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Preface

The specialism in carbon-based nanocomposites are inaugurated by its outstanding
properties like high surface area, pore size, mechanical strength and toughness,
electrical and thermal conductivity. Unlike other materials, this nanocomposite is
easily synthesized and fabricated and doped with various metal oxide nanoparticles.
Carbon-based nanocomposites are currently considered as an efficient material for
pollutants removal as compared to other available materials. This may be due to its
unique characteristics such as low cost, high regenerability, high adsorption
capacity, environmental friendly and sustainability. The synthesis and characteri-
zation of nanocomposites play a crucial role to find out its potentiality in different
real-world applications. It elaborates the basic synthetic route of these nanocom-
posites to make them highly efficient such as the presence of active sites, high
mechanical strength, conductivity and thermal stability properties. Added with
significant morphological and structural properties for clear understanding of
nanocomposite materials for removal of environmental pollutants have been
discussed.

This book gives a sound knowledge of carbon-based nanocomposite to the
readers regarding the modern design of nano-sorbents, membrane and photocat-
alytic degradation materials and manufacture engineering with numerous example
illustrations, methods and results for graduate students, researchers and industri-
alists. Besides that, it also covers the different aspects of carbon-based nanocom-
posite materials and its application in various environmental fields such as
wastewater treatment, air and soil remediation by removal of toxic pollutants. The
special features of this book summarize illustration and tables with up-to-date
information on research carried out on carbon-based nanocomposite materials and
its various applications in different fields.

We are highly thankful to all authors who contributed the chapters and provided
their valuable ideas and knowledge in this edited book. We attempt to gather all the
scattered information of authors working on carbon-based nanocomposite materials
and related research areas from Malaysia, India and Saudi Arabia and finally
complete this venture in a fruitful way.
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Toxicology and Environmental
Application of Carbon Nanocomposite

Asim Ali Yaqoob, Mohamad Nasir Mohamad Ibrahim, Akil Ahmad,
and A. Vijaya Bhaskar Reddy

Abstract Releasing of toxic metals (Pb, Cd, Hg, Zn, Cr, etc.) and organic
compounds (dyes, PAHs, volatile organic compounds, etc.) into the environment
has become main resources of environmental pollution which affects the human
being and other organism life directly or indirectly. These inorganic and organic
compounds have adverse effect on living being even in trace amounts. Various mate-
rials like plant-derived biosorbents, resins, metal oxides, natural fibres, carbonaceous
materials, etc., have been used for the treatment of organic and inorganic pollutants to
clean the environment. From the last decade, carbonaceous materials like graphene
have been extensively used for the treatment of environmental pollutants. In this
book chapter, we discuss the carbonaceous materials properties, and it is used in the
treatment of toxic inorganic and organic compounds removal from the environment.

Keywords Nanocomposites · Toxicity ·Metals · Dyes · Environment

1 Introduction

Environmental pollution is one of burning issues that affects the ecosystem, human
health and biodiversity globally by polluting the water bodies and natural soil. This
urgent issue cannot be addressed by using traditional and casual tools or strategies.
The accumulation and collection of toxic organic and inorganic pollutants like toxic
metals, dyes, organic compounds, inorganic compounds in water resources, air and
soil increase the pollution level to affect the life of living organism [1–4]. Due to
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growing population and their unplanned anthropogenic activities lead to the degrada-
tion of soil quality. Degradation of soil surface may be due to the improper utilization
of natural resources. Other important reason is inappropriate dumping of wastes [5].
Furthermore, the progress in scientific world modern technology and increase in
industries have led to an rise in discarding the wastes, fluctuating from casual waste
to fissionable waste into the environment. This poses a dangerous health threat for
existence of humankind on the earth. The wastewater remediation becomes vital for
controlling environment contaminants, even with influence on aquatic environment.
Generally, different types of wastes such as farming waste, industries waste, local
waste, emitting radiation, nuclear waste have been released and enter into the envi-
ronment. There are different regulations and guidelines to treat the several wastes.
Therefore, the sewage shows a main environmental challenge and should be accu-
rately preserved and disposed to regulate the several types of hazardous. Sewage is
completely originated through different activities of human being [6]. The valuable
materials can be reproduceable by using this sewage as organic sludge or gaseous
state likemethane or CO2 which can be collected from it. Similarly, another example,
microbial fuel cell is used to treat wastewater, and simultaneously, it helps to produce
electricity to overcome the energy issue [7]. Themost serious concern of today’s time
is water pollution which led to dangerous situation for living organism on earth. The
water pollution reduces the presence of oxygen for aquatic living organism which
causes difficulty in breathing. Occasionally, pollution disturbs the whole food chain.
The fishes engage with severe pollutants which are dangerous chemicals for their
life. These toxins damage the life cycle. Water pollution from some actions such as
oil spills, acid rain entirely destroys the aquatic environments. The water pollutants
are mainly organic, inorganic and dyes-based, but the toxic metals including heavy
metals and some dyes are very dangerous to aquatic life even in trace amounts. The
toxic metals contain an actual heterogeneous cluster of elements broadly diverse in
their biochemical and living functional properties. The toxic metals are considered
as highly toxicant to environment due to adverse effects on animals, microorgan-
isms, sea life and also badly affect the human being health. The metal pollution
in soil is the consequence of natural and anthropogenic activities. Anthropogenic
actions include smelting operation, mining and farming have enhanced the toxic
metals concentration levels such as Co, Ni, Cr, Cd, Pd and Ni [2, 3, 8, 9]. Metals
are persistent in nature, consequently get collected in earths. Nutritional intake of
several toxic metals done by plants-based food consumption has long period of
harmful effects on the human health. The influence of metals on water bodies is
due to pollutants movements from several diffuse sources which provide increase in
coincidental combinations to ecosystem. Therefore, it poses danger to water fauna
especially to fishes, and it is well known as a main source of protein food for human
being. Themetals like cadmium, mercury and lead do not carry any biological conse-
quence or valuable use and acknowledged to be enormously toxic [10]. If nickel,
copper, zinc, manganese, chromium and tin dispersed in zone of biosphere, then
these kinds of metals are not easy to degrade or recovered. So, environmental influ-
ence of metal is also called permanent pollution. The metal pollution has damaging
effect on life structures, and it not endures the process of biodegradation. Lethal
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metals like Ni, Au, Zn, Pb, Cr, Cd, Ar, Hg and Cu can be distinguished from other
types of environmental pollutants, thus producing several diseases and syndromes
at comparatively low concentrations. Hence, there is essential requirement to assess
the degree of pollution caused due to heavy or toxic metals and to regulate the moni-
toring process to keep save the environment. However, like metals pollutants, there
are some industrial, domestics and agriculturally based pollutants are also present
which cause adverse effect to human being and other living organisms [11–14].
From different sources, the inorganic pollutants are discharged into water resources
or natural resources. Inorganic-based pollutants are typically minerals, salts, metals
and inorganic compounds like nitrates, sulphate, ammonia, etc. Several studies have
shown that inorganic material is found naturally, and it can be modified by different
researcher to enhance their application. The inorganicmaterial-based pollutant enters
into environment through several anthropogenic activities like mine drainage, chem-
ical processes and smelting metallurgical [15]. These pollutants become toxic due to
collection in food chain. Similarly, organic-based pollutant including dyes is known
as biodegradable pollutants in environment. These types of pollutants are naturally
present and produced through different environmental activities. The most impor-
tant source is anthropogenic activities. Some common organic pollutants such as
polycyclic aromatic hydrocarbons, food waste, petroleum, human waste, polychlori-
nated biphenyls, diphenyl ether and organochlorine substance are of great concern to
eliminate from environment [16–19]. The organic pollutant becomes toxic in envi-
ronment due to certain properties such as high solubility of lipids, better stability,
good lipophilicity and high hydrophobicity [20, 21]. These properties give power
to compound to accumulate in diverse sphere zone of environment. From the last
decade, carbon-basedmaterial emerged as potentialmaterial, and it is compositewith
othermaterial which is used for wastewater treatment in several ways like adsorption,
membrane technology and microbial fuel cell. The carbonaceous material is carbon
cloth, carbon fibre, activated carbon, graphene oxide, reduced graphene, carbon rode,
graphiticmaterial, etc. Themost emerging carbonmaterial is graphene and its deriva-
tives due to high-tech properties which make it more prolific in field of wastewater
treatment [22]. In this chapter, the major focus is to describe the toxicity limit of
several environmental water pollutants (both organic and inorganic) which causing
severe diseases. The carbon-based nanocomposite carried out several environmental
applications such as adsorption, membrane technology, antimicrobial applications
are also summarized in this chapter.

2 Toxicity

There are several types of organic, inorganic and biological pollutant present in the
environmental to disturb the ecosystem activities. These types of pollutants enter into
the human body in different ways, and some are very toxic in nature even at very low
concentration such as mercury, arsenics, lead, cadmium, pesticides and persistent
organic-based pollutants [16, 19, 23–25]. The major source of these pollutants is
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Fig. 1 Some common water pollutant

wastewater which makes the environment unstable for living organism. Generally,
persistent organic pollutants (POPs) are the cluster of chemicals which is globally
concern because it carries probable for long-term carriage, perseverance in environ-
ment, capacity to bio-magnify, etc., and their substantial harmful effects on humanoid
health and ecosystem. The twomajor classes are foundwhich producing water pollu-
tion, i.e. organic pollutant and inorganic pollutant which are summarized below, and
a graphical presentation is shown in Fig. 1.

2.1 Inorganic Pollutants

The inorganic elements/compounds or composites seem to be amongst the most
common contaminants of ecology. Occasionally, they are existing in such concentra-
tions where these inorganic compounds/composites are able to produce lethal effects
on human being and other living organisms. The quantification and identification of
inorganic materials by traditional systematic techniques permit the contamination
level of environment to be quantified. Furthermore, the actual problem is expecting
the influence and their harmful effects of these inorganic materials on living organ-
isms’ survivals [26]. For active protection, location of reduction approach and consec-
utive revitalization of ecosystems is essential to distinguish the environmental supe-
riority of external water. This superiority is assumed mainly by organic influence
of water surface effluence. Contaminants come through several kinds of resources
such as point resources particularly releases of wastewater, diffuse-based, non-points
resources and also considering the atmospheric deposition. Materials contained in



Toxicology and Environmental Application of Carbon Nanocomposite 5

contamination are often lethal to water organisms [27]. The concentrations of inor-
ganic substance in external water are lower, but the contaminants are existing in
water atmosphere for long term. Under these circumstances, the materials can serve
as chronically. Danger of chronic influence of surface water contamination is actual
frequently underestimated due to concealed long-term action. The influence of these
toxic substances leads to the damage of organs of human being. A disaster of signif-
icant dynamic functions, which reduce the organism strength, is further common.
From this purpose, a typical stability of ecosystem might be influenced, and lastly,
it can lead to destruction of ecosystem. The most dangerous inorganic pollutant is
toxic metals which are present in wastewater and toxic metals are main source of
inorganic pollutant. The contaminated risk of external water effluence is measured
from consequences of assessment of deadly danger of inorganic and organic frag-
ment of external aquatic pollution. Subsequent degree of poisonous risk of entire
pollution is assumed by main degree sensed in water pollution. The toxic danger
of entire surface water pollution is done through the maximum range of lethal risk
measured for water pollution. Table 1 demonstrates contaminated risk degrees and
reliable classes of external water class and primary actions as refer by Czech national
standard [27].

Table 1 List of toxic risk condition, feasible utilization, primary action and type of water quality
are summarized

S. No. Type of water
quality

Toxic risk condition Priority action Probable utilization
of water

1 High pure water Unimportant risk No need for action Appropriate for all
utilization

2 Pure water Reasonable risk Supported
protection from
more rise of
pollution

Appropriate for
common of
utilization,
particularly for:
drinking water,
making water
sporting fish
breeding industries,
landscape value

3 Contaminated water Maximum tolerable
risk

Supported defence
from more rise of
pollution

Appropriate for
industrial supply

4 Highly
contaminated water

High risk Contamination has
long-lasting
impact, need of
long term

Partial possibility of
utilization like used
in experiment at lab
scale

5 Very highly
contaminated water

Serious risk Contamination has
acute influence,
need of urgent
treatment action

Not appropriate for
any type of
utilization
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The heavy metals need to be treated by using various effective methods. Recently,
Pan et al. [28] studied the removal method called ion-exchange membrane for
removing metals concentration from wastewater because some metals are even more
toxic at less concentration. The carbon foam for removal of heavy metal from several
industrial wastes plating-based water and harmfulness assessment also discussed
[11]. The electroplating surplus holds several kinds of toxic materials, like toxic
heavy metals, cleansing agents and solvents. Carbon foam was employed as an
adsorbent for remediation of toxic heavy metals from actual manufacturing plating
wastewater. The sorption volume was associated with a viable ion-exchange resin
and ametal-based adsorbent in batch system. The carbon foam has comprised of high
sorption volume for Cu and Cr than viable adsorbents for alkali/acid-based wastew-
ater and cyanide wastewater. Furthermore, the cytotoxicity experiment exposed that
an advanced adsorbent has lower toxic effects on human cells. Therefore, the carbon
foamwas showed the high sorption volume for Cu (14.86 g kg−1), Cr (73.64 g kg−1),
Ni (7.74 g kg−1) within 14.5 days of operational time. The oxidation pre-treatments
through usingUV/H2O2 rise the removal rate ofmetal fromplatingwastewater which
also contain the cyanide compounds. The heavy and some other metal tolerance limit
and their adverse effect on human body are listed in Table 2.

2.2 Organic Pollutants

Many regions of world are suffering with water deficiencies, almost a billion people
lackingwith freshwater. Furthermore, 90% infectious-based diseases in several coun-
tries are conveyed fromcontaminatedwater [40]. Theorganic pollution is showing the
presence of organic compounds in larger amount inwater sources. It originally comes
from different urban sewage, domestic wastes, agricultural effluents and industrial
wastes which contain different organic compounds and dyes in excessive amount. In
industrial level, food processing industries, plant treatment industries, paper indus-
tries and several other are included [41]. When organic pollutant undergoes decom-
position process, the dissolved oxygen consumed into water at high ratio than it
might be replenished, which producing depletion of oxygen and causing several
water-based diseases. Organic pollutant with wastewater has high amount of solid
particles which decrease the supply of light to photosynthetic-based organisms, and
it is not good for invertebrates. The organic pollutant is usually phenols, biphenyls,
pesticides, oils, proteins, fertilizer, pharmaceuticals substances, carbohydrates, deter-
gents, plasticizers, greases, and several types of dyes which also called organic dyes
are included. Therefore, organic pollutants are causing many types of environmental
issues, and most commonly named is persistent organic pollutants and abbreviated
as POPs [42]. It is a great concern of today’s time, due to their high toxicity effect,
long-term transport stability and bioaccumulation in living organisms. POPs are basi-
cally carbonaceous compounds and mixture of twelve pollutants, i.e. industry-based
chemicals like dibenzofurans, polychlorinated biphenyls, organochlorine pesticides,
polychlorinated dibenzo-dioxins and dichloro-diphenyl-trichloroethane [43]. When
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Table 2 List of inorganic-based pollutant effect on human body along with tolerance limits

S. No. Inorganic pollutant Tolerance limit (mg/L) Effect on human body References

1 Lead 0.05 It caused high blood
pressure, attention
deficit hyperactivity
disorder, reduced fatal
growth, liver damage

[29]

2 Chromium 0.05 Damage nervous
system

[29]

3 Cadmium 2.00 Cancer, kidney damage,
bone marrow diseases

[30]

4 Copper 0.05 Anamnia, liver damage [29]

5 Zinc 5.00 Nerve disorder, skin
diseases

[31]

6 NH3-N 1.0 ppm [29]

7 Nickel 0.01 Bronchitis problems,
reduced lung function

[32]

8 Iron 0.15 Iron deficiency anaemia
and even death

[33]

9 Mercury 0.01 Protoplasm poising,
nervous system damage

[34]

10 Selenium 0.05 Lower selenium levels
increased risk of heart
disease in human

[35]

11 Sulphides 5 Extremely rapid
unconsciousness and
death

[36]

12 Organo-phosphor
compounds

1 Long-term contact to
organophosphates can
produce the anxiety,
loss of remembrance,
damage appetite,
disorientation, despair
and personality
fluctuations

[29]

13 Chlorinated
hydrocarbons

0.2 Damage central
nervous system, reduce
reproductive, damage
liver, increase kidney
toxicity, and cause
carcinogenicity

[37]

14 Fluorides 15 Caused skeletal
fluorosis

[38]

15 Residual chlorine 1 Caused pulmonary
oedema

[39]
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these all enter in excessive amount to environment by different sources, they damage
the ecosystem and aquatic life. There are many effective and active techniques are
available to remove different types of organic pollutants from wastewater which are
quiet successful techniques like microbial fuel cell, adoration process, coagulations,
ozonation, advance oxidationmethod, ion-exchange process, precipitation technique
and reverse osmosis. Some methods have some drawbacks such as high operational
cost and not easy to handle, but another side, many effective methods are playing
vital role like microbial fuel cell (MFC) method, adsorption, ion-exchange method
and reverse osmosis. Recently, MFC got much attractive interest from scientific
world due to several advantages such as low-cost method, energy production as extra
merit and easy to handle. The ion-exchange method and reverse osmosis are mostly
used, but it is not suitable economically to use at large scale [44]. The adsorption
is also got much attention, and, in this process, solid adsorbents illustrate it most
effective technique for removal of pollutants. It is very simple and easy to handle,
and also, it can work in less budget with no large space required for this operation.
This method entirely depends on the performance of adsorbent and most commonly
and useful is carbon-based adsorbent to treat wastewater which has high properties
in favour of process. Carbonaceous-based material is available easily and at very
low cost, e.g. activated carbon can be obtainable from waste material and employ as
adsorbent [45–47]. The adsorption is successfully used to remove different types of
dyes and carbonaceous material, and its composites are employed to achieve bright
performance as shown in Table 3.

The toxicity of organic compounds and dyes is very dangerous when it is
exceeding the tolerance limit into water which is dangerous for human health.
Qin et al. [63] described that the toxicity effect of organic compounds in fresh-
water. According to results, the toxicity of organic-based chemicals was entirely
depending upon the hydrophobicity factor. A solo typical for mutually non-polar
and polar narcotics was established through polarity inclusion descriptor and also
with hydrophobic parameter. The vastly hydrophobic polarity could be preserved as
non-polar due to their functional group. The small change in polarity greatly influ-
enced the hydrophobicity factor. To examine the toxic mechanism of exploit for
volatile compounds, the response-surface method was utilized to progress model’s
consequent from simply designed descriptors. Benzoic acids are simply absorbed
through unicellular bacteria. Therefore, the presence of these toxic substances in
water affect fishes which need to be eliminated from the water bodies using suitable
techniques [64]. The organic compound and dyes have several bad effects on human
being health and different class of organic pollutant [65].
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Table 3 List of carbon-based adsorbents

S. No. Adsorbent material Adsorption capacity Target analyte References

1 Salix psammophila
activated carbon

225.89 mg/g Methylene blue [48]

2 Bituminous coal-based
activated carbon

580 mg/g Methylene blue [49]

3 Hemidesmus Indicus
carbon

370 ppm Phenol [50]

4 Activated carbon 0.27 mmol/g Reactive blue 2 [51]

5 Coal-based carbon 234.0 mg/g Methylene blue [52]

6 Carbon from Posidonia
oceanica

285.7 mg/g Methylene blue [53]

7 Activated carbon 0.11 mmol/g Reactive yellow 2 [51]

8 Carbon from cotton stalk 180.0 mg/g Methylene blue [54]

9 Carbon from flamboyant
pods

890 mg/g Methylene blue [55]

10 Commercial-activated
carbon

294 ppm Phenol [53]

11 Activated carbon 0.24 mmol/g Reactive red 4 [51]

12 Granular-activated Carbon 74.07 mg/g Phenol [56]

13 Waste tea-activated
carbon

203.34 mg/g Acid blue 25 [57]

14 Mesoporous carbon 428 mg/g Phenol [58]

15 Activated carbon from oil
palm wood

90.9 mg/g Methylene blue [59]

16 Natural clay 15 mg/g Phenol [60]

17 Active carbon 257 mg/g Phenol [58]

18 Activated carbon from oil
palm shell

243.9 mg/g Methylene blue [61]

19 Activated carbon from oil
palm empty fruit bunch

232.56 mg/g 2,4-dichlorophenol [62]

3 Environmental Application of Carbon Composite
Material

The carbon-based material and its derivatives got much attention in environmental
bioremediation because carbon has high-tech properties as well as easily available
at low-cost value. The carbon is one of the materials which are employed almost
in every wastewater treatment. In environmental application, it is called a potential
material to use for keeping stable the environment natural condition. It can serve as
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photocatalyst, as antimicrobial agent, as adsorbent, and many other uses are reported
already. Some common application is summarized in this chapter to enhance its
prolific in scientific world.

3.1 Carbon-Based and Its Derivatives Materials as Sorbents

Various sorbents such as activated carbon, clay, biosorbents have been used for
the removal of different environmental pollutants. Traditional wastewater treatment
depends on physicochemical sorption developments for exclusion of several dyes,
organic compounds, organic-based dyes and inorganic pollutants. Eras of research
have improved our consideration of sorption procedure and enabled the sorbent opti-
mization properties. The sorption measurements of carbon-based sorbents are inad-
equate. The huge dimensions of sorbents also bound their conveyance due to lower
porosity atmospheres and muddle energies in subsurface treatment. Carbon-based
nanosorbents with higher surface area towards bulk ratio, measured pore size circu-
lation and manipulatable surface chemistry stunned several of these essential restric-
tions [66–70]. Therefore, the significant sorption studies through carbonaceousmate-
rials at nanoscale report swift rates of equilibrium, higher adsorption measurements,
efficiency over a comprehensive pH series, constancy with BET, etc. The organic
pollutants, direct sorption at surface of nanomaterial is determined through similar
essential dispersion, hydrophobic and dipolar forces which regulate the energy of
sorption in ordinary systems. The high rate of equilibrium in carbon nanosorbents
is credited to polarizability of π electron or π-π electron/donor/acceptor relations
with aromatic sorbates which condensed adsorption energy of heterogeneity and
no pore diffusion mechanism present in the process of adsorption. This outcome is
achieved by Yang et al. [68–70] associating a diversity of carbon nanoscale sorbents
such as nano C-60(C = carbon) nanoparticles, single wall nanotubes (SWNTs),
C-60, and variable MWNTs (multi-walled nanotubes) dimensions saleability. Addi-
tional benefit to carbon nanosorbents is the simulated by hysteresis absence between
desorption isotherms and adsorption, gasses below distinctive pressure. Improved
distinctive pressure, appropriate in hydrogen storing applications, might be re-
establish hysteresis in a system through decreasing the barrier of energy to seal
non-wetting pores of carbon nanotubes (CNT), and nC-60 aggregates contain intra-
particle region. The non-precise van der Walls connections powerful adsorption to
SWNTs is improved through increasing the interface abilities in schemes with coiled
geometries [71]. The activated carbon conventional applications in term of wastew-
ater remediation are organic pollutants reduction and residual sensitivity. Although
carbon-based nanoscale sorbents are active in these zones, their price and conceivable
toxicity have prohibited wide research in straight and extensive usage for wastewater
handling. Savage and Diallo [72] have planned nanosorbents integration on packed-
bed reactors; however, particulars on efficiency of several small-material immobiliza-
tion approaches have not been accessible. Recently, most investigation on nanosor-
bents environmental applications has targeted the elimination of precise hazardous
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pollutants, i.e. polycyclic aromatic hydrocarbons, trihalomethanes and naphthalene.
Although quick rate of equilibrium and higher sorbent measurements are influential
attributes of nanocarbon sorbents, they are fundamentally developments upon an
existing model. The accurate revolutionary nanosorbents come in various pathways
for fullerene tailoredmanipulation and surface chemistry of nanotube [73]. Carbona-
ceous material like CNTs is considered as a potential sorbents for the treatment of
organic and inorganic pollutants.

3.2 Carbonaceous Materials as Antimicrobial Application

The carbonaceous-basedmaterial is very suitable for environmental application espe-
cially serving as antimicrobial agent. The nano-range size of carbonaceous material
or its composite has carried out significant importance in biological/medical field.
The exclusive and highly valuable properties especially the nano-range dimensions
of carbon allotrope fullerenes and the carbon nanotubes (CNT) have elevated concern
between environmental and toxicologists’ researchers [74]. Although antimicrobial
activities mechanisms are not still fully explored and it is under investigation by
researchers, toxicitymight be depending onphysical, structural and chemical features
such as density, functional group, diameter, surface chemistry, length and remaining
catalyst pollution. There are many investigators are eager to exploit the importance
of antimicrobial properties in term of human health and environmental applications
[75]. Definite nanomaterials might be employed as agent for surface antimicrobial
coatings, laboratory-based microbiology techniques, water disinfection and medical
therapies. The cell membranes are a powerful and unique method in order to control
the pathogen. Membrane disorderly agents are wide-ranging spectra of antibiotics,
and the toxicity mechanism which depends on physical features cannot stimulate
the resistance of antibiotic. Current, Escherichia coli toxicity factor through contact
with single-walled carbon nano-range tubes proposes that disruption of membrane is
an important source of inactivation. Innovative surface antimicrobial coatings which
explored the intrinsic susceptibility of microbes to CNTs may offer well-designed
engineering explanations to interesting problem ofmicrobe’s colonization and devel-
opment of biofilm in freshwater classifications, medicinal implantation strategies
and further submerged surfaces. Effort on toxicity of CNT in the direction of various
microbial groups is continuing [76–81]. Currently, a large number of researchers
are working on antiviral and antimicrobial nanoparticles for applications of water
remediation and circulation systems. The inactivation and elimination of microbes
and viruses depend upon single-walled CNTs hybrid filters as referenced earlier. The
carbon-based nanotubes are also known as scaffolding agents for semiconducting-
based photocatalysts (TiO2) and Ag nanoparticles antimicrobial applications [82].
The nano C-60 and fullerol pathogen deactivation also act as agent to remediation
purpose for wastewater. Fullerol shows good antiviral activities due to the presence
of oxygen molecules which act as superoxide (electron donating molecule) under the
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UV light [83]. In conclusion, even nano C-60 interruptions showed strong antibac-
terial activities to physiologically various microbes concluded as an environmental
condition.

3.3 Environmental Sensing Applications

Environmental experts, environmental engineers and ecological experts face a stim-
ulating issue in their work. Pollutants stated in absorptions of parts-per-trillion are
connected to ecological inferences stated in millions of litres of water, and many
people are affected earlier. The environmental sensing, though, is nanotechnology-
based unique application with possible to bond this variety of scale [84]. Currently,
activities to monitor environment changes via networked sensor systems will notify
prognostic models and form future ecological policy. For example, a cohesive sensor
offers an excellent tool for the treatment of wastewater and makes it drinkable. The
forecasting and scalability at this scale will entail a set of exact and elastic sensors.
The CNT detection devices provide many compensations to present platform sensor
[85]. Functionalized CNTs are considered as a potential material in electrode or
sensor system due to its superior electric conductivity, large surface area, mechanical
toughness, chemical stability and thermal stability. In additional application, collec-
tions of aligned multi-walled CNTs have grown up on substrate which is SiO2 to
act as anodes in sensors ionization for gaseous molecule detection. The high-pitched
orders of nanotubes enable the higher electric arenas at lower voltages, allowing trans-
ferrable, battery-operated and low-scale sensors devices. Exposure happens through
electrical decomposition ofmaterial tailed by cathode process of an exclusive impres-
sion for individually gaseous analyte [86–88]. The introduction of carbon nanowire
into sensors system carried an advancement for sensor zones. The charged species
adsorption to carbon modifies surface of nano conductance, thus starting a source
for association between analyte concentration and current fluctuation. Kong et al.
[89] industrialized the gaseous sensors which showed the high electric resistance
for semiconducting single-walled CNTs altered through the magnitude after contact
to concentrations of NH3 or NO2 at room temperature. The wild reply time, lower
detection bounds and higher sensitivity factors are a meaning of entirely bare carbon
surface area. In order to monitoring or sensing microbial pathogen, biosensor mate-
rial was employed. Some classifications exploit direct accumulation adsorptive of
nucleic acid to carbonaceous material surface as electrode range for electric sensing
of hybridization.

3.4 Membrane Technology Application

The comparative permeability of carbonaceous material and its allotrope has been
employed for gas as well as for liquid-phase partings through using the membrane
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technology. The membrane separation is a vigour effective and modest method of
manufacturing separation which served as fragment of separation of gas and water
purification system. The application of carbon-based composites for separation of
gas-phase, e.g. graphene sheets made porous via a higher intensity heat treatment and
another chemical etching technology. Both methods have been received much atten-
tion in synthesis of graphenemembrane accomplished of separation of gases, albeit at
solitary gaseous molecules and also it not as gaseous mixtures [90]. Theoretic studies
employed for porous graphene membranes for separation of gas which shown the
membrane functionalization and pore network modification which can have substan-
tial effect on presentation of materials [91]. In application in term of separations
of liquid, numerous investigational studies have been shown, predominantly for
water treatment and water desalination. The water highly permeability in structure of
graphene, due to lower friction and exclusive molecular water preparation in pores,
permits the graphene porous membrane to purpose in higher volume applications
like water treatment [92]. The graphene membranes are typically organized in two
conformations in water remediation, i.e. the nonporous-based graphene membranes
and graphene oxide (GO) stacked membranes. In the previous, the ions separation
from water is chiefly done via size elimination and electric contacts with surface
of graphene. The GO stacked membranes also function through exclusion of size
and electrostatic contacts, but it also considered ion adsorption on membrane inner
layers, thus showing high performance in separation developments. In graphene-
based membranes and ion rejection considered the several electrostatic contacts
through the graphene surface contacts, and performance can be changed and adjusted
via functionalized graphene surface [93].Water flux and rate of rejection of dissolved
ions mainly depend on the pore size of graphene-based membrane. The presence of
various functional groups such as oxygen, hydrogen, nitrogen and fluorine is respon-
sible for the rejection of dissolved ions and water flux. Graphene membranes in the
presence of hydroxyl group functionality recover the water penetrability but unable
to find selectivity at higher ionic asset of solution. The pore size control in graphene
membranes is actual significant for unvarying performance. The graphene via chem-
ical etching can be used for this purpose, as it increases the faults and aggregation
which present in pristine graphene sheet [94]. The carbon allotrope graphene got
much attention in field of membrane technology.

4 Conclusion and Future Outlook

Environmental pollution is an emerging issue that disturbs the environment stability
and human survival on earth, by contaminating the water and many other natural
resources. There are two major types of pollutant, i.e. inorganic and organic pollu-
tants, which contaminate the water resources to make unfit for drinking purpose.
In this chapter, both are summarized in detailed, and some significant application
of carbonaceous material is discussed. The carbonaceous material is very unique
material which has many advantageous factors that enhance its value at industrial
level. In terms of practical application, the carbon-basedmaterials and its composites
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have numerous properties such as greater specific surface area, easy functionaliza-
tion as well as high mechanical strength which make it potential material for several
environment-based applications. Many environmental applications of carbon mate-
rial like liquid/gaseous phase adsorption, photocatalysis, membrane filtration are
discussed and have been considered also hypothetically through using computational
chemistry or experimental at nanoscale. It would be valuable assets for environment
experts and engineers to develop as amodern technology. The performance of carbon-
based materials in term of environmental applications is expressively exaggerated
through surface and functionalities features. Theupcoming research andprogresswill
likely be directed through magnificently tune to precise the applications. However,
carbon-based materials are economical as compared to many other polymeric agents
available commercially. Energies in this area are used in emerging ways to yield
the nanocomposites and make the production costs low. Research is also ongoing to
explore the impact on novel functionalities in terms of biological performance. The
carbonaceous material reuse and recovery should make part of investigation which
may reduce the expenses. As presentation of materials in ecological applications is
expressively exaggerated via functionality and surface properties, upcoming research
and growth will depend on these properties for definite applications. While funda-
mental consideration of the exploit of carbon material and composites for antimicro-
bial activities is inadequate to few interpretations from investigational and theoretic
studies, the technology is growing, particularly in the formof antimicrobial nanocom-
posite materials. Efforts in environment areas are required in emerging ways to fabri-
cate highly effective nanocomposites at nano range and reduce the price of material
by using modern technology.
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The Role of Carbon Nanocomposite
Membranes for Water and Wastewater
Treatment

Sapna Raghav, Pallavi Jain, Ritu Painuli, and Dinesh Kumar

Abstract The water pollution is greatest global concerns due to contamination of
environmental factors, which is rising day by day. To remove the pollutants from
the water and wastewater is a challenging task, and the number of adsorbents and
membranes has been synthesized to remove water pollutants. Carbon nanocom-
posite (CNC) membranes have grabbed worldwide attention in the environmental
applications due to its higher adsorption capacity. Advanced CNCs offer certain
good characteristics like improved permeation, enhanced rejection, and reduced
fouling which is beneficial for water contamination removal. The CNC membranes
are improved by physical or chemical modification with various functional groups,
which enhanced the removal or desalination capabilities of themembrane fromwater.
The present chapter offers an inclusive review of functionalized CNC membranes
and their existing and potential applications for contaminant removal fromwater and
its desalination. The application of the CNC membrane showed various advantages
such as antifouling capability, improve water permeability, and high selectivity as
well. In this chapter, we are discussing about cellulose, carbon nanotubes (CNTs),
and graphene-based CNC membranes for contaminant removal from the wastewater
and water.
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Abbreviations

MPD 1-methyl-2-pyrrolidinone
PVF Polyvinylidene fluoride
PES Polyethersulfone
PVA Polyvinyl alcohol
PA Polyamide
TEMPO 2,2,6,6-tetramethyl-1-piperidinyloxy
BKC Benzalkonium chloride
BC Bacterial cellulose
CNC Carbon nanocomposite
CNF Cellulose nanofiller
NPs Nanoparticles
TEMPO 2,2,6,6-tetramethyl-1-piperidinyloxy

1 Introduction

There are a lot ofworries forwater contaminants.Water contaminants are categorized
as inorganic, organic, biological, and chemical, and these are making people aware
of the disastrous consequences. Dyes, pesticides, and heavy metals are the major
pollutants that come from industrial releases. They get in contact with the water
streams and hence deteriorate them. Manually they are thrown away using phys-
ical methods. These include leaching of fertilizers and biocides through agricultural
treatment. They are leeched into underground water networks through rainwater, gas
excretions from industries, and running vehicles.

Water-soluble elements are scattered in parts and are soluble in the stream of
water and cannot be seen through naked eyes. Despite having rules by the government
regarding this, yet there is only partial enforcement done. Logging is one such activity
that plays a major part in water pollution in many countries of the world. To decrease
the number of pollutants in water, a plenty of chemical methods have been implied.
Chemical compounds that include aluminium sulfate, sodium aluminate, sodium
hydroxide, and metals with chlorine are considered best to treat wastewater. This
is because of their quick action methods, and the lower price is another reason to
use them. These chemicals find their usage in many common treatment methods
like water logging, clumping of water, settling of water through gravity, and the
most prevalent, which is the separation of pollutants from water using membrane.
Despite that, the treatment of water with the help of chemicals might raise another
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set of problems. Chemical compounds, when treating the contaminants present in
the water, can change the architecture of the pollutants. Hence, they are known as
chemical intermediates. Reactions that occur among the chemical compounds and
contaminants can cause the formation of end products that are very dangerous toward
marine animals and humans.

So, to cleanse the wastewater has become essential to save the living species and
the biodiversity. Innovations are being done to make new technologies as well as
to make drinkable water which can sustain till longer duration [31]. It should also
be noted that the methods that should be adopted must be cheap, stabilized, and
in harmony with the ecosystem. Many methods have been adopted to treat water.
The separation membrane method is considered one of the best techniques to purify
water and to remove the salinity. The reason is that it induces high efficiency and has
no complex features and uses fewer chemicals. The vital reason to use membrane
technology is the fast modifications being done to it [29, 30]. The main point to
use these membranes is that it can divide the dirt pollutants with the help of the
penetrable pores that it has from the clean water. Also, not all particles get removed,
but selective removal takes place with good mechanical strength [19, 25, 60, 61].

Studies on this method are gaining a lot of importance in industrial as well as an
academic field [21, 73]. The categories of these techniques involve reverse osmosis
(RO), pressure retarded osmosis, gas separation, nanofiltration (NF), ultrafiltration
(UF), microfiltration (MF), pervaporation, and separation by liquid membranes. The
method used depends on the characteristics of the membrane [4, 43, 52, 83, 92,
107]. Several materials from natural to synthetic bio-/polymers have been utilized
to produce membranes for the purification of wastewater and water. For example,
polyamide (PA) [74], polyvinyl alcohol (PVA) [68], polyethersulfone (PES) [62],
carbon nanotubes [111], polyvinylidene fluoride (PVF), and chitosan (CS) [75].

1.1 Evolution of Membrane

To remove foreign particles or pollutants from the water to make it drinkable, RO
is the most prevalent technique known to date. This process can be used with other
techniques to treat water and recycle it. The water produced will be free of any
contaminants present in it [10, 17]. The procedure of RO was first represented by
WF21 in Southern California in 1977. The aim was to recycle the already used
water and make it into a drinkable liquid. The usage was to lessen already present
micropollutants in the water. The water was earlier subject to traditional methods
to clear out lime content, recarbonation, and multimedia filtration. Modern pre-
treatments involve a single-step microfiltration (MF) technique. It is denser and
more systematic for the dismissal of the pollutants [104].

The highly intensified UV light that is subjected to low pressures with hydrogen
peroxide (UV/H2O2) has great use in ensuring enough reduction of micropollu-
tants like N-nitrosodimethylamine (NDMA) that are only partially removed [24].
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The partial removal is done through the membranes in RO. Another treatment tech-
nique MF-RO-UV/H2O2, is also used in more prevalence in water recycle plants that
are movable. An important improvisation is the straight involvement of membrane
bioreactor-107MBRdischarge producedbyRO.TheMBR technique attains a variety
of parts of the bioreactor like biomass separation, and RO pre-treatment. The abate-
ment of ongoing pre-treatment helps to cut down the usage of extra space, energy, and
cost using this MBRmethod. Hence, various plants have adopted this technique [53,
79]. Despite the noticeable improvisations, water recycling is still a major concern
as it is undergoing a lot of setbacks. A report suggested the vital need to supply
high-quality drinkable water with proper details regarding pathogens and micropol-
lutants. Problems like the utilization of a lot of energy, the deterioration of membrane
(smelly), and the collection of disposed of particles are critical and must be checked
[11, 90].

1.2 Problems to Overcome

Expenditure of energy

• New kinds of membrane that use a low energy and the processes that are hybrid.
• New kinds of membranes with inflated permeability and peak refinement.

Polluted membrane

• Usage of antifouling membranes.
• The outline sketch that performs in a better way, and the results are antifouling.

The eviction of micropollutants

• New membranes developed to remove small dirt particles.
• New design for the whole process.

Concentrate disposal

• New kinds of processes that are hybrid.

2 Cellulose Nanocomposite Membranes

Recently, more concentration is given to the usage of cellulose nanomaterials
(CNMs) as they are organically available and are recyclable for themaking of perme-
able membranes. Cellulose nanofibril (CNF) works out to be a good membrane. The
role it plays whether a membrane or filter depends on pore structure. Cellulose-
based membranes or adsorbents with the large surface area have a higher efficiency
to adsorbed pollutants from the wastewater. This is the most important reason they
are used in various recycling processes. Another important issue in these processes
is a biofouling and organic fouling. The capability of the micropollutants to foul the
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membrane is due to their hydrophobic nature alongside their surface functionalization
[66].

The longevity of these celluloses made membranes is also a setback with its main
implementations on water treatment. The greater strength in these nanomaterials is a
contributing factor in the development of highly penetrable structures. The role-play
of the thickness/thinness is very important in the continuous change of water or the
polluted water. The reason is that as the thickness increases, there is a lessening in
the rate flow of particles through the membrane. The cellulose-based membranes
can be developed through four different techniques, i.e., development of bacterial
cellulosemembranes through organicmaterial method, infusion of electro-spunmats
with cellulosematerial, vacuum filtration and coating, and cellulosemembranes. The
ability to retain pollutants by the membrane is measured through dynamic adsorption
methods. This requires the quantitative analysis of the polluted particles adsorbed by
the penetrable membrane only under specified flow requirements. The elimination
of the adsorbate is assumed to be complete only when the size of the nanoparticle is
greater than the pore size in the membrane. The elimination is also possible with the
help of repulsive powers.

2.1 Bacterial Cellulose Membranes

BC is a pure form of cellulose that can be synthesized by somemicroorganisms, such
as acetobacter xylinum and gluconacetobacter xylinus, which are Gram-negative
strains of acetic acid-producing bacteria [42, 51]. During BC synthesis by bacteria,
a pellicle forms on top of the static cultured growth medium. The developed compo-
sition is of a non-toxic and non-allergen cellulose nanofiber complex. This network
has huge tensile strength, alongwith some other features. The features include elastic
nature, resilience, longevity, resilience, retention of shape, and a great capacity to
bind water. The penetrable structure of this tissue formed as a coat matches enough
conditions for membrane filtration. The pores of BC membranes were tested for
the process of filtration of bovine serum albumin (BSA) [103]. These are formed
in a duration of two days of cultivation. Time alongside cell density was the factor
that affected the hydraulic permeability coefficient throughout the formation of the
membrane. When we dry the membrane, a shrinkage is developed, which reduces
the porosity. Wet BC membranes with porosities of 95–97% caused the elimina-
tion of oil from stabilized or non-stabilized emulsions. The droplet size range was
less than a micrometer [36]. The harvesting time increase changes nothing in the
membrane’s porosity. The thin structure causes the BC membrane to show high pure
water flux (845 L/h m2) in a shorter duration of time in contrast to that harvested in
longer durations. The efficiency of elimination of oil from the stable emulsion was
98.3 and 99.3% for non-stable emulsion. The bacterial cellulose membrane could be
improvised to increase the performance and to promote its implementation in water
treatment. Tetra-aminocobalt(II) phthalocyanine was disabled on amembrane of BC,
and NaIO4 oxidized beforehand that to produce-CHO groups to which cobalt(II)
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phthalocyanine-containing –NH2 groups can be joined in a covalent bond. The cova-
lently bonded membrane was checked for the elimination of a dye (X-3B) which is
highly reactive from wastewater. Hydrogen peroxide is added to start the oxidation
process that works with a catalyst. In certain standard constraints of a rate of dye
solution is 6 mL/min, at 50 °C and hydrogen peroxide concentration of 10 mmoL/L,
a fade in color is observed of the catalytic membrane reactor. It was≈50μmol/min g.
Permeable membranes that are derived from bacterial cellulose and GO were made
by the diffusion of these membranes into the BC formamide gel [20]. The membrane
produced represents comprehensible permeation characteristics for varied inorganic
and organic ions. The size of these ions also varies. The membranes, that were not
dried ever, were glazedwith deacetylated chitin sulfonate and utilized as amembrane
for separation. The removal was obtained around 85–90% as output for polyethylene
glycol (PEG).

2.2 Insertion of Electrically Spun Mats

The above technique had its usage for cellulose nanocrystals that were made by a
system that was oxidized in an aqueous state. It was derived on 2,2,6,6-tetramethyl-
1-piperidinyloxy)-mediated oxidization (TEMPO)/NaBr/NaClO diffused into
poly(acrylonitrile) (PAN) nanofibrous structure which is made by electrical spin-
ning. It is held using support in the form of a substrate which is not woven, ethylene
terephthalate [64]. The size of the pore of this many-layered nanofibrous microfil-
tration system can be customized with the help of cellulose nanocrystals content. A
complete retaining ability hostile to bacteria was observed after experiments. It is
also noticed that the usage of negatively charged cellulose nanocrystals is not much
successful in eliminating viruses with the process of adsorption [96].

After the process of cellulose nanofibril infusion, it was noticed that the pore size
was reduced from 0.66 to 0.38 micrometers, and the rate of permeation of pure water
was reduced. The membrane has the capacity to eliminate the bacteria Escherichia
coli (E. coli). The process involved was the exclusion of the size of the membrane.
Because of this, a log reduction value was reached, which was of magnitude. Cellu-
lose nanofibril oxidized by cellulose nanofibril inserted with cysteine to enhance the
ability, to adsorb of the metal ions contaminant and then pervaded with a PAN setting
electrically spun onto a complex PET holder [108, 109].

In contrast to this membrane, a changed and improvised adsorption of 60 and
115 mg/g for Cr(VI) and Pb(II) was noticed, respectively, because of –SH function-
alized cellulose nanofibril. A very close technique was utilized to make membranes
based on biochemistry derived from cellulose acetate (CA). These membranes
were having a coating of HCl-prepared chitin nanocrystals to get filtration of
water membranes with customized surface properties. Membranes that have high
hydrophilic nature alongside a very great change in the rate of flow of water were
produced. Natural membranes culminated exclusion of size, adsorption, and highly
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hydrophilic nature were produced by pervading cellulose nanocrystals onto electri-
cally spun CA fiber networks [28]. The change in a flow rate of water through the
membraneswas of amagnitude of 22,000L/m2 h and the nanocrystal networkwhen it
became continual, then themagnitude decreased. The contact angle also reduces from
102° to 0° after cellulose nanocrystals were coated onto it, thus showing enhanced
hydrophilic nature and antifouling of these membrane entities that are hydrophobic.
Coating of spray is also proven to be a good approach to produce a lesser thick
and consistent barrier layer on the substrate that is electrically spun derived on the
gelation nature of 2,2,6,6-tetramethyl-1-piperidinyloxy-mediated oxidized cellulose
nanofibril suspension by low pH value [102]. The direct spinning of the cellulose
substitute, electrically, is difficult and needs a lot of chemical demands. The nanofi-
brous membrane was made by the deacetylation of an electrically spun substrate of
cellulose acetate membrane [113]. Good resistance insolvent and high air filtration
efficacy were observed.

2.3 Filtration in Vacuum

It is an easy, quick, attainable, and simple process used to generate layered structures
of membranes derived from nanocellulose and nano-papers lead by the optimized hot
pressing. Membranes hydrophilic and oleophobic that were used under waters were
made from tunic in cellulose nanocrystals in assistancewith vacuumbyfiltration onto
a nylonfiltermembrane [13].Developedmembrane showed efficiency for the dissoci-
ation of oily water, i.e., water-in-oil emulsions or oil in water. For isooctane-in-water
nanoemulsion, very high performance in regard to dissociation was obtained, and
the rate water flow was changed as well. The efficiency of separation was 100%, and
the rate of water flow was greater than 1700 L/m2h bar. Nano-papers that were made
using BC, cellulose nanofibril, TEMPO-oxidized cellulose nanofillers, and cellulose
nanocrystals that played the role of rawmaterial through a papermaking process were
used in nanofiltration implementations for organic solvents in wastewater [70]. The
pore size of the nanopapers that were prepared played a very important role in the
ultrafiltration efficiency and that the ability to penetrate the particles is determined by
its grammage. Solvent stable nanofiltration membranes that were made of TEMPO-
oxidized cellulose nanofibril also presented that their permeable capacity depends
on the hydrophilic nature of the solvent [69]. Ultrasonicated Cladophora cellulose
that was basically aqueous suspensions was separated from the pollutants to prepare
membranes that had customizable pore size scattering that was suited for removal of
virus [57]. Virus particle removal ability was demonstrated, and it was grounded on
the principle of size exclusion with a reduction value higher than 6.3. The proof of
excellent functioning was checked regarding the xenotropic murine leukemia virus
particles [5]. An efficiency repossession higher than 99%was seen for lysozyme and
bovine serum albumin [33]. The pore size distribution of nanopapers retentive of
viruses can also be customized in 10–25 nm range by governing water evaporation
rate through the hot-press drying step that comes after the vacuum filtration process
[34]. A change in the evaporation rate causes broad particle dispersal and large pore
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size. The properties like wet strength were improvised of the Cladophora cellulose
membrane. It was done with the help of crosslinking citric acid, thus helping in the
increase of pressure gradient without causing any negative change in its integrity
[80].

The cellulose surface chemistry may be customized to govern the sorption
conduct. Anion removalmembraneswere producedwith the help of vacuumfiltration
of cellulose nanofibril cations with a grammage of 30 g/m2. This insertion of cations
further enhanced the permeable behavior of the membrane to unchanged cellulose
nanofibril. Phosphorylated cellulose nanofibril nano-papers were also produced for
industrial uses via a paper making process [71]. The modified nanopapers presented
lesser permeability in contrast to that of unchanged cellulose nanofibril nano-
papers but showed the ability to adsorb copper ions. The phosphate groups present
on the surface of the nano-paper were contributed higher to the total adsorption
compared to the other functional groups presentwithin the nanopaper. Cuterpyridine-
modified oxidized cellulose nanofibril membranes were made and used to purify the
wastewater of the paper industry [37].

The chemical variation of TEMPO/CNF with the coating of Cu/Tpy with the help
of an equimolar ratio was assumed to give a five-coordinate complex. The removal
efficiency of TEMPO/CNF was found around 93%, and TEMPO/CNF/Cu/Tpy was
around 96%, respectively, for the particles suspended in the wastewater. When it
comes to electrically spun membranes, a coat of a helping membrane with cellulose
materials can be examined. A good deal of layered cellulose nanocrystalsmembranes
were manufactured by vacuum filtration of cellulose nanofibril suspensions ensued
by dip coating with sulfated or carboxylated cellulose nanocrystals [45, 48]. The
coated layer of cellulose nanocrystals on the membrane enhanced the thickness and
mechanical properties. The treatment of acetone on this membrane was done before
drying it up.Dryingminimized the inter-chain hydrogen bonding andhence enhanced
the pore size up to 194 Å from 74 Å, which caused the high increase in water flux.
Removal efficacy of Fe3+/Fe2+, Ag+, and Cu2+ ions was observed in both cross-flow
as well as static mode, and it was proven that the dip-coated cellulose nanocrystals
layer improvised the elimination of the metal ion. The flux values were lower despite
the high rejection rates and enhanced flux obtained after acetone treatment for real
implementations. Vacuum filtration developed the ultrafiltration membranes of high
porosity on aPVDF support layer of 2,3-dicarboxylic acid cellulose nanofibril. These
membranes were having rejection efficiencies of 74–80% that were considered high
for aqueous dextran [93]. To prepare cellulose nanofibril nanoporous membranes of
thickness controlled by the producer, the direct filtration method was used. It was
done on a microporous cellulose acetate support. The membranes decolorized the
methyl blue present in the aqueous solutions. The vacuum filtration technique was
deployed to prepare cellulose nanofibril and its functional layer. This layer is made
up of TEMPO-oxidized cellulose nanocrystals and gelatin. There was an effective
enhancement in the adsorption efficiencies [46, 85].
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2.4 Composite Membranes

The composite membranes were derived from nanomaterials made of cellulose can
be manufactured to enhance a good command over the characteristics of filtration.
Membranes consisting of 2,2,6,6-tetramethyl-1-piperidinyloxy-oxidized cellulose
nanofibril and cellulose triacetate were made by molding from NMP mixtures [22,
50]. Improvised flux and increased performance in antifouling were obtained due
to the hydrophilic nature of surface occurring due to TEMPO-oxidized cellulose
nanofibril. A combination of manually scattered Cladophora cellulose, cellulose
nanofibril, and pyrrole was filtered with the help of FeCl3 to produce the pyrrole
polymerization. The diffusion of solute between the composite membranes was seen
to be quicker because of the lesser complete porosity and greater occurrence of pores,
which were narrow for the latter. The flux was proportional to the pore size, which
increased with the increase in pore size, and the ion extraction occurred because of
the externally applied electric current. It was also observed that the elimination of
minute uremic toxins was better and effective.

Improvised clotting characteristics were seen when putting a coating of the stable.
The composite showed better compatibility between biological compounds and
inflammable properties. The substantial cleansing was essential to eliminate dirt
particles and reactive elements present inside the water. This was done to procure
a toxic-free material. The suction force generated to pull out composite suspended
particles, including cellulose nanofibril, polyamide-amine-epichlorohydrin (PAE),
and SiNPs to create membranes [91]. The membranes obtained had a high amount
of flux, but the rejection values obtained were less because of the huge size of the
pores. Including silica NPs that played the role of spacers permitted the governance
of the pore size of the membrane. PAEs played the role of improvising the adhe-
sion among the negatively charged NPs and the cellulose nanofibril along with the
moist strength of the membrane. It is also said that the membranes that are already
used can no longer be used again or recycled. But it is known that the traditional
recycling process of paper to dispose of it. The membrane comprises a layer of
support which is formed of cellulose nanofibers. These layers provide manual stabi-
lization and are having a coating of phosphorylated cellulose nanocrystals-gelatin
[45, 48]. Microporous membranes were obtained through dry freezing of sulfated
cellulose nanocrystals, and chitosan ensued by pressing. These membranes were
stabilized with the method of crosslinking with vapors of glutaraldehyde [47]. The
membranes eliminated the dyes. This occurred because of the electrostatic attraction
that was present between minus charged cellulose nanocrystals and the plus-charged
dyes [106]. The coating of cellulose nanofibril has a structure which is mesoporous.
The membrane has hydrophilic and oleophobic properties due to the mesoporous
structure.
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3 CNT Membranes

Many scientific implementations in which many excellent innovative methods have
been used for the elimination of liquid pollutants with the help of CNTs membranes.
These are being revised, and additional reasons are added in reference to how they
will move for future researches.

3.1 Removal of Inorganic Contaminants

Studies have used functional-CNT (f-CNTs) membranes (for the elimination of inor-
ganic particles, like heavy metals from watery solvents). The adsorption capacity is
high because of the substantial specific area, the favorably penetrable, and a pipe
structure that is hollow. The presence of functional groups on the surface of f-CNTs
and other suitable associations among watery pollutants and f-CNTs [112].

Because of all these characteristics, the culmination of f-CNTs into membranes
made of polymers substantially increases the elimination of metal ions that are heavy
and arsenic onto CNTmembranes with the help of adsorption. This process is under-
gone at four suitable sites on CNTs that include in internal sites, channels that are
interstitial, grooves, and surfaces present outside. In the internal area, adsorption
is less in nanotubes [39, 40]. The heavy metals adsorption onto f-CNTs is because
of the appearance of a variety of positions available for sorption on the surfaces of
f-CNTs for heavy metals to get attached.

Usman et al. suggested that zinc ion adsorption is high in the plasma-functioned
CNT membrane because of the greater percentage of oxygen groups obtainable for
the attachment of the Zn2+, and thus, the removal of protons in the functional groups
on CNT surfaces enhanced the positions for binding for the erasure of the cations
because of the complexation of the surface. The capacity of adsorption is high in these
CNTs compared to that in pristine CNTs. The high adsorption of f-CNTs is due to
the electrostatic relationship among the negatively charged CNT and the divalent
metal ions [89]. Owing to the addition of proton/removal of the proton of f-CNTs,
solution pH is very crucial in the adsorption of metal ions by f-CNTs membrane.

Generally, the effectiveness of cations is greater toward the pH values because
of the high electron-rich densities on the f-CNT layer. However, the efficiency in
removing is not effective because of the proton added by the functional groups on
the CNT.

Vuković et al. studied on the elimination of CD groups from the watery solvent by
multi-walled CNT materials functioning by oxidizing ethylenediamine. The rivalry
between positive and negative ions on the surfaces of the CNT highly affects the
eliminationofmetal ions [94]. For example, the lead adsorptionon f-CNTs is essential
in the governance of sodium dodecylbenzene sulfonate because of the production of
complex compounds, whereas the lead adsorption reduces rapidly in the existence of
BKC because of the combative adsorption. Further, involvement procedures among
f-CNT materials and metal ions that are heavy are varied because of the presence
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of various positive as well as negative charges [56]. The adsorption of Cr(III) on
nitrogen-doped magnetic CNTs was because of chemical adsorption, whereas on the
acid-modified CNTs, the adsorption mechanism is because of the associations that
are electrostatic between f-CNT materials and Cr(III). It is known that the specific
area of the f-CNTs is present to adsorb pollutants that are inorganic enhances with
a reduction in the carbon’s diameter nanotube. But this effect depends on the heavy
metal ions adsorption capacity via f-CNTs is not suggested by any study. The metal
ions adsorption on f-CNTs is affected by the interactive functional groups present
and not on the size of the nanotubes [76].

3.2 Removal of Organic Contaminants

There are a lot of pollutants insidewater are in the formof either particles or dissolved
materials. The molecular weight dispensation is very broad because of the decompo-
sition of animal or plants, and the activities of humans [84, 87]. Organic elements in
water are categorized as components that arewater-loving andwater-hating have their
basis on their attractive nature toward non-ionic resins or paedogenic and aquagenic.

There are a lot of varieties of organics that are excreted by human processes.
These contaminants cause a lot of health problems and thus become major concerns
to remove from water using membrane. As we know, there are a lot of membranes
using low-pressure methods. The tendency to remove the organics dissolved in water
is less [54, 55]. It is very essential to develop highly permeable f-CNT membranes
which are customizable to eliminate themicropollutants fromwater.Many researches
have shown that f-CNTmembranes use the process of adsorptive filtration for micro-
organic materials that are dissolute and depth filtration for organic colloids. Wang
suggested the elimination of PPCP by CNT nanocomposite membrane and received
95% of the elimination of particles by enhancing the aromatic rings and SSA [95,
97]. Other studies have shown that f-CNT has an adsorption attraction which is
very high toward various organic micropollutants. The elimination process of f-CNT
membranes toward the micropollutants is happening because of H-bonding, Van der
Waals forces, π-π interactions, and chemical adsorption among the f-CNTmaterials
and organic matters. A very same process occurs when pH values enhance which
increases the electrostatic repulsion across CNT and natural organic matter. There-
fore, the pi–pi interactions cause the elimination of natural matter through f-CNTs.
Just like inorganic pollutants, there is a huge race between varied organic chemicals
in water that may be seen on the CNT surfaces which declines the adsorption of
natural organic contaminants [18, 99]. Therefore, customizing the surface properties
of CNT for selectively adsorbing organic matter is a vital research task for impro-
vised water treatment. Also, the pre-treatment of water is also a way that can remove
this challenge.
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3.3 Removal of Microorganisms

Pathogens are found in water that we drink and the micropollutants like bacteria,
viruses and protozoa are present in wastewater. Earlier studies have suggested that
nanotubes can deactivate or eliminate a variety of small organisms like bacteria,
protozoa, and viruses. Kang reported that SWCNTs successfully inactivated E. coli
[44]. Thiswas done by penetrating the nanotubes into the cell walls. It is also seen that
more advanced nanotubes have a better capability than pristineCNTs andmembranes
made of polymer to destruct the cell walls of the microbes. The direct involvement
of microbes with f-CNTs critically affects cell wall integrity and the whole archi-
tecture of bacteria. The highly inactive efficacy of bacteria by carbon nanotubes is
characterized due to the insertion into the cell walls. CNT membranes consisting of
AgNPs can increase the capacity of membrane to make the bacteria inactive.

4 Graphene-Based CNC Membranes

MWCNTs are economically cheaper than graphene, though there have been various
suggestions of several wet chemicalmethods that can produce affordable price. Exfo-
liation using electrochemistry,milling through ball, and high shearmixtures are some
wet chemical methods that can reduce the pricing of graphene [1]. An increase in
the number of researchers that have suggested techniques that increases the bene-
fits of graphene like mechanical stripping, chemical stripping, epitaxial growth, and
hot solvent. Graphene Oxide has a structure which has alternating layers made of
different materials, and the thickness is around 1–30 μm , and around its planes and
edges, it bears functional groups which have lots of oxygen (carboxyl and hydroxyl).
Owing to these oxygen-rich functional groups, the structure of Graphene Oxide has
a supremely complex structure. Groups that comprise oxygen are affected by the
chemical reactions and are deployed for themodification of surface of graphite oxide.
Staudenmaier continued the oxidization process with the help of KClO3, HNO3, and
H2SO4 by inserting them in the system. Hummer’s technique is utilized the all-out
as it is fast and reliable. After competence of oxidation reaction, graphite powder is
sent for mining to get brown oxidised graphite. Graphite oxidised can be produced
with the help of high shear or ultrasonic fierce turbulent peeling. Various scientists
have modified this [8, 15, 67]. Substitute methods are yet in the development phase,
such as ionic liquid supplementary electronic peeling [63], potassium ferrate [78],
sealed oxidation [7], and other new methods, which provide various improvisations
to GO oxidation in terms of rate, reliability, and lesser ecological effects.
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4.1 Graphene Film

A team of researchers once engaged atmospheric oxygen at a high temperature for
manufacturing GOs having nanopores. They manually peeled graphene and placed
them in a pipe of mullite which had gas inlets and outlets, placed pipe in a tubular kiln
at a specified temperature and proceeded a mixture of Ar and O2 over it. Nanopores
may occur by governance of the flow rate ofAr at 1.1L/min and oxygen at 0.86L/min.
This helped in the construction of graphene which is porous. Fischbein developed
nanopores by means of the electron beam which is focused and does the irradiation.
The dimensions of the pores can vary between 0.2 nm and nanometers ranging in
magnitude of tens. When this method creates pores, the structure is not changed
during passing of time and the existence of these structures does not create abrupt
barriers on the architecture of the material. It is seen that when graphene is made
through a way that includes a TEM; it means only a minute amount of graphene
can be customised and because of this reason, a lot of setbacks arise for industrial
implementations.

Bell insertedHe andGa ion rays to strikeGraphene, thusmaking pores of diameter
20 nm [9]. Russo insertedAr ions as alternatives to obtainmodified results. The diam-
eter of these ions ranged from 0.15 nm to 1.35 nm [81]. There are a different method
that involves the usage of hydrogen plasma etching [6, 105], ozone/ultraviolet light
irradiation oxidation and catalyzed oxidation of gold [14, 27, 38, 49]. Yang devised
the plasma-etching method for etching of graphene [110]. Zhao invented a graphene
nano-foam, which had a pored layered structure that involves auto assembling of the
graphite oxide hydrothermally etching it in the native positions or sites [114].

4.2 Graphene Oxide Membranes

Graphene oxide separation membranes can be manufactured in a lot of ways. Some
of them are like assembly generated through the electric field, self-assembly, evap-
oration, coating, and filtration. These processes employ the graphene oxide being
scattered between a penetrable membrane used for a substrate. It can be under pres-
sure or in a vacuum [12, 88, 95, 97, 98, 100, 101] after that it is dried and filtered and
is subjugated to various other procedures which finally produced a membrane that
has pores in it. Han et al. produced a multi-walled nanotube-intercalated graphene
membrane [35]. The scattered graphene grains and CNT undergo filtration in vacuity.
The grains are inside a polyvinylidene fluoride (PVDF) UF, which produced the
graphene CNT. This method is used to prepare graphene oxide films. The depth of
the film varies from nanometers tomicrons. The interface between the layers is weak;
hence, the stability is not good. The coating can be that of a cloth, spin, or spray.
Spin is the most prevalent method for coating. In markets, there is a huge need for
the graphene oxide sheets that are self-assembled. A novel nanofiltration membrane
is developed by placing a coat of ethanol gel on the surface of poly (acrylonitrile)
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ultrafiltration membrane [86]. Graphene oxide film’s production is done by the evap-
oration method, and the interface involved is that between the two states, liquid and
gas. The more the width of the interface, the easier it is to prepare a transverse-sized
membrane.

Yang devised GO in a solution that is more intense, around 2 mg/mL. This was
done with the help of evaporation, which eliminated the solvent and hence produced
a surface that held the film that is self-assembled [108, 109]. These films were at a
peak in the adhesive group, carboxyl, along with hydroxyl groups insert layer-by-
layer (LBL) auto-assembly. The surface of the GO is it held carboxyl groups; then, a
negative charge was created for the groups that were dispersed onto the water. This
showed that the self-assembly film that was produced was workable.

5 Applications

The CNC membranes have a variety of applications to treat wastewater, such as
the dye, inorganic ions, organic waste, nanoparticle removal, and in desalination of
salted water (Fig. 1).

Fig. 1 Application of CNC membranes for wastewater treatment
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Table 1 List of CNCs membranes for NPs removal

Membrane Type of nanoparticle
removed

Qe or %Removal
(%R) Adsorption
capacity (Qe)

Reference

Caron nanofiber NF Gold nanoparticles having
25 nm

[59]

Porous nanocrystalline
silicon (npc) NF

Gold nanoparticles having
15 nm diameter

[26]

PVA NF nanofiller Gold nanoparticles [16]

Cellulosic nanofiller with
0.5% wt chitosan

Gold and silver nanoparticles 13.1 and 17.9 mg/g [65]

PES/polyvinylpyrrolidone
NF

nC60 NPs >99.99% [23]

Cellulose nanofibre
(CNF)/PVDF
Modified CNF/PVDF

Fe2SO4 NPs 2.498 and
3.984 mg/g

[32]

Gum Karaya/PVA nanofiber Pt, Ag, Au, CuO, Fe3O4 90, 89.4, 84,62,
52.9%

[77]

5.1 Nanoparticle Removal

The CNC membranes have recently been utilized for the removal of toxic NPs from
the wastewater and water. The removal of NPs depends upon the pore size of the
membranes. The literature survey shows that the membranes process is best suited
for the removal of NPs. To enhance the removal efficiency of NPs from water by
using a membrane technique, a coupling of other treatment methods helps such as
pre- and post-treatment by sedimentation and coagulation. Some CNCs are listed in
Table 1.

5.2 Natural Organic Matter Removal

The wastewater comprises natural waste, including natural organic matters which
are produced from different sources. These consist of polar and non-polar functional
groups. These natural organicmatters have negative aesthetic effects onwater, such as
taste, color, and odor. Due to natural organic matter in the water, the process of water
purification is tedious. During filtrations, natural organic matters create fouling of
membranes, which cause a severe effect on the water purification. There are several
factors responsible for the removal efficiency of natural organic matters by using
CNC membranes such its porosity, morphology, pore size, surface chemistry. Some
of CNC membranes are shown in Table 2 for the removal of natural organic matters.
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Table 2 List of CNCs membranes for organic waste removal

Membrane Removal of organic
contaminant

%R or Qe Reference

MWCNT/PVB Humic acid 97.7–94.7% [95, 97, 98, 100, 101]

f-MWCNT/PANI/PES River Humic acid 80% [54, 55]

CNT/PVDF UF Humic acid 80–100% [3]

TiO2 NPs/PES Humic Acid degradation
activity

[57, 58]

Graphene oxide/TiO2
NPs/PES

10 ppm Humic Acid 99%

TiO2 NPs/MWCNTs 2–700 ppm Humic Acid [19]

ZnO/PES Humic Acid 97.98% [2]

DBA/PES
GA/PES

Humic Acid 61–81%
61–86%

[72]

5.2.1 Dye Removal

In the wastewater, a number of dyes are present such as congo red, methyl blue, acid
black, methyl orange, and direct red, which are harmful to human health. Several
CNC membranes were synthesized to eliminate these dyes from the wastewater and
water. Some examples are shown in Table 3. The CNC membranes showed good
adsorption capability to remove these dyes from the water, and the process is at an

Table 3 List of CNCs membranes for dyes removal

Membrane Dye %R or Qe Reference

Polypropylene/PVA Brilliant green,
crystal violet,
victoria blue B

99.8, 99.2,
99.8%

[115]

PES/O-carbomethyl chitosan
(0.1, 0.5, 1 wt%)

Direct red 99, 99,
98.5%

[116]

PES, PES/TiO2, PES/GO/TiO2 Reactive blue 61.4, 73.5,
81.4%

[82]

HNTs-poly (NASS)/PES Reactive red 48
and reactive black
5

95, 96% [41]

Sulfonated HNTs/PES Reactive red 48
and reactive black
5

[95, 97, 98, 100, 101]

Chitosan-montmorillonite/PES
NF

Reactive red 48
and reactive black
5
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optimal cost. The main mechanism of removal of dye is the electrostatic interactions
between the functional groups of membranes and the dyes.

5.3 Conclusion

The NMs based desalination and water treatment technology development is an
evolving field to provide safe and accessible water around the globe. The CNCs
have attracted more, among all, for membrane development owing to its sieving and
intrinsic adsorption capabilities, which helps in the removal of contaminants from
water. Hence, in these days, the CNC membranes are in demand for wastewater
treatment. The NMs used in CNCs have shown a wide range of applications for
oil/water emulsion separation, desalination, NOM, and dye removal. Yet, there are
lots of GO-based nanocompositemembranes, andCNTs are still in the R andD stage.
It is estimated that the constant enhancements inmembrane performance, such as ease
in the synthesis and functionalization of GO andCNTs, may enhance the commercial
market. But, to make it cost-effective and improve their commercial production with
long-term stability, further research is desired for the effective production of CNC
membranes. Several problems related to CNCmembranes are still there, which need
to be solved, and despite the lots of attempts made for the functionalization of CNC
membranes, there is still a vast space left for the improvement of CNC membranes
for desalination and water treatment.
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Environmental Monitoring by Removing
Air Pollutants Using Nanocomposites
Materials

Rekha Sharma, Sapna, and Dinesh Kumar

Abstract This chapter provides an outline of the submission of nanocomposites in
ecological monitoring. For the effective removal of biological pollutants and contam-
inants, nanocomposites propose the potential in ecological remediation. Nanomate-
rials use for the recognition and elimination of polluted chemicals (heavy metals,
manganese, arsenic, nitrate, iron, etc.), organic pollutants (aromatic and aliphatic
hydrocarbons), gases (CO, NOx, SO2, etc.), and biological substances, for example,
antibiotics, parasites, bacteria, and viruses, as catalysts and adsorbents in several
morphologies/shapes, i.e., nanotubes, NPs, nanofibers, nanowires, etc. In contrast
to other conventional techniques, nanomaterials display improved performance in
environmental remediation because of their associated high reactivity, and surface-
to-volume ratio (surface area). This chapter focuses on the development of novel
nanoscale materials and their current advances and methods for the monitoring of air
quality polluted by toxic gases, volatile organic compounds (VOCs), radionuclides,
inorganic and organic solutes, viruses, and bacteria. For the handling or monitoring
of contaminants and toxins, current advances in the submission of nanocomposite
materials are likewise deliberated. Future prospects and research trends are fleetingly
deliberated.
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Abbreviations

SPR Surface plasma resonance
LOD Limit of detection
VOCs Volatile organic compounds
Nano-PM Nano particulate matter
MOF Metal–organic framework
LC-MS Liquid chromatography mass spectrometry
DFT Density functional theory
MNP-NF Magnetic nanoparticle-decorated nanofiber
ppb Parts-per-billion
NPs Nanoparticles
0-D Zero-dimensional
2-D Two-dimensional
3-D Three-dimensional
CDs/CdS/GCN Carbon quantum dots/CdS quantum dots/g-C3N4

1 Introduction

By producing hazardous wastes and poisonous smoke and gas fumes discharged to
the environment, the fast pace of industrial development and the ensuing by-products
have affected the environment [42]. Conventional methods such as biological oxida-
tion, adsorption, incineration, and chemical oxidation have been utilized to treat all
forms of toxic and organic waste. For the removal of organic toxic waste material,
the supercritical water oxidation (SCWO) has been anticipated as a capable method,
because of its capability to abolish a huge variation of high-risk wastes ensuing
from multifaceted manufacturing biological processing and munitions demilitariza-
tion. The high surface area to the mass ratio of nanomaterials can greatly improve
the adsorption capacities of sorbent materials. At a similar density, as the thickness
shrinks, the surface area of the nanocomposite material grows exponentially because
of its reduced size. Because of their minor size, the entire capacity could be rapidly
skimmed with trivial quantities of nanomaterials because the movement of nanoma-
terials is high in solution. Owing to their large radii and condensed size, the surface
of nanomaterials is specifically sensitive primarily because of the high concentra-
tion at the vortices, edges, and surface of low-coordinated atoms. These inimitable
possessions could be functional for scavenging and degrading pollutants in the air
[40]. In the treatment of air, the several forms/morphologies/shapes of nanomaterials
have an important impression. Many engineered and natural nanomaterials likewise
used to consume robust air cleaning properties, counting photocatalytic TiO2, silver
NPs (AgNPs), carbon nanotubes (CNTs), and chitosan [10, 34, 35]. Nanomaterials
partake improved photocatalytic and redox possessions [52]. The methods utilized
for manufacturing nanomaterials are (1) vacuum evaporation or chemical or physical
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vapor deposition; (2) gas-phase synthesis techniques, for example, electro explo-
sion, plasma synthesis, flame pyrolysis, and laser ablation; (3) mechanical alloying,
milling, and grinding methods (4) sol-gel chemical synthesis methods; and (5)
microwave-assisted methods or incineration approaches or delamination of layered
materials. With the aim to remove the interaction amongst the biological substances
and nanomaterials, to advance optical and surface possessions; and to avoid aggre-
gation, the functionalization process by chemical modification or a coating method
applies to nanomaterials. For instance, doping by a suitable dopant that principals
to its competence to absorb light in the visible range may cause a red-shift in the
band-gap of TiO2 and advance the photocatalytic activity [21]. The assimilation of
NPs principals to an improvement of the optical, electrical, and mechanical proper-
ties into polymeric nanocomposites. Through collecting NPs on porous membranes
or amalgamation them with inorganic or polymeric membranes [23, 47], NP-based
membranes could be made-up [4]. These properties, for example, the hydrophilicity
of the surface, porosity, electronegativity, electropositivity, and surface catalytic
properties, provide several changes for the developments to membrane surfaces or
membranes using nanomaterials. The combined nanoporous materials which could
avoid the passageway of variousmicroorganisms and contaminants via themembrane
because of the probable size grading. Nanofibers have the competence to trick much
smaller contaminants and could likewise deliver an improved filtration with a much
smaller porosity. Compared to other conventional filter materials, the inner surface
areas of nanofibers are considerably advanced. Additionally, nanofibrous materials
could permit high flow rates and have unified open pore structures. This chapter
summarizes the submission of nanocomposite materials in the decontamination of
air polluted with greenhouse gases, contaminant detection and removal, inorganic
and organic solutes, viruses and bacteria, and their recital in ecological treatment,
disinfectant manufacture and so on. The removal of air pollutants using mainly the
adsorption technique is shown in Fig. 1.

1.1 Air Pollution

The occurrence of undesirable gaseous or solid particles in the air in high quantities
causes air pollution toxic towards the environment and human health. It can also
be clear that the particulate substance in the air is harmful to living beings known
as air pollutants. Pollutants are the particulate matter or gaseous forms produced
through several sources by natural events. These are termed as key contaminants, for
example, outbreaks of different human and volcanic activities and dust storms, etc.
The pollutants like NOx, VOCs, carbon oxides (CO2 and CO), suspended particulate
matter, and SO2 are themain contaminants that contribute 90%of global air pollution.
To harvest subordinate contaminants, for example, carbonic acid, sulfuric acid, acid
rain, and nitric acid, the contaminants react amongst individuals that are fashioned
in the atmosphere. Particulate material could be anthropogenic for example cement,
mineral dust, fibers, asbestos dust, fly ash smoke particles from fires, metal dust,
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Fig. 1 Adsorption of air pollutants using nanomaterials through adsorption technique

etc., and natural materials, for example, pollen grains, spores, dust, bacteria, viruses,
algae and, fungi [5–7].

2 Remediation of Air Pollutants

2.1 Reduction of NOx

After the burning of fossil fuels, the production of NOx partakes a serious effect on
the environment [49]. Approximately 90% of NOx produced by nitric oxide (NO) via
coal incineration in the flue gas. NO attained form nitric acid as soon as combined
with a vapor ofwater in the hazes are the principal causes for acid rain. In the presence
of air, because of the thermal incineration method of the O2 and N2, NOx pollutants
are formed. NOx grounds ensuing ecological destruction by the participation in smog
production via a hydrocarbon reaction. Staged rich incineration shaped from bound
nitrogen could regulate NOx [44]. Numerous conceivable incineration alterations,
together with over-fire, air, lowNOx burners, steam or water injection, and, reburning
could considerably lower NOx production thermally. To eliminate 30–60% NOx, the
direct inoculation of urea or ammonia into the exhaust gas or flue is correspondingly
utilized.

For the control of indoor air pollution, the development of a practical and effective
approach is vital to the photocatalytic conversion mechanism of NO. Lu et al. [32],
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hydrothermally synthesizedBi2Sn2O7 nanocrystallinematerial for the photocatalytic
removal of NO using stannic chloride pentahydrate and bismuth citrate as precursors.
The performancewas evaluated underneath the virtual solar light irradiation of the as-
prepared Bi2Sn2O7 samples in a continuous reactor using photocatalytic degradation
of NO. Owing to its enhanced optical absorption capability, smaller particle size, fast
diffusion/separation rates of the photogenerated charge carriers, and high specific
surface area, the Bi2Sn2O7 sample manufactured for BSO-12 (12 h) showed 37% of
removal rate for NO which is higher in contrast to Bi2Sn2O7 samples manufactured
for BSO-24 (24 h) and BSO-36 (36 h) which confirms that Bi2Sn2O7 is a promising
photocatalyst for indoor air decontamination [32].

To allow charge separation, state, lead-containing, and TiO2-based perovskite-
type photocatalysts display superiority owing to the structural noncentrosymmetric
in both ferroelectricity and stability. With the aim of maximizing the efficacy of the
ensuing redox reactions, Hailili et al. [16], synthesized Pb2Bi4Ti5O18 samples for
NO removal, which is an imposing task in photocatalysis which pursues chemically
steady photocatalysts having diminished recombination of photoinduced charges.
To prepare Pb2Bi4Ti5O18 perovskites for removal of NO, Hailili et al. [16], used
the molten salt synthesis method to spread their visible light activity with several
nanoscale structures and assessed their photocatalytic activity under visible light. The
outcomes display contrary to only 15% for commercial P25, perovskite Pb2Bi4Ti5O18

samples exhibit outstanding stability, in addition, to show NO removal efficiency
over 50% underneath visible light. Leading to the improved photocatalytic activity,
they exposed that the photocatalytic Pb2Bi4Ti5O18 owns distorted units in which
the charge separation ratified because of the dipole-induced internal fields. The
Pb-containing perovskite photocatalysts have huge manufacturing benefits because
they have a solid–gas reaction by which the lead content is safe in solid-state—
the NO−

3 formed by the reaction of O−
2 with NO. The efficient charge separation

attained because of enhancing the overall photocatalytic activity by various proper-
ties such as high surface area and exclusive structure of layered distorted polyhedral.
To avoid secondary Pb pollution, this work offers an applied submission for Pb-based
perovskites in a gaseous system as photocatalysts [16].

Chen et al. [9], examined that the photocatalytic performance of Bi nanoparti-
cles could be altered by its structure, morphology, and size. Hence, they utilized a
one-step solvothermal technique for the synthesis of Bi@amorphous Bi2O3 core-
shell nanospheres on NO removal. In this sorbent, the exterior amorphous Bi2O3

layer may enable the parting of charge transporters, and under visible light irra-
diation, the Bi NPs could produce charge carriers by SPR. The Bi2O3 layer 1O2,
·OH radicals, and ·O2− are the key responsive substituents intricated in the photo-
catalysis progressions. Owing to the suited amorphous and suitable size, which can
support the competence parting of electrons—holes produced by surface plasma
effect of Bi, avoid Bi from oxidation and the Bi@Bi2O3 sample synthesized for 18 h
showed greater photocatalytic activity for degradation of NO under visible light.
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On the whole, the solvothermal synthesized nanospheres have a good approach for
operative control of air pollution [9].

Zhang et al. [53, 54], used a one-pot solvothermal technique for the synthesis
of Ag–SrTiO3 nanocomposites (Ag–STO). In contrast to pristine SrTiO3, because
of the improved visible light of Ag NPs, they experience an extensive plasmonic
resonance absorption ensuing in ambitious activity for removal of NO. Underneath
visible light irradiation, the around 30% of NO was removed in a solitary reaction
path, which was higher than the pristine SrTiO3, by the use of 0.5% loading of Ag
onto SrTiO3. Primarily, because of the elementary external possessions of strontium
sites, the production of NO2 (destructive intermediate) is mostly inhibited over Ag–
STO nanocomposites and SrTiO3. The main reactive species for NO oxidation are
·OH radicals and O2− determined by the ESR spectra. The synthesized Ag–SrTiO3

nanocomposite photocatalyst contains selectivity for NO reduction and high visible
light activity via a controllable and facile route. The growth ofAgnanocrystallites and
SrTiO3 increased due to the bifunctional role ofNaOH. Furthermore,NO2 production
on STOwas alleviated compared to P25, which might be helpful for the adsorption of
NOx by the presence of alkaline sites [53, 54]. Gao et al. [13] synthesized Bi/ZnWO4

microspheres via anchoring of ZnWO4 on bismuth (Bi) nanoparticle, as effectual and
robust photocatalysts under visible light irradiation for removal of NO at ppb level. In
contrast to its single counterparts, i.e., Bi (0.027 min−1) and ZnWO4 (0.004 min−1),
the as-synthesized composite with the 50% mass ratio of Bi showed the advanced
rate of reaction (0.067 min−1). The Bi/ZnWO4 composites displayed a wide-ranging
light absorption in the visible spectrum because of the SPR effect of Bi NPs. In
contrast to the pristine materials, the development of the Bi/ZnWO4 heterointerface
indorsed the separation of photoexcited electron-hole pairs,which is confirmedby the
augmented photocurrent density. TheOH radicals were not intricate in the procedure,
while to start oxidation of NO, the superoxide radical was the main active species
shown by radical scavenger tests. Rather than noble metals, the earth-abundant Bi-
material was used to manufacture SPR-enhanced composite photocatalysts due to
its workable route for synthesis and economic value viable for the reduction of air
pollutants [13].

