound peptide in its cleft and its antigen processing pathway is depicted in Fig. 11.4.
Thus, the prerequisite for any protein which can be a possible T cell antigen is that it
should be comprised of peptides that show binding affinity to MHC molecules. The
proteins that upon passing through the antigen processing pathway generate peptides
having an affinity for binding to the cleft of MHC molecules can be classified as T
cell antigen proteins.

11.3 Bioinformatics in Vaccine Design

With the advance in genomic technologies in the recent past, the genomes of
organisms are being sequenced at an unprecedented pace. The amount of the data
available is immense and can provide insights into finding unexplored genome
regions in search of novel targets for the treatment of diseases. The wealth of
available genomic data has to be analyzed for deciphering the encoded proteins,
and for vaccinology purposes. The total proteins encoded by the genome can be
screened for finding out immunogenic proteins using bioinformatics tools. These
antigenic proteins can further be used to find out epitopes located in them. Many of
the genome databases have constructed proteomes of the sequenced genomes by
automated methods. The repertoire of proteins encoded by the genome can be
analyzed by bioinformatics servers to find antigenic proteins. The filtered antigenic

Fig. 11.4 Processing of antigen, binding of epitope to Class II MHC, and its display on cell surface
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proteins can be used to find specific B and T cell epitopes in these proteins by the
available epitope prediction methods. A new branch called immunoinformatics has
come into existence, which deals with the application of computational tools to
immunologic problems (Backert and Kohlbacher 2015).

Locating T and B cell epitopes in the proteins of a pathogen is the major job of
immunoinformatics. The tools for finding B and T cell epitopes among the cohort of
proteins encoded by the genome of an organism have been available in the public
domain for almost more than two decades now. These tools are based on various
machine learning methods. The availability of experimental data about T and B cell
epitopes has also increased, which has also enhanced the accuracy of prediction
methods as most of the methods use this data as a training set for developing tools.
The mechanisms of recognition of B and T cell epitopes are different and their
properties also vary. T cell epitopes are linear in nature and need to bind with MHC
molecules for their presentation to T cell receptors whereas B cell epitopes are linear
and conformational, and are recognized in their native position in the protein. The
prediction methods, therefore, have to take into account these different properties of
the epitopes.

For any T cell epitope, the binding affinity to the MHC molecule is immensely
important, as this is the first step that qualifies it to be an epitope. The prediction
methods for finding such an affinity of peptides first progressively break antigenic
protein into peptides and analyze their affinity for a particular MHC molecule. The
diversity of MHC molecules further complicates the situation as the affinity for
peptides changes with change in the molecule. The studies on the peptides eluted
from MHC molecules reveal that there are differences in the properties of peptides
bound in the cleft of different MHC proteins. The alleles for MHC are designated as
HLA alleles; for class I these alleles are HLA- A, B, and C and for class II HLA-DP,
DQ, and DR. In the human population, the number of HLA class I alleles is 14,800,
and that of HLA class II alleles is 5288 (Statistics of HLA alleleshttps://www.ebi.ac.
uk/ipd/imgt/hla/stats.html). Further, the distribution of HLA alleles differs among
different population groups of the world. Thus, any software tool that is developed
for the T cell epitope determination needs to consider these points. The epitope
prediction tools used for B and T cell epitopes are discussed in subsequent sections.
The B and T cell epitope prediction process is shown in Fig. 11.5.

11.4 Prediction Tools for Class I and II MHC Binding

A comprehensive list of the freely accessible tools available for determining the
binding affinity of peptides in a protein to different MHC molecules is listed in
Table 11.1. These tools are based on different machine learning methods like support
vector machine (SVM), artificial neural networks (ANN), hidden Markov models
(HMM), and position-specific scoring matrices (PSSM). Some tools can carry out
the peptide binding predictions for both class I and II MHC molecules, whereas
some of the tools are exclusive. Tools like NetMHC, NetMHCPan, ProPred-I,
EpiJen, and nHLAPred carry out the binding affinity prediction of peptides to
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class I MHCmolecules, and NetMHCII, NetMHCIIPan, and ProPred are exclusively
used for class II MHC binding predictions. Most of the other tools have the
capability of carrying out a prediction for both classes of MHC molecules. The
number of alleles available for running predictions is different in each tool.

11.4.1 NetMHC

NetMHC utilizes the ANN approach to predict the binding affinity of a peptide for
different class I MHC molecules. This predictive model has been trained for
81 different MHC alleles of humans, including HLA-A, HLA-B, HLA-C, and
HLA-E (Andreatta and Nielsen 2016).

11.4.2 NetMHCPan

It predicts the binding affinity of peptides to any MHC of the known sequence. This
ANN-based method is trained by more than 180,000 binding data, and MHC eluted
ligands. The binding affinity data covers 172 MHC molecules from human, mouse
(H-2), Cattle (BoLA), primates, and swine (SLA). It provides information about the
likelihood of a peptide to be a natural ligand or the binding affinity (Jurtz et al. 2017).

Fig. 11.5 Schematic process flow of B and T cell epitope prediction for epitope-based vaccine
design
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11.4.3 SYFPEITHI

This database contains MHC class I and class II ligands, peptide motifs of humans
and other species, natural ligands, and T cell epitopes. It also provides connectivity
to resources available at EMBL and PubMed databases (Rammensee et al. 1999).

11.4.4 ProPred-I

ProPred-I is used to identify the MHC class-I binding regions in antigens. It also
helps the researcher to identify the promiscuous regions (Singh and Raghava 2003).

Table 11.1 Tools for prediction of MHCI andMHCII binding peptides from the protein sequences

Prediction for MHC
class Prediction method Tool References

Class I MHC ANN NetMHC Andreatta and Nielsen
(2016)

Class I MHC ANN NetMHCPan Jurtz et al. (2017)

Both class I and II
MHC

Published motifs SYFPEITHI Rammensee et al. (1999)

Class I MHC Addition/multiplication
matrices

ProPred-I Singh and Raghava
(2003)

Both class I and II
MHC

PSSM RANKPEP Reche et al. (2002)

Class I MHC Additive method EpiJen Doytchinova et al.
(2006)

Both class I and II
MHC

Additive method MHCPred Guan et al. (2003)

Class I MHC ANN and QM nHLAPred Bhasin and Raghava
(2007)

Both class I and II
MHC

SVR SVRMHC Liu et al. (2007)

Both class I and II
MHC

SVM SVMHC Dönnes and Kohlbacher
(2006)

Both class I and II
MHC

Multiple methods IEDB analysis Zhang et al. (2008)

Both class I and II
MHC

ANN
MULTIPRED

2 Zhang et al. (2011)

Class II MHC ANN NetMHCII Jensen et al. (2018)

Class II MHC ANN NetMHCIIPan Jensen et al. (2018)

Class II MHC QM ProPred Singh and Raghava
(2001)

Class II MHC SVM MHC2Pred Lata et al. (2007)
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11.4.5 RANKPEP

It predicts the peptide binders to MHCI and MHCII from protein sequence informa-
tion. It also identifies the MHCI ligands, whose C terminal end is likely to be the
result of proteasomal cleavage (Reche et al. 2002).

11.4.6 MHCPred

This method assumes that each substituent present in a molecule has an additive and
independent contribution to the biological activity. It considers the interaction
between individual amino acids and the binding site, the interaction between adja-
cent and every second amino acids, and their effects on binding (Guan et al. 2003).

11.4.7 EpiJen

This method considers proteasome cleavage and TAP binding and can mimic the
MHC binding mechanism in a real way (Doytchinova et al. 2006).

11.4.8 SVMHC

This tool is based on the SVM approach and used to predict both class I and class II
MHC binding epitopes. This server is based on (Dönnes and Kohlbacher 2006).

11.4.9 MULTIPRED2

It is used to screen peptide that binds to multiple alleles belonging to HLA class I and
class II DR super types. It performs binding predictions on 1077 alleles related to
26 HLA super types (Zhang et al. 2011).

11.4.10 ProPred

ProPred predicts class II MHC binding regions in the antigenic sequence. It assists in
locating promiscuous binding regions which are useful in screening vaccine
candidates (Singh and Raghava 2001).

11.4.11 MHC2Pred

This tool is used to predict promiscuous class II MHC binding peptides. For
algorithm designing, the information of binders and non-binders for different alleles
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were taken from the MHCBN and JenPep database. The average accuracy of this
method is ~80% (Lata et al. 2007).

11.5 CTL Epitope Prediction

Though multiple tools are available for prediction of binding affinity of peptides to
different class I MHC molecules, yet only binding to a particular MHC is not
sufficient to qualify a peptide to be a Tc cell epitope. In other words, not all class I
MHC binders are Tc cell epitopes, whereas all Tc cell epitopes are good MHC
binders. Also, the peptide should be amenable to the antigen processing pathway of
class I MHC i.e. cytosolic pathway. Proteasomal cleavage and transport of peptides
into the rough endoplasmic reticulum (RER) by TAP are other important steps
involved in the cytosolic pathway of antigen processing and presentation (Hewitt
2003).

All intracellular proteins after spending a fixed time in the cell are marked for
degradation by a small protein called ubiquitin. The marked proteins are then
cleaved by proteasome into small peptides within its central hollow. The immune
system modifies proteasome by the addition of extra protein molecules called LMP7,
LMP2, and LMP10 to generate peptides having a preferential affinity for class I
MHC molecules. Thus, for any peptide to act as a Tc cell epitope, it should be
processed by the proteasome. The transport of peptides generated by the proteasome
to RER is carried out by the transport by TAP. TAP also shows preference to
transport peptides of 8–13 amino acid residues in length (Kindt et al. 2007). The
peptide should have these properties to get transported from the cytosol to RER.
These requirements are not as specific as binding to class I MHC molecule yet play
an important role in making a peptide a Tc cell epitope.

There are bioinformatics tools that carry out proteasomal cleavage and TAP
transport prediction and are listed in Table 11.2. Some of the class I MHC binding
prediction tools have these two functions inbuilt in them. EpiJen server, in addition
to MHC binding also uses proteasomal cleavage and TAP transport for predicting Tc
cell epitopes (Doytchinova et al. 2006). nHLAPred also uses proteasomal cleavage
matrices to refine the results of epitope prediction. ProPred-I uses the proteasomal
model and immunoproteasome models for finding the epitopes. RANKPEP predicts
class I MHC binding peptides whose C terminal end is likely to be the result of
proteasomal cleavage. The description of tools that exclusively serve the purpose of
proteasomal cleavage and TAP transport prediction is provided below.

11.5.1 NetCTL

It is used to predict peptide MHC class I binding, proteasomal C terminal cleavage,
and efficiency of TAP transport. MHC class I binding and proteasomal cleavage is
based on the ANN approach while the efficiency of TAP transport uses a weight
matrix (Larsen et al. 2007).
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11.5.2 CTLPred

This tool uses a quantitative matrix, SVM, and ANN approach for prediction. It has
been developed by training and testing the results from the dataset of T cell epitopes
and non-epitopes (Bhasin and Raghava 2004a).

11.5.3 NetChop

NetChop is based on the ANN method to predict the cleavage sites of the human
proteasome. Since the method is trained using human data, therefore, it shows better
performance in predicting sites of proteasomal cleavage for humans. The method is
used by NetCTL for predicting proteasomal cleavage sites (Keşmir et al. 2002;
Nielsen et al. 2005).

11.5.4 MAPPP

MAPPP is used to predict antigenic epitopes on the cell surface by class I MHC to
CD8 positive T lymphocytes. It also predicts the proteasomal cleavage with peptide
anchoring to MHC I molecules (Hakenberg et al. 2003).

11.5.5 Pcleavage

It is an SVM based method used to predict constitutive and immunoproteasome
cleavage sites in the antigenic molecule. The method only predicts proteasomal
cleavage sites, but no prediction of TAP transport is available (Bhasin and Raghava
2005).

Table 11.2 Prediction tools for accessing amenability to antigen processing pathway

Server Application References

NetCTL Integrated Larsen et al. (2007)

CTLPred CTL prediction Bhasin and Raghava (2004a)

NetChop Proteasomal cleavage Keşmir et al. (2002) and Nielsen et al. (2005)

MAPPP Integrated Hakenberg et al. (2003)

Pcleavage Proteasomal cleavage Bhasin and Raghava (2005)

PAProC Proteasomal cleavage Nussbaum et al. (2001)

TAPPred Binding affinity for TAP
transporter

Bhasin and Raghava (2004b)

EpiJen Integrated Doytchinova et al. (2006)
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11.6 B Cell Epitope Prediction

B cell epitopes are recognized by the B cell receptors i.e. antibodies without the
process of processing and presentation, unlike T cell epitopes. Linear B cell epitopes,
in principle, can be predicted by the same methods as used for T cell epitopes.
However, the prediction of conformational or structural epitopes is a challenging
job. The requirement of structural data of a protein is absolute for finding discontin-
uous epitopes. There are methods available for prediction of both continuous and
discontinuous B cell epitopes (Table 11.3), but the efficiency of these methods is less
when compared to T cell epitope prediction methods. The methods use many
different approaches like ANN, SVM, HMMs for predictions.

11.6.1 BCPred

In BCPred server, the user can select the method such as amino acids pair scaling
(AAP), BCPred, and FBCPred for prediction. AAP has good accuracy in the
prediction of antigenicity, hydrophilicity, and flexibility (Chen et al. 2007;
EL-Manzalawy et al. 2008).

