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Abstract Wastewater can be treated in many ways, out of which membrane separa-
tion technology is considered the most effective and unique one. Especially, carbon
nanotubes (CNTs)-based membranes are getting noteworthy attention owing to the
combined merits of CNTs and membrane separation. This results in offering superior
membrane properties. This chapter discusses the classification and characterization
of CNTs based membranes. It also reviews the fabrication methods for mixed CNTs
based membranes in detail. Furthermore, the future direction and challenges related
to CNTs based membranes are also briefly outlined.
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1 Introduction

Freshwater is an important and vital part of human’s life. It also acts as an important
storage unit for various other industries. According to a report, 75 percent of the world
population could be underwater shortage conditions by 2025 [32, 34, 35, 38, 83]. Itis
known that millions of people will suffer from water scarcity conditions by 2050 [27].
Extensive efforts are being made to protect the world from this blooming water crisis.

R. Painuli - S. Raghav
Department of Chemistry, Banasthali Vidyapith, Banasthali, Tonk 304022, India
e-mail: ritsjune8.h@gmail.com

S. Raghav
e-mail: sapnaraghav04 @ gmail.com

P. Jain

Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus,
Modinagar 210204, India

e-mail: palli24 @gmail.com

D. Kumar ()
School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India
e-mail: dinesh.kumar@cug.ac.in

© Springer Nature Singapore Pte Ltd. 2021 157
M. Jawaid et al. (eds.), Environmental Remediation Through Carbon

Based Nano Composites, Green Energy and Technology,
https://doi.org/10.1007/978-981-15-6699-8_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6699-8_8&domain=pdf
mailto:ritsjune8.h@gmail.com
mailto:sapnaraghav04@gmail.com
mailto:palli24@gmail.com
mailto:dinesh.kumar@cug.ac.in
https://doi.org/10.1007/978-981-15-6699-8_8

158 R. Painuli et al.

The three Rs, reuse, recycle, and recovery, for water have proved to be beneficial in
generating freshwater with no side effects on human health. The most prevalent tech-
nology is membrane filtration, which is used to purify all kinds of water, including
waste, sea, and brackish [33, 36, 37, 83]. Membranes are categorized with the clas-
sifications based on the compositions and the cut-off molecular weight. Membrane
techniques like ultrafiltration, microfiltration, reverse osmosis, nanofiltration, perva-
poration, and distillation of membranes are the most extensively used techniques for
water purification. Polymers, ceramic, and hybrid materials are the main elements
from which membranes are composed [32, 34, 35]. Polymeric membranes find their
usage in purification and desalination of water because of their greater selectivity
and high mechanical strength Ceramic membranes are normally used for challenging
water purification processes owing to their better thermal and chemical stability. Both
these membranes have a lot of setbacks and can still be modified for better perfor-
mance [32, 34, 35]. In contrast to ceramic membranes, the polymer membranes are
lesser chemically stable and have low resistance toward fouling but are cheaper than
ceramic ones [76]. Hence Ceramic membranes are considered only for small-scale
industries. In modern times, a lot of modifications in nanomaterials like nanopar-
ticles, metal/metal-oxide, and carbon nanoparticles, dendrimers, and zeolites have
been employed for the water purification [43-45]. But because of the high surface
area, better mechanical strength, and high thermal stability, CNTs have received
much attention in this industry. They are used in removing a lot of impure parti-
cles present in the solution [4, 5, 32-37]. Carbon nanotubes have also contributed
in the development of modified membranes for water decontamination [13, 25, 46,
50, 52, 53, 56, 84, 88, 95, 96, 100]. The significant properties that make CNTs as
an excellent material in the water purification are their enhanced surface area along
with high aspect ratio, rapid water transport, and ease of modification [52, 53]. For
improvising its efficacy, the carbon nanotubes can also be utilized as filler/packing
components. This chapter explores the classification, characterization (Table 1) as

Table 1 Carbon nanotubes characterization

S. No. | Characterization techniques | Major aims References

1 SEM/TEM Analysis of morphology (diameter, [30]
defects, length, and purity), state of
arrangement (SWCNTs and
MWCNTs), several layers, and
distance between multi-walled

nanotubes)
2 Energy-dispersive Elemental composition, [7]
spectroscopy (EDS) functionalization
3 Fourier transform infrared Functionalization [7]
spectroscopy (FT-IR)
4 TGA Purity, functionalization [55]
5 XPS Elemental composition, [91]

functionalization
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well as the composition of the CNTs based membranes. The challenges related to
the future of the CNT's based membranes are also discussed at the end of the chapter.