2.2 Reduction of SO2

Through the incineration in power plants of fossil-derived fuels, factories, auto-
mobiles, and houses, sulfur dioxide (SO2) is often unconfined to the atmosphere.
Because of SO2, acid rain, the corrosion of buildings is a considerate task. For the
conversion of SO2 to sulfur, TiO2 is the utmost used catalyst by the reaction:

SO2 + 2H2S /2H2O + 3Ssolid

Rodriguez [37], examined that the amalgamation of TiO2 and a gold (Au) system
fashioned exceedingly effective desulfurization. Metallic gold consumes a minute
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catalytic and chemical activity [37, 38]. Though, because of a limited nanoscale size
(<10 nm) and charge transfer amongst the gold and oxide, it provided the positive
effects of catalytic activity when gold was scattered on MnOx, TiO2, MgO, Al2O3,
Fe2O3.With the collective systems of MgO/Au and TiO2/Au, Rodriguez [37], exam-
ined the dissociation effects of SO2. The major action for the complete dissociation
of SO2 on both oxides supports was detected in systems comprising Au coverages
when the size of the Au NPs was beneath 5 nm and that were <1 mL. It was deter-
mined that for the altered chemical properties of the functionalized Au NPs and the
dissociation of SO2, TiO2 showed a straight active role, so the combined system of
TiO2/Au provided further operative dissociation of SO2 than that of MgO/Au [39].
Catalytic performance tests showed that compared to pure TiO2 the amalgamation
of Au/TiO2 is a 5–10 times faster because of the following reasons, for instance

(1) by the reaction of SO2 and CO:

SO2+2CO/2CO2 + Ssolid

(2) by the reduction of SO2 by H2S:

SO2 + 2H2S/2H2O + 3Ssolid.

In air-based anti-aggregation of gold NPs (AuNPs), Zhang et al. [58], designated
a low-cost and straightforward visual technique for on-site recognition of H2S. The
AuNPs are stable, comprising 80 mM NaCl in a Tris buffer solution with the atten-
dance of Tween 80 preserving their red color, resultant because of the bubbling ofH2S
corresponds to the development of HS−, which is functioning as a stabilizing agent
for the AuNPs. On the surface of AuNPs, the adsorption of a negatively charged S2−
ions also stabilizes the AuNPs. In disparity, the color of AuNPs altered from red to
blue and aggregate deprived of the bubbling of H2S. The expected technique displays
outstanding visual sensitivity under optimum circumstances with a naked-eye LOD
of 0.5 ppm (v/v), constructing the on-site detection of H2S probable. By using an
unpretentious SO2 removal device, this technique also owns good selectivity over
other gases toward H2S. The recognition of H2S concentration indicated the potential
submission of this cost-effective technique in local air fruitfully [58].

2.3 Reduction of VOCs

Throughout the photocatalytic air purification, TiO2 nanotubes (TNT) partakes an
exceedingly ordered open structure that indorses the diffusion onto active sites of



50 R. Sharma et al.

substrates and dioxygen and displays advance sturdiness in contradiction of deac-
tivation. In this, Weon et al. [48], utilized a new and straightforward technique for
the photocatalytic removal of VOCs in commercial and laboratory reactors on {001}
facet-exposed TiO2 nanotubes (001-TNT) and confirmed them as the air cleaner [48].
The 001-TNT’s outer surface was favorably associated through {001} facet anatase,
while the surface of TNT is habitually collected of {101} facet anatase. TNT did not
display any degradation activity for formaldehyde and acetaldehyde, while 001-TNT
showed degradation activity under visible light irradiation. The 001-TNT filter was
fruitfully installed and scaled up on a commercial air cleaner [48].

For refining the catalytic activity of monotonous transition-metal oxides, Li et al.
[28], synthesized MnOx–CeO2 crystal facet-dominated surfaces which often deacti-
vate at low temperatures. In this, to adapt the contact of three key surfaces, i.e., active-
site behaviors, catalytically active zones, and the quantitative effects and forma-
tion of oxygen vacancies, MnOx–CeO2 was synthetically managed concerning their
distinct surface-active complexes. In contrast to two other low-index facets {110}
and {001},MnOx–CeO2 with the exposed {111} facet displayed advanced action for
CO2 selectivity and formaldehyde oxidation. At elevated migration rates, the bulk
lattice oxygen can refill the ingesting of surface lattice oxygen, which was related
to the stability and activity of oxygen vacancies on the {111} facet. In a household
air purifier, the MnOx–CeO2-111 catalysts were afterward scaled up to work as filter
substrates [28]. To concurrently remove nano-PM and VOCs from manufacturing
fumes, Li et al. [27], synthesized a SiC@TiO2/Pt membrane. Via soaking the SiC
membrane, the Pt NPs and TiO2 transition layer were equipped hooked on the consis-
tent precursor. For refining catalytic action to the operative consignment of Pt NPs,
the SiC functionalized with the TiO2 layer considered being a vital aspirant. In the
meantime, this alteration procedure has no consequence on the gas infiltration of the
membrane. The PM removal efficiency and mesitylene degradation of SiC@TiO2/Pt
catalytic membrane were assessed. With the inlet concentration of 300, 600, and
800 ppm, the complete alteration could be attained for mesitylene at the reaction
temperature of 240, 251, and 263 °C and dwelling time of 1.0 s, correspondingly.
The catalytic membrane exhibited 99.98% of adsorption capacity towards Al2O3

simulated dust and 100% for the degradation of mesitylene at 262 °C temperature
and 1.0 m min−1 of gas speed. For the rejection of PM and degradation of mesity-
lene, a perfect catalytic activity is displayed by the SiC@TiO2/Pt membrane. With
a separation rate of 1 m min−1 at 262 °C, almost 100% conversion of mesitylene
grasped. Furthermore, 240 mg m−3 of inlet dust concentration, a 99.98% removal of
dust competence, was attained with 0.3 mg m−3 passage concentration of dust [27].

Krishnamurthy et al. [26], synthesized binary mixed-metal oxides (MMOs) with
different metal ratios, i.e., TiO2/SiO2 and ZrO2/SiO2 to remove VOCs, for example,
aldehyde compounds. MIL-101(Cr), which is a MOF compound, was manufactured
and compared with MMOs as a base adsorbent. Contrary to the titania-based corre-
sponding’s item, the zirconia-based materials display a moderately advanced affinity
toward formaldehyde. Particularly, at room temperature, the ZrO2/SiO2 exhibited a
dynamic adsorption capacity of 2.9 mmol g−1 with a weight ratio of 25/75 utilizing a
HCHO attentiveness of 170 ppmv. The outcomes described that for the reduction of
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formaldehyde vapor, the ZrO2/SiO2 and TiO2/SiO2 could be a potential and efficient
solid adsorbent [26].

To remove PM2.5 at elevated temperature, Zhang et al. [53, 54], established in
height efficacy (>99.5%) polyimide-nanofiber air filters.When temperature extended
from 25 to 370 °C, the polyimide nanofibers the PM2.5 removal competence was
reserved unaffected and exhibited high thermal stability. With a very low-pressure
drop, these filters required high air flux. For PM2.5 index >300, these polyimide-
nanofiber air filters can uninterruptedly work for >120 h. A field test exhibited that at
high temperatures, they can efficiently remove >99.5%PMparticles from car exhaust
[53, 54].

To produce protein functionalized nanostructures, Fan et al. [12], utilized a hier-
archically structured all-biomass air filter to advance the manufacturing rate of the
electrospinning process, upsurge the percolation capacity, and decrease the pres-
sure drop by applying Pickering emulsions. Precisely, the air filter comprises zein
NPs/cellulose nanofibers (CNF) as vigorous fillers equipped from porous structures
of microfibers and Pickering emulsions as the frame from wood pulp (WP). To
advance the elimination competence of the filters, the CNF/zein, zein-protein-coated
NPs donate in several methods. Primarily, counting poisonous particles through
interaction mechanisms, the uncovered functional clusters of a zein-protein help
to trap air contaminants. Second, the high surface area of NPs is responsible for the
high capture competence for small particulate contaminants [11]. In the meantime,
the long-micron WP fibers forming a frame decrease the pressure drop with their
large pores. For capturing both kinds of contaminants, i.e., chemical gases (CO and
HCHO), and particulatematter (PM) via regulating the constituent ratios of Pickering
emulsion. Fan et al. [12], reported an enhanced air filter around 1/170 of the zein-
based nano air sieve, with the high efficiency and the enormously low normalized
pressure drop by electrospinning. Permitting advanced efficacy and a varied range
of sizes of NPs, this study provides a cost-effective approach for making a hierar-
chical micro- and nanostructure of captivating particulate contaminants of additional
species. Additionally, by the incorporation of nano- and biotechnology, this is the
first report to develop green air filters having high-performance in which Pickering
emulsion is useful as a basic method [12, 55].

2.4 Control of Pollutants via H2 Evolution

Zhu et al. [60], reported a simple approach by the functionalization of 2-D
graphite-like carbon nitride (g-C3N4) nanosheets (NSs) for the synthesis of 3-D
TiO2−x@carbon spheres. Throughout the synthesis procedure, the 0-D tiny TiO2−x

NPs were consistently laden with close chemically bonded (Ti–O–C) interfaces onto
carbon spheres (CSs).Concurrently, for building exceedingly effective 2D/3D ternary
heterostructures and to avoid the oxidation of the directly portrayed Ti3+, the hier-
archical sphere like TiO2−x@CSs strongly coated with g-C3N4 NSs to form subor-
dinate protecting layer efficiently. In contrast to pristine components or the binary
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composites, the attained CSs/TiO2−x@g-C3N4 heterojunction displayed outstanding
improved photocatalytic action in toxic pollutants degradation and hydrogen produc-
tion. This report overlays an economical, gentle, and green method toward H2 evolu-
tion and CO2 reduction (solar energy conversion), by the fabrication of further
effective TiO2−x novel ternary constituents with multistep electron transfer [60].

Jiang et al. [19], prepared CDs/CdS/GCN photocatalysts. To check the synthesis
of CDs/CdS/GCN, systematic characterization, for example, SEM, XRD, UV, TEM,
and XPS. The concurrent photocatalytic production of H2 was proficiently appre-
ciated over the ensuing CDs/CdS/GCN composites attached by the reduction of
organic contaminants such as bisphenol A, p-chlorophenol, and called 4-NP, tetracy-
cline, TTC, and BPA, correspondingly. Subsequently, the development of interfaces
amongst CdS quantum dots andGCN nanosheets, the as-synthesized CDs/CdS/GCN
displays elevated competence of photocatalytic H2 evolution, and photodegradation
rates of biological contaminants of BPA, TTC, and 4- NP underneath visible light
illumination corresponds to a useful charge separation competence. Thus, in the
concurrent photocatalytic reduction and oxidation system, 4-NP displays advanced
photodegradation competence than do BPA and TTC. For a methodical examination
directing at manufacture clear the relationship amongst the photocatalytic contam-
inants and, degradation of the photocatalytic H2 evolution, the LC-MS, and DFT
calculations were utilized [19].

2.5 Reduction of CO2

Yang et al. [50], reported that CO2 is measured to designate unique of the key
greenhouse gases. In 2016, the fast-growing ingestion of fossil fuels (oil, natural,
and coal gas) was accountable for the noteworthy upsurge of CO2 discharges, by
surpassing the CO2 level (400 ppm) in the atmosphere [61]. The increase in atmo-
spheric CO2 will become a tremendous hazard to human beings and could cause
subsequent significant climate changes and global warming. To remove the utmost
CO2, several efforts have been made. The thermochemical, radiochemical, photo-
chemical, biochemical, and electrochemical approaches are the current methods for
CO2 conversion [25, 36]. Amongst these techniques, because of proficient CO2

reducing and producing various high value-added fuels and chemicals (CH3OH,
CH4, CO:C1, C2:C2H4, HCOOH; CH3COOH, C2H5OH etc.), CO2 hydrogenation
has established special attention [30]. Depending on the specific pathway, the reduc-
tion of CO2 has a multistep reduction includes the formation of CdH bonds, up to
eight protons and electrons, cleavage of CdO bonds, and may also correspond to too
many diverse harvests [15]. Though, when using H2O as an electron donor, several
tests remain, for example, the low manufacture evolution rate in μmol h−1 and the
even subordinate recital. For extenuating CO2 productions and adapting them hooked
on costly fuels and chemicals, electrocatalytic CO2 reduction is a striking method. In
this method, by changing reaction conditions, the harvests could be altered and can
partake at atmospheric pressure and moderate temperature. In aqueous electrolytes,
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the electrochemical CO2 reduction has been observed as a promising carbon-neutral
route [33], in which the H2 evolution reaction (HER) is a main opposing lateral
response. To endorse this conversion reaction in view of the inactive CO2 molecule
reaction kinetics, robust and effective electrocatalysts are essential, categorized in
four groups based on elemental composition, i.e., transition-metal oxides, carbon-
based materials, chalcogenides, and transition-metal [61]. The morphology, crystal
facet, oxidation state, catalyst particle size, grain boundaries, defect, and organic
hybrid are some significant features that disturb selectivity and activity. To enable the
imminent growth of CO2, electroreduction, many auspicious approaches, counting
chemicalmodification, surface engineering, compositematerials, and nanostructured
catalysts are anticipated [50].

Kim et al. [22], established easy-to-fabricate and a novel MNP-NF filter with a
low-pressure drop and elevated purification recital. This sieve proficiently eliminates
airborne dust, such asmetal oxides. TheMNP-NF filters weremade-upwith polymer
solutions containing Fe3O4 MNPs, which display robust magnetism using a simple
electrospinning procedure. To determine that the MNP-NF filter, a field test could
be utilized in a real atmosphere [22, 23]. Various other adsorbents and the removed
toxic pollutants are summarized in Table 1.

3 Conclusions and Future Perspectives

The request of nanomaterials in the recognition and elimination of contaminants
offers lower cost, shorter turn-around times, superior sensitivity, reduced sample
sizes, real-time and in-line detection, a higher amount, and movability in ecolog-
ical remediation. To eliminate metals and organic contaminants by oxidation or the
reduction of nanomaterial,metal oxide, andmetal nanomaterials could be utilized.By
capturing selective target contaminants in air media by functionalization with chem-
ical groups, removal could be improved. This technique is auspicious and operative
and could be utilized in the manufacturing of air developments. Nanomembranes
partake submissions in water reclamation, drinkable water production, dyes, the
elimination of metals, and the removal of NOM and pesticides from polluted water.
To selectively eliminate materials, additional developments should be completed in
the submission of ecological treatment, such as material should be cost-effective,
partake superior steadiness for an extensive period, the chemicals concentrations in
pollutedwater, and greater resistance to changes in pH.Nanofibrousmedia have a low
basis weight, a small pore size, and in height penetrability, that categorize them suit-
able for broad-ranging filtration applications. Additionally, nanofibers membranes
offer exclusive properties, for example, a high specific surface area (contingent
on the nanocomposite porosity and diameter of NPs), to incorporate a function-
ality or active chemistry at a nanoscale, virtuous interconnectivity of the pores. To
recognize the properties on the performance of nanocomposites, current investiga-
tions are in progress to develop engineered nanomaterials of several morphologies
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and nanocomposites diameters. The adsorption of contaminant recognition conse-
quence in a greener environment by the ecological submissions of polymer-supported
nanocomposites in chemical/photocatalytic catalysis degradation. Though, the study
of the collaboration amongst the encapsulated NPs and the host polymers and its
result on the dispersal in contaminated air is essential. The significant manufac-
ture of polymer-supported nanocomposites and their additional applied submissions
persist open. In ecological remediation, thewidespread request of sorbents has shown
the competence of adsorbing organic contaminants and metals from contaminated
air. TiO2 nanomaterials, polymeric adsorbents, and iron-based nanomaterials have
revealed increased adsorption selectivity and capacities. For process optimization,
the surface alteration of adsorbents is deliberate. To decrease the cost in ecological
monitoring, the extension of the lifespan of adsorbent, and increasing the recycling
ability of adsorbents required to be traveled. Various sensors have been established
for the recognition of bacteria, VOCs, chemicals, and various gases. To attain the
requirement for trace recognition and the removal of contaminants in the air, further
progress is essential in the efficient possession of nanomaterials. Various mecha-
nistic and significant vital studies are essential to discover their actual capacities
completely. For the separation of nanocomposite materials, multiple methods such
as magnetic and photocatalytic methods have been utilized, though high energy is
essential for these techniques. At a large-scale ecological contamination managing,
the magnetic composites or metal oxide are auspicious materials, for the advance-
ment of applied requests of these composites, further efforts are essential. For the
filtration of air quality, more polymer composites should be addressed, which partake
the long-term efficacies as a vital practical aspect.
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and Properties of Carbon
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in Wastewater Treatment

V. Madhavi, A. Vijaya Bhaskar Reddy, and G. Madhavi

Abstract The concern towards the increasing challenges in water treatment
technologies made researchers towards significant innovations in recent years. The
incorporation of nanotechnology in this field obtained remarkable results due to its
exceptional properties. Among them, carbon nanocomposites (CNCs) have proved
to be promising materials due to their large surface area, enhanced processibility,
stability, synergetic properties, cost-effectiveness, and less impact on the environ-
ment. The transformation of CNTs to CNCs by functionalization involves phys-
ical/chemical modification of CNTs that improves the capability of CNCs in wastew-
ater treatment technologies. This chapter discusses various synthesis methods,
tailored characteristics, spectacular properties, and different functions of CNCs in
water treatment. The comprehensive focus is extended on the effective CNC based
wastewater treatment technologies of three main classes such as adsorption, desali-
nation, and disinfection. Finally, the concerns of CNCs in environmental health and
safety in the direction of future research are discussed.
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1 Introduction

Water is an inestimable natural reserve for human life and the ecosystem. However,
population boom, climate change, rapid development of urbanization, and indus-
trialization present serious challenges and extremely requires cost-effective water
treatment technologies for freshwater supply. Water pollutants such as inorganic,
organic, and harmful bacteria encompassed as threats and the impact is harming the
entire biosphere confronting water-based vulnerability. This issue is hard felt where
novel cutting edge technologies are of reliable interest for the removal of detrimental
contaminants to achieve water sustainability. Traditional water treatment techniques
such as chemical precipitation, coagulation, ion exchange, oxidation, and electrode-
position are available but not entirely satisfactory in termsof cost, efficiency, technical
constraints, tedious design, and environmental impact. These conventional water
treatment methods eliminate natural organic matter, inorganic sediments, and toxic
microbes from the water before the distribution [1]. Due to rapid industrialization,
man-made artificial contaminants such as heavy metals, organic dyes, pharmaceuti-
cals, and released by-products of various water treatment methods seriously affect
the environmental ecosystems [2]. In this regard, nanotechnology has been proved
as a promising prospect to extend advanced materials for effective water purifica-
tion. The properties of nanomaterials such as large aspect ratio, specific reactivity,
both hydrophilic and hydrophobic interactions can be deliberately manipulated at
nanolevel to exhibit high performance at an affordable cost. However, agglomeration
of nanoparticles due to their high surface area restricts their use and can be reduced by
converting nanomaterials to nanocomposites. Nanocomposites are defined as multi-
phased materials in which at least one of the phases confirms in the nanorange
dimensions and maintain an interface between its components with enhanced syner-
gistic characteristics. Of nanomaterials, carbon nanotubes(CNT) due to their high
surface area, exceptional chemical inertness, and ease of chemical functionalization
have received extraordinary consideration for the removal of organic, heavy metal
and microbial impurities in water purification applications. CNTs are considered
as 1D allotropes of carbon that are described as graphene sheets rolling a layer
into cylinders of nanoscale diameter. In particular, CNTs are classified into single-
wall (SWCNTs) and multiwall CNTs (MWCNTs) based on the number of graphene
layers. The remarkable properties possessed by cylindrical carbon molecules make
them reliable towards numerous applications for electronics, optics, material science,
and environmental applications. CNT-based composites are other extensively used
carbon-containing nanoparticles owing to their desired synergistic properties such
as low density, high aspect ratio, mechanical and thermal stability. In this chapter,
we discuss the recent progress in the field over the latest research and explore the
novel synthesis methods, characterization, and properties of carbon nanocomposites
with their performance evaluation in wastewater treatment. Further, it assesses the
current progress and challenges with future perspectives.
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2 Carbon Nanotubes in Nanotechnology

CNTs exhibit outstanding adsorption, catalytic, mechanical, magnetic, thermal, and
electrochemical properties and hence have diverse applications in industrial as well
as technological applications [3]. These properties in CNTs have made them a poten-
tial material in the fields of biomedical, sensors, energy storage, solar cells, textiles,
environment, and support many areas. CNTs were synthesized by several techniques
such as Chemical Vapor Deposition (CVD), electric-arc discharge, Laser ablation,
hydrothermal, electrolysis and spray pyrolysis, etc. [4]. Both the laser ablation and
arc discharge methods have disadvantages such as scaling up of the process, tangled
nature of CNTs, and presence of unwanted carbon impurities that need further purifi-
cation. CVD method is considered the best technique that is most extensively used
due to its comparatively simple, inexpensive, flexible, energy-efficient, and easy
operation [5]. This method appears to be the most potential way for the large scale
production with a controllable structure having high purity [6]. Extensive efforts are
presently underway for diverse applications including biosensors, bioengineering,
nanotechnology, andwater purification.However, CNTs easily agglomerate and form
clusters owing to their high surface energy and high VanderWaals forces between the
tubes that tend to produce samples resulting in a combination of assorted diameters
and chiralities with metallic and amorphous carbon contamination. Dispersion of
CNTs in solvents is the other main factor due to these forces that strongly influence
the properties of nanocomposites. The deagglomeration followed by distribution of
nanomaterials in the matrices or solvents is known as dispersion. The length, volume
fraction, sonication duration, attractive forces, and entanglement density of CNTs
determine their dispersion in solvents or matrices [7]. A suitable functionalization
of the nanotubes represents the strategy to overcome these limitations and activate
the CNTs surface to become an attractive field in nanotechnology. Functionalization
improves the dispersibility and processibility of CNTs that develops the interac-
tion with other entities such as organic, inorganic solvents and matrices that allow
combined and inimitable properties of CNTs with that of other materials and thus
may be utilized for various applications [8–11]

Fundamentally, covalent and non-covalent functionalizations as interactions are
used depending on reaction mechanisms. Covalent functionalization employs on the
covalent linkage of functional entities to deal with CNTs, thus intends to intact func-
tional groups such as hydroxyl, carboxyl, and aminoacid groups at the open ends and
holes in the defect sites and sidewalls ofCNTs. Several covalent routes aremore likely
for functionalization such as amidation, oxidative purification, thiolation, esterifica-
tion, hydrogenation, halogenations, cycloadditions, and electrochemical function-
alizations have been demonstrated by Khan et al. [12]. In contrast, non-covalent
functionalization involves physical adsorption, non-destructive utilization of surfac-
tants, and polymers onto the surface of CNTs which involves hydrogen bonding and
weak interactions [13]. In general, non-covalent functionalization occurs without
any effects on the intrinsic and basic plane structure, properties of CNTs. However,
in most cases, the surface of CNTs has to be modified to avoid the adverse damage
to the structure of CNTs and to improve carbon-matrix interaction.
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3 Carbon Nanocomposites

3.1 Synthesis and Characterization Methods of Carbon
Nanocomposites

The tailorable characteristics of CNCs such as appreciable mechanical strength, high
specific area, and excellent chemical inertness make them ideal for various appli-
cations. The emergence of fascinating advanced carbon nanocomposites is leading
to the next-generation sophisticated materials. The adding up of these nanotubes
to an array of matrices such as metals, metal oxides, polymers, etc. can improve
the electrical, mechanical, thermal, and chemical properties. Carbon nanocompos-
ites can be synthesized in a number of ways among which are impregnation, CVD,
Ball milling, Sol-gel, extrusion, etc. [14, 15]. At different stages, more than one
method can be combined in the process of formation of nanocomposites. It has been
found that the synthesis method has huge influences on the surface morphology of
the carbon nanocomposites. Sharififard et al. [16] prepared Iron-activated carbon
(IAC) nanocomposite from the evaporation of iron salt solution by anchorage of
iron oxide-hydroxide nanoparticles on the activated carbon surface. The synthesis
method was facile at low temperature for the formation of IAC nanocomposite that
possesses good adsorption properties. SEM micrograph of IAC shows the presence
of iron oxide-hydroxide has “silver almonds” shape and iron nanoparticles are effec-
tively dispersed on the AC surface. TiN@C nanocomposites were synthesized by
an annealing approach using the oleic acid as a carbon resource for enhancing the
electrochemical properties of TiN nanoparticles by Lei et al. [17]. The prepared
TiN@C nanocomposites were characterized by EDX, XRD, TEM techniques. The
TEM results confirmed that TiN nanoparticles are coated by carbon, and the coated
carbon covering has a thickness of about 3 nm. A new rapid, simple, cheap, and
effective method for synthesis of magnetic carbon encapsulated Co nanoparticles by
catalytic carbonization of cobalt(II) fulvate is presented by Litvin and Galagan [18].
The TEM study of the material shows graphite-like phase that confirms the pres-
ence in the composition of the elongated structures of carbon nanotubes with large
number of layers or carbon nanofibers. Sovizi et al. [19] obtained magnetic-activated
carbon nanocomposite (m-Fe3O4@ACCs) for the lead ions removal from wastew-
ater. Experimental results showed that greater than 99% of Pb(II) was removed by
m-Fe3O4@ACCs at the optimal operational conditions and followed the pseudo-
second-order kinetic model for the adsorption of Pb(II). TEM image of the resultant
m-Fe3O4@ACCs reveals the presence of iron oxide nanoparticles of diameter 40–
80 nm. TGAof themagnetic nanoparticles revealed that 10wt% of iron oxide present
inside the synthesized nanocomposite. Peng et al. [20] prepared CNTs-iron oxide
magnetic composites for the adsorption of Pb(II) andCu(II) fromwater and recovered
above 98% of adsorbent after use. The SEM of the prepared composites shows the
entangled networks of CNTs with clusters of iron oxide appended to it and implies
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the formation of carbon nanotubes/iron oxides composites. The adsorption capacities
were 0.51 and 0.71 mmol g−1 for Pb(II) and Cu(II) respectively in the concentration
range studied at pH 5.0.

Anovel attapulgite clay@carbon (ATP@C)nanocomposite adsorbentwas synthe-
sized by the hydrothermal carbonization process by Chen et al. [21]. FESEM and
TEM images of the as-prepared composite revealed the rod-like nanocomposite
with a length of 200–1000 nm and diameter of 40–80 nm similar to that of the
original ATP template. The granular nanospheres of several tens of nanometers
size were dispersed on the surface of the ATP. Mojoudi et al. [22] synthesized
a porous activated carbon/nanoclay/thiolated graphene oxide nanocomposite. The
FTIR analysis confirms that carboxylic acid and hydroxylic groups present on the
surface of AC/NC/TGO are the main contributors in uptake of contaminant from
aqueous solution. Ag@ZnO/MWCNT (Ag-doped ZnO/multiwall carbon nanotubes)
nanocomposite was synthesized by Ahmadi Azqhandi et al. [23] SEM images of the
prepared nanocomposite demonstrated the uniform distribution of nanoparticles on
the MWCNT surface. The composite resulted in the simultaneous removal of high
contents of BY28 and MB dyes from aqueous solutions in the presence of ultra-
sonic power with Ag@ZnO/MWCNT-NC and the process is fast, low-cost, and
efficient. The (HAP/TE/GAC) nanocomposite, i.e., granular activated carbon (GAC)
was layered with both hydroxyapatite (HAP) nanoflakes and turmeric extract (TE)
was obtained by Chathumal Jayaweera et al. [24] to remove the heavy metals and
bacterial contaminants that can be utilized as a point-of-use water filter material.
The SEM analysis reveals that the turmeric extract is deposited as flakes that are
almost in the micrometer range in between the surface of the composite and mesh
of nano HAP. The properties of CNTs lead to extraordinary properties when used as
a fortification in polymeric materials that have caused a great deal of concern in the
researchers’ attention. It has been found that considerable variations of thermal, elec-
trical, mechanical, and barrier properties come about with the inclusion of a very low
dose of carbon-based nanofillers. Jose et al. [25] prepared PVA/MWCNT nanocom-
posites by solution casting method that demonstrated the interaction and filler-filler
network arrangement ofMWCNT in a-MWCNT/PVA nanocomposites by high reso-
lution optical microscopy. Al-Hobaib [26] obtained polyphenylene diamine (PMD)
membranes by incorporating carboxylated MWCNT in the polymer that displayed
the clean and smooth tube surface with 10–20 nm in diameter in TEM micrographs.
Polyvinyl chloride (PVC) membranes containing pristine and modified multiwall
carbon nanotube (MWCNT) were prepared by Masoumi et al. [27]. The FESEM
images indicated that the number of pores on the membrane surface increased at the
presence of pristine and modified MWCNT and pore size distribution curves shifted
towards smaller pores. It has been revealed that the antifouling properties of the
membranes increased with increasing nanotube concentration, especially COOH-
MWCNT. Cellulose acetate (CA)/carbon nanotubes (CNT) membranes have been
prepared by using phase inversion method by El-Dein et al. [28] by dispersion of
different ratio of CNTs in CA casting solution. Morphology results by SEM showed
that porosity of CA membrane decreased with an increase in polymer ratio. The
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addition of CNTs enhanced the formation of the porous structures and macrovoids
that is resulted from instantaneous demixing in the coagulation bath.

The membranes prepared by polyethersulfone as matrix polymer in which acid
oxidized multiwalled carbon nanotubes (MWCNTs) were embedded are evaluated
byVatanpour et al. [29] for their efficiency and antifouling properties ofmixedmatrix
nanofiltration membranes. The morphology studies by SEM demonstrated that large
macrovoids appeared by the addition of less quantities of functionalized MWCNTs
leading to increase in both pure water flux and salt rejection of the membranes.
The membrane has lower roughness (0.04 wt% MWCNT/PES) represented the
remarkable antifouling property. The raw MWCNT, PAA modified MWCNT, and
grafting efficiency of PAA on the characteristics of nanocomposite polyethersulfone
(PES) nanofiltration (NF) membranes were investigated by Daraei et al. [30]. The
membranes possessing negatively charged surface due to functional groups of modi-
fied MWCNTs showed highest salt rejection, superior antifouling properties, and
high water flux that reveals the success of simultaneous use of diverse modification
methods.

3.2 Properties of Carbon Nanocomposites

carbon nanomaterials with highly ordered zero-, one-, two-, and three-dimensional
carbon structures including fullerene, carbon nanotubes (CNTs), graphene, and
graphene oxide have attracted increasing interest owing to their unique morpho-
logical regularity, chemical inertness, high surface area, biocompatibility, etc. These
inimitable functions and properties due to their small or intermediate size make
carbon-based materials ideal for reinforcing fillers in nanocomposites that can use
and create structures, devices, and systems. In addition, the low-cost and flexibility
of carbon raw materials are beneficial aspects for carbon-based applications when
considering the economical factors. The carbon nanocomposites also are capable to
manipulate on the atomic scale. Utilizing these fascinating aspects of carbon-based
nanomaterials and composites, flexible, high performance and reliable materials can
be produced for diverse applications. The efficient use of CNT-based composites
depends robustly on their ability of homogeneous dispersion throughout the matrix
without tearing out the integrity of CNTs. The impact of dispersion, alignment,
aspect ratio, and weight fraction of CNTs in matrices are crucial for the capability
and applications of carbon-based nanocomposites. Therefore, motivated by techno-
logical and scientific potential aspects of CNCs, over two decades, research work
has been extensively done on carbon nanocomposites and this field of research is
still growing stronger.

Carbon nanocomposites have attracted the interest of researchers owing to their
exceptional electrical, optical, mechanical, thermal, and catalytic properties thereby
extending their field of applicability. Baik et al. [31] have fabricated carbonnanotube -
copper nanocompositeswhereCNTs are homogeneously dispersedwithin the copper
matrix by mechanical and molecular-level mixing process and these composites
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showed a significant decrease in electrical resistance. The electrical properties of
agarose/DWCNT nanocomposite hydrogels and the effect of DWCNT content on
the composite properties were investigated by Guillet et al. [32]. The experiments on
AC, DC measurements at different voltage results suggest that these nanocomposite
hydrogels can be promising materials as electrode materials in drug delivery by elec-
tropermeabilization.MWCNT/epoxyandGNP/epoxynanocompositeswith different
filler contents andhybrid epoxynanocomposites filledwithCNTs/GNPs as reinforce-
ment were synthesized and the effects of different individual CNT/GNP contents and
combination on electrical properties were evaluated by Kranauskaitė et al. [33]. The
electrical conductivity of hybrid nanocomposites containingMWCNTs and GNPs in
ratio 5:1 exhibits the highest value of 0.009 S/m, which is more than 4 times higher
than that of composites containing onlyMWCNTs (0.002S/m). That could be consid-
ered as a synergistic effect between GNPs andMWCNTs due to the well distribution
of MWCNTs and the tunnelling of electrons between GNPs and MWCNTs. Elec-
tronics utilize the applications of conductive polymer nanocomposites that have the
potential to be used in electronics, sensors, and actuators [34, 35]. At a critical filler
concentration, i.e., percolation threshold, conductance can be observed in nanocom-
posites due to the formation of conductive networks of nanoparticles in them. [36,
37]. The percolation concentration is experimentally determined by the electrical
conductivity at different filler concentrations.

According to Awasthi et al. [38], the conductivity of polyethylene oxide (PEO)-
MWCNT composite films resulted in an enhancement of eight orders 6.52 S cm−1

of magnitude in conductivity compared to that of bare PEO film. Polyvinyl alcohol
(PVA)-vapor growth carbon fiber (VGCF) and PVA-MWCNT were fabricated by
Bin et al. [39] using gelation/crystallization methods. The percolation threshold of
electrical conductivity for the PVA/MWCNTwas <1wt%MWCNT loading that was
much lower than that of PVA/VGCFs composites. The optical properties of silicon
incorporated diamond-like carbon (Si-DLC) nanocomposite thin films due to the
change in the electronic structure of carbon nanocomposites have been reported by
Alam et al. [40]. Si-DLC film showed broad photoluminescence (PL) peak centered
at 467 nm, in the range of visible radiation that intensified with an increase in %
of Si. The optical, mechanical, electrical properties of combined CNT and metal
nanoparticles are interestingly enhanced due to the specific surface area of CNTs
[41, 42]. In addition to this, Barberio et al. [43] presented very special electronic
and optical properties of MWCNT with metal matrices (Al, Ag, Au, Co, Cu, Fe, Ni,
and Ti) than to pristine CNTs. The surface roughness of nanocomposites has been
decreased to about 50% that results in strong visible photoluminescence.

Guler et al. [44] synthesized carbon nanotubes hybrid zinc oxide (ZnO-CNTs)
nanocomposites using ball mill technique and studied for optical properties. The
decrease in reflectance of the composites with CNTs is due to the increase in
absorbance of the nanocomposites. Wang et al. [45] usedMolecular Dynamics (MD)
simulation to evaluate themechanical properties of CNT reinforced Poly-ether-ether-
ketone (PEEK) nanocomposites. The overall mechanical efficiency of CNT/PEEK
nanocomposite was improved by introducing H-bonds between CNTs and PEEK
matrix. The elastic modulus and tensile strength of the synthesized nanocomposite
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were envisaged to be 24.5 GPa and 2.47 GPa, respectively, validating the MD
model in the evaluation of mechanical properties of CNT/PEEK nanocomposite.
Nam et al. [46] investigated on thermal properties of CNT/Al–Cu that was prepared
by high energy ball milling followed by spark plasma sintering. The thermal conduc-
tivity of these nanocomposites decreased with an increase in the content of CNTs
due to the interface thermal resistance between CNTs and Al–Cu matrix. Vahedi
et al. [47] reported on the thermal conductivity of CNT/paraffin nanocomposites
using multiscale modeling. Molecular dynamics simulations were evaluated for the
thermal conductance and their findings reported that the effects of volume frac-
tion and geometric parameters of fillers provide effective thermal conductivity of
CNT/paraffinnanocomposites. The increase in the thermal and electrical conductivity
of nanocomposites is due to the functionalization of CNTs.

Functionalized MWCNTs performed the best filler materials that simultaneously
improve thermal and electrical properties of the composites. The surface functional-
ization on SWCNTs increases the interaction between the CNTS andmatrix but leads
to the formation of defects, which obstruct the acoustic phonon transport in SWCNTs
[48]. Amrin and Deshpande [49] fabricated Polyvinyl alcohol(PVA) and carboxyl
functionalized MWCNTs using a solution cast method to investigate mechanical
and dielectric properties of carbon nanocomposites. MWNT-COOH/PVAwas found
to have higher dielectric constant and AC conductivity due to interfacial polariza-
tion effect. Sui et al. [50] used carbon nanofiller in Polypropylene (PP) polymer
nanocomposites as two phases, i.e., crystalline and amorphous prepared by melt
blending method. Their results showed that PP nanocomposite with CNF (5 wt%)
revealed unexpectedly high dielectric constant at wide sweep frequencies with small
dielectric loss. According to their reports, there is an improvement of thermal and
electrical properties of nanocomposites with an increase in carbon nanofiber content.
The carbon nanotube/amino-functionalized poly(arylene ether ketone) composites
were prepared by solution blending technique and their dielectric and mechanical
properties were evaluated by Zhang et al. [51]. The amino-functionalized MWCNTs
dispersed well in polymer that showed a higher dielectric constant of about 130
at 10% volume fraction of CNTs and the nanocomposites had tensile strength and
tensile modulus of 69.2 MPa of 3.0 GPa, respectively.

Multiwalled carbon nanotubes/polyaniline/magnetite (MWCNTs/PANI/Fe3O4)
ternary nanocomposites were successfully fabricated via oxidative polymerization
followed by co-precipitation and their optical properties were studied by Ibrahim
et al. [52]. The optical absorption showed that MWCNTs/PANI/Fe3O4 thin films
with 300 nm thickness have both indirect and direct energy band gaps with allowed
transitions in the energy range of 2.906–3.41 eV. The dark current-voltage charac-
teristics of the MWCNTs/PANI/Fe3O4 thin films were non-linear and exhibited the
rectification ratio (RR) of the forward and reverse currents at the same voltages (V =
±3V)was found to be 5 at room temperature. Further,Aydin [53] found that electrical
conductivity increases with CNT content in CNT and titanium dioxide nanocompos-
ites. The direct current electrical conductivity values σ dc of the nanocomposites were
found to be in the range of 5.96× 10−3–0.47 S/cm. The obtained band gap (Eg) values
were decreased in composites with an increase in CNT contents.
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There is a significant enhancement in mechanical properties of carbon nanocom-
posite scaffold when they are coupled with thermoplastic polyurethane [54]. Carbon
nanotubes with highest specific-volume ratio can be functionalized easily are
coupled with thermoplastic polyurethane by solution-based fabrication method.
These composite scaffolds showed an enhancement in tensilemodulus about 200-fold
over the pristine polymer at 19 wt% MWCNT loading. These scaffolds were ther-
mally stable above their decomposition temperatures and extended the mechanical
reliability by suppressing the mobility of polymer chains.

3.3 Carbon Nanocomposites for Water Purification

The global industrial revolution has led to a drastic increase in effluent discharge
causing serious life-threatening problems for environment as well as water contami-
nation. The contamination of water with diverse toxic chemicals and their treatment
has turned into a major environmental problem. Water treatment is a comprehensive
environmental concern that requires consistent interest in the removal and reduction
of hazardous pollutants. The problem is hardly felt in the developing countries where
water treatment technologies such as ion exchange, electrochemical treatment, chem-
ical precipitation, membrane filtration, reverse osmosis are not easily accessible at
the field scale due to financial constraints. For this, there is a need for technologies
that are capable to remove harmful pollutants to a safe level, rapidly, efficiently, and
within a reasonable cost framework. CNCs, attributing to high surface area andmini-
mized aggregation has extraordinary consideration for their properties in separation
of pollutants fromacknowledgedwater. Carbon nanotubeswith tactical combinations
of other matrices in the form of composites can facilitate synergistic properties for
the facile processing of water treatment. Introduction of specific functional groups
to CNTs can be easily incorporated onto composite materials that enhance removal
of certain species from water. Various types of carbon nanocomposites (CNCs) with
unique and novel propertiesmake them ideal and promisingmaterials for their diverse
applications including water treatment. Generally, CNTs are combined with solid
support materials like metals, metal oxides, polymers, etc. to facilitate the tailored
applications in water purification and filtration. One of the promising parts of CNCs
for water treatment is the necessarily less amount of material required to achieve
high filtration and contaminant removal capacity.
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4 Functions of CNCs in Water Treatment Technologies

4.1 Adsorption

Adsorption process is a surface phenomenon where pollutant concentrations would
adsorb onto the layers of solidmaterials due to the intermolecular (physical/chemical)
forces of attractions. It is a prominent process among the most successful techniques
for the removal of color, odor and both organic and inorganic pollutants in global
effluents. Adsorption is observed as finer method in water treatment at the outline
due to its effortlessness activity. CNTs have been frequently used as good adsorbents
for capturing ample variety of pollutants owing to their adaptable properties. [55–
58]. The scope for fabricating CNT-based composite materials is large as the two
main forms of CNTs namely, SWCNTs and MWCNTs allow further flexibility for
water purification materials. Both these forms have been demonstrated as efficient
adsorbent materials for chemical species. However, the adsorption rate of CNTs is
determined by external surface area, pore density, functionalities, purity, and so on.
The major adsorption sites such as inner CNT holes, interstitial channel, grooves,
and outer surfaces on CNTs play a major role in adsorption of water pollutants. For
instance, in open-ended CNTs, an inner hole acts as suitable adsorption site and
hence unzipped CNTs have more adsorption sites than pristine CNTs. The open-
ended SWCNTs with lower diameter stimulates adsorption and is more suitable for
multiple adsorbates than MWCNTs [59, 60]. Small pollutants can entrap into CNTs
due to the presence of interstitial channels. SWCNTs can generate more interstitial
channels because of their better aggregation than MWCNTs. Grooves and the outer-
most surfaces of the CNT bundles provide positive impacts for adsorbing various
water pollutants. These sites offer accessible spaces for hosting both inorganic and
organic contaminants.

CNTs when introduced with specific functionalities like metals, metal oxides,
and polymers have the beneficial effect of enhanced adsorption with certain species.
These functionalities increase CNT solubility and avoid aggregation in homoge-
neous solutions. Hence, this helps to enhance the interaction between CNT surfaces
and water pollutants. The efficiency of carbon nanocomposites in water treatment
is based on the nature of interaction between CNCs and water contaminants. Cova-
lent bonding, hydrogen bonding, hydrophobic interactions, electrostatic interactions,
p-p electron coupling, ion exchange, etc. are the general interactions that remark-
ably perform with CNCs for water treatment. The influencing factors that determine
the extent of adsorption are available surface area and functional groups and these
parameters have been more emphasized in recent research [61]. Salam et al. [62]
fabricated the MWCNT/chitosan nanocomposite with the ratios 25:75 wt%. The
nanocomposite of MWCNT and chitosan was utilized for the removal of Zn, Cd,
Cu, and Ni ions from aqueous solution. CNTs oxidized with H2O2, KMnO4, and
HNO3 were evaluated [63] for Cd(II) adsorption in water. The addition of different
functional groups such as –carboxyl (COOH), hydroxyl (–OH), and carbonyl (C=O)
made CNTs more soluble in aqueous solution and enhanced the adsorption and ion
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exchange capacities of functionalized CNTs. H2O2, HNO3, and KMnO4 oxidized
CNTs showed the adsorption capacity of 2.6, 5.1, and 11.0 mg/g whereas it is only
1.1 mg/g for pristine CNTs. The performance of CNC for pollutant removal in water
by adsorption is presented in Table 1.

4.2 Desalination

In view of the fact that the sources of seawater account for almost 98% on the earth,
desalination through various technologies imparts a huge impact on water scarcity
concerns. CNTs gained more interest in the field of water desalination technolo-
gies owing to their diverse and remarkable properties. Desalination utilizes three
important kinds of water treatment innovations: (i) Chemical methods, (ii) distil-
lation processes, and (iii) membrane technologies. Tofighy and Mohammadi [75]
synthesized CNT sheets with nitric acid oxidizer through CVD method and used as
a viable adsorbent for the desalination of salty water. Yang et al. [76] presented that
the modified MWCNT with carboxylic and hydroxyl groups for the exclusion of
humic acid from water. The results showed that the CNTs with different functionali-
ties enhanced the hydrophilicity and removal capability of humic acid through bucky
paper. Adsorption techniques are simple however not validated for desalination of
water. Membrane technologies in this regard have received attention because of their
fascinating inherent features.

Membrane separation technology does not require chemicals and there can be no
regeneration of secondary pollutants and hence it is considered as viable and accept-
able route to offer more sustainable process in water treatment. At present, a number
ofmembrane separation techniques such asRO,NF,UF,MF, distillation, dialysis, and
electrodialysis are available. Polymers such as polysulfone, polyamides, cellulose
nitrate, polyethersulfone are the most favored for membrane technology because of
their cost-effective, facile synthesis, good thermal stability, highmechanical strength,
and biocompatibility. However, bacteriological contamination and pore blockings by
adsorption of inorganic/organic impurities; low throughput and fouling limit those
for desalination process through membrane technology. CNT-based membrane tech-
nology utilizes the synergistic effects and has been recognized as a viable and effec-
tive approach for wastewater treatment. Polymer supported CNT membranes offer
the benefit of desirable properties with the ability to upscale production. Suitable
fillermaterial, organic and inorganicmodification of CNT exterior surfaces decreases
agglomeration and increases miscibility in aqueous solutions. Functionalization also
controls pore size and diameter which are suitable for fabricating uniform CNT
membranes for optimum water desalination. Wang et al. [77] reported the incor-
poration of CNTs in PES membranes that exhibited higher flux and salt rejection
than the individual PES membranes. The study revealed that the highest water flux
(38.91 L m−2 h−1) and Na2SO4 rejection (87.25%) at 4 bar were obtained at 0.1
wt% of CNT concentration. Shawky et al. [78] have fabricated MWCNT/polyamide
nanocomposite membrane that demonstrated to have excellent mechanical strength
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and fabulous salt rejection ability (76.1%) with high permeability (0.71 L/m2/h bar).
Farahbakhsh et al. [79] prepared a thin film nanocomposite (TFN) membrane with
raw and oxidizedMWCNTs. Thewater flux of 25.9 and 28.9 L/m2 hwas observed for
raw and oxidized MWCNTs based TFN respectively. The prepared TFN membrane
showed a NaCl rejection of 98.1%with 0.002 wt% of rawMWCNTs and 97.8%with
0.002 wt% of oxidized MWCNTs. It is reported that the decrement of salt rejection
was due to agglomeration of the MWCNTs (Fig. 1). A mixed matrix membrane
of Carboxylated CNTs/polyethersulfone (PES) was reported by Wang et al. [77].
The lowest contact angle of 54.95° was observed for MWCNTs having a diam-
eter of 20 nm. Chan et al. [80] simulated and synthesized zwitterion functionalized
CNT/polyamide nanocomposite membranes (diameter 1.5 nm) and achieved 100%
ion rejection. The increased ion rejection with the zwitterion functionalized CNTs
is attributed to a steric hindrance from the functional groups that partially blocks the
tube ends and electrostatic repulsion between functional groups and ions. Corry [81]
has effectively removed 100% Na++ and Cl− with functionalized CNTs containing
–COOH, –NH3, and –OH groups.

MWCNT-PA nanocomposite membranes exhibited high chlorine resistance when
used in aqueous solutions of NaClO [82]. The experimental results specify that the
presence of MWCNT within the PA matrix in membranes significantly modifies
both the surface shape and the molecular topology. The separation efficiency of
thesemembranes after chlorine exposure (4800 ppmh) remained unchanged (99.9%)
but was considerably reduced to 82% in the absence of MWCNT. Ratto et al. [83]
have patented a CNT membrane with greater than 99% of ion rejection efficiency
which indicates remarkable potentiality of CNT membranes in water desalination.
Yang et al. [76, 84] have tailored CNTs by plasma treatment that showed adsorption
capacity of exceeded 400wt% of salt. In a recent study by El Badawi et al. [85] multi-
walled carbon nanotube/cellulose acetate (CNT/CA) nanocomposite membranes

Fig. 1 Schematic representation of MWCNT TFN membrane [79]. Copyright 2017. Reproduced
with permission from Elsevier
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were prepared successfully and investigated on nanocomposite membrane perme-
ation and salt retention rateswith 1000 ppmNaCl solution. Permeation and salt reten-
tion rateswere found to 54%and−6%respectively for themembraneswith the lowest
CNT content. Table 2 presents the performance of carbon-based nanocomposites by
desalination for water treatment (Fig. 2).

Table 2 Carbon-based nanocomposites for desalination

CNT Polymer Salt solution Performance of the
membrane

Reference

CNT CA NaCl, 5 g L21 • Improved water
flux and NaCl
separation

• Increased
hydrophilicity

El-Din et al. [86]

MWCNT Polyamide NaCl • Increased salt
rejection

• Improved Youngs
modulus,
toughness and
tensile strength

Shawky et al. [78]

Carboxylated
MWCNT

PES NaCl, 1000 mg
L21

• Improvement in
salt rejection and
water
permeability

• Decreases average
pore radius of the
substrate surface

Wang et al. [68]

Zwitterion
functionalized
CNT

PA • Increased both
flux and salt
rejection ratio

• High flow rate and
better selectivity

Chan et al. [80]

Acid oxidized
MWCNTs

PES Na2SO4, MgSO4,
NaCl

• Improved
antifouling ability

• Increased salt
rejection and
hydrophilicity

Vatanpour et al.
[29]

MWCNT PA NaClO • Improved
degradation
resistance

• Increased both
flux and salt
rejection

Ortiz-Medina et al.
[82]

plasma-modified
ultralong carbon
nanotubes

MCE NaCl • Ultrahigh
adsorption
capability

Yang et al. [84]
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Fig. 2 Representation of CNCs from addition of CNTs to various matrices and possible functions
of CNCs in water treatment

4.3 Disinfection

Microorganisms are accountable for many waterborne diseases that deliberately
affect human health and lead to high mortality. Therefore, ensuring microbe-free
water is of prime importance. The treatment methods for removal of harmful biolog-
ical organisms from water, in general, include ozonisation, peroxidation, chlorina-
tion, etc. However, these methods have drawbacks such as dispersion of undesirable
chemical by-products that can have many effects and hence required to be treated
that needs additional efforts. Therefore, there is a need to find improved ways for
efficient microbial disinfection. Advances in nanoscience can resolve current prob-
lems involvingwater quality using nanosorbents, nanoparticle enhancedmembranes,
nanocatalysts, etc. CNTs and their composites have also received significant consid-
eration from many researchers because of their strong antimicrobial properties with
their diverse mechanisms of action. The promising applications of CNTs and their
composites are not only neutralization or exclusion of bacteria but also antifouling
property i.e., prevention of adhesion of bacteria in water purification. Pristine CNTs
exhibit strong antimicrobial activity towards Gram +ve and Gram -ve bacteria,
as well as bacterial spores that are attributed to interference and destruction of
pathogenic cell wall. Kang et al. [87] reported that direct contact of E. coli cell
with SWCNTs leads to rigorous membrane damage followed by cell inactivation.

The other study reported that using N-carbazole-SWNT nanocomposite at 3 wt%
of SWNT more than 90% of bacteria have been inactivated [88]. Brady-Estévez
and Elimelech [89] used PVDF microporous membrane coated with a thin layer of
SWNTs and recorded up to 5–7 log removal of MS2 bacteriophages. Al-Hakami
et al. [90] reported that carbon-18 functionalized CNTs with microwave radiation
showed the 100% removal of E. coli bacteria. Vecitis et al. [91] demonstrated that
electrochemical MWCNT filter inactivated and removed E. coli bacteria and virus
(MS2) in the sewage below the detection limit. Carbon nanocomposite made of silver
nanoparticles coated on multiwalled carbon nanotubes/β-cyclodextrin (1 wt%Ag-
MWCNTs/βCD)was investigated for the removal of (E. coli), ATCC25922microbes
from water samples. A 100% antibacterial activity was reported (on 1 wt%Ag-
MWCNTs/β-CD) within 10 min of interaction that is attributed to smaller Ag crys-
tallites onMWCNTs/β-CD that played a specific role on bacterial contaminants [92].
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In another study, Mostafavi et al. [93] a controllable nanoscale porosity CNT-based
filter by using a spray pyrolysis method was fabricated and observed that at pressure
of 8-11 bar, maximum removal efficiency of MS2 virus occurred. Cu2O/MWCNT
nanocomposite membranes were explored for the removal of MS2 bacteriophages
from infected water. Experiments revealed that the special surface properties of
MWCNTs present higher adsorption capacity and noteworthy virus retention capa-
bility i.e., retention of up to 4-Log (99.99%) [94]. A hybrid polyaniline/graphene
nanosheets/carbon nanotube nanocomposites were fabricated using a well-known
in situ polymerization technique and ultrasonic assistance and utilized for the exclu-
sion of two types of bacteria (E. coli and S. aureus) from infected water by a column
method [95]. It has been reported that the removal percentages of E. coli and S.
aureus were 99.2% and 99.5 respectively, and approximately the equivalent adsorp-
tion percentage was observed when this material is reused for up to four cycles with
negligible adsorption losses

5 Challenges and Perspectives of Carbon-Based
Nanocomposites (CNCs)

Carbon-based nanocomposites present a range of promising applications for their use
in various technology developments due to their substantial performance. Carbon
nanotubes are used in nanocomposites owing to their distinctive properties like
lightweight, high conductivity, excellent mechanical, tensile, and thermal properties.
The amelioration of carbon nanotubes is possible with various functional groups,
metals, metal oxides, polymers to improve their potential for the various envi-
ronmental applications. CNCs have received significance worldwide due to their
exceptional and potential physical, chemical, and mechanical properties. However,
such modifications may adapt the hazardous profile from fabrication to end-use
and disposal in their life cycle. These modifications can as well resist biodegrada-
tion increasing cellular uptake and toxicity to terrestrial and aquatic ecosystems.
The extensive usage of CNCs cause concerns regarding potential exposure, envi-
ronmental safety and health as they resemble pathological effects of asbestos. [96,
97]

The study on biological effects of CNCs has been in research and needs to
be explored much in the field. Only a few investigations have demonstrated the
biological effects of CNCs. The composites have masked the potentially toxic
effects of free CNTs because majority of the CNTs remain in the composites.
Unlike carbon nanotubes, the nanocomposites have the least toxic effects as the
CNT has small amounts in the composites. Mills and Le Hunte [98] reported that
CNT metal composite catalysts, in the process of photodegradation of persistent
organic pollutants have produced various degradation products that are more toxic
than their parent compounds that cause detrimental health effects. Wohlleben et al.
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[99] found that the released fragments from multiwallcarbon nanotube (MWCNT)-
based nanocomposites have drastic different properties and their subsequent in-vivo
hazards.

Despite enormous progress beingmade for producing nanocomposites, the degree
of dispersion, stability, compatibility, and matrix interaction are some of the key
features that must be upturned for feasible applications. CNC membranes, apart
from their great improvement, the challenges such as permeability, selectivity, and
salt rejection performance need further studies to be explored on the different effects
of nanomaterials on themorphological and structural characteristics. Considering the
future demands with exceptional properties of materials, further studies are neces-
sary to provide practical usefulness in large scale applications of CNCs. The envi-
ronmental issues concerned to leaching and toxicity of these composites should be
seriously considered.

6 Conclusion

The accessibility of clean and safe water is mainly concerned with ecosystem
management, agriculture, and industry. The considerable attention has been paid
to CNCs for water and wastewater purification in recent research. CNCs, attributing
to their large aspect ratio, have promising applications in the fields of adsorption,
desalination, and disinfection of water pollutants. Undoubtedly, CNCs substantially
outperformed in the water treatment and the technologies are rapidly expanding.
However, certain factors like environmental transformation and degradation of the
composite materials should be extensively evaluated by the environmental experts to
regulate the risk factors associated. The combination of emerging CNCs with suit-
able matrices with well-defined properties will be highly applicable in developing
the future generation of water treatment technologies.
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Magnetite Carbon Nanomaterials
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Abstract Environmental concerns like water and soil pollution have affected the
health of entire ecosystem. This situation is getting even worse as the burden on
limited resources is increasing by leaps and bounds. Continuous rise in population
is forcing more pollutants in the environment to meet their demands. Removal of
these pollutants through eco-friendly methods have become the centre of attention
now. Nanomaterials have been applied to remediate polluted water and soil as they
possess high surface area for adsorption and sensing of the various toxic pollutants.
This chapter gives a precise review of the research work for environmental remedi-
ation using magnetite carbon nanomaterials. Magnetite carbon nanomaterials have
represented themselves as an efficient alternative for the treatment of both inorganic
and organic pollutants. It also includes information about the various techniques
being employed for the remediation process of various toxic metal ions and dyes.
Further optimized parameters such as pH, temperature, contact time and capacity
are also discussed which is essential for effective treatment of pollutants, and their
applications in different real samples are briefly discussed.

Keywords Carbon nanomaterials · Environmental remediation ·Magnetite ·
Metals · Dyes

1 Introduction

Our environment is getting polluted day by day due to rapid industrialization. The
proliferation of industries and commercial activities is the demand of increasing
population. The effluents from these industries are the main cause of pollution. The
by-products of industries such as dyes effluents, toxic chemicals, heavy metal, and
traces of pesticides have profound impact on environment. Toxic heavy metal ions
like Hg, As, Cd, Pb, etc., have ability to either replace the essential metal ions
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from our body or change the active confirmation of enzymes and disturb their func-
tion. Their presence in water can cause disease like Minamata, Wilson, etc. They
are highly contagious, and their prolong exposure can lead to death [75]. The other
organic pollutants such as dyes, pesticides and other toxic chemicals which enter into
water bodies from various sources like industrial effluents, domestic waste, mining,
research laboratories, etc., are also hazardous and carcinogenic. Dyes are used as
colouring agent at large scale in textile, paper, food, cosmetics and pharmaceutical
industries. The effluents of used dyes are discharged directly into nearby rivers, ponds
and other water bodies. These toxic waste products are harmful for both aquatic and
terrestrial animals. Other organic pollutants such as pesticides, insecticides, herbi-
cides and fungicides are used at large scale to kill the insects, pests or inhibit the
growth of weeds in order to save the crop and increase productivity. These pesticides
are highly poisonous as they are target specific and meant for the purpose of killing
insects. When they enter in the food chain even in small amount can lead to death.
The insecticide like atrazine has tendency to change the gender of frogs, etc. So they
are not only harmful for present generation but can also affect the future genera-
tion. Various other toxic chemicals used in the laboratories are also dangerous for
environment and need to be removed for sustainability of ecosystem [85].

Recently, development of nanomaterial is considered boon in research and showed
a new path in research because at nanolevel, the properties ofmaterial changed drasti-
cally. Nanomaterials are particles having at least one dimension in nanometre range,
which can be made up of organic, carbon, metal, metal oxide or other inorganic
compounds. They possess different chemical and physical properties at nanolevel in
comparison to bulk. The reason for difference in properties is due to the increase in
surface area or in other words, higher ratio of surface to volume and the quantum
effects. The increased surface area provides higher reactivity and adsorption,whereas
quantum realm restricts the flow of electron to a small region that produces magnetic
moment in nanomaterials. So, nanomaterials display a lot of new phenomenon that
can be applied in solving various environmental and biological issues [110]. Nano-
materials have lots of advantages over other adsorbents and can also be modified
easily to enhance their selectivity for particular pollutant. Nanomaterials like carbon
nanotubes, graphenes, magnetic nanoparticles, zinc oxide nanoparticles, titanium
oxide nanoparticles, etc., have been used for this purpose [99]. Among numerous
developed nanomaterials, magnetic nanomaterials are playing an important role in
this field due to their easy separation compared to conventional methods like filtra-
tion and centrifugation. The biggest achievement of magnetic nanomaterials is in
the treatment of water pollution. In developing countries, access to safe water for
whole population is very difficult. In addition to that various industrial and agricul-
tural practices are continuously discharging harmful organic and inorganic toxicants
in the water streams that end up in drinking water supplies. Due to this, all living
creatures get affected, and exposure of these pollutants for long duration can cause
serious health problems that can result in death also. There is crucial need to develop
methods for removal of the toxic pollutants from the environment that are cheap and
eco-friendly.
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This chapter focuses on development of research over last five years for the
removal of toxic metal ions and dyes from environment using magnetite carbon
nanomaterials.

2 Magnetite Nanomaterials

Magnetite nanomaterials are highly used in the removal of various contaminants due
to their greater stability and reusability.Apart from their inherentmagnetic properties,
another advantage is their easy functionalization and high adsorption capacity which
is due to small the size of nanoparticle and high adsorption surface area. Studies have
revealed that decrease in size frommicro- to nanolevel have increased the adsorption
capacity approximately 62 times. However, too small size can create problem in
magnetic separation because of their Brownian motion and so 10–50 nm size of
iron oxide is generally employed for the remediation purpose. Shape of magnetic
nanomaterials decides their application in both environmental and medicinal fields.
Spherically shaped are efficiently used in environmental remediation due to ease
in production at large scale, whereas cuboid shaped are playing vital role in the
catalysis, storage and magnetic resonance imaging (MRI) area [81].

2.1 Synthesis of Magnetite Nanomaterials

There are four different methods for the synthesis of magnetite nanomaterials which
are shown in Fig. 1 [76]. Each route has their own advantages and disadvantages
in terms of factors like yield, reaction time, variation in size distribution, control
over shape and crystallinity. All the methods employed for production use an iron
precursor which is either thermally degraded or reduced in their solution.

Co-precipitation Method: It is the most conventional way for synthesis of
magnetic nanoparticles at commercial level. In this method, precipitation of
magnetite is done by using strong basic conditions in an aqueous solution containing

Fig. 1 Synthetic methods for magnetite nanomaterials
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Fe (III) and Fe (II) ions. The shape and size of the nanoparticles can be controlled
by adjusting ratios of Fe ions, salt anions and pH. Generally, iron oxide nanoparticle
diameter size can be varied from 2 to 17 nm using this method. Further functional-
ization can be performed immediately after their formation. The main advantage of
this method is high yield in less time.

Hydrothermal Method: This method is employed for the synthesis of highly
crystalline iron oxide nanomaterials. Here, iron salts with stabilizing surfactants are
placed in autoclave and heated for certain period of time depending on the required
size of the nanoparticles. It has the advantage of narrow range of size distribution
with good control over the shape. Its only disadvantage is long reaction periods.

Microemulsion Method: This technique utilizes water, surfactant (dodecylben-
zenesulphonate) and oil (xylene) for the formation of emulsion that helps in synthesis
of magnetic nanoparticles. Here, similar-sized droplets are produced that gives iron
oxide of almost same size stabilized by the surfactant. Reverse emulsion (water in
oil) is mostly used for the synthesis of nanoparticles. Its advantage is that it gives
reproducible characteristics to the particles if same conditions are repeated. The only
disadvantage is that this method requires larger amount of solvent and yield is low.

Thermal Decomposition Method: In this method, iron salt (Fe(CO)5, Fe(III)
acetyl acetone, and Fe(acac)3) are thermally degraded with suitable surfactant in a
high boiling solvent using an inert atmosphere. Various properties like size distribu-
tion, crystalline nature, shape and magnetism of the material can be controlled by
using this technique. This method has additional advantage of forming mixed metal
oxide nanoparticles with good control over shape and size.

2.2 Modification of Magnetite Nanomaterials

Magnetic nanomaterials produced fromabovemethods encounter a commonproblem
of aggregation. These small nanoparticles have inherent magnetism which is much
stronger than normal van der Waals forces of attraction that result in aggregation.
This decreases the surface area for adsorption and reduces its efficiency. Furthermore,
aggregation results in uneven distribution of adsorbent in the solution that also affects
the adsorption capacity. To enhance the stability and selectivity of these nanomate-
rials, further modification is required, which helps in giving selective response to a
particular pollutant. Themodification or encapsulation can be donewith both organic
and inorganic nanomaterials as shown in Fig. 2 [108]. Generally, coating with inor-
ganic material solves the above problem efficiently. As organic material stabilized
iron oxide can leach out during desorption processes and can cause aggregation due
to large size. So it is beneficial to functionalize it with inorganic materials like silica,
metal and carbon nanomaterial, as these materials are chemically inert that helps
in dispersion and solves the problem of aggregation. Silica-modified iron oxide has
drawback of losing magnetic properties to a drastic level that is not desirable, while
the composite formed with metal nanoparticles is not economically appreciated.
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Fig. 2 Modification of magnetite nanomaterials

Table 1 Comparison of various modified magnetite nanomaterials

Modification Advantages Disadvantages

• Organic • Biocompatibility, dispersibility • Aggregation, leach out

• Silica • Easy modification, good
dispersibility

• Huge loss of magnetism

• Metal/metal oxide • Low loss of magnetism,
chemical inertness

• Costly

• Carbon
nanomaterials

• Low loss of magnetism,
biocompatible, thermal and
chemical stability

• Less development in
modification procedure

Magnetite carbon nanomaterials show high potential in both biological and envi-
ronmental applications. They are biocompatible with high thermal and chemical
stability. Research has shown that carbon-encapsulated Fe3O4 nanoparticles gave
good adsorption capacity for toxic metal ions and organic pollutants due to incor-
poration of additional terminal groups. Mostly, magnetite carbon nanomaterials are
synthesized through hydrothermal method by using suitable surfactants for stabi-
lization [127]. The advantages and disadvantages of various modified magnetite
nanomaterial are given in Table 1.

3 Magnetite-Modified Carbon-Based Nanomaterials

Carbon nanomaterial has different morphologies which include spherical, tubular
and sheet like structures, e.g. fullerenes, carbon nanotubes and graphene as shown in
Fig. 3 [31]. From last decade, there is a huge focus on these materials for their excel-
lent sensing and conductive properties. They are being efficiently used in making
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Fig. 3 Carbon-based nanomaterials

portable devices for analytical purposes. Magnetite-modified carbon-based nanoma-
terials are being efficiently used in environmental remediation due to easy separation
and improved adsorption capability. The unique physical and chemical characteristics
of different carbon nanomaterials are discussed below individually [28].

Fullerenes: Fullerene consists of 12 pentagons and 20 hexagons where each
carbon is attached to three other carbons which are also known as buckyball due to its
spherical arrangement. After the discovery of C60, other fullerenes were synthesised
C70, C78 and smaller ones like C36, C28, etc. in 1990s. They show good mechanical
strength and can reshape even after applying high pressure.Apart from this, they show
excellent optical properties due to delocalisation of free electron in their p-orbital.
So they are opted as an alternative in solar cells for the production of electricity.
Fullerene is scarcely used for the purpose of treating environmental pollutants.

Graphene: It is a two-dimensional sheet formed by connected hexagonal structure
of sp2-hybridised carbon atoms. Due to delocalization of electron, they show high
conductivity and good mechanical strength. Its wide application is due to its low cost
and used in various applications such as fabrication of electrodes, dye-sensitized solar
cells (DSSCs) and batteries. Graphene and functionalized graphene (e.g. graphene
oxide (GO), reduced graphene oxide, etc.) with high surface area are also used for
environmental monitoring using different techniques.

Carbon Nanotubes: CNTs are considered as most popular form of carbon nano-
materials in recent decades as they show high conductivity, rigidity and elasticity.
They were firstly introduced in 1991 by Iijima. In the beginning, multiwalled carbon
nanotubes (MWCNTs) were synthesized consisting of many rolled graphene sheets
in a concentric manner. They possess tube like cylindrical shape with very small
diameter compared to its length. Then, Iijima and his co-worker, in 1993 were able to
observe single-walled carbon nanotubes (SWCNTs)with smaller diameter compared
to MWCNTs. CNTs can show properties of both semiconductors and metals based
on the chirality, diameter and electronic density states [124].
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4 Environmental Remediation

Environmental remediation is a way or method to remove pollutants from the envi-
ronment which are present in the environmental sources like water, soil, air, etc.
The pollutants are divided into two categories, organic and inorganic pollutants. The
different types of environmental pollutants are shown in Fig. 4 [24].

4.1 Methods for Treatment of Pollutants

Variousmethods had been used for environmental remediation like coagulation–floc-
culation, photocatalytic degradation, oxidation, electrochemical treatment, adsorp-
tion, etc. as shown in Fig. 5 [100]. These methods are highly active for removal of
pollutants like heavy metal ions, dyes, pesticides and other toxic chemicals.

Coagulation–flocculation: It is a very old method for removal of pollutants. In
this method, the pollutant is treated with a coagulating agent, which later can be
collected easily. The main drawback of the method is sludge formation [119].

Photocatalytic degradation: It is the method in which the pollutant is treated
by a catalyst which degrades the pollutant with large molecular structure like dye,
pesticides into less harmful products and by this reduces the impact of the pollutant.
The limitation of the method is the production of by-products.

Oxidation: It is another method of treating pollutants, as in this method the pollu-
tants are treated with oxidizing agents like H2O2, nitric acid etc. through which the
pollutants get oxidised or degrade to a less toxic compound. The major drawbacks

Fig. 4 Types of environmental pollutants
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Fig. 5 Treatment methods for environmental remediation

of this method are the requirement of large amount of oxidizing agent which makes
the process costly, and it is also not environmentally friendly [90].

Electrochemical: This method is based on the phenomenon in which organic
pollutants which are redox active at electrode interface can be converted into less
toxic forms. Appearance of the particular peak at certain potential is used for anal-
ysis. The method has several advantages like high accuracy, low detection limit and
reproducibly. The only drawback of the method is high cost of electricity [66].

Adsorption: It is the most widely used method to remove inorganic pollutants like
toxic metal ions as well as organic pollutants like dyes, pesticides and other organic
chemicals. The adsorption process is based on surface phenomenon in which an
adsorbent provides a surface on which an adsorbate, i.e. pollutant get adsorbed.
The attraction between adsorbate and adsorbent can be due to physical or chem-
ical bonding like electrostatic attraction between positively charged adsorbate and
negatively charged adsorbent or vice versa, van der Waals forces, H-bonding, π-π
interaction, etc. Various adsorbents like sand, silica, alumina metal dust, activated
carbon, chitosan, biosorbents like tea waste, coconut shell, etc., have been used to
attracts the toxic metal ions or organic pollutants like dyes, pesticides, etc. [114].
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4.2 Detection Techniques Used for Monitoring
Environmental Pollutants

The detection techniques used for the analysis of organic and inorganic pollutants are
different. Detection of inorganic pollutants is generally done by using atomic absorp-
tion spectroscopy (AAS) like flame atomic absorption spectrophotometry (FAAS),
graphite furnace atomic absorption spectrophotometry (GFAAS), electrothermal
atomic absorption spectrometry (ETAAS), inductively coupled plasma atomic optical
spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS)
and electrochemical. AAS is an optical method of analysis of pollutants like metal
ions present in the environmental samples even at trace level. It includes various
types depending on the heating source like FAAS which has flame as heating source,
GFAAS which has a graphite furnace as heat source and ETAAS which has elec-
trical heating source. ICP-OES is another technique for the detection of chemical
elements in which the inductively coupled plasma is used to generate excited ions or
atoms that emit the electrochemical radiations which corresponds to the wavelength
of particular element. The intensity of emission gives the concentration of element
in the sample. ICP-MS is a hyphenated technique in which separation is done by
inductively coupled plasma and detection of analyte occurs with the help of mass
spectrometry. The two techniques together give highly accurate results even with low
quantity of analyte. Organic pollutants due to large size and high conjugation absorb
in visible region. So, their determination is possible using UV-visible spectropho-
tometry, chromatography-based hyphenated techniques like gas-chromatography-
mass-spectrometry (GC-MS), liquid-chromatography-mass-spectrometry (LC-MS),
high-pressure liquid chromatography (HPLC), etc. as shown in Fig. 6 [117]. These
techniques have their own advantages and disadvantages according to pollutant and
material used for removal. UV-Visible spectrophotometry is the simple, inexpensive
and widely used detection technique for various pollutants. This technique is based
on absorption of particular wavelength when passed through the analyte. The change
in absorbance corresponds to change in concentration [48]. Gas chromatography is

Fig. 6 Detection techniques used in monitoring environmental pollutants
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highly compatible with mass spectroscopy and gives highly accurate and precise
results. This technique can be used to separate volatile and non-volatile components
in the mixture, and mass spectrometry confirms the molecular structure. LC-MS is
another hyphenated technique in which separation occurs via liquid chromatography
andmass spectrometrywhich helps in recognition of separated products [145].HPLC
is the chromatographic technique in which liquid is used as mobile phase and separa-
tion of analyte from an environmental sample takes place on a column. The detection
is done by either UV light source (HPLC-UV) or mass spectrometry (HPLC-MS).
This technique has advantages like high separation tendency and precise results. The
limitation of this technique is the cost and use of organic solvents [87]. Hyphenated
flow-injection technique is an advance technique which gives much better results at
low cost. It is used mainly for preconcentration of analyte even at ppb level. This
technique can be hyphenated to any detection technique like with FAAS, ICP-OES,
UV-Visible spectrophotometer, etc. for metal and other organic pollutants detection
[117].

5 Role of Magnetite Carbon Nanomaterial in Removal
of Toxic Metal Ions and Organic Pollutants

Excessive production andmining activities are continuously raising the concentration
of toxic metals to alarming level in the environment. These toxic metals are non-
biodegradable and get accumulated in nature which finally enters our food chain.
These toxic metals like lead, cadmium, mercury, chromium and arsenic have high
tendency to interfere with biological processes due to their high complex forming
tendency. This complex-forming tendency renders various active biomolecules like
proteins, enzymes and amino acids inactive leading to fatal diseases. Hence, there
is a crucial need for developing fast, easy to handle and environmentally friendly
methods to deal with environment pollution caused by these toxic metals [41]. The
general mechanism for the removal of above pollutants using carbon nanomaterials
is shown in Fig. 7 [39]. The removal of toxic metal ions usingmagnetic carbon-based
nanomaterials is discussed below.

5.1 Magnetite Carbon Nanomaterials for Monitoring Arsenic
in Environment

Inorganic compounds of arsenic have more toxicity than the organic ones. Arsenic
concentration is increasing in our environment by using it in the form of pesticide,
and also it was used in treatment for various diseases like asthma, syphilis, etc. Long-
time exposure of arsenic is from intake of food and water, where its concentration is
increasing due to above activities. Its exposure in the form of dust or fume in mining
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Fig. 7 Removal of pollutants using magnetite carbon nanomaterials

and industrial areas can lead to asthma or other respiratory diseases. Arsenic inter-
acts with thiol group of intercellular sites and affects various cellular processes like
mitosis and cell respiration. It can cause skin cancer and can affect various organs
like liver, where it can concentrate and affect various oxidation processes. It can also
block enzyme activity and transportation of glucose [95]. As perWorld Health Orga-
nization (WHO) guidelines, maximumpermissible limit for arsenic in drinkingwater
is 10 μg L−1 [128]. There are many regions where arsenic exceeds this level due to
geographical and industrial reasons. So, proper remediation methods are required to
prevent health hazards caused by arsenic. To detect and remove arsenic from envi-
ronment, huge efforts have been put by researchers such as Sahu et al. who developed
a reusable nanocomposite, ORMOSIL/Fe3O4/reduced GO for on-site arsenic reme-
diation in water. It showed a maximum adsorption capacity of 38 mg g−1 using
AAS, which was much higher than ORMOSIL and Fe3O4/reduced GO separately.
The adsorption process was following Langmuir model and kinetic study revealed
pseudo-second order [97]. Ye et al. synthesized three-dimensional Fe3O4/graphene
aerogels for the adsorption of arsenic ions. The different morphological techniques
showed 3-D structure where graphene is decorated with iron oxide with intercon-
nected structure. The good adsorption capacity of 40.04 mg g−1 using inductively
coupled plasma atomic emission spectroscopy (ICP-AES)was attributed to 3-D inter-
connected structure of the adsorbent. The kinetic study showed that rate of adsorption
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is of pseudo-second-order and follows Langmuir model. Apart from good adsorp-
tion capacity and easy separation, it is believed by authors that it can be also used in
other fields like sensors, catalysis, etc. [133]. Chen et al. have developed magnetic
MWCNTs by one-pot solid method instead of conventional tedious solvent methods.
The nanomaterial was able to adsorb both As(III) and As(V) with maximum capacity
of 24.05 and 47.41 mg g−1 by using ICP-OES. They concluded that their nanomate-
rial have highest adsorption capacities among other carbon-based nanomaterial for
arsenic due to oxygen containing groups [14]. Chen et al. synthesized magnetite
CNTs using a simple solid-phase method. It was further modified with glutathione
to enhance arsenic adsorption. They found that CNTs were not only supporting iron
oxide but also contributing in adsorption process. The maximum adsorption capacity
that was obtained using ICP-OES was 19.12 mg g−1 for As(III). They suggested that
the active adsorption sites are heterogeneous and can have practical applications [15].
The trend of using modified magnetic MWCNTs continued by Roy et al., and they
reported a nanocomposite of europium-doped magnetic graphene oxide and Au NPs
functionalized MWCNTs. It showed good adsorption capacity towards As(III) and
As(V) of 320 mg g−1 and 298 mg g−1, respectively. The system showed a detec-
tion limit of 0.27 and 0.99 μg L−1 with linearity of 0.99–100 μg L−1 and 2–85 μg
L−1, respectively, using square wave anodic stripping voltammetry (SWASV). The
sensor was applied for analysis of real samples from industrial areas with good
recovery (95–99%) [91]. An overview of analytical applications of magnetite carbon
nanomaterials for monitoring arsenic in environment is summarized in Table 2.

5.2 Magnetite Carbon Nanomaterials for Monitoring
Cadmium in Environment

Cadmium exposure is increasing due to anthropogenic activities like burning of
fossils, metallurgical industries and discharging the industrial waste directly into
water bodies from where it starts to enter our food chain. Also to meet the demands
of growing population, farmers are using fertilizers in huge amount which contains
high level of cadmium. Excess of cadmium in human can cause a fatal disease known
as Itai-Itai. Cadmium is found to affect DNA healing mechanism, cellular respira-
tion, activity of enzymes and antioxidants. It also affects the fertility of humans
and is considered highly carcinogenic. As per WHO guidelines for safe drinking
water, maximum permissible limit is 2 μg L−1 [128]. So monitoring of cadmium in
both environment and living organism is essential. There are a lot of techniques that
have been developed to detect cadmium at sub-ppb level in real environment condi-
tions like FAAS, ICP and electrochemical [83]. The treatment for the remediation
of excess cadmium in the environment has been done by researchers using various
magnetite carbon nanomaterials. Madannejad et al. prepared magnetic MWCNTs
modified with 8-hydroxyquinoline for the removal of cadmium. The magnetic sepa-
ration using external magnetic field avoids inconvenience related to centrifugation
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and filtration. The maximum adsorption capacity obtained was 60.2 mg g−1 at opti-
mized conditions using AAS. Furthermore, the applicability of the developed sensor
was tested in food and vegetable samples with good recovery [63]. Manoochehri and
his co-workers have reported dipyridylamine-functionalized magnetic MWCNTs as
nano-adsorbent for removal of Cd and other toxic metals. The Cd was determined
using FAAS with a very low detection limit of 0.1 μg L−1, linear dynamic range
of 0.3–120 μg L−1 and good repeatability (RSD of 7%). It was reported that the
magnetic MWCNTs modified with dipyridylamine gave good selectivity towards
the target ions. This method showed good applicability in tea leaf and drinking water
real samples by giving good recovery [65]. The trend of using magnetite CNTs has
been followed by Taghizadeh et al., they have functionalized magnetite MWCNTs
with 8-aminoquinoline and was applied for removal of Cd and other toxic metals.
After optimizing variables like adsorbent amount, extraction time and pH the system
showed a detection limit of 0.09 μg L−1, linear range of 0.3-100 μg L−1 and good
precision (RSD) of 4.1% for Cd(II) using FAAS. The system was tested using stan-
dard reference materials like seafood mix 02-2932 and LKSD-4 which showed little
variation [112]. Madannejad et al. have synthesized 8-hydroxyquinoline function-
alized magnetic MWCNTs for the determination of cadmium in food samples. The
modified adsorbent was found to be cost-effective and selective material for adsorp-
tion of cadmium because of its simple modification procedure. It was reported that
under optimized condition the system showed limit of detection of 0.12 μg L−1,
linearity over a range of 0.42–127 μg L−1 and RSD of 2.25% using ICP-AES.
The system was applied for determination of cadmium in food samples like starch,
cereals, tobacco and real water samples with recoveries ranging from 98 to 108.2%
[63]. Similarly, Xu et al. synthesized sensitive and cheap electrochemical sensor
for determination of both cadmium and lead simultaneously using nanocomposite
consisting MWCNTs, Fe3O4, chitosan and graphene composite. The sensor showed
a good detection limit of 0.1 μg·L−1 for cadmium using SWASV. The good sensi-
tivity is attributed to high surface area of graphene and excellent conductivity of
carbon nanotubes [131]. An overview of analytical applications of magnetite carbon
nanomaterials for monitoring cadmium in environment is summarized in Table 3.