Table 11.3 B cell epitope prediction tools

Server Type of epitope References

BCPRED Linear/continuous Chen et al. (2007) and EL-Manzalawy et al.
(2008)

LBtope Linear/continuous Singh et al. (2013)

ABCpred Linear/continuous Saha and Raghava (2006a)

BepiPred Linear/continuous Jespersen et al. (2017)

Bcepred Linear/continuous Saha and Raghava (2004)

SVMTriP Linear/continuous Yao et al. (2012)

Discotope Conformational/
discontinuous

Kringelum et al. (2012)

BEpro Conformational/
discontinuous

Sweredoski and Baldi (2008)

ElliPro Conformational/
discontinuous

Ponomarenko et al. (2008)

Epitopia Both linear and
conformational

Rubinstein et al. (2009)

CBTOPE Conformational/
discontinuous

Ansari and Raghava (2010)

PEASE Conformational/
discontinuous

Sela-Culang et al. (2014a, b)

EpiPred Conformational/
discontinuous

Krawczyk et al. (2014)

EPSVR and
EPMeta

Conformational/
discontinuous

Liang et al. (2010)
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11.6.2 LBtope

LBtope is based on data of B cell epitopes and non-B cell epitopes from the immune
epitope database. Models like SVM and K-nearest neighbor are used in discriminat-
ing epitopes and non-epitopes. The features like binary profile, dipeptide composi-
tion, AAP (amino acid pair) profile have been used in design of the method, and the
accuracy of prediction ranges from 54% to 86% (Singh et al. 2013).

11.6.3 ABCPred

It is an ANN-based approach used to predict continuous B cell epitopes using a fixed
length pattern. This tool is developed using the dataset of epitopes from parasites,
viruses, bacteria, and fungi from the BciPep database, and it has a prediction
accuracy of 65.9% (Saha and Raghava 2006a).

11.6.4 BepiPred 2.0

It is based on the random forest algorithm and developed from a dataset of epitopes
annotated from the antibody-antigen structure from PDB. This tool requires a
FASTA format of the protein as input (Jespersen et al. 2017).

11.6.5 Bcepred

Bcepred predicts the linear B cell epitopes using physicochemical properties, such as
hydrophilicity, accessibility, flexibility, polarity, exposed surface, etc. The accuracy
of this server is 58.7% (Saha and Raghava 2004).

11.6.6 DiscoTope

This server is used for the prediction of discontinuous B cell epitopes from protein
3D structures using surface accessibility and a novel epitope propensity score of
residues (Kringelum et al. 2012).

11.6.7 ElliPro

ElliPro is used for prediction and analysis of antibody epitopes in a protein structure.
Here, PDB ID or a PDB file of a protein is used as input. It has been designed using
the information of discontinuous epitopes present in antibody-protein complexes
(Ponomarenko et al. 2008).
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11.6.8 PEASE

This server predicts antibody-specific epitopes using sequence information of the
antibody. The epitopes related information is provided at the residue level and also
on the structure of antigen (Sela-Culang et al. 2014a, b).

11.7 Methods for In Silico Designing of Epitope-Based Vaccines

Vaccines designing using immunoinformatics tools have come a long way, and
many strategies have been employed for this purpose. Before the advent of such
tools and precedent to the availability of genome, the classical vaccinology
approaches were used which required more time and labor. The prime requirement
in the case of subunit vaccines is a biomolecule, mostly proteins that have the
potential to induce immunity. In the case of epitope-based vaccines, epitopes from
more than one protein can be amalgamated in a single construct for enhancing
immunity. The general account of approaches used is given below. The process
and tools used for epitope analysis and selection of epitopes for vaccine design are
displayed in Fig. 11.6.

11.7.1 Selection of Proteins

As mentioned earlier, the requirement of immunogenic proteins is prime for
epitope-based vaccine designing. The databases like NCBI Protein and UniProt
can serve as the source of proteins for analysis. NCBI Protein database is a
collection of protein sequences from SwissProt, PIR (Protein Information
Resource), PRF (Protein Research Foundation), and PDB (Protein Data Bank)
in addition to translated sequences obtained from annotated coding regions of
GenBank sequences. UniProt contains protein sequences obtained from SwissProt
and translated EMBL (trEMBL) database. The finding of immunogenic proteins
from the genome can be achieved by using various criteria. The total proteins
encoded by the genome of a pathogen i.e. its proteome can be analyzed for
immunogenic proteins by using servers like VaxiJen (Doytchinova and Flower
2007). This server can take as input multiple protein sequences from bacteria,
viruses, fungi, parasites, and the threshold value can be controlled by the user. The
total proteome of an organism can be provided as input and depending upon the
threshold, antigenic proteins can be selected. Proteomics approaches to find the
stage-specific expression of proteins can also aid in vaccine development (Soria-
Guerra et al. 2015). The other approach for fishing proteins from the proteome is
to find the surface proteins. The surface proteins are easily accessible to immune
effector molecules particularly to antibodies and can suffice the purpose. The
servers like CELLO (Yu et al. 2006), Cell-PLoc (Chou and Shen 2008) that
predict the subcellular localization of proteins can help in finding the surface

262 P. S. Slathia and P. Sharma



proteins from the proteome. The combined approach in which first surface
proteins are predicted from the proteome and these proteins are then subjected
to immunogenicity prediction by VaxiJen has also been employed (Pritam et al.
2019). There is another server by the name of Vaxign which provides two modes
of usage; one in which pre-computed results of more than 350 genomes are
available and can be used for finding immunogenic proteins, and the second
involves the protein input to be provided by the user and results are computed
by the server (He et al. 2010). This server can also assist in protein selection.
Literature studies are also a good source for finding immunogenic proteins. The
previously reported proteins capable of generating immunity can also be used for
epitope prediction and a vaccine can be designed from the epitopes derived from
multiple proteins.

In some cases, several variant sequences exist for a single immunogenic protein.
This could be due to the protein sequences arising from different strains of a
pathogen or the variability induced by the pathogen itself in its surface proteins for
evading the immune response. This variability provides an advantage to the patho-
gen and poses a major hindrance in vaccine development. The conserved regions in
such a protein are deciphered by multiple sequence alignment of the different variant
sequences. Tools like Clustal Omega, TCOFFEE, etc. can be employed to carry out
multiple sequence alignment. These conserved regions can then serve as the source
for the prediction of epitopes.

Fig. 11.6 Graphic representation of steps involved in the analysis of predicted B and T cell
epitopes for designing of in silico vaccines
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11.7.2 Epitope Prediction and Analysis

Once the protein/proteins have been selected the subsequent step involves the
prediction of B and T cell epitopes. The prediction of epitopes can be carried out
using the tools mentioned in Sects. 11.4, 11.5, and 11.6. Tc cell epitope prediction
involves predicting the affinity of peptides (by tools in Sect. 11.4) for the respective
HLA allele (Class I MHC) followed by the proteasomal cleavage and TAP transport
prediction (tools in Sect. 11.5). The epitopes qualifying these criteria are generally
selected for the vaccine designing process. For helper T cells the epitope prediction
involves ascertaining the binding affinity of peptides for HLA alleles (Class II MHC)
and there are no methods available for determining the antigen processing and
presentation prediction by endocytic pathway. The tools presented in Sect. 11.6
can predict continuous and discontinuous B cell epitopes. Thus, a pool of B and T
cell epitopes can be generated which can be further analyzed.

Many a time the epitopes particularly, T cell epitopes predicted for different HLA
alleles can share considerable sequence similarity. Such epitopes can be clustered
together and a single representative of this cluster can be used in the final design. The
process of clustering removes the unwanted repetitiveness of epitopes and prevents
the vaccine construct from unnecessary elongation. Epitope cluster analysis tool
(Dhanda et al. 2018) can be used to carry out this step as the epitopes are clustered
together based on the sequence identity threshold set by the user. Another important
aspect is to check the similarity of the epitopes with the host proteins and this can be
achieved by using BLAST (Basic Local Alignment Search Tool) available at NCBI
(National Center for Biotechnology Information). After BLAST analysis the
epitopes sharing similarity with host proteins need to be omitted, as they may not
generate any response. Population coverage tool helps in finding the predicted
immune response to T cell epitopes in a population group based on HLA allele
distribution (Bui et al. 2006). The Allele Frequency Net Database is the source of
HLA allele distribution frequencies in different populations of the world used in the
tool. The epitopes should be able to provide a higher percentage of population
coverage to be used in vaccine design as this ensures immune response generation
in most of the individuals in a population group. To check the conservancy of
epitopes across the variants of a protein, Epitope conservancy analysis tool can be
used which calculates the degree of the conservancy of a particular epitope in the
cohort of protein sequences (Bui et al. 2007). This tool becomes an important asset
when different variants of a protein exist as mentioned in Sect. 11.7.1.

The epitopes can also be checked for the presence of any allergenic and toxic
peptides among them. The tools for allergenicity prediction like AlgPred (Saha and
Raghava 2006b), AllergenFP (Dimitrov et al. 2014a), AllerCatPro (Maurer-Stroh
et al. 2019), and AllerTop (Dimitrov et al. 2014b) are freely available and can be
used to remove the epitopes possessing allergenic nature from the group to be used in
vaccine design. The toxic peptides can be predicted by the ToxinPred server (Gupta
et al. 2013) and any epitopes that are toxic in nature have to be omitted from the final
construct. The epitopes after filtration by the above methods can be used further.
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11.7.3 Molecular Docking and Molecular Dynamics Simulation

The use of molecular docking and simulation to find interactions between epitopes
and immune effector molecules is an important aspect of in silico vaccine designing.
T cell epitopes should bind to MHC molecules for presentation to T cell receptors.
This binding can be studied by molecular docking, for which the structure of epitope
needs to be determined. The servers like PEPFOLD (Lamiable et al. 2016), QUARK
(Xu and Zhang 2012), etc. are freely available for modeling of small peptides and
can provide models of T cell epitopes. The structures of MHCmolecules (Class I and
II) can either be obtained from Protein Databank (PDB) if available or models of
these proteins be generated by homology modeling servers like SwissModel
(Waterhouse et al. 2018) and many others. The docking of the epitopes with
respective MHC molecule/HLA allele can be carried out by protein-protein docking
servers like ZDOCK (Pierce et al. 2014), ClusPro (Kozakov et al. 2017), etc. The
docking results can validate whether the epitope binds in the cleft of the MHC
molecule. The docked complexes can further be analyzed by molecular dynamics
simulation to explore the interaction between the epitope and MHC molecule in
conformational space. These results, if positive can further strengthen the possibility
of epitopes being presented by MHC molecules to T cells. Software suites like GR
OMACS (van der Spoel et al. 2005) are freely available that can be used for
simulation studies. T cell epitopes that dock into the peptide binding cleft of MHC
molecules are selected for vaccine designing. The docking and simulation studies for
B cell epitopes are not required as they bind directly to the antibody molecules and
are not presented through MHC molecules. The complementarity determining
regions (CDRs) of antibody molecules are highly diverse and thus binding studies
cannot be carried out.

11.7.4 Construction of Vaccine

Many studies culminate at the finding of epitopes that qualify the processes men-
tioned in Sects. 11.7.1–11.7.3 and the resultant cohort of epitopes is left for the
designing of vaccines in future studies followed by experimental validations. In
some studies, the epitopes are used for cell culture based studies, and their ability to
initiate an immune response is validated by the cytokine response generated by them
in peripheral blood mononuclear cells (PBMCs). However, in silico vaccine design-
ing based on the predicted epitopes is also widely carried out. The epitopes are
joined in tandem with the insertion of specific linkers for efficient processing of
epitopes such as AAY linker is generally used between two CTL epitopes. AAY
linker possesses the cleavage site of proteasomes, which leads to the generation of
natural epitopes and it can also reduce the unwanted joining of two neighboring
epitopes in the vaccine construct. Similarly, the GPGPG linker is used for the
separation of T helper cell epitopes as this linker is reported to facilitate immune
processing and prevent the joining of two epitopes. In many of the vaccine constructs
protein adjuvants like cytokines have also been fused with the epitopes and in these
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constructs linker like EAAAK has been widely used. The linker EAAAK causes the
separation of fusion proteins (Arai et al. 2001) and can prevent the interaction
between the vaccine and adjuvant domains of the vaccine protein construct. Thus,
the final fusion protein obtained as vaccine consists of epitopes, linkers, and may be
adjuvants in certain cases. The structure of this fusion protein can be deduced using
web-based protein modeling severs like I- TASSER (Roy et al. 2010). In some
instances, homology modeling servers can successfully model the vaccine protein
structure, whereas for some structures ab initio modeling approaches have to be
used. The protein sequence can be reverse translated into DNA and thus gene
constructs of vaccine can be made. JCat tool can be used for reverse translation as
well as for codon optimization for efficient translation in the host cells (Grote et al.
2005). The protein sequence of the vaccine construct can be reverse translated using
codon bias for expression in eukaryotic or prokaryotic cells for heterologous pro-
duction of the vaccine. Alternatively, the gene for human expression can be codon
optimized for direct use as a DNA vaccine in humans. Thus, this section summarizes
the methods that can be used for designing of in silico vaccines. Some examples of
the development of vaccines using these approaches are depicted in Sect. 11.8.

11.8 Case Studies of Vaccine Designing

There have been various studies on vaccine designing using bioinformatics tools.
Immunoinformatics has been widely used for in silico designing of vaccines for
various pathogens like viruses, bacteria, and parasites. The details of these vaccine
designing studies are given in the forthcoming sections.