2 Classification of Carbon Nanotube Membranes

CNTs based membranes are divided based on its implementation in fabrication
processes, but broadly there are two main categories:

1. Freestanding carbon nanotube membranes
2. Mixed-carbon nanotube membranes

The freestanding membrane is further classified as vertically aligned carbon
nanotubes membranes and bucky paper membranes. They are used in removing salt
from the water and other wastewater treatment implementations [16, 69]. Carbon
nanotubes are arranged as cylindrical pores in a vertically aligned carbon nanotube
to force the liquid to cross the holes [29, 61]. Bucky paper CNTs based membranes
have a 3D network with large pores that have an enhanced surface area. Mixed-
carbon nanotube membrane has a design like that of the reverse osmosis structured
membranes. In this arrangement, the top layer is assorted with a carbon nanotube and
another polymer. The vertically aligned carbon nanotubes have a profound change
in the rate of flow of water because of the small length of nanochannel and dense
forest of the nanotube. Therefore, these membranes are more beneficial over bucky
membranes. Moreover, tedious fabrication methods are the major challenge in the
preparation of these membranes for large-scale applications. Whereas, the mixed-
carbon nanotube membranes possess the benefit of the simpler fabrication process,
but in contrast with the vertically aligned membranes, these membranes have a lower
flux rate.

3 Aligned Carbon Nanotubes (ACNTs) Membranes

Aligned CNT membranes are composed of a single carbon nanotube arranged in high
order and a vertically aligned array. Because of this, they have a porous structure
composed of tiny spaces existing internally within the single tubes. These cavities are
~5 nm in multi-walled nanotubes [31]. This diameter is similar to the size of many
biomolecules and other macromolecules, which shows that the vertically aligned
carbon nanotube membranes are very well be fitted for various filtration processes
[22]. A vital property of ACNT membranes is that their pore dimension can be deter-
mined by managing the dimensions of the catalytic particles used during the growth
of nanotube. This gives out a method by which the membrane selectivity can be
customized according to the particular separation application. It is also necessary to
make small adjustments in the selectivity of these substances by covalently function-
alizing the edges of the carbon nanotubes with certain moieties or groups [66, 67]. It
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was also seen that in these membranes, it is probable to adjust the pores’ diameters
between 38 and 7 mm. This adjustment can be made by applying an upright outward
force across the parallel dimensions of the carbon nanotubes [51]. This causes
compression in nanotubes, and the permeability increases, which is higher than that
in other carbon nanotube membranes. The membrane also reduces the adhesion
of bacteria, demonstrating its benefit over other membranes by being less affected
by the formation of biofilm and fouling. Aligned carbon nanotube membranes are
made by implanting carbon nanotubes into a matrix. They can also be made by
developing them on a substrate using a chemical vapor deposition (CVD) process.
While growing them on the substrate, the aligned CNTs must be treated with packing
material like polystyrene or SizNy so as to furnish the interstitial spaces among the
individual carbon nanotubes [59, 68]. This opens a lot of entries of solvent, solute,
and gas molecules to the openings of nanotubes. Free ACNT membranes can also
be produced in the absence of any holding substance [98]. The CNTs that are manu-
factured by this process have large spaces across the structure that can be stretched
up to tens of nanometers in diameter. These membranes can filter selective solute
molecules that are available in the watery solution. In a study, macroscopic hollow
cylinders were made that had multi-walled nanotubes aligned radially [93]. These
were shown to retain the heavy constituents of a hydrocarbon mixture along with
some microorganisms such as bacteria and viruses. Compared to UF membranes,
ACNT membranes supply a better water flux, which is three times more than that
of the ultrafiltration membrane [6]. The aligned carbon nanotube also shows a better
and higher biofouling resistance along with low levels of bacterial adhesion [6]. In
another study, a new modified ultrafiltration membrane was used with the help of
multi-walled nanotube and polyethersulfone [56]. The arrangement of multi-walled
is ordered within the PES matrix. It provides a path for transport of water, thus
causing a change of water flux rate, which was thrice greater than that given by
multi-walled/polyethersulfone membrane. The flux rate was ten times more than
that of the pure PES membrane and antifouling properties [56]. The pores that are
present have very small diameters in the ACNT membranes and have been receiving
significant importance due to their prospective implementations in the removal of
salt from water. The permeable properties of aligned carbon nanotube membranes
are comparable to that of nanofiltration and ultrafiltration membranes. The drawback
associated with this is that the aligned carbon nanotube’s forest must be eliminated
from the underlying substrate, which can comprise rigorous chemical embedding
processes using harmful reagents. An additional drawback of carbon nanotube usage
is that their ends must be open properly, which again needs strict conditions like
plasma oxidation. Both steps are confusing and expensive. Most aligned carbon
nanotube membranes produced till now posses smaller surface area, thus requiring a
long step of fabrication. It has a lesser packing density, reduced mechanical stability,
and has very little resistance to fouling [43, 45, 75]. Thus, numerous substitutes are
being developed that are less complex and have lesser harmful steps, which can be
again modified for further advancements.
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4 Bucky Paper Membranes Buckypapers (BPs)