5.3 Magnetite Carbon Nanomaterials for Monitoring
Chromium in Environment

Chromium has properties of being hard, lustrous and resistant to corrosion in air. It
has a great application in the field of metallurgy as by mixing of chromium in steel
gives properties like hardness and corrosion resistance. It is also used as catalyst in
making hydrocarbons aswell as in industries processes like dyeing, tanning of leather
and for treatment of wood. Its excessive use can increase the chromium concentra-
tion in the environment to alarming levels [122]. WHO limit for total chromium
in drinking water is 50 μg L−1 [128]. Chromium can enter our body, while having
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food, liquid or even through physical contact. The concentration of chromium in
air and the environment is usually very low, but due to above anthropogenic activi-
ties, the concentration level can raise which can cause health hazard like various skin
diseases for both humans and other animals. High levels of chromium inwater bodies
can lead to serious problems for fishes and other marine animals by affecting their
gills and fertility [118]. Chromium determination using magnetite carbon nanoma-
terials has been performed by various researchers as Fathi et al. developed magnetite
nanoporous graphene for efficient removal of chromium from water. The maximum
adsorption capacity of 43.5 mg g−1 was obtained using AAS. Adsorption process
followedFreundlichmodelwith pseudo-second-order kinetic. Thermodynamic study
revealed that the process was spontaneous and endothermic in nature. The author
finally suggested that the adsorbent has good potential and can be applied for treating
industrial wastewater [27]. Similarly, Islam et al. functionalized magnetite graphene
oxide with triethylenetetramine that was used for the removal of chromium using
FAAS. The maximum adsorption capacity of 16.4 and 9.6 mg g−1 was obtained
for Cr(VI) and Cr(III), respectively. The system was linear from 5 to 100 μg L−1

concentration having a low detection limit of 1.4 and 1.6 μg L−1 for Cr(VI) and
Cr(III), respectively. The method was able to speciate the chromium species and was
efficiently applied in real water samples [40]. Zhao et al. developed a nanocomposite
consisting diethylenetriamine, Fe3O4 nanoparticles and graphene oxide by one step
which was used to remove Cr(VI). The maximum adsorption capacity obtained was
123.4 mg g−1 using ICP-MS. The adsorption process followed Langmuir model with
pseudo-second-order kinetics [141]. Vu et al. synthesized magnetite graphene oxide
using co-precipitation method that was further encapsulated inside alginate beads.
The adsorbent was used for the removal of Cr(VI) and followed Freundlich model.
This nanocomposite material was able to remove Cr(VI) almost completely from
the solution, which was measured using ICP-OES. The author suggested that the
reduction in aggregation resulted in improved adsorption [120].

An overview of analytical applications of magnetite carbon nanomaterials for
monitoring chromium in environment is summarized in Table 4.

5.4 Magnetite Carbon Nanomaterials for Monitoring Lead
in Environment

Lead comes in the category of toxic heavy metals and has many industrial appli-
cations, so a complete ban on use of lead is not possible in near future. Lead is
being used in industrial processes like smelting, paints, batteries, book printing and
as anti-knocking agents in fuel. Lead enters our body either through water or by
ingestion of food. It can be easily absorbed through blood and reaches to various
parts of the body. It generally affects the immunity, nervous system, kidneys and
has potency to cause anaemia. Lead toxicity is more prominent in children as their
nervous system is in developing stage, and even a small dose can be fatal. The
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toxicity mechanism follows the displacing of essential metal ions like Ca, Fe and
Mg which further affect various biological processes essential for the body [126].
According to WHO, maximum permissible limit for Pb(II) in drinking water is 2 μg
L−1 [128]. But continuous activities like burning of fossils and industrial production
are causing an increase in the level which is hazardous. So developing efficient and
cheap methods for monitoring Pb(II) in water is highly appreciated. A lot of research
work has been published using nanomaterials for effective removal of lead [101].
Among them magnetite carbon nanomaterials are having additional benefits of easy
separation and high adsorption capacity over other as discussed below.

Lead determination in the environment using magnetite carbon nanomaterials
has been performed by various researchers as Jiang et al. synthesized magnetic
MWCNTs nanocomposite having thiol and amino-functional groups introduced by
reacting ammonium ferrous sulphate, ammonium ferric sulphate, trimethoxysilyl
propanethiol and hydrazine. The nanocomposite was characterized by TEM, XPS,
XRD and SEM revealing coating of hydrazine and trimethoxysilyl propanethiol
(MPTs) on the surface of MWCNTs. The maximum capacity obtained was
169.89 mg g−1 at optimized conditions using AAS. The thermodynamic study shows
that the system follows Freundlich model with pseudo-second-order kinetics and
is exothermic in nature [42]. Ranjan et al. synthesized MWCNTs filled with iron
oxide to impart magnetic properties. Further, MWCNTs were introduced with amine
groups to covalently immobilize cyanate hydratase and characterized with FT-IR.
The modified magnetic nanomaterials have long-term stability and were found to
efficiently remove many toxic ions including Pb(II) whose concentration was deter-
mined usingAAS. It was able to reduce 34.48%Pb(II) ions simultaneouslywith other
ions [84]. Ren et al. preparedmagnetic nanocomposite consisting of triethanolamine,
Fe3O4 and graphene oxide. The characterization confirmed the loading of Fe3O4 on
graphene oxide, which are further encapsulated with triethanolamine. The maximum
adsorption capacity obtained was 121.5 mg g−1 under optimized conditions using
ICP. The thermodynamic studies revealed that the adsorption process was sponta-
neous and exothermic in nature. The adsorption kinetics was found to be of pseudo-
second order [88]. Similarly, Mahmoudian et al. synthesized magnetite-reduced
graphene oxide nanosheet composites having spherical morphology using simple
hydrothermal method. Electrochemical sensor was developed by fabricating the
nanocomposite over GCE. The system showed good detection limit of 0.082 nM for
lead at optimized conditions using differential pulse voltammetry (DPV). The high
conductivity of the electrochemical sensor is due to presence of small band gaps
in reduced graphene oxide. In addition to this, the sensor showed a linear range of
0.05–1.5 nM [64]. Baghayeri et al. fabricated glassy carbon electrode with magnetic
graphene oxide functionalized with poly(amidoamine) dendrimer and used it for the
determination of lead. A good detection limit of 130 ng L−1 was obtained using
SWASV. Interference due to other ions was negligible, and the sensor was able to
detect lead simultaneously with other ions in real water samples [8]. An overview
of analytical applications of magnetite carbon nanomaterials for monitoring lead in
environment is summarized in Table 5.
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5.5 Magnetite Carbon Nanomaterials for Monitoring
Mercury in Environment

Mercury is one of the most toxic elements present on earth, and it exists in various
forms. Inorganic salts of mercury are not that much toxic as they only affect the
kidney and gastrointestinal tract while organic mercury, where mercury is bonded
to methyl, ethyl and phenyl groups, is highly toxic. They easily react with thiol
groups of biomolecules in the body which interferes with the cellular and subcellular
processes. It was also found that they interrupt DNA functioning, protein synthesis,
heme synthesis and central nervous system. Exposure to mercury can be due to its
application in dental treatment, ingestion of fish from polluted area, volcanic activi-
ties, coal burning and mining activities. Generally, mercury is found in its elemental
form which after entering water bodies is converted to organic mercury by microor-
ganisms which is later taken as food by small fishes and enters our food chain [12].
According to WHO, maximum permissible limit for mercury in drinking water is
2 μg L−1 [128]. There is an urgent need of developing new methods for removing
the mercury, and various magnetite carbon nanomaterials have been used for this
purpose. Recently, a lot of development in using magnetite carbon nanomaterials has
been evolved for treatment ofmercury in the environment as Sadegh et al. have devel-
oped magnetic CNTs showing entangled network of Fe3O4 clusters and oxidized
MWCNTs with high specific area of 92 m2 g−1. The maximum adsorption capacity
obtained was 238.78 mg g−1 under optimized conditions using AAS. The adsorption
follows Langmuir model, and the kinetics of adsorption was found to be pseudo-
second order. They suggested that such a high adsorption capacity can have good
application in the environment remediation field [94]. Seidi and Fotouhi synthesized
magnetic graphene oxide functionalized with polythiophene for the determination
of mercury using cold vapour—atomic absorption spectroscopy (CV-AAS). At opti-
mized conditions, the adsorbent showedadetection limit of 0.025μgL−1 with a linear
concentration range from 1 to 85 μg L−1. Finally, its applicability was checked in
different seafood samples for the determination mercury [102]. Liu et al. synthesized
magnetite graphene oxide functionalized with ethylenediamine using simple one-pot
solvothermal method. The adsorbent showed a maximum capacity of 127.23 mg g−1

for Hg and easy separation using FAAS. It was concluded that the graphene oxide
sheets helped in preventing in agglomeration of Fe3O4 and good dispersion was
obtained for efficient removal of mercury. The adsorption kinetics was found to
follow pseudo-second order and Langmuir model. Thermodynamic studies revealed
that the adsorption process was spontaneous and endothermic in nature [60]. In
another work, Alvand and Shemirani synthesized a nanocomposite containing SiO2

and magnetite graphene quantum dots and concluded that the magnetite silica was
covalently bonded to graphene quantum dots. The prepared nanocomposite showed
strong fluorescence which is selectively quenched by Hg(II) ions due to electron–
hole recombination. The sensor was linear up to concentration range from 0.1 to
70 μM with a detection limit of 30 nM. It was also suggested that high adsorption
capacity (68 mg g−1) using ICP-AES is due to high adsorption area and binding sites
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Table 6 Analytical applications of magnetite carbon nanomaterials for monitoring mercury in
environment

Magnetite carbon
nanomaterial

Techniques pH Temp.
(°C)

Contact
time
(min)

Adsorption
capacity
(mg g−1)

References

Magnetite carbon nanotube-based nanocomposites

Fe3O4/MWCNTs AAS 7 25 60 238.78 [94]

Fe3O4/MWCNTs FAAS 3 25 60 172.83 [35]

Fe3O4/MWCNTs GC-AFS 3.9 25 30 – [89]

Magnetite graphene-based nanocomposite

Ternary hydrosulphonyl-deep
eutectic solvent/magnetic GO

Atomic
fluorescence
spectrometer

6 25 60 215.1 [17]

Ethylene diamine tetra-acetic
acid/magnetic GO

AAS 7 25 50 268.4 [20]

Ag NPs/Fe3O4/reduced GO CV-AAS – 100 180 – [62]

Chitosan/Mercapto/magnetic
GO

CV-AAS 6.5 28 10 – [144]

Polymerized
thiophene/Fe3O4/GO

CV-AAS 6.5 – 21 1 [102]

Ethylenediamine/Fe3O4/GO FAAS 5.3 25 10 127.23 [60]

SiO2/Fe3O4/graphene
quantum dots

ICP-AES 6 25 1 68 [5]

Fe3O4/Reduced GO SWASV 5 29 2 – [130]

of graphene quantum dots. The nanocomposite was easily separable using external
magnetic field and can be reused by treating with EDTA solution. Finally, it was
successfully tested in real water samples [5]. Xiong et al. synthesized a nanocom-
posite consisting of Fe3O4 and reduced graphene oxide using one-pot synthetic
method for the simultaneous detection of toxic metals including mercury. The anal-
ysis of mercury concentration was done using SWASV under optimized conditions.
Finally, the applicability of the fabricated sensor was tested in soil samples with
good recovery [130]. An overview of analytical applications of magnetite carbon
nanomaterials for monitoring mercury in environment is summarized in Table 6.

5.6 Magnetite Carbon Nanomaterials for Monitoring Dyes
in Environment

Dyes are organic compounds used to colour fabric, leather, paper, cosmetics and phar-
maceuticals and can be classified as natural and synthetic dyes. Synthetic azo dyes
are used mostly in industries, and they are discharged in nearby water bodies after
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use. The effluent contains 8-10% of dye which is highly toxic and affects the entire
ecosystem for aquatic organisms once enter into food chain. The magnetite carbon
nanomaterials have become popular due to the large surface area and easy separa-
tion of adsorbent by magnetic nanoparticles. Various dyes have been removed using
differentmethods like adsorption and photocatalytic degradation of dyes.Adsorption
is quite simple and provides wide range of adsorbent and easy modification of nano-
materials. The use of magnetic carbon nanotube-based nanomaterial is increased
rapidly, and many researchers like Kerkez and Bayazit synthesized magnetite deco-
rated MWCNTs for removal of Malachite Green and rhodamine B dyes. The various
factors which influence adsorption like pH, contact time and temperature were opti-
mized, and the maximum adsorption capacity was 55.25 and 37.04 mg g−1 for MG
and RhB dyes, respectively, at pH 6 and 25 °C [46]. The adsorption of two dyes
was best described by kinetic pseudo-second-order model. Cheng et al. modified
magnetic carbon nanotubes with cyclodextrin and used for the removal of Methy-
lene Blue dye. β-cyclodextrin (CD) was grafted on the surface of carbon nanotube by
the reduction of oxidized CNT with the help of hydrazine hydrate. The modification
improved the adsorption capacity to 196.5 mg g−1 for Methylene Blue. The effect
of temperature was also studied, and it was found from thermodynamics parameters
like�G° and�H° that the reaction was spontaneous and endothermic in nature [18].
Magnetic graphene oxide-based nanocomposites have been evolved as an effective
adsorbent used for dye removal by many researchers like Zhou et al. synthesized
Fe3O4-embedded graphene oxide nanocomposite by co-precipitation method. The
prepared magnetic nanomaterial was used for adsorptive removal of Methylene Blue
dye. The factors affecting adsorptions like pH, contact time and temperature were
optimized, and it was found that the maximum adsorption (246 mg g−1) occurred at
pH 10 and temperature 20 °C in 5 min of contact time [143]. Modified grapheme-
based nanomaterials were also used for adsorption of dyes as Lin and Chen synthe-
sized arginine-capped iron oxide/reduced graphene oxide nanocomposite by a simple
method in which arginine used as reducing agent and capping agent. The obtained
nanocomposite was successfully applied for the removal of Crocein Orange G and
acid green 25 dyes. The optimum pH, contact time and temperature were, 2, 2–
3 h and 30 °C, respectively. Under optimized conditions, the adsorption capacity
obtained was 131.6 and 185.2 mg g−1 for Crocein Orange G and acid green 25 dyes,
respectively. The force of attraction took place during adsorption was reported as
electrostatic interaction, van der Waals forces or π-π interaction between the dyes
and the magnetic nanocomposite [58].

Photocatalytic degradation has its own advantages like no production of sludge,
reuse of catalytic material and less use of reagents; so many researchers studied
photocatalytic degradation of dyes as Tarigh et al. prepared magnetic multiwalled
carbon nanotube–TiO2 nanocomposite and used it for photocatalytic degradation
of Malachite Green dye. The results reveal that the dye degradation using magnetic
MWCNTs-TiO2 nanocomposite took place at pH 5 under UV irradiation for 240min
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and the catalyst showed high reusability [115]. Photocatalytic degradation ofMethy-
lene Blue dye using graphene oxide–metal oxide (TiO2/Fe3O4)-based nanocompos-
ites was studied by Benjwal. The complete dye degraded in just 5min under UV-light
[11]. An overview of analytical applications of magnetite carbon nanomaterials for
monitoring dyes in environment is summarized in Table 7.

6 Conclusion and Future Perspectives

It is clear that the complete ban on the use of these toxic pollutants is not possible due
to lack of other alternatives. So, the best way to preserve our eco-system is either by
reducing their use or by remediation. The magnetite carbon nanomaterials prepared
using different methods as discussed in the chapter have shown great possibilities
in remediation of the environmental problems. The cost-effective synthesis not only
limits their application in treatment of wastewater as it is extended to food samples
also. It is evident from the above discussion that one of the major factors in reducing
the cost is its easy separation with the help of external magnetic field. Functionaliza-
tion of thesemagnetite carbon nanomaterials has resulted in improved selectivity and
dispersibility for effective removal of pollutants. They have been widely used for the
treatment of both organic and inorganic pollutants simultaneously. There is already
a huge development in techniques for the quantification of these toxicants which
have their own drawbacks like high cost, bulky, require expertise for conducting
analysis, etc. In future, more emphasis can be given on further development of
such techniques. The nanocomposites with high adsorption capacity, recyclability,
chemical and thermal stability should be prioritized accordingly for their wide-scale
application. Development of these materials for the removal of other pollutants like
radionuclides is still under progress and requires more effort. Further, more devel-
opment is required in treatment of other environmental issues like air pollution and
oil spillage in oceans. Finally, magnetite carbon nanomaterials functionalized with
different functional groups possess huge potential to deal with current and future
environmental issues.
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Volatile Organic Compounds Detection
Using Carbon Nano Composites

Bhupinder Kumar, Vaneet Kumar, Saruchi, and Ashvinder Kumar Rana

Abstract Volatile organic compounds (VOCs) are the compounds carrying many
adverse and ill effects to the environment as well as human beings. There are a variety
of compounds that come under the name of these compounds (VOCs). Depending
upon the nature of these compounds, VOCs can havemany harmful effects on human
health which may be short term or long term. Some health effects of these VOCs
are throat infection, deep pain in head, coordination lose, a feeling of sickness and
vomit, liver and kidney spoil, and damage of central nervous system. Some VOCs
can also cause carcinogenic as well as toxic effect in animals and human being.
Hence, it is the need of hour to remove such potentially harmful chemicals from
our environment. In order to achieve this goal, various removal/detection techniques
and applications have been discussed in this chapter. These techniques may be very
helpful for reduction in toxic materials from the environment. An extensive literature
survey has been done for completing this task.

Keywords VOCs · Carbon Nano Tuble · Composites · Environment

1 Introduction

For a healthy life, we human beings require a healthy and clean environment but
as we develop in the field of science and technology, the problems associated with
it are also growing day by day. Hence, in today’s era, we are surrounded by very
dangerous and harmful chemicals which in turn deteriorate our health day by day.
There is a variety of the most affecting compounds present which can be collectively
named as volatile organic compounds (VOCs). Various severities have been directly
linked with these compounds like toxicity, mutagenicity, and carcinogenicity which
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can play a dominating role for being an unadorned hazard to human health and
our ecosystem. VOCs are composed different chemicals which are simple as well
complex and present in our environment as gases and vapors; these compounds can be
classified as methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, acetone,
toluene, xylene, and compounds containing halogens like 1,2-trichloroethylene, 1,2-
dichlorobenzene, and chlorobenzene [1–10]. It is the need of the hour to reduce
such harmful chemical from the environment to make our environment suitable for
us. We can see the increasing concentrations of VOC in the environment because of
modernization and industrialization. Sources of VOCs in our environment are human
activities and natural emissions. There aremany processes such as buildingmanufac-
turing, industrialized processes, interior generation, and transportation from which
a large concentration of VOCs has been generated [11]. One of the largest emitters
of VOCs is petrochemical industries such as butane, propene, isobutene, alcohols,
ketones, benzene, toluene, xylene, chlorinated compounds, and carcinogenic poly-
cyclic aromatic hydrocarbons (PAHs) can also be generated in large amounts by
industry as described by Yen and Horng [12]. The localities near such petrochemical
plants aremore prone to the adverse health effects caused byVOC emission.Wu et al.
in [13] found adverse health effects caused by VOCs such as irritation in skin, bluish
skin, violent behavior, environmental toxicity, cancer, failure of kidney, damage of
liver, brain injure, and breathing problem. The presence of VOCs in atmosphere even
at low concentration 1 ppm may cause ozone layer depletion, climate change, global
warming, acid rain, and photochemical smog formation [14]. These effects do not
only harm human beings and their health, but also harm biodiversity of environment,
ecosystems such as marine life, crops, and vegetation [15].

In this chapter, we have used different carbon-based nano materials for removal
of VOCs from the environment. It has become center of attention in growing new
techniques to extract VOCs from interior and exteriors due to supple properties of
nanocarbon-based materials. To protect our environment from the adverse effects,
the removal of VOCs is therefore very important. Therefore, this chapter discussed
various removal techniques and applications.

2 Nanocarbon-based composite materials

2.1 Volatile Organic Compounds Removal Using Carbon
Nanofibers

Carbon nanofibers (CNFs) have attracted the interest of researchers of various fields
due to their unique physicochemical and electrical properties [16–18]. Traditionally,
CNFS have been used for the fabrication of polymer composites through disper-
sion technique [19]. But nowadays, researchers are also focusing their attention on
the utility of CNFs in the adsorption of volatile organic compounds (VOC) such as
alkanes, aromatics derivatives, and chlorinated hydrocarbons present in air. Since
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different VOC molecules have different molecular structure and polarity, so the
adsorption capacity of CNFs might be affected by VOCs and its different properties.
In general, the activated CNFS shows better properties than un-activated one.

CNFs are hydrophobic fibers with diameter ranging from 50 to 200 nm and have
confined number of functional groups onto its surface. So, the surface of carbon
nanofibers has been tailored by various researchers as per the applications demands.
Bikshapathi et al. [20] have doped carbon nanofibers with Fe particles using different
surfactants such as sodium dodecyl sulfate (SDS), tri-noctylphosphine (TOPO), and
triton X-100, with an aim to adsorb carbon tetrachloride from atmospheric air. In
this study, they reported that the prepared Fe-CNFSDS samples were very effective
for adsorption of VOC.

Ahmed et al. [21] synthesized carbon nanofibers (CNFs) through nickel ion (Ni2+)
impregnation of oil palm kernel shell-based powdered activated carbon (PAC) by
using acetylene as carbon source. For the successful dispersion of Ni2+ catalyst, they
sonicated nickel (II) nitrate hexahydrate in acetone for the achievement of fruitful
development of CNF. Various compositions of Ni2+ catalysts were examined and
at 3% Ni2+(w/w), and in this case they get the best growth of CNF. They have
characterized samples by using spectroscopy techniques like FESEM and TEM and
reported PAC-CNF graphitic structure, surface area of BET as 836.7 m2/g, and zeta
potential was −24.9 mV [21].

In order to increase the performance of activated carbon (AC) for detection of
VOCs, their composites with carbon nanofiber (CNF) were prepared by Jahangiri
et al. [22]. They firstly activated the carbon by impregnating with a nickel nitrate
catalyst followedbydepositionof carbonnanofibers (CNF)directly on theACsurface
using catalytic chemical vapor deposition technique. Deposited CNFs were then
activated by CO2 to reclaim the surface area and micropores. Adsorption capacities
of AC, AC/CNF, and CO2 activated AC/CNF composites for the VOCs removal
have been also evaluated and were found better in case of AC/CNF activated by
CO2 followed by AC and AC/CNF. A high adsorption capacity for activated carbon
nanofibers (ACNFs) as compared to activated carbon fibers has been reported by Bai
et al. [23, 24]. They synthesized the ACNFs by electro spinning of polyacrylonitrile
solutions followed by steam activation process. SEM, X-ray spectroscopy, and N2

adsorption at 77 K are the different technique to characterize ACNFs. The elevated
adsorption capacity of ACNFs for VOCs is compared to activated carbon fibers
(ACFs), because of slighter width and further specific available adsorption sites
on the surface. Effect of CNFs surface modification onto adsorption of different
VOCs such as n-decane, cyclohexane, benzene, toluene, dichloromethane (DCM),
trichloroethylene (TCE), and tetrachloroethylene (TTCE) has also been evaluated
by Cuervo et al. [25]. Capacity and enthalpy of adsorption were found out to be
decreased after the oxidation of CNFs using HNO3 as oxidizing agent.

Young-Wan and Gil-Young [26] have also evaluated the adsorption capacities of
CNFs synthesized by electro spinning of poly acrylic nitrile (PAN) and cellulose
acetate (CA) solution. The relative ratios of PAN and CA solution were varied as
9:1, 8:2, 7:3 (PAN:CA) by weight. They reported increase in adsorption performance
of resulted CNFs with increase in CA contents up to 20%, whichmay be due to better
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pore size and after that decrease in adsorption performance. Furthermore, the CNFs
prepared by using 20% (8:2 by wt.) of CA contents have been also found to have
better adsorption capacities as compared to neat PAN and CNFs synthesized in the
ratio of 9:1 and 7:3 (PAN:CA) by weight.

Lee et al. [27] have also synthesizedACNFs by first stabilization of PANnanofiber
in air from temperature ranging from 37 to 270 °C at heating rate of 0.5 °C/min, in
order to construct infusible ladder form, followed by carbonization at 600 °C for 1 h
in the presence of steam and He gas. The steam was added in the humidity range of
0–90% into the helium gas flow with an aim to produce ACNFs of controlled micro-
porosity and sufficient nitrogen atom containing groups, which act as highly effi-
cient adsorption sites. The ACNF thus synthesized has been found to have enhanced
capacity in formaldehyde removal than the conventional ACF in humid atmosphere.

The amount of nitrogen contents as well as porosity on the adsorbent is the most
decisive factorwhich affects the capacity of adsorption of formaldehyde.BET surface
area onto ACNFs has been found to increase with the increase in relative humidity
percentage during activation and more homogeneous micropores 94.7% were also
found when relative humidity reached 90%.

The sensitive coating formed by the mixture of poly vinylidene fluoride (PVDF)
and active carbon electro spun nanofiber was deposited by Zamarreno et al. onto
gold-coated screen-printed PZT cantilevers for the detection of VOCs [28] The larger
SSA of carbon nanofibers in the sensitive coating has resulted in maximized surface
interaction and hence better diffusion of the VOCs molecules in sensitive layer.
On exposure of sensitive coating to VOCs, the absorption and desorption processes
induce shifts in the cantilever resonance frequency value and resonance shift was
observed on exposure to acetone.

2.2 Adsorption of Volatile Organic Compounds Using
Graphene

Graphene oxide is itself a hydrophilic material [29]; however, graphene on the other
hand shows hydrophobic character and in aqueous solutions it undergoes agglomer-
ation to form graphite via Van der Waals interactions [30]. The ability of graphene
derivatives to undergo interactions with VOCs depends upon number of factors such
as density of π electrons in each of the interacting species, their structure and geom-
etry, and degree of covalent functionalization [31, 32]. Greater is the number of
aromatic rings in the molecules of adsorbate, more will be π − π interactions with
graphene derivatives (adsorbents), and hence, adsorption will be better.

Also, graphene has an impressive theoretical specific surface area (SSA) of
2630 m2g−1, which makes it a potential candidate for adsorption of VOCs [33].
In general, larger the SSA, more will be number of adsorption sites, and hence,
better will be adsorption of VOCs. The SSA can be easily retailored by different
chemical reactions that will control the surface characteristics, such as the number
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of oxygen groups, and can be fabricated by using tape [34], chemical vapor deposi-
tion technique Reina et al. [35], hydrothermal processes Xu et al. [36], etc. Therefore,
graphene has been considered to be a gifted adsorbent material due to its large SSA,
availability of a large number of production techniques, and ease with which it can
be easily modified. Various chemical modifications techniques have been adopted
by different researchers for surface modification of graphene.

Lim et al. [37] have used both graphene oxide (GO) powder and thermally
expanded graphene oxide powder (TEGP800, TEGP500, and TEGP200 samples),
with amesoporous structure, to adsorb VOCs such as toluene and xylene. Polypropy-
lene filter was used for adsorption test, filled with adsorbents (0.25 g). The SSA of
graphite oxide (GO) has been found to be increased significantly up to 542 m2

g−1 after thermal expansion of GO, which is also accompanied by change in its
chemical behavior from polar to nonpolar. Thermal expansion (Fig. 1) was carried
out by placing the GO powder in furnace, composed of argon atmosphere using
vacuum pump and argon bombe, for different temperatures 200, 500, and 800 °C at
heating rate of 5 °C/min. Further, thermally expanded graphene powders at 800 °C
(TEGP800) have been found to have a better adsorption capacity (Fig. 2) for toluene
(92.7–98.3%) and xylene (96.7–98%), and its reusability is also remarkable, being
at least 91%.

Liu et al. have used eight different amines (ethylamine hydrochloride, hexy-
lamine, octylamine, benzylamine, 2-(4-chlorophenyl) ethylamine, 1-(2-aminoethyl)
piperidine, tyramine, and 1,3-diaminopropane) for the functionalization of GO, and
these reduced GO samples were subsequently utilized for the synthesis of elec-
tronic nose for the identification of VOCs. A linear response was observed by elec-
tronic nose against four cancer-related VOCs (ethanol, 2-ethylhexanol, nonanal, and
ethylbenzene) with high sensitivity of 25 ppm.

Fig. 1 Schematic representation of thermal expansion of a graphite powder, b GO powder, and c
TEGP. Image was copied from research article published by Lim et al. [37] in Scientific Reports
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Fig. 2 Adsorption efficiency
of bare PP filter, GO powder,
and TEGP800 for toluene.
Image was copied from
research article published by
Lim et al. [37] in Scientific
Reports

Yu et al. [38] have also functionalized the GO with an aim to increase its absorp-
tion capacity toward VOCs. GO particles were synthesized in laboratory by modi-
fied Hummer’s method and were subsequently reduced by adding a reducing agent,
hydrazinium hydroxide (H6N2O) in colloidal solution of GO in water. Reduced
graphene oxide (rGO) has been found to have higher capacity of adsorption and
burst through times as compared to GO. The capacity of adsorption in the case of
GO and rGO for both C6H6 and C6H5CH3 was found to be 216.2 and 240.6 mg/g,
and 276.4 and 304.4 mg/g, respectively. Further increase in SSA (236.4 m2/g) in case
of rGO after the reduction of GO has been also found. Nag et al. [39] have studied
various types of rGO-based sensors and found that cyclodextrin functionalized rGO
(CD-rGO) had a major nonpolar interaction with squat capability of disconnection.
The attractions between functional groups on the CD-rGO nanocomposites andVOC
can be associated with chemo-resistive response of amplitude. Further, CD-rGO has
been found to have high sensitivity to detect the presence of VOC [40].

Some et al. [41] deposited GO and rGO flakes (which were obtained by exposing
GO flakes to sunlight) on an optical fiber and monitored their reflectance after their
exposure to different VOCs. Due to the hydrophilic and hydrophobic character of
GO and rGO flakes, respectively, some VOCs have been found to adsorb better on
GO and some on the rGO. Combining the GO and rGO responses, the so-fabricated
sensor array has been found to a good detector to distinguish between tetrahydrofuran
(THF) and dichloromethane (MC).

Four different porphyrins, i.e., TPP(NH2)4, CuTPP, ZnTPP, andCoTPPwere used
for functionalization of rGO film by spin coating method [42] and for the subsequent
formation of multifunctional wearable sensing device for detection of eight different
VOC biomarkers. The functionalized rGO array of sensor has shown a better result to
vapors of VOC, and 08 various VOC biomarkers have been easily found and verified
by using organized array sensor.

Bhai et al. have synthesized rGO/carbon composite ultrafine fibers (PCGF) by
electro spinning of a mixture of phenolic resin and graphene oxide (GO) followed by
carbonization under nitrogen or in argon/hydrogen atmosphere, and the sampleswere
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subsequently evaluated for their performance forVOCadsorption. TheVOCs absorp-
tion capacity of rGO/carbon composite ultrafine fibers prepared under hydrogen
atmosphere (PCGF-H) has been found to be higher than rGO/carbon composite ultra-
fine fibers prepared under nitrogen atmosphere (PCGF-N) and pristine fiber (PCF).
The better the adsorption capacities in case of PCGF-H are because of the develop-
ment of high SSA and consecutive network structure with ultrafine fiber diameter
after the carbonization.

Pristine graphene after functionalization with TFQ (2,3,5,6,-
Tetrafluorohydroquinone) organic molecules or amine groups and/or a thin
layer of HfO2 has been also found to be a better sensor for sensing formaldehyde as
these functional groups work as chemical recognition links between graphene and
formaldehyde [43]. In addition, there are a large number of graphene-based sensors
which have been developed by researchers for detecting ethanol Meng et al. [44],
dimethyl methylphosphonate (DMMP) [45], NO2, SO2 [46], and tumor markers
[47].

Park et al. [48] found DMMP-based gas sensor with high flexibility and sensi-
tivity. They fabricated it by coating polypyrrole onto graphene surface and reported
a high degree of selectivity for this sensor regardless of the types of VOCs molecules
(acetone, methanol, water, and tetradecane).

2.3 VOCs Removal Using Carbon Nanotube-Based
Nanocarbon Materials

Liu et al. [49] have used biosensors based on single-walled carbon nanotube for
detection of volatile organic compounds causing lung cancer. They have devel-
oped a highly selective SWNTs biosensor, coated with non-polymeric organic mate-
rials such as tricosane (C23H48) and pentadecane (C15H32). Their results showed a
significant change in the resistance in SWNTs biosensors when tested with 1,2,4-
trimethylbenzene. The results of their study present that tricosane functionalized
SWNTs have shown marked sensitivity toward VOCs molecules.

Badhulika et al. [50] developed a single-walled nanotube-based conductive gas
sensor polymer to detect VOCs. Their research includes production and thor-
ough evaluation of poly (3,4-ethylene dioxythiophene) (PED) single-walled carbon
nanotube (SWNTs) sensors doped with poly styrene sulfonic acid (PSS) for indus-
trial interest. To check the existence of PED, PSS covered on SWNTs, their electrical
characteristics were evaluated by cyclic voltammetry, resistance adjustment, and
field-effect transistor measurement. The engineered sensor material exhibited good
sensing properties for saturated vapors of volatile organic compounds (VOCs) such
as methyl alcohol, ethyl alcohol, and methyl ethyl ketone (MEK) at room tempera-
ture over a wide range of VOCs concentrations, and detection limit of this sensor was
found to be 1.3% in case of methyl alcohol, 5.95% for ethyl alcohol, and 3% in case
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of MEK. They observed that these hybrid sensors demonstrated greater flexibility in
terms of sensing ability when compared with SWNTs.

Chatterjee et al. [51] used carbon nanotube sensors sprayed with surfac-
tants for detecting eleven lung cancer biomarkers. The group observed that
they can modify the selectivity and efficiency of CNTs by changing the nature
of the surfactants. The efficiency of surfactant–CNT sensors, hierarchically
arranged by spray layer by layer with C24H39NaO4 (DOC), C18H29NaO3S(SDBS),
CH3(CH2)15N(Br)(CH3)3(CTAB), C27H42NO2Cl (BnzlkCl), and triton x-405
(TX405) was found to rely on the contacts between the surfactants and the analytes,
on their supramolecular alignment with CNT, but also on the initial resistance R0 that
can be adjusted byCNT content, surfactant: CNT ratio or the surfactant concentration
over its CMC. Sensors CNT-DOC has been shown to be responsive to methanol and
other alcohols but also water. Chemicals like benzene, n-pentane, and chloroform
were found to be prone to TX405-CNT sensors. With the exception of isopropanol,
SDBS-CNT sensors may identify ammonia, acetone, chloroform, and water but not
many biomarkers. N-pentane, isoprene, acetone, and ethanol were sensitive to the
BnzlkCl-CNT sensors. CTAB-CNT sensors were mildly sensitive to most VOCs but
displayed no extreme selectivity, whereas pristine CNT sensors were found to be
good at detecting most of the set’s aromatic VOCs.

The impact of the analyte’s physicochemical properties on polymethylmethacry-
late selectivity: functionalized composite sensor multiwalled carbon nanotubes
(PMMA: f-MWCNTs) was shown by Kaur et al. [52]. They developed composite
sensor and optimized their selectivity toward different organic VOCs followed by
studying different parameters such as response time, possible reaction, and recovery
time. In this study, they observed that the selectivity is due to the electronic and
structural properties of both the reacting species, i.e., the organic vapors and sensing
material. Discrimination against different organic vapors has been found to be depen-
dent upon the analyte’s adsorption capacity and their chemical properties. Further, the
sensor was found to be extremely selective for CH3OH vapor because the molecular
size and electro negativity are very good.

Li et al. [53] used multiwall carbon nanotubes (MWCNTs) as a gas/solid parti-
tioning adsorbent of chosen volatile organic compounds (VOCs). In this analysis,
they tested 15VOCs utilizing inverse gas chromatography to evaluate their fluid/solid
partitioning coefficient (Log Kd) at various relative humidity (RH) levels. They
analyzed the interactions between MWCNTs and VOCs by reversing the observed
Log Kd with the linear energy solvation relation (LSER). The results show that
because of the electron pair interactions and hydrogen bond acidity, the MWCNT
carbonyl and carboxyl groups provide the VOCs with strong adsorption power. The
resultedLSERequations give good value ofLogKd.This technique forVOC removal
and prediction of VOC pollutant by MWCNT adsorption is very essential from
environmental point of view.

Ghanbarian et al. [54] developed a new nanocomposite-based resistive sensor
MIL-53(Cr–Fe)/Ag/CNT for detecting volatile organic compounds. They synthe-
sized, by a sono-chemical method, MIL-53(Cr–Fe) nanoparticles as a bimetallic
type of organic metal frameworks (MOFs). Such nanoparticles were used to create
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a ternary nanocomposite MIL-53(Cr–Fe)/Ag/CNT to develop a resistive gas sensor
system to track volatile organic compounds such asmethyl alcohol, ethyl alcohol, and
isopropyl alcohol under environmental conditions (10% relative humidity and 25 °C).
This ternary nanocomposite shows high reaction, precisely for methyl alcohol, to
polar VOCs. This scientist used different spectroscopy technique like XRD, SEM,
TEM, FTIR, and specific surface area measurement to identify the nanocomposites.

3 Conclusion and Forthcoming Prospects

The interior and exterior air quality is highly affected by harmful pollutants for
instance VOCs, and the chief cause is burning of coal, oil, bio fuels as well as the
compounds used in our day to day life such as petroleum products, paints, adhesives,
preservatives, cosmetics, antiseptics, pharmaceuticals, decompositions of bio-waste,
perfumes, and synthetic resins. Inhalation and exposure of these chemicals in minor
ormajor quantities play a significant role in humanhealth.Because of their poisonous,
carcinogenic, or mutagenic characteristics, they are regarded toxic pollutants. Over
the past few centuries, various techniques for the elimination of VOCs have been
created. Due to some disadvantages such as low effectiveness, high energy consump-
tion, or the manufacturing of serious toxic by-products, many of these techniques
are not appropriate at the business stage. Adsorption is one of the most effective and
easy techniques of removing VOCs in practical apps among all these techniques. The
selection of adsorbents is themost important aspect for the adsorption of these volatile
organic compounds from different sources. The innovative VOC adsorbents as nano
carbon-based products (e.g., carbon nanotubes, graphene, nanofibers, etc.) have an
outstanding ability to extract contaminants from the atmosphere owing to their big
surface area, elevated strength, strong permeable composition, and comparatively
small price. The primary focus in this section was the use of nanocarbon-based
materials as effective adsorbents to remove different VOCs from the atmosphere.
Nowadays, more attention is being paid to nanocarbon materials as adsorbent or
sorbent materials throughout the globe. Nanocarbon products are commonly used
to remove and purify natural samples as the most successful, cheapest, and most
efficient components. However, to enhance the effectiveness of extraction, more
study should be held out. In addition, nanocarbon-based nanomaterials not only
extract contaminants from the atmosphere fromVOCs, nevertheless also demonstrate
distinct applications in multiple areas (e.g., energy storage, biomedical studies, elec-
trochemical capacitors, detectors, catalysts, fuel cells, solar cells, electronics, filters,
etc.). Consequently, ongoing commitment to this sector continues imperatively based
on the multifunctional implementation of nanocarbon-based nanomaterials.
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Nanocomposites Materials
as Environmental Cleaning

Kirtanjot Kaur, Vaneet Kumar, and Saruchi

Abstract Remediation of the environment with the help of nanocomposites is a
thrust area. Nanocomposites are high-performance materials with an extensive range
of applications not only in engineering, plastics, elastomers, pest detection control,
and agricultural productivity but also in the remediation of the environment from
various hazardous pollutants. This chapter will provide an insight into the various
types of nanocomposites, its composition, and its application in the removal of
specific contaminants. A good attempt has been made to provide brief of various
types of nanocomposites used for remediation of soil, groundwater, and air. Details
of different technologies that are commonly employed for this are adsorption, absorp-
tion, chemical reactions, filtration, and photocatalysis will be elaborated. The chapter
entails an overview of the treatment of pollutants like heavymetals, dyes, chlorinated
organic compounds, halogenated herbicides, organophosphorus compounds with a
smarter and greener approach using nanocomposites as compared to conventional
methods, their applications in building, slow release of fertilizers and medicinal
applications highlighting their role in the remediation of the environment.
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1 Introduction

Nanocomposites can be defined as solid material having multiple phases in which
one of the phases should be in the nanometer range or structure that will have a
repeat distance of nanoscale [9, 48]. The ideal size of less than 5 nm makes them
a suitable material for catalytic activity and of 100 nm for achieving superparam-
agnetism and mechanical strengthening. They are the molecules with high potential
of applications in distinct fields because of their small size and surface area is very
high [21]. Moreover, their properties can be tailored according to the requirement
but it is not as easy as it seems there are many challenges too like they are inherently
unstable under normal conditions, agglomeration, cost-effectiveness, nontoxicity,
and biodegradability. So, different approaches are designed to meet these difficulties
andmake them appropriate material for target pollutants [14]. Recent advances in the
field of nanocomposites have opened new opportunities in all zones of the industry
but remarkably significant in the zone of the environment which is the concern of
today [2]. Before going into details of how nanocomposites can be used for envi-
ronmental remediation there is utmost need to understand the basic composition of
different types of nanocomposites, its properties, highlighting their need followed
by its potential applications as environment cleaner.

2 Types of Nanocomposites

2.1 Ceramic Matrix Composites

These are composites formed by inserting ceramic matrix in ceramic fibre. The fibre
used here is carbon fibre and the ceramic is from the group of borides, oxides,
silicides, and nitrides. However, metal is used as the second component [25]. Prepa-
ration of this involves dispersal of both components by vapour techniques and chem-
ical methods. In chemical method, sol-gel process is most commonly employed.
Colloidal, template synthesis, polymer precursor route and Spray pyrolysis are other
methods that are used to prepare ceramicmatrix composites. Thesematrix composites
in turn have better crack resistance, corrosion-resistance, fracture toughness, elec-
trical and magnetic properties than conventional technical ceramics like zirconia,
aluminium nitrides, etc. [62].

2.1.1 Ceramic Matrix-Discontinuous Reinforcement Nanocomposite
Systems

This type of nanocomposite system comprises the introduction of different rein-
forcements and also the phases at the phase boundaries of ceramics which leads to
enhancement in hardness and fracture toughness properties of ceramics [3, 31]. The
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mechanical properties and strength of ceramics is an important aspect. It has been
observed that when a metal phase is introduced into matrix its mechanical properties
can be changed this is the reason that in ceramic matrix nanocomposites of Al2O3

and Fe2O3 distribution of Co and Ni can be seen. Even by incorporating another
ceramic can change the properties like by adding 10% SiC in Si3N4 increases its
strength to such an extent that it does not fail even after 1000 h at strain of 1.5%.
This result is much more improved because Si3N4 alone fails after 0.4 h at strain of
0.3% [37]. Further modification has been done where the preparation of advanced
nanocomposites with high toughness and superior characteristics has been prepared
as compared to the conventional ceramic materials which lead to the sudden failure
properties [35].

2.1.2 Ceramic Matrix-Carbon Nanotube Systems

By incorporating carbon nanotubes in the ceramic matrix, the mechanical properties
ofmatrix can be enhanced like there is an increase in fracture toughness of 194%over
pure alumina when single-walled carbon nanotubes are applied as a reinforcement
of ceramic composites with the help of technique called spark-plasma sintering. On
the other hand, 24% increase in fracture toughness over the matrix was observed
in nanograined Al2O3 composite when 10 vol.% multi-walled carbon nanotubes
were introduced. This theory of short fibre-reinforced composites comprises of this
observation that there is increase in mechanical properties like bending strength and
fracture toughness when the volume content of carbon nanotubes is less than 5 vol.%
and above this much concentration it tends to decrease. This decrease is probably
due to agglomeration [24, 51].

2.2 Metal Matrix Nanocomposites (MMNC)

MMNC is also called a reinforced metal matrix composites. These composites
are classified as Continuous and Non-continuous reinforced materials. Metal-metal
nanocomposites acquire strong resistance to growth of grains and their thermal
stability. Actually, new properties can be obtained by simple mixing of two different
metal nanocomposites. Various parameters like microstructural, compositional as
well as porosity, impurity, distribution of grain size and texture are also taken into
account during the formation of this type of nanocomposites. The techniques which
are being used for the preparation of these type of nanocomposites are Spray pyrol-
ysis, rapid solidification, Vapour techniques, electrodeposition, colloidal and sol-gel
processes. These nanocomposites shows manyfold increase in hardness and Young’s
modulus. For instance, Al/Pb nanocomposites exhibit much improved frictional
features. Another application can be seen in rocket propellants which are prepared
from a polymer of Al/Al2O3 nanocomposite and they showed improvement in the
ballistic performance [22].
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2.3 Carbon Nanotube Metal Matrix Composites (CNT-MMC)

CNT-MMC which is a coming up new material has the superior characteristics of
high tensile strength and electrical conductivity of carbon nanotube materials. To
achieve this, the techniques for their synthesis should be such so as to provide homo-
geneous dispersion of nanotubes in the matrix of metal. This leads to strong inter-
facial adhesion between both and also it is economically producible. Two different
ways are in situ preparationwhich helps in improving dispersion in the case of carbon
nanotube-reinforced polymer composites and other is ex-situ techniqueswhere align-
ment of carbon nanotubes can be achieved easily [39]. Other areas of research apart
from carbon nanotube metal matrix composites are boron nitride reinforced metal
matrix composites (BN-MMC) and carbon nitride metal matrix composites [12].

2.4 Polymer Matrix Nanocomposites

These types of nanocomposites can be obtained by adding nanoparticles to a polymer
matrix that can lead to enhancement in the properties depending on the nature of the
nanoscale filler. This is the reason that these materials are termed as nano filled
polymer matrix composites [44]. Nanoparticles that are used for this purpose are
graphene carbon nanotubes or molybdenum and tungsten disulphide. Even very low
concentrations of nanocomposites addition can lead to significant improvement in
the bending strength as well as compressive properties of polymeric nanocompos-
ites as observed by Lalwani et al. [27]. They are basically strengthening agents for
the formation of strong biodegradable polymeric nanocomposites which has got an
application in bone tissue engineering.

2.5 Magnetic Nanocomposites

It comprises two components one inorganicmagnetic component in the form of fibres
or particles which is embedded in an organic polymer and at least one dimension
should be in nanometer range. The most commonly used methods for synthesizing
magneticNPs are in situ and ex-situ preparation. In situmethod involves the coprecip-
itation of Fe2+ and Fe3+ ions by a base or thermal decomposition of metal precursors
such as metal carbonyls (Co2(CO)8, Fe(CO)5, Ni(CO)4) and metal oleates. Ex-situ
method involves the blending of polymer with pre-synthesized nanostructures by
special techniques like ball milling, thermal curing and also melt blending. One
such example is the preparation of superparamagnetic nickel ferrite/polypropylene
nanocomposites with ball milling process by the incorporation of the previously
synthesized nickel ferrite NPs. But the in situ method has the advantage of particle
distribution which is easier to manipulate by this method. There are a number
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of applications of magnetic nanocomposites in a catalytic, medical, and technical
field. Instead of using palladium alone magnetic nanoparticle supported palladium
complexes can be used in catalysis so that the efficiency of the palladium can be
increased in the reaction. Though another applications of magnetic nanocompos-
ites can also be seen in electronics especially in sensors and also in wastewater
treatment. The carbon-coated magnetic NPs and graphene-coated magnetic NP have
been widely used for Cr (VI) removal from wastewater [63].

2.6 Polymer Nanocomposites with Layered Reinforcements

Awide range of nanoparticles including ceramic, polymeric,metal oxide and carbon-
based nanomaterials are introduced within the polymeric network to obtain desired
property combinations. There is a special and distinctive interaction between polymer
and nanocomposites. This is the reason why the range of property combinations can
be tailored so as to imitate vernacular tissue structure and their properties. There-
fore, a wide range of natural as well as synthetic polymers such as starch, cellu-
lose, alginate, chitosan, collagen, gelatin, fibrin and PVA, PEG, poly(caprolactone)
(PCL), poly(lactic-co-glycolic acid) (PLGA), and poly(glycerol sebacate) (PGS) are
used to make polymeric nanocomposites for biomedical applications such as tissue
engineering, target drug delivery, cellular therapies [13].

2.7 Methods of Characterizations

The characterization of nanocomposites can be done by various spectroscopic
techniques like AFM, STM, FTIR, XPS, NMR, DSC, SEM/TEM, and XRD.

3 Environment Remediation

There are some of the harmful pollutants which are very complex and cannot be
degraded easily due to their high volatility and low reactivity. Other than the conven-
tional methods used earlier, now the use of the nanocomposites, its different forms,
and its uses are the current areas of research for the remediation of environment [53].
There are many aspects of environmental pollution which are proving very fatal to
the health of living beings and many of them are not easily detected and degraded.
Recent studies focus on the use of nanocomposites as the remediation for soil, air,
and water.
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3.1 Conventional Methods of Environment Remediation

Remediation of heavy metal-contaminated soil, water, and air is the need of the hour.
Conventional methods of remediation with the newer methods are listed in Fig. 1.
Conventional methods have been in use for decades which were very good but have
their own limitations. One of the limitations is they release the toxic material as
by-product and secondly the biological process is very slow and time-consuming.

Fig. 1 Conventional methods of environment remediation
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Therefore new methods of biosorption, microbial techniques, and most popular are
nano remediation. The benefits of using nanocomposites for remediation is that their
efficiency is high as well as they are cost-effective [50].

4 Nanocomposites as Newer Approach

Furthermore, there are many more advantages of nanocomposites. Prime advantage
is in their physical properties like small size, varied morphology, high porosity, and
the different chemical composition which offers wide scope where properties can be
made suitable according to the type of pollutant. These tailoring properties give inter-
esting aspects to the study of nanocomposites which offer significant advantages over
conventional methods in the remediation of the environment. So, the methods that
are developed as a combination of several different materials (hybrids/composites)
show very high efficiency, it is very selective for the different contaminants and
moreover, it is a very stable method than earlier conventional methods based upon a
single strategy. For example, instead of using nanoparticles alone the alternate way of
attaching nanoparticles to a moiety as explained in the earlier section leading to the
formation of nanocomposites can increase the stability of thematerial. This approach
of functionalizing nanomaterials with specific chemicals can help to enhance the
efficiency and its selectivity [17] which are responsible for targeting contaminant
molecules of interest. But there are many challenges also to meet this requirement,
which are given as follows:

• target-specific capture
• cost-effectiveness
• nontoxicity and biodegradability
• recyclability and regeneration
• unstable in normal conditions
• prevent agglomeration, enhance monodispersity.

5 Different Categories of Nanomaterials Used

Three broad categories of nanomaterials are used for the remediation of different
environmental contaminant.
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5.1 Inorganic Nanomaterials (Metal and Metal Oxide-Based
Nanomaterials)

The nanomaterials of this type have numerous applications as environment cleaner
especially in aqueous systems as they are highly adaptable toward applications
whether ex-situ or in situ applications. They follow fast kinetics and have high
capacity of adsorption [49]. Systematic synthetic methods were designed to obtain
nanomaterials whose shape can be controlled, monodisperse metal/metal oxide, and
also very stable. The synthetic conventional methods like thermal decomposition,
hydrothermal method, reduction, and coprecipitation [8] are extensively used and
can be easily scaled for better results in terms of yields. Some of the examples of
this type are explained below with their applications.

5.1.1 Silver Nanoparticles (AgNPs)

These nanoparticles are used as water disinfectants due to their remarkable activities
whether they are antiviral or antifungal and antibacterial activity [7]. It has been
observed that the size of AgNPs plays an important role such as if the size is less
than 10 nm in diameter they were found to be more toxic to gram-negative bacteria
likeEscherichia coli andPseudomonas aeruginosa. They bind to virus glycoproteins
hence prevent binding of the virus to the host cells. The particle size greater than
10 nmhas lesser antibacterial activity [15]. Among different forms, triangularAgNPs
manifests better properties than Ag nanorods and Ag nanospheres. This observation
demonstrates the importance of shape of the particles in drawing out their appropriate
role [38]. Silver nanoparticles have been coupled with many materials like polymer
and mostly metal oxides to improve the efficiency of the resulting nanocomposite.

5.1.2 Titanium Oxides (TiO2)

Another frequent metal-based material that is investigated is the titanium oxides
which have the advantages of low cost, photocatalytic, nontoxicity, gas sensing, and
semiconducting properties. Because of these advantages, TiO2NPs have been studied
for treatment of waste material and as well as in purification of air [1, 28]. They are
also used as a photocatalyst in purification of wastewater. Actually, TiO2NPs are
activated by light which in turn produces oxidants such as hydroxyl radicals. These
hydroxyl radicals are very reactive and act as a disinfectant for microorganisms [60].
There is a significant increase in the performance of photocatalytic ability if TiO2 is
doped with another transition metal. Ag-doped TiO2 nanofibers formed with the help
of sol-gel electrospinning technique.Ag-dopedTiO2 nanofibers act as photo catalysts
for the photocatalytic degradation of substituted phenols specifically 2-chlorophenol
when irradiated with UV radiation. They showed an increase in photodegradation as
compared to the TiO2 nanofibers alone because of the availability of more silver on
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the surface that produces photo-induced electrons and photo-induced holes. There
is a quick transference of photo-induced electrons to the oxygen which is adsorbed
results in an increased amount of surface hydroxyl groups present on the surface of
the nanofibers [41].

5.1.3 Titanates

This is another very important class of inorganic compounds of titanium oxide. The
best method of formation is hydrothermal method by which we can synthesize basic
titanate nanotubes (TNTs), acidic titanate nanotubes (TNTs), and neutral titanate
nanotubes [6]. These TNTs showed remarkable catalytic reduction properties of
NO with ammonia. These TNT formulations can be loaded with manganese oxide
resulting in Mn-doped titanate nanosheets in the case of basic, titanate nanorods in
acidic and titanate nanotubes in neutral pH medium. It has been observed that out of
these three TNTs, the neutral Mn/TNTs exhibits the best results because they have
the greatest surface area.

5.1.4 Mixed Oxide Materials

These materials which are mixed oxides like TiO2 and SiO2 can be synthesized using
titanium isopropoxide or titanium butoxide and bamboo as a silica source [45]. These
materials were further tested for the degradation of various dyes such as methylene
blue and theymanifest outstanding photoactivity and varied treatment times. It is seen
that these oxides can be better materials for removal of varied variety of pollutants.
The only disadvantage of these materials is it can be used for selected contaminants
and these have applications in industrial wastewater treatment system which are on
smaller scale.

5.1.5 Magnetic Metallic Nanoadsorbents

This type of nanoadsorbents basically includes iron and iron oxides NPs. Extensive
literature data is there for magnetic metallic nanoadsorbents and its applications.
Most significant application is that they are used in the remediation of environment
by removal of different heavy metals like Cd2+, Ni2+, Cu2+, and Co2+ [11]. Also,
chlorinated organic solvents can be removed from the environment with the help
of magnetic metallic nanoadsorbents [18]. The structure of Iron NPs is a core-shell
structure with the core consists of elemental iron (Fe0) and the shell consist of Fe(II)
and Fe(III) oxides. Therefore, these can be reduced easily from donation of electron
from the core containing Fe0 to mixed valent iron oxides in the shell as depicted in
Fig. 2.
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Fig. 2 Demonstration of mechanism of magnetic metallic nano adsorbents [16, 30]

There are variousmethods to improve the efficiency of nanoparticles. Firstmethod
is sonication which is generally employed to the iron NP solution to avoid the aggre-
gation and enhance the removal of Ni2+ and Co2+. It has been observed that the time
required for removal of nickel is 20 min and for removal of cobalt is 30 min. The
results of removal are for nickel it is 35–40% and for cobalt it is 55–65% [19]. Second
method is to enhance the stability of zerovalent iron nanoparticles by blending of a
second metal such as Pd, Ni, or Cu [58]. Third is to introduce noble metals that are
resistant to corrosion and oxidation in moist air with zerovalent iron nanoparticles
(nZVI) to catalyze dechlorination and hydrogenation reactions with contaminants.
Fourth is the green synthesis of zerovalent iron nanoparticles (nZVI) as demon-
strated by some workers from natural resources like oak and mulberry leaf extracts
which were obtained from waste and they provide adsorbent which is cheapest for
the cleaning of water from contaminants [10]. Synthesis of these zerovalent iron
nanoparticles (nZVI) can be done by microemulsion method. Emulsified zero-valent
iron (EZVI) nanoparticles can be formed by loading of Ni/Fe nanoparticles with
lecithin. These EZVI are effective in removal of major pollutants of environment like
3,3′,4,4′-tetrachlorobiphenyl (PCB77) and chlorinated volatile organic compounds
(CVOCs) and hence act as environment cleaner and total CVOC mass decrease of
86% has been estimated by the end of 2.5 years of monitoring period [52].

5.2 Silica Nanomaterials

Mesoporous silica materials have gained so much attention for their application in
adsorption and catalysis. The versatility of these materials is due to the presence
of –OH groups on the surface of these materials. As illustrated in Fig. 3 covalent
tethering, surfacemodification, incorporation ofmore functionalities, gas adsorption,
physical impregnation, and in situ polymerization can be done [20].



Nanocomposites Materials as Environmental Cleaning 145

Fig. 3 Surface characteristics of mesoporous silica materials [16]

5.2.1 Amine-Surface-Modified Silica Xerogels

These silica xerogels are used for the selective removal of CO2 and H2S from natural
gas. The MCM-48 ordered mesoporous silica showed a high adsorption rate. The
presence of –NH2 groups on the surface of the silica materials are large which
increases the rate of adsorption to almost 80% as observed by group of researchers
[20].

5.2.2 Amine-Modified Aluminosilicates

These are used for the absorption of CO2 specifically in compounds containing
carbonylmoiety such as aldehydes andketones. Theydo soby forming imine or hemi-
aminal formation. Sometimes with reversible adsorption of the gaseous molecule [4,
26]. Consequently, these materials have advantages over traditional CO2 capture as
explained earlier with aqueous amines and other silica-supported amines in the way
that they have low cost, synthesis is not complex, show greater stability and better
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performance [43]. There is one limitation that the amine functionality is introduced
during the process of synthesis by the ring-opening polymerization of aziridine so
makes thesematerials not suitable for pollutants that react with amines. The aziridine
monomer also has difficulty in handling without proper equipment.

5.2.3 Amine-Functionalized Porous Silica

These are particularly used for removal of low-molecular-weight aldehydes like
formaldehyde. 1° and 2° amines are more appropriate for capturing aldehydes as
compare to 3° amines by the formation of imine and hemiaminal intermediates.
Nomura and Jones [36] studied amine-functionalized porous silica in detail and also
on higher molecular weight less volatile aldehydes but observed that it is not suitable
for them as reaction time required in that case exceeded more than 10 h. Much longer
reaction time makes them unsuitable for industrial applications.

5.2.4 Mesoporous Silica with –COOH Groups

These are used for compounds that have the tendency to form hydrogen bonds. This
is known as hydrogen bonding capture model. Various compounds like heavy metal
ions, dyes, and contaminants which can form hydrogen bonds with a carboxylic acid
group of mesoporous silica can be removed by this method. But the only limitation is
that interactions occur at specific pH values as it has been observed that themaximum
uptake for methylene blue was obtained at pH = 9 [54].

Similarly, there are some other groups which work well as remediation of envi-
ronment like [47] studied amino-functionalized polycarboxylic acid, Nakanishi et al.
[34] studied amino-functionalized silica materials for the removal of different metal
ions such as particularly transition metal ions like Cd2+, Co2+, Cu2+, Zn2+, Ni2+ and
other likeAl2+, Cr3+, Pb2+, Hg2+, andU6+. Apart from this chitosan-based silicamate-
rials [55] and thiol-functionalized silica materials [56] are also used in the removal
of heavy metal ions as well as volatile organic compounds from the environment.

5.3 Carbon-Based Nanomaterials

The elemental carbon is well-known for its distinctive physical properties, peculiar
chemical properties, andmultiple electronic properties. So, introduction of elemental
carbon to these nanomaterials [46] gives better results than metal-based nanomate-
rials. Moreover, the mutable hybridization states of carbon can result in different
structural configurations such as fullerene (C60), multi-walled, and single-walled
carbon nanotubes (MWCNTs and SWCNTs) and also graphene which is proved to
be the best materials. The primary requirement is the treatment of its surface which
means its activation as well as the functionalization of the material. Multi-walled and
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single-walled carbon nanotubes (MWCNTs and SWCNTs) have gained much atten-
tion presently due to their remarkable photocatalytic approaches and adsorption prop-
erties [40]. The phenomenon of their action can be well visualized from Fig. 4. We
can observe that with UV irradiation on any of these forms may be CNTs, fullerene,
and nanocomposites there is the absorption of photons of energy greater than or equal
to the bandgap of these forms. With the absorption of photons, they generate valence
bandholes (h+) and conductionband electrons (e−). The electronswhich are produced
form superoxide radicals which result in the reduction of heavy metal contaminants.
Holes form hydroxyl radicals which result in the oxidation of chlorinated organic
compounds. In SWCNT there are four different sites. One for adsorption, second
is internal site having less adsorption energy, third is external site present on the
surfaces of the external CNTs having adsorption energy which is very high, fourth
is present in between two neighboring tubes. The external sites show greater rate of
adsorption as the equilibrium can be attainedmuch faster as compared to internal sites
because of the direct exposure to the adsorbing material. When specific methods of

Fig. 4 Illustration of removal of organic and inorganic pollutants through photocatalytic degrada-
tion [16, 40]
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preparation are usedmulti-walled carbon nanotubes exist as bundles [46]. The carbon
nanotubes may contain hydroxyl, carbonyl, and carboxylic acid groups which can
increase adsorption capacities because of an increase in oxygen content. When these
nanotubes are oxidized with nitric acid as well as with other oxidizing agents there
is an increase in adsorption capabilities of heavy metal ions [23]. Adsorption of
cationic dyes also increases with the increase in pH due to the increase in electro-
static attraction between dyes and active carbon forms. Some more properties like
molecular weight, dipole moment, critical temperature of the adsorbate gas, these
physicochemical properties can remarkably alter the rate of adsorption.

5.4 Graphene Materials

Another class of materials that are promising nanocomposites is the use of graphene
to fabricate photocatalytic nanocomposites that showed an increase in photocatalytic
activity in graphene composites containing TiO2NPs as compared to bare TiO2NPs
attributed to an increase in conductivity [61]. The pristine graphene was used earlier
for the removal of fluoride from an aqueous solution as an effective adsorbent mate-
rial. The monolayer adsorption capacity of fluoride by graphene was found to be
35.59 mg/g at 298 K and pH = 7.0 [29]. The Graphene oxide (GO) which is modi-
fied graphene is used for the remediation of environment by adsorption of a variety of
gases like SOx, H2S, NH3. Actually, carbon surface of graphene oxides (GOs) bears
several oxygen-containing functional groups such as carboxylic acids, epoxides, and
hydroxyls. There is strong acid-base interactions layered GO structure offers acidity
and ammonia offers basicity. However, GO can be used for the removal of anionic
metals but it requires themodification of GOwith organic or metal oxides.Moreover,
it decreases the aggregation of the graphene layers and also increases the effective
surface area, making it more suitable material than pristine graphene [57].

5.5 Polymer-Based Nanomaterials

Polymers are mostly used for the detection and removal of contaminant chemicals,
gases, and organic pollutants such as manganese, nitrate, iron, arsenic, heavy metals,
CO, SO2, NOx like aliphatic and aromatic hydrocarbons, pharmaceuticals or VOCs.
Polymeric hosts like surfactants, emulsifiers, stabilizing agents, and surface function-
alized ligands can be incorporated to increase stability, mechanical strength, recycla-
bility and overcome someof the limitations of pristineNPs.Here polymers are used as
hostmaterials andNPs are responsible for the contaminant remediation. Amphiphilic
polyurethane (APU)NPs removed phenanthrene and polynuclear aromatic hydro-
carbons (PAHs) from contaminated aquifer sand but there is an issue regarding
biodegradability of such materials. Poly (amidoamine) or dendrimers (PAMAM)
have been utilized in wastewater remediation for water samples contaminated with
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Table 1 List of nanocomposites with removal of target pollutants

S. No. Type of nanoparticles Removal target

1 PLA/PEG incorporated with PEI VOCs

2 SiO2 NPs with poly (acrylic
acid-co-acrylamide) nanocomposite

methylene blue (MB)

3 Wheat xylan/poly(acrylic acid) NP
hydrogel with Fe3O4 nanoparticles

methylene blue (MB)

4 Gold-coated with chitosan polymer Zn2+ aq, Cu2+ aq

5 Poly (methacrylic acid)-grafted
chitosan/bentonite

Th4+

6 Fe3O4 (sodium alginate with tetrasodium
thiacalixarene tetrasulfonate)

Ni2+, Co2+, Pb2+, Cd2+, Cu2+, and Cr2+

ions

7 Ag-doped TiO2 nanofibers Methylene blue dye

8 AgNPs and Ag+ (mixture of polymers) Escherichia coli, Staphylococcus aureus,
Aspergillus niger, and Salmonella enterica

9 Carbon nanotubes/Al2O3 nanocomposite Fluoride

10 Cu/Fe/Ag-doped TiO2 Nitrate (NO3
−)

11 Multiwall carbon nanotube (MWCTs) Zn2+

metal ions such as Cu2+, Ag+, Au+, Fe2+, Fe3+, Ni2+, Zn2+, and U6+. The reason
behind this dendritic nanopolymers is that they contain functional groups which are
able to encapsulate a broad range of solutes in water. Chitosan-based carbon nanofi-
bres (CNFs) incorporated in iron oxide nanoparticles along with polyvinyl alcohol
nanocomposite films have efficient adsorption capacity of Cr6+ from water.

Another modification in which Fe3O4 magnetic NP with 3-
aminopropyltriethoxysilane and (acrylic/crotonic acid) copolymers was prepared.
This modification is used for removal of Cu2+, Cd2+, Pb2+, and Zn2+ from
metal-contaminated water.

Potential antibacterial property has been found when AgNPs are embedded in
cellulose acetate fibers (Table 1).

6 Applications

6.1 Building and Environment

TiO2 which is excellent photocatalytic material has the ability to produce self-
cleaning as well as de-polluting buildingmaterials. Using sol-gel synthesis, Au-TiO2

photocatalysts were blended into silica thereby forming TiO2–SiO2 nanocomposite
material which is sprayed inside the pore structure of a very friable carbonate stone
and a non-ionic surfactant generally n-octylamine [32]. The nanomaterial which is



150 K. Kaur et al.

produced as a result has superior characteristics like good adhesiveness, crack-free
surface layer to the stone, and self-cleaning properties. Apart from this, there is an
increase in mechanical resistance as it has a greater penetrating property which gets
into the pores of the stone. Other important benefit of the nanocomposite is that it
improves protection against salt crystallization degradation mechanisms. In a trial,
it has been observed that after three cycles of NaSO4 crystallization degradation, the
stone which is not treated is reduced to a completely powdered material, whereas the
stone which is treated with this novel product remains practically unchanged even
after thirty cycles. For the sake of comparison, two industrial products were also
checked and they resulted in a crack of coatings and less mechanical resistance to
the stone as compared to nanocomposite products. So, it has got excellent applica-
tions in building and the environment. While in its designing two factors one is TiO2

light absorption restricted to UV and second is its poor adhesion to the substrates
plays a crucial role.

6.2 Removal of Dye in Water

Water is polluted with dyes released from industries thereby threatening issues for
water resources. So, their removal is the current area of interest. Cellulose–clay
hydrogel with nanocomposites have superabsorbent properties and superior mechan-
ical performance. These properties can be employed for the removal of dyes from
water. The synthesis of these superabsorbent hydrogels nanocomposites can be done
in NaOH/urea aqueous solution by chemical cross-linking of nanocomposites with
carboxymethyl cellulose (CMC) and the intercalated clay. These hydrogels exhibited
high absorption capacity for methylene blue (MB) solution. The removal efficiencies
were observed around 96.6–98%, in concentration range of 10−100 mg L−1 of these
hydrogel samples. These results gave a new platform for dye decontamination where
cellulose–clay nanocomposite hydrogels are used as water cleaners [42].

6.3 Slow Release of Fertilizers

As we know that two important macronutrients responsible for the growth and yield
of agricultural crops are Nitrogen (N) and Phosphorus (P). Generally, Nitrogen and
Phosphorus applied as normal fertilizers are lost to the environment and these losses
come at a large environmental cost. The reason for this low efficiency of P fertilizers
is especially in tropical soils due to the formation of Fe- and Al-based oxides. Most
of the phosphates released from organic matter and that added as fertilizer is rapidly
scavenged by soil minerals which in turn changes into fixed or insoluble inorganic
compounds that are not susceptible to leaching. As a result, concentrations of soil
phosphate are very low. Secondly, due to high NH3 volatilization and fast hydrolysis
of urea ultimately leads to an accumulation of NH4

+ resulting in increase in pH
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of soil. The slow release of fertilizers (SRF) has been considered to be a great
strategy to improve the utilization of macronutrients. Slow-release fertilizers have
many advantages over conventional fertilizers like better fertilizer use in potato,
better matching of nutrient demand in crops, and increased phosphorus recovery in
barley. In this application, a novel series of hydrogels composed of polyacrylamide
(PAAm), methylcellulose (MC) and calcic montmorillonite (MMt) were synthesized
which are appropriate for the controlled release of fertilizers where the components
presented a synergistic effect, giving very high fertilizer loading in their structure
[5].

Other method is to produce nanocomposites from urea (Ur) which act as a matrix
in which hydroxyapatite particles (Hap) were blended. The nutrients are released by
slow-release fertilizers gradually in order to coincide with the nutrient requirement
of plants. Urea is considered as the important nitrogen-containing fertilizer and its
low cost makes it more convenient. Due to the cheap rate of starch, it is used as
an encapsulating matrix of agrochemicals. When plasticized by alcohol or even by
urea, starch is known as thermoplastic starch (TPS). The slow-release nanofertilizers
will tend to decrease the use of the chemical fertilizers which needs regular spraying
in fields. The bi-product released will be nontoxic which will not affect the soil
parameters.

6.4 Biological Applications

Large quantities of nanocomposites can be produced from transition metals such as
Cu, Ag, In and Fe in aqueous media using a polymer which is biodegradably named
carboxymethyl cellulose (CMC). Generally, sodium salt of CMC is used for this
purpose [33]. These nanocomposites exhibit broader decomposition temperatures.
Ag-basedCMCnanocomposites exhibit greater luminescent property at longerwave-
lengths. The noble metals like Au and Pt, react under microwave irradiation (MW)
conditions at 100 °C and do not react at room temperature with aqueous solutions of
carboxymethyl cellulose. This environmentally friendly method gives many techno-
logical and medicinal applications rather than using any toxic reducing agent such as
sodium borohydride (NaBH4). Magnetic chitosan–iron (III) hydrogel (MCh-Fe) was
synthesized and used to remove toxic CrVI from aqueous solution and characterized
using spectroscopic techniques using SEM, TG, and FT-IR [59].
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7 Conclusion

This chapter provides a brief outline of the types of nanocomposites followed by
different methods for environmental remediation. The extensive details of metal
matrix, silica, graphene, and polymeric nanocomposites have been provided with
their target pollutant and their mode of action. These materials are better materials
and they earned huge success in environmental remediation. For reference table
of nanocomposite with target pollutant is also given. The approach is to select the
best nanocomposite for a particular pollutant in a given environment that requires a
complete understanding of its mechanism. Every nanocomposite has its own advan-
tages as well as challenging. The potential applications of nanocomposites like
building and environment, removal of dye inwater, slow release of fertilizers, and also
biological applications were also discussed. Even though the recyclability of some
materials is an important issue which makes them no longer useful. Nanocomposites
provide newer route and plan for making our environment free from contaminants
of air, water, and soil and make it better for living.
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Composition and Arrangement
of Carbon-Derived Membranes
for Purifying Wastewater

Ritu Painuli, Pallavi Jain, Sapna Raghav, and Dinesh Kumar

Abstract Wastewater can be treated in many ways, out of which membrane separa-
tion technology is considered the most effective and unique one. Especially, carbon
nanotubes (CNTs)-based membranes are getting noteworthy attention owing to the
combinedmerits of CNTs andmembrane separation. This results in offering superior
membrane properties. This chapter discusses the classification and characterization
of CNTs based membranes. It also reviews the fabrication methods for mixed CNTs
based membranes in detail. Furthermore, the future direction and challenges related
to CNTs based membranes are also briefly outlined.

Keywords Carbon nanotubes · Classification · Preparation · Characterization ·
Challenges

1 Introduction

Freshwater is an important and vital part of human’s life. It also acts as an important
storage unit for various other industries.According to a report, 75 percent of theworld
population could be underwater shortage conditions by 2025 [32, 34, 35, 38, 83]. It is
known thatmillions of peoplewill suffer fromwater scarcity conditions by 2050 [27].
Extensive efforts are beingmade to protect the world from this bloomingwater crisis.
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The three Rs, reuse, recycle, and recovery, for water have proved to be beneficial in
generating freshwater with no side effects on human health. The most prevalent tech-
nology is membrane filtration, which is used to purify all kinds of water, including
waste, sea, and brackish [33, 36, 37, 83]. Membranes are categorized with the clas-
sifications based on the compositions and the cut-off molecular weight. Membrane
techniques like ultrafiltration, microfiltration, reverse osmosis, nanofiltration, perva-
poration, and distillation of membranes are the most extensively used techniques for
water purification. Polymers, ceramic, and hybrid materials are the main elements
from which membranes are composed [32, 34, 35]. Polymeric membranes find their
usage in purification and desalination of water because of their greater selectivity
and highmechanical strength Ceramicmembranes are normally used for challenging
water purification processes owing to their better thermal and chemical stability. Both
these membranes have a lot of setbacks and can still be modified for better perfor-
mance [32, 34, 35]. In contrast to ceramic membranes, the polymer membranes are
lesser chemically stable and have low resistance toward fouling but are cheaper than
ceramic ones [76]. Hence Ceramic membranes are considered only for small-scale
industries. In modern times, a lot of modifications in nanomaterials like nanopar-
ticles, metal/metal-oxide, and carbon nanoparticles, dendrimers, and zeolites have
been employed for the water purification [43–45]. But because of the high surface
area, better mechanical strength, and high thermal stability, CNTs have received
much attention in this industry. They are used in removing a lot of impure parti-
cles present in the solution [4, 5, 32–37]. Carbon nanotubes have also contributed
in the development of modified membranes for water decontamination [13, 25, 46,
50, 52, 53, 56, 84, 88, 95, 96, 100]. The significant properties that make CNTs as
an excellent material in the water purification are their enhanced surface area along
with high aspect ratio, rapid water transport, and ease of modification [52, 53]. For
improvising its efficacy, the carbon nanotubes can also be utilized as filler/packing
components. This chapter explores the classification, characterization (Table 1) as

Table 1 Carbon nanotubes characterization

S. No. Characterization techniques Major aims References

1 SEM/TEM Analysis of morphology (diameter,
defects, length, and purity), state of
arrangement (SWCNTs and
MWCNTs), several layers, and
distance between multi-walled
nanotubes)

[30]

2 Energy-dispersive
spectroscopy (EDS)

Elemental composition,
functionalization

[7]

3 Fourier transform infrared
spectroscopy (FT-IR)

Functionalization [7]

4 TGA Purity, functionalization [55]

5 XPS Elemental composition,
functionalization

[91]
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well as the composition of the CNTs based membranes. The challenges related to
the future of the CNTs based membranes are also discussed at the end of the chapter.

2 Classification of Carbon Nanotube Membranes

CNTs based membranes are divided based on its implementation in fabrication
processes, but broadly there are two main categories:

1. Freestanding carbon nanotube membranes
2. Mixed-carbon nanotube membranes

The freestanding membrane is further classified as vertically aligned carbon
nanotubes membranes and bucky paper membranes. They are used in removing salt
from the water and other wastewater treatment implementations [16, 69]. Carbon
nanotubes are arranged as cylindrical pores in a vertically aligned carbon nanotube
to force the liquid to cross the holes [29, 61]. Bucky paper CNTs based membranes
have a 3D network with large pores that have an enhanced surface area. Mixed-
carbon nanotube membrane has a design like that of the reverse osmosis structured
membranes. In this arrangement, the top layer is assorted with a carbon nanotube and
another polymer. The vertically aligned carbon nanotubes have a profound change
in the rate of flow of water because of the small length of nanochannel and dense
forest of the nanotube. Therefore, these membranes are more beneficial over bucky
membranes. Moreover, tedious fabrication methods are the major challenge in the
preparation of these membranes for large-scale applications. Whereas, the mixed-
carbon nanotube membranes possess the benefit of the simpler fabrication process,
but in contrast with the vertically aligned membranes, these membranes have a lower
flux rate.

3 Aligned Carbon Nanotubes (ACNTs) Membranes

Aligned CNTmembranes are composed of a single carbon nanotube arranged in high
order and a vertically aligned array. Because of this, they have a porous structure
composed of tiny spaces existing internally within the single tubes. These cavities are
≈5 nm in multi-walled nanotubes [31]. This diameter is similar to the size of many
biomolecules and other macromolecules, which shows that the vertically aligned
carbon nanotube membranes are very well be fitted for various filtration processes
[22]. A vital property of ACNTmembranes is that their pore dimension can be deter-
mined by managing the dimensions of the catalytic particles used during the growth
of nanotube. This gives out a method by which the membrane selectivity can be
customized according to the particular separation application. It is also necessary to
make small adjustments in the selectivity of these substances by covalently function-
alizing the edges of the carbon nanotubes with certain moieties or groups [66, 67]. It
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was also seen that in these membranes, it is probable to adjust the pores’ diameters
between 38 and 7 mm. This adjustment can be made by applying an upright outward
force across the parallel dimensions of the carbon nanotubes [51]. This causes
compression in nanotubes, and the permeability increases, which is higher than that
in other carbon nanotube membranes. The membrane also reduces the adhesion
of bacteria, demonstrating its benefit over other membranes by being less affected
by the formation of biofilm and fouling. Aligned carbon nanotube membranes are
made by implanting carbon nanotubes into a matrix. They can also be made by
developing them on a substrate using a chemical vapor deposition (CVD) process.
While growing them on the substrate, the aligned CNTsmust be treated with packing
material like polystyrene or Si3N4 so as to furnish the interstitial spaces among the
individual carbon nanotubes [59, 68]. This opens a lot of entries of solvent, solute,
and gas molecules to the openings of nanotubes. Free ACNT membranes can also
be produced in the absence of any holding substance [98]. The CNTs that are manu-
factured by this process have large spaces across the structure that can be stretched
up to tens of nanometers in diameter. These membranes can filter selective solute
molecules that are available in the watery solution. In a study, macroscopic hollow
cylinders were made that had multi-walled nanotubes aligned radially [93]. These
were shown to retain the heavy constituents of a hydrocarbon mixture along with
some microorganisms such as bacteria and viruses. Compared to UF membranes,
ACNT membranes supply a better water flux, which is three times more than that
of the ultrafiltration membrane [6]. The aligned carbon nanotube also shows a better
and higher biofouling resistance along with low levels of bacterial adhesion [6]. In
another study, a new modified ultrafiltration membrane was used with the help of
multi-walled nanotube and polyethersulfone [56]. The arrangement of multi-walled
is ordered within the PES matrix. It provides a path for transport of water, thus
causing a change of water flux rate, which was thrice greater than that given by
multi-walled/polyethersulfone membrane. The flux rate was ten times more than
that of the pure PES membrane and antifouling properties [56]. The pores that are
present have very small diameters in the ACNT membranes and have been receiving
significant importance due to their prospective implementations in the removal of
salt from water. The permeable properties of aligned carbon nanotube membranes
are comparable to that of nanofiltration and ultrafiltration membranes. The drawback
associated with this is that the aligned carbon nanotube’s forest must be eliminated
from the underlying substrate, which can comprise rigorous chemical embedding
processes using harmful reagents. An additional drawback of carbon nanotube usage
is that their ends must be open properly, which again needs strict conditions like
plasma oxidation. Both steps are confusing and expensive. Most aligned carbon
nanotube membranes produced till now posses smaller surface area, thus requiring a
long step of fabrication. It has a lesser packing density, reduced mechanical stability,
and has very little resistance to fouling [43, 45, 75]. Thus, numerous substitutes are
being developed that are less complex and have lesser harmful steps, which can be
again modified for further advancements.
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4 Bucky Paper Membranes Buckypapers (BPs)

Bucky papermembranes have a simpler structure and comprise an array of individual
carbon nanotubes supporting themselves [24, 47]. Bucky paper membranes are flex-
ible and have considerable chemical and physical stability [92]. Because of their
inherent thermal, mechanical and electrical properties, bucky paper is suggested for
various implementations like in microscopic servomechanism, nanosensors, elec-
tronic filters, for mimicking natural muscles, and cathodes field-emission electron
gun [17, 48, 80, 99]. They are made from carbon nanotube dispersions, which
are developed by involving extremely high energy samples comprising nanotubes
along with the prospective dispersant. When the dispersions are filtered on a holding
membrane in the vacuum, then the bucky paper membranes are fabricated [26, 94].