11.8.1 Vaccine Designing for Viral Pathogens

Viruses are nucleoprotein particles, which have imposed a heavy disease burden
throughout human history. Since, viruses use the host cell machinery for their
replication and other functions, it limits the availability of drug targets in them.
Vaccines have been the prime means for the treatment of viral diseases. Recently,
vaccines for viruses have been designed using in silico methods. The vaccines have
been designed based on epitopes derived from a single viral protein. The criteria
used for the selection of protein are either immunogenicity or surface accessibility.
Ebola virus vaccine was designed using predicted B and T cell epitopes present in
the glycoprotein of the virus. VaxiJen server was used to find immunogenic protein
followed by epitope predictions, which were further validated by molecular docking
and molecular dynamics simulation approach (Dash et al. 2017). T and B cell
epitopes (linear and discontinuous) were predicted in the Spike protein of MERS-
COV using bioinformatics tools, which could be used in vaccine design (Ul Qamar
et al. 2019). In some cases, epitopes have been predicted from more than one viral
protein for use in vaccine design. The proteins E, prM, NS1, NS3, and NS5 of
Japanese Encephalitis Virus (JEV) were used in a recent study for the prediction of T
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and B cell epitopes. Based on different parameters assessed four T cell and one B cell
epitope were found to have potential in inducing immunity and could be used in
vaccines against the virus (Chakraborty et al. 2020). B and T cell epitopes from five
structural polyproteins (capsid, E2, 6K, E3, and E1) of the Mayaro virus were
predicted using immunoinformatics tools. Multi-epitope vaccine was designed,
molecular docking with TLR-3 was done, and finally in silico expression was carried
out in E. coli (Khan et al. 2019). The phenomenon of cross reactivity found among
related viruses has earlier led to the development of immunity as in the case of
smallpox (details in Sect. 11.1). With this background, attempts have been made to
find common epitopes present in two or more related viruses for designing vaccines
that could generate immunity across these viruses.

A study on four antigenically important proteins (HA, NA, NP, and M2) of
H1N1, H2N2, H3N2, and H5N1 viruses revealed the presence of 18 conserved
epitopes across these viruses which have the potential for future vaccines (Muñoz-
Medina et al. 2015). Hendra virus and Nipah virus proteins (F, G, and M), when
subjected to B and T cell epitope prediction, showed common epitopes which could
be used for vaccine design against both the viruses (Saha et al. 2017). In the envelope
protein of the Japanese Encephalitis virus and West Nile virus, a common conserved
epitope was detected which contained both B and T cell epitopes that could find use
in designing epitope-based vaccines (Slathia and Sharma 2019).

11.8.2 Vaccine Designing for Bacteria

Since the discovery of penicillin, the therapeutic interventions for bacterial diseases
have increased by leaps and bounds, and antibiotics remain the most important
treatment for bacterial infections. Prophylactic vaccines like DTP (Diphtheria,
Tetanus, Pertussis), Hib (Haemophilus influenzae type B), pneumococcal are
included in immunization schedules throughout the world and have been helpful
in reducing the disease burden considerably. Bacteria have a larger genome and
proteome as compared to viruses, therefore finding immunogenic proteins is a little
laborious job. The full proteome of bacteria has been studied to find immunogenic
proteins, which can be used for vaccine design. The total proteome of
M. tuberculosis H37Rv, when used for finding the best vaccine candidates by in
silico methods, revealed six novel vaccine candidates, EsxL, PE26, PPE65,
PE_PGRS49, PBP1, and Erp, which could be used to design new TB vaccines
(Monterrubio-López and Ribas-Aparicio 2015). In another study proteomes of three
serotypes of Shigella: S. dysenteriae type1 (sd197), S. flexneri 2a (str. 301 and str.
2457T), and S. sonnei (ss046) were investigated to determine the common proteins
of these three bacteria. The epitope prediction for these common proteins was done
and five peptides were used for in vivo animal and human serum studies. The
peptides elicited antibody and cytokine (Th1 and Th2) response confirming that
these cross protective and conserved peptides have the potential to be used in future
vaccines (Pahil et al. 2017). Studies have also been focused on a group of proteins or
even a single protein for epitope prediction and vaccine design. Essential
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hypothetical proteins of five Salmonella strains were studied to find out drug and
vaccine targets. Out of 106 proteins, 4 proteins were found to be immunogenic for
which conserved B and T cell epitopes were predicted which can be used for future
vaccine design (Sah et al. 2020). Nine epitopes were predicted from 11 multidrug
resistance (MDR) proteins of Salmonella typhi that had the potential to generate B
and T cell response and can find use in vaccine design (Jebastin and Narayanan
2019). A DNA vaccine based on cytotoxic T cell epitopes predicted from a single
protein Listeriolysin-O of Listeria monocytogenes was constructed using in silico
methods. T cell epitopes were fused in tandem, human and mouse gene constructs
were made in addition to determining posttranslational modifications like phosphor-
ylation and glycosylation (Jahangiri et al. 2011). An outer membrane protein of
Vibrio cholera was used for epitope prediction by different tools and one surface
exposed peptide was found containing both B and T cell epitopes, which could have
future vaccine design applications (Rauta et al. 2016).

11.8.3 Vaccine Designing for Other Parasites

Parasitic diseases caused by helminths and protozoans are difficult to treat, as these
organisms are eukaryotic in nature and drug targets that are non-homologous with
host tend to be less in number. The therapeutic measures for their treatment are
limited and there are no licensed vaccines for use in humans. A vaccine against
Plasmodium falciparum “RTS, S” has been introduced under the aegis of WHO in
Ghana, Kenya, and Malawi and is undergoing pilot scale trials since 2019. The
efforts, therefore, are required to develop vaccines against parasitic diseases. The use
of bioinformatics tools has been made to design vaccines for these diseases. A multi-
epitope peptide vaccine derived from epitopes obtained from six proteins of
Onchocerca volvulus was designed using in silico methods. The epitopes used in
the peptide vaccine showed varying degrees of conservation in related species
Onchocerca ochengi, Loa loa, Onchocerca flexuosa, Brugia malayi, and
Wuchereria bancrofi indicating its cross protective capability. The peptide vaccine
was reverse translated, codon optimized, and conceptually cloned in the pET vector
after carrying out other analysis like docking, immune simulation (Shey et al. 2019).
The proteome of Taenia solium was used to find surface accessible immunogenic
proteins for which B and T cell epitopes were predicted. A peptide construct based
on the epitopes was made and the structure was determined by modeling and after
that, it was docked with immune receptors and finally, a gene was constructed to
express the peptide vaccine (Kaur et al. 2020). B and T cell epitopes were predicted
from the enolase protein of Echinococcus granulosus and a multi-epitope vaccine
was designed after analyzing its immune response generating properties (Pourseif
et al. 2019). Triosephosphate isomerase from the same organism has also been used
to predict epitopes for use in vaccines (Wang and Ye 2016).

From the total proteome of Plasmodium falciparum, five surface accessible
antigenic proteins were selected for the prediction of T cell epitopes. These epitopes
upon docking and population coverage revealed their efficiency to be used in
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epitope-based vaccines (Pritam et al. 2019). B and T cell epitopes from AMR1, a
surface exposed protein of Plasmodium falciparum have been predicted in a study
that has the potential for use in future subunit vaccines (Sanasam and Kumar 2019).
An approach for developing epitope-based vaccine Trypanosoma cruzi involved
epitope prediction from the proteome of the pathogen. mRNA construct and the
structure of the peptide vaccine comprising epitopes were made (Michel-Todó et al.
2019). Conserved T cell epitopes were predicted from variants of an amastin protein
of Trypanosoma cruzi for future vaccine designing (Slathia and Sharma 2018). In
silico prediction of T cell epitopes from promastigote surface antigen (PSA),
LmlRAB (L. major large RAB GTPase), and histone (H2B) proteins of Leishmania
was done followed by testing of these epitopes for inducing different cytokines in
peripheral blood mononuclear cells (PBMCs) isolated from cured and healthy
individuals. The epitopes were able to induce specific cytokine producing helper
and cytotoxic T cells and could be used in future vaccine design (Hamrouni et al.
2020).

11.9 Limitations and Challenges

The major step involved in epitope-based vaccine designing using bioinformatics
tools is the prediction of epitopes. Therefore, the accuracy of epitope prediction
methods is of prime importance, as this will govern the success of vaccines in the
real world. More is the accuracy of the epitope prediction methods greater are the
chances of success of inducing protective immunity by the vaccine. The methods
available for epitope prediction have been benchmarked using the experimental steps
in many studies. The limitations and their prediction efficiency have been studied.
Many new methods have been redesigned as new data becomes available. Generally,
it has been observed that modern machine learning methods like SVM and ANN
perform better than linear methods like PSSM. The prediction efficiency achieved in
class I MHC epitope prediction is better as compared to predictions for class II MHC
and B cell epitope prediction. The benchmarking of automated servers for class I
MHC prediction is carried out weekly, and the results are available on the immune
epitope database (IEDB). These benchmarking results show that among the
participating servers, NetMHCPan is the best performing server.

The next best performing methods are SMM and ANN. The ranking scores are
indicative of the performance of methods among each other and do not indicate the
absolute predictive performance. The ranks are concerning each other and not in the
context of their prediction efficiency (Trolle et al. 2015). Many of the binding
peptides are not immunogenic, and even if they are amenable to processing and
presentation, they do not act as epitopes. There are still loopholes in the methods,
and the binding stability of peptide and HLA molecule has also to be taken into
account. The only tool available for this is NetMHCstab (Jørgensen et al. 2014)
which is an ANN-based tool and has only been trained on 13 HLA alleles. With the
increase in data about HLA alleles and their binding peptides, these tools are bound
to increase their efficiency in the future.
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The prediction methods for class II MHC are yet to achieve the efficiency of class
I MHC predictors. In most of the methods, the prediction is limited to HLA-DR
alleles, and few servers like NetMHCII 2.3, RANKPEP, NetMHCIIPan carry out
predictions for HLA-DP and HLA-DQ as well. The nature of peptides binding to
class II MHC is different from that showing binding to class I. Peptides binding to
class II MHCmolecules have a binding core rather than anchor residues seen in class
I MHC binding peptides. Besides, the peptides binding to class II MHC are longer,
and the position of the binding core is not fixed (Kindt et al. 2007). The peptide
binding mode of class II is less specific than class I, and the genotype structure of
class II allotypes is more complicated. This makes designing of class II MHC
binding prediction methods more challenging. The tools need to address these
issues, and the lack of data available makes these prediction tools less efficient.

The benchmarking of class II predictors is also done weekly, and among the
different prediction tools, the NN-align method which is the basis of NetMHC2.0
(Nielsen and Lund 2009) outperforms the other methods. NetMHCIIPan is the next
best performing method followed by Comblib matrices, (Sidney et al. 2008) a
method available at IEDB analysis resource and SMM-align. Next-generation
sequencing (NGS) has increased the inflow of genomic data in an unprecedented
manner, and the data for HLA alleles is now being generated at a high pace. This data
along with other high throughput experimental data about the class II MHC-peptide
binding is required to increase the efficiency of prediction tools.

Prediction of continuous B cell epitopes follows the same principles, albeit the
length of epitopes is not fixed. For discontinuous epitopes, the prediction requires
different approaches as the classic machine learning methods need continuous
sequence data (Backert and Kohlbacher 2015). There are fewer benchmarking
studies for B cell epitope predictors, and most of them conclude that the efficiency
of these methods is yet far from meeting the requirements in the biological context.
Since there are no universal properties that are present in antigenic epitopes but
absent in other protein surfaces, therefore, designing methods for prediction is a
challenging job. The methods for linear epitope prediction are based on the hypoth-
esis that certain amino acids occur more frequently in the epitopic regions. A
benchmarking study for linear B cell epitope prediction concluded that these
methods require improvement, and new approaches need to be taken into account
for devising more efficient methods (Blythe and Flower 2005).

In a study on discontinuous epitope prediction tools, it was found out that
DiscoTope and PEPITO have the highest predictive performance (Kringelum et al.
2012). The prediction efficiency of different discontinuous epitope predictors was
done by Yao et al. (Yao et al. 2013), wherein they found out that the highest
prediction accuracy obtained was only 25.6% by the EPMeta server. In the case of
lowering the threshold for prediction, the prediction accuracy rose to 31.6%. There is
a huge scope of improvement in the B cell epitope prediction methods to reach the
accuracy levels of T cell epitope prediction methods. An important consideration for
designing epitope-based vaccines is the prevalence of HLA alleles in the target
populations. HLA alleles have a varied affinity towards the binding peptides and
their distribution also varies in different population groups. The selection of epitopes
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for vaccine designing without taking this into account may fail vaccine to provide
immunity (Oyarzun and Kobe 2015).

The challenge in vaccine design using only epitopes is that the peptides mostly
fail to generate the immune response required for producing long lasting immunity.
Because of their small size, the peptides are often weakly immunogenic and this
thwarts the basic function of designing vaccines. Epitope-based peptide vaccines
are mostly known to initiate antibodies (humoral response) and fail to induce T
cell-mediated immunity. The generation of humoral immunity is not enough to
protect against disease (Li et al. 2014). Since the molecular size is an important
feature for immune response development such as small-sized peptides harboring
epitopes need to be conjugated with carriers/adjuvants. The “RTS, S” vaccine for
Plasmodium falciparum developed recently is based on truncated (C terminal end)
of circumsporozoite protein (CSP) containing B and T cell epitopes. However, this
188 amino acid part of CSP has been fused with HBsAg protein to generate an
immunogenic construct (Oyarzún and Kobe 2016). The CSP alone is weakly
immunogenic predominantly generating antibody response but its fusion with
HBsAg enhances its immunogenicity (Collins et al. 2017). Therefore, suitable
carriers are required for vaccines based on epitopes as most of the times they are
not enough immunogenic to induce both cell-mediated and humoral immunity.