Bucky paper membranes have a simpler structure and comprise an array of individual
carbon nanotubes supporting themselves [24, 47]. Bucky paper membranes are flex-
ible and have considerable chemical and physical stability [92]. Because of their
inherent thermal, mechanical and electrical properties, bucky paper is suggested for
various implementations like in microscopic servomechanism, nanosensors, elec-
tronic filters, for mimicking natural muscles, and cathodes field-emission electron
gun [17, 48, 80, 99]. They are made from carbon nanotube dispersions, which
are developed by involving extremely high energy samples comprising nanotubes
along with the prospective dispersant. When the dispersions are filtered on a holding
membrane in the vacuum, then the bucky paper membranes are fabricated [26, 94].

Due to the simple and cheaper manufacturing mechanisms of bucky paper, it
is possible to make bucky paper for large-scale industries in contrast to aligned
membranes. A close observation of the buck paper surfaces with the help of scan-
ning electron microscopy tells about a highly disarranged structure including carbon
nanotubes held together by weak forces along with pi—pi interactions [101]. The
interior assembly of bucky paper membranes consists of pores varying from small to
large is in correlation with the spaces in between and the bundles of carbon nanotubes,
respectively. The pores in bucky paper accord to 60-70% of their total volume, thus
befitting as a medium for filtration. Apart from this, the filtration characteristics of
bucky paper have also been observed but only in small numbers because of their weak
mechanical properties owing to their brittle nature. A method to overcoming this is
to strengthen bucky paper membranes with the help of polymer intercalation [15].
The infiltration of various polymers, for instance, polystyrene, polyvinyl acetate into
bucky paper membranes gives rise in the tensile strength, Young’s modulus, tough
character, and straining to crack values [15]. The addition of biopolymers like proteins
and polysaccharides into bucky papers comprised of single-walled nanotubes can
improvise their mechanical abilities [8]. A detailed analysis has shown that some
biopolymers were left in the bucky paper membranes after vacuum filtration because
of their ability to non-covalently interact with the nanotube. Improvising the mechan-
ical properties of bucky paper membranes is again crucial as it reduces the risk which
occurs because of the excretions of single carbon nanotubes into the environment.