Due to the simple and cheaper manufacturing mechanisms of bucky paper, it
is possible to make bucky paper for large-scale industries in contrast to aligned
membranes. A close observation of the buck paper surfaces with the help of scan-
ning electron microscopy tells about a highly disarranged structure including carbon
nanotubes held together by weak forces along with pi–pi interactions [101]. The
interior assembly of bucky paper membranes consists of pores varying from small to
large is in correlationwith the spaces in between and the bundles of carbon nanotubes,
respectively. The pores in bucky paper accord to 60–70% of their total volume, thus
befitting as a medium for filtration. Apart from this, the filtration characteristics of
bucky paper have also been observed but only in small numbers because of their weak
mechanical properties owing to their brittle nature. A method to overcoming this is
to strengthen bucky paper membranes with the help of polymer intercalation [15].
The infiltration of various polymers, for instance, polystyrene, polyvinyl acetate into
bucky paper membranes gives rise in the tensile strength, Young’s modulus, tough
character, and straining to crackvalues [15]. The additionof biopolymers like proteins
and polysaccharides into bucky papers comprised of single-walled nanotubes can
improvise their mechanical abilities [8]. A detailed analysis has shown that some
biopolymers were left in the bucky paper membranes after vacuum filtration because
of their ability to non-covalently interact with the nanotube. Improvising themechan-
ical properties of bucky paper membranes is again crucial as it reduces the risk which
occurs because of the excretions of single carbon nanotubes into the environment.

There have been observations into the biological consequences of exposure to
CNTs due to the similarity of these materials to asbestos elements. These studies
have also shown that carbon nanotubes provide a specific effect like oxidative stress,
disruption of membrane and interference with cell signaling pathways [19, 23, 63,
70, 74, 81, 85]. Consequentially, it is crucial to consider those very small quantities
of carbon nanotubes should not break from bucky paper membranes or any other
carbon nanotube membrane. It can be achieved by joining the nanotubes to each
other using a covalent bond in bucky paper or aligned membrane. Because of their
cheap manufacturing methods, it is possible to prepare bucky papers on a larger scale
than aligned.
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5 Preparation of CNTs

Themain techniques that are implemented to prepare considerable amounts of carbon
nanotubes are laser ablation, arc discharge, gas-phase catalytic growth from carbon
monoxide, and chemical vapor deposition from hydrocarbons [79]. Arc discharge
and laser ablation approaches are only good to prepare small numbers of carbon
nanotubes. The products prepared often have some quantity of impurity in the form
of particles of catalyst and amorphous carbon [79]. Purification techniques are needed
to separate the nanotubes from unwanted by-products before investigating their
characteristics and prospective functions. The results observed provided prospective
encouragement to explore the CNT membrane material for filtration purposes. This
has been strengthened after observing the cytotoxic properties of carbon nanotube
membranes. This shows that these materials are least influenced by biofouling in
comparison to that of traditional polymeric membranes and also displayed enhanced
membrane lifetime duration via eliminating microbes [9].

6 Production of CNTs

Purification procedures require the separation of nanotubes from unwanted byprod-
ucts before being implemented for further instigation. The gas-phase techniques that
produce nanotubes at low temperatures are changeable to the non-interrupted manu-
facture of a vast number of CNTs as continue flowing of gas would significantly
moderate the source of the preparatory material.

An additional advantage related to the fabrication of the carbon tube with the
chemical vapor deposition is the enhanced purity of the getting material (Fig. 1),
which reduces the requirement for accomplishing all the stages [73]. With the help

Fig. 1 Diagrammatic representation of the CVD equipment
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Table 2 Methods used for preparing CNT-based composite membranes

Type of membrane Synthesis method References

CNT/PA Interfacial polymerization [43, 45]

MWCNT/PSf (C/P) Phase inversion [12]

MWCNT/PA Polymer grafting [89]

(VACNTs)/polyaniline (PANi) In situ polymerization [18]

MWCNTs/PAN Phase inversion [65]

DDA-MWNTs/PSf Phase inversion [40]

(TNRs)/MWCNTs/PES Phase inversion [90]

TFC/polysulfone (PS-20)/MWCNT Interfacial polymerization [2]

PSF/CNTs Phase inversion [41]

A-MWCNTs Phase inversion [102]

Zwitterionic membrane Phase inversion [28]

Polymer membranes In situ polymerization [1]

Graphene oxide-incorporated thin-film
nanocomposite membrane

In situ polymerization [49]

Thin-film nanocomposite membrane In situ polymerization [97]

Polyester thin-film composite membrane In situ polymerization [64]

Carbon nanotube/PSf Immersion precipitation [39]

MWCNT/PVDF/PDMS Deposition/coating [62]

MWCNT/PVDF Phase inversion [60]

Acid-modified
MWCNTs/nanosilver/PSf

Interfacial polymerization and phase
inversion

[42]

F-MWCNTs/PES Phase inversion [104]

(NCNT)/PES Modified phase inversion [77]

PVDF/Fe2O3/MWCNTs In situ polymerization [3]

Surface-modified polyethersulfone
(PES) composite membranes

Spray-assisted layer-by-layer [58]

VA CNTs In situ polymerization [47]

MWCNT/nylon6 In situ polymerization [86]

of the chemical vapor deposition method, single-walled nanotubes with the excel-
lent purity have been fabricated in the gaseous phase by using Fe(CO)5 and carbon
monoxide in the increased pressure CO disproportion method [10].
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7 Techniques for the Fabrication of Mixed CNTs
Membranes

The following are the methods (Table 2) used for preparing the mixed-carbon
nanotube membranes:

7.1 Phase Inversion

Multi-walled carbon nanotubes blend membranes prepared through the phase inver-
sion process with a coagulant in the form of water [14]. A homogeneous multi-
walled carbon nanotubes solution was made in N-methyl-2pyrrolidone (NMP)
and blended with PSf solution. Dodecylamine functionalized multi-walled CNTs
(DDA-MWNTs) were fabricated by Khalied and co-workers. The nanocomposite
polysulfone/DDA-MWNts was casted by the phase inversion method. The fabri-
cated nanocomposite membrane displayed excellent fouling resistance and flux
recovery [40]. Phase inversion process with dimethylacetamide as a solvent and
polyvinylpyrrolidone as a porogen was used to prepare flat sheet nanocomposite
PSf/DDA-MWNTs membranes. A novel polyethersulfone (PES) membranes were
prepared with the help of phase inversion method with the increased loading of the
functionalized oxidized MWCNTs (OMWCNTS) together with the Arabic gum.
The prepared OMWCNTs were characterized by various techniques like scanning
electron microscopy and transmission electron microscopy, energy-dispersive X-ray
spectroscopy [71].
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7.2 Interfacial Polymerization

By employing interfacial polymerization, polyamide reverse osmosis membranes
(RO) with the carbon nanotubes were fabricated. In this process, the function-
alized CNTs were fabricated by the reaction of CNTs with the acidic mixture
of sulfuric acid and nitric acid (in ratio 3:1), at different amounts of reaction
conditions. The synthesized carbon nanotubes were observed to be well settled
in the PA layer; this has been confirmed via various analytical techniques. The
polyamide RO membranes containing well-dispersed CNTs possess an enhanced
flux rate than the polyamide amide membranes devoid of CNTs [43, 45]. Polyamide
thin-film membranes were prepared on polysulfone (PS-20) base by using inter-
facial polymerization of aqueous m-phenylenediamine (MPD) solution and 1,3,5-
benzenetricarbonyl trichloride (TMC) in n-hexane organic solution. MWCNT were
carboxylated by the heating of MWCNT powder in the sulfuric acid and nitric acid
under continuous sonication at various intervals. Polyamide nanocomposites were
then synthesized by the incorporation of MWCNT and the carboxylated MWCNT
at various concentrations. The salt rejection and water flux performances of the
prepared membrane revealed superior performance with that of other membranes
[2]. CNT-enhanced thin-film composite membranes were fabricated by the incorpo-
ration of CNTs into the active layers of membranes for increasing its efficacy for
the water treatment. MWCNT grafted via poly(methyl methacrylate) PMMA was
prepared by microemulsion polymerization of methyl methacrylate(MMA) in the
presence of c-MWNTS (acid-modified MWCNTS). The prepared membranes have
proven significantly improved selectivity and permeability [72].

7.3 Spray-Assisted Layer-by-Layer

Using the spray-aided layer-by-layer method, a functionalized multi-walled CNT
was fabricated by [57]. For improving the commercial polyethersulfone (PES)
ultrafiltration (UF) membranes, antifouling properties negatively charged func-
tionalized MWCNTs, mixed poly(sodium 4-styrenesulfonate) (PSS), and a posi-
tively charged poly(diallyldimethylammonium chloride) (PDDA) were deposited
PES substrate through spray-assisted layer-by-layer L) method. The synthesized
membrane displayed better anti-protein fouling and flux recovery [57]. Surface-
modified polyethersulfone (PES) composite ultra-filtration membrane by using a
spray-assisted layer-by-layer Liu and co-workers proved method. The prepared
nanocomposite membrane displayed enhancement in the antifouling properties [58].
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7.4 Polymer Grafting

A multi-walled carbon nanotube aromatic polyamide nanocomposite membrane
fabrication was shown by Shawky and co-workers. Various instrumental tech-
niques characterized the morphology of the surface, toughness, and roughness of the
prepared nanocomposite membrane. The SEM and AFM images displayed that the
MWCNTs were well dispersed in the PA (aromatic polyamide) matrix. Measure-
ments of mechanical properties of this composite showed increasing membrane
strength with increasing MWCNT content with monotonic increases in Young’s
modulus, toughness, and tensile strength. The prepared nanocomposite membrane
displayed better salt rejection and organicmatter rejection than the normal polyamide
matrix membrane.

7.5 In Situ Polymerization

For the removal of natural organic matter in the water, MWCNT polyaniline
(PANI)/polyethersulfone (PES) membranes were synthesized by incorporation of
in situ polymerized MWCNTs/PANI complex. The prepared membrane showed
enhanced permeability than that of the PES membranes. Higher rates for the rejec-
tion of the natural organic matter were also observed. This greater presentation is
accredited to the synergetic effect of amplified porosity, narrow pore size distribu-
tion and hydrophilicity, and positively charged of the membranes by the inclusion of
MWCNTs/PANI complex. The preparedmembrane also demonstrated a cent percent
water flux [52, 53]. A VACNTs/polyaniline (PANi) composite membrane was also
fabricated via microwave supported in situ polymerization [18]. It was proved that
with the help of a microwave, a better nanocomposite membrane could be fabricated.

8 CNTs Characterizations

Various techniques are available to analyze the characterization of carbon
nanotubes. transmission electron microscopy (TEM) along with the scanning elec-
tron microscopy (SEM) are the methods that are known to observe the top of the
peak along with the sidewall and with the morphology of CNTs [7, 30, 78]. The
most significant tool for the characterization of the carbon nanotubes is the Raman
spectroscopy technique [20, 21, 87]. It is regularly seen to check the quality as well as
the pureness of the made carbon nanotubes. A Raman spectrum of carbon nanotubes
shows two chiefs first-order bands, which include D band and G band. The former
band is concerned with the imperfections of the carbon nanotubes and can be seen
around 1350 cm−1. The latter band is concerned with the amount of graphitization
of carbon nanotubes that are at 1600 cm−1. Therefore, the ratio of the area of both
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the band is found to determine the defect level in a specific carbon nanotube sample.
Hence, by modifying reactants and chemical vapor deposition preparation dimen-
sions like a catalyst, substrate, temperature, carbon precursor, pressure, time, and
rate of gas flow assisted with several customizations for functional groups and char-
acterization techniques here optimized carbon nanotubes could be gotten for various
practical applications (Table 1).

9 Challenges Related to CNTs

Carbon nanotube membranes have a great prospective future in the wastewater treat-
ment industry. However, it faces a lot of challenges to produce membranes as they
are in the very first stage, and various vital issues are still to be tested. Viable readi-
ness, reducing the cost of CNT, scaling in the industries, and assessing probable
lethal effects of carbon nanotubes are some encounters that are about to be finished.
Manufacturing carbon nanotubes on a large scale with a considerable pore size and
the way to distribute is yet a vital challenge in implementing carbon nanotube on a
great economic scale. Researchers must study more changed methods to get a more
economical method to create a carbon nanotube. Another obstruction that prevents
the implementation of carbon nanotubes in large-scale operation is the cost, specifi-
cally that of a single-walled carbon nanotube. Because of the high rise in the indus-
trial manufacture of carbon nanotubes, the cost related to them will be cut down in
the future. The prospective hazardous issues by carbon nanotubes on the health of
humans and on the atmosphere made significant questions supposed to be answered
detrimentally. It is assumed that raw carbon nanotubes aremore hazardous in contrast
to chemically modified carbon nanotubes. This is also because of the availability of
a metal catalyst in raw carbon nanotubes. Another obstacle is the difficult growth
of carbon nanotubes with good alignment in vertically aligned carbon nanotube
membranes. The disarranged alignment can affect membrane properties like salt
rejection and flux. The mechanisms that separated the pollutants from freshwater
must be examined carefully.

10 Conclusion

Researcherswere focusing onCNTsbecause of themshowing excellent permeability.
Their level of performance is the best among other membranes derived by carbon
nanotubes. The latter offers good benefits like cheap cost and higher ease at produc-
tion, along with the capability to be generated at a larger scale. Investigations into the
applications like desalination, ultrafiltration, nanofiltration have shown that carbon
nanotube membrane often showed increased resistance to biofouling in contrast to
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the tradition polymer. There is also a need to investigate the differences between the
characteristics of filtration of bucky papers and that of composite membranes using
various carbon nanotubes and agents of dispersion.
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Abstract Widespread pollution of water bodies by textile industries, agricultural
wastes and organic contaminants has developed water contamination which has
become one of the chief worldwide environmental disasters. The outcome of this
uncivilized negligence is modeling solemn dangers to health of living beings thus
today; sustaining water reserves for the spirit of life is of severe concern. Thus,
there is a prerequisite for an effectual, cost-effective, steadfast, feasible and eco-
friendly technology to remove pollutants and bacterium from wastewater. Advanced
oxidation processes would be one of greatest favorable preferences for wastew-
ater mitigation. This chapter reviews the preparation and characterization of carbon
nanocomposites, and photocatalytic and anti-bacterial activity of carbon nanocom-
posites. Furthermore, the comprehension breakdowns and research confronts have
been underlined, incorporating fabrication, optimization and critical concerns linked
with carbon nanocomposites for its commercialization for the bacterial disinfection
and contaminant degradation.

Keywords Carbon nanocomposites · Adsorption · Advanced oxidation process ·
Photocatalysis · Bacterial disinfection · Water purification

Sheetal Sharma and Vishal Dutta have contributed equally.

S. Sharma · V. Dutta · P. Raizada · P. Singh (B)
Faculty of Basic Sciences, School of Chemistry, Shoolini University, Solan, Himachal Pradesh
173212, India
e-mail: pardeepchem@gmail.com

P. Raizada · P. Singh
Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, HP 173229,
India

V. K. Thakur
Biorefining and Advanced Materials Research Centre, , , United Kingdom, Scotland’s Rural
College (SRUC), Edinburgh, United Kingdom

© Springer Nature Singapore Pte Ltd. 2021
M. Jawaid et al. (eds.), Environmental Remediation Through Carbon
Based Nano Composites, Green Energy and Technology,
https://doi.org/10.1007/978-981-15-6699-8_9

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6699-8_9&domain=pdf
mailto:pardeepchem@gmail.com
https://doi.org/10.1007/978-981-15-6699-8_9


176 S. Sharma et al.

Abbreviations

BiOX Bismuth oxyhalide
BPA Bisphenol A
CNTs Carbon nanotubes
eV Electron volt
g-C3N4 Graphitic carbon nitride
MWCNT Multi-walled carbon nanotube
NIR Near infrared
RGO Reduced graphite oxide
RhB Rhodamine B
ROS Reactive oxygen species
SEM Scanning electron microscopy
SPR Surface plasmon resonance
SWCNT Single-walled carbon nanotube
TEM Transmission electron microscopy
UCPL Up-conversion photoluminescence
UV Ultraviolet
XPS X-ray photoelectron spectroscopy
XRD X-ray diffraction

1 Introduction

With the gradual growth in the industrial world, environmental pollution has become
a major concern [67, 112]. On daily basis, large numbers of toxic chemicals are
disposed into the rivers, lakes and oceans. In the aquatic world, diverse toxic pollu-
tants are identified as heavy metals, textile dyes, pesticides, surfactants and insec-
ticides [54, 68]. Abundant consideration has been concentrated on the removal of
these injurious and toxic pollutants from the water bodies in order to stop their
precarious effect on the ecosystem [61, 77]. So far, various conventional techniques
such as sedimentation, reverse osmosis, filtration, membrane filtration, and chemical
and biological treatments have been deployed for the water mitigation [21, 56]. The
treatment of decontaminated water using such conventional techniques is found quite
unsatisfactory as thewater contains various contaminants like pharmaceuticalwastes,
organic solvents and pesticides [17, 83]. As in case of adsorption process, activated
carbon used as adsorbent loses its adsorbent capability after a number of repetitive
cycles [78, 88]. The biological treatment for water mitigation is a slow technique
and also abolishes only 75–85% of organic pollutants. The widespread wastewater
mitigation techniques like coagulation and adsorption which are available currently
just relocate the pollutants from one phase into another phase. Henceforth, there is a
necessity to develop an alternative technique which can totally eliminate the water
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contaminants [38, 57]. To overcome such hurdles of the environmental water pollu-
tion, photocatalysis is a prominent chemical procedure as it is a promising technique
for the elimination of toxic chemicals entirely [62, 80]. By means of photocatalysis,
toxic water pollutants and toxic gas can be totally eliminated. In the current time,
advance oxidation processes (AOPs) have gained very much attention in treatment of
watermitigation due to their ability in degrading of organic chemicals in diverse range
[55, 84]. Among all AOPs, visible light-supported oxidation processes have gained
remarkable attraction because of their energy efficiency, eco-friendly nature, good
stability and low cost [25, 73]. This efficient method has been studied widely for the
indemnification of huge range of aqueous pollutants in water since last 30 years [64,
87]. In the basic principle of photocatalysis (Fig. 1a), under visible light absorption,
molecules of pollutants pass off the photooxidative reactions which split pollutants
into small molecular weight constituents and variation in their chemical, physical
and mechanical properties helps to produce harmless by-products [7, 85]. The redox
potentials and band end positions of semiconductor photocatalyst in the water (at pH
7) are effective to improve the reaction selectivity of reactant without contradicting
the change (Fig. 1b). The photocatalytic mechanism is well clarified by Eqs. 1–21
[26].

Fig. 1 a Fundamental
photocatalytic mechanism of
semiconductor photocatalyst
under visible light
illustrating degradation of
organic contaminants present
in the water and b potentials
and band edge positions for
redox couples (at pH 7) of
semiconductor
photocatalysts (copyright
with license Id.
4653670201522)
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AOP’s + OH· → Pollutant molecule → CO2 + H2O + Inorganic ions (1)

Route for charge separation for ROS production

Photocatalyst + hυ → e− (conduction band) + h+ (valence band) (2)

O2 + e− → O·
2 E ′

0 = −0.33 V (3)

HO·
2 → O·

2 pKa = 4.8 (4)

O·
2 + 2H+ + e− → H2O2 E ′

0 = 0.89 V (5)

H2O2 → HO−
2 + H+ pKa = 11.7 (6)

O2 + 2H+ + 2e− → H2O2 E ′
0 = 0.28 V (7)

H2O2 + e− → OH− + OH· E ′
0 = 0.38 V (8)

H2O + h+ → OH· + H+ E ′
0 = 2.32 V (9)

OH· → O−
2 + H+ pKa = 11.8 (10)

2HO·
2
1O2 → H2O2 (11)

O·−
2 + h+ →1 O2 E ′

0 = 0.65 V (12)

Interaction among radicals

2HO·
2 → H2O2 + O2 (13)

2HO·
2 + O·−

2 + H2O → H2O2 + O2 + OH− (14)

2HO·
2 → H2O2 (15)

H2O2 + hυ(UV) → 2OH· (16)

H2O2 + O−·
2 → OH· + O2 + OH− (17)
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3O2 → Photocatalyst intersystem crossing → 1O2 (18)

Overall photocatalytic oxidation

ROS, h+ + contaminants → oxidised products (H2O, CO2) (19)

O2 + contaminants + hυ → Photocatalyst → H2O,CO2 (20)

Recombination of generated hole and electron pairs:

e− + h+ → Heat + Radiationless decay (21)

Main obstacles which limit wide-scale recognition of AOPs are the inefficiency
of commercially accessible visible absorbing photocatalytic materials and unsuc-
cessful separation of generated holes and electron pairs [55, 92]. For the efficient
degradation of water contaminants, the fabrication of economically accessible and
visible light-absorbing photocatalyst is the most important step [69, 90]. From the
past four decades, widely used semiconductor photocatalysts used for the elimination
of contaminants of water are bismuth oxyhalide (BiOX, X = Cl, F, Br, I), Ag3PO4,
ZnFe2O4, CaFe2O4, g-C3N4, ZrO2, BiFe2O4, etc [25, 65].

To define the applicability of a photocatalytic semiconductor in a particular photo-
catalytic reaction, most important factor is band gap of the semiconductor [66, 86].
In a particular reaction, the elemental principle of photocatalyst depends on electron
and hole pair excitation [89]. For the semiconductor owning the wide band gap (E <
3 eV), the electrons and holes can only get excited by UV light because they require
extra energy for the excitation of holes and electrons. Whereas the semiconductor
owning the narrow band gap (E > 3 eV) can easily go to their excited state by visible
light, hence they do not require extra energy for the excitation of electron. Addition
to this, electrons in semiconductor owning narrow band gap undergo quick combi-
nation of generated charge carriers [70]. However, the semiconductor photocatalysts
also hold some drawbacks such as rapid recombination of hole pairs and electrons,
and excitation happens only under UV and band gap properties. All these limitations
affect the photocatalytic performance of the semiconductor photocatalyst. From the
last decade, various strategies have been exploited to enhance the photocatalytic
activity of semiconductor photocatalyst such as heterojunction formation, metal
doping, noble metal doping and formation of semiconductor heterojunction compos-
ites [21]. Exclusively, various attempts have been made to combine carbon-based
nanomaterials such as graphene, graphitic oxide, graphitic carbon nitride (g-C3N4),
carbon nanotubes (CNTs) and carbon quantum dots (CQDs) with semiconductor
photocatalyst to enhance the photocatalytic activity [44].

Photocatalysis by using metal oxides such as TiO2 is most effective technique
because it utilizes solar energy and leads toward the total mineralization of most of
the organic contaminants which exist in aqueous medium as well as in air. However,
metal oxides hold some drawbacks which limit their applications at mass production.
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The photocatalytic region only absorbs a little fraction (<5%) of incident light, which
represents its relativitywith large band gap (<3.2 eV) [103]. Thus, insufficient utiliza-
tion of visible light is a main factor for limitations in photocatalytic performance of
the metal oxide. Also, because of poor affinity toward hydrophobic organic pollu-
tants, the adsorption of pollutants on metal oxide surface becomes relatively low,
hence resulting in poor photocatalytic degradation rate. Not restricted to this, metal
oxide such as TiO2, ZnO and CuFe2O3 may go through aggregation because of the
instability of nano-size of particle. These aggregations of small particles hinder the
incident light and hence reduce the photocatalytic activity [23]. In case of slurry
system, one main challenge is to recover the nanoparticles from the treated water
with concern to economic way. Limitations in the application ofmetal oxide particles
for photocatalytic degradation of organic contaminants are listed in Fig. 2.

To enhance the photocatalytic performance of metal oxide materials, various
methods have been exploited such as doping with metals and nonmetals [58],
surface alteration with metal ions [42] and semiconductor nanoparticle modifica-
tion. In recent times, researchers revealed that the addition of co-sorbent carbon-
based nano-materials can enhance the photocatalytic performance of metal oxides
[48]. Carbon nano-materials hold exceptional structural characters such as excel-
lent thermal conductivity [14], mechanical strength [105], thermal stability [76] and
unique electronic properties [14]. Hence, carbon nanocomposites can be used as an
encouraging material for environmental purification.

Fig. 2 Limitations of metal oxide particles during photodegradation of organic contaminants in
water
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2 Carbon-Based Nanocomposites

2.1 Graphene

Graphene consists of a specific layer of sp2-bonded C atoms closely crammed into
two-dimensional honeycomb-like structure (Fig. 3) [53]. This carbon material has
gained a lot of attraction since after its discovery in 2004 because of its mechan-
ical, optical, electrical and thermal properties. Graphene is one of all carbon-based
nanomaterials which owns a high thermal conductivity (about 5000 W m−1 K−1),
displays extraordinary mobility of generated charge carriers even at room tempera-
ture (200,000 cm2 V−1 s−1) and also provides great surface area (about 2600m2 g−1).
At present, numerous techniques have been exploited for the fabrication of graphene
which includes epitaxial growth, bottom-up organic synthesis, electrochemical and
chemical reduction of graphite oxide and micromechanical exfoliation [74]. Out
of all these fabrication techniques, the reduction of graphene oxide came out as
a reliable and effective technique for the production of graphene nanosheets. This
fabrication method is economic and results in huge scalability [59]. Fabrication of
functionalized graphene-based nanocomposite can easily be done by just altering the
surface properties via chemical modification [91]. In the present time, functionalized
graphene-based semiconductor photocatalysts have gained a lot of attention because
of their large specific surface area, high adsorption and good electron conductivity.
The graphene-based nano-materials own unique optical and electronic properties and
also hold good biocompatibility which represents their exploration in energy storage
[95], biosensors [60], catalysis [96], drug delivery [13] and molecular imaging [2].
Lightcap et al. fabricated GO-TiO2 nano-crystalline heterojunction by sonicating
dispersed GO and TiO2 nanoparticles in ethanol and revealed the practicability of
using graphene as an electron transfer medium in the graphene/TiO2 composite
photocatalysts [44]. This work on graphene stimulated wide research on the modi-
fication, preparation and applications of graphene-based nano-material semicon-
ductors. Zang et al. fabricated graphene-P25 TiO2 under hydrothermal conditions

Fig. 3 Schematic illustrations of various configurations of graphene derivatives (copyright with
license Id. 4653670484171)
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for degradation of methylene blue in aqueous medium. The fabricated graphene-
P25 TiO2 displayed wide absorption range of extended light, efficient separation of
charge carriers and great absorptivity of dyes. Therefore, in photodegradation ofMB,
enhancement in the photocatalytic performance was observed with graphene-P25
TiO2 in comparison with pristine P25 and CNTs owning the same carbon content.

2.2 Graphitic Carbon Nitride G-C3N4 (GCN)

Presently, graphene family-based semiconductor photocatalysts are considered as
promising photocatalysts because of their chemical stability, non-toxic nature, and
economic and abundant nature [33]. Incidentally, GCN a π-conjugated semicon-
ductor photocatalyst has gained much attention throughout the world [92]. GCN
is a stable photocatalyst as it owns narrow band gap of 2.7 eV and displays two-
dimensional configurations and easy fabrication route. The minimum conduction
band of GCN (−1.12 eV vs. NHE) which is reliable for the high decline of generated
electrons [111]. Despite having photocatalytic properties, GCN also holds minor
limitations such as low adsorption area and rapid recombination rate of photo-
generated electron–hole pairs. GCN used in bulk amasses the photocatalytic layers
which results in overall decrement in photocatalytic behavior [93]. To date, various
techniques have been exploited to overcome such limitations of photocatalyst. Out
of all techniques, GCN nanosheets fabricated from decorticating bulk GCN have
shown a good photocatalytic performance. These GCN nanosheets hold properties
such as improved charge separation, beneficial alteration in band structure and wide
exposure of active catalytic sites [100]. Recently, widely used fabrication method for
synthesis of GCN is the thermal oxidation method. But due low yield percentage,
it cannot be used for mass production of GCN [52]. Therefore, there is a need
for development of new economic approaches which delaminate bulk GCN into
nanosheets in large qualities. Moreover, it has been revealed that GCN materials
when doped with heteroatoms (such as S, P, I and oxygen) own large charge carrier
movement, enhanced light harvesting and changes in the band energy structure.
Liu et al. fabricated sulfur-doped g-C3N4 for degradation of phenol under visible
light. The fabricated composite displayed photocatalytic activity 7.2 and 8.9 times
higher than pristine CGN under visible light. The complete oxidation of phenol
under λ > 400 nm was done by sulfur-doped g-C3N4 and impossible for pristine
GCN. This significant photocatalytic activity of sulfur-doped g-C3N4 is found to be
a synergistic result of upshifting and widening of valence band, which is gained by
homogeneous dispersal of sulfur dopant [46]. Zhang et al. fabricated iodine-doped
GCN nano-material via in situ modification technique. The fabricated nano-material
was obtained with enhanced optical absorption, accelerated charge transfers and
also enlarged surface area. The iodine-doped GCN displayed excellent photocat-
alytic activity. The iodine-doped material displayed absorption extended to 600 nm,
whereas pristine GCN is inactive at 500 nm. This result showed the advantage of
nonmetal doping to enhance the band structure and texture of a photocatalyst [109].
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Fig. 4 Schematic representation of potential applications and modulations of g-C3N4 in various
monarchies (copyright with license Id. 4654021257171)

Li et al. fabricated oxygen-doped GCN via hydrothermal technique. The oxygen
doping effectively extended visible light response, enhanced the charge separation
efficiency and also enlarged the surface area of the photocatalyst. Thus, such modi-
fications consequently contributed to enhancement of the photocatalytic activity of
pristine GCN [40]. In conclusion, sulfur-doped, oxygen-doped and iodine-doped
GCN nano-materials have shown great potential as metal-free photocatalyst. For the
development of green and cleaner environment, g-C3N4 has captivated researchers for
protagonist function inwastewatermitigation, bacterial disinfection, organic contam-
inant degradation, water splitting, etc. Summary of review illustrating changes and
probable applications of g-C3N4 in various monarchies is shown in Fig. 4.

2.3 Carbon Quantum Dots (CQDs)

Carbon quantum dots belong to the new family of carbon nanoparticles. These are
biologically and environmentally workable materials in comparison with inorganic
composites [34, 39]. For their fabrication, the carbon materials are utilized as adsor-
bents and dispersants and provide support to expand the surface area of the photo-
catalyst [19]. In general, the QDs are divided into two sub-types: carbon quantum
dots (CQDs) and graphene quantum dots (GQDs) [22]. Graphene quantum dots
are sp2-hybridized and are crystal-like by nature, while carbon quantum dots are
sp3-hybridized and are amorphous in nature. The size of graphene quantum dots
is 2–20 nm, and their fluorescence is because of quantum confinement (Fig. 5a)
where carbon quantum dots are less than 10 nm and fluorescence is because of
surface defects [114]. CQDs have gained much attention as an advanced family of
nano-materials for the process of semiconductor visible light photocatalysis [106].
The photocatalytic process of CQD-based photocatalysts is represented in Fig. 5b.
CQDs are synthesized by means of oxidation and carbonization, microwave tech-
nique, hydrothermal technique and electrochemical routes [11]. In the fabrication
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Fig. 5 a Quantum confinement effect of CQDs and their allied n-p* transition (copyright with
license Id. 4653670201522) and b the photocatalytic process of CQD-mediated photocatalysts
under visible light (copyright with license Id. 4654021433859)

procedure, the precursors are candle soot, citric acid, lampblack, papaya, grass, tulsi
leaves, watermelon peels, lotus root, rice flour and potato [47, 49]. The importance
of utilizing nature resources for fabrication of CQDs is that all the precursors are
economic and eco-friendly in nature. Out of all, green synthesis techniques are highly
acceptable than physical and chemical techniques. In recent times, researchers have
encouraged to develop many new ways by using natural precursors. The CQDs are
valuable resource because of their fine biocompatibility, abundant surface functional
groups, low cost, small particle size, chemical inertness, wide varying optical prop-
erties, low toxicity and tuneable PL behavior [98, 101]. CQDs also have practical
applications in electrocatalysis, light-emitting diodes, bio-sensing, nanomedicines,
water treatment, drug/gene delivery, bio-imaging [24], disease detection, etc [113].
CQDs own extraordinary alteration capability to modify lower energy photons to
higher energy photons. They are exploited as a spectral converter in order to use the
overall spectra of the incident sunlight [16, 114]. In efficient, photocatalysis role of
CQDs can be categorized as:

1. Mediator and acceptor for conduction band photo-generated electrons.
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2. Enhancing visible light performance of wide-ranging band gap photocatalysts
by the process of photosensitization.

3. Reducing agent during the fabrication of several metal nanoparticles with the
help of surface plasmon resonance (SPR) phenomenon.

4. By using up-conversion photoluminescence (UCPL) phenomenon, efficient
harvesting of wide solar spectrum is done in which the emission of shorter
wavelength light is used for excitation of CQDs.

2.4 Carbon Nanotubes (CNTs)

Carbon nanotubes (CNTs) (Fig. 6) are classified as an illustrative kind of nanomate-
rials and acquire exceptional chemical and physical properties, which facilitate them
to be favorably applied in several fields involving energy, medicine, environmental
technology, etc., owing to porosity, high surface area, fast adsorption kinetics [35].
However, adsorption-based technologies are nondestructive and adsorbed contami-
nants are not mineralized. Thus, rejuvenation and organization of consumed adsor-
bents are critical to sustainability of adsorption-based procedures [94]. Lately, a
number of reinforcement methods have been used to recover CNTs and lessen the
treatment expenditure. The interaction between CNT functional groups under visible
light produces reactive oxygen species (ROS) which promote the acceleration in the
process of pollutant degradation and bacterial inactivation. Meanwhile, the possible
environmental influences of CNTs have gradually attracted superior curiosities and
concerns from global researchers [8]. CNTs were established to encourage DNA
impairments and cytotoxic results toward eukaryotic cells and prokaryotic cells and
adversely modify microbial multiplicity and community assemblies [4]. The phys-
ical interaction of CNTs with the microbial cells is the most feasible mechanisms
for deactvation of toxic microbial cells.

Fig. 6 (i) Structural representations of (a) multi-walled CNT and (b) single-walled CNT, and (ii)
different configurations of CNTs (copyright with license Id. 4654030792512)
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3 Preparation and Characterization of Carbon
Nanocomposites

Recently, a range of techniques have been established to produce carbon-based
nanocomposites with enhanced performance in water purification [6, 29]. The photo-
catalytic activity of these nanomaterials is related to their configuration and proper-
ties, which are administered by size of carbon material, number of walls or layers,
density and type of defects and interfacial interaction among semiconductors and
carbon nanocomposites [79]. Thus, to attain carbon nanocomposites with enhanced
performance, their fabrication must be strategic and implemented in order to regu-
late their configurations and properties [80]. A greater surface area of carbon-based
composites greatly impacts their photocatalytic power, the surface area can be
estimated using nitrogen absorption, and chemical structures can be depicted by
Raman spectroscopy. There are some substitute techniques to attain the enhanced
performance of carbon nanocomposites, such as chemical surface functionaliza-
tion, heteroatom doping and interface engineering. An et al. reported a method of
hydrothermal aided by microwaves to provide compounds of Cu2O coated with
reduced graphene oxide (RGO) [5]. Examination of their XRD patterns revealed that
composites were comprised of cubic phase of Cu2O. The SEM and TEM studies
showed the morphology of the Cu2O/RGO materials. The configuration of these
photocatalysts was also depicted by XPS. Surface chemical functionalization, e.g.,
chemical insertion of the chemical ligands and acid oxidation, upholds the core
structure of material but can encourage development of surface defects and appro-
priate functional groups, which can be favorable for enlightening the photocatalytic
activity of carbon nanocomposites [110]. Usually, functionalization can produce
plentiful nucleation positions that encourage the development of unvarying nanopar-
ticles, subsequently stimulate a well dispersal of combined semiconductor nano-
structures and may additionally act as implementers for native photocatalytic reac-
tions as they can act as supports for contributing reactants in reactions [97]. The
electronic structure and electric conductivity of carbon nanocomposites can be the
altered by heteroatom doping in demand to regulate their electron movement and
charge transfer capacity [43].

4 Photocatalytic Activity of Carbon Nanocomposites

The method of photocatalysis is an effectual, cost-effective and green technique for
wastewater treatment [3, 63]. Lately, improvement in carbon-based photocatalytic
nanocomposites and nanotechnology has headed to invention of groundbreaking
semiconductor photocatalysts via which deprivation of organic pollutants can be
attained with higher effectiveness [6, 31].

Progresses in the photocatalytic properties of g-C3N4 for the wastewater miti-
gation have got remarkable attention in the field of research [30, 79]. Though, bare
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g-C3N4 experiences various bottlenecks such as fast recombination of generated elec-
tron–hole pairs, less surface area and inadequate absorption of light which lowers
photocatalytic degradation activity [73, 92]. To advance the photocatalytic activity of
g-C3N4, diverse approaches, e.g., tuning defects, fabricating heterojunctions, semi-
conductors have been attempted [71, 72]. Abdellatif et al. developed a simplemethod
to enhance the oxidation capability of the electron–holes produced from the valence
band of the g-C3N4 and elimination of NO [1]. Hu et al. fabricated K-doped g-C3N4

for the removal of Rhodamine B dye below visible light irradiation. K-doped g-C3N4

(0.5) showed 6.5 times more rate constant than bare g-C3N4, and also N-doped g-
C3N4 amended the photocatalytic performance [33]. Xu and co-workers narrated
fabrication of g-C3N4 via calcination and hydrothermal method for the photodegra-
dation ofRhodamineB dye under the visible light radiation [97]. The g-C3N4-20with
super-cell structure fabricated by hydrothermal method exhibited higher separation
of generated charge carriers, with larger surface area, thereby improving the photo-
catalytic activity for the mineralization of dye. g-C3N4 nanosheets were prepared
using NH4Cl as a precursor by Guo et al. for the elimination of cyanide [28]. The
removal of cyanide using g-C3N4 0.18 mM nanosheets was 90% after 150 min.
Also results revealed that the photocatalyst showed substantial recyclability after
five successive cycles. The fabrication of carbon- and oxygen-doped g-C3N4 using
malonic acid and urea as precursors via thermal polymerization was reported by Gu
and co-researchers [27]. The fabricated photocatalyst degraded the 15 ppm bisphenol
A (BPA) within 150 min, and photocatalytic activity of carbon- and oxygen-doped
g-C3N4 was 4.8 times more than that of pure g-C3N4. The higher photocatalytic
activity of the product was chiefly attributed to optical properties and electronic
band structure and due to the positive charge density on the C atoms. On the further
part, introduction of carbon atoms into g-C3N4 led to fabrication of π-bonds which
favored the transfer of electrons [27]. The generation of hydroxyl radical plays a
principal role in mineralization of BPA. The exclusive chemical and band configura-
tion collected with porous morphology attributed to the greater photocatalytic action
of the synthesized composite. The possible photocatalytic mechanism for the degra-
dation of BPA using carbon- and oxygen-doped g-C3N4 is illustrated in Fig. 7a. A
facile and easy approach for the synthesis of porous g-C3N4-covalent organic frame-
work (COF) materials was conveyed by Yao and co-workers [102]. The synthesized
hybrids exhibited greater photocatalytic activity, and results revealed 100% removal
of orange II; bare g-C3N4 removed 10%, and COF removed 5% of dye. It was
concluded that noble equilibrium among graphitization degree and N content helped
in boosting photocatalytic activity of as-synthesized photocatalyst. The probable
mechanism for the photocatalyst for dye mineralization is illustrated in Fig. 7b. The
synthesized photocatalyst exhibited effective photocatalytic activity owing to excep-
tional porous structure, greater definite surface area, great concentration of N active
sites and robust synergistic effects among COF and g-C3N4.

CNT-grounded strategies have drawn significant hold in an array of scientific
arenas such as photocatalysts, adsorbents and membranes owed to its notable
catalytic, electrical, chemical, structural and thermal properties [35]. Moreover,
CNTs displayed tremendous adsorption ability with high adsorption competence
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Fig. 7 a Pictorial representation of photocatalytic mechanism for the degradation of BPA using
carbon- and oxygen-doped g-C3N4 (copyright with license Id. 4654031136570) and b the plausible
mechanism for g-C3N4-covalent organic framework (COF) for the mineralization of dye orange II
(copyright with license Id. 4654031289093)

than traditional granulated activated carbon, amorphous carbon and graphene [8].
CNTs emerge as an exceptional adsorbent due to its hefty surface area alongside with
effective active locations [4]. Surface alteration of CNTs via adding acidic or basic
solution hosted hydroxyl, carbonyl and carboxyl groups to the CNTs. Themanifesta-
tion of these functional groups enhanced adsorption properties of the CNTs through
eliminating contaminations on CNTs surface and besides delivered greater electro-
static force [18]. Zare and co-workers reported the removal of dye Congo red (CR) by
operatingMWCNTs [107]. The factors upsetting adsorption capability of MWCNTs
were scrutinized, viz. pH and the initial dye concentration. Results revealed that dye
CR adsorption was observed at pH 11 after 60 min. In other studies, MWCNTs were
synthesized via photocatalytic chemical vapor deposition strategy for the degrada-
tion of dye reactive red 159, reactive yellow 81 and reactive blue 116 [94]. The
photocatalytic activity of MWCNTs was significantly exaggerated by surface modi-
fication. It was found that the removal process followed Temkin model for all kind
of dye used. A widespread research has been done by Sellaoui and associates for
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the degradation of crystal violet by di-functional MWCNTs [75]. Results showed
that interaction among H-bonding is main active cause responsible for adsorption
of dye. Lately, Banerjee et al. fabricated amorphous CNTs for removal of methyl
orange (MO) and Rhodamine B (RhB) [10]. The fabricated CNTs degraded methyl
orange in 30 min and Rhodamine B in 45 min, making it a potential unconventional
adsorbent for the water mitigation. Bohdziewicz and co-worker reviewed the elim-
ination of bisphenols (BPA) in the wastewater by single-walled CNTs (SWCNTs)
and improved the functional groups CNTs [12]. It was revealed by the researchers
that more pH value is not beneficial for the adsorption of BPA due to electrostatic
repulsion among CNTs and bis-phenolate anions, which thereby reduced π–π inter-
action. Zhang and co-workers conveyed the photocatalytic activity of MWCNTs for
the exclusion of bisphenol AP (BPAP) [110]. The results revealed that ionic potency
is not an essential feature that led to the robust adsorption of molecules of BPAP on
the MWCNTs. The MWCNTs displayed tremendous durability up to successive 8
cycles with the 95% retrieval.

Because of exceptional photosensitization, up-converted photoluminescence
(UCPL) and charge carrier transfer, CQDs have been operated for amendment
of a photocatalyst nanocomposite to nurture their photocatalytic performance [9,
104]. The mechanism of electron excitation and photocatalytic activity of CQDs
is entirely depended on the band gap, conduction band and valence band [15]. The
different functions of CQDs in effectual photocatalysis are acceptor and mediator for
photo-generated electrons, enlightening the visible light photocatalytic activity of the
photocatalyst via photosensitization methods, the reducing agent through construc-
tion of several metal nanoparticles with phenomenon of surface plasmon resonance
(SPR), well-organized harvesting of solar energy via up-conversion photolumines-
cence (UCPL) [81]. In a stated work, Miao and co-workers exhibited the fabrica-
tion of CQDs/TiO2 photocatalyst for the elimination of N-benzylideneaniline (NB)
and methylene blue (MB) via sol-gel method, and ultrasonic and hydrothermal
approaches below the visible light radiation [50]. The fabricated photocatalyst
photodegraded 98% of dye MB after 1 h and 30% of dye NB after 2 h which was
greater than bare CQDs and Ti-450. The existence of O2 comprising groups and
aromatic rings of the CQDs added the adsorption on MB and NB on the surface of
nanocomposite. The electron reservoir and UCPL properties of the CQDs acceler-
ated utilization of the visible light and obstructed the regrouping of e−/h+ pairs. Ali
and associates narrated the fabrication of P25/CQDs nanocomposite for the degra-
dation of 4-chlorophenol (4 CP), Rhodamine B (RhB) and methyl orange (MO)
below visible light [3]. The nanocomposite degraded 49% of 4 CP, 80% of RhB
and 40% of MO, whereas pristine P25 degraded 46% of 4 CP, 49% of RhB and
33% of MO. It was also stated that the formation of ROS played a vital function in
the deprivation of dyes. The hydrothermal synthesis of the CQDs/TiO2 nanocom-
posites was described using glucose (G) and citric acid (CA) as precursors for the
deprivation of phenolic compounds under UV light radiation [82]. CQDs/G/TiO2

photocatalyst revealed about 99% degradation ratio of the phenol which was greater
thanCQDs/CA/TiO2 photocatalyst. CQDs assisted as electron reservoir and confined
the photo-generated electrons from TiO2 conduction band. The feasible mechanism
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Fig. 8 a Feasible mechanism propositioned for elimination of phenol under visible light (copyright
with license Id. 4654040037357) and b the photocatalytic mechanism using CQDs/ZnO photocat-
alysts for the degradation of the Rhodamine B dye where CQDs act as electron reservoir (copyright
with license Id. 4654040444679)

proposed for the mineralization of phenol under visible light is shown in Fig. 8a. Li
and co-researchers fabricated CQDs/ZnO photocatalyst composites via sol-gel tech-
nique besides spin-coating route for the degradation of the Rhodamine B dye [43].
CQDs/ZnO photocatalyst (4-layered) exhibited 3 times extra photocatalytic action
than pure ZnO due to the electronic interaction among ZnO and CQDs molecules,
improved the separation of photo-generated charge carriers and enriched the alloca-
tion of e−–h+ pairs (Fig. 8b). The upgraded photocatalytic performance of the photo-
catalyst was generally due to CQDs electron reservoir property and up-converted
nature.

Muthulingam et al. delivered the groundwork of CQDs/N-ZnO photocatalyst for
the deprivation of malachite blue (MB), methylene green (MG) and the fluores-
cein dyes under solar light [51]. The degradation percentage for the dye MG using
CQDs/N-ZnO composite was 100%, and using N-ZnO composite was 60%, respec-
tively, later 30 min. Photodegradation of the fluorescein dye using CQDs/N-ZnO
nanocomposite was also 100% later 30 min, and using N-ZnO composite was 92%
within 60 min. Ding and associates reported the fabrication of CQDs/ZnO foam for
the elimination of Rhodamine B (RhB), methylene orange (MO) and methyl blue
(MB) under the visible and UV light [20]. The rate constant (k) value for MO, MB
and RhB was 0.0031, 0.0121 and 0.0092 min−1, respectively. The mineralization of
the dyes was in the order of MO < RhB < MB. Due to the up-conversion nature,
CQDs enriched the photocatalytic action of the foam as deliberated by the excitation
wavelengths in the range of 600–850 nm. The CQDs were represented as electron
reservoir, photo-generated electrons were relocated from the ZnO surface to the
CQDs surface, and the recombination of e−–h+ pairs inhibited well (Fig. 9).
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Fig. 9 a Schematic diagram
of absorption and reflection
of light in the ZnO foam,
b CQDs up-converted
spectra with excitation of
visible and NIR wavelengths
and c schematic
representation of the
photocatalytic process of
ZnO foam CQDs
nanocomposites (copyright
with license Id.
4654040658534)

Kaur et al. stated a facile scheme for the preparation of CQDs revised ZnS
nanocomposites via precipitation route for elimination of the dye alizarin red S
(ARS) below visible light illumination [36]. The photocatalytic performance using
CQDs/ZnS nanocomposites for the dye eliminationwas 89%within 250min and that
was greater than the catalytic action of ZnS (63%). After the introduction of CQDs
into ZnS, electrons transferred from ZnS conduction band to the CQDs and caused
an effectual separation of e−–h+ pairs. Liu and workfellows conveyed the fabrication
of CQD-modified CdS nanocomposites via hydrothermal means for deprivation of
Rhodamine B (RhB) below the visible light, fluctuating the CQDs concentration [47,
49]. The photodegradation productivity of dye RhB over CQDs/CdS photocatalyst
composite was 90% and over CdS was 50%, respectively, within 1 h below visible
light illumination. The photocatalytic performance of the CQDs/CdS composite was
greater than that of pristine CdS as CQDs imprisoned the electrons and obstructed
the generated e−–h+ pair recombination. Correspondingly, up-conversion property
of CQDsmade subsequent photocatalyst exploit the visible light extra efficiently and
hence boosted the photocatalytic activity.
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5 Photocatalytic Anti-bacterial Activity of Carbon
Nanocomposites

The current confront in expenditure of the photocatalysis for the bacterial disinfec-
tion is the time needed for the disinfection process. The rate of bacterial inactivation
can be augmented by varying rate of recombination of generated e−–h+ pairs and rate
of production of reactive oxygen species (ROS) [32]. Boron and phenyl co-doped g-
C3N4 was produced via thermal polycondensation of cyanamide to disinfect bacteria
Escherichia coli (E. coli). The as-prepared photocatalysts displayed superior photo-
catalytic activity over UV to NIR light; 99.9% of bacteria were disinfected after 3 h
with less concentration of the photocatalyst below sunlight. The bacterial disinfec-
tion mechanism was reviewed via scavenger experiments, demonstrating H2O2 was
chief responsive species for the disinfection of bacteria. Conclusively, the photocat-
alyst was accumulated on solid material surface and also showed robust disinfection
activity. The improved light absorption and effective charge separation capability of
photocatalysts promoted their photocatalytic bacterial disinfection (Fig. 10a) [45].
The g-C3N4 quantum dots (QDs) were prepared via thermal polymerization and
selective dialysis methodology for bacterial disinfection [99]. The fluorescent g-
C3N4-QDs proficiently produce hydroxyl and superoxide radicals under visible light;
~99% of E. coli (Gram negative) and ~90% of S. aureus (Gram positive) were inacti-
vated using synthesized photocatalyst. Awidespread evaluation of g-C3N4-QDswith
bulk g-C3N4, mesoporous g-C3N4, Ag-g-C3N4 and pristine AgNPs signified them to
be encouraging bactericidal material. The possible bacterial inactivation mechanism
using as-fabricated composite is depicted in Fig. 10b.

The g-C3N4 nanosheet composite membranes were prepared via an effective and
facile filtering method by aligning g-C3N4 membranes on PAN substrates for the
disinfection ofE. coli. The hydrophilic g-C3N4 membranes revealed superior antimi-
crobial capacity against E. coli than membranes without the g-C3N4 nanosheets. The
nanosheets of g-C3N4 functionalized membranes with antibacterial performance and
self-cleaning were support to the area of membrane separation [41]. Gram-negative
bacteria E. coli is the highest studied bacteria to investigate bacterial inactivation
procedures encouraged by g-C3N4-mediated photocatalysts under the visible light
radiation (Fig. 11). Most of the analyses have showed microscopic evaluation for
exploring the variations of bacterium morphology and approving demolition of cell
reliability through photocatalytic disinfection [108].

ZnO- and TiO2-conjugated CNTs and graphene oxide (GO) nanocomposites were
examined for their antimicrobial effects on E. coli. Among four types of nanocom-
posites, ZnO-conjugated nanomaterials displayed greater antibacterial performance,
subsequent in the antibacterial effectwhichwasmeasuredwith progression inhibition
of the cells in the order ZnO-GO > ZnO-CNTs > TiO2-GO > TiO2-CNTs. Among all
the four probable antibacterial mechanisms, production of reactive oxygen species
(ROS), chemical features and steric effect were part of causative mechanisms. The
growing dispersion of TiO2/ZnO on graphene oxide contributed to the antimicro-
bial effects due to increased surface areas. Likewise, noteworthy indemnities to cell
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Fig. 10 a Mechanism of
photocatalytic bacterial
disinfection depicting
improved light absorption
and effective charge
separation capability of
photocatalysts (copyright
with license Id.
4654040855898) and b the
feasible bacterial inactivation
mechanism using g-C3N4
quantum dots (QDs)
(copyright with license Id.
4654041041902)

membranes of E. coli were found by GO nano-sheet with its shrill edges. The results
proposed that applying GO-ZnO or TiO2 was an effectual antibacterial mode, partic-
ularly for behavior of drug-resistant bacteria in water [8]. Improved photocatalysts
were fabricated by coating TiO2 on multi-walled CNTs for improving disinfection
rate of the bacterial endospores. TiO2-coated MWCNTs were verified for disinfec-
tion of Bacillus cereus endospores, and disinfection rate was double as equated to
bare commercial TiO2 nanoparticles. The inactivation of bacteria depended on half-
life of reactive oxidative species (ROS), complexity and width of bacteria cell wall.
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Fig. 11 g-C3N4-mediated photocatalytic bacterial disinfection: a bacterial death, b viral death and
c micro-algal death (copyright with license Id. 4654050490577)

The present-day confront in the consumption of photocatalysts for the spore degrada-
tion is time needed for the bacterial inactivation. Improved photocatalyst composites
have been established for improving the bacteria inactivation rate. The efficacy of
TiO2-coated MWCNTs was associated against commercial TiO2 nanopowder for
inactivation of B. cereus spores [37].

CQDs as a carbon-based substance are especially boosting because of their low
toxicity, chemical inertness, noble biocompatibility and outstanding optical proper-
ties. Numerous semiconductor photocatalysts such as TiO2, Bi2WO6, g-C3N4, ZnO
andBiVO4 can be unitedwithCQDs to increase their photocatalytic efficacy. S-doped
CQD-loaded hollow g-C3N4 semiconductor photocatalyst was successfully fabri-
cated via ultrasonic assisted approach. In photocatalytic system, S-CQDs were acted
as an electron reservoir and photosensitizer to enhance light absorption range. As
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related to bare hollow g-C3N4, CQD-loaded hollow g-C3N4 photocatalyst revealed
better photocatalytic activity for TC photodegradation and E. coli disinfection.

6 Conclusion and Outlook

For the expansion of cleaner and green ecosystem, carbon-based materials have
engrossed researchers for protagonist part in wastewater treatment, organic pollu-
tant degradation, bacterial disinfection, etc. The abundant properties accompanying
carbon nanocomposites have amazingly boosted their photocatalytic action. Carbon
nanocomposites have acquired an admirable integrity during latest decades, owing to
their high adsorption capacity, less-cost and bio-friendly nature. Though, literature
analysis proposed that an excessive deal of conclusions on pollutant adsorption and
bacterial disinfection has been restricted. In order to acquire a greater surface area and
additional adsorption situates, many researchers did a lot of research for the reforma-
tion of carbon-based composites. Consequently, diverse nonmetals and metals were
burdened on the carbon materials. Still, it would be probable to produce secondary
pollution through adsorption process. Lately, carbon-basedmaterials have been grad-
ually used for the elimination of pollutants and bacterial inactivation. Carbon mate-
rials adsorb pollutants in their pores; conversely, contaminants persist in environment.
Still, there are confronts forward how to incline adsorbed contaminants in carbon
nanocomposites.

Nonetheless, broadened research is desirable to improve more capable materials
which are cost-effective in great extents as well as check such materials in full-blown
adsorption units. This entails, in turns, acquirement of more physical comprehen-
sions into properties of carbon nanocomposites and their reformation to accomplish
the anticipated properties for an assumed purpose, where molecular replications are
playing a significant role. Furthermore, themassive advancementmade in this field in
previous 20 years, it is necessary to overawed someof existing limitations for an accu-
rate application of carbonaceous materials for wastewater treatment. To discourse
these deficits, there are definite predictable criteria to be accomplished, comprising
(i) complete exploitation of solar energy from UV region to NIR region, (ii) acceler-
ated separation of charge carriers and (iii) augmentation of the photocatalytic surface
area to reinforce the anchoring capability of carbon-based nanomaterials. Hence, for
the fabrication of effective carbon-based photocatalytic schemes, the following key
guidelines must be taken into deliberation:

1. The researchers should emphasize on increasing the light garnering range from
UV to NIR to gain widespread renewable solar energy to depreciate environ-
mental insinuations via environment-friendly photocatalytic process. For this,
carbon-based materials should be merged with metals/nonmetals.

2. The function of several morphologies, viz. nanotubes, nanofibers, nanosheets,
nanorods structure of carbon-based materials, must be examined for attaining
greater surface area.
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3. The segregation and rapid recovery of carbon-based nanocomposites as photo-
catalysts are extremely desirable for advanced recyclability of the photocatalysts.

4. To elucidate the drawback of carbon-based composites enclosing pollutants,
we should try to foster highly efficient and cheap reinforcement technology to
increase the economic practicability.

5. There is an insistent necessity to elude metal ions (viz. copper, nickel and
iron) leaching from carbon-based nanocomposites through adsorption method,
consequently limiting the secondary pollution.
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Carbon-Based Nanocomposites:
Preparation and Application
in Environmental Pollutants Removal

Ambika and Pradeep Pratap Singh

Abstract Environmental pollution is problem of enormous public concern world-
wide. With the increasing population, the demand for fresh water is also increasing
while per capita annual availability of water has reduced. Due to the rapid industrial
growth, the water is getting polluted. Various pollutants, such as heavy metals, dyes,
pesticides, insecticides, herbicides, antibiotics, oil spills, plant nutrients, bacteria,
viruses, etc., pose serious risks to the environment. Thus, there is an urgent need to
develop newmethodologies and material for the removal of pollutants from environ-
ment. Carbon-based nanocomposites have drawn the attention of scientists because
of their unique chemical and physical properties. These nanocomposites pose a
great potential for application in various environmental fields including, air pollution
biotechnologies, monitoring, wastewater treatment, etc. The present article describes
preparation of carbon-based nanocomposites and their application in environmental
pollutants removal.

Keywords Carbon-based nanocomposites · Pollutants · Carbon nanotubes ·
Graphene

1 Introduction

One of themajor global concerns in the twenty-first century is problems related to the
environment. Environmental pollutants can comfortably spread into the surroundings
via different pathways [95]. Anthropogenic activities are treated as imperative part
which could contaminate the different ecosystems [93]. Various types of pollutants,
such as heavy metals [59, 69, 91], organic dyes [15, 52, 60, 79, 82], bacteria/viruses
[125, 140], can pollute the different ecosystems. The polluted environment not only
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have adverse effect on the human health but also affects the natural balance of the
ecosystems. The contaminants like heavy metals, pesticides, etc. can easily enter
and influence the different trophic levels [27]. These pollutants can be removed by
employing different nanomaterials (NMs) with improved properties.

Nanotechnology is the science in which the size of the materials can be manip-
ulated by one-billionth of a meter. NMs are the materials which have nanosized
particles or constituents. Generally, these materials have marked thermal, optical,
mechanical, electronic properties as compared to their bulk materials [55]. Nowa-
days, there is an intense research is taking place in the field of nanocomposites (NCs).
The NCs offer a huge potential with a wide variety of applications in different fields
and thus can be employed as an alternative to conventional composite materials.
These NCs possess high surface area to volume ratio of the reinforcing nanoparticles
as compared to conventional composites. Therefore, even a minute quantity of rein-
forcement material can significantly influence the macroscopic properties of NCs
due to the nanosize of their components. The reinforcing material could be prepared
by using particles (e.g., minerals, metallic nanoparticles, carbon-based NMs), sheets
(e.g., graphene), or fibers (electrospun nanofibres) [58].

Carbon is an important element to the researchers and scientists due to its unique
properties. Carbon-basedNMs possess various physical and chemical properties, due
to which these NMs have been utilized for the preparation of carbon-based nanocom-
posites (CNCs). Recently, the CNCs have attracted the curiosity of scientists owing
to their potential for the discovery of new materials as well as for the development
of new technologies. CNCs possess high surface area, high mechanical strength,
good chemical stability, high temperature stability, etc. Owing to the unique prop-
erties, they offer potential advances in energy and environmental systems toward
energy efficiency, pollutant transformation, and toxicity control. The present article
describes the preparation of CNCs and their application in environmental pollutants
removal.

2 Types of Carbon-Based Nanocomposites Used
in Pollutants Removal from Environment

Carbon NMs (CNMs) such as carbon nanotubes (CNTs), fullerenes, and graphene
have been developed for various environmental applications [61, 92] (Scheme 1).
CNCs have been prepared by using different types CNMs, few of them are discussed
below.
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Scheme 1 Different types of carbon-based nanomaterials

2.1 Carbon Nanotubes-Based Nanocomposites

Carbon nanotubes (CNTs) are the NMs of carbon with diameters measured in
nanometers. They can be of two types: (a) single-walled (SWCNT) (b) multi-walled
(MWCNT). SWNTs possess diameter in the range of 0.5–3.0 nm, whereas the diam-
eter of MWNTs lies in the range of 1.5–100 nm. CNTs possess high aspect ratio,
excellent electrical conductivity, chemical stability, and mechanical robustness [13].
Different types of NCs can be prepared by utilizing CNTs, due to their versatile
properties. CNTs-based NCs possess significantly enhanced electrical and mechan-
ical properties. These NCs are utilized a variety of applications such as electronic,
aerospace, military applications, and environmental remediation [13].

2.2 Graphene-Based Nanocomposites

Graphene is an allotrope of carbon with honey comb-like structure and a zero
band gap. It possesses large surface area, high charge carrier mobility, optical
transparency, excellent mechanical stiffness, high electrical conductivity [80, 81].
Recently, Graphene have been employed as support NM for the preparation of NCs.
Graphene-based NCs posses biocompatibility, high water dispersion, easy modifica-
tion, etc. [42, 130]. These NCs have been utilized in photocatalysis and adsorption
of contaminants from environment [62, 119].
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2.3 Fullerenes-Based Nanocomposites

Fullerene is another allotrope of carbon which consists of hollow molecular cages,
balls, or tubes of strongly bonded carbon atoms connected by single and double
bonds [85]. Recently, fullerenes have attracted the attention of materials scientists.
Fullerenes and their derivatives have been employed for fabrication of various types
of NCs. These NCs have been employed for important applications in various fields
such as electronics, energy, organocatalysis, sensing, biomedical sciences, photo-
electrochemistry, environmental remediation [26, 31, 49, 67, 107].

3 Different Processing Methods for Carbon-Based
Nanocomposites

The CNCs can be processed employing the following methods:

3.1 Melt Blending

Melt blending is a cost-effective method used for the fabrication of composites in the
absence of organic solvents. In this method, the polymer pellets are melted to form
the viscous liquid and the nanofillers such as CNTs, graphene, etc. are dispersed into
it by using high shear force. However, there are limited studies on themelt blending of
graphene and polymers due to the low thermal stability of most chemically modified
graphene and its low bulk density [48, 78]. The high shear force and high temperature
can degrade the properties of NCs; therefore, the process must be fine-tuned in order
to obtain optimum conditions.

3.2 Solvent Processing

This method can be used for the production of graphene or CNTs-based polymer
composites. The nanoparticles in a polymer dissolved in a solvent are agitated for
the preparation. It involves the evaporation of solvent before casting in a mold and
evaporation of the solvent, of both thermoplastic and thermoset materials. Different
solvents ranging from aqueous to organic can be employed. However, the removal
of organic solvent after casting can affect the environment.
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Scheme 2 In situ polymerization method of carbon-based NCs

3.3 In Situ Polymerization

It involves an initiation step followed by a series of polymerization steps for the
formation of a hybrid between polymer molecules and nanoparticles. Intercalated or
exfoliated NCs are produced by spreading the nanoparticles in a liquid monomer of
relatively lowmolecular weight which percolates in between the interlayers followed
by the polymerization of monomers [88]. The properties of final composite can be
improved by the grafting of polymer on filler surface (Scheme 2).

3.4 Template Synthesis (Sol-Gel Technology)

In this method, a colloidal suspension of solid nanoparticles (sol) is formed by
the dispersion of solid nanoparticles in the monomer solution, which serves as the
precursor for an integrated network (gel) of discrete particles. The polymer acts as
the nucleating agent as well as assists the growth of the filler crystals. The NCs
formation takes place as the crystal grows with polymers trapped within the layers
[2].

4 Applications of Carbon-Based Nanocomposites

Due to the extensive growth of industries, the different ecosystems are getting
contaminated with hazardous contaminants like, dyes, polychlorinated compounds,
polycyclic aromatic hydrocarbons (PAHs), insecticides, etc. Thus, newmaterials and
treatment approaches have been developed for the remediation of the environment.

Recently, CNCs have received particular interest for the removal of the contami-
nants due to their excellent physicochemical properties, biocompatibility, and unlim-
ited probabilty of functionalization. CNCs involve photocatalysis, adsorption, and
disinfection methods for environmental remediation (Scheme 3). Herein, we have
discussed the removal of contaminants using CNCs mainly by two process (a)
adsortion and (b) photocatalysis.
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Scheme 3 Applications of carbon-based nanocomposites for environmental remediation

4.1 Adsorption of Contaminants Using Carbon-Based
Nanocomposites

Adsorption is the process in which a film of the adsorbate is formed at the surface
of the solid (adsorbent). Heavy metals, dyes, PAHs, pesticides, etc. are few of the
hazardous pollutants which are deleterious to human health and environment [25,
89, 94, 102]. Various anthropogenic activities such as mining, industrial discharge,
agricultural run offs etc. has led to an increase in the environmental pollution [6, 86,
120]. These contaminants can bioaccumulate into food chains resulting in serious
life threatening effects on living beings [29, 41, 115]. Different types of CNCs have
been employed for the adsorption of these contaminants and are discussed in Table 1.

4.1.1 Adsorption of Contaminants by Activated Carbon-Based
Nanocomposites

Activated carbon (AC) is an important form of carbon which has been employed for
the development of NCs and their utilization in environmental applications. Different
magneticNCs have been employed for the removal of contaminants from the environ-
ment. Magnetic NCs alginate beads were fabricated for the simultaneous removal of
cationic (e.g., copper), anionic (e.g., phosphate), and organic (e.g., toluene) pollutants
in highly acidic water. These alginate beads were impregnated with a NC material
composed of zeolites, AC, layered double hydroxides, and magnetic nanoparticles
bound together by xanthan gumwith an aspect ratio of 3:4:1 (alginate: NCs: xanthan
gum). The beads exhibited high adsorption capacities [91]. Highly porous N/S doped
magnetic carbon aerogel (N/S-MCA) was utilized for the removal of bisphenol–A
(BPA) from aqueous solution. The maximum removal of the BPA by the above NC
depends on pH, temperature [5]. The Fe3O4/Ag/CmagneticNCwas employed for the
adsorption of Methylene Blue (MB), Acid Orange 7 (AO7), and Rhodamine 6G (Rh
6G) in single and multi-component system from aqueous solutions [82]. C/ZnFe2O4

NC was utilized as an adsorbent for the removal of PAHs such as naphthalene and
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Table 1 Removal of different pollutants by carbon-based nanocomposites

S. No. Class of
pollutants

Type of
pollutants

Types of carbon-based
nanocomposites

Reference

1. Heavy
metal ions

Copper Magnetic alginate beads,
MWCNT-PEI/PAN, CS-CNTs,
CNT-PDA-CS, SO3H-Fe3O4-GO,
G/Fe3O4, CNTs-G,
GO-Ca-alginate, GO-gelatin-CS,
PFSP, MnO2/GNS

Phiri et al. [91],
Deng et al. [30],
Dou et al. [32],
Zeng et al.
[135], Hu et al.
[46], Wu et al.
[128], Sui et al.
[116], Algothmi
et al. [10],
Zhang et al.
[139]; Rikame
et al. [96, 99]

Lead MWCNT-PEI/PAN, L-CNTs,
CS/GO GO-Fe3O4, CNTs-G,
PVC-GO GO-TiO2, MnO2/GNS,
G/Fe3O4, Fe(0)-Fe3O4,
GO-gelatin-CS, G/SiO2

Hao et al. [45],
Deng et al. [30],
Li et al. [69],
Debnath et al.
[28], Li et al.
[65], Fan et al.
[37, 38]; Musico
et al. [83],
Bhunia et al.
[19]; Liu et al.
[70, 71], Sui
et al. [116],
Rikame et al.
[99], Ren et al.
[96], Lee and
Yang [63]

Zinc GO-TiO2 Li et al. [69]

Ni(II) δ-MnO2-G Ren et al. [97]

Gold CS-GO Liu et al. [70,
71]

Mercury CNTs-G, RGO-polypyrrole,
MnO2-RGO and Ag-RGO,
Fe(0)-Fe3O4

Sui et al. [116],
Chandra and
Kim [20];
Sreeprasad et al.
[112]; Bhunia
et al. [19]

Arsenic GO/Fe(OH)3, GO-Fe3O4,
Mn-Fe3O4-G, GO-ZrO

Zhang et al.
[137]; Zhang
et al. [136];
Nandi et al. [84];
Luo et al. [75]

(continued)
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Table 1 (continued)

S. No. Class of
pollutants

Type of
pollutants

Types of carbon-based
nanocomposites

Reference

Cadmium CS/AC/Fe, ZnO/AC, Fe(0)-Fe3O4
GO-TiO2

Srivastava et al.
[114]; Bhunia
et al. [19]; Li
et al. [69]

Chromium GnZVI/PAC, MNP/MWCNTs,
Chitin/Fe3O4/MWCNTs, Branched
PEI-MWCNT G-Fe(0), MgAl-G
double-layered hybrid, NiO/rGO,
Fe(0)-Fe3O4

Khosravi et al.
[59]; Lu et al.
[72]; Salam
et al. [103];
Phiri et al. [90];
Li et al. [67];
Jabeen et al.
[51]; Zhang
et al. [138, 140]

Uranium (VI) PECQDs/MnFe2O4 Huang et al. [47]

2. Dyes Rhodamine 6G Fe3O4/Ag/C, G-CNT, G-asphalt Sreeprasad et al.
[113]; Muntean
et al. [82]

Malachite Green NH2-CNT/Fe2O3/ZIF-8,
Fe3O4-RGO

Sun et al. [117]

Rose Bengal MWCNTs/Chitin/Fe3O4 Salam et al.
[105]

Crystal Violet (OMWCNT)-κ-carrageenan-Fe3O4 Duman et al.
[33]

Reactive Orange
84

CuNPs-MWCNT Jafari et al. [52]

Congo Red ZnO/MWCNTs, G/Fe3O4 Kirti et al. [60];
Arabi et al. [15]

Fuchsine dye G/Fe3O4, G-CNT Wang et al.
[122]; Li et al.
[68]

Rhodamine-B Fe3O4-RGO Mohammad
et al. [79], Wang
et al. [123, 126]

Methyl Blue Magnetic CS-GO Fan et al. [36]

Reactive Black 5 CS/RGO,CS-G Duman et al.
[33], Cheng
et al. [24]

Pararosaniline G/Fe3O4 Wang et al.
[122]

Victoria blue G/Fe3O4 Wang et al.
[124]

(continued)
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Table 1 (continued)

S. No. Class of
pollutants

Type of
pollutants

Types of carbon-based
nanocomposites

Reference

Methyl Orange G/Fe3O4, Co-Fe2O4/G Wang et al.
[124]; Li et al.
[64]

Brilliant yellow G/Fe3O4 Wang et al.
[124]

Neutral red G/Fe3O4 Wang et al.
[124]

Alizarin red G/Fe3O4 Wang et al.
[124]

Eosin Y GO-CS Chen et al. [23]

Safranine T G/Fe3O4 Wang et al.
[124]

Methyl green CoFe2O4-FGS Farghali et al.
[39]

Bisphenol-A Cu-BDC@GrO, Cu-BDC@CNT Ahmad et al. [5]

Acid yellow 36 GO-Cs Mirzaee et al.
[77]

Acid blue 74 GO-Cs Banerjee et al.
[17]

Ciprofloxacin SA/GO Wu et al. [128]

3. Other
organic
species

Toluene Fe3O4-alginate beads Ncs Phiri et al. [91],
Srivastava et al.
[114]

Aniline Magnetic MWCNT/ferrite
(NiFe2O4)

Salam [103]

4-Chlorophenol CLDH/SWCNT Zhang et al.
[141]

Phenol CLDH/SWCNT, CS/MWCNT Guo et al. [43]

Picric acid MWCNT-CS Khakpour and
Tahermansouri
[57]

Humic Acid M-PAC-MWCNT Shaoxiu

PAHs such as
naphthalene and
s2-naphthol

C/ZnFe2O4 Sharma et al.
[109]

Methyl-ethyl
ketone

Mesoporous C/SiO2 Janus et al. [53]
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2-naphthol from aquatic system. The above NC can be efficiently regenerated using
NaOH-ethanol for four cycles using different desorbing agents [109].

Different bionanocomposites have been employed for the environmental remedi-
ation. For example, biomaterials such as unripened fruit of Cassia fistula (Golden
shower) and Aloe vera were utilized for the preparation of multifunctional super
paramagnetic NC for dye removal [Methyl Blue (MTB) and Congo Red (CR)] and
disinfection. Moreover, even at very low nanoparticle content, the above NC mani-
fested excellent pollutant removal and disinfection properties while the Aloe vera-
based bionanocomposites have potential for cost reduction to the extent of ten times
as compared to only magnetite nanoparticles [60]. Powdered activated carbon (PAC)
was prepared from Peganum harmala seed and its extract was used for the synthesis
of zero-valent iron nanoparticles (GnZVI). ThenGnZVIwas loaded on PAC and used
as a green NC to remove Cr(VI) from aqueous solutions. The adsorption capacity
of Cr(VI) increases with the loading of GnZVI and increasing temperature [59].
Two types of NCs, (HAP/TE/GAC) and (HAP/GAC), were synthesized one using
granular activated carbon (GAC) coated with both hydroxyapatite nanoflakes and
turmeric extract while the other composite with only HAP nanoflakes coating on
GAC for the adsorption of heavy metal ions. HAP/TE/GAC NC displayed better
activity as compared with HAP/GAC [54].

Carbon--silica materials with hierarchical pores consisting of micropores and
mesopores demonstrated excellent adsorption and desorption capacity for different
volatile organic compounds (VOCs) and organic waste gases, and it could also be
regenerated for further use [73]. Similarly, mesoporous carbon/silica NC has utilized
as a highly stable and reusable materials for the adsorption of methyl--ethyl ketone
from gas phase. TheMCM-41-based composites containing highly dispersed carbon
layers on the surfacewere found to be themost promising adsorbent for a commercial
application [53]. ZnO/AC NC exhibited enhanced electrostatic interactions for the
effective adsorption of Cd2+ with a maximum adsorption capacity of 96.2 mg/g for
Cd2+ ions [11]. Functionalized carbon-micro NCs were developed for the adsorption
of hydrocarbons (e.g., toluene, ethyl benzene, o-xylene). The aboveNC can be reused
for five cycles without any decrease in the sorption capacity [114].

4.1.2 Adsorption of Contaminants by Carbon Nanotubes-Based
Nanocomposites

Carbon nanotubes (CNTs) are one of most researched carbon-based materials with
unique physical and chemical properties which makes them a material of choice for
environmental remediation. Various magnetic CNTs-based NCs have been utilized
for the removal of contaminant from the environment. Magnetic Fe3O4 nanoparticles
(MNP) coated with different types of CNTs have been employed for magnetic solid
phase extraction (MSPE) for mercury speciation analysis. SWCNT-MNP showed
higher adsorption capacity thanMWCNTs. Also, above magnetic NCs can be reused
at least seven timeswithout any loss in efficiency [98]. Similarly,MNPs andMWCNT
(MNP/MWCNTs)-based NC has been employed for the adsorption of Cr(VI) from
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aqueous solution. The removal efficiency of above NC depends on pH and temper-
ature of the solution. The NC could be regenerated by using an external magnetic
field and can be reused for several cycles [72]. Chitin/magnetite/MWCNTs (CMM)
magnetic NC has been employed as a potential and promising adsorbent for the
efficient removal of Cr(VI) as compared with natural chitin [103]. Magnetic amine
functionalized CNT (NH2-CNT/Fe2O3)-zeolitic imidazolate framework-8 (ZIF-8)
[NH2-CNT/Fe2O3/ZIF-8: NCFZ] NCs with different amounts of NH2-CNT/Fe2O3

(5, 10, and 15 wt% denoted as NCFZ-5, NCFZ-10, and NCFZ-15) were employed
for the selective removal of cationic dyes [Malachite Green (MCG) and Rhodamine
B (RhB)] from a binary system [79]. The MWCNTs/chitin/magnetite (MCM) NC
has been employed for the adsorption of Rose Bengal (RB) [105]. Magnetic oxidized
MWCNT [(OMWCNT)-κ-carrageenan-Fe3O4] NC has been employed as an adsor-
bent for the removal of cationic Crystal Violet (CV) and anionic reactive black 5
(RB5) dyes. An increase in the initial dye concentrations and the temperature of
dye solutions led to an increase in the adsorption amounts of magnetic adsorbents.
A decrease in the adsorption amount of CV dye was observed at low pH values,
on the contrary to RB5 dye. On the contrary to anionic RB5 dye, the adsorption
capacity of magnetic OMWCNT-κ-carrageenan-Fe3O4 NC for cationic CV dye is
higher than that ofmagneticOMWCNT-Fe3O4 NC.Therefore,magneticOMWCNT-
κ-carrageenan-Fe3O4 NCmay be used as a potential adsorbent to remove the cationic
dyes from aqueous solution [33]. A pH-dependent adsorption of the dyes such as
Direct Blue 71 (DB71) and Reactive Blue 19 (RB19) from aqueous solution has been
demonstrated involving CS/SiO2/CNTs magnetic NCs. The maximum adsorption of
DB71 occurred at pH 6.8, whereas RB19 adsorbmaximally at pH 2.0 [1]. Amagnetic
titanium nanotube/CNT, (magnetiteTNT@CNT)NCwas employed for the oxidative
degradation of BPA from high saline polycarbonate plant wastewater (PCW) using
catalyticwet peroxide oxidation [77]. Amagnetic polyaluminium chloride (M-PAC)-
MWCNT NC was utilized for removal of humic acid (HA) from aqueous solution.
The adsorption of MWCNTs increases after the magnetization and modification by
PAC of MWCNTs, which may be attributed to the interaction between PAC and
HA through hydrogen bond and electrostatic attraction. Magnetic MWCNT/ferrite
(NiFe2O4) NC was used for the removal of organic pollutants (e.g., aniline) from
aqueous solution. The magnetic NC displayed high efficiency for the removal of
aniline with the ease of separation of the nanoparticles from the aqueous solution
using an ordinary magnet [104].

CNTs-based bionanocomposites have been employed efficiently for the environ-
mental remediation. For example, CNTs filled biopolymer composites such as CS
have a promising adsorption properties [106]. These composite systems could be
employed for the removal of heavy metal ions and treatment of wastewater [74]. A
CS-coated CNTs composites with high affinity and fast kinetics have been developed
for the adsorption of Cu2+ ions from aqueous solution. The adsorption capacity of the
composites was found to be two times that of pristine CNTs [32]. CNT-PDA-CS have
been utilized for the adsorption of Cu2+ from aqueous solution. The above NC exhib-
ited enhanced Cu2+ removal capability as compared with the unmodified CNT [135].
A low-cost and eco-friendly NC based on lignin grafted CNTs (L-CNTs) with good
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water-dispersibility and excellent adsorption capability for lead ion and oil droplet
has been utilized as an adsorbent for water remediation [69]. Calcium-alginate (CA)
and MWCNT-COOH beads (CA-MWCNT-COOH) NCs have been employed for
the removal of MB from aqueous solution. The above NC exhibited high adsorption
capacity as compared to both CA beads alone and the undispersedMWCNT-COOH.
Furthermore, the impregnation also enhances the adsorption of MB onto other types
of MWCNTs, indicating CA beads are an excellent supporting material to disperse
and stabilize CNTs for their optimal application as a high-capacity adsorbent [121].

Different CNTs-based NCs have been employed in contaminants removal from
the environment. For example, MWCNTs and polyethylenimine, polyacryloni-
trile (PEI/PAN) were utilized to prepare a NC membrane (MWCNT-PEI/PAN)
which possess higher mechanical strength, improved hydrophilicity, and excellent
removal efficiency for metal (e.g., Pb2+ and Cu2+) ions as compared to plain PAN
membrane [30]. A cross-linked NC film of polyvinyl alcohol (PVA) incorporated
with functionalized(f)-MWCNTs at different concentration with good recyclability
has been employed for the removal of heavy metals, pesticides, bacteria, and fungi
fromwastewater [133]. Carbon ceramic electrode consisting of CuNPs andMWCNT
was developed to treat reactive orange 84 (RO84) using ultrasound-assisted electro-
chemical degradation. The carbon ceramic electrode made with 4.0 wt% CuNPs
and 4.0 wt% MWCNT exhibited high removal efficiency in a phosphate buffer with
pH 8.0 [52]. ZnO/MWCNTs NCs can act as a promising, environment-friendly,
and efficient adsorbent for the removal of CR dye from wastewater [15]. Calcined
products of layered double hydroxides/SWCNT were developed for the removal of
phenolic pollutants such as phenol and 4-chlorophenol with the removal rates of
91.7% and 99.5%, respectively. The above NC possess high adsorption capacity,
wide range of effective pH for adsorption, fast adsorption speed, and excellent recy-
clability in comparison to most of the existing adsorbents [141]. Biomaterials func-
tionalized CNTs possess strong affinity for dyes. Impregnation of carbon tubes with
CS hydrogel beads has been demonstrated to be an efficient biosorbent material for
the removal of CR [22]. CS/MWCNT NC has been employed for the phenol adsorp-
tion fromwater. The adsorption capacity (86.96mg/g) of the aboveNCwas improved
compared to the original CS (61.69 mg/g) [43]. A NC material (MWCNT-Cs) has
been developed by the modification of MWCNT-COOH with CS for the removal of
picric acid from aqueous solutions. The picric acid molecules can be desorbed from
MWCNT-CS up to 90% at pH = 9 and the NC can be recycled for five times after
regeneration [57].

4.1.3 Adsorption of Contaminants by Carbon Quantum Dots-Based
Nanocomposites

Uranium(VI) can be removed from aqueous solution by the application of
a magnetic polyethyleneimine-functionalized carbon quantum dots/MnFe2O4

(PECQDs/MnFe2O4) NC. The enhanced adsorption of U(VI) may be attributed to
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the cation exchange and interaction between uranyl ions and abundant functional
groups on PECQDs/MnFe2O4 [47].