The use of carriers/adjuvants becomes critical in designing epitope-based
vaccines and many studies involving in silico designing of vaccines have taken
this into account by the addition of adjuvant in the final vaccine construct (Shey et al.
2019; Khatoon et al. 2017). The usage of adjuvants like toxoids, Freund’s incom-
plete adjuvant, and the most recent TLR (Toll-like receptor) agonists enhances the
immunogenicity of vaccines. These adjuvants are an essential requirement for the
success of epitope-based vaccines; however, in silico studies can only design a
construct using protein-based adjuvants and for other adjuvants, lab studies need
to be undertaken.

11.10 Conclusion

In silico methods can provide a huge impetus to vaccine design and development.
The B and T cell epitope prediction methods form the core of in silico epitope-based
vaccine designing. The prediction of epitopes reduces the huge cost and labor
involved in experimentally finding out the epitopes. These methods ease out the
efforts involved in deducing T and B cell epitopes. The methods for T cell epitope
prediction are more advanced in terms of prediction accuracy when compared to B
cell epitope prediction tools. These methods need to be improved so that prediction
accuracy can be increased, and we may be able to design more efficient vaccines in
the future. The tools and methods for the analysis of the predicted epitopes though
appear to be subsidiary yet their importance cannot be ignored. The checking of
epitope clusters to avoid undue repetition of epitopes, checking their conservancy,
finding toxic and allergic epitopes are essentiality that cannot be done away with.
Analyzing the population coverage that can be achieved by the epitopes has far
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reaching consequences for the success or failure of vaccines in different population
groups. Molecular docking and dynamics simulation strengthen the chances of
epitope binding to MHC molecules. Finally, the construction of vaccines using
these rational approaches can strengthen the possibility of it being successful,
which of course needs to be validated by laboratory studies.

Competing Interest The authors declare that there are no competing interests.

References

Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF (2020) The proximal origin of SARS-
CoV-2. Nat Med 26(4):450–452

Andreatta M, Nielsen M (2016) Gapped sequence alignment using artificial neural networks:
application to the MHC class I system. Bioinformatics 32(4):511–517

Ansari HR, Raghava GPS (2010) Identification of conformational B-cell Epitopes in an antigen
from its primary sequence. Immunome Res 6(1):6

Arai R, Ueda H, Kitayama A, Kamiya N, Nagamune T (2001) Design of the linkers which
effectively separate domains of a bifunctional fusion protein. Protein Eng 14(8):529–532

Backert L, Kohlbacher O (2015) Immunoinformatics and epitope prediction in the age of genomic
medicine. Genome Med 7(1):119

Bhasin M, Raghava GPS (2004a) Prediction of CTL epitopes using QM, SVM and ANN
techniques. Vaccine 22:3195–3204

Bhasin M, Raghava GPS (2004b) Analysis and prediction of affinity of TAP binding peptides using
cascade SVM. Protein Sci 13(3):596–607

Bhasin M, Raghava GPS (2005) Pcleavage: an SVM based method for prediction of constitutive
proteasome and immunoproteasome cleavage sites in antigenic sequences. Nucleic Acids Res
33(2):W202–W207

Bhasin M, Raghava GPS (2007) A hybrid approach for predicting promiscuous MHC class I
restricted T cell epitopes. J Biosci 32(1):31–42

Blythe MJ, Flower DR (2005) Benchmarking B cell epitope prediction: underperformance of
existing methods. Protein Sci 14(1):246–248

Bui HH, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A (2006) Predicting population
coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinf 7:153

Bui HH, Sidney J, Li W, Fusseder N, Sette A (2007) Development of an epitope conservancy
analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinf
8:361

Chakraborty S, Barman A, Deb B (2020) Japanese encephalitis virus: a multi-epitope loaded
peptide vaccine formulation using reverse vaccinology approach. Infect Genet Evol 78:104106

Chen J, Liu H, Yang J, Chou KC (2007) Prediction of linear B-cell epitopes using amino acid pair
antigenicity scale. Amino Acids 33(3):423–428

Chen F, Cao S, Xin J, Luo X (2013) Ten years after SARS: where was the virus from? J Thorac Dis
5(2):S163–S167

Chou KC, Shen HB (2008) Cell-PLoc: a package of Web servers for predicting subcellular
localization of proteins in various organisms. Nat Protoc 3(2):153–162

Collins KA, Snaith R, CottinghamMG, Gilbert SC, Hill AV (2017) Enhancing protective immunity
to malaria with a highly immunogenic virus-like particle vaccine. Sci Rep 7:46621

Dash R, Das R, Junaid M, Akash MF, Islam A, Hosen SZ (2017) In silico-based vaccine design
against Ebola virus glycoprotein. Adv Appl Bioinforma Chem 10:11–28

272 P. S. Slathia and P. Sharma



De Groot AS, Moise L, McMurry JA, Martin W (2009) Epitope-based Immunome-derived
vaccines: a strategy for improved design and safety. In: Clinical applications of immunomics.
Springer, New York, pp 39–69

Dhanda SK, Vaughan K, Schulten V, Grifoni A, Weiskopf D, Sidney J, Peters B, Sette A (2018)
Development of a novel clustering tool for linear peptide sequences. Immunology 155
(3):331–345

Dimitrov I, Naneva L, Doytchinova I, Bangov I (2014a) AllergenFP: allergenicity prediction by
descriptor fingerprints. Bioinformatics 30(6):846–851

Dimitrov I, Bangov I, Flower DR, Doytchinova I (2014b) AllerTOP v.2—a server for in silico
prediction of allergens. J Mol Model 20(6):2278

Dönnes P, Kohlbacher O (2006) SVMHC: a server for prediction of MHC-binding peptides.
Nucleic Acids Res 34(2):W194–W197

Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour
antigens and subunit vaccines. BMC Bioinf 8(1):4

Doytchinova IA, Guan P, Flower DR (2006) EpiJen: a server for multistep T cell epitope prediction.
BMC Bioinf 7(1):131

EL-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting linear B cell epitopes using string
kernels. J Mol Recognit 21(4):243–255

Fitzpatrick M (2006) The cutter incident: how America’s first polio vaccine led to a growing
vaccine crisis. J R Soc Med 99(3):156

Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, Jahn D (2005) JCat: a novel
tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33
(2):W526–W531

Guan P, Doytchinova IA, Zygouri C, Flower DR (2003) MHCPred: bringing a quantitative
dimension to the online prediction of MHC binding. Appl Bioinforma 2:63–66

Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GP, Open Source Drug Discovery
Consortium (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS One
8(9):e73957

Hakenberg J, Nussbaum AK, Schild H, Rammensee HG, Kuttler C, Holzhütter HG, Kloetzel PM,
Kaufmann SH, Mollenkopf HJ (2003) MAPPP: MHC class I antigenic peptide processing
prediction. Appl Bioinforma 2(3):155–158

Hamrouni S, Bras-Gonçalves R, Kidar A, Aoun K, Chamakh-Ayari R, Petitdidier E, Messaoudi Y,
Pagniez J, Lemesre JL, Meddeb-Garnaoui A (2020) Design of multi-epitope peptides containing
HLA class-I and class-II-restricted epitopes derived from immunogenic Leishmania proteins,
and evaluation of CD4+ and CD8+ T cell responses induced in cured cutaneous leishmaniasis
subjects. PLoS Negl Trop Dis 14(3):e0008093

He Y, Xiang Z, Mobley HL (2010) Vaxign: the first web-based vaccine design program for reverse
vaccinology and applications for vaccine development. J Biomed Biotechnol 2010:297505

Hewitt EW (2003) The MHC class I antigen presentation pathway: strategies for viral immune
evasion. Immunology 110(2):163–169

Jahangiri A, Rasooli I, Gargari SL, Owlia P, Rahbar MR, Amani J, Khalili S (2011) An in silico
DNA vaccine against Listeria monocytogenes. Vaccine 29(40):6948–6958

Jebastin T, Narayanan S (2019) In silico epitope identification of unique multidrug resistance
proteins from Salmonella Typhi for vaccine development. Comput Biol Chem 78:74–80

Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, Sette A, Peters B, Nielsen M
(2018) Improved methods for predicting peptide binding affinity to MHC class II molecules.
Immunology 154(3):394–406

Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based
B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45(W1):W24–W29

Jørgensen KW, Rasmussen M, Buus S, Nielsen M (2014) Net MHC stab–predicting stability of
peptide–MHCI complexes; impacts for cytotoxic T lymphocyte epitope discovery. Immunology
141(1):18–26

11 In Silico Designing of Vaccines: Methods, Tools, and Their Limitations 273



Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M (2017) NetMHCpan-4.0: improved
peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding
affinity data. J Immunol 199(9):3360–3368

Kaur R, Arora N, Jamakhani MA, Malik S, Kumar P, Anjum F, Tripathi S, Mishra A, Prasad A
(2020) Development of multi-epitope chimeric vaccine against Taenia solium by exploring its
proteome: an in silico approach. Expert Rev Vaccines 19(1):105–114

Keşmir C, Nussbaum AK, Schild H, Detours V, Brunak S (2002) Prediction of proteasome cleavage
motifs by neural networks. Protein Eng 15(4):287–296

Khan S, Khan A, Rehman AU, Ahmad I, Ullah S, Khan AA, Ali SS, Afridi SG, Wei DQ (2019)
Immunoinformatics and structural vaccinology driven prediction of multi-epitope vaccine
against Mayaro virus and validation through in-silico expression. Infect Genet Evol 73:390–400

Khatoon N, Pandey RK, Prajapati VK (2017) Exploring Leishmania secretory proteins to design B
and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci Rep 7(1):1–2

Kindt TJ, Goldsby RA, Osborne BA, Kuby J (2007) Kuby immunology. W. H. Freeman, New York
Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S (2017) The

ClusPro web server for protein–protein docking. Nat Protoc 12(2):255–278
Krawczyk K, Liu X, Baker T, Shi J, Deane CM (2014) Improving B-cell epitope prediction and its

application to global antibody-antigen docking. Bioinformatics 30(16):2288–2294
Kringelum JV, Lundegaard C, Lund O, Nielsen M (2012) Reliable B cell epitope predictions:

impacts of method development and improved benchmarking. PLoS Comput Biol 8(12):
e1002829

Lamiable A, Thévenet P, Rey J, Vavrusa M, Derreumaux P, Tufféry P (2016) PEP-FOLD3: faster
de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res
44(W1):W449–W454

Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M (2007) Large-scale validation
of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinf 8(1):424

Lata S, Bhasin M, Raghava GPS (2007) Application of machine learning techniques in predicting
MHC binders. Methods Mol Biol 409:201–215

Li W, Joshi MD, Singhania S, Ramsey KH, Murthy AK (2014) Peptide vaccine: progress and
challenges. Vaccine 2(3):515–536

Liang S, Zheng D, Standley DM, Yao B, Zacharias M, Zhang C (2010) EPSVR and EPMeta:
prediction of antigenic epitopes using support vector regression and multiple server results.
BMC Bioinf 11(1):381

Liu W, Wan J, Meng X, Flower DR, Li T (2007) In silico prediction of peptide-MHC binding
affinity using SVRMHC. Methods Mol Biol 409:283–291

Luca S, Mihaescu T (2013) History of BCG vaccine. Maedica 8(1):53–58
Maurer-Stroh S, Krutz NL, Kern PS, Gunalan V, Nguyen MN, Limviphuvadh V, Eisenhaber F,

Gerberick GF (2019) AllerCatPro—prediction of protein allergenicity potential from the protein
sequence. Bioinformatics 35(17):3020–3027

Mena I, Nelson MI, Quezada-Monroy F, Dutta J, Cortes-Fernández R, Lara-Puente JH, Castro-
Peralta F, Cunha LF, Trovão NS, Lozano-Dubernard B, Rambaut A (2016) Origins of the 2009
H1N1 influenza pandemic in swine in Mexico. elife 5:e16777

Michel-Todó L, Reche PA, Bigey P, Pinazo MJ, Gascón J, Alonso-Padilla J (2019) In silico design
of an epitope-based vaccine ensemble for Chagas disease. Front Immunol 10:2698

Mohd HA, Al-Tawfiq JA, Memish ZA (2016) Middle East respiratory syndrome coronavirus
(MERS-CoV) origin and animal reservoir. Virol J 13(1):87

Monterrubio-López GP, Ribas-Aparicio RM (2015) Identification of novel potential vaccine
candidates against tuberculosis based on reverse vaccinology. Biomed Res Int 2015:483150

Morais V, Dee V, Suárez N (2018) Purification of capsular polysaccharides of Streptococcus
pneumoniae: traditional and new methods. Front Bioeng Biotechnol 6:145

Muñoz-Medina JE, Sánchez-Vallejo CJ, Méndez-Tenorio A, Monroy-Muñoz IE, Angeles-
Martínez J, Santos Coy-Arechavaleta A, Santacruz-Tinoco CE, González-Ibarra J, Anguiano-
Hernández YM, González-Bonilla CR, Ramón-Gallegos E (2015) In silico identification of

274 P. S. Slathia and P. Sharma



highly conserved epitopes of influenza A H1N1, H2N2, H3N2, and H5N1 with diagnostic and
vaccination potential. Biomed Res Int 2015:813047