There have been observations into the biological consequences of exposure to
CNTs due to the similarity of these materials to asbestos elements. These studies
have also shown that carbon nanotubes provide a specific effect like oxidative stress,
disruption of membrane and interference with cell signaling pathways [19, 23, 63,
70, 74, 81, 85]. Consequentially, it is crucial to consider those very small quantities
of carbon nanotubes should not break from bucky paper membranes or any other
carbon nanotube membrane. It can be achieved by joining the nanotubes to each
other using a covalent bond in bucky paper or aligned membrane. Because of their
cheap manufacturing methods, it is possible to prepare bucky papers on a larger scale
than aligned.
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5 Preparation of CNTs

The main techniques that are implemented to prepare considerable amounts of carbon
nanotubes are laser ablation, arc discharge, gas-phase catalytic growth from carbon
monoxide, and chemical vapor deposition from hydrocarbons [79]. Arc discharge
and laser ablation approaches are only good to prepare small numbers of carbon
nanotubes. The products prepared often have some quantity of impurity in the form
of particles of catalyst and amorphous carbon [79]. Purification techniques are needed
to separate the nanotubes from unwanted by-products before investigating their
characteristics and prospective functions. The results observed provided prospective
encouragement to explore the CNT membrane material for filtration purposes. This
has been strengthened after observing the cytotoxic properties of carbon nanotube
membranes. This shows that these materials are least influenced by biofouling in
comparison to that of traditional polymeric membranes and also displayed enhanced
membrane lifetime duration via eliminating microbes [9].

6 Production of CNTs

Purification procedures require the separation of nanotubes from unwanted byprod-
ucts before being implemented for further instigation. The gas-phase techniques that
produce nanotubes at low temperatures are changeable to the non-interrupted manu-
facture of a vast number of CNTs as continue flowing of gas would significantly
moderate the source of the preparatory material.

An additional advantage related to the fabrication of the carbon tube with the
chemical vapor deposition is the enhanced purity of the getting material (Fig. 1),
which reduces the requirement for accomplishing all the stages [73]. With the help
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Fig. 1 Diagrammatic representation of the CVD equipment
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Table 2 Methods used for preparing CNT-based composite membranes

Type of membrane Synthesis method References
CNT/PA Interfacial polymerization [43, 45]
MWCNT/PSt (C/P) Phase inversion [12]
MWCNT/PA Polymer grafting [89]
(VACNTSs)/polyaniline (PANi) In situ polymerization [18]
MWCNTSs/PAN Phase inversion [65]
DDA-MWNTs/PSf Phase inversion [40]
(TNRs)/MWCNTS/PES Phase inversion [90]
TFC/polysulfone (PS-20)/MWCNT Interfacial polymerization [2]
PSF/CNTs Phase inversion [41]
A-MWCNTs Phase inversion [102]
Zwitterionic membrane Phase inversion [28]
Polymer membranes In situ polymerization [1]
Graphene oxide-incorporated thin-film | In situ polymerization [49]
nanocomposite membrane

Thin-film nanocomposite membrane In situ polymerization [97]
Polyester thin-film composite membrane | In situ polymerization [64]
Carbon nanotube/PSf Immersion precipitation [39]
MWCNT/PVDF/PDMS Deposition/coating [62]
MWCNT/PVDF Phase inversion [60]
Acid-modified Interfacial polymerization and phase | [42]
MWCNTs/nanosilver/PSf inversion

F-MWCNTSs/PES Phase inversion [104]
(NCNT)/PES Modified phase inversion [77]
PVDF/Fe; O3/MWCNTs In situ polymerization [3]
Surface-modified polyethersulfone Spray-assisted layer-by-layer [58]
(PES) composite membranes

VA CNTs In situ polymerization [47]
MWCNT/nylon6 In situ polymerization [86]

of the chemical vapor deposition method, single-walled nanotubes with the excel-
lent purity have been fabricated in the gaseous phase by using Fe(CO)s and carbon

monoxide in the increased pressure CO disproportion method [10].
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7 Techniques for the Fabrication of Mixed CNTs
Membranes