4.1.4 Adsorption of Contaminants by Graphene and Its
Derivatives-Based Nanocomposites

Graphene and its derivatives-based nanocomposites are important materials having
unique properties which make them a good candidate for their utilization as an
adsorbent for the removal of environmental contaminants. A variety of magnetically
modified graphene-based NCs have been designed and employed for the removal of
contaminants such as heavy metals, dyes, etc. from the environment. For example, a
magnetically separable Fe3O4/porous graphene NCwas employed for the adsorption
of dyes and heavy metal ions from wastewater. Due to the high specific surface area
and porous nature of graphene and high magnetic property of Fe3O4 nanoparticles,
above NC demonstrates rapid adsorption with high adsorption capacity, easy separa-
tion, and reusability [18].GO/Fe(OH)3 materialwas utilized for the sorption ofAs(V)
in polluted drinking water [136, 137]. GO-Fe3O4 has been employed for the removal
of As(III) and As(V) in water [21]. High sorption could be attributed to the forma-
tion of surface complex. Mn-magnetite-graphene hybrid magnetic material has been
utilized for 99.9% arsenite removal at pH = 7. The used sorbent could be separated
bymagnetic field [84]. Graphene sheets decoratedwith zero valent iron nanoparticles
were utilized for pH-dependent Cr(VI) uptake [51]. Magnetic graphene NC and pris-
tine graphenewere compared for Cr(VI) removal for water treatment. The formerNC
exhibited good sorption ability as compared to the later [142]. Graphene nanohybrid
(magnetic) anchored via core@double shell nanoparticles of crystalline iron oxide
and inside shell of amorphous Si-S-O has been employed for Cr(VI) uptake under
acidic pH (1–3) [143]. Cr(VI) has been adsorbed by the application of magnetically
modified GO/CS/ferrite (GCF) NCs at pH 2.0 with high adsorption capacity [90].
Similarly, reusable, magnetic CS/GO NC can also be employed for the removal of
contaminants such as heavy metal ions [Cr(VI), Pb(II)] and dyes [AO 7 and MB]
from wastewater. The adsorption of the metal ions and dyes is pH dependent [28,
36–38, 65, 110]. GO anchored on magnetite was utilized for Pb(II) uptake with a
sorbtion capacity of 588.24 mg/g [131]. Sulfonated Fe3O4-GO composite has been
used for the removal of Cu(II) from water with a sorption capacity of 62.73 mg/g
at pH 4.68 and 323 K temperature [46]. Magnetite-RGO (MRGO) hybrid material
has demonstrated the uptake of 94 and 91% of malachite green (MG) and Rh B dyes
in water with sorption capacities of 22.0 and 13.15 mg/g for MG and Rh B. The
hybrid material can be recycled for several cycles [117]. Magnetic CS-GO (MCGO)
has been employed for the uptake of dyes like MTB, MB in water with sorption
capacity of 95.31 mg/g and 180.83 mg/g, respectively. Moreover, the sorbent can
be regenerated with 0.5 M NaOH without any significant loss in sorption capacity
after four consecutive cycles [35, 36]. Magnetic β-cyclodextrin-chitosan-GO sorbent
demonstrated the uptake of MB with 84.32 mg/g as sorption capacity. The sorbent
posses several advantages such as cheap, quick generation, and easy operation for
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water treatment [37, 38]. Magnetic cellulose/GO NC was employed as an adsorbent
for the separation of MB from wastewater effectively under alkaline conditions. The
removal of dye is proportionally affected by dose of NC and the initial concentration
of dye. The maximum capacity of adsorption was 70.03 mg/g, and the desorption
can be effectivity performed using 0.1 M NaOH [111].

Various NCs involving the use of different biomaterial have been reported in the
recent past. GO-calcium alginate composite material was employed for the removal
of Cu(II) metal ion in water with a maximum sorption capacity of 60.2 mg/g [10].
Various studies involving CS-GO hybrid material were reported for the removal
of heavy metals such as Pb, Au and have high sorption capacity under different
conditions [70, 71]. SpongybiodegradableGO-gelatin-CShas beenutilized for Pb(II)
and Cu(II) removal. The material possess good metal removing capacities and can
be recycled several times without any loss in sorption capacity [139]. GO-calcium
alginate (GOCA) hybrid sorbent has been exploited for uptake ofMB fromwaterwith
sorption capacity of 163.93 mg/g [66]. Glycerol plasticized-starch/ascorbic acid-
MWCNTs (GPS/AA-MWCNTs) NC was used as a good adsorbent for removal of
MB dye from aqueous solutions [76]. Sodium alginate/graphene oxide NC (SA/GO)
in different forms (fibers, beads, and hydrogels) was employed for the adsorption of
dyes (MB) and drugs like (Ciprofloxacin) from wastewater under different reaction
conditions. The adsorption process of MB is not affected by the pH of the solution,
whereas the adsorption capacity increases on decreasing the temperature. However,
the adsorption of dye is pH dependent and the maximum adsorption of the dye
can occur at pH 5.9. The optimum desorption of dye can be obtained at acidic pH,
which may be attributed to the competition over the adsorption sites of H+ with the
positively charged molecules of MB [128]. GO-chitosan (GO-CS) hybrid material
has been developed for the uptake of eosin Y (EY) (acidic dye), reactive black 5 (RB
5), and MB (basic dye) in water with the corresponding uptake capacities of 326
and 390 mg/g [23]. Graphene-asphalt composite has been utilized for removal of Rh
6G in water with high sorption capacity. The sorption depends on carbon loading
and particle size of sand particles [23, 113]. Ultrasound assisted GO nanoplatelets
embedded in CS matrix (GO-Cs–Nc) was employed for the simultaneous adsorption
of acid yellow 36 (AY) and acid blue 74 (AB) from their aqueous solutions. The
above NC offers several advantages such as inexpensive, effective in low dosage,
and sustainable adsorbents, with reduced time and can be used for the treatment of
industrial effluents rich in mixed dyes [17].

GO-ZrO2 NC exhibited very fast and high adsorption of As(III) and As(V) from
water [75]. Arsenite uptake with sorption capacity of 44.4 mg/g can be achieved by
utilizing RGO-Fe(0)-Fe3O4 hybrid material. The above NC can also be employed
for other metal ions such as Cd(II), Hg (II), Cr(VI), and Pb(II) with 1.91, 22.0,
31.1, and 19.7 mg/g, respectively [19]. Graphene/SiO2 material was employed for
Pb(II) removal from water with an uptake capacity of 113.6 mg/g [45]. CNTs-
graphene composite aerogels were employed for the efficient removal of metal ions
like Cu(II), Ag(II), Pb(II), and Hg(II). The good sorption of these metal ions can
be attributed to the presence of oxygen containing groups in the composite [116].
Poly(N-vinylcarbazole) (PVC)-GOhydridmaterial was employed for Pb(II) removal
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with 887.98 mg/g sorption capacity at high pH. The removal of the metal ions is
directly proportional to the amount of GO in hybrid due to enhanced oxygen func-
tional groups [83]. GO-TiO2 composite has been employed for the removal of Cd(II),
Pb(II), and Zn(II) from water. The sorption capacities for Cd(II), Pb(II), and Zn(II)
were 72.8, 65.6 and 88.9 mg/g, respectively [63]. MnO2/GNS has been utilized for
Pb(II) and Cu(II) adsorption with sorption capacities of 793.65 and 1637.9 μmol/g,
respectively. The high sorption of the metal ions can be attributed to tetradentate
surface complexes formation of bidentate mononuclear, monodentate, multidentate
configurations, and bidentate binuclear [96]. MgAl-graphene double-layered hybrid
nanomaterialwas used forCr(VI) uptakewith 183.82mg/g sorption capacity [134].A
pH controlled sorption of Cr(VI) has been demonstrated usingNiO/rGOnano hybrid.
δ-MnO2-graphene nanosheetswere exploited for the uptake ofNi(II) in aqueous solu-
tion. The maximum sorption capacity was 46.55 mg/g and the desorption process
can be achieved by 0.1 M HCl with only 9% loss [97]. RGO-polypyrrole was used
for uptake Hg(II) in water with a sorption capacity of 979.54 mg/g [20]. Simi-
larly MnO2-RGO and Ag-RGO sorbents were utilized for uptake of Hg(II) in water
[112]. CoFe2O4-FGS has been exploited for methyl green (MTG) uptake in water
[39]. Cu-BDC-based absorbents decorated over GrO and CNTs hybrid NC, such as
Cu-BDC@GrO and Cu-BDC@CNT, were utilized for water remediation using BPA
as a model organic pollutant. The hybrid NMs exhibits great adsorption capacity
(182.2 and 164.1 mg/g) toward the removal of BPA, as compared to Cu-BDC MOF
(60.2 mg/g) [7]. Reduced graphene oxide/ZnO composite has been exploited for
uptake of Rh B and 99% of the sorbents could be recovered after four cycles [123,
126]. Also, graphene-CNT composite was employed for the removal of Fuschine
(FS), MB and Rh B (basic dyes) in water, with the corresponding sorption capacities
of 180.8, 191.0, and 150.2 mg/g for FS, MB, and Rh B, respectively [116]. Cylin-
drical graphene-g-CNT composite (G-CNT) with multilayered sorption capacity has
been employed for the removal ofMB inwater with 81.97mg/g sorption capacity [8].
Fe3O4/SiO2-GO nanohybrid material was utilized for MB uptake with 111.1 mg/g
as sorption capacity [132]. GO-TiO2 nanoparticles involving chemisorption process
have been employed for the uptake of the dyeMBwith sorption capacity 83.26 mg/g
[87]. Cationic (basic) FS can be adsorbed effectively on magnetic CS/GO NC at
pH 5.5. This may be attributed to the fact that under acidic conditions the proto-
nation of its amido groups takes place which increases its solubility in water [68].
CS/RGO mesoporous NC was employed for the adsorption of the anionic azo dye
RB5. The decolorization of dye solutions can be attributed to the strong electrostatic
interactions, hydrogen bonding, and van der Waals forces [24]. Graphene-magnetite
nano-hybrid (G/Fe3O4) was employed for removal of various dyes like CR, MB,
pararosaniline (PR), FS uptake in water with up to 99% sorption capacity within
30 min. Moreover, the NC can be reused for five cycles without any loss in sorp-
tion capacity [9, 122]. G/Fe3O4 was modified to graphene sulfonic-magnetite and
utilized for the victoria blue (VB), MO, brilliant yellow (BY), neutral red (NR),
alizarin red (AR), and safranine T (ST) removal. The above NC exhibits excellent
sorption capacity of 93% for these dyes within 10 min. The sorption of dyes could
be attributed to the electron-donating effect of amino group of cationic dyes. The
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sorbent could be recycled for six cycles without any loss in sorption capacities [124].
Magnetic Co-Fe2O4 graphene sheets have been utilized for the removal of MO in
water with 71.54 mg/g sorption capacity [64].

4.1.5 Adsorption of Contaminants by Fullerenes-Based
Nanocomposites

The phosphorylated fullerene/sulfonated polyvinyl alcohol (PFSP) cation exchange
membrane was prepared for Cu(II) removal along with the power generation. The
maximum Cu(II) removal was 73.2% as compared to 63.2% for Ultrex CMI 7000; a
commercial membrane [99].

4.2 Photocatalysis

Photocatalytic processes have shown a great potential as a low-cost environment-
friendly and sustainable treatment technology for water purification. This has been
spurred by the need to reduce the use of large quantity of chemical additives and
disinfectants. Due to the unique properties of carbon-based NCs, they offer a huge
potential for the photocatalytic oxidation or degradation of various pollutants in
industrial wastewaters (Scheme 4).

Scheme 4 Photocatalytic degradation of pollutants using carbon-based nanocomposites
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4.2.1 Photocatalytic Activity of Activated Carbon-Based
Nanocomposites

A reusable TiO2-based nano-photocatalysts coupled with AC and SrTiO3 exhib-
ited exceptional photoactivities for the degradation of pollutants like 2,4-
dichlorophenol (2,4-DCP) andBPA, as compared to commercial P25TiO2 [12]. TiO2

nanofiber/activated carbon fiber (TiNF/ACF) porous composites were employed for
the photoctalytic degradation ofVOCs such as toluene. The photodegradation activity
of the composites can be enhanced due to the synergetic effect between the TiNFs
and ACFs. The ACFs is responsible for the enhanced quantum efficiency and the
light adsorption ability of TiO2 [118].

4.2.2 Photocatalytic Activity of Carbon Nanotube-Based
Nanocomposites

Carbon nanotube-based NCs posses excellent photocatalytic activity for the degrada-
tion of environmental pollutants. Carbon/SnS2 NCwith 3Dhierarchicalmacroporous
(MCS) has been employed for rapid photocatalytic treatment of Cr(VI). The MCS
displayed excellent adsorption properties for Cr(VI) under mild visible light irradia-
tion, which may be attributed to large specific surface area [44]. ZnS:Mn/MWCNTs
NC demonstrated good photodegradation of organic pollutants. The photocatalytic
activity of the ZnS nanoparticles was effectively enhanced by the MWCNTs and
the composites with the carboxylic functional group exhibited greater photocatalytic
activity [108]. CNT/TiO2 nanofibers have been employed as a visible light active
photocatalysts for the decolorization of MB dye and degradation of gaseous benzene
under visible light irradiation. The 50-CNT/TiO2 nanofibers (calcined CNT/TiO2

nanofibers fabricated from a spinning solution of 50% wt CNT/TiO2 based on
PVP) exhibited higher degradation efficiency for the above pollutants than other
CNT/TiO2 nanofibers and pristine TiO2 nanofibers under visible light irradiation.
The strong adsorption ability and greater visible light adsorption can be attributed
to the synergistic effects of the larger surface area and lower band gap energy
of CNT/TiO2 nanofibers [127]. ZnO/MWCNTs NC has been employed for the
removal of CR dye from aqueous solutions [15]. A stable and reusable mesoporous
anatase TiO2/MWCNTs NC has been developed with improved pollutant adsorption
capacity, electron--hole pair lifetime, light absorption capability, and absorbance of
visible light. The above NC exhibits enhanced photocatalytic activity due to the
large specific surface areas, presence of TiO2 in the anatase phase, and the reduced
band gap energy. Also, the NC consisting of 20 wt% MWCNTs exhibited the best
photocatalytic efficiency and degradation rate [129].

Magnetic MWCNTs-CeO2 NC has been utilized for the photocatalytic degra-
dation of organic pollutants such as MB. The above NC displayed relatively high
degradation efficiency (97.5%) of MB in the presence of H2O2. The incorporation
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of magnetic nanoparticles could not only facilitate the separation of photocatalyst
from the solution after treatment, but also enhance the photocatalytic degradation
efficiency [40].

4.2.3 Photocatalytic Activity of Graphene-Based Nanocomposite

Graphene-based NC posses a huge potential as heterogeneous photocatalyst in the
environmental purification. Graphene nanosheets on introduction to TiO2 enhance
the photocatalytic decomposition activity under different light sources as compared
to those of corresponding pure TiO2 structures [14, 34, 56, 100, 101, 123, 126]. The
enhancement of the activity can be attributed to effective charge transfer from TiO2

to the adsorbed VOCs molecules via graphene due to the narrowing of the bandgap.
Also, TiO2 and graphene nanosheets interaction assists the acceptance of photoelec-
tron to target VOCs molecule. RP-MoS2/rGO NC has been employed for photocat-
alytic activity, including the photoreduction ofCr(VI) and photooxidation of different
organic pollutants which may be attributed to the increased number of excited elec-
trons/holes and enhanced separation efficiency of charge carriers [16]. P25-graphene
composite with different graphene content has been utilized for the photocatalytic
degradation of dye such as MB. The increment in graphene content results in the
enhancement of the absorption intensity of visible light aswell as specific surface area
[67]. Fe-doped TiO2/rGO NC has been developed for the photocatalytic degradation
of dyes such as RhB. Addition of H2O2 results in the enhancement of photocatalytic
efficiency for complete degradation. The raw wastewater biodegradability increased
after the photodegradation [50]. CdO/GONC has been utilized for the photocatalytic
degradation of organic pollutants such as MB, MO, and RhB dyes. The above NC
exhibits much higher photocatalytic activity as compared to pure CdO nanoparticles
on visible light irradiation and the NC having 3.3% GO possess the highest photo-
catalytic activity [3]. Similarly, NiO/GO NC has been utilized for the photocatalytic
degradation ofMB.The aboveNCpossess higher degradation efficiency as compared
to the cubic NiO nanopowder, which may be due to the formation of p-n heterojunc-
tion. However, the enhancement of photocatalytic activity can be attributed to the
high separation efficiency of photogenerated electrons and holes resulting from the
interaction between NiO and GO [4].

4.2.4 Photocatalytic Activity of Fullerene Nanocomposites

DifferentNCof fullereneC60with tetrahydrofuran (THF-nC60), aswell as fullerenol
C-60(OH)24 nanoparticles (FNP) such as TiO2/THF-nC60, and TiO2/FNP have
been developed for the photocatalytic degradation of mesotrione under sunlight.
TiO2/FNP system demonstrated the highest photoactivity. Also, the degradation
efficiency of mesotrione increases in the presence of different electron acceptors
such as H2O2 and KBrO3 as compared to O2 alone [31]. Fullerene-modified lead
molybdate (C60-PbMoO4) was developed for the photocatalytic degradation of RhB
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under UV and visible light irradiation. Increase of C60 weight ratio in the NC also
increases the photocatalytic activity under visible light irradiation. Excellent light
absorption and charge separation on the interfaces between C60 and PbMoO4 can be
responsible for the significant photocatalytic activity of C60-PbMoO4 [26]. TiO2

nanotubes/Polyhydroxyfullerene (PHF-HNT) has been utilized for the photocat-
alytic degradation of formic acid. Higher photocatalytic activity can be achieved
for monolayer PHF as compared to TiO2 nanotubes [66].

5 Conclusions and Future Perspectives

Nanocomposites offer a further degree of tunability to the properties of carbon and
its allotropes through their inclusion with other materials. The unique properties
of carbon-based NCs offer new candidates to construct better materials for envi-
ronmental monitoring studies. CNCs can be used for the elimination of all type of
noxious organic and inorganic contaminants such as dyes, PAHs and heavy metal
ions, etc. released by industries, combustion of fossil fuels, agricultural runoffs, etc.
CNCs possess significant potential to be utilized as a photocatalyst for water treat-
ment. These NCs can be used to adsorb and photodegrade the pollutants from the
environment effectively. Hence, they can be used in industries for the purification
of wastewater. CNCs have many advantages as well as limitations in wastewater
treatment; it is indeed potential NMs for solving diverse environmental problems.
Thus, these materials pose a great potential for application in various environmental
fields.

CNCs possess high specific surface areas, excellent electrical, optical, thermal,
and chemical activity. TheseNCs are among one of themost prospectivematerials for
the removal of chemical and biological contaminants from environment. However,
the different synthetic methodologies employed for efficient fabrication of various
CNCs need to be simplified.Moreover, various strategies should be optimized for the
synthesis of theseNCs in order to achieve finer qualityNCswith improved adsorption
and photocatalytic properties. Also, commercial large-scale production of these NCs
is a huge challenge and methods should be developed for broad range applications.
CNTs and graphene-based NCs in aqueous phase undergoes agglomeration which
may lead to reduction in the surface area as well as active sites and can affect their
efficiency for the removal of pollutants. Further, research should be focused on the
targeted modification of the various NCs for the enhanced removal efficiency as well
as selectivity and affinity toward specific contaminants. For the evaluation of the
efficiency and applicability of diverse carbon-based NCs, various research studies
should be carried out by treating the samples collected directly from real world
polluting sources rather than testing them on laboratory samples. The cytotoxicity
and risk assessment for various CNCsshould be evaluated for understanding their
effect on health of human beings, living organisms and ecosystems. Furthermore,
more research needs to be carried out to explore the use of low-cost, efficient, and
biodegradable NCs.
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Abstract This chapter deals with the use of different varieties of carbon nanomate-
rial’s (CNMs) as a potential ion-exchangematerial. Potential modifications of CNMs
to enhance their ion-exchange properties such as functionalization of the surfaces of
these materials and heteroatom doping have been discussed. Primarily, it is based on
functional groups addition which modifies the surface of CNMs thus increasing ion
exchange capabilities. The specificity of CNMs for particular ions needs improve-
ment. Heteroatom-doped carbon nanotubes (CNTs) depict better properties over
common CNTs.
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1 Introduction

Nanotechnology grows quickly and encourages innovations in different spheres
of science and technology. Different nanomaterials comprised of carbon atoms
are called as CNMs [1]. Categorization of CNMs is mainly done on the basis of
their structure. CNMs can be horn-molded, tube-formed, ellipsoidal, or spherical.
CNMs having tube-formed are known as CNTs; particles having horn-shaped are
called nano-horns and ellipsoids or spheres are related to fullerene group. Mean-
while, CNMs comprises of different technological utilizations [10, 17]. Surrounded
by different carbon-based nanomaterials; CNTs are having outstanding proper-
ties appropriate for technological utilization. It was first revealed in 1991 by a
Japanese investigator Iijima [15]. CNTs are cylindrical in shape with diameter of
few nanometers, comprising of trolled sheets of graphene (Fig. 1).

CNTs differ in diameter, length, number of layers, and chirality. Based on struc-
ture, CNTs can be divided into two major categories: single-walled CNTs and multi-
walled CNTs. In general, single-walled CNTs have about 1–3 nm diameter and
length of few micrometers. Multi-walled CNTs have 5–40 nm diameter and a length
of about 10 micrometers [39]. The CNTs structures have outstanding properties
with a blend of elasticity, strength, and rigidity in contrast to various other fibrous
materials. For instance, CNTs have larger length to diameter ratios in comparison

Fig. 1 Schematic illustration of carbon atomic structure and of CNMs, a electron arrangement of a
carbon atom before and after promotion of one s-electron, b demonstration of a carbon atomic struc-
ture with two-electron orbitals surrounding the nucleus with six electrons distribution, c fullerene
structure, d structure of a single-walled nanotube e various forms of single-walled nanotubes,
f graphene sheet structure, g oxidized single-walled nanotubes structure [37]
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to others and SWCNTs have greater aspect ratios then MWCNTs because of its
lesser diameter. Furthermore, CNTs have greater electrical and thermal conductivity
in contrast to various other materials. SWCNTs electrical properties depend on their
chirality concerning the tube axis. SWCNTs are divided into three main categories:
(i) armchair, (ii) zigzag and (iii) chiral (Fig. 1).Whereas,MWCNTs containsmultiple
layers and with changeable chirality which provides amazing mechanical properties
[37].

2 CNMs: An Effective Ion-Exchanger

There are several techniques to induct carbon nanoparticles into Ion Exchange
Membranes (IEMs), for example, in situ polymerization, plasma treatment, additive
blending sol-gel process, etc. Different mechanisms have been there to illustrate the
techniques by which CNMs increases the electrochemical characteristics of IEMs.
Numerous studies have been attributed to improve the IEMs properties due to the
existence of functionalized CNMs which gave extra ionic groups for better exchange
of ions [4, 18, 35, 41]. This phenomenon of the stipulation of added functional
groups for better ion exchange could be applicable for a precise case, i.e., when the
CNMs functionalization grade is higher and the amount of CNMs functionalized in
the nano-composite IEMs is significantly higher to generate a noteworthy augment
in the IEC by means of added application of the ionic groups. This clarification is
not agreeable for cases where the CNMs are not functionalized. There are abun-
dant cases where adding of non-functionalized CNMs leads to enhancements in the
IEC of IEMs [18, 22, 40]. Consequently, there must be a mechanism accountable
for enhanced characteristics of carbon nano-composite IEMs, which is called as
ionic collection dispersal. It explains that the amalgamation of CNMs facilitates the
generation of interconnected ion-conducting pathways within the membrane matrix
of carbon nano-composite IEMs [9, 19, 21, 36]. The addition of CNMs improved the
allocation of ionic masses in carbon nano-composite IEMs [13, 20]. This enhanced
dispersal of ionic masses leads to development of added ion-conducting passages
which give added pathways for ion transport. A detailed illustration of the Ionic
Cluster Dispersion Mechanism (ICDM) is depicted in Fig. 2. ICDM is a significant
method for enhancing the characteristics of IEMs by CNMs. Moreover, it gives a
rational justification for additions in IEC wherever non-functionalized CNMs are
engaged in the nano-composite IEMs. It brings enhancement in IEC where CNMs
functionalized are utilized in the nano-composite IEMs. The enhancement in IEC
is because of a better acquaintance of ionic functional groups for the exchange of
ions because of improved dispersal of the ionic masses in the matrix. Functional-
ized CNMs, it can be understood that interaction amongst both of the mechanisms
outcomes in the pragmatic enhancement in nano-composite IEMs, while the CNMs,
which are non-functionalized, only the later method leads. The exterior changes to
CNTs have made a noteworthy job in affecting their IE characteristics. Oxidized
CNTs showed an enhanced prospective for captions uptake than unoxidized CNTs
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Fig. 2 Details of ionic collection dispersal mechanism in Anion Exchange Membranes (AEMs).
a Virgin AEMs. b AEMs incorporated with NMs. The clusters (shown in a, b) are connected by
ion-conducting channels which creates a network for the migration of the oppositely charged ionic
groups (counter ions). In b the incorporation of NMs facilitates the dispersion of the ionic clusters
and consequently creates more interconnected ion-conducting channels. Moreover, the distance
between the ionic clusters is reduced. These changes ensure higher exposure of the fixed charges
for ion exchange and also promote the transport of counter ions through the additional and shorter
conducting channels of the AEMs [2]
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[31]. While, unoxidized multi-walled CNTs are more efficient for the anions uptake,
for example, dichromate than oxidized multi-walled CNTs [28]. It has been noticed
that oxidation regulates the surface charge of these materials [28, 31]. In general,
oxidation decreases the pH PZC (pH value at zero charges) thus resulting in a nega-
tive charged surface which is extra capable for cations uptake. Similarly, unoxidized
CNTs have more pH PZC which is extra promising for anion uptake.

Rao et al. [31] noticed that oxidized single-walled CNTs depicted more uptake
for Ni2+ and Zn2+ ions than unchanged multi-walled CNTs. Pillay et al. [28] said
that unchanged multi-walled CNTs are extra successful for the exclusion of Cr6+

in comparison to oxidized multi-walled CNTs because of greater pHPZC. The
chief success in carbon nano-composite ion exchange membranes study focused on
utilizing CNTs in increasing properties like mechanical strength, thermal stability,
ion exchange capacity, and ionic conductivity at a laboratory scale [2]. To regulate
the ion-exchange properties the exterior amendments be done by twomethods. It can
be through the adding up of functional groups to surface and the other technique is
by doping with heteroatom.

2.1 CNTs Functionalization

Functionalization is a crucial method to make CNTs receptive to mechanical and
electro-magnetic forces. Magnetic CNTs, for instance, are attractive for use in
polymer composites as stirrers in nano-fluidic devices. Functionalization of the outer
surface of CNTs supplements has made the CNTs with extra characteristics, like
compatibility and solubility with various substances. CNTs elite properties make it
attractive for varied uses. CNTs required functionalization for the bulk of these uses,
for example, changing the properties of graphite to create CNTs solvable diversity,
or combining various clusters or inorganic substances for the prospective use of
changed CNTs. Different techniques of CNTs functionalization can be grouped into
two main categories:

i. Functionalization with chemical from external (exohedral) [14] Fig. 3a–d. It is
further divided into three groups on the basis of methods of add-on of various
groups to CNTs side membrane:

• Functionalization (Covalent) by connecting functional groups to CNTs ends
or defects [5, 14].

• Functionalization (Covalent) by sidewall functionalization [5, 14].
• Exohedral functionalization(Non-covalent), for instance, polymers wrapping

of CNTs [14].

ii. Functionalization from the interior (endohedral) [14] depicted in Fig. 3e, that
CNTs are functionalized by adding them with various nanoparticles, this can be
accomplished either by
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Fig. 3 Functionalization prospective for single-walled CNTs. a Functionalization with defects,
b functionalization with covalent sidewall, c non-covalent exohedral functionalization, d non-
covalent exohedral functionalizationwith polymers and e functionalization from inside (endohedral)

• Using the technique of continues invasion when CNTs are packed with
suspension of colloids and further liquid carrier evaporation, or by

• In this, CNTs are packed with different substances, which respond with
specific chemical or thermal situations and generate CNTs. These CNMs
are then confined in the CNTs.

A large amount of functional groups can be combined with the exterior of CNTs.
These are generally functional groups inwhich oxygen like –OHand –COOHgroups.
This functionalization category has been chiefly by means of CNTs oxidation in acid
which leads to the addition of carboxyl group. As a result, this CNTs category
has been utilized in cations uptake [27]. The above reference studies supported the
fact that collaboration in between the cations and the functional groups are chiefly
responsible to retain cations. Ion exchange mechanism is dependent on pH. At low
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pH, uptake of cations is less and high at higher pH. In low pH, the electrostatic repul-
sions obstruct the cations uptakewhile electrostatic attractions at higher pH theuptake
of the cations increases. Another captivating feature of the above results revealed that
surface amended CNTs gave better results than traditional adsorbents. Cech et al.
[7] revealed that lateral-wall separation of multi-walled CNTs can be attained by
treatment with P2S5. Pillay et al. [29] amended this technique to generate Sulphur
comprising multi-walled CNTs which revealed selective and enhanced receiving of
Hg2+. Therefore, the chemical treatment of CNTs can be controlled both by func-
tional groups and heteroatom. Pillay et al. [27] studied the uptake of both anions
and cations by weak and strong acid mixtures. It was noticed that the preamble
of functional groups containing oxygen privileged uptake of cation by decreasing
the pHPZC of materials. On the other hand, treatment with a weak base like NH3

favored uptake of anions by raising pHPZC. Consequently, acid and base treatment
is dependent on acid or base strength and heteroatoms.

2.1.1 CNMs as Cation Exchanger

Generally, a large movement of lattice ions is required to help solid-state ion-
exchange dispersal. Cations dispersion is more conveniently occur as their ionic
radii are commonly lesser than anions. Thus, cation exchange reactions (CERs) are
more probable to occur in comparative to anion exchange reactions (AERs). CERs
commonly lead to new products with compound structures like heterostructures and
metastable phases which are not manageable by common artificial methods. The
crystalline structure of nanoparticles (NPs) can be created by NPs template. For
instance, the rock salt configuration of PbSe NRs regulates the crystalline structure
of the ultimate product, CdSe [6]; this can be zinc-blended or wurtzite, though the
previous is less stable thermodynamically. Zinc-blended CdSe with an alike crys-
talline structure to the PbSe template is made by CERs. Likewise, roxbyite Cu2−xS
NPs are utilized as a template, wurtzite CoS, and Mn Scan is attained as products
because of their analogous crystalline structures [30]. Figure 4 depicts the frame-
work of the crystalline structure of cation and anion. Anion sublattice of roxbyite is
a disturbed hexagonal close-packed (HCP) arrangement, whereas the cation sublat-
tice is of trigonal and tetrahedral arrangements. The structure of the NP product
i.e. wurtzite is metastable in bulk, whereas the anion and cation frameworks are
similar to roxbyite. The crystalline structure resemblance among the NPs template
and their products is a significant measure to determine the crystalline structure of
NPs products.

In NP crystalline structure the interstitial sites are efficient means for ions diffu-
sion. Figure 5 depicted activation energy analysis by CERs among PdS and CdS
[11]. Cd ions disperse through interstitial sites (Fig. 5b) and not by the vacancy sites
(Fig. 5a), which is beneficial by dropping the energy of activation. Similarly, the
CERs arbitrated by the interstitial sites and vacancy can be encouraged because of
the lesser energy of activation for ions diffusion.
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Fig. 4 Wurtzite (CoS/MnS) and Roxbyite (Cu2−xS) crystalline structures. The transformation of
Cu2−xSNPs into CoS andMnSNPs is linked oHCP anion lattice during cation exchange. Reprinted
with permission from American Chemical Society [8, 30]

The generation of NPs through CERs delivers a novel passageway for designing
compound NPs structure, for example, NRs segmented, which are problematic to
get by common methods. Sadtler et al. [33] and Robinson et al. [32] generated CdS–
Ag2S and CdS–Cu2S NRs by incomplete CERs of CdS NRs and depicted that NRs
configuration got changed reliant on choice of cation (Fig. 6). When Cd2+ is replaced
byAg+ ions, Ag2Swith steady space encouraged by strain is generated, subsequently
superlatticeCdS–Ag2SNRs.WhenCd2+ is replacedwithCu+, heterostructuredCdS–
Cu2S NRs are made. This structural alteration is formed by favorability of chemical
and elastic alteration.

Fenton et al. [12] created different NPs from 1stgeneration nanostructures to
3rd generation nanostructures by means of CERs with Cu1.8S. The Cu1.8S NPs are
converted to CdS and ZnS by CER. An alteration in the structure was perceived with
reaction time. Transition metals like Co, Mn, and Ni along with group II elements
such as Zn andCd have been used for CER to generate heterostructuredNPs. Figure 7
represents CdS–ZnS–Cu1.8S–ZnS NPs which is fabricated by successive CER prac-
tices. Justo et al. [16] hasmade compound-structured NPs (dot-in-rod PbS/CdSNRs)
by incomplete CERs from PbS to CdS (Fig. 8). The photoluminescence (PL) spectra
of these NRs are organized by the CERs situations for example, reaction temper-
ature and time, leads to the PL yield of 55%. The amount of PbS dots in an NR
was attained by the length of the preliminary substance, CdS NRs. Zhang et al. [38]
witnessed to generate CdS–PbS Janus-like NPs structure by a well-controlled CERs
in CdS NPs (Fig. 9). The CERs are generated alongside the <111> direction, thus
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Fig. 5 Depiction of ion dispersion through vacancies: a interstitial sites, b PbS/CdS interfacial
site. The blue circles depict Pd, red circles depict Cd and pink circle is an interstitial site. They
have different activation energies. In this case, Cd ions diffuse through the interstitial site (b) is
advantageous in terms of the activation energy. Reprinted with permission from Springer Nature
Publishing [8, 11]

Fig. 6 a An electron microscopy bright-field transmission picture (top) and a color-composite
energy-filtered transmission electron microscopy picture (bottom) of CdS–Cu2S binary NRs The
orange regions correspond to the Cd energy-filtered mapping and the blue regions correspond to
the Cu-mapping. b A schematic of the structural transformation of the CdS–Ag2S and CdS–CuS
NRs. Reprinted with consent from American Chemical Society [8, 32, 33]
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Fig. 7 a Electron microscopic energy scattered X-ray spectroscopy image and b transmission
electron microscopy image of CdS–ZnS–Cu1.8S–ZnS nanorod obtained from sequential cation
exchange from Cu1.8S nanorod. Reprinted with permission from American Chemical Society [8,
12]

generating Janus-like NPs structure that can be utilized to surge the proficiency of
solar cells because of flexible PL features by CERs characteristics such as tempera-
ture and process time. Park et al. [25] made (Au2S–Cu1.81S)@IrxSy nanoplates and
(PdS–Cu1.81S)@IrxSy nanoplates with Janus-like and hexagonal structures by CERs
of Au and Pd in Cu1.81S@IrxSy (Fig. 10). When the CERs occurred, the six bends
of hexagonal Cu1.81S nanoplates executed as CERs sites, and the course of the CERs
are obtained.
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Fig. 8 a–c Electron microscopic large angle annul are pictured in dark area of PbS/CdS rods
revealing various PbS dots in between the rods. d Ratio Cd/(Cd + Pb) and CdS shell thickness as
a function of reaction time for various reaction temperatures. e Photoluminescence spectra with
various reaction times at 65 and 80 °C. Reprinted with consent from American Chemical Society
[8, 12]

2.1.2 CNMs as Anion Exchanger

Usually, AERs are leisure lier than CERs because of less movement and hugeionic
radii of anions [3]. Consequently, slothful AERs always needed a lengthier time and
temperature during reaction in contrast to CERs. The advantages of the slowness can
be used in incomplete AERs by regulating the sluggish kinetics [34]. The process of
AERs can be described by the thermodynamic energy and the theories ofmass action.
The AERs described by mass action theory [3], growing the reagents concentration
in solution stimulates the reaction kinetics alike to CERs. The thermodynamic theory
developed for AERs is similar to CERs [3]. The thermodynamic extemporaneity of
AERs is due to incoming anions precursors and further by outgoing ions reactions
[3]. Nedelcu et al. [23] described rapid, low-temperature incomplete or complete
AERs that can be regulated in tremendously luminescent semiconductor NPs of
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Fig. 9 a A representation of the CERs in CdS or CdSe with Pb2+, b partially replaced CdS NPs,
c spherical in nature, and heterostructure can be detected,d partially exchangedCdSeNPs. The PbSe
and CdSe domains form two (111) interfaces. Reprinted with consent from American Chemical
Society [8, 38]

Fig. 10 a A representation of the CERs in Cu1.81S@IrxSy concerning Au and Pd ions. Scanning
transmission electron microscopy pictures of the Janus-like (Au2S–Cu1.81S)@IrxSy NPs. b The
Janus-like (PdS–Cu1.81S)@IrxSy NPs. Reprinted with consent from American Chemical Society
[8, 25]
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CsPbY3(Y = Cl, Br, or I). By amending the shares of halide in colloidal, the photo-
luminescence attuned over the complete visible spectral region while a quantum
gain of 20–80% was sustained. NPs heterostructured can be attained by AERs
followed by sluggish reaction kinetics. Park et al. [26] specified the anion exchange
from ZnO to solid, hollow structures of monocrystalline ZnS NPs. The study of
AERs from ZnO to ZnS indicated that the chemical transformation of NPs followed
by the “Kirkendall effect” usually produces NP polycrystalline products, whereas
monocrystalline products are barely attained (Fig. 11).

Fig. 11 a High-resolution transmission electron microscopy image of partly wrapped yolk-shell
NPs and b a high-resolution transmission electron microscopy image and fast Fourier transform
(c) of a single yolk-shell NP, d the reconstructed crystal structure from (c). Reprinted with consent
from American Chemical Society [8, 26]
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2.2 Effect of Heteroatom Dopants on CNTs

CNMs have extraordinary intrinsic properties, which can be used for many applica-
tions. One possible application is the introduction of different elements (for example
Si, P, N, and B) as heteroatom dopants in the lattice structure. Due to hetero
atoms doping, the electronic properties of CNTs are notably tuned. Heteroatom-
doped CNTs showed superior properties over general CNTs. Figure 12 represents
SWCNTs doped with nitrogen heteroatoms, which is highlighted in green color. The
adding of functional groups containing oxygen and oxygen as heteroatom favors
uptake of cations by decreasing pHP ZC. Likewise, functional groups containing
Sulphur and Sulphur depicting as hetero atom have revealed analogous results for
the acceptance of Hg2+ [29]. Nevertheless, the effect of other heteroatoms such as
nitrogen has been poorly known. Nitrogen-doped carbon nanotubes (NCNTs) have
been receiving much attention now. Perez-Aguilar et al. [24] revealed that NCNTs
which are oxidized is more dynamic for the uptake of Cd2+ and Pb2+ than undoped
unoxidized multi-walled CNTs.

Pillay et al. [27] investigated that the nitrogen atom primarily dependent on
nitrogen forms present on CNTs. For example, if quaternary nitrogen exists it leads

Fig. 12 SWCNTs doped
with Nitrogen hetero atoms
[24]
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to positively charged nitrogen which raises the pHP ZC and favors anion uptake.
Otherwise, if nitrogen is present in aggregation with oxygen this decreases the pHP
ZC, thus, favoring cations uptake. Stress on the use of heteroatoms such as O2, S,
and N2 atoms has thus been made. The concern about the influence of addition of
heteroatom on selectivity of CNTs for particular pollutants is required to be explored
in detail.

3 Conclusion and Future Perspective

CNTs ion-exchangers have shown its prospective to remove a large number of anions
and cations on thebasis of functional groups andheteroatoms.Though, the choosiness
of CNTs ion-exchangers for particular pollutants is quiet ambiguous. Insufficient
studies have been done in this zone. The past literature review strongly depicted
that CNMs are exceptional ion-exchangers. CNTs can be amended to work both as
anion and cation exchangers by the addition of functional groups and heteroatoms
which eventually influence the surface charge. Though, the choosiness of CNTs
ion-exchangers for particular ions still required enhancement.
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Heavy Metals Removal Using Carbon
Based Nanocomposites

Heavy Metals Adsorption by CBNs

A. Vijaya Bhaskar Reddy, V. Madhavi, Akil Ahmad, and G. Madhavi

Abstract The rapid growth of population, industrialization and urbanization tends
to deteriorate the quality of available water bodies. This scenario became vulner-
able to the environment, and it has alarmed the community to resolve this issue. A
large variety of pollutants occur from the above activities, specifically heavy metals
creating severe toxicity to human and other living organisms. A variety of heavy
metals removal techniques have been established in recent decades, among which a
simple adsorption using carbon nanocomposites was found effective for the eradica-
tion of heavymetal pollutants. Therefore, present chapter discussed the heavymetals
removal procedures using graphene and CNTs with a special emphasis on their func-
tionalization. This chapter summarised the toxicity of heavy metals to plants, aquatic
life and human health along with some effective remediation approaches. Further, it
clearly described the cutting edge methods reported for the heavy metals elimination
from aqueous media using graphene and CNT nanocomposites through adsorption.
At last, future recommendations that are required to upgrade the capacity of adsor-
bents by using environmentally safe CBNs sorbents were proposed following short
conclusions.
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1 Introduction

The accessibility of clean and potable water is most vital for all living beings to
sustain their life on earth. But, the rapid population growth, continued industrial-
ization, civilization and improper disposal of waste are being caused to deteriorate
the water quality across the global water bodies. Approximately, 700 million people
on this planet have no access to clean water [35], whose surrounding water bodies
are already contaminated with several harmful pollutants including dyes, pesticides,
pharmaceuticals and heavy metals [95]. All these pollutants are harmful to the envi-
ronment and living forms. Particularly, the presence of heavy metals pollutants has
created severe toxicity to water bodies in recent years. According to the literature,
heavy metals occur naturally and contains five times greater density than the water.
Even though, many water bodies contain low quantities of heavy metals, their toxi-
city towards the environment and living organisms is substantial [54]. Despite the
fact that some heavy metals are essential for biological processes (i.e., Cu, Fe, Zn,
Ni etc.,), all heavy metals are harmful to the living organisms at high concentrations
and create acute and chronic toxicity. In particular, heavy metals including cadmium
(Cd), mercury (Hg), nickel (Ni), arsenic (As), lead (Pb), chromium (Cr), zinc (Zn),
cobalt (Co) and selenium (Se) are highly toxic even if they exist at trace concentra-
tions [57]. Therefore, the raising concentrations of heavy metals in water resources
is currently a matter of concern, specifically a large amount of industrial heavy metal
effluents joining water bodies without any pretreatment.

These heavy metals generally originate from natural and human induced activ-
ities. The natural occurrence of heavy metals includes volcanic eruptions, forest
fires, sea-salt sprays, biogenic sources, rock weathering and so on. Whereas, the
anthropogenic activities including agriculture, mining and metallurgical processes,
industrial wastewater, metal plating, and runoffs release heavy metal pollutants
into different compartments of the environment [107]. Various routes of entry of
heavy metal pollutants into water bodies is presented in Fig. 1. These heavy metals
occur by means of oxides, hydroxides, sulphates, phosphates, sulphides and organic
compounds. When, heavy metal effluents released into drinking water sources, they
can predominantly enter the human body by food and water, and to a lesser extent
by inhalation of air. Absorption through the skin is another common route of expo-
sure in adults working/living in industrial areas [33]. On other hand, ingestion is the
most prevalent cause of heavymetals exposure in kids and infants. Accordingly, both
natural and human induced operations polluting the water bodies at a high risk.

Considering the severe toxicity of heavymetal pollutants, a variety of heavymetal
removal approaches based on adsorption, reverse osmosis, precipitation and coag-
ulation have been established over the years [20, 26, 55, 101, 108]. Even though,
some of the proposed heavy metal removal techniques are effective, their cost and
drawbacks avoided their commercial use for the in situ applications. Among all the
techniques, adsorption was found best efficient for this purpose. After the discovery
of carbon nanocomposites, heavy metals adsorption by various carbon nanocom-
posites including graphene and CNTs has gained significant attention [29, 101].
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Fig. 1 Schematic representation for the entry of heavy metal pollutants into water bodies

Consequently, a large number of studies have been reported for the heavy metals’
adsorptionusingvarious functionalizedgraphene andCNTscomposites.Considering
the significance and wide applicability of carbon based nanocomposites (CBNs) for
heavy metals removal, this chapter is intended to describe various removal methods
established using different combinations of carbon nanocomposites. A specific focus
has given to summarise heavy metal removal methods using functionalized CNTs
and graphene. A detailed recommendations and future perspectives that helps to
improve the removal efficiency of CBNs is presented eventually.

2 Adverse Effects of Heavy Metals on Plants and Biota

The heavy metals present in aqueous systems even at low concentration are lethal
to human and aquatic organisms that induce severe oxidative stress. Further, heavy
metals are most persistent and remain permanently in the marine environments [94].
Also, heavy metals in aquatic systems cause significant ecotoxicology and produce
devastating effects on the aquatic environment [43]. The following sections described
the potential effects of heavy metals on plants, human and aquatic life. A detailed
summary of the ill effects of heavy metals on plants, human and aquatic life are
illustrated in Fig. 2.
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Fig. 2 The major adverse effects of heavy metals on human, plants and aquatic organisms

2.1 Heavy Metals Impact on Plants

Plants do not require Cd, As, Hg, Se and Pb heavymetals for any of the physiological
functions. But they need some of the heavy metals such as Cu, Ni, Fe, Co, Mn, Mo
and Zn at trace concentrations for the normal growth and metabolism [4]. However,
these elements become poisonous to plants if their concentration exceeds the optimal
values. The plant roots are main carriers that absorb heavy metals from soil and
water. When plants uptake heavy metals from water at high concentrations, they
may experience greater health risks and continuous accumulation of heavy metals
in plants further create potential threat to human through food chains [27]. The
agriculture runoff containing heavy metals enter into water bodies and affects the
aquatic plants. However, the absorption of heavy metals and their accumulation in
plant tissues vary with factors including pH, soil organic matter, moisture content,
temperature and nutrients availability. For instance, Beta vulgaris (Spinach) absorb
more Cd, Cr, Zn and Mn during summer, contrary more Cu, Ni, and Pb during
winter [86]. This is expected that, the higher decomposition of organic matter during
summer provides excessive heavy metals in soil and water for possible plants uptake.
Further, heavy metals accumulation in plants vary with the nature of plant species
and their efficiency in absorbing metals. Overall, heavy metals are potentially toxic
to plants that reduce plant growth, affect photosynthesis, cause yield depression and
chlorosis, disturbs plant metabolism and may even reduce nutrients uptake capacity
and molecular nitrogen fixation ability leguminous plants [85].
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2.2 Heavy Metals Impact on Aquatic Life

The discharge of heavy metal effluents into water bodies through waste disposal
generally associate with particulate matter and eventually settle down with sediment
parts. Therefore, surface sediments are good reservoirs for organic and inorganic
pollutants in aquatic environments [76, 97]. Subsequently, sediment bound heavy
metals can be absorbed by aquatic organisms and rooted aquatic microphytes [104].
The aquatic organisms adversely affect by heavy metals accumulation and transfers
the heavy metals toxicity to upper classes through food chain. Hence, carnivores
(human) at the top of the food chain receive most of the accumulated heavy metals
from aquatic animals (particularly fromfish) through their food [84]. The existence of
heavy metals in water bodies induce the formation of reactive oxygen species (ROS)
that can destruct all aquatic organisms including fish. Therefore, food is an important
commodity for human, but it affects the human health when contaminated by a vast
number of persistent organic and heavy metal pollutants. As a result, consumption of
fish that is contaminated with elevated amounts of heavy metals is a serious concern,
which may induce severe health impacts [17]. Among all, Hg is the most important
pollutant that presents in fish and other marine organisms at high concentrations
and create potential hazards to humans. Bacterial methylation of Hg produces me–
Hg, which is more toxic among all forms of Hg and nearly all Hg remains in fish
muscles as me–Hg. In fish, heavy metals usually bound to proteins and transport
through the blood. Heavy metals accumulate to greater extent when the organs and
tissues of fish comes in contact with them. Potentially, metal pollutants can enter
into aquatic organisms through their food, skin, gills, non-food particles and oral
consumption of water [88]. The heavy metal pollutants transport through the blood
after their absorption and reaches a storage point either in bone or liver. When heavy
metal pollutants processed by liver, they may be stored there or excreted with bile or
moved back into blood for possible excretion by gills or kidneys or stored in fat [5].

2.3 Heavy Metals Impact on Human Health

Theconsumptionofmetal contaminated food is themajor route of exposure in human,
which can potentially reduce essential nutrients in the body, and lower immunolog-
ical defense of the body, and develop disabilities associated with malnutrition and
upper gastrointestinal cancer rates [13]. Particularly, heavy metals become toxic
when body is not capable to metabolize and allow them to accumulate in soft tissues.
The continuous intake of heavy metals even at trace concentrations provide unde-
sirable effects on human, and all such impacts become perceivable only after few
years of exposure [71]. For instance, Pb enters the human body through drinking
water and its presence in human body create difficulties in pregnancy, increase blood
pressure, damage gastrointestinal tract and urinary tract, neurological disorders and
may cause severe and permanent brain damage [77]. Also, Pb restricts the growth of



254 A. Vijaya Bhaskar Reddy et al.

grey matter of the brain in children aged below 2–3 years. Next, Cr is another heavy
metal and it is one of the most abundant elements in earth crust. It exists mainly
in two different oxidation states i.e., Cr(III) and Cr(VI). Among these, Cr(VI) is
more toxic to all living beings due to its high water solubility, strong oxidizing and
corrosive nature. Next, Hg is acute toxic heavy metal that has no biological impor-
tance in human and animals. Inorganic Hg causes spontaneous abortion, congen-
ital malformation and gastrointestinal disorders, whereas me-Hg causes acrodynia
(Pink disease), stomatitis, gingivitis, neurological disorders and damage to brain and
CNS and congenital malformation [19]. Similar to Hg and Cr, Ar is another lethal
heavy metal that provides severe toxicity when combined with protein. Ar make
complexes with co-enzymes and suppress the production of adenosine triphosphate
(ATP) during respiration. Further, it is highly carcinogenic in all of its oxidation
states and a high level of exposure to Ar may even result to death. The toxicity of
Ar induces a disorder that is similar to Guillain-Barre syndrome, which is an anti-
immune disorder that causes muscle weakness [14]. Additionally, there are several
other toxic heavy metals namely Cd, Ni, Zn and Cu whose impact on human body
is severe at elevated concentrations.

3 Heavy Metal Removal Technologies

A wide variety of heavy metals removal technologies including oxidation, precip-
itation, ion-exchange, reverse osmosis, photocatalysis and flocculation-coagulation
have been developed in the past few decades. Among all, the most commonly
employed techniques were briefly discussed below and presented in Fig. 3.

Fig. 3 The most significantly used heavy metal removal techniques
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3.1 Chemical Precipitation

Chemical precipitation proceeds by the addition of chemical reagents, and subse-
quent elimination of precipitated solids from treated water. Usually, heavy metals
precipitation can be accomplished by adding coagulants like lime, alum and iron
salts. It is widely used water treatment technique across the world considering its
lowprocessing costs [62]. Based on literature studies, precipitation classified into two
categories i.e., hydroxide precipitation and sulfideprecipitation.Hydroxide precipita-
tion employs sodium hydroxide, limestone, sodium carbonate and sodium decanoate
as precipitants to form insoluble metal-hydroxide precipitates [8, 65]. However, a
major breakthrough was made in recent years replacing hydroxide precipitants with
sulfide precipitants that have provided superior metal precipitation rates. Recent
studies have showed that cooperative bioleaching and sulfide precipitation methods
have removed more than 99% of Zn and 75% of Fe using Na2S [103]. Wastew-
ater streams utilize biogenic sulfide to reduce sulfate into sulfide using the sulfate-
reducing bacteria, which then binds with metal ions to form insoluble precipitates.
The resulted sulfide precipitates do not readily dissolve in water and therefore they
stabilize the metal ions as metal-sulfides. However, a complete removal of metal
ions from wastewater is impractical using the simple precipitation processes. Conse-
quently, different treatment processes are necessary to remove complex heavymetals
from wastewaters to the acceptable levels [10].

3.2 Electrodialysis

Electrodialysis (ED) is a membrane separation process, wherein ions transport
through the semi permeable membranes in presence of the applied electric potential.
The transportation rate and ions direction vary with their charge and mobility. The
membranes can be either cationic or anionic based, which means either negative
or positive ions can flow through them [92]. Cation selective membranes possess
negatively charged matter and allows only positively charged ions to pass through
them by restricting negatively charged ions. The specific advantages of ED made
this process as interesting alternative for wastewater treatment. In a recent study, the
authors synthesized a Nafion 450 membrane to transport Cr from tannery effluent.
The used Nafion 450 membrane provided good results due to its lower electric resis-
tance [63]. Further, a few other EDmethods reported for the separation of metal ions
from electroplating wastewater [18, 42, 61]. Although this technique is efficient for
the removal of low molecular weight metal (ionic) components, its efficiency for
the removal of higher molecular weight, non-ionic and less mobile ionic species is
practically not appreciable.
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3.3 Coagulation/Flocculation

Coagulation and flocculation are inevitable procedures that play an essential role in
drinking water and wastewater treatment. Generally, a chemical or coagulant adds to
the contaminatedwater in coagulation process,wherein coagulant joinswith colloidal
material and forms small aggregates called “flocs” [36]. Also, the suspended matter
present in water attracts to join with these flocs. In flocculation process, mixing
of water continues to boost the flocs to form large size precipitates that can easily
settle out. Several studies reported the basic mechanism occurred in the removal of
metal contaminants through coagulation-flocculation. However, several parameters
including initial pH and turbidity of water, alum concentration and flocculation time
influence the removal efficiency [15, 95, 99]. Even though, it is an effective technique
for the removal of heavy metal pollutants, the high operational cost is its major
disadvantage. In some cases, a high amount of coagulant and flocculant are necessary
to achieve sufficient level of flocculation. In such cases, the resulted high quantity of
physico-chemical sludge needs to be processed externally [2].

3.4 Ultrafiltration

In ultrafiltration, the organic and heavy metal pollutants can be separated using
membranes with pore size between 0.1 and 0.001 micron. Generally, ultrafiltration
is capable to eliminate high molecular-weight substances, organic and inorganic
polymeric compounds [37]. Briefly, ultrafiltration is a pressure-driven purification
approach, where lowmolecular weight substances travel with water and pass through
the membrane, but colloids, particles and macromolecules retain by the membrane.
In this approach, size exclusion is the primary removal mechanism, but the surface
chemistry of particles affects the membrane performance [30]. In literature, there
are several ultrafiltration methods reported for the removal of heavy metal pollutants
[10, 102]. However, a simple ultrafiltration effectively removes suspended matter
and bacteria. The ultrafiltration membranes are sensitive to oxidative chemicals such
as nitric acid, sulphuric acid, peroxides and persulfate and also the performance is
pH dependent.

3.5 Reverse Osmosis

Reverse osmosis (RO) is another membrane separation method, wherein pressure
applies at the concentrated side of themembrane forcing the treatedwater into diluted
side, the rejected pollutants from the concentrated side being sent to the rejected
water. This is the reversal of normal osmosis process, where solvent flows from low
solute concentration to high solute concentration in presence of no external pressure
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[60]. The membranes used in RO possess a dense barrier layer within the polymer
matrix where the prime separation occurs. However, a high pressure is necessary to
apply at the high concentration side of membrane in RO process. Several researchers
have reported the use of RO process in wastewater treatment [32, 70]. Even though,
RO is an effective heavymetal removal technique, it also removes dissolved essential
elements fromwater such iron, magnesium, calcium and sodium.Moreover, chlorine
presence inwater can damage theROmembrane and there is no particularmechanism
to know when to replace the RO membranes.

3.6 Adsorption

Despite the fact that the aforementioned methods have provided satisfactory results,
they suffer from several drawbacks. For instance, chemical precipitation and
flocculation-coagulation produces large amounts of hazardous waste that needs
further treatment. Ion exchange is an effective process, but its poor recyclability
limited the use of this technology. Similarly, the cost, material regeneration, energy
requirements and the disposal of residual material are the major constraints of
membrane filtration. On other hand, photocatalytic methods require extremely long
durations for heavy metals oxidation [1]. However, adsorption was evolved as
the alternative treatment process minimizing the abovementioned drawbacks. This
approach is superior for the removal of heavy metal ions over other conventional
methods considering its high efficiency at low concentration of pollutants, the avail-
ability of broad range of adsorbents, its possible regeneration and simplicity. As
heavy metals are highly persistent, their removal by immobilization on to suitable
adsorbent is preferred choice [56, 75].

Adsorption occurs when a gas or liquid solute concentrates on the surface of a
solid or liquid adsorbent forming a molecular or atomic film. It is considered as
the most suitable approach for the heavy metals removal from contaminated waters
owing to its removal capacity even at trace concentrations. In the process of adsorp-
tion, there are two types of mechanisms involved. In physisorption, the adsorbate
binds with absorbent by weak van der Waal forces. But in chemisorption, adsor-
bate molecules bind with adsorbent surface through strong chemical bonds [100].
However, the quality of adsorption relies on the adsorbent surface and its inter-
action with the pollutants. There are several adsorbents reported for the effective
removal of heavy metals, which includes clay minerals, biomaterials, zeolites, modi-
fied chitosan, manganese oxides, peat, peanut hulls, sewage sludge ash, granular
biomass, fly ash and extracellular polymeric substances are few to mention [41].
However, most of the above adsorbents provided insufficient adsorption, and there-
fore, further use of these adsorbents for wastewater treatment was restricted. Besides,
activated carbon (AC) is the extensively studied adsorbent for the removal of different
heavy metal ions. It is highly porous, and amorphous solid consisting micro crystal-
lites with a graphite lattice [67]. However, with the strict drinking water regulations
and increasing pollution of water bodies, the adsorption capacity of AC was found
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not sufficient for the removal of organic and metal pollutants. As a result, researchers
developed several CBNs including CNTs and graphene nanocomposites along with
their functionalization. All thesematerials have provided superior removal efficiency
and improved reusability. The heavymetals removal from contaminated waters using
two most studied carbon based nanocomposites i.e., CNTs and graphene materials
is discussed in the following sections with detailed case studies [50].

4 Carbon Nanocomposites for Heavy Metals Removal

The revolution of nanotechnology has created opportunities to develop novel
nanosorbents for the effective adsorption processes. Particularly, owing to their
remarkable chemical and physical properties, CBNswere emerged as potential adsor-
bents for the removal of organic and heavy metal pollutants. Among many CBNs,
graphene and CNTs based composites have drawn special attention [38]. Moreover,
mesoporous CBNs with controlled pore size (between 2 and 50 nm) and pore struc-
ture are the desirable materials to achieve efficient adsorption of heavy metals. The
basic structure of various carbon based materials is presented in Fig. 4. The detailed
study about the graphene and CNTs and their functionalization with latest research
reports were discussed in the following sections.

Fig. 4 The basic chemical structures of graphene, GO, rGO, SWCNT and MWCNT
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4.1 CNT Based Nanocomposites

The discovery CNTs was considered as one of the finest inventions in nanotech-
nology, which was first presented by Iijima in 1991. In CNTs, one or more graphene
sheets enfolds around themselves to form a cylindrical shape CNT with the length
greater than 20 mm and radius less than 100 nm. There are two types of CNTs i.e., (i)
multi walled carbon nanotubes (MWCNTs), contain more than one graphene sheet
with diameter ranges from 2 to 50 nm subjecting the number of graphene tubes, and
(ii) single walled carbon nanotube (SWCNTs), contain only one graphene sheet with
a diameter of 1–2 nm [59]. However, CNTs are spreading rapidly in the environment
by virtue of their large number of applications. Further, a great improvement in the
preparation methods helping the researchers to synthesize large amounts of size-
controlled CNTs for variety of applications. Both the classes of CNTs i.e., SWCNTs
and MWCNTs possess extraordinary chemical and physical properties, and they
were recognized as one of the strongest materials due to the bond between carbon
atoms in the sp2 direction [34]. CNTs have been examined widely over the past two
decades for many applications due to their remarkable characteristics.

4.1.1 Adsorption Properties of CNTs

The debate on adsorption capacity of CNTs is a growing subject in terms of exper-
imental and theoretical interest. The extremely porous structure of CNTs provides
high specific surface area, light mass density and firm interactions with the pollutant
molecules. Therefore, CNTs application for the removal of hazardous organic and
heavy metal pollutants from gas and aqueous systems has been studied extensively.
Various number of adsorption experiments have been established for the removal
of organic compounds, small molecules and heavy metal ions using CNTs [24, 73].
Fundamentally, the adsorption capacity of CNTs mainly depends on the available
adsorption sites. CNTs possess four adsorption sites namely grooves, interstitial
channels, internal sites and outside the surface of CNTs as shown in Fig. 5 [81].
Considerable experiments have been conducted to examine the occupied sites by
adsorbate molecules after adsorption. It is found that the adsorption rate is much
faster on external sites than on internal sites under the exact conditions of pressure
and temperature. Further, it was also found that the portion of opened and unblocked
CNTs significantly influence the overall adsorption capacity. Further, a study reported
that solution pH and heavy metals concentration in aqueous media influenced the
adsorption capacity of CNTs [90]. In other study, the authors described that the sorp-
tion mechanism was controlled by the surface properties, ion exchange capacity and
electrochemical potential of CNTs [31].
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Fig. 5 The possible
adsorption sites for heavy
metal ions on CNTs.
Reprinted with permission
from [81] copyrights 2006
American Chemical Society

4.1.2 Adsorption Mechanism of CNTs with Heavy Metals

The remarkable chemical properties of CNTs including large specific surface area
(150–1500 m2/g, which is too higher than fullerenes), chemical stability and the
availability of well-developed mesopores makes CNTs as effective adsorbents for
the removal of heavy metals. Further, the modification/functionalization of CNTs
either covalently or non-covalently using various organic molecules improves the
adsorption capacity and selectivity of materials [89]. The mechanism involves in
the heavy metals’ adsorption by CNTs is very complicated and is attributed by
electrostatic attraction, physical adsorption, precipitation and chemical interaction
between heavy metals and the surface functional groups of CNTs. Nevertheless, it is
commonly believed that the chemical interaction between heavy metals and surface
functional groups of CNTs is the major adsorption mechanism [82]. CNTs can also
form composites (e.g., Fe2O3, ZrO2) through the coprecipitation method, which are
effective for the removal of Cr, Ni, Hg, Pb, Cu and As [68]. But, the adsorption of
heavy metal ions with these composites was found to be pH dependent, and hence
desorption and recovery of absorbents can be easily accomplished by changing the
solution pH.

4.1.3 Functionalized CNT Composites

Functionalization is the key step that enhances the adsorption capacity of CNTs. In
spite of the fact that CNTs are significantly better absorbents over other conven-
tional adsorbents, their capacity, selectivity and sensitivity can be greatly altered
by introducing some new functional groups to their surface. In other words, the
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surface of CNTs can be triggered and functionalized by adding additional materials,
which creates them as more effective adsorbents for the removal of pollutants [83].
In fact, CNTs may contain different functional groups such as –OH, –C =O, and
–COOH depends on the synthesis and purification procedures. The functionalization
of CNTs can be accomplished adding catalysts likeNi, Pd and Pt after their oxidation.
The functionalized groups can also be removed by heating the CNTs at 2200 °C.
Functionalization alters the properties of CNTs, meaning that CNTs before func-
tionalization tends to be hydrophobic and it gets reversed after functionalization.
The functionalized CNTs can be used in variety of applications including mate-
rial science, environmental engineering, and electrical engineering because of their
excellent chemical, physical and electrical properties [48]. There are basically two
types of functionalization i.e., covalent and non-covalent. In covalent functionaliza-
tion, the functional groups attached to the skeleton of CNTs covalently by chemical
reaction. Where as in non-covalent functionalization, functional groups cover the
walls of CNTs.

More recently, ionic liquids (ILs) classified as green solvents and have attracted
considerable interest for the functionalization of CNTs owing to their special charac-
teristics [64, 96]. The first report regarding the application of IL for functionalization
in nanotechnology was introduced in 2001 [23]. Thereafter, several studies reported
the use of ILs as substitutes for organic solvents, with strong acids as a function-
alization agent. The benefit of using ILs over organic solvents is that they conduct
a non-destructive reaction that retains the properties of CNTs [21]. Besides, deep
eutectic solvents (DESs) were also emerged as alternative functionalization agents.
In general, DESs made up of two or more compounds, and the resulted DES melting
point is lower than either of the individual components. They are produced bymixing
a hydrogen bond donor (HBD) with salt. DESs can be prepared from different types
of salts (organic and inorganic) and HBDs [9]. There are a number of functionalized
and pure CNTs reported for the successful adsorption of heavy metals ions from
contaminated waters and the most important methods with the key remarks were
described in Table 1.

4.2 Graphene Based Nanocomposites

Graphene is a thin two-dimensional carbon based nanomaterial, which is a basic
building block for all graphitic materials including fullerenes, nanotubes or graphite.
Like CNTs, graphene also possesses unique physical, chemical, structural and
mechanical properties,whichmakes thismaterial a very tool inmanyfields.Graphene
exists in different forms like pristine graphene, graphene oxide (GO) and reducedGO
[74]. Over the past few years, the use of graphene and other graphene basedmaterials
in the environmental remediation and water treatment has tremendously increased
owing to their high specific surface area, chemical stability and the presence of active
functional groups on their surface [50]. Unlike CNTs, graphene necessitates special
oxidation processes to introduce hydrophilic groups on its surface. The preparation
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of GO nanosheets from graphite through the modified Hummer’s method brings
provide different oxygen-containing functional groups including –COOH, –C=O,
and –OH, on GO nanosheets surface. These functional groups essentially increase
the heavy metal sorption capacity of materials.

Table 1 Most recent methods reported for the removal of heavy metals from aqueous media using
CNTs based composites

S. No Adsorbent Adsorbates Key achievements References

1 m-MWCNTs-rTl-Cyn Cr, Fe, Pb,
Cu

m-MWCNT-rTl-Cyn
was stable for 30 days
Removed ≥84%
cyanates and >30% of
metals
Retained >94% of
activity after 10 cycles

[72]

2 MWCNT-PEI/PAN Pb, Cu 232.7 mg/g for Pb and
112.5 mg/g for Cu
Chemisorption involved
in metals uptake
Good reusability after
five cycles

[22]

3 MWCNT-PDA Pb, Cu Adsorption capacities
318.47 and 350.87
mg/g for Cu(II) and
Pb(II) respectively
Adsorption process
involved typical
chemical adsorption
and intraparticle
diffusion

[106]

4 MWCNTs-selenophosphoryl Pb, Zn, Cd,
Cu, Ni, Co

The material was
reusable for many times
Material was highly
selective for Pb removal
Removal affinity
Pb>>Cd>Zn, Cu, Ni,
Co
Pb removal occurred
through physisorption

[44]

5 pristine-MWCNTs Zn 100% of Zn removed
through complexation
Synthesized membrane
is highly reusable
Effectively removed
other metals ions

[3]

(continued)
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Table 1 (continued)

S. No Adsorbent Adsorbates Key achievements References

6 MWCNTs-5,7-dinitro-8-quinolinol Zn, Fe, Cu,
Pb

Modified-MWCNTs
provided relatively
higher adsorption
capacity
Best fitted with
pseudo-second order
model

[78]

7 MWCNTs-8-hydroxyquinoline Cu, Pb, Cd,
Zn

Best fitted with pseudo
second order model
Modification of
MWCNTs greatly
enhanced the
adsorption capacities

[79]

8 DTC-MWCNT Cd, Cu, Zn Best fitted with pseudo
second order model
DTC-MWCNT
provided high
adsorption capacities in
order as
Cd(II) > Cu(II) > Zn(II)
Chemisorption and
physisorption involved

[47]

9 pristine-MWCNTs Ni Effectively removed
Ni(II) from wastewater
Efficiency was highly
pH dependent
Promising and reusable
for metals removal

[28]

10 CNT sheets Pb, Cd, Co
Cu, Zn

Efficiency followed Pb
> Cd > Co > Zn > Cu
Oxidation of CNTs
increased efficiency
Promising alternatives
for metals removal

[91]

11 Chitosan-MWCNts Cu, Zn, Cd,
Ni

Chitosan-MWCNTs
provided high
efficiency
Removal order Cu(II) >
Cd(II)≈Zn(II) > Ni(II)
Material is highly
reusable for many
cycles

[80]

(continued)
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Table 1 (continued)

S. No Adsorbent Adsorbates Key achievements References

12 MWCNTs Cd Probe sonication well
dispersed the CNTs and
maximized
adsorbent-adsorbate
interactions
Provided adsorption
capacity of 181.8 mg/g

[12]

13 CNTs/NPAA Cu, Cd Hydrophobic pores of
CNTs adsorbed metals
Water pH influenced
the removal efficiency

[58]

14 CNTs Cu, Cd, Zn,
Pb, Co, Mn

Removal order Cu > Pb
> Co > Zn > Mn
Best fitted with
Freundlich adsorption
model

[90]

4.2.1 Adsorption Mechanism of Graphene with Heavy Metals

The high surface area-to-mass ratio of GO makes this material as ideal candidate for
the adsorption of heavy metals from aqueous systems. Recently, a large number of
studies confirmed the high sorption capacity of graphene materials for wide range
of heavy metals. Actually, multi-layered graphene oxide (MLGO) was observed to
possess remarkable sorption capacity for the removal ofmany heavymetals including
Cd (106.3 mg/g), Pb (842 mg/g) and U (97.5 mg/g) [51]. However, the studies
concluded that heavy metals adsorption on MLGO varies with the solution pH and
ionic strength. In a study, the authors reported that Pb(II) adsorption mechanism was
highly pH dependent, wherein the adsorption was controlled by the combination of
outer sphere electrostatic attraction and inner sphere covalent bonding. Outer sphere
adsorption was dominated at lower pH, and inner sphere adsorption was dominant
at higher pH values. In contrast, the adsorption mechanism for Cd and U was found
to be independent of solution pH. In case of Cd, the adsorption was dominated by
electrostatic outer shell attraction between Cd(II) andMLGO surface at all measured
pHvalues. TheU-MLGOsystems has showed refined differencewithin themeasured
pH range, but overall adsorption was found to be dominated by an inner sphere bond.
Overall, heavy metals adsorption on to MLGO varies with the type of metal [87]. In
another study, the authors synthesized EDTA-GO adduct for the effective removal
of Pb(II) from aqueous solutions, for which they have found the adsorption capacity
of 479 ± 46 mg/g, which is significantly more than the GO adsorption capacity of
328 ± 39 mg/g. In this study, the authors concluded that the superior performance of
EDTA-GO and improved removal efficiency was preceded by ion-exchange reaction
process [45].
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4.2.2 Functionalized Graphene Nanocomposites

Due to the tunable surface chemistry, non-corrosive property, high surface area and
presence of oxygen-containing active functional groups, graphene materials have
been appeared as novel and effective adsorbents with enhanced properties. Func-
tionalization of graphene for the environmental applications is mostly carried out
by chemical methods/processes (i.e., chemical oxidation and deposition, electro-
chemical, sol-gel, microemulsion and hydrothermal methods) [66]. These chemical
reactions are more selective and straight forward than other processes, which can
integrate functional groups with CBNs to achieve multiple functions [52]. The func-
tional groups present on the surface of graphene materials plays very significant
role in the adsorption process. There are a number of functionalized graphene and
graphene oxide materials reported for the successful adsorption of heavy metals ions
from aqueous systems and the most important methods with the key remarks were
described in Table 2.

5 Future Research Perspectives

The two major CBNs namely graphene and CNTs have offered considerable advan-
tages in the environmental remediation due to their impressive physical, chemical
and electrical properties. In addition, their application involved in many other fields
including electrical engineering, medical and material sciences. Certainly, much
progress has been achieved in the last few years regarding the use of CBNs in heavy
metals adsorption. Despite their high cost, the application of CBNs as adsorbents
could be beneficial in future considering their high adsorption capacities over conven-
tional adsorbents. In addition, several academicians and researchers are diversifying
the synthesis and modification of CBNs by innovative processing techniques, which
can possibly reduce the cost of CBNs in near future. However, there are still some
constrains needs to be addressed before utilizing the CBNs in full-fledged manner
for the adsorption of emerging pollutants. Firstly, the strong interactive forces among
carbonic nanostructures provide quick aggregation and poor dispersibility of CBNs
in aqueous solution and reduce the number of available sites for metal pollutants.
Even though, researchers have addressed this problem with surface modification,
most of the surface modification methods conducted by conventional procedures
utilized large amounts of chemicals and solvent.

Furthermore, the basic graphene and CNTs may contain some degree of toxi-
city and therefore, the practical application of CBNs in drinking water purification
depends on the development of cost-effective and environmentally benign CBNs.
Further, the chemistry of real water is very complicated, and it may contain different
kinds of pollutants that leads to produce serious environmental damages from their
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combined toxicity and relative mobility. Research on the removal of combined pollu-
tants by CBNs is still lacking, therefore researchers need to consider the potential
co-existing pollutants during the removal of a given pollutant. Also, the develop-
ment of functionalized CBNs that are capable to remove both organic and metal
pollutants simultaneously from water is highly desirable. Considering the effective
use of zerovalent iron (ZVI) for the removal of heavy metals and organic pollutants,
functionalization of CBNs with ZVI materials could produce effective materials that
can remove heavy metal and halogenated organic pollutants combinedly. Although

Table 2 Recent methods reported for the removal of heavy metals from aqueous media using
various graphene based composites

S. No. Adsorbent Adsorbates Key achievements References

1 Graphene-oxide Pb, Ni, Cr Cr and Pb were
completely removed by
GO
The adsorption rate
was effective until pH
8.0
A multilayer
adsorption occurred on
sorbent

[7]

2 GO–EDTA Cu, Pb GO-EDTA improved
anti-microbial
properties
No cytotoxicity was
found for human cells
GO-EDTA adsorption
capacity 454.6 mg/g
(Pb) and 108.7 mg/g
for Cu

[16]

3 GO foam Zn, Fe, Pb, Cd GOF provided very
high surface area 578.4
m2/g
Superior adsorption
and good reusability
Data fitted with
Langmuir isotherm
model

[46]

4 CS/GO-SH Cu, Pb, Cd CS/GO-SH showed
excellent adsorption
ability
Adsorption followed
pseudo second order
kinetics
Possessed 85%
recovery after three
cycles of use

[49]

(continued)
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Table 2 (continued)

S. No. Adsorbent Adsorbates Key achievements References

5 PEI-PD/GO Cu, Cd, Pb, Hg PEI-PD/GO exhibited
improved performance
PEI-PD/rGO aerogels
are highly recyclable

[25]

6 mGO/SiO2@coPPy-Th Cu, Pb, Zn, Cd Resulted high specific
surface area and can be
easily separated using
magnet
Promising material for
metals extractio from
different sample
sources

[40]

7 GO-SF aerogels Ag Showed high
adsorption capacity
over GO
A monolayer
adsorption involved
Langmuir isotherm
fitted with adsorption

[98]

8 GO-SA aerogels Cu, Pb Found effective for
heavy metals removal
Pseudo-second-order
model described
adsorption
Monolayer adsorption
involved in metal
removal

[39]

9 rGO/magnetite/Ag Cd, Ni, Zn, Co, Pb, Cu Provided high
adsorption over pure
GO
Removal affinity Cu,
Zn > Ni > Co > Pb, Cd
Easy separation and
high reusability

[69]

10 MnO2/rGO Pb, Cd, Ag, Cu, Zn Provided high
adsorption capacity of
356.37 mg/g for Pb
removal
High adsorption
capacity after several
cycles

[105]

(continued)
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Table 2 (continued)

S. No. Adsorbent Adsorbates Key achievements References

11 GO-SiO2 Pb, As Use of ILs helped to
reduce π–π stacking
and Van Der waals
interactions among GO
particles
High adsorption was
found for modified GO
Synergistic effects
between GO and SiO2
improved the
adsorption capacity

[11]

12 GO/CMC Ag, Cu, Pb CMC addition
prevented over stacking
of GO
Adsorption followed
pseudo-second-order
kinetics

[53]

13 GO-CA Pb, Hg, Cd Functionalized GO had
high adsorption
capacity
Adsorption followed
pseudo-second-order
kinetics
Provided good reusable
capacity

[6]

14 HP-β-CD-GO Pb, CuPb, Cu Adsorption capacity of
50.39 and 17.91 mg/g
obtained for Pb and Cu
respectively
More than 85%
reusability after three
cycles

[93]

functionalized CBNs have been proved to be potential adsorbents, their environ-
mental implications like fate, transportation and ecotoxicity must be examined to
minimize the potential adverse effects. Most importantly, functionalized CBNs need
to be tested in actual wastewater rather than their use in simulated water that only
contain selected pollutants. Finally, the recycling and reusability of the CBNs needs
to be addressed effectively.
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6 Conclusions

It is very familiar that the presence of heavy metals in water bodies create severe
toxicity to all living organisms as they tend to bioaccumulate in plants, human and
aquatic life. Unlike the organic pollutants, heavy metals are persistent and cannot
be degraded. As a result, researchers proposed adsorption as an effective technique
for the removal of heavy metals from aqueous systems. In recent years, various
CBNs have emerged as superior sorbents for heavy metals elimination owing to
their remarkable physiochemical properties. It is therefore, this chapter highlighted
the applications of various CBNs including CNTs and graphene based materials for
the removal of heavy metal pollutants including Hg, Cr, Pb, Cd, Ni, Cu and As. At
first, the sources and entry of heavymetals intowater bodies followed by their toxicity
to plants and living beings is presented clearly. Then, recent applications of CNTs
and graphene nanocomposites for heavymetals adsorption from aqueous solutions is
described following a discussion on their functionalization advantages. In all reported
studies, CBNs have showed excellent adsorption capacity for the removal of selected
heavy metal ions, which is mainly due to large specific surface area, strong van der
Waal interactions between metal ions and CBNs, and the availability of well-defined
adsorption sites. Further, the sorption mechanism was appeared to proceed through
the chemical interaction between metal ions and the surface functional groups of
CBNs. In addition, process parameters such as solution pH, surface acidity and
temperaturewere influenced the performance of CBN sorbents. Further, some studies
havewell described the possible reusability of spentCBNs for the desorption of heavy
metal ions. Moreover, future research recommendations to develop a cost-effective
and environmentally benign CBNs are presented.
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Removal of Air Pollutants Using
Graphene Nanocomposite

Sapna Nehra, Rekha Sharma, and Dinesh Kumar

Abstract Currently, environmental pollution becomes a global issue because of
rapid industrial and socioeconomic development in developing countries. The quality
of air is determined by many factors like temperature, humidity, and the concentra-
tion of the pollutants. These factors affect the quality of the air and continuously
contaminate the fresh air. Wastewater treatment is also an urgent need to regulate the
air pollution present in the environment. In the present studies, graphene, composite,
nanofibers, and adsorbents are trending for remediation of water pollutants found in
water. At the same time, researchers tried to control air pollution by using the same
materials. In this chapter, we mainly focus on the air pollution and their respec-
tive pollutants as, carbon dioxide (CO2), nitrogen oxide (NOx), sulfur dioxide SO2,
particulate matter (PM2.5 and PM10), lead, and the volatile organic compounds
(VOCs). These are the main constituents of air pollution. Several filters and ion-
based composites, hybrids functionalization, and synthesis methodologies are using
toward keeping the indoor and outdoor air quality.
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Abbreviations

ACFs Activated carbon fiber
rGO Reduced graphene oxide
GF-ASS Graphite furnace atomic absorption spectroscopy
GQDs Graphene quantum dots
MWCNT Multiwalled carbon nanotube
PMS Peroxymonosulfate
HM Hydrated manganese oxide
PS Polystyrene
PAN Polyacrylonitrile
IMA-rGO Ion-mediated assembled reduced graphene oxide
MSp@SiO2NH2 3-aminopropyltrimethoxysilane functionalized magnetic

sporopollenin
HEPA High-efficiency particulate air filters
SCR Selective catalytic reduction
MDEA Methyl diethanolamine
SOA Secondary organic aerosol
SPR Surface plasmon resonance
ACI Activated carbon injection
WFGD Wet flue gas desulfurization
MDEA Methyl diethanolamine
BGCs Bismuth oxybromide and graphene nanocomposite
NBOC/GQDs N-doped Bi2O2CO3/graphene quantum dots composite.

1 Introduction

Air pollution becomes a very tough problem because of the development of industry
and economy in both developed and developing countries. Many air pollutants are
emitted from the coal industries and the burning of fuels, which has been causing
severe threats to human health and the present ecosystem. Major air pollutants,
including nitric oxide (NOx), sulfur dioxide (SO2), lead Pb(II), particulate matters
(PMs), carbon dioxide andmonoxide contaminate the fresh atmospheric air shown in
Fig. 1. Particularly SO2 and NOx are the chief sources of formation of photochemical
[60, 83]. These specific gases are damaging to human health and cause dangerous
diseases like lung cancers, leukemia, and so on. Rising in the level of noxious pollu-
tants in the last few decades speedily deteriorates the quality of fresh air. Outdoor
polluted air enters the house and pollutes the indoor air quality. Therefore, nowadays
efficient high-efficiency particulate air filters (HEPA) and activated carbons are using
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Fig. 1 Various sources to cause air pollution

as indoor air filters to clean the air and keep safe from the dangerous health-damaging
pollutants [80].