Nielsen M, Lund O (2009) NN-align. An artificial neural network-based alignment algorithm for
MHC class II peptide binding prediction. BMC Bioinf 10(1):296

Nielsen M, Lundegaard C, Lund O, Keşmir C (2005) The role of the proteasome in generating
cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage.
Immunogenetics 57(1–2):33–41

Nussbaum AK, Kuttler C, Hadeler KP, Rammensee HG, Schild H (2001) PAProC: a prediction
algorithm for proteasomal cleavages available on the www. Immunogenetics 53(2):87–94

Oyarzun P, Kobe B (2015) Computer-aided design of T-cell epitope-based vaccines: addressing
population coverage. Int J Immunogenet 42(5):313–321

Oyarzún P, Kobe B (2016) Recombinant and epitope-based vaccines on the road to the market
and implications for vaccine design and production. Hum Vaccin Immunother 12
(3):763–767

Pahil S, Taneja N, Ansari HR, Raghava GPS (2017) In silico analysis to identify vaccine candidates
common to multiple serotypes of Shigella and evaluation of their immunogenicity. PLoS One
12:8

Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z (2014) ZDOCK server: interactive
docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics 30
(12):1771–1773

Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, Peters B (2008) ElliPro: a new
structure-based tool for the prediction of antibody epitopes. BMC Bioinf 9(1):514

Pourseif MM, Yousefpour M, Aminianfar M, Moghaddam G, Nematollahi A (2019) A multi-
method and structure-based in silico vaccine designing against Echinococcus granulosus
through investigating enolase protein. Bioimpacts 9(3):131–144

Pritam M, Singh G, Swaroop S, Singh AK, Singh SP (2019) Exploitation of reverse vaccinology
and immunoinformatics as promising platform for genome-wide screening of new effective
vaccine candidates against Plasmodium falciparum. BMC Bioinf 19(13):468

Rammensee HG, Bachmann J, Emmerich NPN, Bachor OA, Stevanović S (1999) SYFPEITHI:
database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219

Rauta PR, Ashe S, Nayak D, Nayak B (2016) In silico identification of outer membrane protein
(Omp) and subunit vaccine design against pathogenic Vibrio cholerae. Comput Biol Chem
65:61–68

Reche PA, Glutting JP, Reinherz EL (2002) Prediction of MHC class I binding peptides using
profile motifs. Hum Immunol 63(9):701–709

Riedel S (2005) Edward Jenner and the history of smallpox and vaccination. Proc Baylor Univ Med
Cent 18(1):21–25

Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure
and function prediction. Nat Protoc 5(4):725–738

Rubinstein ND, Mayrose I, Martz E, Pupko T (2009) Epitopia: a web-server for predicting B-cell
epitopes. BMC Bioinf 10(1):287

Sah PP, Bhattacharya S, Banerjee A, Ray S (2020) Identification of novel therapeutic target and
epitopes through proteome mining from essential hypothetical proteins in Salmonella strains: an
in silico approach towards antivirulence therapy and vaccine development. Infect Genet Evol
83:104315

Saha S, Raghava GPS (2004) BcePred: prediction of continuous B-cell epitopes in antigenic
sequences using physico-chemical properties. In: International conference on artificial immune
systems. Springer, Berlin, pp 197–204

Saha S, Raghava GPS (2006a) Prediction of continuous B cell epitopes in an antigen using recurrent
neural network. Proteins 65(1):40–48

Saha S, Raghava GPS (2006b) AlgPred: prediction of allergenic proteins and mapping of IgE
epitopes. Nucleic Acids Res 34:W202–W209

11 In Silico Designing of Vaccines: Methods, Tools, and Their Limitations 275



Saha CK, Hasan MM, Hossain MS, Jahan MA, Azad AK (2017) In silico identification and
characterization of common epitope-based peptide vaccine for Nipah and Hendra viruses.
Asian Pac J Trop Med 10(6):529–538

Sanasam BD, Kumar S (2019) In-silico structural modeling and epitope prediction of highly
conserved Plasmodium falciparum protein AMR1. Mol Immunol 116:131–139

Schwartz M (2001) The life and works of Louis Pasteur. J Appl Microbiol 91(4):597–601
Sela-Culang I, Ashkenazi S, Peters B, Ofran Y (2014a) PEASE: predicting B-cell epitopes utilizing

antibody sequence. Bioinformatics 31(8):1313–1315
Sela-Culang I, Benhnia MRI, Matho MH, Kaever T, Maybeno M, Schlossman A, Nimrod G, Li S,

Xiang Y, Zajonc D (2014b) Using a combined computational-experimental approach to predict
antibody-specific B cell epitopes. Structure 22(4):646–657

Shey RA, Ghogomu SM, Esoh KK, Nebangwa ND, Shintouo CM, Nongley NF, Asa BF, Ngale FN,
Vanhamme L, Souopgui J (2019) In-silico design of a multi-epitope vaccine candidate against
onchocerciasis and related filarial diseases. Sci Rep 9(1):4409

Sidney J, Assarsson E, Moore C, Ngo C, Pinilla C, Sette A, Peters B (2008) Quantitative peptide
binding motifs for 19 human and mouse MHC class I molecules derived using positional
scanning combinatorial peptide libraries. Immunome Res 4(1):2

Sims LD, Domenech J, Benigno C, Kahn S, Kamata A, Lubroth J, Martin V, Roeder P (2005)
Origin and evolution of highly pathogenic H5N1 avian influenza in Asia. Vet Rec 157
(6):159–164

Singh H, Raghava GPS (2001) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17
(12):1236–1237

Singh H, Raghava GPS (2003) ProPred1: prediction of promiscuous MHC Class-I binding sites.
Bioinformatics 19(8):1009–1014

Singh H, Ansari HR, Raghava GPS (2013) Improved method for linear B-cell epitope prediction
using antigen’s primary sequence. PLoS One 8(5):e62216

Slathia PS, Sharma P (2018) Conserved epitopes in variants of amastin protein of Trypanosoma
cruzi for vaccine design: a bioinformatics approach. Microb Pathog 125:423–430

Slathia PS, Sharma P (2019) A common conserved peptide harboring predicted T and B cell
epitopes in domain III of envelope protein of Japanese Encephalitis Virus and West Nile
Virus for potential use in epitope based vaccines. Comp Immunol Microbiol Infect Dis
65:238–245

Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S (2015) An overview of
bioinformatics tools for epitope prediction: implications on vaccine development. J Biomed
Inform 53:405–414

Sweredoski MJ, Baldi P (2008) PEPITO: improved discontinuous B-cell epitope prediction using
multiple distance thresholds and half sphere exposure. Bioinformatics 24(12):1459–1460

Trolle T, Metushi IG, Greenbaum JA, Kim Y, Sidney J, Lund O, Sette A, Peters B, Nielsen M
(2015) Automated benchmarking of peptide-MHC class I binding predictions. Bioinformatics
31(13):2174–2181

Ul Qamar MT, Saleem S, Ashfaq UA, Bari A, Anwar F, Alqahtani S (2019) Epitope-based peptide
vaccine design and target site depiction against Middle East Respiratory Syndrome Coronavi-
rus: an immune-informatics study. J Transl Med 17:362

Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS:
fast, flexible, and free. J Comput Chem 26(16):1701–1718

Wang F, Ye B (2016) In silico cloning and B/T cell epitope prediction of triosephosphate isomerase
from Echinococcus granulosus. Parasitol Res 115(10):3991–3998

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TA,
Rempfer C, Bordoli L, Lepore R (2018) SWISS-MODEL: homology modelling of protein
structures and complexes. Nucleic Acids Res 46(W1):W296–W303

WHO Data (n.d.) Hepatitis B. https://www.who.int/biologicals/vaccines/Hepatitis_B/en/
Xu D, Zhang Y (2012) Ab initio protein structure assembly using continuous structure fragments

and optimized knowledge-based force field. Proteins 80(7):1715–1735

276 P. S. Slathia and P. Sharma

https://www.who.int/biologicals/vaccines/Hepatitis_B/en/


Yao B, Zhang L, Liang S, Zhang C (2012) SVMTriP: a method to predict antigenic epitopes using
support vector machine to integrate tri-peptide similarity and propensity. PLoS One 7(9):e45152

Yao B, Zheng D, Liang S, Zhang C (2013) Conformational B-cell epitope prediction on antigen
protein structures: a review of current algorithms and comparison with common binding site
prediction methods. PLoS One 8(4):e62249

Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins
64(3):643–651

Zhang Q, Wang P, Kim Y, Haste-Andersen P, Beaver J, Bourne PE, Bui HH, Buus S, Frankild S,
Greenbaum J, Lund O (2008) Immune epitope database analysis resource (IEDB-AR). Nucleic
Acids Res 36(2):W513–W518

Zhang GL, DeLuca DS, Keskin DB, Chitkushev L, Zlateva T, Lund O, Reinherz EL, Brusic V
(2011) MULTIPRED2: a computational system for large-scale identification of peptides
predicted to bind to HLA supertypes and alleles. J Immunol Methods 374(1–2):53–61

Zhang T, Wu Q, Zhang Z (2020) Probable pangolin origin of SARS-CoV-2 associated with the
COVID-19 outbreak. Curr Biol 30(7):1346–1351

Zobayer N, Hossain AA, Rahman MA (2019) A combined view of B-cell epitope features in
antigens. Bioinformation 15(7):530–534

11 In Silico Designing of Vaccines: Methods, Tools, and Their Limitations 277



Machine Learning Approaches to Rational
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Abstract

Pharmaceutical industries are multibillionaire setups with a diligent team of
scientists, researchers, technical manpower, and investors. A major concern of
such industries is to always curtail the time and cost factor associated with them.
Bioinformatics involving machine learning (ML) methods have come to the
forefront to address this problem. The predictive and statistical efficacy of ML
methodologies has even proven to propose better leads than a wet lab pipeline.
This chapter aims to give a brief overview of underlying principles of mainly GAs
and ANNs as popular ML algorithms and deeper insight into their robust
applications in the field of modern day drug design. It also attempts to share the
future prospects of such ML techniques and their limitations with possible
solutions hereafter.

Keywords
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12.1 Drug Industry

In the current era, drug industries have expanded rapidly and have seen enormous
growth in terms of infrastructure, scientific manpower, technical handling, and
business product outputs. Health is a major concern nowadays of every livelihood
and various health and pharmaceutical products have become a routine part of the
daily diet of many individuals. More importantly, a rapid increase in the knowledge
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and recognition of various diseases, improved diagnostics tools, government pro-
motional health schemes for all and varied networking between scientific researchers
around the world has facilitated the need of development and subsequent financial
investment in more and more pharmaceutical industrial setups (Zhong et al. 2018;
Leelananda and Lindert 2016; Fox and Kriegl 2006).

Usually, the development of a novel drug against a particular disease requires a
timeline of 12–15 years and a hugely expensive experimental setup accounting to
nearly 200–800 million$. However, with the development of novel and affordable
bioinformatics in silico setups, the time and cost required in the development of new
drug molecules has been significantly curtailed. Bioinformatics, an in silico science
comprising of various computer based prediction, search and optimization methods,
has not only opened newer dimensions and directions in novel drug development but
has also been instrumental in reducing the cost and time required against the
expensive wet lab setups. Normally US Food and Drug Administration (FDA)
approves a drug as defined by “a substance intended for use in the diagnosis, cure,
mitigation, treatment, or prevention of disease affecting the structure or any function
of the body.” In a simpler sense, we can say a drug molecule as a chemical
compound or more recently organic peptides which has the potential to interact
with a specific biological target. Target usually includes any of the biological
macromolecules that may be proteins, nucleic acids, carbohydrates, and lipids.
Proteins among these stand to be the most prominent target accounting for nearly
95% of drugs designed against them followed by nucleic acids (3–4%), lipids, and
carbohydrates (Yosipof et al. 2018; Huang et al. 2017).

12.2 Drug Discovery Pipeline

The important steps involved in the process of drug discovery are as described below
(Fig. 12.1).

Fig. 12.1 Different phases of
drug designing
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12.2.1 Target Discovery

Target identification is the major step in any drug discovery process. The clinical
relevance, therapeutics, and disease-causing potential of the selected target actually
govern the efficacy of the designed drug molecule inside the body. The step may
include a blend of diverse biological assays to high-throughput screening studies in
the identification of a single target for a particular disease (Huang et al. 2018;
Leelananda and Lindert 2016).

12.2.2 Target Validation

Target validation is carried out mainly by applying biotechnological innovational
wet lab studies involving gene knock out in animal models, small molecule agonists/
antagonists, aptamers, siRNA, ribozymes, and neutralizing antibodies. The basic
aim of target validation studies is to validate the therapeutic efficacy of the selected
target and to scientifically reveal that the selected target possesses significant
disease-causing potential.

12.2.3 Lead Identification

Lead compounds are all those chemical compounds that possess some but not all
properties of the drug molecule. These are the starting clinical agents from where
potential drug candidates can be synthesized. The discovery of lead compounds is
fastened up by employing virtual HTS studies, where millions of chemical
compounds are screened using computer-generated models. Molecular docking
along with pharmacophore modeling offers faster, effective, and cost-efficient
screening solutions in large drug discovery projects (Schneider and Bohm 2002).

12.2.4 Lead Optimization

This process involves the customized structural and functional modification of lead
compounds to enhance their inhibition potential against a particular target. Involving
various structure-based and ligand-based drug designing strategies and quantitative
structure–activity relationship (QSAR) studies it promotes structural and functional
modification of leads for its increased efficacy. This is often the most critical and
diligent step in drug discovery.