The following are the methods (Table 2) used for preparing the mixed-carbon

nanotube membranes:
| Mixed carbonnanotubes membranes |

[— Phase inversion

— Polymer grafting

—— Spray-assisted layer-by-layer

— Interfacial polymerization

—— In-situ polymerization

7.1 Phase Inversion

Multi-walled carbon nanotubes blend membranes prepared through the phase inver-
sion process with a coagulant in the form of water [14]. A homogeneous multi-
walled carbon nanotubes solution was made in N-methyl-2pyrrolidone (NMP)
and blended with PSf solution. Dodecylamine functionalized multi-walled CNTs
(DDA-MWNTs) were fabricated by Khalied and co-workers. The nanocomposite
polysulfone/DDA-MWNts was casted by the phase inversion method. The fabri-
cated nanocomposite membrane displayed excellent fouling resistance and flux
recovery [40]. Phase inversion process with dimethylacetamide as a solvent and
polyvinylpyrrolidone as a porogen was used to prepare flat sheet nanocomposite
PSf/DDA-MWNTs membranes. A novel polyethersulfone (PES) membranes were
prepared with the help of phase inversion method with the increased loading of the
functionalized oxidized MWCNTs (OMWCNTS) together with the Arabic gum.
The prepared OMWCNTSs were characterized by various techniques like scanning
electron microscopy and transmission electron microscopy, energy-dispersive X-ray
spectroscopy [71].
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7.2 Interfacial Polymerization

By employing interfacial polymerization, polyamide reverse osmosis membranes
(RO) with the carbon nanotubes were fabricated. In this process, the function-
alized CNTs were fabricated by the reaction of CNTs with the acidic mixture
of sulfuric acid and nitric acid (in ratio 3:1), at different amounts of reaction
conditions. The synthesized carbon nanotubes were observed to be well settled
in the PA layer; this has been confirmed via various analytical techniques. The
polyamide RO membranes containing well-dispersed CNTs possess an enhanced
flux rate than the polyamide amide membranes devoid of CNTs [43, 45]. Polyamide
thin-film membranes were prepared on polysulfone (PS-20) base by using inter-
facial polymerization of aqueous m-phenylenediamine (MPD) solution and 1,3,5-
benzenetricarbonyl trichloride (TMC) in n-hexane organic solution. MWCNT were
carboxylated by the heating of MWCNT powder in the sulfuric acid and nitric acid
under continuous sonication at various intervals. Polyamide nanocomposites were
then synthesized by the incorporation of MWCNT and the carboxylated MWCNT
at various concentrations. The salt rejection and water flux performances of the
prepared membrane revealed superior performance with that of other membranes
[2]. CNT-enhanced thin-film composite membranes were fabricated by the incorpo-
ration of CNTs into the active layers of membranes for increasing its efficacy for
the water treatment. MWCNT grafted via poly(methyl methacrylate) PMMA was
prepared by microemulsion polymerization of methyl methacrylate(MMMA) in the
presence of c-MWNTS (acid-modified MWCNTS). The prepared membranes have
proven significantly improved selectivity and permeability [72].

7.3 Spray-Assisted Layer-by-Layer

Using the spray-aided layer-by-layer method, a functionalized multi-walled CNT
was fabricated by [57]. For improving the commercial polyethersulfone (PES)
ultrafiltration (UF) membranes, antifouling properties negatively charged func-
tionalized MWCNTs, mixed poly(sodium 4-styrenesulfonate) (PSS), and a posi-
tively charged poly(diallyldimethylammonium chloride) (PDDA) were deposited
PES substrate through spray-assisted layer-by-layer L) method. The synthesized
membrane displayed better anti-protein fouling and flux recovery [57]. Surface-
modified polyethersulfone (PES) composite ultra-filtration membrane by using a
spray-assisted layer-by-layer Liu and co-workers proved method. The prepared
nanocomposite membrane displayed enhancement in the antifouling properties [58].
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7.4 Polymer Grafting

A multi-walled carbon nanotube aromatic polyamide nanocomposite membrane
fabrication was shown by Shawky and co-workers. Various instrumental tech-
niques characterized the morphology of the surface, toughness, and roughness of the
prepared nanocomposite membrane. The SEM and AFM images displayed that the
MWCNTs were well dispersed in the PA (aromatic polyamide) matrix. Measure-
ments of mechanical properties of this composite showed increasing membrane
strength with increasing MWCNT content with monotonic increases in Young’s
modulus, toughness, and tensile strength. The prepared nanocomposite membrane
displayed better salt rejection and organic matter rejection than the normal polyamide
matrix membrane.