There are many techniques which are involved to target the toxic air pollutant like
NOx, SO2 like selective catalytic reduction (SCR) [31, 76] activated carbon injec-
tion (ACI) and wet flue gas desulfurization (WFGD) [54, 58, 82]. Although sorting
treatment strategy could reach large removal of NOx, and SO2, these techniques still
have the shortcomings of exorbitant cost in the building as well as high operation,
complexity, occupational area, and low stability. But the conventional absorption or
adsorption techniques are one of the main research directions in air pollution control.

1.1 CO2 Mitigation and Air Treatment

Continuously, CO2 emissions are increasing day by day because of the combustion
of fossil fuels, which leads to global warming additional environmental problems.
Recent reports say that today, the concentration of CO2 in the atmosphere has jumped
from 270 to 390 ppm after the industrial revolution [30]. In the past few years, CO2

has become a primary anthropogenic greenhouse gas emitted from the burning of
fossil fuels [6, 64, 65]. Other acid gases, including carbon dioxide and hydrogen
sulfide, are found in natural and industrial gases [5, 9, 14, 49, 59]. Therefore, in
front of researchers and scientists stayed a challenge to deal with the problem of
global warming and to resolve the threat of global warming, we need to minimize
the concentration of CO2 in the atmosphere by an efficient method. In the literature,
several studies have made a tremendous effort in the removal of CO2 via removal
and capturing as well.
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Alghamdi et al., 2018 synthesized the nitrogen inserted GO by utilizing nitrogen
that comprises polymers like polypyrrole, polyaniline, and copolymer, i.e., polypyr-
role–polyaniline mixed with acids like H2SO4, HCl, and C6H5–SO3–K, which are
stimulated by adding diverse amount of KOH further carbonized at 650 °C. The
resulting N-GOs were proved via passing several techniques like XRD, TEM, XPS,
SEM, BET, and TGA-DSC. According to BET analysis, the porosity of the N-GOs
prepared in different ratios with KOHwas determined. The porosity was found to be
from1 to3.5 nmand50–200nmwith a ratio of 1:4 and1:2, respectively.X-raydiffrac-
tion analysis determined the development of layered like the structure of involved
graphene in synthesis. Among various-doped copolymers, the C6H5–SO3–K-doped
polypyrrole displayed higher surface area of 2870 m2g−1. The nitrogen graphene
composite shows the outstanding CO2 capture with varied dopant as PPy/Ar-1 and
PPy/Ar-2. The 1:2 dopant ratios of polymer and KOH, in N-doped known as PPy/Ar-
1, displayed the porosity in between the range from 50 to 150 nm. Alternatively,
1400 m2g−1 surface area was obtained and adsorbed the 1.3 mmol g−1 of CO2. Same
the 1:4, a ratio of polymer and KOH renamed as PPy/Ar-2, found the 1–3.5 nm
porosity, and approximately 3000 m2g-1 surface area shows the 3 mmol g−1 adsorp-
tion of CO2. Out of all prepared, N-GOs, the N-GOs gained from introducing the
polymer PPy dopedwith acidC6H5–SO3–Kdisplayed the better adsorption behavior.
The present study confirmed the facile synthesis of N-GOs could be possible with
other polymers, which bought from the recyclable material. Therefore, it can be
useful for attempting both environmental issues recycling of polymeric waste and
air pollution [2].

Irani et al., 2018 employed a novel approach by amine-modified rGO/MDEA
nanofluid to enhance the CO2 adsorption. The solvothermal method was processed
to synthesize theNH2-rGO/MDEAand entirely analyzed byXRD,XPS, SEM, FTIR,
and EDX to examine the structure of NH2-rGO/MDEA. For CO2, 16.2% adsorption
was reported. Both temperature and partial pressure showed the reverse direct rela-
tionship with temperature and partial pressure. Here, the mixing of 0.1 wt% GO to
the same solution enhances 9.6% absorption capacity [24].

Cao et al., 2015 synthesized the UiO-66/GO for the adsorption of CO2, and
the adsorption was estimated through the static volumetric method. To check the
reversibility of the CO2, adsorption–desorption cycle was conducted. Several tech-
niques were used to characterize the adsorbents as follows XRD, TGA, SEM, and
FTIR. The BET results confirmed that the UiO-66/GO-5 composite has a higher
surface area than the bare compositeUiO-66.Therefore, uptake ofCO2 UiO-66/GO-5
was 3.37 mmol g−1 at 298 K, and 1 bar pressure means 48% more than the UiO-
66 sample and determined by the micropore volume and the BET surface area of
composite. The adsorption uptake of CO2 is also greater than the other conven-
tional activated carbons and the zeolites. Six adsorption–desorption cycles were well
performed without degradation of composite prove the stability of the UiO-66/GO-5
composite. In addition, UiO-66/GO-5 displays outstanding regeneration constancy
and recyclability. So, this study reveals that the composite has a good potential to
absorb the CO2 in from the environment and reduce the surrounding global warming
[8].
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Sui et al., 2015 saw the adsorption capacity of CO2 by using the hydrothermally
reduced graphene oxide (HRGO) and obtained 2.4 mmol g−1 at 1.0 bar and 273 K
temperature. Further, the sample was examined through different tools like XRD,
BET, XPS, Raman, and FTIR spectroscopy. During synthesis, the hydrothermal
method was applied to disperse the graphene oxide at different temperatures. The
prepared HRGO possesses a 3D porous network but also shows maximum surface
area with large pore volume. The surface functionalities in graphene sheets supply
a higher adsorption capacity in HRGO for CO2 mitigation. At 100 °C, synthesized
HRGO exhibited higher adsorption capacity compared to two others specific temper-
ature 80 and 120 °C synthesized adsorbent as HRGO-80, HRGO-120. Further anal-
ysis illustrates the polar groups and H-bonding among CO2 molecule and the oxygen
comprising functional group. They handled the adsorption of CO2 [67].

1.2 Role of Nitrogen Oxides (NOx) and Their Removal

Basically, the nitrogen oxides are the sum of NO and NO2 which are assumed as the
main precursor of the formation of SOA which enhances the mass concentration of
PM2.5. Reports suggested that in Europe and North America, the generation of NOx

emissions from fossil fuel feasting is reducing while in China, raising the biomass
of NOx by the consumption of fossil fuels particularly in urban and industrial areas
[46]. The resulting fumes and gases in the atmosphere generated from the fossils and
industries had an adverse effect on human health. The NOx causes an adverse effect
on the nervous system of the human body and a mixture of photochemical smog
resulting from the NOx smog [63].

To diminish the adverse effects of NOx emissions over the biotic and abiotic
ecosystem, several efficient strategies have considerable importance in eradicating
NOx from the atmosphere [81]. Generally, employed ammonia used selective
catalytic reduction for NOx control, though this is the strategy for NOx removal
with high 100 ppm concentration at elevated temperatures [42, 62, 68].

Zhu et al., 2019 prepared a ternary Bi-BiOI/graphene composite photocatalyst by
using a solvothermal strategy for oxidative elimination of nitrogen oxide in the pres-
ence of visible light irradiation. During preparation, theBiOImicrosphereswere acti-
vated by asynchronous coupling of bismuth, and graphenewas done at different range
of temperature from 160 to 200 °C. Based on temperature conditions, BiOI renamed
as 160BOI, 170BOI, 180BOI, 190BOI, and 200BOI correspondingly. Among all
180BOI than BiOI, and binary Bi-BiOI and BiOI/graphene composites show the
higher photocatalytic activity for the oxidation of NO. With a half hour irradiation
of visible light ternary photocatalyst prepared at 180 °C gained 51.8% of nitrogen
oxide oxidation. The upright in the efficiency of photocatalyst depends on the signif-
icant transmission of photo-generated e− from BiOI and Bi to graphene, resulted in
significant separation of the photo-generated e− hole pairs and the SPR effect of Bi
NPs in the composite photocatalyst [88].
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Ai et al., 2011 studied the BGCs displays the better activity on photocatalytic
elimination of gaseous NO to pure BiOBr under visible light irradiation with the
wavelength over 420 nm. They reported that the rate constant of photocatalytic
removal for NO of bromide graphene nanocomposite was two times higher than that
of pure bismuth oxybromide. Simple solvothermal methods including GO, bismuth
nitrite, and cetyltrimethylammoniumbromidewere used for the formationof bromine
graphene nanocomposite. At the preparation time, the simultaneous reduction of GO
and the formation of BiOBr nanocrystals occurred.With the help of characterization,
outcomes confirm the risen in the photocatalytic activity of the BGCs nanocompos-
ites to more effective charge transfer and separation occurred among the BiOBr and
graphene, not to their light absorption extension in the visible region and higher
surface area [1].

Hu et al., 2018 successfully fabricated the 3D aerogel of CNQDs/GO-InVO4

(CNQDs = graphitic C3N4 quantum dots, GO = graphene oxide) via the
hydrothermal method. They obtained very stable and recyclable macro-material,
which played a significant role in the removal of nitrogenmonoxide.CNQDs reported
the average size diameter of 3.0 nm through the exfoliation of g-C3N4 step by step, via
fabricated on the superficial of GO homogeneously by electrostatic, π-π stacking
and hydrogen bonding interactions. The largest adsorption capacity of 65% was
reported at the 600 ppb level in the presence of visible light irradiation via syner-
gistic heterojunction. On behalf of ESR experiments and energy bands, calcula-
tions determined the photocatalytic mechanism. Overall template-free hydrothermal
method and exfoliation technology were proved to best fabrication for the novel 3D
CNQDs/GO-InVO4 aerogel [21].

Jia et al., 2019 designed the (BiO)2CO3-BiO2−x-graphene photocatalyst for the
elimination of NO under the exposure of solar light. With the help of analytical tools,
determine the physical properties of the ternary composite and their corresponding
light absorption and highly capable e− hole separation. Optimized results declare the
BOC-BiO2−x(35 wt%)-GR displayed the excellent performance for NO than the bare
BOC, BiO2−x, and BOC-BiO2−x binary composites. Further, the Z-scheme charge
transfer should be dominant over the heterojunction interface. According to DFT, the
Fermi scale results assured the formation of energy band structure among the BOC
and BiO2−x is more favored the transference of photo-generated electrons from the
conduction band of BOC to the valence bond of BiO2−x. This transference also can
be further increased by highly conductive GR sheets [27].

Liu et al., 2017 were the first time synthesized the nitrogen mixed NBOC/GQDs
beneath the ambient conditions. It shows the remarkable perfection than the pris-
tine NBOC in visible light performing photocatalytic exclusion of indoor NO air
pollutants at parts-per-billion level. XRD and TEM characterizations display the
graphene quantum dots (GQDs) that have no more effect over the structure as
well as morphology of N-doped Bi2O2CO3(NBOC), while GQDs might change
the surface of NBOC confirmed through XPS analysis. Altogether, results of UV-
Vis, photoluminescence spectroscopy, diffuse reflectance spectroscopy (DRS), and
photo-electrochemicalmanifest that the efficiency of both light harvesting and charge
separation of NBOC/GQDs during the photocatalytic process is enhanced [40].
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Chen et al., 2017 also, the first time, successfully employed the single-step
hydrothermal approach for the synthesis of nitrogen mixed (BiO)2CO3(NBOC)/GO
composite which obtained from the 3D ordered microspheres. During synthesis,
citrate ions played a chief role in N doping. The resulted composite was used
to destroy the toxic NO gaseous pollutant in the presence of visible light irradia-
tion at parts-per-billion concentration. The experimental results confirmed they got
NBOC–GO composite having 1.0 wt% graphene oxide showed the 4.3 times higher
the photocatalytic NO removal compared to the pristine (BiO)2CO3. NBOC–GO
composite prevents the formation of toxic NO2 intermediate, which shows the selec-
tive conversion of NO. About regular doping of N and GO, notably increase the
catalytic efficiency of NBOC–GO composite [10].

By increasing, the 74.6% removal of NO and successfully preventing the produc-
tion of NO2. The good photocatalytic activity primarily attributed to optical absorp-
tion tendency and raised the separation performance of photo-generated charge
carriers in NBOC–GO composite. The ESR and theoretical results of the band struc-
ture tell that NO removal is subjected by oxidation with ·OH and ·O2− radicals.
Overall, the present study confirms a method to synthesize highly stable and selec-
tive Bi-containing composite to control the air pollution control and gave a novel
vision about the accompanying photocatalytic mechanisms [11].

Li et al., 2018 reported the NH2-MIL-125(Ti) through the facile microwave
solvothermal route. The GO, C12H28O4Ti, and 2-aminoterephthalic acid were used
as precursors in the formation of (NH2-MIL-125(Ti)) composite. Further, the photo-
catalytic oxidation activity test of NO was performed at ambient temperature. The
obtained composite was thoroughly characterized via FESEM, FTIR, BET, TEM,
PLS, and XPS, respectively. In the presence of microwave irradiation, the surface
of graphene oxide becomes highly active and behaves as the microwave antenna to
readily absorb the microwave energy than the formation of hot spots occurred over
the surface of GO. Generated hot spots make possible the depth characterization
of the NH2-MIL-125(Ti) crystals, which further supported by the few techniques
like Raman, UV-vis, XRD, and many more. Because of well dispersity over the
surface of graphene oxide, strong interaction occurred among the NH2-MIL-125(Ti)
crystal and GO. The high electronic conductivity of GO and the strong interaction
profiting such GO/NH2-MIL-125(Ti) hybrid showed photocurrent intensity, visible
light absorption, enhanced metal–organic framework crystalline, an electron carrier
density and lower electron–hole recombination rate, photo-generated, compared to
the pure NH2-MIL-125(Ti). Thus, the obtained hybrid system behaves as the highly
efficient composite with long-lasting robustness in the presence of visible light irra-
diation having over 420-nm-wavelength for the photocatalytic oxidation nitric oxide
and the acetaldehyde [36].
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1.3 Role of a Particulate in Air Pollution and Their Removal

Other than CO2, SO2 NO2 gases PM has been a chief role in the generation of air
pollution. These toxicants are the consequence of fast urbanization and industri-
alization in metropolitan cities in developing countries. All air pollutants influence
human health [3, 15, 17, 35, 41, 47]. The particularmatter (PM) is the part of airborne,
which evolved from the diverse manufacturing processes, and it can be found in the
form of solid and liquid aerosols. These aerosols are the combination of the air and
gases including CO2, SO2 NO2, and ozone [7, 19, 91]. According to the aerody-
namic diameter’s, particulate categorizes into the two different forms as PM2.5 and
PM10, when the diameter is less than or equal to 2.5 and less than or equal to 10 µm
known as PM2.5 and PM10, respectively [79]. Out of PM2.5 and PM10, PM2.5 refers to
more health hazardous which causes a severe attack on human health after the direct
exposure with the PM2.5 immediately attack over the respiratory and cardiovascular
systems [13, 26, 51]. The PM2.5 pollutants exhibited the large surface area which
enhances the tendency of loading the pathogenic substance in large extent attributed
the sickness and endanger global public health [34, 61, 70, 87]. So, not only should
rigorous regulations be necessary, but more active air filters also form to diminish
the negative effect of air pollution on public health. Investigations over to regulate
the particulate pollution suggested they at large-scale low cost, durable, with higher
efficiency air purification devices should be manufactured and make available to the
public to deal with the severe problem. The efficient air filtrationmembrane is needed
to overcome the existing air filters to control the air pollution, which was expensive,
less efficient, and ineffective capture for ultrafine particles [16].

Jung et al. deal with toxic particulate air pollution namely PM2.5. They synthe-
sized the ion-mediated assembled reduced graphene oxide (IMA-rGO) filters, which
removes the PM2.5 with high-efficiency and low-pressure drop. Here the two-
dimensional material of reduced graphene oxide was introduced, which has higher
surface area per weight of graphene and efficiently works compare to nanofiber,
nanowires. During the manufacturing of filter aggregates, the reduced graphene
oxide over the foam of the copper mesh can remove the outdoor and indoor PM
simultaneously. After the synthesis, the samples were characterized by XPS, SEM,
EDAX, and FTIR. The higher surface area and porous structure in filters attribute
the passing of air with a higher rate and minimal pressure drop. The higher surface
area supplies sufficient space to accommodate the pollutants in their vacant void and
easily adsorbed and attains the desired level of removal. Five repeated consecutive
regeneration cycles with minimal loss in efficiency keep PM removal up to 99%
proving the robustness of the filter. The ion-mediated reduced graphene oxide filter
showed twice the outstanding quality factor than best reported in the literature [28].

Zhang et al., 2019 present the PAN/GO nanofiber to capture PM pollutants, which
comprise PAN and GO via facile and unique electrospinning approach. It proved
higher adsorption efficiency and removal efficiency for PM2.5. The elimination effi-
cacy of up to 99.6%was reported under 460µgm−3 of PM2.5 concentration. PAN/GO
nanofibers still showed the 99.1% removal efficiency after 100 h of adsorption, which
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means outstanding and long-lasting adsorption tendency. Therefore, the PAN/GO
nanofibers could be utilized as window screens to protect from the outdoor hazards
and can remove the PM2.5 pollutants which existing indoor. The nanofibers are also
used in air filtration masks for persons to eliminate PM2.5 pollutants during the
inhalation process. So, PAN/GO nanofibers attributed the large implication in the air
filtration industry, to give the human being cleaner and healthier living environment
[86].

Mao et al., 2019 worked for the exclusion of both PM2.5 and PM10, which causes
severe damage for the biotic and abiotic environment. They designed the thermally
stable PM filter through the in situ fabrication of the ZIF-8 on a 3D framework of
rGA via natural drying. Themain part of the novel filter is reduced graphene structure
attributes themaximumsurface area, andwell-arranged porousweb gives the space to
binding sites to zeolite imidazole framework-8 (ZIF-8). The uptake efficiency for the
PM2.5 was 99.3%, and PM10 was 99.6%, correspondingly, at ambient circumstances.
Reported higher efficiency at severe circumstances, PM2.5 exhibited greater than
98.8%, and PM10 was over 99.1%, at 200 °C with a flow velocity of 30 Lmin−1. The
ZIF-8/rGA filters could be regenerated through a simple washingmethod. Therefore,
the present study provides the new approach to develop new generation air filters
shows the rapid, efficient, and sustainable treatment of air pollution in the presence
of the adverse circumstance [43].

Zou et al., 2019 used graphene oxide as an air filter to capture the particulate
matter present in the environment in the form of PM2.5. Because of the specific
porous structure of graphene oxide easily to form the porous connected web of
composite by a simple coating method, the synthesized interconnected porous web
structure captured and showed 99.46% removal efficiency with low 7 Pa pressure
drop, high-quality factor 0.75 Pa−1 when the wind velocity found to be 0.1ms−1. The
results of SEM and EDS confirmed the successfully capture the PM2.5 by graphene
oxide membrane and give a new insight to control the air pollution [90].

1.4 Role of Lead in Air Pollution and Their Elimination

Lead ions Pb(II) usually existed in all three forms, such as air, water, and soil [45].
Amidst all heavy metals, Pb(II) is the most toxic element and has a negative effect on
the environment and human beings [4]. It is a minute quantity led the severe damage
in the human organ system like nerve, kidney, liver, and even cancer [53]. It goes
into the human body through inhalation and ingestion. Fossil fuel emission and the
industrial fume are the biggest source of the presence of Pb(II) in the air.

Ravishankar et al., 2016 prepared the magnetic sorbent by using the polystyrene
polymer-based graphene oxide known as PS@Fe3O4@GO adsorbent. Various
analytic techniques, for instance, SEM, TEM, AFM, Zeta, and UV-vis spectroscopy,
were utilized to analyze the morphology, size, and adsorption rate, respectively.
Four adsorption–desorption cycles were employed to conclude the efficacy of the
adsorbent after utilization. The adsorption capacity was reduced to 40.96% in the
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fourth cycle; from the first cycle, adsorption efficiency was 93.78%. Reduction in
the adsorption rate could be because of the incomplete desorption of the active site
present in the nanoadsorbent. The obtained adsorption experimental results show
the better fitting with Langmuir adsorption isotherm and gained the corresponding
adsorption capacity was 73.52 mg g−1 with 93.78% removal at pH 6. Kinetic results
data were well-fitted; the first order of kinetics and process was spontaneous. The
probable mechanism of adsorption well-illustrated by the FTIR and the XPS study,
which confirmed the bond formation occurred in the oxygen and Pb(II) ion [55].

Wan et al., 2016 examined the exclusion of Pb(II) from the wastewater by using
hydrated manganese oxide graphene oxide composite known as HMO@GO. In this
study, the fabrication of hydrated manganese oxide and enhanced adsorption effi-
ciency overcome the low adsorption capacities of bare GO. The higher adsorption
capacity more than the 500 mg g−1 was demonstrated for the Pb(II) in the presence
of other interfering ions like Ca(II) and Mg(II) in an aqueous system established the
selectivity toward the Pb(II). In desorption cycle, the 1 kg dose of the synthesized
adsorbent was utilized to treat the 22 m3 of artificial industrial drainage containing
5 ppm of lead and 40 m3 drinking water with 0.5 ppm concentration of lead to
their corresponding limits 0.1 mg L−1, 10µg L−1 for wastewater and drinking water.
The graphene oxide in nanocomposite forms the laminated structure, which exhibited
negligible pore diffusion and showed a fast-kinetic sorption rate of more than 20min.
The HMO@GO can be regenerated with 0.3 HCl solutions and easily separable due
to their magnetic behavior under the external magnetic field [73].

Hassan et al., 2020 firstly demonstrated the MSp@SiO2NH2 as a very efficient
adsorbent for the elimination of the lead. The obtained composite was fully charac-
terized through various techniques such as FTIR, TGA, FESEM, EDX, and VSM.
The optimization of the composite adsorption capacity was attained of 323.5 mg g−1

in the range from 50 to 200 ppm initial lead concentration. During the adsorption
experiment, the initial lead concentration and residual concentration after the adsorp-
tion were estimated by using the GF-ASS. The mode of adsorption isotherm was
well described by the Freundlich–Langmuir, and Temkin models. Among all three
isotherm models, Langmuir shows the best fitting with the adsorption isotherm data
with the high regression coefficient value model, i.e., R2 = 0.9994. PSO followed the
rate of kinetics with the regression value of R2 = 1.00 and thermodynamic evaluation
determines the endothermic and spontaneous nature of the adsorption process. Other
than kinetics and thermodynamics studies, the influence of other coexisting ions was
also determined on the adsorption of lead. The successive cycles of the regeneration
and reusability found the reusable tendency of the adsorbent till 10 times. Therefore,
the prepared adsorbent exhibited the large potential for the exclusion of lead from
aqueous sample of wastewater [20].
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1.5 VOC Contribution in Air Pollution and Their Mitigation

Volatile organic compounds (VOCs) are emitted as in gaseous form a solid and
liquid matters. It includes many organic chemicals that include the benzene, toluene,
and xylenes, and aldehydes can be a formaldehyde and acetaldehyde. VOCs origin
sources the storage, transport, fossil fuel usage, and refining show the harmful effect
on the ecological environment and human health [25, 52]. For the VOC production in
an environment not only the air is source beside air soil and water can be the source
of the origin of VOCs pollutants [56, 72]. VOC concentration found in indoor ten
times higher than the outdoor air. Other than organic chemicals, paints, varnishes,
wax, cosmetics, disinfection cleaner, and other variety of household products have an
adverse effect on human health [18]. Various VOC eliminations have been employed
by researchers such as adsorption, membrane separation, and condensation, consid-
ered as the nondestructivemethod and the photocatalytic incineration, ozone catalytic
oxidation, biological degradation, and oxidation comes in the destruction method
category, though the destruction method is not an efficient method and found the
hybrid treatments which are very effective. In between all techniques photocatalytic
degradation and adsorption, methods are a very promising method even at a low
concentration of VOC and exhibited higher removal efficiency, required low energy
[22, 23]. The adsorption method can augment VOC pollutants from the gaseous
phase to a solid phase to enhance the activity of photocatalytic degradation. Alterna-
tively, during the photocatalytic method, the VOCpollutant oxidizes to CO2 andH2O
at ambient conditions of temperature and pressure. Several carbon-based materials
were studied for the removal of VOCs listed in Table 1.

2 Conclusion

In his chapter, we have discussed all varieties of air pollution, causing pollutants
and their corresponding suitable targeting method. The earlier method has the same
shortcoming as expensive in nature and not much very efficient. Day by day in
research, scientists were trying to generate an efficient method to face the problem
of air pollution. Air filters at the domestic level are utilized to keep clean the indoor
air. Air filters mask been prepared for the employees who are working in the industry.
Theses filters easily capture the toxic gasses and other particulates from the air and
prevent the entry of toxic gases during the inhalation process. Efforts are performed
in an effective manner, but still have some drawbacks like expensive and not as
efficient as per requirement. Therefore, we need to discover the hybrid material with
good efficacy and should be environmentally friendly.
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Table 1 Variety of carbon-based materials for the removal of VOC

Carbon-based
composite

Targeted VOCs compound Photocatalytic efficacy
(%)

References

TiO2/activated carbon
fiber

Toluene at 460, 877, and
1150 ppm

81, 62, 57 [33]

TiO2/activated carbon
fiber

Formaldehyde 83.6 [39]

MnO2/MWCNT Formaldehyde 43 [44]

Graphene
hydrogel-AgBr@rGO

Bisphenol A 91.4 [10]

g-C3N4/biochar 2-Mercaptobenzothiazole 90.5 [89]

Wet scrubber coupled
with UV/PMS process

Ethyl acetate and toluene 98.3 and 96.5 [78]

Reduced
graphene-TiO2

Formaldehyde 88.3 [84]

TiO2ACFs Toluene 100 [71]

Ce-GO-TiO2 Formaldehyde 83.6 [32]

N-doped graphene
Fe2O3

Acetaldehyde 55 [74]

Biochar/Fe3O4 Carbamazepine 30 ppm 50 [57]

g-C3N4/biochar p-nitrophenol 70 [50]

Graphene oxide-TiO2 2-ethyl-1-hexanol 55.1 [12]

TiO2 activated carbon Propene 100 ppm 60 [48]

Graphene-based
nanomaterials

Toluene and xylene at
various concentrations 30,
50, and 100 ppm

92.7–98.3% for Toluene
and xylene 96.7–98%

[37]

Amorphous TiO2 and
graphene

Toluene – [85]

Graphene oxide Methanol – [69]

Al-decorated porous
graphene

Carbonyl – [38]

Mesoporous graphene Toluene at 120 ppm 260.0 mg g−1 [75]

Metal oxides in
graphene composites

For both GO-Ni(OH)2 and
rGO-SnO2, GO,
GO-Co(OH)2

Approximately 23, 19.1,
18.8 mg g−1

[29]

Ball-milled biochar Acetone, ethanol, and
chloroform

23.4–103.4 mg g−1 [77]

Mesoporous carbon
composites

Toluene, Ethyl benzene and
O-Xylene

1820.8, 1092.5, 52.9, and
47.1 mg g−1

[66]
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Preparation of Carbon-Based
Photo-catalyst for Degradation
of Phenols

Umairah Abd Rani, Law Yong Ng, Ching Yin Ng, Chee Sien Wong,
and Ebrahim Mahmoudi

Abstract Semiconductor photo-catalyst is one of the most efficient initiatives that
can be used for photo-catalytic degradation of organic pollutants in wastewater.
However, the recombination of photo-generated electrons and hole pairs can reduce
the capability of semiconductor photo-catalysts in the degradation activity. Therefore,
carbon quantum dots (CQDs) can be suggested to be one of the carbon-based photo-
catalysts that can minimize the recombination of photo-generated electrons and hole
pairs due to their nanosizes, high fluorescent intensity, large surface area, strong
photo-luminescent, and chemical inertness. Besides, CQDs can be considered as
an efficient photo-catalyst in the photo-catalytic degradation of organic pollutants
because they possess large band gaps, strong tunable photo-luminescent, and electron
reservoir properties. Sustainable raw materials can be used for the fabrication of
CQDsbecause they are cost-effective, eco-friendly, and effective inminimizingwaste
production. CQDs can be fabricated using laser ablation, microwave irradiation,
hydrothermal reaction, electrochemical oxidation, and refluxmethod. Thesemethods
undergo several chemical reactions such as oxidation, carbonization, pyrolysis, and
polymerization processes to produce CQDs. Therefore, CQDs-based photo-catalysts
are promising nanomaterials that can be used for the photo-catalytic degradation of
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phenol molecules. This chapter will introduce the properties of CQDs as carbon-
based photo-catalysts, the raw materials, and methods used in the fabrication of
CQDs as well as their functions and applications in the degradation of phenols. The
mechanism of phenol degradation will also be described in this chapter.

Keywords Carbon quantum dot · Carbon-based photo-catalyst · Phenol
degradation · Semiconductor · Photo-luminescence

1 Introduction

Nowadays, water pollution is one of the serious environmental issues due to the
expansion of industrialization and the development of the population. The problem
happens when waste materials from chemical industries and domestic activities are
discharged into the water resources. Aromatic pollutants are the organic pollutants
that are often encountered in the environment, and the majority of the aromatic
pollutants found are phenolic compounds [62, 96].

Phenolic compounds and its derivatives in the wastewater are mainly discharged
from pharmaceutical industries, manufacturing processes of paper mills, fungicides
production, coal industries, and polymeric resin productions. They are carcinogenic,
teratogenic, andmutagenic, which can affect the growth of aquatic organisms, human
health, and water resources, even at low concentrations [101]. Therefore, proper
treatment is required to degrade phenols in wastewater.

Since phenols are the hazardous refractory pollutants that possess benzene rings
with the characteristics of high toxicity and non-biodegradability, they can hardly be
degraded into smaller molecules. Photo-catalysis, thus, is a fascinating alternative
to the degradation of phenolic compounds [20, 104, 109]. Photo-catalysis is an eco-
friendly process for the treatment of wastewater without producing harmful side-
products, which use light energy as a source of energy.

Photo-catalytic degradation of phenols using carbon-based photo-catalysts is
a favorable method since they are widely available in nature, cost-effective, and
eco-friendly as they can utilize the renewable solar energy directly [105]. Hence,
fluorescent semiconductor carbon quantum dots have great potential to be used
as photo-catalysts for phenol degradation due to their chemical stability, high
photo-luminescent characteristics, and the unique quantum confinement properties
[97, 119].

2 Introduction to Carbon Quantum Dots (CQDs)

Carbon quantum dots (CQDs) are generally defined as a fascinating class of carbon
nanoparticles with sizes smaller than 10 nm [15, 51, 129]. CQDs are semiconductor
nanoparticles that are entirely made up of carbon-based materials. Besides, they
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possess fluorescent properties due to their strong quantum confinement effect, highly
tunable photo-luminescent, and optoelectronic behaviors [41]. Besides, CQDs are
also possessed a high number of oxygenated-functional groups in their structure,
which they can easily dissolve in aqueous solutions.

Besides, CQDs have great potentials in wastewater treatment due to high stability,
good biocompatibility, low toxicity, high quantum yield, low fabrication cost, and
excellent photo-stability [54]. CQDs can also display moderate photo-luminescent
signal, photo-induced electron transfer, excellent semiconductor properties, high
fluorescent activity, chemical inertness due to their quantum confinement effect, and
optical stability properties [102, 108]. Therefore, CQDs are possible to be used in the
treatment of organic and inorganic pollutants through the photo-catalytic degradation
process.

Electron transfers and reservoir properties of CQDs can be applied to sepa-
rate photo-generated electrons [53]. It can also display excellent photo-luminescent
quantum yield and possess extraordinary visible-light-sensitive photo-catalytic
performance [122]. Hence, they can utilize solar energy from ultraviolet to visible
range due to their nanoscale characteristics [84]. Moreover, CQDs possess the supe-
rior ability for charge transport (good performance in trapping and transferring
of electrons) and can inhibit the recombination of photo-generated charges effec-
tively [1]. Therefore, CQDs have great potential to be applied as carbon-based
photo-catalyst for photo-catalytic degradation of phenols.

3 Raw Materials Used to Fabricate CQDs

According to past studies, CQDs have been fabricated from various carbon sources,
such as citric acid [1, 18, 54, 119, 129, 143], red lentils [46], strawberry powders
[140], cholesterol [42], gluconic acid [63], broccoli [7], biomass [40], phenylene-
diamine [67], Prosopis juliflora leaves [80], glucose [37], urea [14], and gelatin
[77].

Nevertheless, very limited studies reported the use of organic waste products to
produce CQDs. Thus, discoveries are indispensable in fabricating CQDs that are
made of waste materials, which is one of the initiatives to minimize waste products
from industries. Based on past studies, glucose and citric acid are the most common
raw materials used in the fabrication of CQDs because they consist of oxygenated-
functional groups [54, 78, 143]. However, the raw material can be replaced with
green carbon sources that contain similar functional groups. For instance, organic
carbon wastes can be obtained from plant wastes, fruit materials, waste of cereals,
and palm oil industry wastes, which are having high carbon and oxygen contents.

CQDs are fabricated by surface functionalization of organic or inorganic
molecules through the carbonization and oxidation of raw materials [42]. In the
fabrication process, carbon precursors are dehydrated and then carbonized to produce
CQDs. The advantages of using sustainable carbon sources or waste organic products
to fabricate CQDs are cost-effectiveness, high yield, biodegradability, low toxicity,
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and wide availability in nature. Also, the application of organic waste products as
raw materials in the CQDs fabrication can reduce soil pollution [38].

The formation of the oxygen-containing functional groups in the CQD structures
can produce excitation-dependent fluorescence emission. Therefore, chemical struc-
ture and photo-luminescence properties of CQDs depend highly on the chemical
structure of the raw materials and the fabrication methods used [1, 139]. Besides,
the physicochemical properties of CQDs can be varied by altering the number of
precursors and solvents as well as duration and temperature of reaction [42]. There-
fore, CQDs have high potential as attractive components in the multifunctional
applications of photo-catalysis, fluorescent probes, optoelectronic devices, medical
diagnosis, and water purification technologies.

Besides, fabrication of CQDs using natural precursors without the addition of acid
or other chemicals is strongly encouraged due to their high quantum effects, strong
luminescent properties, and low environmental impact [19]. Chemical modification
of organic and inorganic precursors can improve the physical properties, chemical
structures, and fluorescent effects of CQDs [72]. In the fabrication of CQDs, the sp2

carbon linkages of raw materials can be converted to the smallest units through the
oxidation treatment [5].

Polycyclic aromatic hydrocarbon molecules and carbohydrate extraction from
vegetables are reliable precursors for the fabrication of high-quality CQDs because
they contain more oxygen-containing functional groups such as hydroxyl, carboxyl,
and carbonyl groups [129]. They also contain vitamins and glucosinolates, which
could be nitrogen and sulfur sources as natural doping for the resulted CQDs [95].
Besides, this kind of carbon precursor is easily dissolved in ultrapure water as a
medium reaction. For example, previous studies have used lemon juice [68] and
biowaste lignin [108] as raw materials in the fabrication of CQDs.

4 Methods Used to Fabricate CQDs

Various methods and techniques have been used to fabricate CQDs. One of the
methods is the reflux method. A study has added a certain amount of wood soot
in a concentrated nitric acid, which is followed by refluxing at 140 °C for 12 h
[74, 142]. After the reaction ends, sodium carbonate was used to dilute the acidic
medium before it was dialyzed by using a dialysis membrane for 2 days to remove the
excess acidic solutions. The use of concentrated acids in the fabrication of CQDs is
for functionalization and defragmentation of the precursor materials to the smallest
units [5, 100]. This method can be considered as a simple reaction. However, it is
time-consuming for the additional purification process due to the use of concentrated
acid.

The reflux process also promotes a large amount of oxygenated-functional groups
(hydroxyl, carboxyl, and carbonyl) on the CQD structures [110] due to the carboniza-
tion and oxidation reactions. The emergence of these functional groups will increase
the solubility of CQDs in aqueous media, and the resultant nanosizes possessed a
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stable photo-luminescent and high optical properties that are suitable to be used in
photo-catalytic degradation of organic pollutants.

Another method that has been used to produce CQDs is the ultrasonic process
[125]. In this method, raw materials are dissolved in water, followed by the addi-
tion of solvents such as sodium hydroxide and ethanol [139]. Some researchers
used hydrogen peroxide to oxidize the carbon materials [99]. Ultrasonic energy is
applied to generate alternate low- and high-pressure waves in the reaction medium to
produce high energy that can destroy carbon bonds, thus resulting in the formation of
small vacuum bubbles [120]. Besides, ultrasonic energy waves can cut macroscopic
precursors materials to the smallest particle sizes of CQDs [132].

Besides, a study has applied the electrochemical exfoliation method [111] to
fabricate CQDs in which this method uses two graphite rods as electrodes. By using
graphite as electrodes, a negative and positive charge can be imparted to the carbon
materials, contributing to the intercalation of oppositely charged ions and assisting in
exfoliation [135]. The electrochemical exfoliation process generates a high number
of oxygen molecules and fosters intercalation of hydroxide ions between graphite
layers, with minimal hole defects of CQDs [2]. This method can produce CQDs with
high quantum yields and strong luminescent properties [31, 121].

Based on a previous study, CQDs have been synthesized from ammonium citrate
by heating treatment at 180 °C for 3 h under atmospheric air [92]. This method is
also known as an oxidation process of molecular precursors, but it does not require
concentrated acid. The product obtained was purified by using a dialysis membrane
to remove the excess molecular precursors. Another study has used lemon juice to
be heated up in the air at 100 °C for 45 min in a beaker to produce CQDs [103].
Lemon juice contains ascorbic acid, maleic acid, and citric acid. Hence, through the
heating and carbonization process, these raw materials can be transformed into a
high fluorescent CQDs.

Laser ablation technique is among other methods to fabricate CQDs by irradiating
the precursors immersed in water. The benefit of using this technique is easy to
control morphology and particle sizes of CQDs. Hence, a study has reported the
application of this technique by using crystalline graphite micro-particles [8]. The
starting material was dissolved in water, and ns pulsed fiber laser was employed.
The interaction between the laser beams and carbon materials can produce a high
temperature and pressure plasma plume at the interface of carbon materials and the
surrounding medium. Heat energy caused the fragmentation of carbon materials into
smaller particles [120].

CQDs have also been prepared using a microwave irradiation method in which it
undergoes polymerization and carbonization [4]. The microwave irradiation method
is an effective method due to shorter fabrication time and a faster reaction rate. Inter-
action of electrical dipole moment with microwave irradiations resulted in homoge-
neous energy distribution, which generates heat energy that can be used to produce
CQDs [131].

In a previous report, CQDs were prepared by adding a certain amount of glucose
into the water and heated under microwave reactor (200 W, 100 °C) for only 1 min
[81]. When the reaction was exposed to microwave irradiation, the color of the
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solution slowly changed from transparent to dark brown, indicating the formation of
CQDs through the dehydration process [131].After cooling, the productwas dialyzed
(using 300 Da membrane) for 5 days to obtain the purified CQDs. This method can
control the particle size and morphology of particle surfaces by altering the heating
time. For example, a study has reported the synthesis of CQDs viamicrowave heating
within 15 min, which has produced nearly spherical CQDs of 3.4 nm [13], while
heating for 30 min has produced CQDs of 2.7 nm with uniform morphology [114].

CQDs can also be fabricated via hydrothermal treatment by using a Teflon auto-
clave reactor [46, 107]. This synthesis method is recognized as the most promising
method for the fabrication of CQDs with controllable particle size, well-defined
morphology, and can contribute to the high crystalline CQDs [66]. Besides, this
fabrication method involves heating of precursors at high temperature and pressure,
which allows interactions among precursors and water molecules [117]. Based on a
previous study [82], CQDs were fabricated using the hydrothermal method in which
rice residue and lysine were mixed in deionized water and heated up at 200 °C for
12 h. After cooling, the product was centrifuged to remove large particles.

The formation of CQDs can be achieved by oxidizing carbon sheets to produce
more oxygen-containing functional groups through the self-assembly process [6].
The sizes of CQDs can be reduced during the reaction, which produces strong
fluorescent emission [44]. The hydrothermal method can produce a high quantity
of quantum dots. High production yields are important as they can contribute to
enhancing the photo-luminescent properties with better surface passivation of CQDs
[39]. A previous study has used pulp-free lemon juice as a carbon source, which was
heated at 200 °C for 6 h and attained 31% of quantum yield [21]. Lemon juice has
been used in the fabrication of highly efficient CQDs with superior optical properties
because it is renewable and contains mostly hydrocarbon compounds.

The hydrothermal method is an easy route to fabricate highly luminescent CQDs
without the addition of any chemicals. A study has produced blue fluorescent CQDs
from red lentils, and the quantum yield obtained was 13.2% [46]. Red lentils are
rich in fats, protein, and carbohydrates, which are good natural sources containing
nitrogen and carbon. Red lentils were dissolved in deionized water and heated up at
200 °C for 5 h.

Based on the previous study,Ginko leaves have also been used to synthesizeCQDs
using the hydrothermal process [38]. It was ground to powder and dissolved in water
before transferred into a Teflon reactor. The reactor was placed in the oven at 200 °C
for 10 h. A light brown solution was obtained as CQDs. In another work, CQDs have
been synthesized via hydrothermal method using ascorbic acid and deionized water
[26]. The mixture was heated at 180 °C for 3 h similar to another report in which
vitamin C was used as raw material under the hydrothermal route at 180 °C for 5 h
[138]. During the process, vitamin C was dehydrated due to the polymerization and
carbonization of organic molecules to produce high luminescent CQDs.
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5 Methods Used to Characterize CQDs

Various analyses and instruments can be used to characterize the CQDs. Proper-
ties of functional groups on the CQD surfaces can be evaluated by Fourier trans-
form infrared spectroscopy (FTIR). Crystalline phase and interlayer spacing of the
CQD structures can be evaluated by X-ray powder diffraction (XRD). Transmission
electron microscopy (TEM) can be performed to observe the properties on surface
morphology, nanostructure, and particle size of CQDs. Furthermore, UV-Vis absorp-
tion spectra over a range of 200–800 nm can be used to obtain the optical properties
of CQDs, while photo-luminescence (PL) can be used to analyze the emission and
excitation light within a detection range of 200–1000 nm.

5.1 Fourier Transform Infrared Spectroscopy (FTIR)

FTIR analysis has been used to confirm the functional groups of CQDs, as shown
in Fig. 1a in a frequency range of 4000–1000 cm−1. Based on the previous report,
the FTIR spectrum for CQDs showed peaks at 3400 cm−1 (assigned to O–H groups
stretching vibration), 1654 cm−1 (attributed to C=O stretching), and 1035 cm−1

(attributed to C–O stretching) [46]. Another report has observed two peaks at
1725 cm−1 and 1071 cm−1, which were assigned to the stretching vibration of
C=O groups and C–O stretching, respectively [88]. Results indicated the presence of
hydrophilic functional groups such as hydroxyl, carboxyl, and carbonyl groups that
were bonded to the aromatic ring structure of CQDs, which were derived from the
precursor materials. It can be concluded that the CQD surfaces contain oxygenated-
functional groups, which make them be easily dissolved in various solvents. Various

Fig. 1 FTIR spectra for a CQDs produced from red lentils. Reprinted with permission from Khan
et al. [46]. Copyright 2019 Elsevier; b CQDs produced from gelatin. Reprinted with permission
from Parthiban et al. [77]. Copyright 2018 Elsevier
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functional groups on the CQDs surfaces can contribute to high quantum yield in
which they will become more reactive, especially when exposed to the UV-light
irradiation [15, 59].

Based on the FTIR spectra, a broad absorption band appeared at 3200 cm−1

represented the stretching vibrations of the O-H group that verified the presence
of hydroxyl groups on the CQD surfaces [82]. Another two peaks appeared at
1510 cm−1 and 2850 cm−1, which corresponded to C–C in aromatic rings and C–H
bending, respectively [130]. A study has reported the presence of an sp2 hybridized
graphitic network of the aromatic C=C stretching vibrations, which were observed
at 1400 cm−1, as shown in Fig. 1b [77]. Based on their results, another two peaks
at 2960 cm−1 and 1300 cm−1 were assigned to the stretching and bending vibration
of the C–H bond. The presence of more hydrophilic functional groups attributed
to enhance the proton conductivity by forming an additional proton conductivity
pathway [140]. Observation of important functional groups in the FTIR spectrum
revealed the successful oxidation of the precursor materials during the fabrication
process. The appearance of hydrophilic groups indicated that CQDs possess high
water solubility [11]. These characteristics are responsible for the efficient dispersion
of CQDs in the aqueous solution.

5.2 Transmission Electron Microscopy (TEM)

TEM has been used to investigate the nanostructure of the synthesized CQDs and
to estimate the particle sizes of CQDs. CQDs are well-dispersed with particle sizes
ranging between 2 and 12 nm with an average diameter within 1–5 nm [5, 48, 73].
Based on a previous report, CQDs showed a nearly spherical shape, having good
dispersibility and uniformly sized particles, which were mostly distributed in the
range of 3–5 nm [134].

The nanostructures of CQDs are homogeneity in the particle size distribution,
and their morphology was quasi-spherical and exhibit uniform dispersion [23, 68].
The size distribution was investigated by measuring approximately 500 particles
randomly. The diameter distribution corresponding to the Gaussian fitting curve
showed an average diameter of 1.7 nm, as displayed in Fig. 2 [52]. From another
report [26], the particle sizes of the single dispersed CQDs are around 5 nm, and the
lattice stripes with a spacing of 0.23 nm. It was found to have a good water solubility
and still can be distinguished despite the low crystallinity.

Figure 3a shows TEM image and size distribution of CQDs from a previous
work, which demonstrated that CQDs were well-dispersed and approximately 2–
5 nm in size with the most probable diameter of 3.5 nm [67, 73]. High resolution-
transmission electron microscopy (HR-TEM) image in Fig. 3b shows that the CQDs
formed graphitic crystals, and the observed lattice spacing was around 0.321 nm.
This result was in good agreement with the lattice planes of graphitic carbon [76].
The morphology results of CQDs were also confirmed by other studies [54, 141].
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Fig. 2 TEM image of CQDs and the particle size distribution of CQDs. Reprinted with permission
from Liang et al. [52]. Copyright 2013 Elsevier

Fig. 3 a TEM image with size distribution and b HRTEM of CQDs with a crystalline structure.
Reprinted with permission from Xu et al. [128]. Copyright 2016 ACS Publications

Also, the amplified HR-TEM image of CQDs revealed the coexistence of
crystalline properties, which were spherical with the amorphous surface. The
dispersibility of CQDs in aqueous solution was excellent, without large aggregates,
indicating that CQDs were covered by several oxygenated-functional groups [99].
The lattice structure of CQDs was continuous, which has confirmed the crystallinity
properties. A study has reported the lattice spacing to be 0.21 nm, which is parallel
to the distance between graphite planes [21]. This result showed that the crystal
structure of CQDs was mainly composed of sp2-hybridized carbon atoms.
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Fig. 4 XRD pattern of
CQDs. Reprinted with
permission from Lim et al.
[54]. Copyright 2018
Elsevier

5.3 X-Ray Powder Diffraction (XRD)

Powder XRD analysis can be conducted on the CQDs to analyze the crystallinity
structure of CQDs. Based on Fig. 4, the XRD spectrum of CQDs exhibited a broad
diffraction peak centered at around 2θ = 23.7°, which corresponded to the lattice
spacing of a graphitic structure [54]. The presence of graphitic structure in CQDs
was due to the presence of an sp2 carbon plane, which was in good agreement with
the XRD spectrum that has appeared at 2θ = 25° [70, 137]. This result suggests that
CQDs can be considered as a crystalline graphitic carbon structure with the interlayer
spacing of 0.32 nm [46].

XRD pattern from another study has reported a specific peak appeared at 22°,
which was attributed to the highly amorphous nature of CQDs due to the large
interlayer spacing of CQDs (4.0 Å) [77]. This interlayer suggested the presence of
amorphous and crystalline nature in the CQDs surface due to the appearance of a
broad peak centered at 20.25°. This result showed that CQDs possess high stacking
compatibility in the carbon materials [37].

5.4 Photo-luminescence (PL) Spectrophotometer

PL spectrophotometer has been carried out to study the optical properties of CQDs.
The absorption peak of CQDs appeared at 370 nm, while the maximal emission
peak of CQDs was observed at 450 nm [12]. As displayed in Fig. 5a, when the
excitation wavelength varied from 360 nm to 460 nm, the emission peak appeared at
440 nm,which decreased continuously and shifted gradually to the longerwavelength
at 528 nm [85]. This phenomenon occurred due to the photo-induced electrons and
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Fig. 5 PL spectra of CQDs: a CQDs fabricated from citric acid. Reprinted with permission
from Qiao et al. [85]. Copyright 2019 Elsevier; b CQDs fabricated from Pomelo. Reprinted with
permission from Ramar et al. [91]. Copyright 2018 Elsevier

holes that were present in the CQDs at different emissive energy traps [91]. This fluo-
rescence emission spectra showed a slight excitation-dependent emission behavior.
Different excitation wavelengths will exhibit different emission colors such as blue,
red, and green [1]. Various functional groups on the CQD surfaces might be respon-
sible for the extension of various fluorescent emission color. A report has found
that CQDs can exhibit excitation-independent PL behaviors (Fig. 5b) with strong
emission wavelengths observed in the range of 420–510 nm [91]. The PL emission
behavior depended on the number of particles excited by the particular excitation
wavelength.

5.5 UV-Vis Spectrophotometer

UV-Vis light absorption measurements can analyze the linear optical absorption
properties of CQDs. In a previous study, the UV-Vis spectrum of CQDs has two
different peaks at 233 nm and 282 nm, as shown in Fig. 6a [7]. The shoulder peak
at 233 nm could be assigned to π–π* transition of aromatic C=C and C–C bonds,
which were originating from the aromatic π system. A strong peak at 282 nm could
be attributed to the n–π* transition of the C=O groups due to the successful oxidation
of carbon-based raw materials.

As shown in Fig. 6b, a peak at 267 nm has been detected, which can be attributed
to the π–π* transition of conjugated C=C onto CQD surfaces [48]. Generally, the
absorption bandbelow300nmcould be attributed to analogous features of conjugated
C=C bonds corresponding to the carbon-core [94]. A peak at 360 nm could be
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Fig. 6 UV-Vis spectra of CQDs: a the glowing blue color of CQDswhen exposed under a UV lamp.
Reprinted with permission from Arumugam and Kim [7]. Copyright 2018 Elsevier; b recorded at
two significant absorption peaks at 267 and 360 nm. Reprinted with permission from Lei et al. [48].
Copyright 2019 Elsevier

attributed to the n-π* transition of C=O and O–H groups that were present on the
CQDs surface. UV-Vis spectrum of CQDs was found to be almost similar to the raw
materials obtained from carbon-based precursors.

6 CQDs-Based Photo-Catalyst for Degradation of Phenols

Degradation of phenol in the presence of carbon-based photo-catalyst under UV-light
irradiation is known to be an effective photo-catalytic activity. Commonly, carbon
nanoparticles are used as photo-catalyst for phenol degradation due to their chemical
stability, small particle sizes, and large surface area [17]. When they are exposed
to UV-light irradiation, electrons are excited to the conduction bands, which will
generate positively charged holes in the valence bands [36]. This process will also
produce hydroxyl radicals that can be used to attack phenol molecules during the
degradation process [3, 126].

The use of carbon-based photo-catalyst materials may reduce the recombination
rate of active electrons and holes [115, 118] due to their capability to separate the
photo-generated electron–hole pairs [75, 124]. However, the advantages of photo-
catalytic activity are cost-effective, stable photo-catalyst, chemicals free, sustainable
approach, and facile process. Besides, this technique does not require non-renewable
energy consumption as it can utilize sustainable solar energy [74].

CQDs are a class of carbon-based nanomaterials that can be effectively used as
photo-catalyst for degradation of phenols due to their lower band gaps, pronounced
quantum confinement, and edge effects [24, 127]. Owing to the smaller particle sizes
ofCQDs, they exhibit uniquephoto-luminescence optical behavior, electron reservoir
properties, and photo-induced electron transfer [10]. Also, CQDs are not only able
to accelerate the separation of photo-generated electrons, but they can also enlarge
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the absorption range of UV-light or sunlight irradiation [124]. Therefore, CQDs are
the promising carbon-based photo-catalysts that can be used for the photo-catalytic
degradation of organic pollutants such as phenol derivatives.

CQDs have been incorporated into another semiconductor photo-catalyst to acti-
vate the substrate and lower the activation energy to enhance the capability of
UV-light absorption [43]. Besides, the combination of CQDs-based photo-catalyst
with other semiconductor photo-catalyst can be an effective way to improve the
performance of the photo-catalytic degradation process [50].

Based on a previous study, nitrogen-doped CQDs (NCQDs), which were
supported by aluminum oxide (Al2O3) as a catalyst, have been synthesized for
degradation of phenols due to its high stability against thermal treatment at high
temperature [32]. NCQDs were fabricated via the hydrothermal method by using
fumaronitrile as a raw material, which was then mixed with deionized water and
heated up to 225 °C for 10 min. After cooling, the mixture solution was dialyzed by
using a 0.22 μm filtration membrane to obtain NCQDs.

Based on that study [32], NCQDs supported on Al2O3 were prepared by the
impregnation method. A certain amount of NCQDs solution was impregnated with
1.0 g of Al2O3. The mixture was dried at 80 °C for 5 h and underwent carbonization
at a preset temperature (500, 600, or 700 °C) for 1 h under a nitrogen atmosphere to
obtain the photo-catalyst (NCQDs supported by Al2O3).

The degradation experiment was evaluated by liquid-phase catalytic degradation
of phenols in which the catalyst was dispersed into phenol solution, followed by
stirring at room temperature for 1 h. The reaction solutionwas collected and analyzed
using UV detection wavelength at 230 nm. NCQDs were highly dispersed on the
surface of Al2O3 due to strong electrostatic attractive interactions between NCQDs
andAl2O3. NCQDs containing nitrogen atomcontributed to a large number of surface
defects and could result in highly active photo-catalyst functionalization. The doping
of CQDs with nitrogen can significantly affect the function of CQDs as the electron
transfers happened between the CQDs and the nitrogen atom [25].

Results of that study [32] revealed that the photo-catalysts were able to degrade
81.5% of phenol derivatives (bisphenol F) within 120 min, indicating that the
supported NCQDs on Al2O3 catalyst exhibited much higher degradation activity
of phenol molecules. In contrast, in the absence of the catalyst, the bisphenol degra-
dation was only 2.8% within 120 min, indicative of negligible degradation activities.
Surface modification of CQDs can enhance their capability in the photo-catalytic
degradation activity in which it can contribute to a higher degree of oxidation state,
which resulted in the reduction of CQDs energy band gaps [83].

Figure 7 showed the effect of various concentrations of catalyst on the bisphenol
F degradation in which a higher concentration of catalyst exhibited higher degrada-
tion of phenol. The efficiency of catalytic activity of catalyst (NCQDs supported
by Al2O3) could be attributed to the highly exposed active sites from carbon-
based photo-catalyst (NCQDs). Besides, the surface defects, graphitic structures, and
nitrogen-containing CQDs could act as an active catalytic site for phenol degradation
[35].
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Fig. 7 Effect of catalyst
(NCQDs supported by
Al2O3) concentration on
bisphenol F degradation.
Reprinted with permission
from Hou et al. [32].
Copyright 2018 Elsevier

Also, CQDs can facilitate the transferability of the photo-induced electron to
perform as an efficient photo-catalyst. Therefore, a study has reported that CQDs
can be used to produce stable hydrogen-bonding catalysts for phenol degradation
[65] due to their excellent photo-luminescent properties while containing carboxylic
and hydroxyl functional groups. According to that report, green synthesis of CQDs
was prepared through hydrothermal carbonization. Carbohydrate-based materials
(Gum Tragacanth) were used as natural precursors due to their large surface areas,
thermal stability, and possessing various surface functional groups, which contribute
to the production of high-quality CQDs. Hence, CQDs degraded more than 99% of
phenols within 20 min (Fig. 8) due to the high photo-catalytic activity of quantum
dot materials as well as the presence of hydrogen peroxide as an oxidizing agent
[28].

Fig. 8 Phenol degradation
percentage within 20 min of
reaction. Reprinted with
permission from Meghdad
et al. [65]. Copyright 2018
Elsevier
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Certain amounts of hydrogen peroxide can be added to generate a high number
of free hydroxyl radicals to accelerate the phenol degradation activity [28, 55].
Hydroxyl radical has highly oxidative potential and can effectively oxidize the
organic pollutants into side-products such as water and carbon dioxide [113, 133].

A study has reported a good combination of titanium dioxide (TiO2) and CQDs
(TiO2/CQDs) as an efficient photo-catalyst to enhance the quality of photo-catalyst
semiconductor inwhich ~ 99%of phenol has been degraded after 6 h of irradiation by
UV lamp [107]. In that work, CQDswere fabricated from citric acid, which produced
a narrow size distribution and uniform spherical shape of CQDs. The combination of
TiO2 and CQDs showed higher photo-catalytic activity due to the high crystallinity
of CQDs that was beneficial for the transfer of electrons from TiO2 to CQDs as well
as leading to a higher degradation of phenol derivatives. The presence of CQDs can
facilitate to inhibit the recombination rate of charge carriers during the degradation
process as well as can improve the ability of light-harvesting of the photo-catalysis
system [107].

Besides, TiO2/CQDs also exhibited higher photo-catalytic degradation of phenol
compared to pure TiO2 because CQDs can act as solid mediators to provide a good
transfer channel for charge carriers [16]. The high percentage of phenol degradation
indicated that CQDs had promoted separation efficiency of electron–hole pairs [26],
which act as electron reservoirs to trap photo-generated electrons from the conduction
band. Figure 9 displayed the degradation of phenol by using TiO2/CQDs photo-
catalyst.

Moreover, electron transferability of CQDs could be related to their crys-
talline properties and electrical conductivity [29]. Therefore, CQDs-based photo-
catalyst is a good candidate as a multifunctional component in the photo-catalyst
materials. Researchers have coupled nitrogen-doped CQDs (N-CQDs) and silver
carbonate (Ag2CO3) crystals to produce more effective delocalization of the photo-
generated charges during the degradation process [116], which contributed to the
large enhancement in the photo-catalytic performance.

Fig. 9 Schematic
illustration of the mechanism
for photo-catalytic
degradation of phenol over
TiO2/CQDs under UV-light
irradiation. Reprinted with
permission from Shen et al.
[107]. Copyright 2018
Elsevier
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N-CQDs were produced from citric acid and urea in which the mixture was
dissolved in deionized water and heated at 200 °C for 5 h. Then, the carbon-based
photo-catalyst of N-CQDs and Ag2CO3 was produced through the precipitation
method by using AgNO3 and Na2CO3. Both of them are soluble in water, and they
reacted with each other to form Ag2CO3 in which its solubility was very low. It was
then precipitated to form a carbon-based photo-catalyst (N-CQDs/Ag2CO3). This
CQDs-based photo-catalyst was used to degrade the phenol molecules under a 350-
W Xenon lamp irradiation. It was found that over 50% of phenol was degraded by
using 3 mL of photo-catalyst (N-CQDs/Ag2CO3).

Based on Table 1, the degradation rate using the Ag2CO3 in the absence of N-
CQDs of phenol was very low. This result may indicate the great performance of
CQDs as they contain carbon-based photo-catalyst with a strong ability to accelerate
the transfer of photo-generated electrons. Moreover, the doping of nitrogen atom
onto CQDs can enhance the delocalization of the photo-generated charge effectively
[32, 64].

N-CQDs/Ag2CO3 photo-catalyst can act as an efficient photo-catalyst due to
the combination of N-CQDs with the Ag2CO3 as the light absorption ability
of the resulting combination could be greatly increased [55]. In particular, N-
CQDs/Ag2CO3 photo-catalyst is also good for light-harvesting to generate active free
radicals (·O2− and ·OH), which would facilitate the degradation of phenol molecules
[58]. Moreover, the presence of N-CQDs in photo-catalytic degradation can enhance
photo-catalytic performance as they have a strong ability to accelerate the transfer
of photo-generated electrons [27]. N-CQDs can also exhibit optical properties that
make them suitable to be used for photo-catalytic systems.

The quantum effect of CQDs can contribute to the broadband optical absorption,
which can enhance the photo-catalytic performance by acting as a light absorber
[136]. The extended photo-responding range and highly efficient charge separation of
CQDs can enhance the photo-catalytic activity. Besides, CQDs also possess unique
electronic properties such as high stability against photo-bleaching and endow to
the efficient utilization of solar and visible lights [123]. Since the carbon materials
have great absorption and excellent conductivity, they are significant to be used in the
fabrication of CQDs-based photo-catalyst with prominentmorphology of amorphous
carbon. Hence, the production of CQDs modifying sphere-flower on nitrogen-doped
reduced graphene oxide was fabricated through the hydrothermal method [60]. This

Table 1 Phenol degradation
rate using different amount of
photo-catalyst

Type of photo-catalyst Degradation (%)

Ag2CO3 10

1 mL of (N-CQDs/Ag2CO3) 18

3 mL of (N-CQDs/Ag2CO3) 50

5 mL of (N-CQDs/Ag2CO3) 25

10 mL of (N-CQDs/Ag2CO3) 15

Reprinted with permission from Tian et al. [116]. Copyright 2017
Elsevier
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CQDs-based photo-catalyst can enhance the specific surface area, thus reducing the
recombination of photo-carriers as well as can enlarge the visible light absorption
range. Thus, they have successfully degraded 80%of phenol derivatives under visible
light irradiation within 6 h [60]. This result indicated that the CQDs-based photo-
catalyst could function as a strong visible light absorber with a narrow bandgap as
well as providing more active sites, which contribute to enhancing the performance
of photo-catalytic degradation [106].

Considering the analogous π-conjugated structure of graphitic carbon nitride and
CQDs, a combination of these materials can potentially produce high photo-catalytic
performance [136]. Furthermore, CQDs have been widely used as light absorbers
to produce hydroxyl and oxygen radicals. For instance, the decoration of CQDs and
graphitic carbon nitride (g-C3N4) were fabricated via a facile impregnation thermal
method [34]. By using this photo-catalyst, the reaction rate of phenol degradation
was 3.7 times faster than without CQDs, indicating that CQDs have boosted the
photo-catalytic activity, resulting in the separation of electrons and holes [91].

Figure 10a showed the intermediate products formed during the phenol degra-
dation. The phenols and the intermediate products were gradually decreased within
the irradiation time due to the ring cleavage process. The degraded phenol was
analyzed using total organic carbon (TOC) measurement. Based on Fig. 10b, about
87% of phenol by average was degraded within 200 min in the presence of CQDs-
based composites. At the same duration, but in the absence of CQDs, only 43% of
phenol was degraded. This observation indicated that the CQDs-based photo-catalyst
possessed a greater mineralization efficiency of phenol molecules. The CQDs and
g-C3N4 composite exhibited much higher photo-catalytic degradation of phenol as
CQDs possess quantum effects with broadband optical absorption.

When CQDs were combined with semiconductor nanoparticles, electrons from
the conduction band of nanoparticles would be transferred to CQD surfaces and
caused the separation of electron–hole pairs. This activity was facilitated by the

Fig. 10 aDegradation of intermediate phenol products, which decreased gradually within 120 min
and b total organic carbon of degraded phenols by two different photo-catalysts. Reprinted with
permission from Hui et al. [34]. Copyright 2016 Elsevier
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photo-induced property of CQDs [60]. Due to the nanosizes of CQDs, the modified
CQDs could have enough interface to combine with semiconductors. The charge
transfer durations and channels have been prolonged by CQDs [61].

A study has reported the photo-catalytic degradation of phenol under solar light
irradiation using CQDs/TiO2 photo-catalyst composite [30]. CQDs were fabricated
using citric acid, glycerol, and cow urine through the carbonization reaction. The use
of cow urine in the fabrication of CQDs is to improve the fluorescence properties of
CQDs. Results showed that the CQDs/TiO2 photo-catalyst was able to degrade about
93% of phenol molecules within 6.5 h of photo-catalysis due to the synergetic effects
between TiO2 and CQDs [9]. Figure 11 showed a photo-degradation mechanism in
which CQDs/TiO2 is photo-catalyst. In this process, CQDs act as dispersing support
to control the morphology of CQDs/TiO2 nanoparticles by preventing agglomeration
of TiO2 nanohybrid.

During the photo-catalytic degradation activity under UV-light irradiation, CQDs
absorb light and re-emit shorter wavelengths. The shorter wavelength will excite the
CQDs/TiO2 to generate electron–hole pairs. Thus, CQDs act as acceptors and trans-
porters for photo-generated electrons [53]. The electron–hole pairs formed after the
excitement of electrons were trapped by hydroxyl groups at the catalyst surfaces to
yieldOH· radicals, and it can be used for the phenol degradation [58]. Reactive oxida-
tive species are generated due to the photo-induced electrons. Meanwhile, OH·, with
strong oxidation capacity, is produced due to the photo-induced holes [112]. There-
fore, the combination of two semiconductor nanoparticles can produce high photo-
catalytic performance [87], improve the heterojunction constructed between CQDs
and other semiconductor nanoparticles while producing strong physical–chemical
interaction.

Fig. 11 Photo-catalytic mechanism of phenol and other organic pollutants by CQDs/TiO2 photo-
catalyst. Reprinted with permission from Hazarika and Karak [30]. Copyright 2016 Elsevier
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7 Roles of CQDs as Photo-Catalyst for Degradation
of Phenols

CQDswith sizes below10 nmpossess goodfluorescent properties, chemical stability,
superiority water solubility, and unique photo-induced electron transfers [58]. Appli-
cations of CQDs in photo-catalytic technologies have been explored due to their
rapid photo-generation carrier transfers, excellent electron reservoir capacity as well
as effective optical absorption of UV-light irradiation. Besides, CQDs have acted
as a matrix to support the semiconductors due to their broadband optical absorp-
tions and strong photo-luminescent emissions [93]. CQDs play an important role
in enhancing the photo-catalytic degradation of phenols as good electrons donor
and electrons acceptor [57]. CQDs might also serve as an intermedium to generate
strong oxidative holes and reductive electrons. CQDs can be employed in the photo-
catalysis as photo-sensitizers and electron reservoirs in which they can accelerate
the photo-catalytic reaction and improve the visible light activity of wide bandgap
photo-catalysts [60].

Also, CQDs can improve the visibility and UV-light response of photo-catalysts,
leading to the enhancement of light absorption and photo-catalytic activity based on
their unique photo-electric properties [1]. Moreover, CQDs can efficiently improve
the photo-induced charges separation for the destruction of organic pollutants and
reduction of contaminants.

The most significant factors that affect the photo-catalytic performance are the
separation and recombination processes of electron–hole pairs on the photo-catalyst
surfaces. The transfer rates of electron–hole pairs and recombination process can be
affected by CQDs due to their nanosizes, large band gaps [71], and strong photo-
luminescent properties [1, 93].

CQDs can perform as both electron donors and acceptors in enhancing the photo-
catalytic activity [1]. Therefore, CQDs can act as an electron reservoir to trap
electrons and promote the separation of electron–hole pairs. The excessive photo-
generated electrons can activate the adsorbed oxygen on the surface of the photo-
catalysts to generate superoxide radical anions [74]. Meanwhile, the holes could
be reacted with water molecules to produce active hydroxyl radicals to reduce the
recombination rate of photo-generated charges effectively. Hence, the presence of
CQDs in the photo-catalytic degradation of phenol compounds could reduce the band
gaps of the photo-catalyst and provide more reactive sites [34].

Besides, CQDs can also extend the lifetime of charge carriers owing to electronic
interactions between semiconductors and CQDs as well as to increase the surface
charge transfers [27]. In particular, CQDs have remarkable up-conversion ability to
convert lower energy photons into higher energy photons, which has been applied as
a spectral converter to effectively utilize the full spectrum of sunlight [58].

Light-converting properties of CQDs can be used to convert longer wavelengths
into shorter wavelengths, which can excite the photo-catalyst reaction to form more
electron–hole pairs. This activity has been related to the up-conversion photo-
luminescent of CQDs and excellent optical absorption in the presence of UV-light
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Fig. 12 Mechanism of CQDs as photo-catalysts in the phenol degradation activity

irradiation [87]. CQDs also can expand the light utilization range fromUV irradiation
to visible range as well as to enhance the photo-induced electron transfers [79].

Besides, CQDs also have a high absorption coefficient and fast electrons trans-
portation that could be employed to achieve good photo-catalytic performance [45].
They can also be used to absorb light over the entire wavelength ranges of the solar
spectrum, which can contribute to an excellent photo-catalytic activity. The light-
converting properties of CQDs can improve the effectiveness of solar light usage by
CQD-based composites, consequently enhancing their photo-catalytic activities [15,
56]. The roles of the CQDs in the photo-catalytic degradation of phenol have been
summarized in Fig. 12.

8 Mechanism of Phenol Degradation

The photo-catalytic degradation in the presence of CQDs-based photo-catalyst
involves free radical reaction upon initiated by UV-light irradiation [98]. Due to
the up-conversion fluorescent emissions of CQDs, they can transfer two or lower
energy photons to the higher energy photons by absorbing longer-wavelength multi-
photon [65]. Besides, hydroxyl radicals, superoxide radicals, photo-generated holes,
and electrons are reactive radical species responsible for photo-catalytic activity in
the presence of UV-light irradiation [8].

The degradation of phenols generally depends on the type of reactive oxygen
species involves in the process, which in turn corresponds to the type of photo-
catalysts and the source of light irradiation [69]. CQDs-based photo-catalytic activity
will undergo three phases. In the first phase, the absorption of light contributes to the
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formation of electron–hole pairs. Next, the separation and transfer of electron–hole
pairs will cause the generation of reactive species. Finally, the reactive species will
lead to subsequent photo-catalytic reactions.

The photo-catalytic degradation of phenols begins when CQDs are exposed under
UV-light irradiation. When the irradiation energy exceeds the energy difference
between the valence and conduction band of the semiconductor, electron–hole pairs
will be generated [89]. Electrons and holes can effectively induce the photo-catalytic
reactions, resulting in the degradation of phenol molecules [60].

Phenol molecules are easily absorbed into the surfaces of CQDs resulting from
the enlarged surface areas [107]. Then, electrons are excited and transferred from the
valence band to the conduction band of CQDs [33]. This process involves oxidation
and reduction reactions, whichwill generate a high amount reactive of radical species
like superoxide and hydroxyl radicals [64].

This reaction also contributes to the formation of photo-generated holes in the
conduction band. The holes that are left in the valence band can oxidize phenol
molecules [53]. The holesmight also be captured by hydroxyl ions orwatermolecules
to generate active hydroxyl radicals [22]. The photo-generated charges will cause
redox reactions on the particle surfaces and increase the free radicals production,
which in turn increases the degradation of phenol molecules [89].

Electron–hole pairs formed after the excitement of electrons can be trapped by
hydroxyl radicals on the photo-catalyst surfaces. The hydroxyl radicals possess elec-
trophilic features, which tend to attack the electrons of phenol molecules [96]. Mean-
while, the photo-electrons that combined with the dissolved oxygen molecules will
produce reactive oxygen radicals [104].

Besides, the dissolved oxygen molecules will also react with the excited electrons
to form superoxide radical anions, which will then oxidize phenols directly [86, 87].
The superoxide radical anions are highly reactive, and they can generate hydroxyl
radicals.When hydroxyl radicals react with protons, theywill produce hydro-peroxyl
radicals that can be used in phenol degradation [22].

The overall photo-catalysis generates highly energetic reactive radical molecules,
as shown in Fig. 13. These radical molecules will act as a strong oxidizing agent
to degrade the phenol molecules in which the benzene rings of phenol structure are
opened to form organic acids as intermediate products like acetic acid, formic acid,
and oxalic acid [47, 49]. Next, the mineralization of the organic acids could produce
the final degraded products such as water, carbon dioxide, and other inorganic
compounds, which are non-toxic products [90].

9 Conclusion and Prospect of CQDs

Phenols, as the biologically carcinogenic, teratogenic, and highly toxic substances,
are widely available in industrial wastewater. Currently, photo-catalytic degradation
of phenols is a promising sustainable technology with low energy consumption and
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Fig. 13 Proposed mechanism of photo-catalytic degradation of phenols

high effectiveness. Photo-catalytic degradation of phenols occurs when the photo-
generated electrons and holes are effectively separated during photo-reaction.

CQDs have been suggested to be an efficient photo-catalyst for the degradation of
phenols inwastewater in the presence ofUV, visible, or solar light irradiations.During
the photo-catalytic degradation process, oxidation and reduction reactions occur and
produce highly reactive radical species thatwill attack and degrade phenolmolecules.
Various operating factors such as light intensity, oxidizing agents, the concentration
of photo-catalysts and phenols, electron acceptors as well as the presence of carbon-
based photo-catalysts in the reaction can affect the photo-catalytic degradation rate
of phenols significantly.

Roles of CQDs in the photo-catalytic degradation of phenols are to act as electron
reservoirs in trapping electrons and promoting separation of electron–hole pairs,
which are targeted to ensure the efficient separation of electron–hole pairs, to prevent
the recombination of electron–hole pairs, to improve surface charge transfers, and to
increase bandgap energy during photo-catalysis. Therefore, CQDs could efficiently
induce charge delocalization and cause the electron transfer ability of CQDs-based
photo-catalyst can be strongly promoted.

Raw materials that are popularly used to fabricate CQDs including citric acid,
ascorbic acid, graphitic, lemon juice, fruits, strawberry powders, glycerin, vitamin
C, biomass, and urea. However, the fabrication of CQDs from sustainable materials
(plant-based sources and organic carbonwastes) should be encouraged due to its cost-
effectiveness, wide availability in nature, low toxicity, and eco-friendliness. Besides,
it can also help to reduce the consumption of chemicals and waste productions.
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CQDs can be fabricated through various methods such as hydrothermal reac-
tion, laser irradiation, refluxmethod, heating process, electrochemical treatment, and
microwave irradiation. However, the hydrothermal reaction is the most commonly
used method to fabricate CQDs. This method is working based on a water system
and can be considered to be one of the most facile and cost-effective methods as it
requires low energy consumption and involves simple step preparation. Although it
requires a long duration of the heating (5–12 h), it does not require any additional
purification process because the product obtained is high in purity and has good
water solubility. It also has high quantum yields, uniform particle sizes, and exhibit
strong fluorescent properties.

Currently, CQDs-based photo-catalyst has revealed their potential in wastewater
treatments. Various glowing color and tunable fluorescent emissions of CQDs can be
further studied to improve the performance of CQDs in photo-catalytic degradation.
Besides, more studies are required on the modeling of photo-reactor to optimize its
design, which can be applied in pollutant degradation.

Also, further study may include an evaluation of the physico-chemical properties
of CQDs and photo-luminescent effect of CQDs based on the carbon precursors and
methods used during their fabrication process. Researches that are supported with
theoretical interpretations may also facilitate the future studies of CQDs for their
application as nanomaterials in the environmental applications. Some structural and
chemical manipulations of CQDs, such as the incorporation of suitable functional
groups to their surfaces, can be considered in tuning the features of CQDs in the
future for wider application. The introduction of heteroatom into CQDs can effec-
tively disorientate the electron network, which can modulate the physicochemical
properties of CQDs. For example, surface modification of CQDs can be used in the
photo-catalytic degradation of other organic pollutants such as textile dyes, heavy
metals, agrochemicals, pharmaceuticals, and polycyclic aromatic hydrocarbons.
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Synthesis of Carbon Nanofibers and Its
Application in Environmental
Remediation

Ritu Painuli, Praveen Kumar Yadav, Sapna Raghav, and Dinesh Kumar

Abstract Owing to the inimitable properties of the carbon nanofibers (CNFs),
for instance, the enhanced surface-to-volume ratio, nanoscale diameter, physical,
mechanical, and chemical properties, they have excellent capabilities in science,
biomedicine, energy storage, and environmental science. Carbon fibers prepared
fromvarious synthetic techniques have different carbonmorphologies and structures.
The carbon fibers prepared from electrospinning, chemical vapor deposition with the
consequent chemical treatment have flat, mesoporous, and porous surfaces. Along
with this, the carbon fibers can be altered with the several materials to expand their
application in various fields. Thus, in this chapter, we concentrate on the synthesis
and design along with the application of the carbon nanofibers. The synthesis routes
of CNFs like chemical vapor deposition (CVD), substrate method, phase separa-
tion, electrospinning, etc., have been introduced. In addition, the synthesis of carbon
nanocomposites has also been discussed. In addition, the application of the prepared
carbon fibers in the various environmental fields has also been explored.
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1 Introduction

In recent years, progress in nanoscience has led to the creation of many nanomate-
rials (NMs) for sensing applications [76]. Among the various nanomaterial (NM),
one-dimensional (1D)materials have gained noteworthy potential [23]. The 1Dmate-
rials enable short paths for the electrons transfer and encourage electrolyte penetra-
tion along the axis of nanofiber [86]. This enhances the sensing application of the
nanofibers. Owing to the inimitable optical, electrical, and mechanical properties
of CNTs, they have been extensively used for preparing the sensors and biosensors
[53]. Besides CNTs, carbon nanofibers (CNFs) have also been widely used or exam-
ined because of their unique physical, chemical properties [11, 56]. CNFs possess a
high potential for the modification or alteration of surface to form functional hybrid
CNF-based NMs which have been utilized in the areas of medicines [71], nanode-
vices, tissue engineering [1], sensors [38, 50], energy storage [10], and environmental
science [52, 66].

CNFs are the filaments present in the nanometer range, organized in graphene
layers with a specific alignment parallel to the fiber axis. According to the angle
between the growth axis and graphene layers, they are usually classified into three
categories, i.e., fishbone, parallel, and platelet. Their arrangement can be found via
transmission electron microscopy (TEM). In the CNFs, the regular arrangement
among the sheets of a graphene is ~3.4 Å, which is very near to that of graphite
diameter, i.e., 0.335 nm. This is the reason that the CNFs are mentioned as graphite
nanofibers. The properties of CNFs can be differentiated by seeing the structure
derived from the powdered material, the structure of the distinct nanofibers, and
the agglomeration of filaments [63]. The difference in the structure of CNFs and
CNTs cannot be easily distinguished from the TEM. Under the theoretical definition,
nanotubes are synthesized either by the single graphene wrapped in the cylindrical
tube, i.e., single-walled CNT or many sheets wrapped together, i.e., multi-walled
CNT. In contrast, in CNFs, the graphene layers may not be continuous. In terms of
properties, CNTs possess excellent thermal, electrical conductivities, better mechan-
ical resistance, and enhanced structural features. However, the main drawbacks asso-
ciated with the CNFs are their complex scalability and their excessive cost. CNFs
can be divided on the basis of their purpose by concerning the mechanical property
necessities and tensile strength and Young’s modulus [54]. CNFs are simultaneously
categorized as ultrahigh strength and ultrahigh modulus. The CNFs are also clas-
sified as super-high strength owing to their high tensile strength. The mechanical
properties of carbon fiber can differ even on having an undistinguishable origin and
equivalent thickness. Therefore, the main dissimilarity is determined by the arrange-
ment of the fiber. The excellent electrical conductivity of CNFs is of the signifi-
cant consideration for many applications ranging from electronics to composites. In
this chapter, we focus on preparing CNFs by thermal chemical vapor deposition,
gas-phase flow catalytic method, spray method, plasma-enhanced chemical vapor
deposition, substrate method, electrospinning, phase separation, and templating. The
second part explored the preparation of CNFs nanocomposites. In the third part,
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various applications of CNFs towards gas sensors, sensors for small molecules, air
filtrations, sensors for small molecules, etc., are deliberated. Last, the conclusions
and outlooks of the CNFs preparations and its applications are given.

2 Synthesis of Carbon Nanofibers

Owing to the many advantages of CNFs, for instance, enhanced surface area,
less density, high specific modulus, excellent strength, good thermal and electrical
conductivity, etc, the CNFs have their applications in areas of sensing, adsorbent,
electrochemistry, adsorbent, storage, etc. [17, 72]. The following represents the
methods that have been used for preparing CNFs. Figure 1 depicts the various
methods for preparing CNFs.

2.1 Thermal Chemical Vapor Deposition

For the fabrication ofCNFs by the chemical vapor (CVD) depositionmethod, thermal
decomposition of the cost-effective hydrocarbon is carried out over a metal catalyst
at a constant temperature of 500–100 °C [82]. According to the fashion by which the
catalyst added or present, the CVD method can be categorized into the main types:
substrate method and spray method.

Fig. 1 Various methods for preparing CNFs
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2.1.1 Substrate Method

In the substrate method, the SiO2 fibers or ceramic are utilized as the substrate for the
uniform dispersion of the catalyst particles (in their nanosized form) over its surface.
At the surface of the catalyst, theH2 gas is pyrolyzed, then the deposition of the carbon
occurs, and further, it is grown to obtain the carbon fibers in the nanoform. Enrique
et al. developed high-purity CNFs by using nickel as the catalyst at 599 °C, and for
the carbon source, they used CH4/C2H6/H2. Along with the synthesis of CNFs, the
effect of various conditions, for instance, temperature, and carbon sources over the
layer thickness, porosity, and uniformity of CNFs were also explored [18]. However,
by this method, the CNFs are prepared for excellent purity. Since the fabrication of
catalyst at the nanoscale is tedious and the product and catalyst cannot be separated
in time, therefore it is difficult to obtain large scale production of carbon fibers with
this method.

2.1.2 The Spray Method

In this method, the catalyst is mixed with the organic solvent like benzene, and
this mixture is sprayed into a reaction chamber with high temperature, to obtain
the CNFs. The growth of the carbon fiber, by the spray method, depends on the
continuous injection of the catalyst helpful for industrial or large-scale production
also [19]. The drawbacks related with this method are the irregular dispersal of the
catalyst particles and the difficulty in controlling the ratio of hydrocarbon gases.
These issues ultimately lead to the lower production of the CNFs, with a certain
amount of carbon black.