12.2.5 Preclinical Phase

It involves the studies on animal systems to access the dosage and adverse side
effects associated with drug molecules.
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12.2.6 Clinical Trials

The clinical lead development involves 4 phases:

12.2.6.1 Phase I
A small group of normal healthy volunteers is selected in this phase and the
developed drug is tested on them to assess its safety, tolerability, dosage levels,
pharmacokinetics, and pharmacodynamics inside the human body. 80% of drugs are
reported to fail in Phase I clinical trial.

12.2.6.2 Phase II
Phase II involves the controlled clinical studies in a hospital conducted on a group of
patients, to obtain average data on the efficacy and dosage level of the drug. The trial
is carried out in an unbiased manner using a placebo and newer drug simultaneously,
in a group of patients with particular indications and symptoms of the disease.

12.2.6.3 Phase III
Phase III studies involve randomized controlled trials on large patient groups in
medical institutions and hospitals. Market regulatory affairs and commercial launch
decisions of the drug are also accompanied in this step.

12.2.6.4 Phase IV
It involves long term monitoring process after the drug is launched in the market.
Post-launch this may be mandated or initiated by the pharmaceutical company in
assistance with a team of medical representatives and medicos. It is destined to detect
long term rare or serious adverse effects of medicine over a large patient population.

12.3 Dimensions and Complexity of the Problem and Role of ML
Techniques

With the ever-increasing number of potential lead compounds derived through
virtual screening studies and its subsequent attempt to prioritize them based on
their functional groups, physicochemical descriptors, and biological activities has
compelled the researchers to use statistical function optimizers and prediction
algorithms in handling such big data. The dimensionality in terms of thousands of
molecular descriptors and complexity in terms of libraries of millions of compounds
guarantees the application of computers as inevitable rather than any sort of manual
calculations.

Chemoinformatics, a built-up control in which meaningful data are extricated,
processed, and extrapolated from chemical structures plays an important role in
solving such a problem (Lo et al. 2018). Chemoinformatics is the utilization of
informatics strategies to fix chemical issues including chemical information retrieval
and extraction, database exploration, and molecular chart mining (Varnek and
Baskin 2011). The design of new drugs is an extremely difficult and complex
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issue (Schneider and Schneider 2016). The scalable search space for new and
unfamiliar particles is one of the major barriers in drug design and configuration.
Scientific experts need to choose and analyze particles from this extensive space to
discover molecules that are dynamically active towards the respective target protein.
Drug discovery is an enormously expensive and sluggish procedure representing
various formidable difficulties. In this manner, technological advances in drug
research and preclinical improvement could bring down the expenses of conveying
another novel drug to the market (Pu et al. 2019).

In silico strategies try to quicken this procedure and diminish the expensive late-
stage breakdown by utilizing the chemical information produced through computa-
tional techniques and high-performance assays to reveal hidden connections among
the data. Screening vast virtual libraries of compounds with improved biological
properties such as explicitness and selectivity toward the respective target, lower
toxicity, or reduced cost help to discover new chemical or synthetic inhibitors. With
the advancement of “big data” from HTS and combinatorial synthesis, ML has
turned into a key apparatus for drug designers to extract synthetic information
from substantial compound libraries to devise drugs with essential biological
features (Lo et al. 2018). Other modules of chemoinformatics additionally incorpo-
rate computer-aided drug synthesis, chemical space investigation, pharmacophore,
and scaffold testing, library preparation, etc. (Kapetanovic 2008). Various ML-based
strategies thus have been created and ubiquitously used to identify and develop new
drugs having superior biological activities to uncover complex relations between
chemical and their biological targets. Mathematical mining of chemical graphs
enables the inference of a group of 2D or 3D chemical descriptors bundled in a
variety of ML models and probabilistic tasks as chemical fingerprints. Integrating
numerous data types and sources or the so-called data fusion procedures which
collate hereditary, structural, and pharmacological information in different level of
organisms seems to be critical for the disclosure of more efficacious and safer drugs
(Chen et al. 2018; Searls 2005).

In recent years, ML techniques have gained significant attention as a prominent
research and development tool in rational drug designing approaches. Precisely
genetic algorithms (GA) and artificial neural networks (ANN) have come to the
forefront to uptake the diversified challenges faced in pharmaceutical industries
(Zhong et al. 2018; Lavecchia 2015). GAs in the category of evolutionary algorithms
and ANNs as a case of artificial intelligence (AI) have seen immense applications as
ML techniques in searching and optimizing compounds, predicting active site and
binding conformations, the establishment of quantitative structure–activity
relationships, gene prediction, pharmacophore analysis, design of combinatorial
libraries, and so forth (Goswami et al. 2018; Sayeed et al. 2016; Gupta et al. 2014;
Arif et al. 2013). Furthermore, applications of NNs in drug design are concerned in
areas like lead discovery; designation and estimation of biological activity; and A
(absorption), D(distribution), M(metabolism), E(excretion)/Tox(toxicity) assets;
multidimensional data processing; compound library analogy; combinatorial library
striking similarity and diversity analysis; HTS data analysis (Terfloth and Gasteiger
2001).
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Techniques of ML can be comprehensively named as supervised or unsupervised
learning. Training data are assigned to labels for supervised learning, and once
prepared; the model can foresee labels for specific data inputs. Regression analysis,
random forests, naive Bayes, ANN, k-nearest neighbor (kNN), SVM algorithms are
some popular instances of supervised ML models. While unsupervised ML methods
gain directly from unlabeled data of molecular patterns, i.e. it needs only input data
with no relating output factors. Here, the basic pattern or structure in the data is
determined for the use of future analysis and prediction. Independent components
analysis (ICA) and principal components analysis (PCA) are the common algorithms
of unsupervised learning. These problems could be further categorized into cluster-
ing and association groups (Yang et al. 2018).

Capacity in handling the large amount of data employing immense computational
power, these ML strategies are certainly proving a state-of-art in the field of rational
drug design.

12.4 Genetic Algorithms

GA is a family of population-based computational models that are inspired by
nature’s natural process of evolution. GAs come under the category of search and
optimization algorithms and are often viewed as function optimizers to solve a varied
kind of problems. Initially given by John Holland in 1975, GAs have come a long
way in providing solutions to the problems which have multiple inputs and multiple
outputs (Goswami et al. 2018; Mandal et al. 2007).

A simple implementation of the normal GAs begins with a population of
individuals which are encoded on a simple chromosome like data structures. One
then evaluate these structures and allocate reproductive opportunities to these
individuals based on their relative fitness. Selection is applied to this population so
that the individuals with good solutions to the problems are given more chances to
reproduce than the individuals with poorer solutions. The selection process generates
an intermediate population after which recombination and mutation are applied to
generate the next population (offspring). The process of evaluation, selection,
recombination, and mutation from parent to offspring constitutes one generation of
the GA. GAs likewise nature run for a number of generations and provide an optimal
considerable solution to the problems, much better than their initial parent solution.

12.4.1 Working of Genetic Algorithms

Usually, there are two major components of GA:

1. Problem encoding.
2. Evaluation function.
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The first assumption that is typically made is that the variable representing the
parameters is represented in the form of binary strings (0, 1). This means the variable
is discretized in the search space to some power of two (2n). After creating the initial
population, each binary string is then evaluated and assigned a fitness value. The
fitness is defined by

Relative fitness ¼ f i= < f >

where fi ¼ evaluation associated with string i and <f> ¼ average evaluation of all
the strings in the population.

The fitness value obtained normally translates the measure of performance of
each individual into the number of copies passed onto the next generation. The
obtained fitness function generates a population of current parent individuals, which
are now subjected to various GA operators to create the next generation of offspring.

12.4.2 Genetic Algorithm Operators

12.4.2.1 Natural Selection Operator
Selection is normally applied to the current population to generate the intermediate
population (F1 generation) in such a way that the highly fit individuals with good
solutions to problems are given more share or reproductive opportunities into the
next generation against lesser fit individuals (Fig. 12.2). There are a number of ways
to do the selection.

Fig. 12.2 Application of selection operator in GA

12 Machine Learning Approaches to Rational Drug Design 285



12.4.2.2 Stochastic Sampling with Replacement
We might visualize the population as mapping onto a Roulette wheel, where each
individual is assigned its space which is directly proportional to its relative fitness.
Iteratively spinning this roulette wheel, individuals are chosen and assigned to the
intermediate generation in an unbiased manner.

12.4.2.3 Stochastic Universal Sampling
The population is laid down in random order on a simple pie (360�) graph, where
again each individual is assigned its space, which is directly proportional to its
relative fitness. Next, an outer Roulette wheel with N equally spaced pointers is
placed over this pie graph. A single spin of this outer Roulette wheel unbiasedly
picks all N individuals as members of the intermediate population.

12.4.2.4 Crossover/Recombination Operator
After the selection process has been carried out, the construction of the F1 generation
is complete and now crossover can be implemented. Crossover or recombination is a
natural phenomenon that occurs during the late pachytene stage of meiosis and
generally involves the exchange of chromosomal segments between the paternal
and maternal chromosomes. The prime benefit of the crossover operator is

1. It introduces important genetic diversity in the current population.
2. It naturally preserves the critical information of the parents.

Crossover is normally applied in GAs by randomly recombining a pair of strings
with a certain probability Pc.

Picking a pair of strings and recombining them by using 1-point crossover has the
potential to generate newer solutions to the problems or may also subside as like its
previous solutions.

1|100          &        1|001      [Same strings obtained after 1 – point    crossover]

1100            &         1001

11|00          &        10|01  [Different strings obtained after 1- point crossover]

1101            &         1000
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12.4.2.5 Mutation Operator
After recombination, we can apply a mutation operator. A mutation is simply
interpreted to actually mean flipping of a bit to form a novel combination. For
each bit in the population, mutate with some low probability Pm.

1100

1000

The mutation is generally seen as a necessary evil in nature and therefore is
typically applied as less than 1% in F1 generation. The mutation has a capacity to
introduce a novel solution to the problem which a normal recombination operator
even after running for multiple generations fails to do so.

After the completion of selection, recombination, and mutation, the next popula-
tion can be evaluated. The process keeps on running for multiple generations
(>25,000 generations) to provide an optimal solution in the end in the successful
compilation of GA.

12.5 Artificial Neural Networks

ANN is an information processing paradigm, which works in a way as the human
biological nervous system works. Unlike GA, ANNs are purely a case of AI and are
inspired by the human brain mechanism of information processing and exchange
(Fig. 12.3). The key element of any ANN is its novel design of information
processing structure, destined to solve a particular problem.

Likewise, the human nervous system, ANNs are composed of a large number of
interconnected processing elements (artificial neurons) that work in unison to pro-
vide an optimal response to a specific stimulus/problem (Fig. 12.4). ANN works by
learning from examples, by making adjustments in synaptic connections among its
artificial processing elements/neurons. ANNs have been largely used in data recog-
nition, pattern recognition, and prediction problems owing to their capacity for self-
intelligence (Gupta et al. 2012). However, the results of ANNs are expected to be
unpredictable and cannot be seen to perform miracles but if used sensibly in correct
design ANNs have been seen to produce amazing results often.

Neural network simulations have witnessed its establishment even before the
advent of computers but due to lack of funding and enthusiasm, this field suffered
frustration and disrepute. The first artificial neuron was even developed by Warren
McCulloch and Walter Pits in 1943 but later in a research paper published by
Minsky and Papert in 1969, the concept of ANNs suffered a major setback and
significant limitations.
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In the current scenario, ANNs have seen a major comeback, and owing to its
remarkable ability to derive meaning from complex and indefinite data, they are now
been routinely used in data handling and data analysis problems in various sectors.
The major advantages of ANNs include its self-organization capacity, adaptive
learning mechanism, real-time operation, and fault tolerance attitude. ANN can
learn from its training data and automatically create its own organization by making
synaptic adjustments. In a state of its dynamic equilibrium, it can produce amazing
results (Doyle et al. 2015; Oquendo et al. 2012).

Unlike computers, ANNs are not programmed and are unpredictable. They are
better known to solve those problems which it does know how to solve. They can
give any result based on the input and do not use a cognitive or algorithmic approach
to problem-solving.

12.5.1 How the Human Brain Works?

Learning in the human brain occurs by changing the effectiveness of the synapses
which is expressed in the form of change in the influence of one neuron on others.
Synapses are the region of contact between two neurons or a neuron with a
non-neuronal cell. The transmission of information between neurons may be electri-
cal or chemical depending on the myelination of the nerve fibers.

12.5.2 A Simple Artificial Neuron

An artificial neuron is simply a device with multiple inputs but a single output. It
works in basically two modes of operation

Fig. 12.4 Structure of an artificial neuron
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1. Using mode: When a taught input pattern is detected, its associated output
becomes its natural output.

2. Training mode: In case when the input is not a part of a taught pattern, the neuron
is trained to fire or not based on the learning from the taught input patterns.
Learning from the taught input pattern is accomplished via the implementation of
a firing rule.

Firing rule is an important concept of ANNs and provides its high flexibility. This
rule helps ANN to calculate for a particular neuron to fire or not for a given input
using a simple hamming distance technique. An example pattern is presented here
for its detailed understanding. A 3-input neuron is taught to fire output 1 for the
given inputs as 111 or 101. Similarly, it is taught for output 0 if the inputs are
000 and 001. Therefore before the application of firing rule, the truth table could be
seen as:

X1 0 0 0 0 1 1 1 1

X2 0 0 1 1 0 0 1 1

X3 0 1 0 1 0 1 0 1

OUT 0 0 0/1 0/1 0/1 1 0/1 1

Implementing the firing rule, we take a pattern, for example, 010. It differs from
000 in 1 element and 001 in 2 elements. Similarly, it differs from 101 in 3 elements
and 111 in 2 elements. Therefore, applying the hamming distance concept to
the nearest input it belongs to 000. The output associated with 000 is 0, so after
the learning process, the output associated with 010 also stands to be 0, instructing
the neuron not to fire for this particular input.