7.5 In Situ Polymerization

For the removal of natural organic matter in the water, MWCNT polyaniline
(PANI)/polyethersulfone (PES) membranes were synthesized by incorporation of
in situ polymerized MWCNTs/PANI complex. The prepared membrane showed
enhanced permeability than that of the PES membranes. Higher rates for the rejec-
tion of the natural organic matter were also observed. This greater presentation is
accredited to the synergetic effect of amplified porosity, narrow pore size distribu-
tion and hydrophilicity, and positively charged of the membranes by the inclusion of
MWCNTs/PANI complex. The prepared membrane also demonstrated a cent percent
water flux [52, 53]. A VACNTs/polyaniline (PANi) composite membrane was also
fabricated via microwave supported in situ polymerization [18]. It was proved that
with the help of a microwave, a better nanocomposite membrane could be fabricated.

8 CNTs Characterizations

Various techniques are available to analyze the characterization of carbon
nanotubes. transmission electron microscopy (TEM) along with the scanning elec-
tron microscopy (SEM) are the methods that are known to observe the top of the
peak along with the sidewall and with the morphology of CNTs [7, 30, 78]. The
most significant tool for the characterization of the carbon nanotubes is the Raman
spectroscopy technique [20, 21, 87]. It is regularly seen to check the quality as well as
the pureness of the made carbon nanotubes. A Raman spectrum of carbon nanotubes
shows two chiefs first-order bands, which include D band and G band. The former
band is concerned with the imperfections of the carbon nanotubes and can be seen
around 1350 cm~!. The latter band is concerned with the amount of graphitization
of carbon nanotubes that are at 1600 cm™~!. Therefore, the ratio of the area of both
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the band is found to determine the defect level in a specific carbon nanotube sample.
Hence, by modifying reactants and chemical vapor deposition preparation dimen-
sions like a catalyst, substrate, temperature, carbon precursor, pressure, time, and
rate of gas flow assisted with several customizations for functional groups and char-
acterization techniques here optimized carbon nanotubes could be gotten for various
practical applications (Table 1).

9 Challenges Related to CNTs

Carbon nanotube membranes have a great prospective future in the wastewater treat-
ment industry. However, it faces a lot of challenges to produce membranes as they
are in the very first stage, and various vital issues are still to be tested. Viable readi-
ness, reducing the cost of CNT, scaling in the industries, and assessing probable
lethal effects of carbon nanotubes are some encounters that are about to be finished.
Manufacturing carbon nanotubes on a large scale with a considerable pore size and
the way to distribute is yet a vital challenge in implementing carbon nanotube on a
great economic scale. Researchers must study more changed methods to get a more
economical method to create a carbon nanotube. Another obstruction that prevents
the implementation of carbon nanotubes in large-scale operation is the cost, specifi-
cally that of a single-walled carbon nanotube. Because of the high rise in the indus-
trial manufacture of carbon nanotubes, the cost related to them will be cut down in
the future. The prospective hazardous issues by carbon nanotubes on the health of
humans and on the atmosphere made significant questions supposed to be answered
detrimentally. It is assumed that raw carbon nanotubes are more hazardous in contrast
to chemically modified carbon nanotubes. This is also because of the availability of
a metal catalyst in raw carbon nanotubes. Another obstacle is the difficult growth
of carbon nanotubes with good alignment in vertically aligned carbon nanotube
membranes. The disarranged alignment can affect membrane properties like salt
rejection and flux. The mechanisms that separated the pollutants from freshwater
must be examined carefully.

10 Conclusion

Researchers were focusing on CNTs because of them showing excellent permeability.
Their level of performance is the best among other membranes derived by carbon
nanotubes. The latter offers good benefits like cheap cost and higher ease at produc-
tion, along with the capability to be generated at a larger scale. Investigations into the
applications like desalination, ultrafiltration, nanofiltration have shown that carbon
nanotube membrane often showed increased resistance to biofouling in contrast to
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the tradition polymer. There is also a need to investigate the differences between the
characteristics of filtration of bucky papers and that of composite membranes using
various carbon nanotubes and agents of dispersion.
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