2.2 Plasma-Enhanced Chemical Vapor Deposition (PECVD)

Deposition with the help of the plasma is also very important because the plasma
possesses high-energy electrons, which offers an activation energy that is required
in the CVD process. The electron collision with the gaseous molecules starts the
excitation, decomposition, ionization, and compounding of gaseousmoleculeswhich
produce chemical groups with excellent activity [22, 67]. This method can fabricate
the aligned carbon fibers and demands a high cost of production with low production
efficacy.

2.3 Gas-Phase Flow Catalytic Method

In this method, the catalyst precursor is heated directly, followed by the introduction
into the reaction compartment along with the hydrocarbon gas. The hydrocarbon gas
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and the catalyst are decompositions at the two different temperature zones. Then, the
catalyst that is decomposed is aggregated into the nanosized particles. Finally, the
carbon fibers are synthesized at the nanoscale catalyst particles [8]. Subsequently, the
catalyst particles that are decomposed from the organic compound can be dissemi-
nated in a 3D space. By using the method, the volatilization quantity can be simply
managed. Hence, the amount of fabrication of carbon fibers in less amount of time
is enormous, while the uninterrupted fabrication of carbon fibers can be obtained.

2.4 Electrospinning

In the 1930s, a revolutionary technology, i.e., electrospinning technology, was first
introduced. It has received widespread attention over the years and has been using for
preparing carbon fibers [25, 77]. In this process, a high voltage of static electricity
is utilized for charging the polymer solution or melt (Fig. 2). In the presence of
an electric field, a Taylor cone is formed by the charged polymers at the spinning
port. The former Taylor cone then gets drafted or accelerated. The moving jet is
progressively drafted and dispersed. The fibers deposited on the collecting plate are
of nanosize because of the fast motion. This results in the formation of the fibrous
mat, the same as that of woven fabric. The former fiber matrix is the air oxidized and
carbonized in the N2 environment to attain the carbon fibers.

In comparison to that of other methods available for the manufacturing of carbon
fibers, the electrospinningmethods possess the following advantages: (I) Thismethod
uses high voltages, but the consumption of current is less so that the energy utiliza-
tion is very less (II) a nanofiber nonwoven fabric can be openly manufactured. The
nanofibers formed by this process can be easily made into a nonwoven fabric in the
2D expanded form, as of which, no additional processing is needed after the spinning
process. Specifically, the generation of numerous spinning amplified the manufac-
turing of nanofibers and also upgraded fabrication efficacy, (III) the electrospinning

Fig. 2 Schematic
representation of
electrospinning technique for
the synthesis of CNFs
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method permits the spinning at room temperature (RT). As a result, a solution to
having a low thermal stability compound can also be spun. The raw materials of
diverse types have used synthetic polymers, i.e., polyamide, polyester, along with a
natural high molecular mass like silk, DNA, collagen for the fabrication of carbon
fibers by the electrospinning process.

2.5 Phase Separation

The phase separation is a new technique that comprises gelation, dissolutions,
and extraction with the help of various drying, solvent, freezing processes that
will lead to the formation of nanoporous foam. Converting the solid polymer
into nanoporous foam takes a comparatively long time. The procedure of self-
arrangement of randomly dispersed components results in the formation of the
systematized assembly or configuration. Local interactions among the constituents
themselves cause such an organization. Like that of phase separation, this technique
is time–taking in the manufacturing of the continuous polymer nanofibers. There-
fore, the electrospinning method is the most proper process for the manufacturing of
continuous nanofibers from different polymers [87].

2.6 Templating

The different techniques that have extensively used for the fabrication of nanofibers
include drawing, template synthesis, phase separation, and self-assembly [16, 24,
49]. CNFs fabricated by using this template technique are used to make solid or
hollow nanofibers of the broad range of raw materials, comprising metals, semicon-
ductors, carbons, electronically conducting polymers, etc. However, the manufac-
turing of one-by-one continuous nanofiber is not achievable by using this technique
of nanofiber synthesis.

3 Preparation of CNF Composites

The complete efficiency of the CNF composites is usually administrated via the
dispersion of carbon fibers into a matrix of a polymer. Hence, the role of dispersion is
very important in the fabrication of the CNF composites. There are only twomethods
that govern CNF dispersion in polymer: the sonication process in less viscous solu-
tions and the mixing process. Owing to features like cost-efficacy, straightforward-
ness, and obtainability, melt mixing method is the most efficiently used method for
preparing CNF composites. The methods like a mini–max molder, Haake torque
rheometer, and extrusion or roll mill [48, 60] all belong to the method melt mixing,
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where a trimmedmixing state is essential for gaining the proper dispersion conditions
in the polymer matrix. The high shear mixing will cause a comparatively better CNT
dispersion. The aspect ratio governs most of performing the CNF polymer compos-
ites. It has been observed that the decreases in the aspect ratio lead to a decrease
in the properties of the CNT polymer composites [3]. Thus, an examination of the
comparatively less shear mixing technique without the change of the dispersion is
still a hurdle in their fabrication via the melt mixing method [47].

The promising method, i.e., the chemical surface treatment, helps the dispersion
in the polymer where the compatibility among the polymer matrix and grafting func-
tional group are the chief features that allow the dispersion of CNF and the overall
performance of the CNF polymer composites. Usually, the surface of the CNF is
treated by soaking it in H2SO4/HNO3 at different temperatures, i.e., followed by
the acylation. Then, the functional group adhered to the surface of the carbon fibers
via the reaction between the functional groups and the oxidized CNF. By using
triamines or diamines as the linker molecules, Li et al. synthesized and characterized
the surface-treated CNF [40]. For forming the CNF–C(O)–NH– structure, the amine
groups (a bridging compound) links the–NH2 andCNF.TheCNF/ethylene/propylene
copolymer composite was synthesized by Kelarakis et al. [32]. The surface of as-
prepared CNFs was oxidized by HNO3/H2SO4 and then reduced by sodium boro-
hydride for the formation of the structure of CNF–OH, which was then dispersed
in absolute ethanol for forming the CNF–O– structure. In this method, before being
mixed in the hardener, the CNFs are dispersed in the liquid epoxy form via soni-
cation. Acetone or different solutions are used to help with the sonication effect.
External cooling devices are used to minimize the increasing temperature through
the sonication process in most cases. The nanocomposites preparation by the CNF
and SC–15 epoxy was demonstrated by Pervin and coworkers [58]. The ultrasonica-
tion of SC–15 epoxy and carbon fibers with high intensity was done for performing
the mixing process. After the completion of the sonication process, the mixture
was filled with hardener, and then the mechanical stirring of high speed was done,
followed by the preservation at RT. Choi and coworkers showed the preparation of
CNF/nanocomposite [14]. The dispersion of CNF into acetone was carried out via
the stirring and sonication process at the RT, followed by the addition of epoxy resin
into the CNF acetone solution with continuous stirring and sonication. Then, the
mixture is heated to remove the acetone, followed by the addition of the hardener.
Finally, it is preserved at RT.

4 Applications

Carbon nanofibers (CNFs) are widely used in various industries such as biomedicine,
analytical science, and environmental science because they exhibit exceptional chem-
ical and physical properties. Besides this, these CNFs have a high surface-to-volume
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ratio, low defects, high electrical and thermal conductivity, good electron transfer-
ability, and easily modifiable surfaces. These properties of CNFs extend its applica-
tion as sensors for detecting gas, biomolecule, strain, and pressure. CNF–based NMs
are in great demand because of their novel characteristics, which make CNF-based
NMs potential candidate for various sensing processes [30, 2, 79, 13]. Based on the
target materials, CNFs-based NMs applications are as follows.

4.1 Gas Sensors

Li et al. [41] used a solid-phase graphitization method assisted with electrospinning
and prepared a one-dimensional CNFs composed of graphitic nanorolls, which act
as excellent RT sensors for explosive gases. These CNFs are sensitive to carbon
monoxide, methane, hydrogen, and ethanol at RT. They detected carbon monoxide
gas at low ppm concentrations [41]. Similarly, Zhang et al. [85] reported ZnO–CNFs
composite-based H2S sensor. The H2S sensor showed high stability, selectivity, and
linear response for H2S in 50–102 ppm range [85]. In addition, some other workers,
Claramunt et al. [15], did similar work for the detection ofNH3. They depositedmetal
NPs–decorated CNFs on Kapton for the detection of NH3 [15]. The results showed
that by controlling the percentage of Pd and Au, the sensitivity of CNFs to NH3 could
be improved. Moreover, the sensor showed a response time of up to 5 min within a
temperature range of 110–120 °C. Moreover, on comparing with the spectroscopic
sensors such as quartz-enhanced photoacoustic and mid-infrared sensors [33, 74]
which possess the capability of quick detection at RT with no reagent, the operation
temperature of Au and Pd NPs decorated CNFs was much higher. To overcome the
limitation of the detection temperature, Lee et al. [37] developed a NO2 gas sensor
with a detection limit of 1 ppm. It comprises Wo3 nanomodule-decorated hybrid
carbon nanofibers. This sensor offers a higher sensing surface area. At the material
surface, WO2+ is associated with the oxygen of NO2, which helps in the exposure of
NO2 gas at RT [37].

4.2 Strain/Pressure Sensors

A pressure sensor is a device that is used to convert the pressure into an electric
signal. This sensor is applied to gases and liquids. Silicon piezoresistive pressure
sensor and silicon capacitive pressure sensor that come under the conventionalmicro-
electromechanical system (MEMS) have a high potential as sensors because of their
several advantages such as they are accurate, power consumption is less, and they are
cost-effective. Despite several advantages, they have some limitations and also, for
example, they perform poorly in high-intensity piezoresistive measurements. CNFs
are also utilized in health monitoring because of their high electrical conductivity,
toughness, strain capacity, and low cost [75, 78]. Zhu et al. developed an electrically
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conductive polymer nanocomposite using the solvent-assisted casting method that
can be utilized as strain sensors with large mechanical deformation. Two elastomers
(VM1, VM2) with somewhat different compositions have been utilized as the hosting
polymer matrix. It is used to manufacture the conductive PNCs strengthened with
CNFs. The dielectric performance of the PNCs has been compared. Zhu et al. devel-
oped an electrically conductive polymer nanocomposite using the solvent-assisted
casting method that can be utilized as strain sensors with large mechanical defor-
mation. Two elastomers (VM1, VM2) with somewhat different compositions have
been utilized as the hosting polymer matrix. It is used to manufacture the conduc-
tive PNCs strengthened with CNFs. The dielectric performance of the PNCs has
been compared. Unique negative permittivity was observed in the composites with
the CNF concentration. Additionally, when an extremely large strain is applied,
they showed appreciable resistivity, which makes it useful for sensing applications
[88]. Similar work was also done by Azhari and coworkers. They also developed a
piezoresistive sensor by mixing 1% carbon nanotubes and 15% CNFs. The sensor
overcomes the limitation of traditional cement-based sensors and offers more accu-
racy and reproducibility. The load amplitudes provided by the sensor are up to 30 k,
and the gauge factor is 445 [6]. A CNF cement-based composite was developed by
Bazea et al. They also found that by adding 2 wt% CNFs to cement, a gauge factor
of 190 can be obtained [7]. Hu et al. developed a highly sensitive strain sensor. The
sensor is made up of metal (Ag)-coated CNFs and epoxy composites. When they
compared the two sensors with and without Ag coating, they found that sensor with
Ag coating shows higher strain sensitivity and better conductivity [26]. Tallman
et al. by electrical impedance tomography (EIT) studied CNF/polyurethane (PU)
nanocomposites for distributed strain sensing and tactile imaging, and for exploring
the effect of CNFs filling volume fraction on piezoresistive response. They also
revealed that the change in strain was because of a 12.5–15% filling volume frac-
tion [69]. Yan and coworkers developed a flexible strain sensor with the help of
carbon/graphene composites nanofiber yarn/thermoplastic polyurethane, with high
stability and average gauge factor of >1700 under an applied strain of 2% [78].

4.3 Small Molecules Sensors

CNF-basedNMs arewidely used inmany industries. There use is not limited to strain
sensing and for the detection of gas molecules only. They can also be utilized for the
detection of small molecules. Huang et al. developed a CNF loaded with palladium
nanoparticle (Pd/CNFs) by the combination of two processes. One is electrospinning,
and the other is thermal treatment processes. Scanning electron microscopy (SEM)
and transmission electron microscopy (TEM) studies were done to characterize the
nanoparticles. The electrochemical study (CV and EIS) showed that Pd/CNFs have
high electron transfer ability and high electric conductivity. The Pd/CNF-modified
carbon paste electrode (Pd/CNF–CPE) showed a direct andmediator fewer responses
to H2O2 and NADH at low potentials. The Pd/CNF–CPE exhibits high sensitivity,
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wider linear range response, it is highly reproducible, and these properties make it
a suitable and promising candidate for amperometric H2O2 or NADH sensor. The
sensorwas used for the detection of ascorbic acid (AA), uric acid (UA), and dopamine
(DA) [29]. The detection limit of Pd/CNFs-based electrodes for DAwas 0.2µM,UA
was 0.7µM, andAAwas 15µM. The linear range was 0.5–160µM, 2–200mM, and
0.05–4 mM, respectively. There are many groups of researchers who have worked on
PdNP-loaded CNFsmodified carbon paste electrode for sensing different molecules.
For example, Liu et al. [43] used a similar electrode for oxalic acid detection with a
linear range from0.2 to 45nMandavery lowdetection limit of 0.2mM.Similarly, Liu
et al. by the electrospinning process developed Ni/CNFs composite electrode for the
detection of glucose [44]. The electrode is overly sensitive, stable, and catalytically
active. The detection limit of the sensor for glucose was 1 µM. Li et al. by one-pot
polymerization process synthesized a magnetic composite of Ni NP-loaded CNFs,
the neurotransmitter dopamine, laccase. The magnetic composite is high selectivity
towards catechol and showed a detection limit of 0.69 µM for catechol and linear
range from 1 to 9100 µM [39]. Table 1 represents nanomaterial-assisted CNFs for
the detection of small molecules [46].

4.4 Biomacromolecules Sensors

The CNFs have many active sites and high surface area. These properties of CNFs
help in protein and enzyme adsorption. The high surface area and numerous active
sites of CNFs helps not only in the protein and enzyme adsorption, but CNFs can
also provide direct electron transfer and stabilize the enzyme activity [84]. Therefore
owing to their wide range of potential, CNFs are the most suitable substrate for the
sensor development [59]. Periyaruppan et al. developed a carbon nanofiber-based
nanoelectrode arrays for the label-free detection of cardiac troponin–I. The sensor
helps in the early detection of the detection of myocardial infarction, a heart disease
[57]. The sensor is highly sensitive, which shows the linear response ranges and the
detection limit of 0.2 ng/mL. Vamvakaki et al. [73] developed a highly stable elec-
trochemical sensor to protect the protein from the protease attack. They synthesized
silica (biomimetically) and encapsulate the CNF-immobilized enzyme acetylcholine
esterase to protect it from degradation by thermal denaturation and protease attack.
Hence, increase the shelf life of the protein over 3.5 months under continuous polar-
ization. [73]. Arumugam et al. [5] advanced an electrochemical biosensor for the
detection of E. coli O157:H7. Similarly, Gupta et al. [22] developed a label-free
nanoelectrode array based on vertically aligned CNFs for the detection of C–reac-
tive protein with a detection limit of 90 pM. Their study revealed that the concen-
tration of the C–reactive protein causes the increase in charge of transfer resistance
as well as a decrease in redox current [22]. Later, Swisher et al. [68] developed
an electrochemical biosensor to measure the activity of the protease. This sensor is
based on enhanced AC voltammetry using carbon nanofiber nanoelectrode arrays.
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Table 1 Nanomaterial-assisted CNFs for the detection of small molecules [36]

Sensor Detected molecule Limit of detection References

CNFs Trp, Tyr,Cys 0.1 µM [70]

CNFs HQ, CC 0.4 µM(HQ), 0.2 µM (CC) [20]

CNFs DA 0.08 µM [51]

Pd–HCNFs Glucose, H2O2 0.03 mM (glucose), 3 µM(H2O2) [31]

PtNP–CNFs H2O2 11 µM [35]

Pt/CNFs H2O2 0.6 µM [45]

Pd/CNFs H2O2 and NADH 0.2 µM(H2O2) [28]

Ag–Pt/pCNFs Dopamine 0.11 µM [27]

CNF–PtNP H2O2 1.9 µM [38]

ZNF–CNFs H2S 1–10 ppm [85]

CuCo–CNFs Glucose 1 µM [42]

Co3O4/CNFs H2O2 0.5 µM [55]

Wo3–CNFs NO2 1 ppm [37]

CuO/rGO/CNFs Glucose 0.1 µM [80]

Pd–Ni/CNFs Sugar 7–20 nM [21]

Ni(OH)2/ECF glucose 0.1 µM [12]

CNFs: Carbon nanofibers, Pd–HCNFs: Palladium–helical carbon nanofibers, PtNP–CNFs:
Platinum NP-decorated carbon nanofibers, Pt/CNFs: Platinum NP-loaded carbon nanofibers,
Pd/CNFs: Palladium NP-loaded carbon nanofibers, Ag–Pt/pCNFs: nanoporous carbon nanofibers
decorated with Ag–Pt bimetallic NPs, CNF–PtNP: nanoporous carbon nanofibers decorated with
platinum nanoparticles, ZNF–CNFs: Nanoporous carbon nanofibers decorated with platinum
nanoparticles, CuCo–CNFs: bimetallic CuCoNPs anchored and embedded in CNFs, Co3O4/CNFs:
Co3O4 nanoparticles on mesoporous carbon nanofibers, Wo3–CNF: Wo3 nanomodule-decorated
hybrid carbon nanofibers, CuO/rGO/CNFs: CuO nanoneedle/reduced graphene oxide/carbon
nanofibers, Pd–Ni/CNFs: Pd–Ni alloy NP/carbon nanofibers composites, Ni(OH)2/ECF: Ni(OH)2
nanoplatelet/electrospun carbon nanofiber hybrids

The enhanced AC voltammetry properties help in measuring the proteolytic cleavage
by proteases of the surface-attached tetrapeptides.

4.4.1 Fuel Cell Systems

The fuel cell is an electrochemical cell that acts like a battery that converts the chem-
ical energy say (hydrogen) of the fuel into electricity through a redox reaction [4].
There is an urgent need for technologies which can replace fossil fuel-based systems.
There are different fuel cells based on the electrolyte, for example, polymer, alcohol,
and alkaline electrolyte-based fuel cells. The alcohol electrolyte-based fuel cell is
also known as direct alcohol fuel cells, and if a cell is fed with carbon, then it is called
as direct carbon fuel cells [4]. Despite these, some other fuel cell is also available
like phosphoric acid, solid oxide [81], and molten carbonate electrolyte-based fuel
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cells. The fuel cell can be chosen based on its application, such as durability, temper-
ature, specific energy required, response time, power density, and others. During
catalytic reactions in fuel cells, the mesoporous property of CNFs reduces the resis-
tance of inner pore diffusion of products or reactants [9], electrical conductivity,
and the metal–support interaction as well. In fuel cell, electrocatalysts are used to
increase the rate of reaction. There are many electrocatalysts that are used in a fuel
cell. For example, platinum-based electrocatalysts, which are grown on a carbon,
shows the ability for energy conversion in the electrochemical process. The support
material such as carbon has some property that determines the durability and activity
of catalysts. Important criteria of fuel cell electrodes designing are to utilize a high
concentration of metal in the catalyst for a certain power ty so that the ohmic drop
can be minimized in the catalytic layer. The low surface area (<200 m2/g) of CNF,
which supports for fuel cell catalyst, is a major disadvantage. And because of the low
surface area, the proper dispersion of the high number of noble-metal nanoparticles
is difficult [34]. The metal deposition method on CNFs looks critical to attaining a
good dispersion. Hence, the microemulsion and colloidal methods are more compe-
tence to synthesize the Pt catalysts with a smaller size [64]. The carbon fiber support
with low surface area is also encouraged to ease the corrosion in fuel cell appli-
cations due to the carbon support. Their mesoporous structure also decreases mass
transport constraints. Another exciting application of the CNF–supported catalyst
is the Pt–Ru catalyst, which is utilized for alcohol oxidation in direct alcohol fuel
cells. In comparison with Pt catalysts, this catalyst oxidizes carbon monoxide (CO)
at a more negative potential owing to the effect of Ru, which oxidizes CO to CO2 by
the adsorption of oxygen [4]. Sebastián et al. offered different CNFs as the support
for Pt–Ru catalysts for the anodic electrochemical reaction of a direct alcohol fuel
cell. For example, highly graphitic CNFs as support in Pt–Ru catalyst are utilized,
which is suitable for methanol oxidation, while these CNFs exhibit low activity
toward the ethanol oxidation. Hence, the importance of pore volume is very high in
CNFs because highly porous CNFs can oxidize the ethanol also [65]. Using CNFs
in electrodes can expand the performance of the direct alcohol fuel cell owing to
many advantages like no parasitic load, operation at RT, operation at a low concen-
tration of methanol, and low catalyst loading in the cathode and anode [83]. The
CNF oxidation also signifies a substantial rise in the electro-oxidation of methanol
[62]. The maximum support can be attained by balancing three parameters, i.e., an
improved metal–support interaction, a sufficient electrochemical surface area, and
good methanol diffusion through the catalyst pores [61, 62].

4.5 Air Filtration Applications

The nanofiber membranes have been used in environmental monitoring for air filtra-
tion from the old times. As we know the fact that industrialization and globalization
are causing a harmful effect on the environment because of which the quality of
air has deteriorated in many places, there is an urgent need requiring regeneration
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of air through filtration and other processes for better quality filtration media. Air
filtration has a wide range of applications; they remove particulate materials from
work environments and supply protection from toxic agents. Today, nanomaterials
are used as nanofiber mats for air filtration applications. There are several companies
that pioneered the use of nanofibers in air filtration. There are several advantages
of nanofibers over conventional filtration media. The nanofibers have tiny dimen-
sions and thus offer better efficiency than conventional filtration fibers. In addition,
for nanometer-sized fibers, the pressure drop is reduced because of a decrease in
drag force on the fiber. The occurrence of slip flow also results in more contami-
nants passing. The nanofibers have a high surface-to-volume ratio that makes them
beneficial to adsorb contaminants from the air and made nanofiber membranes an
increasingly popular choice in air filtration applications.

5 Conclusion and Future Perspective

The fabrication routes, along with the environmental application of the CNFs, have
been discussed in this chapter. It has been observed that because of the excellent phys-
ical, chemical, and optical properties of carbon fibers, they can be utilized in various
areas. Owing to the enhanced chemical inertness andmechanical strength, the carbon
fiber-based sensors have excellent stability and selectivity to the target molecules.
Normally, the carbon fiber structures depend on the shape of the catalytic nanoscale
particles that have been used for preparing the CNFs. Usually, CVD and the electro-
spinningmethods have been used for preparing the carbon fibers. As the carbon fibers
fabricated from the electrospinning method possess great environmental applica-
tions. Other methods, for instance, self-assembly, chemical, hydrothermal methods,
and template–based synthesis, could also be considered for preparing the carbon
fibers. It is possible to produce carbon fibers based on two-dimensional and three-
dimensional scaffolds. By introducing the functional nanosized building blocks in the
carbon fibers assembly, more consideration is given in the good design performance
energy storage materials, for instance, solar cells, batteries, fuel cell, etc.
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Lead and Cadmium Toxic Metals
Removal by Carbon Nanocomposites

Rekha Sharma, Kritika S. Sharma, and Dinesh Kumar

Abstract Water pollution because of the discharge of heavy metal ions in water is
a severe environmental issue in the current situation. So, drinking water sanitization
before human consumption is necessary for good human health. Out of diverse tech-
nologies used for heavy metal removal, adsorption on nanomaterial substrates and
membrane filtration are potential techniques owing to their competence, easy func-
tioning, cost-effectiveness, and constraint equipped area. To date, several materials
have been employed in engineering these nanoadsorbents and filtration membranes.
In the morphology of these developed nanoadsorbents and membranes, it can be
outcome that these have good site density, charge, and surface areas and to adsorb
the metal ions on their surface efficiently. In this chapter, we mainly emphasis on the
submission of carbon nanocomposites to remove lead and cadmium engineered at
the nanoscale, testing both advantages and limitations of these adsorbents. Finally,
scopes and future scenarios of these adsorbents have been discussed.

Keywords Nanoadsorbents · Adsorption · Nanocomposites · Heavy metals ·
Pollutants

Abbreviations

MHT Mechanohydrothermal
LDH Layered double hydroxide
GO Graphene oxide

R. Sharma
Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan 304022, India
e-mail: sharma20rekha@gmail.com

K. S. Sharma · D. Kumar (B)
School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India
e-mail: dinesh.kumar@cug.ac.in

K. S. Sharma
e-mail: kritsharma98@gmail.com

© Springer Nature Singapore Pte Ltd. 2021
M. Jawaid et al. (eds.), Environmental Remediation Through Carbon
Based Nano Composites, Green Energy and Technology,
https://doi.org/10.1007/978-981-15-6699-8_16

343

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6699-8_16&domain=pdf
mailto:sharma20rekha@gmail.com
mailto:dinesh.kumar@cug.ac.in
mailto:kritsharma98@gmail.com
https://doi.org/10.1007/978-981-15-6699-8_16


344 R. Sharma et al.

MGL Magnetite-graphene oxide-layered double hydroxide
�m Maximum sorption amount
2,4-D 2,4-Dichlorophenoxyacetate
Cs effect Sorbent concentration effect
SCA Surface component activity
As Sorption capacities in mg m−2

SBE Spent bleaching earth
CNPs Carbon nanoparticles
HATU Coupling agent
PSO Pseudo-second order
SWASV Square wave anodic stripping voltammograms
DEAMTPP Water-dispersible diethyl-4-(4-amino-5-mercapto-4H-1,2,4-

triazol-3-yl) phenyl phosphonate
WHO World Health Organization
US EPA United States Environmental Protection Agency
PSO Pseudo-second order
PVK-GO Poly(N-vinylcarbazole)–graphene oxide
GO−MnFe2O4 Graphene oxide−MnFe2O4 magnetic
LDHs Layered double hydroxides
GO Graphene oxide
ZrRP Zirconium resorcinol phosphate nanocomposite

1 Introduction

Recently, pollution through heavy metal is the key environmental problem that
hazards the human health worldwide. Various heavy metal ions, for example,
Hg(I)/Hg(II), Pb(II), As(III)/AS(V), Cr(III)/Cr(VI), Ni(I), Cu(II), Cd(II), Zn(II), and
Co(II), etc., are amenably or obliquely released hooked on the rivers, lakes, streams
or oceans because of rapid industrialization, for instance, batteries, tanneries, metal
plating, painting, printing, mining and photographic industries, fertilizer and pesti-
cides industries, etc., particularly in emerging nations [2, 6, 7, 35, 36, 40, 72, 84,
106]. These pollutants are probable to accumulate in living beings through food
chains or drinking water because of their non-biodegradable properties [9, 37, 69,
74]. Owing to their role in emerging approximately cofactors or vitamins, the trace
amount consumption of many heavy metals for human beings is very indispensable,
but their extreme intake can cause hazardous effects. These effects comprise many
mental and physical obstruction like diarrhea, pneumonia, kidney, nausea, weight
loss, vomiting, skin degeneration, liver break down, asthma, congenital deformities,
and many cancers [9, 35, 37, 62, 69, 74, 77, 84, 88]. The toxicities and their lethal
effects are brought to light here, consistent with the WHO and the US EPA. To elim-
inate these pollutants from aqueous bodies, mainly adsorption technique is utilized
using various carbon-based nanoadsorbents which is schematically shown in Fig. 1.
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Fig. 1 Water treatment of by functionalized Nanoadsorbent

The novelty of this chapter is to describe the advanced nanoadsorbents which are
viable toward the elimination of toxic metals especially, Pb(II) and Cd(II) which
are dangerous to human being and aquatic species. This chapter mainly focusses
on carbon-based nanomaterials having high adsorption capacity, cost-effectiveness,
easy separable, and easy synthesismethods. In continuation, the toxicities of elevated
concentration of lead and cadmium and their future perspectives are comprised in
this chapter in subsequent sections.

1.1 Lead (Pb)

Inorganic lead (Pb) usually contaminates surface and groundwater systems because
it is progressively discharged from different sources like mining, leaded gasoline,
and industrial fuel [11, 38]. Acute Pb contamination causes various kinds of lead
poisoning, for instance, reproductive and liver system dysfunction, severe kidney
dysfunction [5, 11, 23, 38, 67, 70]. It may also cause intellectual disabilities, mainly
in offspring [23, 70]. Lead is listed as second most toxic contaminant among other
hazardous substances because of its other additional lethal symptoms like irritability,
insomnia, muscle weakness, anemia, renal damages, and hallucination [5, 11, 23, 38,
67, 70]. In drinking water, the maximum contaminant level (MCL) of Pb ions set
permissible limits of 0.015 mg L−1 while WHO set as 0.05 mg L−1 [ 26, 103].

1.2 Cadmium (Cd)

Cd (Cadmium) releases into environments through Ni and Cd batteries, electro-
plating, atomic fission plants, welding, fertilizers, and plastics and paints, etc. [29,
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39, 65]. Because of chronic cadmium toxicity, the Itai-Itai disease has been found
in Japan [29]. Various diseases like kidney damage, testicular tissue destruction,
red blood cells destruction, and osteoporosis, and high blood pressure occurred due
to Cd poisoning from environmental exposure [25, 34, 41, 42, 46, 68]. In enzyme
structure because of zinc replacement by Cd in these enzymes, its catalytic activity
is damaging because of changes in the stereo-structure of the enzyme [34]. The safe
drinking water limits for cadmium are 0.005 mg L−1 set by USEPA has and Cd ions
mandate as a human carcinogen [26, 103].

2 Carbon Nanocomposites Applications in Removal
of Heavy Metal

2.1 Nanoadsorbents Applications in Pb Removal:
Scopes/Limitations

For the removal of lead, the date tree leaves were used as an adsorbent material
in aqueous solutions. The date tree leaves in their low concentration in solution
have been used to remove an advanced proportion of Pb(II) aqueous ion systems.
Onto the removal of Pb(II) ions, the effect of various parameters has been studied,
for example, pH of the solution, ionic strength, temperature, initial metal concen-
tration, agitation speed, adsorbent dose, and contact time. The adsorption capacity
increases on increasing the Pb(II) ion initial concentration, and pH 5.8 is appro-
priate for the maximum adsorption at any temperature. The maximum Pb(II) ions
adsorption achieved at 1 g L−1 adsorption dose on a powdered date tree leaf. The
ionic strength, agitation speed, and time-consistent to the maximum adsorption are
0.005 M, 200 rpm, and 50 min, respectively. Temkin models were best fitted to the
adsorption equilibrium. The maximum adsorption value was found at 60 °C up to
57 mg g−1. The PSO model of the kinetic experiment was followed for the Pb(II)
ions adsorption on the leaves of a date tree. The change in enthalpy designates very
strong interaction forces among date tree leaves and Pb(II) ions for the adsorption
method, whichwas attained at 21.59 kJmol−1. The kinetic process of adsorption is of
endothermic in nature. The positive value of �S was found up to 95.45 J mol−1 K−1

at the solid/solution interface shows the augmented randomness, and the negative
value of �G shows the spontaneity of the adsorption method [13].

Bushra et al., 2012 [14] synthesized poly-o-toluidine Zr(IV) tungstate composite
to remove Pb(II) ions from water. The synthesized composite materials show
improved reproducibility, thermal stability togetherwith chemical stability, exchange
capacity, granulometric properties, and also own improved selectivity likened to
pure inorganic and organic materials. The selective adsorption of heavy metal ions
was occurred on an amorphous nanocomposite cation exchanger and may withstand
equitably elevated temperature. At 200 °C, the composite shows an important ion-
exchange capacity and thermally stable. The synthesized composite is of analytical
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importance andmight removemetals from the solution.DeterminationofPb(II)metal
ions by FAAS does not cause any previous digestion from electroplating wastew-
ater and tap water samples. From industrial effluents to the further recovery and
elimination of significant metal ions, the adsorbent material can be explored. Poly-
o-toluidine Zr(IV) tungstate composite cation exchanger displays the features of a
conducting material along with auspicious ion-exchanger [14].

Musico et al., 2013 [66] developed PVK–GO nanocomposites for the adsorption
of Pb(II) ions from water solutions. The graphene-based polymer nanocomposites
are the utmost current technological advances and auspicious composite materials
that comprise inimitable properties of polymer materials and graphene-based mate-
rials in one nanohybrid material [75]. These nanohybrid materials cannot usually
be attained using pure polymers or conventional composites and display substantial
upgrading in possessions [48]. The PVK–GO nanocomposite among the nanohy-
brid materials is vital because of having dissimilar ways of fabrication, dispersion,
and polymerization [73, 85, 110]. PVK–GO has imperative antimicrobial goods [16,
86]. Though, for the adsorption of toxicants, PVK–GO nanomaterials have been
employed. In aqueous solution, the outcomes display that PVK–GO shows an excel-
lent Pb(II) adsorption competence. The adsorption competence is explained by the
role of surface hydroxyl and carboxylic acid groups of adsorbents. Additionally, as
the concentration of GO in PVK–GOnanocomposite rises, the adsorption capacity of
the adsorbent upsurge for Pb(II) ions. On the surface of Pb(II) ions and the PVK–GO,
the interaction among the oxygenated functional groups influenced by the alteration
in pH. As the pH of the solution upsurges, the adsorption of Pb(II) ions increases.
Though, high adsorption of Pb(II) was detected at high pH from aqueous solution.
The high adsorption capacity depends on precipitation of heavy metals along with
the adsorbents adsorption competence. The adsorption of Pb(II) was best fitted to
the Langmuir model, and shows the 887.98 mg g−1 of adsorption capacity within
adsorption time of 90 min at pH 7.5 [66].

For effective adsorption of As(III) and Pb(II) from water, Kumar et al., 2014
[49] synthesized GO−MnFe2O4 nanohybrids materials. The reference MnFe2O4

nanoparticles and the synthesized GO−MnFe2O4 nanohybrids compared for
As(III)/As(V), and Pb(II) heavy metals so far with the adsorption capacities of
different adsorbents. From the results, it was demonstrated that the synthesized
GO−MnFe2O4 nanohybrids adsorbent material is higher compared to other reported
adsorbents for the adsorption of Pb(II), and As(III)/As(V) up to now. The virtuous
adsorption capacities of GO along with NP and the amalgamation of the inimitable-
layered nature of the hybrid system, including maximum surface area, are the main
cause for the exceptional adsorption property. In water treatment processes, this
material is very attractive because of the rapid adsorption rates and easy magnetic
separation of the GONH hybrids. In the handling of water, the utilization of adsor-
bent could be completed thru coating it on sand particles or ceramic beads or by
making a membrane. The adsorbent can be magnetically separated from the solu-
tion. To remove other contaminants, the adsorbent materials based on graphene
oxide-nanoparticle hybrids are viable to discover [49].
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According to Xiao et al., 2015 [105], a one-step microwave-assisted solvothermal
method was utilized to develop aluminum-magnesium oxide nanocomposites to
adsorb As(V) and Pb(II) ions from a solution which is a cost-effective, template-
free, and simple and route. The adsorbent material could adsorb cations and anions
owing to its enormous surface area. The adsorbent showed an adsorption capacity of
423 mg g−1 and 133 mg g−1 toward Pb(II) and As(V), correspondingly [105].

To minimize waste disposal, and reduce energy usage, preserve resources via a
suitable, effective, repetitive, and selective recovery of Pb(II) ions Sharma et al., 2014
[87] developed exceedingly steady functionalized magnetic nanoparticles. To attain
an effective and novel adsorbent, the stepwise modification of iron oxide nanopar-
ticles was performed, which showed exceptional recital for Pb(II) ion adsorption.
Because of the collective involvement of numerous factors, i.e., substrate material,
anchored functional groups, physicochemical properties, and experimental condi-
tions of the analyte, the adsorbent was only selective toward the target analyte. The
rapid recovery of Pb(II) ions attained by the help of sonication without destructive
the structure of the functionalized nanoparticles in the elution procedure. The synthe-
sized AAA-NH2-Si@MNPs have some valuable properties such as high adsorption
capacity, good material stability, the cost-effectiveness of embeddedMNPs, superior
reusability up to five adsorption/desorption cycles, and ease of fabrication. There-
fore, for the systematic recycling and recovery of Pb(II) ions, this ending covers a
maintainable path by the productive incorporation of competence, reusability, and
selectivity. Besides, the unique and novel applicability to lower the leachable metal
content can be intended as an authoritative source in mycorrhizal-treated by ash
samples so much that the environmental stress is stable [87].

Recently, LDHs and GO have been extensively utilized as probable adsorbent
materials. LDHs are a class of lamellar inorganicmaterials, which are likewise recog-
nized as anionic clays or hydrotalcite-like compounds (HTlc). The general formula
[MII

1−xM
III
x (OH)2]x+[(An−)x/n]x−·mH2Oused for the representation of thesematerials.

Here, di- and trivalentmetal cations represented byMII andMIII, respectively,m is the
molar amount of intercalated water,x is the molar ratio of MIII/(MII +MIII), and the
interlayer anion isAn− of chargen. For the synthesis of magnetic composites, anMHT
route was utilized, containing GO, Fe3O4, Mg3Al − OH, and LDH in a composite
material. The components of theMGLcomposites, i.e., Fe3O4, LDH, andGObonded
via chemical bonding. The MGL composites displayed a strong magnetic response,
good water-dispersity, and highER and �m for both 2,4-D pollutants and Pb(II) ions.
The increased RGO content can improve the higher uptake of pollutants and could
upsurge theAs of the MGL. The Pb(II) ions adsorbed more strongly compared to
2,4-D pollutants on MGLs. TheER increased for Pb(II) deceased for a while 2,4-D,
with increasing pH from4 to 10. The Freundlich-SCA isotherms, andLangmuir-SCA
describes the adsorption of 2,4-D andPb(II) on theMGLsby an obviousCs-effect. For
the adsorption of 2,4-D and Pb(II) on MGLs, diverse mechanisms were recognized.
Because of the contribution of both the GO and LDH components, the adsorption
of 2,4-D primarily attained, whereas the LDH component was responsible for the
adsorption of Pb(II) via surface-induced precipitation of Pb3(CO3)2(OH)2. The inter-
calation of 2,4-D anions into the LDH gallery is the key mechanism for adsorption of
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2,4-D on the LDH component, while hydrophobic and π−π interactions attributed
to their GO component. To treat wastewater, the MGL composites are considered
as a potential adsorbent. For developing GO−LDH composite materials, the MHT
method delivers an environmentally friendly and simple route [111].

From industrial water, the adsorption of Pb(II) ions, Datta and Uslu [20] used an
ordinary claymaterial, i.e., montmorillonite, and its improved form. Trin-octylamine
was utilized to modify the montmorillonite, which displayed virtuous efficacy of
Pb(II) ions removal. The adsorbent dose of 2.4 g L−1 of Mt-TOA and 12 g L−1 of Mt
showed an improved Pb(II) ion adsorption. The pH value of 7 was appropriate for
the supreme adsorption of Pb(II) ions. The 33.10 and 3.37 mg g−1 are the maximum
adsorption efficacy of Mt-TOA and Mt, respectively, for the Pb(II) ion adsorption
from the water phase by the use of the Langmuir isotherm model. The kinetic data
was best fitted to the PSO model to explain the kinetic behavior of an adsorption
process. For Pb(II) ion adsorption from manufacturing effluents, the trin-octylamine
modified montmorillonite adsorbent is a viable material [20].

Pourbeyram [76], developed GO−Zr-P nanocomposite to adsorb Zn(II), Cd(II),
Pb(II), and Cu(II) divalent heavy metal ions. In preparing the GO−Zr-P adsorbent,
graphene oxide (GO) act as a templatematerial, Zr binder ion, and phosphate behaves
as an adsorbent by a facile method. Various instrumental techniques were used to
check the surface morphology and structure of the adsorbent, i.e., SEM, TEM, DLS
analysis, XPS, and XRD. The appropriate pH range was 3−6 for the batch experi-
ments. For Cd(II) ions, utmost adsorption capacity of the adsorbent was found up to
232.36 mg g−1, Zn(II) 251.58 mg g−1, Cu(II) 328.56 mg g−1 and for Pb(II) ions, it
was found 363.42 mg g−1at pH 6. The adsorption controlled by chemical adsorption
predicted from proposed kinetic, and adsorption isotherms on adsorbent material
concerning the strong surface complexation surface phosphate groups of GO−Zr-
P with heavy metals and the adsorption were of monolayer coverage. After the
complexation of heavy metals, the adsorbent showed good dispersibility of adsorp-
tion experiments in water. The tendency to precipitate and agglomerate was detected
after adsorption. In analytical chemistry, the adsorbent applied as a solid adsorbent
to adsorb different heavy metal ions from its maximum adsorption capacity [76].

Nonkumwong et al., 2016 [71] synthesized mesoporous amine-functionalized
magnesium ferrite nanoparticles (MgFe2O4-NH2NPs). Various calcination steps, for
example coprecipitation [30, 56, 93] sol-gel [54] and reverse microemulsion [18],
methods were employed to synthesis methods of MgFe2O4 nanoadsorbents. A pres-
sure vessel able to comprising a dispersing solvent at increased pressure and temper-
ature is essential, although, the hydrothermal method is not required the calcination
step [21]. Intended for the formation of superparamagnetic (Ni, Mn, Co) Fe2O4

with high saturation magnetization values, Mohapatra et al., 2011 [63] had freshly
established the simple heating method to evade such complicate instruments/steps
under refluxing condition. Therefore, concurrent surface functionalization modifiers
were employed, which are made of several functional groups, i.e., carboxylic, amine,
and a hydroxyl group (lactic and ascorbic acid, L-lysine, and ethanolamine) by the
facile refluxing condition for the synthesis of MgFe2O4 NPs with. The morphology,
magnetic properties, phase formation, chemical composition, surface functional
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groups, pore size distribution, and specific surface area were prudently determined.
The hopeful progression of which the functionalization and synthesis occur concur-
rently offers virtuous class magnetic nanoadsorbent as MgFe2O4 nanoparticles func-
tionalized by amine groups. The kinetic and thermodynamic studies have also been
optimized for the investigation of Pb(II) removal on amine-functionalized MgFe2O4

nanoparticles, which display rapid and outstanding adsorption [71].
The adsorption of Pb(II) ions, Liang et al., 2016 [53] synthesized the leaf powder

of phoenix tree-based granular adsorbent with bentonite as the binder. Various instru-
mental techniques, i.e., TGA, BET, and SEM studies, were utilized to illustrate the
granular adsorbent. The thermogravimetric analysis shows amass loss in three stages.
At calcination at 500 °C of the adsorbent, the obtained pore volume and maximum
specific surface area were 0.276 cm3g−1 and 166.3m2g−1, respectively. Various opti-
mizing parameters have been studied to check the adsorption behaviors for Pb(II) by
500 °C-calcined granular adsorbents such as initial metal ion concentration, adsorp-
tion time, and effects of pH. For Pb(II) ions, 71 mg g−1 was the maximum adsorption
capacity [53].

2.2 Recent Advances in Nanoadsorbents Applications in Pb
Removal

Currently, for the adsorption of metals, various reports have revealed the prospect of
this method, e.g., goethite (α-FeOOH) and nanoscale zero-valent iron displayed high
rapid removal rate and removal capability for several toxicants concurrently, [99] and
nanomaterials based on titanium compounds, for example, titanate nanobelts [102]
titanate nanoflowers, [31] and mesoporous titania beads, [104] likewise divulged
potential submissions intended for the adsorption process. Though, in the applied
drinkingwater treatments, their large-scale application limited because of somedraw-
backs of adsorbent materials, i.e., complicated preparation processes, insufficient
adsorption capacity, low yields, and instability of iron-based nanomaterials. The
adsorption of heavy metal-containing anions along with adsorption of heavy metal
cations reported on a new titanium glycolate nanomaterial by Han et al. [28] in which
the 3-D V-type strip structure is responsible for the removal and adsorption simul-
taneously. Furthermore, because of its cost-effective and ecologically approachable
features, this material predictable to have applied submissions in water remediation
and equal to be accomplished a precise simplistic one-pot hydrothermal technique.
From a three-dimensional V-type stripe structure, a novel titanium-based nanomate-
rial was manufactured with a large surface area via a green and convenient method.
The surface area of biodegradable material is found as high as 246.5 m2g−1 and its
own mesopore structure, several spectroscopic methods well characterized [28].

For the fast and effective elimination of Pb(II) ions, Moradi et al., 2017 [64]
synthesized a novel adsorbent as Fe3O4@GMA–AAmmagnetic nanocomposite. On
adsorbents surface, the progress of the polymer chains showed in the AFM and



Lead and Cadmium Toxic Metals Removal by Carbon Nanocomposites 351

SEM images, and the core-shell structure could also be seen in TEM image. The
Pb(II) ion removal attained within 2 min equilibrium time. The PSO model is fitted
to the kinetic data, and the chemical adsorption is the rate-controlling step. The
adsorption of Pb(II) ions was well fitted to the Langmuir modal. The adsorption
process is endothermic and spontaneous. To remove Pb(II) ions, our synthesized
Fe3O4@GMA–AAmnanocomposite can be a virtuousmagnetic adsorbent with easy
separation method, suitable core-shell structure, rapid adsorption rate within 2 min
and high adsorption capacity up to 158.73 mg g−1 [64].

Rusmin et al., 2017. [81], established Palygorskite-iron oxide nanocomposite
to remove aqueous Pb(II), which was synthesized through a coprecipitation tech-
nique. Pal-IO exhibited low isoelectric point, increased precise surface area, and
significant magnetic susceptibility at 3.5, 99.8 m2g−1, and 20.2 emu g−1, corre-
spondingly. To treat the contaminated water covering 200 mg L−1 of Pb(II) ions, the
26.6mg g−1 is the utmost adsorption capability for Pb(II) at pH 5. The recyclability of
magnetic adsorbent, the best desorbing agent was EDTA-Na2, with over 90% desorp-
tion capability. At the end of three consecutive adsorption-desorption cycles, 64%
Pb(II) removal was attained. The adsorbent was found to be recyclable and magnetic
stable, with the fewest leaching properties because of the robust binding of magnetite
NPs on palygorskite. For purifying, specifically heavy metal cations contaminated
wastewaters, the nanocomposite could develop as an auspicious material [81].

Recently, various organic and inorganic adsorbents have been extensively utilized
in treatments of water and wastewater, i.e., metal oxides, carbonaceous nanoma-
terials, biomass, natural clay, etc., [78, 94, 101, 113, 120]. Though, because of
their low efficiency and adsorption capacity, they were still incapable of having
large-scale practical applications in water treatment processes. For organic dye
sequestration and heavy metal ion, it is essential to perform additional research
and progress innovative adsorbents having rapid removal rate and a high removal
capacity [8, 52, 55, 98, 101, 115].

2.3 Nanoadsorbents Applications in Cd Removal:
Scopes/Limitations

Owing to their influences on ecological water pollution, the detection of ultra-trace
quantities of toxicmetals is of significance.Because of itswide distribution and a high
level of toxicity, the study of cadmium is exceedingly required as heavymetal [89]. In
various industries, for example, metal plating, batteries, and alloys, cadmiummetal is
extensively utilized as a pigment and stabilizer in plastics [17, 83]. Due to industrial
activities, the entry of cadmium into surface water has augmented the possibility of
human contact to this toxic metal. The WHO has been announced the acceptable
level of cadmium in water intake up to 3 mg L−1, because of high toxicity even at
low concentrations [82]. Various damages occur to organs thru the intake of Cd(II)
in the body such as the liver, lungs, and kidney because of its high biological half-life
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[27]. So, by commissioning a reliable, sensitive, and selective analytical technique,
the detection of minute quantities of Cd(II) in ecological aqueous samples is of great
importance [61].

For the first time via the use of SWASV to manufacture an electrochemical plat-
form, the concurrent examination of Cd(II) and Pb(II) in solution stated by Gao
et al., 2012 [24] to combine the maximum adsorption capacity of γ-AlOOH with
the conductivity of graphene. The AlOOH-RGO nanocomposites were synthesized
hydrothermally. GO is concurrently reduced to graphene under the hydrothermal
condition, accompanied by the homogeneous precipitation of AlOOH nanoplates.
In this, the RGO offered to conduct pathways, and the agglomeration of graphene
averted by the use of the AlOOH nanoplates. Moreover, the RGO-dispersed AlOOH
nanoplates helps to collect the target metals on the electrode surface. By this
research, Gao et al., 2012 [24] show the new bridge among electrochemical behavior
and adsorption. The AlOOH-RGO adsorbent is a promising material that owns
outstanding practical applicability, high stability, durability, and better sensitivity
in electrochemical sensing of heavy metals [24].

Though the advantages of MnO2 coating has been highlighted in earlier research
for adsorption of metal ions, they predicted the adsorption percentage deprived of
a depth examination hooked on the experimental parameters and mechanism. In
wastewater treatment, no research has emphasized the magnetic particles coated
with MnO2 NPs. The 3D flowerlike MnO2-coated magnetic nanocomposite was
hydrothermally synthesized without utilizing any organic surfactant and template.
Fe3O4/MnO2 showed an efficient and rapid removal of diverse metals, for example,
Cu(II), Zn(II), Cd(II), and Pb(II) fromwater in a few seconds by an exterior magnetic
field. The in height ionic strength, low pH, and attendance of Ca ions affect the
adsorption property of the adsorbent.

The regeneration experiment has been carried out, which shows that without an
essential reduction in its adsorption capacity of the composite up to five cycles can
be reused. The outcomes displayed that Fe3O4/MnO2 has extensive submissions
used for detection and adsorption of metals because of environmental friendliness,
good regeneration performance, simple fabrication procedure, and excellent removal
capacity [45].

The magnetic separation amid these submissions motivate us to manufacture
a magnetic discriminating collection approach. In the synthesis of recyclable
water treatment agents, core-shell Ni@Mg(OH)2 composite has been developed
for the adsorption of metals. The authors finally attain the water treatment agent
reuse by separated and collected the Ni@Mg(OH)2 nanocomposites by the usage
of the allure of Ni core under an external magnetic field. To adsorb metals
from enchanting wastewater advantage of the ferromagnetic properties and high
surface area of Ni@Mg(OH)2 nanocomposites, Zhang et al., 2015 [114] intended a
magnetically decomposable approach. The results demonstrated that Ni@Mg(OH)2
nanocomposites had low capacity fading and high removal efficiency [111].

From aqueous solutions, to adsorb Cu(II), Pb(II), and Cd(II), the SBE based Atta-
pulgite/carbon nanocomposites (APT/C) adsorbent developed through a one-step
calcination. The adsorption competence for Cd(II) up to 46.72 mg g−1, for Cu(II)



Lead and Cadmium Toxic Metals Removal by Carbon Nanocomposites 353

32.32 mg g−1, and for Pb(II) 105.61 mg g−1 likewise exhibited faster adsorption
equilibrium. The synthesized nanocomposite showed an outstanding adsorption-
desorption process up to the fifth cycle, especially for Cu(II) ions. The XPS analysis
in which the peaks corresponding to Cu(II), Cd(II), Pb(II) appear after adsorption
confirms the adsorption due to surface complexation, ion exchange, and electrostatic
attraction among metal ion and the adsorbents [92].

Venkateswarlu and Yoon, 2015 [97], studied the removal of Cd(II)
ion on biogenic Fe3O4 magnetic nanocomposites capped with DEAMTPP,
{(DEAMTPP@Fe3O4 MNP)} utilizing ananas comosus peel pulp extract. The
manufactured DEAMTPP@Fe3O4 MNPs investigated the magnetic properties, size,
porosity, and structure. The adsorption procedure rests on the concentration and
pH of the solution of DEAMTPP@Fe3O4 MNPs. The 60 mg L−1 concentration of
Cd(II) ion solution, and pH 6 was appropriate for the maximum adsorption capacity
up to 96.1% of adsorption. The maximum adsorption capacity was 49.1 mg g−1

which was best fitted to the Langmuir isotherm modal. Without a remarkable loss of
removal efficiency, the composite can be recycled because of a ferromagnetic nature.
To adsorb Cd(II) ions from industrial and environmental wastes, various properties
make it an appropriate adsorbent, for example, biodegradable composition, simple
separation, and reusability [97].

2.4 Recent Advances in Nanoadsorbents Applications in Cd
Removal

Currently, for the separation of adsorbents fromwastewater, the deliberated effective
technique id magnetic separation, so, these adsorbents have been examined exten-
sively [3, 4, 19, 91, 95, 107]. Furthermore, because of their synergistic effect among
multiple distinct components and improved properties, magnetic core-shell adsor-
bents have fascinated abundant attention. Precisely, the heavy metal ions can be
adsorbed by functional shell rapidly, and the magnetic core could enable fast separa-
tion. In conclusion, a monodisperse amino-functionalized magnetic CoFe2O4@SiO2

nanosphere was fruitfully synthesized. The adsorption capacity has been improved
due to the grafting of many more amino groups into a monodisperse nanosphere.
For the adsorption method, various optimizing parameters have been studied,
for example, initial concentration, time, reaction temperature, and pH effect by
CoFe2O4@SiO2–NH2. The PSO and Langmuir models best fitted to the kinetic
and adsorption data, respectively. The adsorbent having high chemical stability can
regenerate after acid treatment up to five cycles. The synthesized adsorbent can be
separable because of superparamagnetism nature [79].

Bashir et al., 2016 [10] developed novel ZrRP adsorbent for the removal of Cd(II)
ions having useful adsorptive and ion-exchange properties. The results exposed that
nanocomposite own novel features as a new material were synthesized by water in
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the oil (W/O) microemulsion technique. The adsorbent selectively adsorbs Cd(II),
employed for some binary separations of Cd(II) mixtures [10].

To adsorb metals, calcium carbonate (CaCO3) has been discovered as the utmost
profuse materials in nature [43]. Mainly, the Cd(II) in paddy soils specifically
adsorbed on CaCO3 adsorbent, and at maximum flooding periods for Cd(II) polluted
paddy soil, the maximum Cd(II) was in Cd–CaCO3 form [44, 47, 121]. In this series,
several nanostructured CaCO3, together with amorphous CaCO3 and their hybrids,
vaterite, and calcite have been fabricated [15, 33, 51, 57, 58, 112] because minute
amount of Cd(II) adsorb on natural calcite [1, 60]. For the first time, Cd(II) ions
removal occurs on the nanostructured calcite changed with biochar obtained from
sewage sludge. The synthesized adsorbent was efficient, low cost, and biologically
approachable. For Cd(II) ions, the adsorption recital of the biochars suggestively
recovered by the encumbered calcite nanoparticles. The adsorption experiment is
considerably higher efficiency and lower cost, which is the main advantage of this
adsorbent [122].

To adsorb toxicants on CNPs as adsorbents is even fewer unusual in the literature.
Carbon nanoparticles (CNPs) have the capacity to eliminate destructive heavymetals,
for example, soot from water [80]. Though, the technique intricated in making the
statedCNPswas a time-taking andmonotonous. Thus, studies on functionalization of
CNPs and different synthesis routes show good yields, and low cost will be believable
to broaden the usage of this relatively new nanocarbon. In this, a microwave-assisted
carbonization process was used to synthesize CNPs from the dehydration of glucose.
For the first time, adsorption of Cd(II) ions fromwater carried on the ethylenediamine
(EDA) functionalized CNPs. The lone pairs present on nitrogen groups of EDA was
the motivation for its selection for functionalization material because it can chelate
with most metal ions. CNPs modified with ethylenediamine were fruitfully synthe-
sized from glucose, using HATU as a coupling agent. In adsorption, the synthesized
CNPs show promising properties such as cost-effective, easy to functionalize, and
reusable. Thus, this adsorbent is the viable material for producing potential in the
adsorption of several organic and inorganic pollutants [96].

The synthesis of hierarchical hollow α-Fe2O3 nanomaterials have still some
deficiencies, despite these synthesis approaches and methods have various bene-
ficial assets. First, in this formulation, approaches characteristically comprise the
usage of lethal templates. Second, for the decomposition of the precursor, a high
temperature (> 200°C) is required via calcination. Over a long reaction time, the
mainstream of hollow α-Fe2O3 adsorbent has been solvo/hydrothermally synthe-
sized at 180°C, which requires high energy consumption and large-scale industri-
alization. Therefore, it is imperatively needed to be proficient in manufacturing α-
Fe2O3 nanostructures in a cost-effective, green, and a facile pathway. This work
predicts chestnut nests and buds type of α-Fe2O3 hierarchical hollow spheres. At
comparatively low reaction temperature, the adsorbent was solvothermal synthe-
sized. The water/glycerol and water/2-propanol solvent systems permitted morpho-
logical tuning. In the water/alcohol soft template, the occurrence of microhetero-
geneity is the primary mechanism for adsorption. The hollow porous α-Fe2O3 archi-
tectures displayed a narrow pore size distribution and a large specific surface area.
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The large number of OH groups can act as effective active adsorption sites on the
surface of the nanostructured α-Fe2O3 particles for chelating with metals. The adsor-
bent was carried out for batch experiments for maximum adsorption capacity and
reusability studies [109].

The adsorption of heavy metal ions especially lead and cadmium is summarized
in Table 1 which includes the effect of various parameters which are appropriate for
the maximum adsorption capacity.

3 Conclusions and Future Perspectives

This chapter comprises the role of various carbon-based nanocomposite materials in
the effective adsorption of heavy metals under diverse situations. An examination of
associated literature divulges that useful polymer-based composites have been used,
such as a combination of magnetic nanoparticles, clay minerals, metal nanoparticles,
carbon materials, and polymers used for the removal of metal ions from wastewater
solutions. Afterward, combined inside a polymer matrix, the mechanical strength,
adsorption capacity, separation from solution, and recycling performance have been
suggestively enhanced for such substituents themselves are also extensively utilized
for wastewater treatment. The intricate polymers are used as stabilizers along with as
a support material for the other substituents, chelating constituents, and rigid frames.
They incorporated various substituents also offering reducibility, operative chelating
sites, and magnetism, etc. For the synthesis of the adsorbents, separate methods
have been classified and deliberated. The macro/micro analysis and the batch exper-
iments for the prediction of the adsorption method have been precised widely and
deliberated in detail. The adsorption capacities have been related with synthesized
adsorbentswith other conventionalmaterials. It was predicted from the outcomes that
the synthesized adsorbents offer fast adsorption kinetics toward heavy metal ions,
good regeneration ability, and strong chelating capabilities with the synergistic effect
of the polymers. However, for practical utilization of these nanoadsorbent materials
at the industrial scale, there is little research going on assessing the possibility and
the manufacturing price. Shortly, the following issues must be elucidated.

• To evade subordinate contamination, the toxicity of the counterparts and the
polymer in the designation of composite material must be pondered.

• To assess the adsorption capacity of precise, heavy metals individually, there
must be approximately consistent conditions, for example, adsorbent/metal ion
concentration, pH, temperature, etc.

• Having improved recyclability, additional robust polymer-based composites ought
to be explored. The long-term performance of adsorbents should be tested for
permanent usage, not only for a few cycling reuses. The long-term performance
is crucial for real applications.

• For the regeneration of adsorbent, the desorption methods must be examined, and
additional consistent approaches are essential to be established.
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• After its application in the adsorption of metals from aqueous solutions, the effec-
tive removal of polymer-based compounds should be confirmed because if they
remain in solution, they can become the contaminants.

• The utilized adsorbents should be established for the possibility of large-scale
preparation and at a low price with the ecological acquaintance and high stability.
For submission on a large scale, the cost is a significant constraint.

• Toward the selective adsorption of heavy metals, additional exertions must be
bestowed onto adsorbents in the occurrence with multi-metal ions.

• To adsorb of target metal ions at the low concentration from aqueous systems, the
high selectivity of the adsorbent is a vital parameter.

• Various instrumental techniques should be utilized to characterize and predict the
adsorption mechanism of the adsorption process, for example, EXAFS, XAS, the
in situ, and theoretical simulation techniques to accomplish insight information
about the interaction mechanism and the removal process at a molecular level.
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Removal of Pesticides Using
Carbon-Based Nanocomposite Materials

Shahnawaz Uddin

Abstract To keep pace with the demand for more crops for increasing global human
population and to reduce human efforts at the same time, the technology and pesti-
cides in the agriculture sector are being used without caring for their impact on the
environment. Therefore, it is our first priority to remove the hazardous and toxic
pesticide residues completely from the environment and food chain which is very
challenging too. In order to remove or convert the pesticide residues into non-toxic
form effectively, efficiently, and easily, the carbon-based nanomaterials and their
composites using the adsorption process is discussed here in detail. After a brief intro-
duction of pesticides, different techniques used for environmental remediation are
discussed. Furthermore, different properties/characteristics of carbon-based nanoma-
terials/nanocomposites from the point of view of environmental remediation along
with adsorption mechanisms have been described in an elucidate manner.

Keywords Pesticide · Environmental remediation · Adsorption · Carbon
nanomaterials · Carbon nanocomposites

1 Introduction to Pesticides

Before going into the details of removal of pesticides using carbon-based nanocom-
posites, it will be of paramount importance to understand pesticides briefly and
how do pesticide residues are created in the environment? The term “pesticide”
is a composite of two words: pest (means “annoyance or nuisance”) and Latin
word cide (means “to kill”). Broadly, a pesticide may be defined as any material
or mixture of materials used intentionally for preventing/controlling/destroying the
pests or unwanted species of animals/plants that destroy during the crop produc-
tion/processing/transport/marketing/storage. The pesticides are also used against the
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vectors of human/animal disease, unwanted or nuisance species of plants/animals,
entities causing harm during the production/processing/storage/transport/marketing
of the agricultural-commodities/wood-products/animal-feedstuffs. The pesticides
are also prescribed to control the insects/agents responsible for thinning or the prema-
ture fall of fruits [1]. In other words, pesticides are the chemical substances used to
kill or control the pests/insects/fungi/unwanted-rodents/unwanted-plants. Pesticides
are also employed in health care to kill vectors of disease (e.g., mosquitoes, bedbugs,
etc.) and in the agriculture sector to kill pests (e.g., rats, locusts, etc.). By their nature,
pesticides are potentially toxic to other organisms, including humans, and need to be
used safely and disposed of properly [2].

Pesticides may be differentiated by a target organism (e.g., insecticides, rodenti-
cides, fungicides, herbicides, and pediculicides), chemical structure (e.g., inorganic,
organic, biological, or synthetic) and physical state (e.g., solid, liquid, or gaseous) [3,
4]. The pesticideswhich aremicrobial or biochemical in nature are known as biopesti-
cides. There is another category of pesticides derived from plants (botanicals) include
rotenoids, pyrethroids, nicotinoids, scilliroside, and strychnine [5, 6].

As we know that prevention is better than cure. It is also possible, under certain
circumstances, to produce food without the use of pesticides. Therefore, we should
adopt the alternative techniques and methods to save the crops from the pets without
using pesticides which include cultivation practices (e.g., polyculture, crop rotation,
planting crops in areas where the pests do not live, time of planting when pests will
be least problematic, and use of trap crops), use of biological pest controls, genetic
engineering, methods of interfering with insect breeding, and composted yard waste
to control pests. These methods are becoming increasingly popular and often are
safer than traditional chemical pesticides. But the aforementioned approaches for
controlling the pets maybe sometimes costly, time-consuming, difficult to apply,
and work on some specific types of insects [7, 8]. That’s why the people adopt the
pesticides for controlling or killing the pests.

1.1 Effects of Pesticides

The main goals of using pesticides are to increase agriculture production and
to fight against disease-causing vectors. However, pesticide residues pollute the
environment (the air, water, soil, and biomass) and harm to the living things
and environment which is a very serious problem worldwide. As shown in
Fig. 1, the living organisms may expose to pesticides by ingesting pesticide-
contaminated water/food, or by inhaling pesticide-contaminated air, or by skin
contact with pesticide-contaminated soil/agricultural-products/air/water (during
bathing/washing/swimming/raining). Exposure to pesticides or pesticide residues
may cause various harmful effects ranging from a simple eye/skin irritation to more
serious effects on the nervous system/reproductive system or causing cancer [9, 10].
The most commonly used pesticides for gardening/agriculture are organophosphate
(OP) andCA (Carbonate) pesticides. The organophosphate pesticides (OPPs) include
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Fig. 1 a Precautions for spraying pesticides b use of pesticides at large-scale farming

the following chemicals: malathion, parathion, chlorpyrifos, dichlorvos, methyl
parathion, diazinon, triazophos, oxydemeton, phosmet, tetrachlorvinphos, azinphos
methyl, etc. OPPs are very toxic because they inhibit cholinesterase which causes
neurotoxicity and affects the endocrine system in long term. The carbonate pesti-
cides carbamylate the essential enzyme, acetylcholinesterase (AChE), and inhibit
the enzyme activity. The chlorinated pesticides too have very much toxic effects on
living organisms (humans/animals/plants), particularly, chlordane which resists to
chemical and biological degradation very much is known as POP (persistent organic
pollutant) [11–14]. Due to insufficient regulation and safety precautions, more than
90% of people die because of pesticides in the developing countries which use pesti-
cides less than 30% of the total global production [15]. Practically, more than 90% of
insecticides and herbicides sprayed are mixed into soil/water/air and creating envi-
ronmental pollution at the faraway places too because winds carry the suspended
pesticides-particles in air to other distant regions. Therefore, in addition to environ-
mental pollution, pesticides affect biodiversity by reducing pollination and habitat
for birds and endangered species [8, 16–18].

1.2 Maximum Permissible Limit of Pesticide Residue

To bring down the negative effect of pesticides on living organisms, pesticides should
be usedminimally, quick bio-degradable, or deactivated. The left out pesticides in the
environment are known as “pesticide residues” [19]. The pesticide regulatory body
in every country puts the restriction on the maximum permissible level of pesticide
residues in the food and environment.WHO (World Health Organization) in collabo-
ration with FAO (Food and Agriculture Organization) assesses the harmful effects of
pesticides on living organisms. JMPR (Joint Meeting on Pesticide Residues), a joint
WHO/FAO independent international expert scientific group, conducts and evalu-
ates the harmful impact of pesticide residues in food. The group has developed an
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International Code of Conduct on Management of Pesticides. There are two objec-
tives of WHO relating to pesticides [2, 20]: (i) to put ban on most toxic pesticides
to humans and long-lasting pesticides in the environment (ii) to protect the living
organism health by setting MPL (maximum permissible limit) for pesticide residues
in the environment as given below.

1. For Water: ≤0.1 μg/L (for an individual pesticide) and ≤0.5 μg/L (for all
pesticides combined together) [21]

2. For Soil: ≤0.05 mg/kg [22]
3. For Air: Since, a few jurisdictions in the world had regulated pesticide residues

in the air, one of them is the USA [23, 24]. Therefore, MPL for air could not be
listed here because of lack of information available globally.

2 Introduction to Pesticide Removal from Environment

As we know that the pesticides help in boosting the crop output throughout agricul-
ture but they also pollute the environment. Therefore, it is obligatory for humanity
to protect the environment from any kind of pollution by identifying and treating
the contaminants/pollutants. It is the need of the hour to employ the more advance
and efficient methods/materials to remove the pesticide residues from the environ-
ment. In the recent past, nanotechnology has been more popular in sensing envi-
ronmental contamination and its remediation using nanomaterials/nanocomposites
having unique properties in more practical ways [11]. All over the world, scien-
tists are trying to find out or synthesize more effective and efficient nano-
materials/nanocomposites for environmental remediation. Emerging carbon-based
nanomaterials/nanocomposites (e.g., carbon nanotubes, graphene, graphene oxide,
reduced graphene oxide, etc.) have flexible or tunable physical/chemical/electrical
propertieswhich are best suited for challenging environmental remediation. The envi-
ronmental remediation applications of carbon-based nanomaterials/nanocomposites
discussed here are both proactive (preventing environmental degradation, improving
organism health, optimizing energy and resource consumption) and retroactive
(remediation, transformation of pollutants, reuse of wastewater) [25]. These nano-
materials/nanocomposites have enormous potential for adsorption of pesticides from
the environment because of their large surface area. The carbon nanotubes (CNTs)
are indeed very useful for environmental remediation because of their shape, large
surface area, large length-to-radius ratio, hydrophobic-wall and flexible-surface [25–
28]. Similarly, graphene and graphene-based nanocomposites are very useful and
attractive choice towards environmental remediation (such as water purification) due
to their unique properties such as large surface area, stronger π-π interactions with
target pollutants having aromatic rings, tunable chemical-properties, antibacterial
nature and lesser cytotoxicity [29–35]. Furthermore, graphene and its derivatives in
the modified form are also used to identify organic pesticides/compounds [36].
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This chapter beginswith the definition of pesticides, necessity of pesticides, effects
of pesticide residues on the environment, brief outline of carbon-based nanomate-
rials/nanocomposites, and their corresponding properties befitting the adsorption
process for environmental remediation. More feasible and practical applications of
carbon-based nanomaterials/nanocomposites have been incorporated for the removal
of pesticide residues/pollutants from the environment. This chapter also highlights
the comparative benefits of functionalization of carbon-based nanomaterials to facil-
itate and enhance the environmental remediation effectively and efficiently. Here, the
readers will be benefitted from the working principle, application, and comparative
benefits of the most economical and modern practices adopted for pesticide removal
using carbon-based nanocomposites and in the existing world.

3 Why Carbon-Based Nanomaterials/Nanocomposites?

The unique hybridization property of carbon and carbon’s sensitivity to its struc-
ture with variations in synthesis conditions permit for tuned manipulation in the
carbon-based nanostructures not yet provided by inorganic nanostructures [25]. The
unique physiochemical properties of carbon-based nanomaterials/nanocomposites
(e.g., shape, size, and surface area; molecular interactions, sensitivity, sorption prop-
erties, etc.) make these materials effective, specific-candidate and reactive-media for
environmental remediation for very levels of pesticide residues. Although the metal
oxides nanostructures are effectively used for absorption of destructive and toxic
organophosphorus pesticides, they are relatively difficult and expensive to produce
in fine powder form with high quality [37, 38]. Recently, the results of many studies
show, many other nanostructures (like gold-based nanorods/spheres) have been
employed to remove various types of pesticides (e.g., a very common organophos-
phorus pesticide in agriculture: dimethoate) from an aqueous solution. But these
nanomaterials on a large-scale basis are very expensive for the environmental
remediation [39].

4 Techniques to Remove Pesticides from Environment

Due to the higher stability or strong opposition to biological degradation, it has been
observed that a large number of the pollutants/pesticide residues can’t be removed
completely from the environment through a biological/conventional treatment tech-
niques. And environmental contamination (especially water pollution) has surpassed
the threshold of the natural/ground filtration process because of fast industrialization
[40]. Therefore, in parallel with adequate regulatory control on the use of pesti-
cides, there is an urgent need for the identification and removal of pesticide residues
from the environment effectively, efficiently, and economically. Thus, an overview of
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recent developments/advances has been provided for the environmental remediation
using three main methods: filtration, degradation, and adsorption [21, 41–47].

4.1 Filtration Process

The most common, promising, and recent process of membrane filtration is nanofil-
tration (NF) in which the pressure-driven membrane has the properties between
UF (ultrafiltration) and RO (reverse osmosis) membranes. In this process, the
hazardous/toxic organic micropollutants (such as pesticides, dyes, and other various
synthesized chemical compounds) are filtered out completely. Depending on the
application/requirement, NF membranes from some manufacturers target only the
specificmolecules based on their molecular size or weight. The adsorption of organic
chemicals on NF membrane surface is affected by the physiochemical characteris-
tics of the membrane, characteristics of pesticides, composition of the fluid/water,
and operating parameters of filtration system. During filtration process, the contami-
nants/compounds present in the fluid/water such as pollutant-particles, salts, colloids,
soluble microbes and natural organic matter get accumulated on the surface of
membrane and results in a major problem of “membrane fouling”. This fouling
of membrane causes slow filtration process due to a decrease in flux to permeate and
an increase in cost of operation due to short life span of the membrane [48–51]. The
membrane fouling also changes the characteristics of membrane surface such as zeta
potential, contact-angle, surface morphology, and functionality which decreases the
transport of pollutants as compared to fresh membranes [21].

4.2 Degradation Process

Through the degradation process, a pesticide is converted into simpler chem-
ical byproducts like water, carbon dioxide, and ammonia due to chemical reac-
tions [52]. ZVI (Zero-Valent Iron) is one of the most widely used degradation
processes for treating the contaminations because of its accessibility, effective-
ness, and very little generation of waste-products/secondary-pollutants [53]. Another
degradation process, photocatalytic oxidation, is a very environment-friendlymethod
for removing a wide range of organic pollutants. It is suited for pre-treatment of
hazardous/toxic and non-biodegradable pollutants to increase their biodegradability
[54]. In a photocatalysis degradation process, theUVor direct sun-light photo-excites
the surfaces of solid semiconductor (e.g., ZnO, TiO2, Fe2O3, CdS, and WO3) and
results into free electrons and positive semiconductor surfaces. The ions in an excited
state and free electrons accelerate oxidation/reduction reaction and as a result fast
degradation of pollutants/contaminants. Further, to increase the rate of photodegrada-
tion, a higher power UV lamp can be used. Through nanotechnology advancements,
semiconductor-based photocatalysts have been improved in terms of selectivity and
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reactivity and as a result, a number of pesticides are being treated by photocatalysis
degradation process. Due to its chemical stability, low toxicity, low cost because of
abundance on earth, titaniumdioxide (TiO2) is usedmostwidely for the photodecom-
position of pesticides. Organochlorine class of pesticides has been photodecomposed
by the UV irradiation on nano-TiO2 coated films in air. In another study, the complete
photodegradation of dicofol is done by irradiating UV light in the presence of TiO2

nanoparticles and results in less toxic compounds [55–62].

4.3 Adsorption Process

In the adsorption process, the adhesion of atoms/ions/molecules from an adsorbate
fluid (gas/liquid/dissolved solid) takes place to the surface of an adsorbent, i.e., a
film of the adsorbate is formed on the surface of an adsorbent (as shown in Fig. 2).
The adsorption process is different from absorption, in which a fluid (adsorbate) is
dissolved or permeated by a liquid/solid (adsorbent). Furthermore, the adsorption
process is a surface phenomenon while in absorption process, the whole volumes of
the materials are involved [63]. Adsorption process is considered as an effective and
equilibriumseparationmethod for cleaningwater in the present scenario. It is superior
to other methods for water cleaning and recycling because of simplicity of design,
low initial cost, flexible, easy to operate, insensitive to toxic contaminants/pollutants,
and no formation of harmful byproducts. As we know that the adsorption process
is a surface phenomenon, thus, the adsorption of pollutants depends on specific
surface area of the adsorbent, available number of sites, porosity, and various kinds
of interactions as well [21].

Therefore, after considering the pros and cons of the materials and process for
environmental remediation, the adsorption process will be discussed throughout
this chapter to remove the pesticides from the environment using carbon-based
nanomaterials/nanocomposites.

Fig. 2 Adsorbate and adsorbent in adsorption process [63]
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5 Properties of Carbon-Based
Nanomaterials/Nanocomposites and Adsorption
Mechanisms Used in Environmental Remediation

Figure 3 shows various hybridization states of carbon-based nanomaterials. The
mutable hybridization-state of carbon is responsible for the diversity of carbon-based
compounds [64].

Carbon-based nanomaterials/nanocomposites combine the unique properties of
sp2-hybridized carbon-bonds with the unusual physiochemical properties of carbon
at nanoscale to have distinctive properties (e.g., shape, size, chirality, surface
area, molecular interactions, etc.) for environmental remediation applications [25].
The molecular manipulation of a carbon-based nanomaterial/nanocomposite means
holding control over its structure and conformation (such as shape, size, chirality,
number of graphitic-layers, etc.). The diameter of fullerene/tubular-nanostructure is a
very critical parameter in determining their properties and applications, for example,
carbonnanotubes (CNTs)with a narrow inner-diameter are useful in separation, novel
molding, size exclusion processes and membrane filtration [65–71]. There are some
other parameters of the environment such as ionic strength, pH value, and dispersion
state of carbon nanotubes that also affect the adsorption. The surfaces of unmodified
carbon nanotubes are hydrophobic and preferring the adsorption of hydrocarbons
(e.g., benzene, hexane, cyclohexane, etc.) over alcohols (e.g., 2-propanol, ethanol,
etc.) [72, 73].

A higher number of surface-atom sites ofCNTs provide high adsorption capability
and a good platform for the adsorbate-species [74–77]. The liquids having high
surface-tension are not able to wet CNTs properly but water and most of the organic-
solvents having substantial intermolecular-interactions with surface of CNTs induce
capillary-action [78]. Physisorption or physical adsorption because of Van derWaals
forces is one of the predominant mechanisms of sorption for non-functionalized
carbon-based nanomaterials [79].

The organic pollutants/contaminants are sorbed directly to the carbon nanoma-
terials/nanocomposites surface through the same fundamental mechanisms such as
hydrophobic interaction, weak dipolar forces, and dispersion that were applicable
in conventional sorption systems [80, 81]. The equilibrium rates of carbon-based
nanocomposite sorbents are higher as compared to conventional activated carbon
sorbents due to π electron-polarizability or π-π EDA (electron–donor–acceptor)

Fig. 3 Hybridization-states of carbon-based nanomaterials [25]
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interactions with aromatic-sorbates [82–84], less heterogeneity of adsorption-
energies [85] and no pore-diffusion as an intermediate adsorption-mechanism [86].
SWNTs (single wall nanotubes) with curved geometries enhance Van der Waals
interaction which in turn amplifies the adsorption.

Prediction and optimization of pore-diameter of SWNTs for gaseous adsorp-
tion is done with the help of Monte-Carlo simulations. For example, an optimum
diameter of 1.05 nm for CNT in case of adsorption of a potential greenhouse gas
(tetrafluoromethane) and effectively balance the enthalpy of adsorption [87]. Simi-
larly, the optimized carbon-based nanostructures may be predicted to remove the
specific pollutants/contaminants. As we know that the potential attributes of carbon-
based nanosorbents are higher capacity of sorption and fast equilibrium rates but
tailoring the surface chemistry of carbon nanostructures has revolutionized their use
for target-based adsorption. The optimized carbon-based nanosorbents are useful to
target specificmicro-contaminants, to removepollutantswith very lowconcentration,
and to increase subsurface-mobility [88, 89]. Furthermore, the sorption rate through
the aligned CNT-membranes is higher (4–5 orders of magnitude) than predicted by
the conventional fluid flow theory. Theoretically, these higher flow rates through
the carbon nanotubes are assumed due to hydrophobicity and less frictional forces
because of smooth internal-walls of the tubes upon passage of water-molecules
[53, 90–92].

The potential physiochemical properties (such as large surface area, low cytotoxi-
city large number of delocalizedπ-electrons and tunable-chemistry) of graphene and
its derivatives (such as graphene oxide, reduced graphene, etc.) support graphene and
its derivatives for environmental remediation by adsorbing various commonly used
pesticides and other pollutants [35, 93–99]. However, the aggregation of adsorbents
reduces the available surface area of graphene and as a result, decrease its adsorp-
tion capacity. Therefore, to avoid aggregation and increase the selectivity of adsor-
bents, the functionalization of graphene is done by selecting the molecules which
are water-soluble and have an affinity towards target-adsorbents [31, 100–102].

6 Removal of Pesticides Using Carbon-Based
Nanomaterials/Nanocomposites

In this section, various carbon-based nanomaterials/nanocomposites have been
discussed for the removal of pesticides/pollutants from the environment in an
effective and practical manner.
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6.1 Use of Carbon Nanotubes (CNTs) as Adsorbent

Carbon-based nanomaterials, CNTs, consist of graphitic-carbons having
single/multiple concentric tubules and are known as SWNTs (single-walled
nanotubes)/MWNTs (multi-walled nanotubes), respectively. They are unique one-
dimensional structures that are thermally stable with some unique physiochemical
properties [103, 104]. These nanomaterials are potentially very effective in removing
a variety of pesticides because porous structure of CNTs and a wide range of surface
functional groups enhance the adsorption capacity of contaminants [105]. One or
more adsorption mechanisms, such as covalent-bonding, hydrophobic-effect, π-π
interactions, hydrogen-bonding, and electrostatic interactions may be responsible
for the adsorption of organic compound on CNTs [106–108]. For example, π-π
interaction is responsible for the adsorption of organic compounds having C=C
bond or benzene-ring (such as polycyclic aromatic hydrocarbons (PAHs) and polar
aromatic chemicals) [82, 109], hydrogen-bonding is responsible for the adsorption
of the compounds having any of the functional groups –OH, –NH2, –COOH and
organic molecules [110] and adsorption of some organic compounds such as dyes
with appropriate pH and antibiotics are due to electrostatic attraction with the
functionalized CNTs [111, 112].

The herbicides, diuron, and dichlobenil have been removed by adsorption on
MWNTs and as expected the adsorption increases with an increase in total surface
area and pore-volume of MWNTs. But the amount of adsorption and surface-
coverage of diuron are high as compared to dichlobenil, although thewater-solubility,
the surface area and the total molecular-volume in case of dichlobenil are low which
may be assumed because of lower Van der Waals interactions of dichlobenil as
compared to diuron [113, 114].