By applying the firing rule to every column of this truth table, the new truth table
generated can be represented as:

X1 0 0 0 0 1 1 1 1

X2 0 0 1 1 0 0 1 1

X3 0 1 0 1 0 1 0 1

OUT 0 0 0 0/1 0/1 1 1 1

In this way, the firing rule helps the neurons to understand the output for a given
novel input based on the learning from the already present taught input patterns. A
more complicated neuron model includes the application of weighted inputs. The
weight is usually a number, which is multiplied with input to gives its total weighted
input value, and if they exceed a certain threshold value, the neurons fire else not.

The commonest type of ANNs comprises of three layers of networking
(Fig. 12.5):

1. Input layer: represents the raw data fed into the network.
2. Hidden layer: activity depends upon the input units and weights of connection

between input and hidden layer.
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3. Output layer: activity depends upon the hidden layer and weights of connections
between hidden and output units.

Hidden layers are just like a black box and are free to construct their own
representation of data and reach a dynamic equilibrium stage (Patra et al. 2017).

12.5.3 Architecture of ANNs

There are two types of ANN architectures:

1. Feedforward networks: These networks allow the signals to travel in a unidirec-
tional manner, i.e. from input to output only. They are straight forward networks
and no feedback is provided to the back end layers or the layers on the same level.
Also referred to as bottom up or top down networks, these feedforward networks
are regularly used in data and pattern recognition problems.

2. Feedback networks: These networks allow the signals to travel in both directions
by the introduction of loops in the network. They are a very powerful network and
can get extremely complicated in their action. Their signal state keeps on chang-
ing continuously until it reaches a dynamic equilibrium. Also referred to as
interactive or recurrent networks, they are well known to solve more complex
problems.

Fig. 12.5 Network layers in artificial neuron network
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ANNs are further known to work via supervised and unsupervised learning
techniques.

12.6 Deep Learning(DL)

Deep learning or Deep neural networks (DNN), a class of ML algorithms uses ANNs
with many layers of nonlinear processing units for learning data representations. DL
is a highly adopted method to address the activity prediction problems in the first
place. In drug discovery, compounds are presented by the same number of molecular
descriptors, the straight forward method is to use fully connected DNNs to build
models. Ma et al. 2015 applied a DNN on the Merck Kaggle challenge dataset using
a large number of 2D topological descriptors, and the DNN showed better perfor-
mance than the standard RF method. DNNs can handle thousands of descriptors
without the need for feature selection; dropout can avoid the notorious overfitting
problem faced by a traditional ANN. The study showed that multitask DNN models
perform better than single-task models (Duvenaud et al. 2015). Convolutional neural
networks (CNNs) are a type of neural network commonly used in image recognition
(LeCun et al. 2015). CNNs are used for virtual screening in drug discovery
effectively.

ANN has been applied to drug discovery in the context of ligand-based QSAR,
and they have not traditionally been used in structure-based virtual screening
methods. Currently, the enormous amount of biological data available for training,
and the recent evolution of GPU-accelerated computation, and neural network-based
techniques have very high potential to transform the in silico prediction of molecular
recognition with maximum accuracy.

Durrant et al. created two fast and accurate neural network scoring functions for
rescoring docked ligand poses (NNScore 1.0 and 2.0) (Durrant and McCammon
2010). Unlike traditional docking scoring functions, these nonparametric functions
are not constrained to predetermined physical formulae or statistical analyses; rather,
they “learn” directly from existing experimental data how best to predict binding and
so can, in theory, better capture the nonlinear, synergistic relationships among
binding determinants. These are the first neural network scoring functions that
predict affinity by directly examining atomic resolution ligand–protein interactions.
Recently, Abdul et al. developed a quadratic phenotypic optimization platform
(QPOP), which provides new or best drug combinations for patients using the
small dataset. This QPOP platform uses system-specific experimental data to deter-
mine the best drug combinations for a specific disease model or a patient sample
rather than previous assumptions of molecular mechanisms of disease (Rashid and
Chow 2019). DeepMind Technologies, a subsidiary of Google, collaborated with
Royal Free London NHS Foundation Trust to assist in the management of acute
kidney injury (Rashid and Hodson 2017). Atom wise (https://www.atomwise.com/)
is a pioneer in healthcare AI and is the first DL technology for novel small molecule
discovery and has assisted in the invention of new potential medicines for 27 disease
targets and is working with top institutions such as Harvard University and Stanford
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University, as well as pharmaceutical companies. Exscientia is an AI company that
specializes in phenotypic drug discovery (Lee et al. 2017).

DL helps to resolve several prediction issues in bioinformatics. CNN and deep
belief network (DBN) are used to unearth RNA-protein binding motifs DNA binding
proteins, peptide-MHC binding, etc., stacked sparse autoencoder (SSAE) pooled
with a Legendre moment (LM) has been utilized for predicting protein–protein
interaction within cells (Huang et al. 2017). DL has also been effectively utilized
in the QSAR studies in the form of 2D-QSAR, 3D-QSAR, and multidimensional
(nD) QSAR. 2D fingerprint-based ANN (FANN)- QSAR, a novel ANN technique
has been reported to calculate biological activities of structurally diverse chemical
ligands efficiently. Successful implementation of FANN-QSAR is done to forecast
the cannabinoid receptor (CB2) binding activity through data collection from struc-
turally diverse sources (Myint et al. 2012).

DL has profoundly being used in computational biology for predicting protein
disorder, enhancement of docked protein complexes, modeling structural properties
of protein targets binding to RNA, etc. Compared to other techniques for predicting
the mechanism of action with the help of high content image analysis data, it was
observed to be advance to SVM with 87.62. The various framework of DL such as
DNN, DBN, and RNN is currently being used for analyzing gene expression,
genomic sequencing, and prediction of protein structure (Ekins 2016).

NiftyNet, a modular DL pipeline has emerged as the latest accelerated DL
technique for solving problems related to medical imaging and computer-assisted
intrusion. Gibson et al. utilized capability of NiftyNet to build analysis application
like for layerwise separation of different organs that were obtained from computed
tomography (CT), applied regression technique to foresee computed tomography
attenuation maps from images of magnetic resonance of brain and creation of
simulated images of ultrasound for defined poses of anatomy (Gibson et al. 2018).

12.7 Support Vector Machines

SVMs are by far the most ubiquitously used ML procedures in the design and
discovery of drug case studies. SVM classifies various compound varieties to predict
new molecules, biological activity (from regression models), and rank substances in
virtual screening assays. SVM approaches involve several critical challenges, such
as selecting kernel functions and optimizing parameters for specific issues.
Integrating SVMs with other approaches has ended up being an excellent strategy
for studying medicinal chemistry (Maltarollo et al. 2019).

Various ML algorithms, viz. PCA can help to identify various alveolar cells,
BP—back error propagation algorithm can be used for predicting the secondary
structure of the protein. CNN can assist in the detection of DNA sequence variation
sites. In the field of data science, ML is a strategy to design complex models and
algorithms for prediction (Niculescu 2003). A profound convolutional neural system
can identify hereditary variations in aligned next-generation sequencing read data by
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learning factual relationships (probabilities) between pictures of read pileups fram-
ing putative variation points and ground-truth genotypes (Yang et al. 2018).

12.8 Artificial Intelligence and Drug Discovery

The AI pioneered in 1950 discussed a technique that could sense, reason, and think
like people. Later on with the advancement in computer processing power and huge
datasets now targeted AI has been developed which is more focused and accurate. AI
has attracted pharmaceutical industries for de novo designing of peptides and
chemical compounds against a particular target, along with its retrosynthesis. AI
helps in predicting the physicochemical properties (i.e. ADMET) of candidate drug
compounds among the large dataset. Several machine learning technologies like
Random forests (RF), SVM, or Bayesian learning have been implied for optimizing
the process of compound designing (Hessler and Baringhaus 2018). AI has
transformed the methods of a pathway or target identification to treat diseases. In a
study, it was shown that possibility of predicting therapeutic targets using a compu-
tational prediction application known as “open targets” a platform consisting of
gene-disease association data, and it was reported that animal models exhibiting a
disease-relevant phenotype with a neural network classifier of greater than 71%
accuracy provided the most predictive power (Ferrero et al. 2017). IBM Watson, an
AI platform for drug discovery has identified five new RNA-binding proteins
(RBPs) linked to the pathogenesis of a neurodegenerative disease known as
amyotrophic lateral sclerosis (ALS) (Bakkar et al. 2018). AI also contributes to the
identification of target-specific virtual molecules and association of the molecules
with their respective target while optimizing the safety and efficacy attributes. AI,
with the ability to prioritize molecules based on the ease of synthesis also assist in
development of tools that are effective for the optimal synthetic route (Segler et al.
2018). ML-based tools used in drug designing are listed in Table 12.1.

AI in the drug-like compound synthesis process has proven accurate in predicting
the best sought-after reactions by filling the voids that cause high failure in expected
organic synthesis (commonly known as “out of scope” compounds). The voids in
organic synthesis are mainly the result of unpredictable steric and electronic effects
and incomplete understanding of the reaction mechanism. Although several
computers aided organic compound synthesis (CAOCS) systems are available to
assist chemists in selecting the synthesis route a new AI platform named 3N-MCTS
developed by Seglar et al. has proven to be much faster and better than that of
traditional computer-assisted retrosynthesis systems (Segler et al. 2017). An innova-
tive AI tool, SPiDER, has been developed (Rodrigues et al. 2018) as an alternative to
chemoproteomics to advance natural products for drug discovery. The SPiDER was
used to predict the molecular target of b-lapachone, a clinical-stage natural
naphthoquinone with antitumor activity. The platform predicted b-lapachone as an
allosteric and reversible modulator of 5-lipoxygenase (5-LO). The prediction is
validated using a 5-LO functional assay. Read-across structure-activity relationship
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Table 12.1 Common ML-based drug designing tools

Tool Developer
Brief description
and algorithm used Website

Freely
available

Docking

AutoDock The Scripps
Research Institute

Simulated
annealing, GA

http://autodock.
scripps.edu

Yes

DOCK University of
California

Incremental
construction,
merged target
structure ensemble

http://dock.
compbio.ucsf.
edu

Yes

FlexX BioSolveIT GmbH Incremental
construction,
merged target
structure ensemble

https://www.
biosolveit.de/
FlexX

No

FRED OpenEye Scientific
Software

Exhaustive search
algorithm

https://docs.
eyesopen.com/
oedocking/fred.
html

Yes

Glide Schrödinger, Inc. Conformational
expansion, Monte
Carlo, torsional
search

https://www.
schrodinger.
com/glide

No

GOLD The Cambridge
Crystallographic
Data Centre

GA https://www.
ccdc.cam.ac.uk/
solutions/csd-
discovery/
components/
gold

No

ICM-Pro Molsoft LLC. Monte Carlo
minimization
procedure

http://www.
molsoft.com

No

Surflex-Dock Tripos Inc. Hammerhead’s
empirical scoring
function with
morphological
similarity

http://www.
jainlab.org

No

Homology modeling

Modeller University of
California

It performs
comparative
modeling using
spatial restraints
and performs
optimization of
protein structure
models

https://salilab.
org/modeller

Yes

MOE Chemical
Computing Group

It uses a
precompiled
antibody x-ray
database (Fab
database) to model

https://www.
chemcomp.com

No

(continued)
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Table 12.1 (continued)

Tool Developer
Brief description
and algorithm used Website

Freely
available

Fv region of the
immunoglobulin

Prime Schrödinger, Inc. Prime performs
comparative
modeling using
homology
modeling and fold
recognition

https://www.
schrodinger.
com/prime

No

SWISS-MODEL Swiss Institute of
Bioinformatics

Fully automated
protein homology
modeling server

https://
swissmodel.
expasy.org/

Yes

Molecular dynamics

Amber University of
California, San
Francisco, USA

Assisted model
building with an
energy refinement
suite is used for
molecular
dynamics
simulations of
biomolecules

http://ambermd.
org/

No

CHARMM Harvard University,
USA

It simulates the
peptides, proteins,
prosthetic groups,
ligands, nucleic
acids, lipids, and
carbohydrates in
aqueous, crystals,
and membrane
environments

https://www.
charmm.org

No

Desmond D. E. Shaw
Research

It uses novel
parallel algorithms
and numerical
techniques to
perform molecular
dynamic
simulations

https://www.
deshawresearch.
com

Yes

GROMACS University of
Groningen, The
Netherlands

Performs molecular
dynamic
simulations of
biomolecules like
proteins, lipids, and
nucleic acids

http://www.
gromacs.org

Yes

NAMD University of
Illinois, USA

NAMD is used for
the simulation of
large biomolecules

http://www.ks.
uiuc.edu/
Research/namd/

Yes

Quantum mechanics

GAMESS Iowa State
University, USA

The general atomic
and molecular

https://www.
msg.chem.