The atrazine herbicide was adsorbed with the help of surfactant treated SWNTs
and MWNTs and it was observed that surfactant-treatment modified the CNTs to
become more hydrophilic which in turn suppressed the adsorption of atrazine [115].
But the oxidation-treatment of MWNTs increases the adsorption of diuron due to the
increase in surface area and total pore-volume of MWNTs [116]. Higher adsorption
of a phenoxy-acid herbicide (4-chloro-2-methylphenoxyacetic acid or MCPA) has
been shown by SWCNTs as compared to MWNTs and some other nanostructured
oxide adsorbents (such as Al2O3, TiO2 and ZnO, etc.) because of a mechanism
known as “pseudo-second-order kinetics” (chemisorption-the adsorption is due to
physicochemical-interactions between two-phases) [117, 118].
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6.2 Use of Graphene and Its Derivatives (GO, rGO, etc.)
as Adsorbent

Recently, a lot of attention has been paid to graphene for environmental remedi-
ation, especially for the removal of pesticides from water due to its unique phys-
iochemical properties. There is a tremendous adsorption capacity of organophos-
phorus pesticides such as endosulfan, chlorpyrifos, and malathion (approximately
in the range of 600–2000 mg/g) on graphene surface due to effective-interactions
between graphene having large surface area and pesticides and polar-structure of
water also plays an important role in adsorbent-adsorbate interaction [119]. To
remove the persistent halocarbon pesticides from the water, the dehalogenation of
pesticides has been done by graphene [120, 121]. Graphene and other carbon-based
nanomaterials/nanocomposites adsorb contaminants/pollutants having aromatic-ring
because of π-π interactions [82, 107, 109, 122]. A combination of graphene
with other materials is used to improve adsorption capacity for pesticides, e.g.,
GCS (graphene-coated silica) is highly efficient/effective sorbent for removal of
organophosphorus pesticide residues from water because of a mechanism that uses
electron–donor abilities of P, N and S atoms and strong π-bonding of benzene rings
[101, 102, 123–125].

Graphene oxide (GO) is the most popular derivative of graphene having a 2D-
layered structure. Along with having a very large surface area, it has various promi-
nent oxygen-containing functional groups such as carboxylic, hydroxyl, epoxide,
carbonyl, etc. And because of these functional groups, GO is easily dispersed in
aqueous solution and makes a homogeneous colloidal-suspension by unfolding its
2D-structure. Studies show that GO is being used more vigorously for the absorp-
tion of various pesticides/pollutants due to its interaction with adsorbates in molec-
ular/ionic forms through any of the mechanisms such as electrostatic, π-π inter-
action, hydrophobic, etc. As shown in Fig. 4, for the quick and potential adsorp-
tion, the adsorbents should provide the active sites at their surfaces, and adsorbate
molecules migrate as fast as possible. In another study, it is found that the adsorp-
tion of commonly used OPs such as DMT (dimethoate) and CPF (chlorpyrifos)
on graphene and its derivatives to be very sensitive to the adsorbent-structure, i.e.,

Fig. 4 Schematic diagrams: a adsorption process using conventional 1-Step b adsorption process
using enhanced 2-Steps (generation of new-sites from inactive-structures simultaneously) [126]
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aliphatic-DMT prefers surfaces of hydrophilic oxidized-graphene while CPF pesti-
cide having aromatic-moiety prefers graphene’s highly-ordered π-system [97, 126,
127].

Magnetically modified-graphene is employed successfully for the removal of five
commonly used pesticides to support rapeseed-crops in agriculture (metazachlor,
tebuconazole, λ-cyhalothrin, chlorpyrifos, and deltamethrin) from the edible rape-
seed oil. As already discussed, a large system of delocalized π-electrons of graphene
(adsorbent) effectively helps in the formation of potential π-π stacking interac-
tions between aromatic rings of pesticides (adsorbates) and large surface area,
noncovalent-interactions and hydrophobic-effect of graphene too support during the
adsorption process. To make the whole adsorption process easy and error-free, an
aqueous suspension was prepared. Additionally, to avoid the aggregation of nano-
material, enhance the dispersion of adsorbent in solvents, and render better adsorp-
tion, magnetically modified-graphene is employed here. It also helps in separating
graphene easily from the isolated-analytes in the supernatant with the help of an
external-magnet [36, 128].

6.3 Use of Carbon-Based Nanocomposite as Adsorbent

Reduced graphene oxide supporting silver (rGO-Ag) nanocomposite removes chlor-
dane (a persistent organic pesticide) from water using a 2-steps mechanism: first
degradation by Ag nanoparticles and followed by adsorption of the degraded-
byproducts (such as 1, 10-dichlorodecane, ether bis (2-chloroallyl) and octadecanoid
acid) on rGO-surface. The whole degradation-adsorption process is very fast and
takes place at room temperature [129].

7 Optimization of Physiochemical Parameters During
Adsorption Process

Being a surface phenomenon, the adsorption process involves the physicochemical
interaction of sorbate to sorbent.And to obtain themaximumefficiency of adsorption,
different physiochemical parameters such as pH value, contact-time, and operating
temperature are varied to get their optimum values which are summarized in Table 1
[130] for a reader to have a quick look. During the optimization process of different
parameters, only one parameter is varied by keeping all other parameters at some
appropriate constant values.
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Table 1 Optimized physiochemical parameters of different pesticides for adsorption

Name of pesticide pH
value

Operating
temperature
(°C)

Initial
concentration
level (mg/L)

Average
time of
contact
(min)

Efficiency
of
removal
(%)

Reference

Bifenthrin – 270 0.01 90 – [93]

Cyhalothrin – 270 0.01 90 –

Permethrin – 270 0.01 90 –

Cypermethrin – 270 0.01 90 –

Phenvalerate – 270 0.01 90 –

Deltamethrin – 270 0.01 90 –

Carbofuran 2–7 30 ± 2 2 × 10−7 15 – [131]

Metolcarb 2–9 30 ± 2 2 × 10−7 15 –

Pirimicarb 2–9 30 ± 2 2 × 10−7 15 –

Isoprocarb 2–9 30 ± 2 2 × 10−7 15 –

Diethofencarb 2–9 30 ± 2 2 × 10−7 15 –

Chlorpyrifos – 30 ± 2 1 720 – [132]

Thiame-thoxam 6 30 ± 2 5 × 10−7 10 55 Wang
et al.
(2012)

Imidacloprid 6 30 ± 2 5 × 10−7 10 78

Acetamiprid 6 30 ± 2 5 × 10−7 10 72

Atrazine 6–7 25 ± 2 0.01 30 84–96.4 Wu et al.
(2012)Prometon 6–7 25 ± 2 0.01 30 84–96.4

Ametryn 6–7 25 ± 2 0.01 30 84–96.4

Prometryn 6–7 25 ± 2 0.01 30 84–96.4

Phonamiphos 3–11 260 10 0 <85 [101, 102]

Dimethoate 3–11 260 10 0 <85

Phorate 3–11 260 10 0 >85

Parathion-methyl 3–11 260 10 0 >85

Pirimiphos-methyl 3–11 260 10 0 >85

Malathion 3–11 260 10 0 >85

Fenthion 3–11 260 10 0 >85

Isocarbophos 3–11 260 10 0 >85

Chlorfenvinphos 3–11 260 10 0 >85

Profenofos 3–11 260 10 0 >85

Methidathion 3–11 260 10 0 >85

Thiacloprid 6 30 ± 2 5 × 10−7 10 70

Chlorpyrifos 3–9 30 ± 2 2 30 100 [119]

Endosulfan 3–9 30 ± 2 1 45 100

Malathion 3–9 30 ± 2 2 60 100

(continued)
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Table 1 (continued)

Name of pesticide pH
value

Operating
temperature
(°C)

Initial
concentration
level (mg/L)

Average
time of
contact
(min)

Efficiency
of
removal
(%)

Reference

2,
4-dichlorophenoxyacetic
acid

7 30 ± 2 20 140 100 [133]

Pirimicarb 6.8–10 30 ± 2 5 × 10−7 – – [134]

Diethofencarb 6.8–10 30 ± 2 2.5 × 10−6 – –

Carbaryl 6.8–8.2 30 ± 2 2.5 × 10−6 – –

Isoprocarb 6.8 30 ± 2 2.5 × 10−6 – –

Baycarb 6.8 30 ± 2 3 × 10−6 – –

Baygon 6.8 30 ± 2 2.5 × 10−6 – –

Chlorpyrifos 5.8 30 ± 2 5 60 – [135]

Simeton 9 25–45 1 0 85 [124, 125]

Simazine 9 25–45 1 0 82

Atrazine 9 25–45 1 0 98

Ametryn 9 25–45 1 0 95

Prometryn 9 25–45 1 0 72

Cyprazine 11 25–45 1 0 90

8 Conclusions and Future Perspectives

It is near to impossible to avoid the use of pesticides for the benefits of living organ-
isms. In parallel with the regulated use of pesticides, it is of urgent importance
to employ the latest technology and materials for environmental remediation. Out
of various technologies and materials, nanotechnology coupled with carbon-based
nanomaterials/nanocomposites (such as CNTs, graphene, and its derivatives) are
considered as a very effective technique for environmental remediation due to many
advantages such as (i) effective and efficient use of large surface area of carbon-
based nanomaterials/nanocomposites, (ii) multiple adsorption mechanisms operate
simultaneously during removal of pesticides (iii) more economical to use, (iv) func-
tionalization of nanomaterials to avoid aggregation, (v) detecting and removing
very low levels of pesticide residues, and (vi) possibility of effectively catalyzing
the adsorption process. From the future point of view, we have to look into the
challenges/problems and bring some nanotechnologies using carbon-based nano-
materials/nanocomposites still at the laboratory level to commercial level through
collaboration among scientific facilities, research groups, and funding agencies.
In the near future, through rigorous research, the carbon-based novel nanomate-
rials/nanocomposites will eventually solve the environmental remediation problems
and make the environment safe for every living organism.
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Abstract Nanotechnology-based wastewater treatment assures to conquer various
drawbacks of the present adopted wastewater treatment methods. Wastewater treat-
ment is an important task for environmental conservation. Among different wastew-
ater treatment methods, the use of carbon nanomaterials (CNMs) to eliminate wide
range of pollutants has appealed the most. Different types of CNMs with distinct
roles like nanostructures membranes, nano-adsorbents, and nanocatalysts have been
taken as cost-effective, eco-friendly, and efficient replacements to the current existing
wastewater treatment methods. Fabrication, growth, and characterization of carbon
nanotubes (CNTs) and its wastewater treatment applications are discussed.
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1 Introduction

Recent advancement in nanoscience and technology has proposed different methods
for wastewater decontamination. Different assortments of CNMs with extraordinary
characteristics like nanostructures membranes, nano-adsorbents, and nanocatalysts
have been believed to be a cost-effective, efficient, and eco-friendly alternative to the
present-day wastewater treatment methods. Division of various CNMs used for the
treatment of water and wastewater is revealed in Fig. 1.

The outdated techniques of wastewater treatment are not effective to fully elim-
inate pollutants and follow the water quality standards [1]. Furthermore, different
prevalent wastewater treatment methods have abundant disadvantages such as imper-
fect contaminant exclusion, toxic sludge generation, and high-energy necessity [2]. A
diversity range of eco-friendly, efficient, and cost-effective CNMs have been gener-
ated with exceptional properties for prospective decontamination of wastewater [3–
5]. Different methods for remediation of ground water and wastewater are depicted
in Fig. 2.

CNTs comprised of multi-walled carbon nanotubes (MWCNTs) and single-
walled carbon nanotubes (SWCNTs) are shown in Fig. 3. They have highmechanical
quality, surface region, inertness with chemicals, and water-carrying characteristic.

Fig. 1 Division of various CNMs used for the treatment of water and wastewater [56]
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Fig. 2 Different methods for remediation of groundwater and wastewater [57]

Fig. 3 Arrangement of a MWCNT and b SWCNT [58]

Hence, broad interest in development of new composite layers for wastewater treat-
ment has been shown by various researchers [6–11]. Furthermore, CNTs exhibit
promising catalytic, electrochemical and adsorption properties, therefore increasing
water treatment capabilities of CNTs membranes. It can be categorized into three
main divisions: nano-adsorbents, nanocatalysts and nanomembranes depending on
nature of CNMs. Nano-adsorbent can be created by utilizing atoms of specific
elements which have extraordinary adsorption capacity and chemically active (Kyzas
and Matis 2015).
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Fig. 4 Diagrammatic
outlook of a partly
open-ended SWNTs bunch
and various adsorption
locations (1) Hollow internal
space (2) Interstitial network
(3) Grooves on the exterior
surface of CNTs, and (4)
Curved exterior surface of a
bunch [59]

Thematerials used for the formation of nano-adsorbents comprise silica, activated
carbon, clay materials, modified composites compounds, and metal oxides [12]. The
presence of van der Waals force causes the development of SWCNTs. Potential
locations for the adsorption of various pollutants are shown in Fig. 4.

CNMs have added a significant attention as nanocatalysts for the degradation
of wastewater pollutants, for example, Fenton catalysts [13], antimicrobial cata-
lysts [14], electrocatalysts [15] for augmenting chemical-based organic contami-
nants oxidation [16]. Another significant sort of CNMs utilized in treatment of
wastewater is by utilizing nanomembranes.Nanofiltration (NF) iswidely used among
different varieties of membrane-based filtration, [17–19]. NF has high efficiency,
low cost, small pore sizes, and user-friendly because of that extensively used in
pollutants removal from effluent ([20]; Petrinic et al. 2007; Babursah et al. 2006).
Among differentwastewater treatment technologies,membrane separation is broadly
acknowledged as advancing technique not exclusively to reuse wastewater, yet addi-
tionally to desalinate seawater and salty water [21]. It has various advantages like
energy advantages, simplicity in operation, less pollution, small operational cost,
and high stability and efficiency. Existing progresses in nanotechnology in amalga-
mation with membrane separation technique have been acknowledged as successful
method for effluent treatment [22]. It provides sun precedented degree of mechaniza-
tion, needed fewer chemical and area and the arrangement permits design flexibility
[23]. A key preliminary of the film innovation is the basic change among porousness
and layer selectivity. More energy utilization is a major obstacle in the extensive
application in the pressure-based membrane processes. Membrane fouling enhances
energy intake and the process design and operation complexity. Likewise, it decreases
the lifespan of membranes. The adding of nanofillers, for example, CNTs into
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membranes decreases the accumulation of pollutants and increases hydrophobicity,
mechanical properties, and thermal stabilities [24].

A wide range of nanocomposites in the form of polymeric are used for biothera-
peutic applications such as engineering of tissue, drug release, and cellular therapy.
Because of unique interactions between polymer and nanoparticles, a wide range of
property combinations can be engineering to imitate inhabitant tissue structure and
properties. Natural and synthetic polymers are utilized to intend nanocomposites in
polymeric form for biomedical applications together with cellulose, alginate, starch,
collagen, chitosan, gelatin, and fibrin, poly(vinyl alcohol), poly(ethylene glycol),
poly(caprolactone), poly(lactic-co-glycolic acid), and poly(glycerol sebacate).

2 CNTs Fabrication, Growth, and Characterization

2.1 CNTs Fabrication Techniques

Various methods available for CNTs fabrication are chemical vapor deposi-
tion (CVD), electric-arc discharge, and laser ablation [25]. CNTs structure and
morphology can be accustomed bymodifying characteristics of the existing methods
of CNT fabrication. Among different procedures, CVD is themostly used on account
of its straight forwardness adaptability and affordable undertaking. Furthermore,
CVD generated high-purity CNTs with structure controllability [25]. CVD is a warm
dehydrogenation system. A hydrocarbon fume permits over a reactor containing
metal catalyst such as Fe, Co, or Ni at high temperature (600–1200 °C) to decay the
hydrocarbon [26–28]. Atrial setup for CVD-based CNTs generation is depicted in
Fig. 5.

Fig. 5 A trial setup for CVD-based CNTs generation [26–28, 60]
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2.2 CNTs Growth Mechanisms

Two diverse growth mechanisms: vapor–liquid–solid (VLS) and vapor–solid–solid
(VSS) are shown in Fig. 6. These depend on condition of metal catalyst and disper-
sion system of carbon at high temperature. At higher temperature, a carbon fore-
runner is adsorbed and afterward decayed by nanoparticles catalyst to form carbon
atoms. Carbon atoms further react to form liquid metal carbide with the help of
catalyst. Afterward, at interface stage between catalyst and substrate, it decays into
catalyst and carbon particles and the carbon atoms are precipitated out to form
CNTs. With time, carbon atoms are released to grow CNTs at catalyst–substrate
interface CNTs [29]. This process is recognized as VLS mechanism. Other devel-
opment mechanism identified as VSS consisted of three successive steps. In the first
stage, carbon precursor decays to give carbon particles. In secondary stage, carbon
particles multiply on catalyst CNMs surface and shift toward the boundary among
catalyst and substrate. In concluding stage, carbon particles precipitate formed by
precipitation–nucleation–crystallization process.

Alternatively, on the basis of interaction strength among catalyst and substrates,
two types of CNTs growth models, tip growth and base growth models, are involved
as depicted in Fig. 7.When the interface strength is less among catalyst and substrate,
carbon forerunner disintegrates into carbon atoms on the peak surface of the catalyst;
afterward, carbon atoms disseminate down by the catalyst, and CNTs rise up from the
base of catalyst, therefore forcing down the complete catalyst at a distance from the
substrate. CNTs produce constantly as long as catalyst surface is available for more
carbon precursor decomposition. Development of CNTs stops due to the deactivation
of catalyst if catalyst is wholly covered by carbon atoms. This is called as tip growth.

Fig. 6 CNTs growth mechanisms depended upon metal catalyst and diffusion a VLS mechanism
and b VSS mechanism [30, 61–64]

Fig. 7 CNTs growth mechanisms dependent upon interaction strength between catalyst and
substrates a tip growth model b base growth model [30, 61, 63]
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In another situation, when the cooperation between catalyst and substrate is large,
the disintegration of carbon forerunner and the carbon atoms dispersions are alike to
tip growth. A crescent dome is formed in the begining, which develops CNTs at the
end. Subsequently, a catalyst which consistently fixes on the base to support CNTs
development is called as base growth.

2.3 CNTs Characterization

So as to assess its characteristics andmorphologies ofCNTs, a great deal of endeavors
utilizing different complex strategies has been created [30]. A sample of CNT
membrane is revealed inFig. 8. In short, transmission electronmicroscopy (TEM)and

Fig. 8 Trapping of salts and movement of water molecules from salinated water through SWCNT
a vertically aligned CNT membrane b mixed matrix CNT membrane [6, 7]
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scanning electron microscopy (SEM) are the recognized techniques that are gener-
ally used to decide the location of tip and side wall, in addition to CNTs morphology
[31–33].

Raman spectroscopy (RS) is a commanding depiction method for CNTs [34–36].
It is generally used to assess the purity and quality of CNTs. Thermogravimetric
analysis (TG), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy
are mainly utilized to specifically confirm the happening of CNTs fictionalizations
reactions for concluding quality assessment [37, 38]. Consequently, by changing
reactants and CVD readiness parameters, for example, catalyst, carbon forerunner,
temperature, substrate, time, pressure, and gas flow rate helped with different char-
acterization and fictionalizations method, enhanced CNTs for diverse uses. Figure 9
depicts structures of various CNT membranes.

3 Water Treatment Applications

All the four categories of CNMs like fullerenes, graphene-based CNMs, CNTs,
and nanoporous activated carbon (NAC) have abundant prospective in numerous
phases of wastewater treatment like membrane process, photocatalysis, disinfection,
and adsorption. The prospective applications of CNMs in wastewater treatment are
shown in Fig. 10.

Various researches on membrane nanotechnology have concentrated on gener-
ating multifunction by introducing CNMs into membranes. CNMs utilized for such
uses comprise photocatalytic nanomaterials (e.g., TiO2, bi-metallic nanoparticles),
antimicrobial nanoparticles (e.g., CNTs and nano-Ag), and metal oxide nanoparti-
cles which are hydrophilic in nature (e.g., zeolite, TiO2, and Al2O3). The key objec-
tive of adding hydrophilic metal oxide CNMs is to decrease fouling by enhancing
membrane hydrophilicity. The input of metal oxide nanoparticles like TiO2 [39],
zeolite [40], silica [41], alumina [42], and polymeric ultrafiltration membranes
increases membrane surface hydrophobicity. They additionally help to improve the
thermal and mechanical dependability of films along these lines diminishing the
destructive impact of heat and compaction on penetrability of membrane [40, 43].
CNTs composite membranes combine the exceptional attributes of conventional
layer materials with those of CNTs for water treatment. Evolving water treatment
applications like oil–water detachment, expulsion of substantial metal particles,
water desalination, and emerging pollutants in wastewater utilizing CNTs composite
membranes have been progressively studied by various researchers [30]. CNTs
compositemembranes applications as emerging technology forwater andwastewater
treatment are discussed as under.
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Fig. 9 CNT membranes structures a pristine CNT membrane cross-sectional scanning electron
microscope (SEM) image b cylindrical CNT-based water filter c movement of water molecules
movement through CNT channel d SEM image of CNT membrane surface having scattered NaCl
nanocrystals e pure water molecules movement through CNTmembrane in osmotically imbalanced
compartments, and f engineered CNT membranes used in industries [6, 7]

3.1 Water Desalination

CNTs utilization is significantly rising because of their characteristics to increase the
effectiveness of presently accessible membrane techniques, for example, membrane
distillation (MD), nanofiltration (NF), and reverse osmosis (RO), ([30]; Bhadra et al.
2016; Baeket al. 2016; Son et al. 2015; [44]; Roy et al. 2014; Madaeni et al. 2013).
Gethard et al. 2011 explained that CNTs can function as a sorbent to give an added
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Fig. 10 Significant applications of CNMs in wastewater treatment (Shan et al. 2013)

passage way for the transportation of solute in CNTs-PVDF (polyvinylidene fluo-
ride) membranes. CNTs-PVDF can enhance MD method at a comparatively lesser
temperature and greater permeate vapor flux for extensive variety of salts as compared
to conventionally used membranes.

3.2 Oil–Water Separation

Membrane filtration includes nanofiltration (NF), ultrafiltration (UF), and microfil-
tration (MF) techniques. It is mostly applied for oil–water treatment with specific
benefits [45, 46].Gu et al. [47] developedDans Ingeniousmethodology for emulsified
oil–water separation by developing superhydrophobic CNTs-polystyrene composite
membranes, as shown in Fig. 11. The consequent membranes efficiently isolated
an extensive variety of water–oil emulsions with an extraordinary refusal efficiency
(>99.9%).

3.3 Removal of Heavy Metal Ions from Wastewater

Effluent discharge from various industries like battery, chemical, and metal plating
contains huge number of toxic metal ion discharge [48]. CNTs have been used as
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Fig. 11 Superhydrophobic CNTs-polystyrene composite membranes for oil–water separation
a membranes and b oil–water separation [47]

favorable metal ion adsorbents [26–28, 49]. The main challenge is to alter CNT
adsorption capability into an economical and appreciated filtration membrane for
particular applications. Parham et al. explained CNT-based composite filter with
100% removal efficiency of heavy metal ions [50].

3.4 Emerging Pollutants Removal from Wastewater

Emerging pollutants like persistent organic pollutants (POPs), pharmaceutical and
personal care products (PPCPs) and environmental endocrine disruptors (EEDs)
persist in low concentration in environment, yet will in general reason causes extreme
harm to environment and humanwell-being [51, 52].ACNTs-PVDFcomposite layer
utilized in the filtration of ibuprofen (IBU), triclosan (TCS), and acetaminophen
(AAP) makes able illustration of elimination of emerging pollutants [44].

3.5 Membrane Separation Combined with Assistant
Techniques

Fan et al. [53] studied removal of phenol under electrochemical assistance by CNTs-
Al2O3 composite membranes. The results showed that the CNTs-Al2O3 composite
membrane separation performance can be considerably enhanced under electrochem-
ical assistance, such as electrostatic adsorption, degradation, and repulsion as shown
in Fig. 12. CNTs composite membranes gave good results for water treatment by
integration of ozonation catalysis and photocatalysis with membrane filtration [54,
55].



398 G. Bhalla et al.

Fig. 12 CNTs-Al2O3 composite membrane separation mechanism under electrochemical assis-
tance [53]

4 Conclusion and Future Perspective

Fabrication, characterization, and fictionalization of CNTs composite membranes
water treatment uses are discussed. The desired characteristics of CNTs can be
obtained by fictionalization and characterization. CNMs possess greater surface area,
outstanding chemical, thermal, electrical, and optical activities. It has been taken as
an ideal candidate to eliminate wastewater organic and chemical pollutants from
wastewater. Previous studies have proved the prospective applications of CNMs for
wastewater treatment at laboratory scale. Though the large-scale utilization of these
CNMs still faces extensive challenges, further detailed studies are required.

• Practically all the investigations were done under laboratory conditions. Advance
studies should be done under more convincing situations to estimate the
applicability and efficiency of various CNMs in wastewater treatment.

• The cytotoxicity of CNMs on environment and public health has not been studied
intensively. The risk assessment studies of CNMs are urgently required.

• CNTs and graphene-based CNMs accumulation in liquid phase is a major short-
coming for water decontamination. Accumulated CNMs would decrease surface
area and active sites consequently affect the accessibility, resulting in declined
proficiency for the removal of pollutants. Furthermore, researches should stress
more on the targeted alterations and upturn the proficiency, selectivity and liking
for particular contaminant in wastewater.

• Furthermore, membrane separation together with various assisted methods like
adsorption, catalysis, and electrochemistry are accessible, and a profound compre-
hension of the blended components is inadequate. Likewise, extra logical and
specialized endeavors are required.
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• The existing production techniques for CNMs are complex and low-efficient.
Simple, robust, and efficient fabrication methods are required.

• The potential harmful impacts of CNTs exposure to the surrounding environment
are needed to be studied in detail.
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Recent Advances in Preparation
and Characterization of Graphene-Based
Nanocomposite Membranes for Water
Purification

Arun Kumar Shukla, Mohammad Azam Ansari, Javed Alam, Ali Aldalbahi,
and Mansour Alhoshan

Abstract Increasing water scarcity and diminishing freshwater resources have
generated the need for new water filtration technologies to supply safe potable
water for domestic and industrial uses. Filtration with polymeric membranes shows
good capability for water treatment; however, it has some limitations, such as
selectivity and permeability, and fouling, thereby, limits the continuity of safe
water. Long-term filtration stability can be improved using a new generation of
nanocompositemembranes that are formedby incorporating nanomaterials into poly-
meric membrane matrices. A number of different nanomaterials and methods have
been adopted at an accelerated pace to develop a thin-film nanocomposite (TFN)
membrane. Among these nanomaterials, graphene and its functionalized deriva-
tives have received much research attention, as this approach for developing a
new TFN membrane has shown excellent performance, leading to water treatment.
Graphene has superior properties that are highly advantageous for solving major
problems, such as biofouling, scaling, low flux rate, selectivity, and degradation.
This chapter provides an overview of the development of graphene-based nanocom-
posite membrane methods and physicochemical properties after the incorporation of
graphene nanomaterials and their derivatives. A specific focus has been employed on
improving understanding of how graphene nanomaterials can be used in a number of
different ways, such as ultrafiltration, nanofiltration, and reverse osmosis for water
filtration.
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1 Introduction

The current intensification of the synthesis and processing of carbon-based nano-
materials and their derivatives suggest an exciting prospect for developing a new
class of advanced nanocomposite membranes. Among carbon-based nanomaterials,
graphene is regarded as one of themost auspiciousmaterials due to its tightly packed,
two-dimensional honeycomb latticewith excellent optical properties, well-organized
carbon network building blocks, high surface area, superior thermal and mechanical
properties, excellent intrinsic carrier mobility and barrier properties, and reliable
processing strategies [4, 15, 17, 40]. Therefore, graphene-associated nanomaterials,
such as single-layer graphene, multilayer graphene, chemically converted graphene,
and graphene oxide (GO), are much more frequently considered because of their
availability [31]. The oxidized functional groups of GO have increased the dispersion
andminimized the aggregationof graphene intomatrix phases.Hence, the presenceof
such functional groups (e.g., epoxide, hydroxyl, carbonyl, and carboxylic) enhances
the electrical properties of GO attributable to the extensive presence of mixed sp2/sp3

hybridized carbon domains on the basal planes and edges [16, 22]. As an excellent
candidate, nanofiller offers a perfect implementationwith different polymermatrices.
The presence of integrated functional groups in GO allows for exfoliation and disper-
sion, with strong interfacial bonding between the polymer matrix and nanofiller,
which is embedded to form a nanocomposite polymeric membrane. The graphene-
based nanocomposite membrane has gained huge improvement in their selective
permeation and/or antifouling properties and maximized the permeate flux of the
pristine membranes [26, 28]. Therefore, graphene-based nanocomposite membranes
can be used to change the microstructures and transport pathways, enabling their use
in various extraordinary membrane separation applications, for instance ultrafiltra-
tion, nanofiltration, and reverse osmosis [2, 3, 26]. Moreover, as mentioned above,
graphene-based nanocomposite membrane fabrication was employed in different
preparationmethods, dependent on the selection of polymer and themembrane struc-
ture of interest, whose advantages and the pathways for practical applications are
described in the next section. This chapter provides a comprehensive and systematic
summary of the current state of the art of graphene-based nanocomposite membrane
and assesses its applicability to water purification. First, the graphene properties
and the potential of graphene-based membrane for water treatment are introduced.
Then, its fabrication is systematically summarized. An in-depth description of the
physical and chemical properties of membranes, including the surface properties,
permeability, removal efficacy, and fouling propensity, is provided. Furthermore,
their applicability and performance are assessed in altered applications, for instance
ultrafiltration, nanofiltration, and reverse osmosis [7].
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2 Preparation of Nanocomposite Membrane

The methods engaged to develop nanocomposite membranes are dependent on the
selection of polymer, and the properties and structure of the membrane of interest.
The most popular methods of preparing polymeric nanocomposite membranes are
phase inversion and interfacial polymerization.

2.1 Phase Inversion Method

The graphene-based nanocomposite membranes were fabricated by phase inversion
induced by the immersion precipitation method, using casting solutions containing
polymer and a proper amount of GO nanoparticles in solvent [5]. This method is
a demixing approach that takes a polymer solution that is initially a homogenous
liquid and uses control techniques to transform it into a solid that becomes thermo-
dynamically unstable [13, 26]. The schematic shown in Fig. 1 describes the phase
inversion method for nanocomposite membrane formation.

In this method, the specific percentage of GO was added into the solvent and
dispersed by sonication to improve homogeneity and reduce aggregation. After
dispersing thenanoparticles in the solvent, polymerwasdissolved in the dope solution
by continuous stirring to obtain a homogeneous solution. After removing air bubbles,
the dopant (casting solution) was cast onto an appropriate clean glass plate surface,
using a doctor blade to a thickness of about 100 ± 3 µm. Subsequently, the glass
plate was horizontally immersed into a coagulation bath that is occupied with water

Fig. 1 Representation of graphene-based nanocomposite membrane fabrication by phase inversion
process
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(non-solvent) for the immersion precipitation process. For the duration of immer-
sion precipitation, any one of the demixing processes can take place. The demixing
process can be described via the exchange rate between the non-solvent and solvent
during precipitation [25]. There are two types of demixing that can be applied: one
type, direct demixing, arises instantly after the immersion of the casted solution in a
non-solvent and leads to a faster solvent–non-solvent exchange rate to form a porous
top layer with a finger-like sublayer membrane. The other, late demixing, is a slow
process in which the demixing takes time, and the solvent–non-solvent exchange
takes place at a slow rate afterward the immersion. Consequently, a dense top layer
with fewer macrovoids and sponge-like structure forms [25]. Furthermore, the incor-
poration of GO nanomaterial enhances the phase separation and shows deterrent
effects. From the thermodynamic perspective, the nanomaterial-based casting solu-
tion reductions the solvent power of the solution and works as a non-solvent agent.
Hence, less non-solvent is needed for the phase separation of the polymeric casting
solution. This phenomenon leads to direct demixing and the effects in a membrane
with an asymmetric finger-like structure. The membrane formation, exhibiting struc-
tures such as those that are sponge-like and finger-like are shown in Fig. 2. After
the primary phase separation and membrane solidification, the resultant nanocom-
posite membrane may then go through treatment, for example washing, strengthen,
or drying.

2.2 Interfacial Polymerization

Interfacial polymerization (IP) is the best-established route for the preparation of a
new type of thin-film nanocomposite (TFN) membrane, and now, this process is the
most significant method for commercial fabrication in industry. For the interfacially
polymerized TFN membrane, nanomaterials are contained within the polyamide
dense layer or inside the support layer of the membrane to increase the membrane
separation properties. IP is a type of condensation polymerization in which poly-
merization follows at the interface among an aqueous solution having one monomer
m-phenylenediamine (MPD) and an organic solution having a second monomer
trimesoyl chloride (TMC) [7]. In this method, the preparation of TFN membranes
has been accomplished by few stages (see Fig. 3).

First, a diaminemonomer aqueous solution was prepared via dissolvingMPD and
trimethylamine in the presence or absence of a surfactant in deionized water. Subse-
quently,MPD/GO aqueous solution was prepared with the incorporation of a specific
percentage of GO in prepared MPD and dispersed by sonication to reduce aggre-
gation; flat microporous polymeric support was soaked with the diamine monomer
aqueous solution. Second, the amine-impregnated membrane was immersed in a
TMC solution in hexane. Finally, after the removal of the TMC solution, the
membrane was left under the ambient conditions for 2 min, which brings about
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Fig. 2 Nanocomposite membrane formation a finger-like and b sponge-like structure

Fig. 3 Schematic illustration of interactions of GO-Ag with TMC and MPD via interfacial
polymerization to development of thin-film nanocomposite membrane [2, 3]
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in the formation of a polyamide nanocomposite thin film on surface of the poly-
meric membrane support (50–200 nm thickness) [11]. Owing to the polarity differ-
ences between the two phases, the monomers react with one another at the surface.
The cross-linking of the membrane was achieved by treating it with heat at 80 °C
for 5 min to ensure that the interfacial reaction has been completed. The prepared
TFN membrane was rinsed thoroughly and stored in water for subsequent charac-
terization and experiments [2, 3]. As the IP method was prominently superior in
terms of the independent optimization of the microporous substrate and skin layer
properties, several types of TFN membrane have been created [6]. Membrane struc-
tural morphology and the barrier layer composition are influenced by a number
of elements, e.g., post-treatment conditions, reaction time, solvent type, monomer
concentration, and subsequent treatment. The prepared TFN membranes show a
smoother surface or better hydrophilicity because the monomers contain more func-
tional or polar groups [7]. The enhanced membranes hydrophilicity is advanta-
geous to the improvement of the antifouling property, water permeability, and solute
rejection performance.

3 Physicochemical Characterization of Nanocomposite
Membranes

Graphene-basednanocompositemembraneswere characterizedusingvarious analyt-
ical tools.

3.1 Surface and Cross-Sectional Morphology

The most commonly used technique for structural characterization (e.g., membrane
pre-layer and skin layer) of nanocomposite membranes is SEM. An SEM image is
formed by scanning a focused electron beam across the sample and recording the
intensity of the scattered or secondary electrons. Shukla et al. [27] developed a GO-
based nanocomposite membrane with polyphenylsulfone polymer from the phase
inversionmethod. The cross-sectional morphology significantly varied inmanyways
with pristine polyphenylsulfone membranes after the addition of GO. Primarily, the
pores in the sub-porous layer of the membrane were quite thinner and seemed in
straight finger structures with open ends. Furthermore, the thickness of the skin layer
was decreased, and very fine oval-shaped pores were developed just under this thin-
skin layer. Finally, the thickness of the spongy support layer was also compressed
but appeared much denser with interconnected pores (Fig. 4).

Karkooti et al. [12] observed that nanocomposite membranes have an asymmetric
structure, with a dense skin top layer supported by a porous finger-type structure, and
the average skin layer thickness increased significantly. The containing of hydrophilic
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Fig. 4 SEM images of membrane cross-sectional morphologies of pristine membrane and different
concentration of GO-based nanocomposite membranes [27]

additiveGO tends to improve the thermodynamic instability of themembrane casting
solution, which accelerates the demixing of solvent and non-solvent exchange rate
in the coagulation bath. Moreover, the swelling of the polymeric membrane by
hydrophilic GO prior to its solidification allows for greater passage of non-solvent
to the casting nanocomposite membrane throughout the phase inversion process.
Furthermore, with the differing concentrations of GO in the polymer matrix, a signif-
icant increase in the viscosity of the casting solution has countered these effects and
increased the skin layer thickness owing to a reduction in the mutual diffusivities
between the solvent and non-solvent [26].

The cross-sectional morphology of hollow fiber nanocomposite membranes
confirmed the significant changes in the morphology of the membrane when the
incorporation of GO. Figure 5 clearly shows that the cross-sectional morphology for
the graphene-based nanocomposite membrane is asymmetric, consisting of a thin top
layer and a porous sublayerwith larger and uniformfinger-like pores andmacrovoids.
Furthermore, the top layer of the nanocomposite membranes consists of closely
packed nodules with micron-size void spaces. The hollow fiber nanocomposite outer
layer turns out to be porous with a sponge-like substructure spanning about half of
the cross section, and the inner side seems to be much less structurally asymmetrical
[1].

As shown in Fig. 6, the top surface morphology of TFN membrane is observed,
exhibiting morphologies such as “nodular” and “leaf-like.” However, with polymer-
ization time, the surface morphology changed to “hill and valley.” The incorporated
GO nanomaterials reacted with MPD and TMC during the polymerization reac-
tion, and its oxygen-containing functional groups reacted only with MPD. The acyl
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Fig. 5 SEM cross-sectional images of hollow fiber nanocomposite membranes with different
concentration of GO

Fig. 6 SEM images of
surface of polyamide
graphene-based thin-film
nanocomposite membrane
[2, 3]
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chloride groups of TMC interacted with the hydroxyl and carboxyl groups of GO
nanomaterials. As suggested byAli et al. [2, 3], the presence of hydrophilic GOnano-
materials in the organic phase enhances the miscibility of the aqueous and organic
phases during interfacial polymerization. Contact between the hydrophilic nanoma-
terials in the organic phase and hydrated MPD from the aqueous phase results in
particle hydration and the release of heat, which accelerate polymerization. With
respect to the top of the thin polyamide layer, the thickness of polyamide was clearly
reduced with different concentrations of GO, which is probably due to aggregation of
GO at high GO loading. Aggregation can result in poor dispersion of nanomaterials
in the polyamide matrix, decreasing the rate of polymerization, which leads to the
formation of dense thin polyamide layers.

Then, the AFM method was used to obtain quantitative investigation of surface
morphological structures, with 3-D topographic AFM images of the top surface of
TFC membranes shown in Fig. 7. With the addition of GO nanomaterial into the
polymer matrix, the enormous “peaks-and-valleys” are significantly exchanged by
slighter ones, exhibiting a smoother surface. The decrease in the surface roughness
of the nanocomposite membrane could be attributed to the functional groups, which
increase the diffusion rate of the non-solvent during the phase inversion precipitation
process and form a smoother surface (Fig. 7b) [27].

As Fig. 7d demonstrates, the formation of the polyamide layer with nanomaterial
by the IP process increased the surface roughness of the polymeric support layer. The

Fig. 7 AFM 3-D surface images of pristine membrane and nanocomposite [2, 3, 27]
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graphene-based TFN membranes exhibited a “peaks-and-valleys” polyamide struc-
ture. The addition of graphene nanomaterials in the organic phase of TFNmembrane
is shown to have created higher peaks. Moreover, as discussed previously, the TFN
membranes developed more apparent “leaf-like” folds in the SEM images, which
are translated into the high peaks in the AFM images. The significant alterations of
morphology attributable to the enhanced diffusion of diamine toward the IP zone are
caused by the affinity of the MPD aqueous solution toward the hydrophilic nano-
materials. The diffusion rate of diamine into the organic solution of acid chlorides
is increased by the unstable flow toward nanomaterials in the hexane phase. There-
fore, the distribution of the reaction sites changes when the amide linkage is formed,
causing higher peaks and lower valleys to form [2, 3, 8].

3.2 Membrane Hydrophilicity

The water contact angle is one of the most important factors applicable to the surface
hydrophilicity of the membrane. In principle, it delivers information regarding the
wettability of an ideal membrane surface because of the incorporating of the nano-
materials [5, 35]. In most cases, the intrinsic value of contact angle is perturbed by
surface porosity and physical properties such as roughness and heterogeneity.

Based on the sessile drop method, water droplets with a volume of 3 µl were
delivered onto the membrane surface, and the initial contact angle was measured
after 3 s. A higher contact angle represents a more hydrophobic surface, and a lower
contact angle reveals the higher surface energy, as well as the hydrophilic nature of
membrane (see Fig. 8) [12]. As presented in Fig. 9, the contact angle data shows
an interesting trend with the addition of graphene nanomaterial into the membrane
matrix, tending to be more hydrophilic compared to pristine membrane. Yuan et al.
[38] explained that the improved hydrophilicity of graphene is due to the functional
groups that migrate spontaneously to the membrane surface to decrease the interface
energy throughout the phase inversion process, which makes the nanocomposite
membrane surface greater hydrophilic.

As suggested by [19] with increasing graphene concentrations into the polymer
matrix, the nanomaterialsmove to the surface of the casting film to be exchangedwith
water, causing an increase in the contact angle, whichmeans that more nanomaterials
within the coagulation bath caused a membrane surface that was more hydrophobic

Fig. 8 Surface contact angle
via sessile drop method
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Fig. 9 Surface contact angle of pristine polymeric membrane and graphene-based nanocomposite
membrane [27]

than that with low nanomaterial content. Surface hydrophilicity is a decisive
parameter in determining the antifouling and water permeability characteristics of
graphene-based membranes.

3.3 Surface Charge Determination of Nanocomposite
Membrane

The surface zeta potential, which reveals the charge property of the graphene-based
nanocomposite membrane samples, was considered by measuring the streaming
potential using electrolyte solutions at different pH values. The identification of
the surface charge as a function of pH is useful in helping to understand the acid–
base properties of the membrane surface functional groups, along with anticipating
the separation performance under different feed pH [18]. The surface charge of the
nanocomposite membranes is negative in the higher pH range, and when it passes
through an isoelectric point (IEP), it becomes positive in the lower pH range (Fig. 10).
The graphene-basedmembrane gained amore effective negative charge than the pris-
tine polymeric membrane. The alteration in the membrane surface charge with pH is
attributed to the protonation (below IEP) and deprotonation (above IEP) of various
GO functional group availability. Therefore, the nanocomposite membrane is more
negatively charged under neutral and base conditions [14, 26].
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Fig. 10 Zeta potential of membranes as a function of pH [26]

3.4 Thermal Stability of Nanocomposite Membrane

The thermal stability of the graphene-based membrane samples was investigated by
thermogravimetric analysis (TGA). The analysis depended on a high degree of preci-
sion in three measurements of the sample: weight, temperature, and weight loss with
temperature in a given atmosphere. While thermal stability plots of nanocomposite
materials can sometimes be difficult to interpret, this exploration is often used to
determine their compositional analysis, using adequate pristine polymeric samples
or reference plots [24]. A membrane weight loss curve can be used to define the
point at which weight loss is most apparent. Furthermore, the feature of this thermo-
analytical technique represents a useful tool to obtain information regarding thermal
and oxidative stability, life expectancy, decomposition profile, moisture, and volatile
content. As illustrated in Fig. 11a, the addition of GO nanomaterials to the polymer
matrix improved the thermal stability of the membrane. As observed in the TGA
curves, the decomposition of the membrane with temperature occurs in three steps.
The first one corresponds to the evaporation of water embedded in the polymer
chains (or absorbed moisture) and the evaporation of residual solvent. The second
one corresponds to the degradation of the polymer chains, while for the nanocom-
posite membrane the degradation was more stable. The third one is attributed to the
decomposition of the more stable oxygen functionalities, such as the carbonyls and
phenols [23]. An increase in the thermal degradation temperature for the nanocom-
posite membranes is attributed to the obtainability of the polar functional groups of
GO, leading to the strong interfacial bonding between the polymer matrix and the
GO nanomaterials [27].
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Fig. 11 a Thermal properties and b mechanical properties using tensile tests of graphene-based
nanocomposite membrane [27]

3.5 Mechanical Properties

The presence of graphene in a polymer matrix can lead to significant strengthening,
and for this purpose, a vast amount of research has been focused on the mechanical
properties of graphene nanocomposite membrane. The evaluation of the mechanical
strength in nanocomposite membrane is most commonly performed by the study of
the stress–strain curves obtained during tensile testing [23, 27]. Figure 11b represents
the comparison of mechanical properties of pristine membrane and nanocomposite
membranes. Numerous parameters can affect the mechanical properties of nanocom-
posite membrane, including the structure of the graphene, preparation method,
dispersion of the nanomaterials in the polymer matrix, nanomaterial–polymer matrix
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interactions, and the orientation of the nanomaterials [20, 39]. Sufficient mechanical
strength is necessary to define the stability, end use, and processability of nanocom-
posite membranes. The interaction between the graphene nanomaterials entities and
polymer components contributes a significant role in impartingmechanical properties
to nanocomposite membranes. Furthermore, isotropy is an important property that
is responsible for their mechanical properties. The good dispersion of graphene in a
polymermatrix restricts chainmovement and, thus, supportsmechanical strength [32,
33]. However, the variation in mechanical properties depends on the size, uniformity,
and volume fraction of the graphene nanomaterial entity, as demonstrated by [30].
Alam et al. [1] studied the effect of graphene with increasing content and observed
that tensile strength along with toughness significantly increases, even with a very
small amount of nanomaterials. The graphene-based nanocomposite membranemust
possess good mechanical properties, e.g., toughness, to endure the pressure during
water treatment application.

4 Nanocomposite Membrane Applications

Membrane separation has become an important technique to resolve water
scarcity and environmental problems. Graphene-based nanocomposite membrane
has nanopores that can be functionalized. They are used as a semipermeable barrier
between two phases that retain contaminants, such as metal ions, organic–inorganic
compounds, and microorganisms mainly from the aquatic environment. This supe-
rior property makes it ideal for higher permeate flux, higher selectivity, antifouling
ability, and improved stability through controlled pore size and morphology [29]. A
schematic of graphene-based nanocomposite membrane is shown in Fig. 12.

Fig. 12 Graphene-based flat sheet and hollow fiber nanocomposite membrane [1]
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In recent years, graphene-based nanocomposite membranes have developed in
rapid succession owing to its 2-D nanochannel between adjacent graphene layers
and the adjustable nanoporous surface, including UF, NF, and RO. The application
of these procedures has produced great economic and social benefits and has become
one of the most important means of separation science.

4.1 Nanocomposite Ultrafiltration

Ultrafiltration is commonly used in the concentration, separation, and purification of
assured solutions with low- and high-molecular-weight-soluble solutes and microor-
ganisms. With the continual enhancement of membrane materials and process tech-
nology, UF in the field of water and wastewater treatment technology has been
widely used. Incorporating graphene nanomaterials into the UF membrane is an
area of great attention to many researchers. For example, [41] suggested the addi-
tion of GO nanomaterials to the polyethersulfone membranes applied in membrane
bioreactor to treat milk-processing wastewater. The nanoparticles affect the pore
formation process, and the addition of GO would also decrease the contact angle
of the nanocomposite membrane significantly, thereby improving the hydrophilicity.
Graphene-based nanocomposite membrane has less biofilm accumulation on the
surface; therefore, the membrane bioreactor showed an increased capacity for the
removal of organic matter, both in terms of COD and BOD of milk-processing
wastewater. Furthermore, the nanocomposite membranes exhibited negative zeta
potential, which induces an electrostatic repulsion between the microorganism and
the membrane surface, hindering the surface attachment of the microorganism.
Shukla et al. [27] used GO on polyphenylsulfone polymer matrix to create a novel
nanocomposite UF membrane. It was found that with the incorporation of GO, the
properties of membrane, including hydrophilicity, surface charge, and morphology
were improved, preventing fouling as well as the adsorption of foulant on the surface
(as shown in Fig. 13). Wang et al. [34] prepared novel polyvinylidene fluoride-doped
with GO nanosheets via the immersion phase inversion process.

The GO-blended PVDF membrane always maintained a higher flux owing to the
higher hydrophilicity of the preparedmembranes, which intended that the antifouling
performance of the membrane was significantly improved by the hydrophilic nature
of the GO nanosheets. Yu et al. [37] modified GO by hyperbranched polyethylen-
imine (HPEI) and then blended it into a polyethersulfone casting solution to prepare
nanocomposite membrane for antifouling and antibacterial application. When the
HPEI-GO content in the membrane displayed a preferable antifouling and antibac-
terial performance against Escherichia coli (E. coli) and protein, the nanocomposite
membrane provided a good antibacterial effect, as shown in Fig. 14. It is consid-
ered that irreversible damage can be induced on bacterial cells after direct contact
with graphene nanomaterials because of membrane stress induced on bacterial cells
resulting in the destruction of cell structures.
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Fig. 13 Schematicmodel for antimicrobial and antifouling properties of graphene-based nanocom-
posite ultrafiltration membrane [28]

Fig. 14 SEM (a, b) and TEM (c, d) images of E. coli bacteria treated with membranes: (a),
(c) pristine membrane; (b), (d) graphene-based nanocomposite membrane [37]. Copyright 2013
Elsevier
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Ali et al. [2, 3] studied the combination of two nanomaterials, namely GO and
silver (Ag). First, the silver-loaded graphene oxide (GO-Ag) nanocomposites were
added at all concentrations as opposed to only the solitary polysulfone, resulting
in a significant increase in the hydrophilicity, which means that the water flux has
been influenced. The results also showed that adding GO-Ag nanomaterials into a
polysulfonemembrane inhibited the attachment, colonization, and biofilm formation
against waterborne bacteria, such as E. coli and Staphylococcus aureus (S. aureus).
The nanocomposite membrane showed that the cell wall and cell membrane were
extensively damaged due to direct contact of bacterial cells with the membrane
surface. In addition, the combination of GO-Ag nanomaterials exhibits the ability to
enhance the oxidative stress of reactive oxygen species and lipid peroxidation, which
play an important role in the killing of bacterial cells. Second, GO-Ag also displays
efficient antifouling performance. The observation of graphene-based nanocom-
posite membrane reveals that the excellent properties of nanocomposite ultrafiltra-
tion membranes make them useful in a wide range of industrial and water separation
applications.

4.2 Nanocomposite Nanofiltration

Nanofiltration is a molecular separation technique that occurs between UF and RO.
Nanofiltration for water treatment is already on the market and currently seems
to be the most mature method, although the current generation of water treatment
devices can now capitalize on the new properties of nanomaterials and may prove to
be of interest for both researchers and industries. It has a certain retention rate for
inorganic salts and different rejection rates for different molecular weight particles.
Graphene-based nanocomposite membrane can also be fabricated to be used for NF.
The properties showed that nanocomposite membrane can produce potable water
from the brackish groundwater [31].

Wang et al. [32, 33] demonstrated that nanoporous graphene membranes can
successfully remove salts from water. Salt rejection may be attributed to physical
sieving and Donnan exclusion in view that the hydrated radii of ions are slightly
smaller than the radius of the carbon nanochannel. The rejection performancemainly
depended on the charge base separation for nanocomposite NFmembrane, following
theDonnan exclusionmechanism.According toDonnan exclusion, the ionic concen-
trations at the membrane surface are not equivalent to those in the bulk solu-
tion. The counterion (ions with opposite charge of the nanocomposite membrane
surface) concentration is higher at the membrane surface compared with the bulk
solution. The co-ion (ions with the same charge of the nanocomposite membrane
surface) concentration is lower at the membrane surface. When an external pres-
sure is applied on the membrane surface, water can pass through the membrane,
while co-ions are rejected owing to the Donnan potential. Simultaneously, coun-
terions are also rejected owing to the requirements of electroneutrality. Han et al.
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[9] fabricated the membrane by the synergistic assembling of graphene and multi-
walled carbon nanotubes and applied organic dye, considering salt separation as
well as antifouling performance. The incorporated graphene nanomaterials into the
membrane, water flux, and rejection were significantly increased owing to the occur-
rence of graphene nanochannels. Therefore, more water molecules were able to pass
through themembrane. Additionally, the higher salt rejection rate due to the nanoma-
terial nanochannelwill also shrink at high ion strength because electrolytes screen the
negatively charged carboxyl groups and suppress the electrostatic repulsion between
graphene sheets. Shukla et al. [26] suggested that the addition of carboxylated–
GO nanomaterials to the polyphenylsulfone matrix would affect the surface prop-
erties, thereby improving heavy metal ion (arsenic, chromium, cadmium, lead, and
zinc) rejection at different concentrations. The rejection performance is governed
by two main mechanisms—Donnan and dielectric exclusion. The rejection mech-
anisms briefly argue for ionic concentration effect, Donnan exclusion is the main
influencing factor at lower concentrations, and the solvation energy barrier effect
plays a secondary role in the rejection of ions. Alternatively, the solvation energy
barrier effect plays a more dominant role, whereas the Donnan exclusion effect plays
a secondary role at the higher ionic concentration. Figure 15 shows the heavy metal
ion rejection performance mechanisms. Furthermore, [38] studied the salt rejection
performance through carboxylated–GO nanocomposite membranes developed by a
pressure-assisted self-assembly technique. The addition of nanomaterials reduced the
contact angle and yielded a higher surface hydrophilicity. Therefore, thewater perme-
ability was significantly enhanced because the water molecules are first absorbed by
the carboxyl groups on the membrane surface and penetrate into the empty space

Fig. 15 Graphene-based nanocomposite membrane ions rejection mechanisms [26]
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between carboxylated–GO layers as well as reduce the percentage of oxygen atoms,
implying that the increasing unoxidized areas lead to faster water diffusion. The
carboxylated–GO membrane demonstrated that the higher rejection of dianion and
monovalent anion compared with the pristine GOmembrane attributable to carboxyl
groups would increase the negative charge distribution on the membrane surface,
promoting stronger electrostatic repulsion between the anions and the membrane.
Moreover, carboxylated–GO membranes have a similar trend with typical nanofil-
tration in rejecting the order of dianion over monovalent anion owing to the effect of
the ionic mobility.

4.3 Nanocomposite Reverse Osmosis

Reverse osmosiswasfirst introduced byReid in theUSA in 1953,who then developed
a cellulose acetate-based polymeric asymmetric semipermeablemembranewith high
desalination rate and high permeability. In recent decades, a number of techniques
have been used to prepare a new generation of polyamide nanocomposite membrane
using a graphene nanomaterial via the interfacial polymerization of MPD and TMC,
and they are still frequently employed [21]. The concept of these nanomaterials is to
improve the surface properties and overcome the permeability–selectivity trade-off
in graphene-based thin-film nanocomposite (TFN) membrane for water treatment
applications. By incorporating a small quantity of graphene nanomaterials into the
PA layer of the membrane, the water permeability of the resultant membrane could
be improved by almost an order of magnitude without compromising salt rejection.
This demonstrates the TFN membrane performance resulting from the unique char-
acteristics that offer preferential flow paths for water molecules through its super-
hydrophilic surface and structure [6]. Wang et al. [32, 33] have reported on the
zeolitic imidazolate framework-8(ZIF-8)/graphene oxide TFN membrane via inter-
facial polymerization. The as-prepared (ZIF-8)/GO hybrids TFN membrane showed
an inherent hydrophilicity of the polyamide layer, enhancing the water permeability
as the ZIF-8/GO hybrid nanocomposite reduces the interaction of the polyamide
chains and undermine the polymer chain packing to a certain degree. Furthermore, it
is notable that the divalent salt rejection of the nanocomposite membrane increases
significantly, up to 100%. This may be triggered by the improved negative charge
density of nanocomposite membranes with the introduction of ZIF-8/GO nanocom-
posites. As stated by the electrostatic repulsive interaction mechanism, the nega-
tive charge of the membrane surface attracts a high-valent cation and repulses a
high-valent anion. In addition, the nanocomposite membrane has an optimal antimi-
crobial activity with E.coli bacteria. He et al. [10] studied the impact of varying
the graphene oxide content on poly(amide) layer and then applied it to desalinate
seawater. They found that the graphene oxide nanomaterials disperse well across the
composite membranes, leading to a lower membrane surface energy and enhanced
hydrophilicity, increasing the pure water flux by up to 80% without significantly
affecting the salt selectivity. The salt rejection of the nanocomposite membranes
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was enhanced up to 100%, attributed to physical and morphological factors simul-
taneously affecting diffusion and rejection. Owing to the high surface area of native
graphene oxide, this will lead to a high surface of contact with the PA material
within the hybrid nanocomposite membranes. The presence of different charges of
salts induces charge effects that influence the water separation performance of the
membrane, showing higher rejection. The nanocomposite membrane mainly has a
negative surface charge due to the functional groups on the membrane surface; the
membrane tends to repel negative anions. The molecular size and Donnan exclusion
effects, caused by the acid groups attached to the polymer backbone in this hybrid
graphene nanocomposite membrane, will determine the rejection rate of salts. Yin
et al. [36] prepared a graphene-based TFN membrane by the in situ interfacial poly-
merization process for the removal of salts from aqueous solution. The results showed
that the membrane had a very stable water flux and salt rejection during the extended
filtration process, whereas an increased surface hydrophilicitywill facilitate the inter-
layer space inside GO nanosheets, providing additional short paths for water perme-
ation through the PA thin-film layer. In another study, [2, 3] successfully synthe-
sized composite of Ag-doped graphene (GO-Ag) and investigated its antifouling and
antibacterial activity of thin-film nanocomposite membrane. As a result, the GO-Ag
nanomaterials revealed good dispersibility, and the membrane properties and struc-
ture, such as zeta potential, contact angle, and a smooth surface, were improved.
Including a GO-Ag concentration of 80 ppm in the membrane increased the water
flux recovery ratio (89%) and provided low irreversible resistance (10%) as well
as eliminated 86% of viable E.coli cells in bacterial suspensions. Therefore, these
graphene-based TFN membranes can potentially be used for water separation and
purification applications.

5 Conclusion

Graphene is a novel nanomaterial, which includes many properties to develop a
graphene-based nanocomposite membrane. The superior properties of nanoparticles
including their thermal and mechanical stability, large specific surface area, surface
properties, and composition, as well as the type of polymer, have strong influences
on the desalination and water filtration performance of nanocomposite membranes;
in addition, they are cost-effective. Therefore, this chapter provides systematic infor-
mation regarding recently developed/modified methods, physiochemical properties,
and filtration performance, such as bacterial and pollutants summarized for graphene-
based nanocomposites membrane. However, graphene nanomaterials compatibility
with polymer matrix and scalable manufacturing of graphene-based nanocomposite
membranes will greatly enhance their applications. Graphene is a very appropriate
nanomaterial to develop a more efficient and cost-effective membrane for filtration
processes, aiding its further development to make them applicable in real water and
wastewater treatment processes and different applications.
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Abstract This special chapter deals with the study of mechanistic and applicative
properties of carbon-based composite hydrogels for the environmental remediation.
The hydrogel types based on a synthetic and natural derived source of polymeric
precursor as a backbone for the synthesis of hydrogel was also provided. The green,
sustainable and biomass waste based carbonaceous materials like, activated carbon,
graphene, graphene oxide, carbon nanotube, carbon dot etc. used in the designing
of carbon-based composite hydrogel also discussed. The composite hydrogels are
cheap, easy to use, sustainable, and can be easily synthesized. Carbon basedmaterials
which help in the crosslinking process through ionic interaction, electrostatic inter-
action, π-π interaction and weak Van der Waals forces. A unique property such as
mechanical strength, porous nature, swelling ability, water insolubility, reusability
and biodegradability of composite hydrogels helps in the adsorption and removal
of environmental pollutants. We have briefly discussed the literature survey about
different carbon-based composite hydrogels and their uses in removal and detec-
tion of variety of pollutants. In this chapter, further we have elucidated about the
adsorption, removal and sensing of the heavy metals, organic, inorganic pollutants,
dyes and pharmaceutical pollutants etc. These hydrogels are more efficient, reusable,
biodegradable, ecofriendly, andhence these canbewidely useful in the environmental
remediation on large scale.
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1 Introduction

Day by day increasing population and industrialisation due towhich the consumption
of environmental resources is increased by a human being, but the improper way of
management causing more environmental pollution. Commonly untreated wastew-
ater from various industries and drainage’s, is the main reason for soil pollution and
water pollution which is the major cause of many more environmental problems.
These are directly or indirectly influencing diverse effect on human health, plants,
animals and on many more environmental factors. There are lots of traditional ways
have been followed for the treatment of wastewater like adsorption, ion exchange,
ozonolysis, water membrane filtration, electrochemical treatment, chemical precipi-
tation, ion exchange, etc. [31]which are time-consuming,major costs, and its process
by-products are non-biodegradable. So, to overcome and fix the abovementioned
problems, the use of hydrogel in environmental remediation [20] is one of the unique
strategies. Hence, nowadays researchers have been focusing in the field of hydrogels
and their composite materials for environmental remediation on a large scale.

The natural or synthetic hydrogel molecules are capable with inherent, unique
physicochemical property such as cross-linked network, hydrophilicity, swellability
in the solvent (water holding capacity), rapid gelation, good mechanical strength, a
large amount of small porosity, biocompatibility and biodegradability, nontoxicity
[20]. These charming properties of hydrogel increase its wide usage in water purifi-
cation plant in the different industries. Also, hydrogels have well sorption capacity or
the static exchange capacity is used as ion exchange in chromatographic technique.

Moreover, use of hydrogel in the agriculture is the best way, to avoid expendi-
ture on the irrigation system, because in irrigation or direct application of water
to crop its crisis as an evaporation process excess of water evaporated so we can
prevent the wastage of water using hydrogel system. Controlled releasing prop-
erty of hydrogel used in agriculture, bio-medical and drug delivery etc. As well as
hydrogels are playing important role in the different areas like environmental reme-
diation, tissue engineering, waste-water treatment, organic and inorganic pollutants,
pharmaceutical, sensing, detection and removal of pollutants and heavy metals, etc.
[20].

2 Hydrogels

2.1 What Is Hydrogel?

Hydrogels are the 3Dcross-linked polymeric networked blends of natural or synthetic
polymers. This is semi-solid; gel-like in nature having the capacity to hold a signif-
icant amount of water or fluids inside it due to the presence of high porous nature.
The hydrogels were initially invented in china (1950s). Researchers Otto Wichterle
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and Drahoslav Lim are the pioneers of the hydrogels and he used these gels in tissue
engineering and contact lenses [10].

The functional groups present on the surface of hydrogels like –OH, –COOH, and
–NH2, makes it unique and more interactive to form crosslinking and interact with
functional groups present on the carbon composites. These functional groups make
hydrogels stimuli-responsive (pH and temperature-sensitive). The cavities inside the
hydrogels due to high porosity entrap the different types of pollutants, heavy metal
ions, industrial dyes, pharmaceutical drugs, etc. Hydrophilic nature is one of the
important phenomena for swelling capacity of the hydrogels.

2.2 Composite Hydrogels

Hydrogels make easily interact with Hydrogen bonding, ionic interactions, π-π
interaction and weak Van der Waals forces with functional groups present on
carbon composites to form composite hydrogels.When carbon-based nanomaterials,
carbon composites, carbonaceousmaterials (activated carbon, carbon dots, graphene,
graphene oxide, carbon nanotubes) are incorporated or easily blend with hydrogels
to form carbon-based composite hydrogels [20].

3 Classification of Hydrogels

Hydrogels can be mainly classified on the basis of their sources from which it
is synthesized. We can classify it generally depending on the polymeric mate-
rial source, as naturally derived and manmade or synthetically derived. Mechan-
ical, physical and reactive properties of hydrogels depend on these abovementioned
sources. Bio-derived polymeric hydrogels have bio-compatibility, bio-degradability,
nontoxic, cheaply and easily available but lack ofmechanical properties like strength,
reusability, etc. However, on the other side, the synthetically derived polymers have
high mechanical strength, reusability, but they lack the bio-active properties (Fig. 1).

4 Synthesis of Carbon-Based Composite Hydrogel

Hydrogels are the gel-like, semisolid, 3D structure of different kinds of crosslinked
polymers. Hydrogels can be synthesized by polymerisation of different types of
naturally, synthetically derived or amixture of both natural and synthetic polymers. In
the synthesis process of a hydrogel, there are different steps involved, at the initiation
polymerisation process different kinds of homogeneous or heterogeneous polymers
are taken and mixed for the formation of blends of the polymers. After that, the next
important part is the crosslinking process in which blends of polymers reacted with
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Fig. 1 Schematic representation for classification of hydrogels

the suitable crosslinkers for the formation of crosslinked gels. The crosslinkers and
gelation process like freeze-thaw method gives the mechanical strength and stability
to the hydrogel framework or structure of hydrogels. The crosslinked gels are placed
for the setting of polymerisation that is nothing but the termination process. This
hydrogel is placed for the desired time for the gelation. Composite hydrogels can be
synthesized with the help of different kinds of carbon-based materials like activated
carbon, bio-charcoal, graphene, graphene oxide, carbon dots, magnetic carbon, etc.
incorporated with the polymeric network.

These carbonaceousmaterials contain different kinds of functionalitieswhich help
in the crosslinking process, through electrostatic interactions, ionic interactions, π-
π interaction, weak Van der Waals forces like hydrogen bonding between polymers
and carbon-based materials. The best way of synthesis of composite hydrogel is
the process in which gelation of carbonaceous materials in the matrix of hydrogel
framework. These carbonaceous materials can be incorporated in-situ that is while
the blending of the polymerswhich forms the composite hydrogel. On the other hand,
these carbonaceous materials can also be embedded after the gelation process that
is ex-situ process. These carbon-based composite hydrogels give special properties
to the hydrogels due to which it gives a wide range of applications in different fields
(Fig. 2).

5 Crosslinking Methods

Crosslinking is one of themandatory processes in the preparation of hydrogels, which
plays an important role in the gelation process. There are two kinds of crosslinking
processes one is physical crosslinking and on other hand chemical crosslinking.
Hydrogels get excellent properties by the crosslinking of the polymers. The use of
the said method influences the formation of singly networked or doubly networked
3D polymeric networked hydrogels, to get strength, active sites and porous nature.
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Fig. 2 Schematic representation of synthesis of carbon-based composite hydrogels

The physical method of crosslinking involves the freeze-thaw process. The poly-
mers are blended which then poured in required shape followed by, freezing approx-
imately below −30 to 40 °C for about 24 h and then these frozen hydrogels take
out for thawing at room temperature for about 3–4 h and washed several times with
deionised water. This process is repeated for 3 times, which gives greater stability,
and mechanical strength to hydrogels. The chemical crosslinking process includes
the process in which a mixture of polymeric material is placed in contact with 10%
CaCl2 which makes the crosslinking in polymers and helps for the gelation process.
These chemically crosslinked hydrogels are washed with deionised water for several
times to remove the excess of chloride ions and unreacted CaCl2. The functional
groups on the polymers and carbon-based materials also influence the process of
crosslinking. The ionic functionalities such as carboxylic acid, hydroxyl, amine
whichmakes crosslink through ionic interaction, hydrogen bonding,π-π interaction,
and electrostatic interactions which gives more mechanical strength and stability to
the carbon-based composite hydrogel (Fig. 3).

6 Types of Carbon-Based Composite Hydrogels

On the basis of different types of abovementioned carbonaceous materials, we can
distinguish carbon-based composite hydrogel into the different type such as biochar,
activated carbon, carbon nanotube, graphene/graphene oxide etc based composite
hydrogels [20]. Different forms of carbon materials possess distinguishable proper-
ties like surface area, 0–3 dimensional framework, mechanical strength, presence of
different functional groups on their surfaces such as hydroxyl, epoxide, carboxylic
acid makes it more interactive, quantum dots are high fluorescent in nature having
high quantumyield can be easily incorporated into the hydrogelmatrix [2], hence due
to these outstanding properties scientists and researchers all over the globe attracted
in the field of carbon-based composite hydrogels. In the recent year (2017) the
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Fig. 3 Schematic representation of crosslinking between carbonaceous materials and polymers to
form composite hydrogel

researcherWu et al. reported on the sodium alginate immobilizedwithβ cyclodextrin
andgraphene oxidewhich is used for the removal ofmethylene blue dye fromsolution
[23]. Recently, Yang et al. synthesized double network hydrogel beads by directly
adding a mixture of graphene oxide and sodium alginate solution. These prepared
hydrogel beads showed maximum adsorption capacity to cationic metals like Mn2+

about 56.49 mg/g [24]. Zhuang et al. worked on the TiO2 Nanotube/graphene oxide
hydrogel for the removal and separation of the ciprofloxacin [30]. The use of carbon-
based magnetic hydrogel has the special property that is we can easily separate it
from solution by using an external magnetic field. The different types of reported
carbon-based composite hydrogels and their environmental remediation applications
are given in Table 1.

6.1 Activated Carbon Composite Hydrogels

Activated carbon possess large surface area, which helps for the adsorption of the
pollutants on its surface.Activated carbon is used for the application in thewastewater
treatment, removal of dyes etc. The major problem of the use of activated carbon is
that, the dispersion of the activated carbon, which is not so easy to separate. Lin et al.
has designed alginate gel beads entrapped with activated carbon [13]. They have
used activated carbon composite beads for the study of selectivity of these beads on
cationic, anionic and neutral organic compounds. The concerned study shows that
the prepared beads have a negative charge and adsorbs positively charged and neutral
compounds. Also, these beads have the potential to remove agrochemicals.
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6.2 Graphene Composite Hydrogels

Graphene is one of the allotropic forms of carbon, having two-dimensional (2D)
layered structure. In graphene, the strong π-π interaction makes it hydrophobic
and easy to reunite. Huang et al. have reported graphene-based hydrogels for water
treatment [14]. They have used agarose as a stabiliser and reducing agent to form
Graphene-Agarose hydrogel. Surface functional groups, large specific surface area
strong hydrogen bonding nature of graphene and the porous structure of hydrogel
helps for the adsorption of dyes. They have usedmalachite green as amodel pollutant
dye. The results showed excellent dye removal property giving 50% dye removal
efficiency within 12 h and 90% dye removal after 7 days [14].

6.3 Graphene Oxide Composite Hydrogels

As compared to single networked hydrogels double networked hydrogels have much
more excellent mechanical properties. Zhuang et al. have comparatively studied
mechanical and adsorption properties of the single and double networked hydrogel
[29]. There is the formation of a single network between Graphene oxide and algi-
nate. The hydrothermal reduction of single networked hydrogels is carried out in
which, graphene oxide is reduced to form a double networked hydrogel. They have
carried out adsorption study onmodel pollutants Cr2O7

2− and Cu2+ toxic anionic and
cationic heavy metal ion. The results showed that the double networked hydrogels
have higher adsorption capacity as compared to a single networked hydrogel. The
reason behind this is that there is an increase in mechanical strength, lower swelling
ratio and functionalities present on the graphene. The double networked hydrogels
show improved adsorption capacity as well as good reusability than single networked
hydrogels [29].

6.4 Magnetic Carbon Composite Hydrogels

Themagnetic separationmethod is very useful to separate outmagnetic carbonaceous
materials from waste-water after adsorption by using an external magnetic field. The
material is having properties like high adsorption efficiency, recyclability, and easy
separation. Lei et al. have reported sodium alginate derivedmagnetic carbonmaterial
which used for the removal of toxic Cr(VI) from water [12]. The iron alginate [SA-
Fe(III)] hydrogel beads are prepared by crosslinking of sodium alginate and FeCl3 as
a carbon precursor and magnetic precursor. The dried beads are heated and grinded
and again heated at different temperatures in N2 atmosphere for the carbonization.
The resultant material is used for the adsorption of Cr(VI) fromwater. Yao et al. have



Carbon-Based Composite Hydrogels for Environmental Remediation 437

prepared magnetic hydrogels by co-polymerisation of N-vinylimidazole (NVI) and
acrylic acid (AA) embedded with magnetic graphene oxide modified with ethylene-
diamine [25]. This magnetic hydrogel is versatile material capable of adsorption
for cationic and anionic dyes. The concerned study shows maximum adsorption for
the cationic dye’s methyl violet, and methylene blue having maximum adsorption
capacity 609.8 mg/g and 625.0 mg/g respectively as well as anionic dyes tartrazine
and amaranth having maximum adsorption capacity 613.5 mg/g and 609.8 mg/g
respectively.

6.5 Carbon Nanotube Composite Hydrogels

Carbon nanotubes (CNTs) having one dimensional (1D) structure. CNTs having
excellent properties like high specific surface area, high mechanical strength, high
adsorption properties. The hydrogels embedded with CNT shows high mechan-
ical strength, toughness and greater adsorption properties. Gu et al. has reported
Graphene oxide (GO)/CNT hybrid hydrogel. The GO/CNT hybrid hydrogel is a pH-
dependent and this helps for the adsorption of Uranium (VI) and can be used for
nuclear industrial effluents and water treatment [1].

6.6 Carbon Dots Composite Hydrogels

Carbon dots are the class of zero dimensional (0D) materials having a size below
10 nm. The distinguishable properties are observed at the level below 10 nm having
properties like low toxicity, tunable fluorescence, biocompatible and chemically
inert. The carbon dots can be easily incorporated in the hydrogel matrix and easily
helps for sensing, detection and removal of heavy metals, dyes, and other pollu-
tants. The Baruah et al. has synthesized sulphur doped carbon dots incorporated with
chitosan hydrogel. The synthesized hydrogel films successfully separate and remove
Ca2+ and Mg2+ from solution [2].

7 Applications of Carbon-Based Composite Hydrogel

Improper management of wastewater treatment plants, effluent treatment plants
(ETP), untreated waste water from the mines, foundries, metallurgies, pharmaceu-
tical pollutants, dye industries, textile industries, chemical industries, etc. across the
world is mixed through the drainage in potable water sources. This polluted water
contains heavy metal ions like Pb, Fe, Cu, Mn, Cr, Sn, Cd, Hg, etc. [3, 2, 18, 8]
which cannot be removed with high efficiency, which we consume in trace amounts
that effect on our health and causes severe health damage. Fertilizers and pesticides
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Fig. 4 Schematic representation of different forms of composite hydrogels and its applications

from the soil are mixed in rivers through rain-water, which also effects on water
pollution. So, to overcome these diverse issues carbon-based composite hydrogels
are more effective, sustainable, fast, low cost, etc. Over conventional methods of
environmental remediation, composite hydrogel strips, beads, and films are playing
an important role in the detection and removal of the pollutants. Hydrogel beads
can help to easily remove water impurities, pollutants, sludges and can be easily
separated by settling down. Organic and inorganic compounds, heavy metals, dyes,
pharmaceuticals, etc. can be removed [8, 13, 19] (Fig. 4).

Swelling property, reusability and biodegradability are the unique and novel char-
acteristics of the hydrogels [20]. Carbon-based composite hydrogel strips can sense
the heavy metals and other pollutants from the water and soil. With due, all these
unique and distinguishable properties broad area is generated for researchers and
scientists to work in the field of environmental remediation.

7.1 Water and Wastewater Treatment

The need for pure, potable water is increased tremendously all over the world.
Increasing water pollution has made crisis and health hazards [2]. The traditional
ways of water treatment are time consuming, costly and tedious. So as to overcome
the problem of water pollution, scientists and researchers have been working for new
simple, low-cost methods. The new methods are developed in which carbon-based
nanomaterials are embedded in polymeric network hydrogels for the wastewater
treatment.
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Jiang and Liu et al. synthesized a novel ternary magnetic hydrogel beads from
magnetic attapugite/fly ash/poly(acrylic acid) (ATP/FA/PAA) used for the removal
of Pb2+ ion [21]. Fly ash contains the amount of carbon content and helps for the
adsorption of Pb2+ ion. These novel ternary hydrogel beads system has a maximum
adsorption capacity of about 38 mg/gm of Pb2+ ion in 100 mg/L at 5 pH. The resolu-
tion of the hardness of water is quite difficult due to the presence of Ca2+ and Mg2+

ions in water.
In 2016 Baruah et.al. have prepared chitosan-based embedded with sulphonated

carbondot hydrogel films for the removal ofCa2+ andMg2+ ions frompondwaterwith
a high removal efficiency of 68.01% and 56.35% respectively [2]. The research group
of Zhang et al. have enthusiastically novel worked on graphene oxide/ fungus hyphae
hydrogel films for the removal of Orange G dye [26]. It shows great dye removal
efficiency through syringe filtration process of 15 mg/L of 10 mL dye solution at 2
pH of Orange G dye up to 10 cycles.

Yu et al. have synthesized a novel cost-effective and environmentally friendly
nanocomposite hydrogel for the water treatment [21]. They have successfully
prepared graphene oxide/poly(acrylic acid) (PAA) hyperbranched polymer hydrogel.
The synthesized nanocomposite hydrogel shows high adsorption capacity of
209 mg/g of Cu2+ ions from solution at pH 5.

7.2 Removal and Separation of Pollutants

There is a tremendous amount of hazardous pollutants are contaminated through
industries, pharmaceuticals, foundries, agrochemicals etc. in an environment which
affects living organisms. There are different carbonaceous materials available for the
removal of pollutants, but these martials disperse in the solution, hence immediate
separation of these materials after adsorption is very difficult. So, there is now a
challenge to remove and easy separation of pollutant simultaneously. The carbon-
based composite hydrogels can promisingly help for the environmental remediation.

Zhu et al. have proposed significant study in the adsorption and separation of tetra-
cycline as a model pharmaceutical pollutant [28]. They have synthesized graphene
oxide/calcium alginate hydrogel through a freeze-drying method, which is having
the potential of more adsorption capacity towards the tetracycline in aqueous solu-
tion. The maximum adsorption capacity of synthesized hydrogel for tetracycline is
131.6 mg/g at pH 6 by Langmuir Model.

There is an urgent need to develop simple advanced system having the potential
to remove both cationic and anionic dyes as well as heavy metals and water contami-
nants in less time with low expenditure. By considering all above problems, group of
Yunqiang Chen has successfully developed a hydrogel-based column for continuous
water filtration [5]. Graphene oxide/chitosan hydrogel is used as a column packing
material/membrane for rapid and continuous removal of Methylene Blue (cationic)
and Eosin Y (anionic) dyes as well as Cu(II) and Pb(II) heavy metal ions by column
packing from the contaminated water. The GO/Chitosan hydrogel column packing
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system shows the more adsorption capacity which is greater than 300 mg/g of both
cationic and anionic type dyes. It also shows the removal of Cu(II) and Pb(II) ion
with an adsorption capacity of 70 mg/g and 90mg/g respectively. This column-based
water filtration system is very useful for continuous and rapid water filtration.

7.3 Detection and Sensing of Pollutants

The detection and sensing of different kinds of pollutants at trace level from aqueous
solution, water is a quite difficult task. The carbon-based composite hydrogel is
promising material can be used as a detector or sensor for different pollutants. The
detection and sensing of pollutants can be studied by using visual and photophysical
methods. There are so many methods are available for detection and sensing like
fluorescent carbon materials, quantum dots, different spectroscopic methods which
lacks the sensitivity, tedious methods and time-consuming. Instead of that, by using
carbon-based composite hydrogels we can easily detect and sense the pollutants by
the naked eye and/or by photophysical study [6, 11].

Upama Baruah and Devasish Chowdhury have synthesized functionalised
graphene oxide quantum dots/ PVA hybrid hydrogels used for the sensing of Fe2+,
Co2+ and Cu2+ ions in aqueous solution by colorimetric analysis [3]. When the
synthesized hydrogel is put into the solution of Fe2+, Co2+ and Cu2+ ions it shows
brown, orange and blue colour respectively indicating that Fe2+, Co2+ and Cu2+ ions
are present in the solution. The minimum detection limit of the abovementioned ion
is 1× 10−7 M is studied by UV-Visible spectroscopy. This method shows easy, rapid
and sensitive composite hydrogel for detection and sensing of Fe2+, Co2+ and Cu2+

ions present in the solution.
Gogoi et al. have synthesized Carbon Dots Rooted Agarose Hydrogel film for the

naked eye colour detection and separation of a heavy metal ion [6]. The prepared
hydrogel strip when dipped into the heavy metal ion solution of Cr6+, Cu2+, Fe3+,
Pb2+, and Mn2+ ion, then instantly hydrogel strips changes its original colour and
shows yellow, blue, brown, white, and tan orange colour respectively. The maximum
adsorption capacity of the above metals ions is 27.75, 54.85, 38.48, 83.97, and,
35.41 respectively. The synthesized hydrogel can be used as an efficient filtration
membrane for the detection and separation of a heavy metal ion in aqueous solution.
More recently, Vaibhav Naik from our research group designed a N-CDs/Agarose
smart hydrogel hybrid strips and successfully implemented for highly sensitive naked
eye colorimetric as well as fluorometric sensing of Dopamine selectively over other
dopamine like organic moiety [15]. The aforementioned carbon-based composite
hydrogels and its application with efficiency are tabulated in Table 1.
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8 Conclusion and Future Perspective

These carbon-based composite hydrogels are facile, non-toxic, more effective and
biodegradable; hence it can be used in environmental remediation. The designing
of the composite hydrogels is an easy method, in which carbonaceous materials can
be crosslinked with the naturally or synthetically derived polymers. These can be
the replaceable materials for the traditional methods for the removal of pollutants
in the environment. The main and important fact is that large scale production of
a composite hydrogel is quite possible by utilizing sustainable, cheap and easily
available sources. Hence in the future, the carbon-based composite hydrogels will be
a complementary solution to the environmental remediation and enhance the quality
of water which is very important for healthy growth of every living thing on this
earth planet.
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