Yes

(continued)
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Table 12.1 (continued)

Tool Developer
Brief description
and algorithm used Website

Freely
available

electronic structure
system (GAMESS)
is a general ab initio
quantum chemistry
package

iastate.edu/
gamess

Gaussian Gaussian Inc. It is used for
estimating analytic
frequency,
geometric
optimizations and
IR, Raman, VCD
and ROA spectra of
large biomolecules

https://gaussian.
com

No

Jaguar Schrödinger Inc. Jaguar uses density-
functional theory
(DFT) and local
second-order
Møller–Plesset
perturbation theory
to compute a
comprehensive
array of molecular
properties

https://www.
schrodinger.
com/jaguar

No

MOPAC Stewart
Computational
Chemistry

It is used to
calculate
vibrational spectra,
thermodynamic
quantities, isotopic
substitution effects,
and force constants
for molecules,
radicals, ions, and
polymers

http://
openmopac.net

Yes

NWChem Environmental
Molecular Sciences
Laboratory

Ground and excited
solutions of many-
electron
Hamiltonian are
obtained utilizing
density-functional
theory, many-body
perturbation
approach, and
coupled cluster
expansion. It is
used to analyze
potential energy
surface and perform
dynamical
simulations

http://www.
nwchem-sw.org

Yes

(continued)
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Table 12.1 (continued)

Tool Developer
Brief description
and algorithm used Website

Freely
available

ADMET prediction

ADMET
Predictor

Simulations Plus,
Inc.

ANN, SVM, Kernel
partial least squares
(KPLS), and
multiple linear
regression (MLR)

https://www.
simulations-
plus.com/
software/
membraneplus/
admet-
predictor/

No

StarDrop Optibrium, Ltd Pareto
optimization, GA

https://www.
optibrium.com/
stardrop

No

Percepta
Platform

Advanced
Chemistry
Development, Inc.

It provides two
predictive
algorithms—
Classic (based on
Hammett-type
equation) and
GALAS

https://www.
acdlabs.com/
products/
percepta

No

ADMEWORKS
Predictor

Fujitsu Kyushu
Systems

It is a virtual
screening system
with a simultaneous
evaluation of
ADMET properties

https://www.
fujitsu.com

No

Sarchitect Syngene Bayesian methods,
ANN, SVM,
decision trees and
forests, and other
algorithms are used
for model building
and prediction

https://www.
syngeneintl.
com

No

QikProp Schrödinger, Inc. Monte Carlo
statistical
mechanics
simulation is used
to correlate
different descriptors
to experimental
properties

https://www.
schrodinger.
com/qikprop

No

Derek Nexus Lhasa, Ltd Uses the knowledge
base of Lhasa for
accurate toxicity
predictions

https://www.
lhasalimited.
org/products/
derek-nexus.
htm

No

PASS V. N. Orechovich
Institute of
Biomedical
Chemistry under
the aegis of the

Uses 20,000
principle
compounds from
MDDR databases

http://195.178.
207.233/PASS/
index.html

No

(continued)
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Table 12.1 (continued)

Tool Developer
Brief description
and algorithm used Website

Freely
available

Russian Foundation
of Basic Research

Hazard Expert
Pro

CompuDrug, Ltd A neural network-
based approach is
used to model the
relationship
between human
cytotoxicity and
atomic descriptors

https://www.
compudrug.
com/
hazardexpertpro

No

VolSurf+ Molecular
Discovery, Ltd.

It correlates128
molecular
descriptors with the
pharmacokinetic
properties of the
drugs

https://www.
moldiscovery.
com/software/
volsurf

No

Bioclipse Uppsala University,
Sweden and
European
Bioinformatics
Institute

It is a Java based
workbench, which
provides molecular
editing and
visualization as
well as prediction
of physio-chemical
properties of the
molecules

https://
sourceforge.net/
projects/
bioclipse

Yes

MetaDrug GeneGo, Inc. It is an Oracle based
software, which
uses several
network-building
algorithms like
Dijkstra’s algorithm
to predict ADME/
Tox properties of
drugs

https://
omictools.com/
metadrug-tool

No

TIMES OASIS-LMC It is a heuristic
algorithm used to
predict the toxicity
of metabolites
based on their
metabolic maps

http://oasis-lmc.
org

No

Molecular visualization

UCSF Chimera RBVI, University
of California, San
Francisco, USA

Provides
visualization and
analysis of
molecular
structures and
related data.

https://www.
cgl.ucsf.edu/
chimera

Yes

Jmol University of Notre
Dame, USA

It is a free tool for
academicians and

http://jmol.
sourceforge.net

Yes

(continued)
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(RASAR), an AI tool, links molecular structures and toxic properties by mining a
large database of chemicals (Luechtefeld et al. 2018).

ANNs are further extensively used in the interpretation of analytical data, drug,
and dosage form design through bio pharmacy to clinical pharmacy. In pharmaceu-
tical, supervised associating networks are applied as an alternative to conventional
response surface methodology (Bourquin et al. 1997; Rojas 2013).

12.9 Applications of ANNs, GAs, and Other ML Algorithms
in Drug Discovery

The cost of discovering and developing a drug has since escalated from US$
800 million in the year 2001 to the current estimated figure of US$ 3 billion
(DiMasi et al. 2015). Finding successful new drugs is daunting and predominantly
the most difficult part of drug development. ML and other computational
technologies are playing a vital role in hunting new drugs quicker, cheaper, and
more effective.

ML uses experimental data to optimize clustering or classification of samples or
features to develop augment or verify models that can be used to predict the behavior

Table 12.1 (continued)

Tool Developer
Brief description
and algorithm used Website

Freely
available

researchers written
in Java for 3D
visualization of
molecules

PyMOL Schrödinger Inc. It is a molecular
visualization tool
for animating 3D
structures

https://pymol.
org

No

Swiss-Pdb
Viewer (Deep
View)

Swiss Institute of
Bioinformatics

Active sites of the
proteins can be
compared and
structural alignment
can be performed.
Several proteins can
be analyzed at the
same time

https://spdbv.
vital-it.ch

Yes

VMD University of
Illinois, USA

It can model,
analyze, and
visualize
biomolecules. It
includes multiple
sequence alignment
and can be used for
both sequence and
structure data

https://www.ks.
uiuc.edu/
Research/vmd

Yes
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or properties of systems (Cuperlovic-Culf 2018). In recent years bioinformatics and
metabolism analyses have witnessed a variety of ML methods including self-
organizing maps, SVM, the kernel machine, Bayesian networks, or fuzzy logic.
ML has optimized metabolic network models and their analysis with the availability
of enormous genomics and metabolomics data. ML also has been successfully
applied for the determination of drug side effects using the data available for
human diseases, drugs, and their associated phenotypes to determine metabolically
associated side effect predictors (Shaked et al. 2016). Recently, as part of the
consortium for metabonomics toxicology (COMET), relational and logic-based
ML has successfully utilized to provide causal explanations of rat liver cell responses
to toxins using high throughput NMR metabolomics data (Tamaddoni-Nezhad et al.
2006; Chen et al. 2008).

ML techniques prominently in the form of ANNs and GAs have been used in
chemoinformatics, computational biology, and pharmaceutical research. The models
built with these ML methods are been routinely used for robust external predictions.

Commonly the ANNs are employed in drug design to build predictive models
involving:

(a) Hepatotoxicity, genotoxicity profiling.
(b) Pharmacokinetics; clearance, and permeability studies.
(c) Activity predictions against target proteins.
(d) ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity) and

biological activity prediction and classification studies.
(e) Lead discovery and similarity, diversity analysis of combinatorial libraries.
(f) HTS data analysis.

ML techniques also find their application in representation, classification, and
categorization studies of small lead molecules in drug discovery. In this, the
molecules are usually seen as fingerprints featuring its molecules substructures,
molecular spaces, bonds, and interatomic distances, represented in the form of binary
vectors. At the technical architectural level, these small molecular representations
are further searched for their similar substructural and molecular spatial
arrangements like compounds. The obtained results are ranked based on their
biological activity by the application of various ML prediction filters (Panteleev
et al. 2018; Terfloth and Gasteiger 2001).

GAs usually found such applications in the automated generation of small organic
molecules. The compounds here are represented as SMILES strings. The electronic,
lipophilicity, and shape parameters of these compounds are used to carry out virtual
screening studies against the database. A specific GA based search and scoring
function then generates a list of similar natural and synthetic compounds as potent
leads (Douguet and Thoreau 2000).

There are two major benefits of the application of ML techniques in drug
designing:
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1. Generation of faster hypotheses overcoming the time and cost factor associated
with lengthy wet lab studies;

2. Development of better hypothesis: A well planned and diligently designed ML
models may propose better leads than conventional methods curtailing the drug
discovery time to 8–10 years period.

GA and ANNs have been instrumental at various levels of lead discovery and
lead optimization and are routinely used in various drug discovery tools as follows:

12.9.1 Molecular Docking

Docking is used for finding the preferred pose of a ligand with another molecule to
form a stable complex. In the simplest sense, in silico interaction studies between
any two molecules are referred to as molecular docking. GA is commonly used in
docking algorithms as a favorable search and optimization function. It runs for
several generations (>25,000) to generate an optimal binding conformation between
a protein and ligand molecule. Some common programs involving GA enabled
docking include genetic optimization for ligand docking (GOLD), family competi-
tion evolutionary approach (FCEA), and Auto dock (Yang and Kao 2000; Morris
et al. 1998)

12.9.2 Pharmacophore Modeling

A pharmacophore may be defined as the essential geometric arrangement of atoms or
functional groups necessary to produce a given biological response. A strict IUPAC
definition of pharmacophore comes as: “A pharmacophore is the ensemble of steric
and electronic features that is necessary to ensure the optimal supramolecular
interactions with a specific biological target structure and to trigger (or to block)
its biological response.” (Choudhury and Narahari 2019; Seifert et al. 2007).

This method involves the generation of a quantitative pharmacophore model for a
structurally diverse set of input compounds. A suitable hypothesis predicting the
biological activity of compounds is developed using training set compounds which
is further validated with test compounds. The correlation and regression analysis
data obtained with training and test set compounds evaluate the predictive efficacy of
developed pharmacophore models. A program named as GA for multiple molecule
alignment (GAMMA) is a similar function allowing flexible alignment for multiple
small molecules applying Newton optimizer based GA (Terfloth and Gasteiger
2001). GAs have also its relevance in the analogue preparation or automated creation
of small molecules by altering the SMILES format along with maintaining the
physicochemical descriptors and drug-like standards, i.e., electronic properties,
lipophilicity, and conformational features for evaluating scoring function to show
better interaction with the respective protein (Douguet and Thoreau 2000).
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12.9.3 Quantitative Structure–Activity Relationship (QSAR)

QSAR studies involve the mathematical and statistical analysis of how the chemical
structure of a compound is related to its biological activity. The chemical structure of
the compound is usually defined as a function of its molecular descriptors such as
molecular weight, functional groups, atom, and bond counts to more complex
topological, geometric, connectivity, and physicochemical parameters. These
descriptors can frequently be calculated by several ML-based popular programs
such as MOE, DRAGON, Molconn-Z, ADMET predictor, CODESSA, and
PowerMV. Once the descriptors are obtained, statistical modeling methods are
employed to derive the correlation and regression between the activity and
descriptors. In addition, ANNs are applied to these QSAR models for the prediction
of physicochemical and pharmacokinetic properties (Terfloth and Gasteiger 2001).

In the recent era, several pharmaceutical companies and research institutions have
come up with novel and intelligently developed ML programs to be used in drug
discovery. Two such programs have been developed at Merck pharmaceuticals,
namely classification & regression at Merck (CREAM) and Merck online computa-
tional chemistry analyzer (MOCCA). CREAM is basically a Python-based modeling
tool intended for classification and categorization studies, while MOCCA provides
predictive models for toxicity, hepatotoxicity, genotoxicity, ADMET, etc. ANNs
play an important role in any such programs by optimizing their training parameters
at architectural levels, viz. learning rate, weight decay, batch size, loss-function,
signal transfer, and feedbacks, etc.

The importance of any such ANN-based ML methods is that it helps to create
newer end-points in the analyzed data and it succeeds to provide better statistical
performance compared to conventional methods (Jing et al. 2018). Another example
of an ML-based predictive model has been developed by researchers at IBM. The
model at IBM helps to predict, represent, and identify which diseases are typically
linked to which prominent side effects. The graphical representation included orange
and blue dots. An orange dot represents the regions of diseases, while blue dot
representations imply the specific side effects associated with them. The IBM
models have greatly helped to identify and limit the typical side effects associated
with specific diseases.

Recently a newer concept has been proposed by Burden et al., whereby neural
networks inversion problem for QSAR studies of dihydrofolate reductase inhibitor
was solved by applying GA. A small layered feedforward/back-propagation neural
network-based QSAR model was developed and maximum activity on the structure-
activity surface was determined using a GA. Such development of hybrid algorithms
involving both ANN and GA in ML techniques proves to be a milestone in fast
prediction and better evaluation studies in the domain of drug discovery. Proper
knowledge and diligent application of each of these ML methods may certainly
unveil newer dimensions in multi-millionaire pharmaceutical industrial setups in the
near future.

12 Machine Learning Approaches to Rational Drug Design 303



12.10 Conclusions

ML algorithms are playing a game changer role in many sectors. ML approaches are
useful in designing and development of new biologically active molecules with
desired properties for a drug target. In healthcare sectors, many renowned pharma-
ceutical companies have made a huge investment in AI companies working on ML
as a joint venture to come out with healthcare tools and better drugs. With the rapid
advancement in computer processing power and huge datasets availability and
synthesis planning, ML algorithms have helped in speeding up drug development.
In the near future, ML concepts will permanently change the pharmaceutical indus-
try and the way drugs are discovered.
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