
Optimizing Complexity of Quick Sort

Md. Sabir Hossain1 , Snaholata Mondal1 , Rahma Simin Ali1 ,
and Mohammad Hasan2(B)

1 Chittagong University of Engineering and Technology, Chattogram, Bangladesh
2 Bangladesh Army University of Science and Technology, Saidpur, Bangladesh

hasancse.cuet13@gmail.com

Abstract. Quick Sort is considered as the fastest sorting algorithm among all the
sorting algorithms. The idea of selecting a pivot was introduced in classical Quick
Sort in 1962. This sorting algorithm takes favorably less time compared to other
methods. It needs a complex time O(nlogn) for the best case and O(n2) for worst-
case which occurs when the input array is already sorted or reversely sorted. To
reduce the worst-case complexity we provide a strong algorithm where it makes
fewer comparisons and the time complexity after using this algorithm becomes
a function of logarithm O(nlogn) for worst-case complexity. We experimentally
evaluate our algorithms and compare themwith classical algorithms andwith other
papers. The algorithm presented here has profound implications for future studies
of handling worst-case complexity and may one day help to solve this occurrence
of the fastest sorting method.

Keywords: Quick Sort · Reversely sorted · Time complexity · Best case ·Worst
case · Logarithm

1 Introduction

Quick Sort is one of the most efficient sorting algorithms. It is capable of sorting a list of
data elements comparatively faster than any of the common sorting algorithms. Quick
sort is also called as partition exchange sort. It is based on the splitting of an array into
smaller ones. Basically it works on the idea of divide and conquer rule. It divides the array
according to the partition function and the partition process depends on the selection
of pivot. Its worst case complexity made this fastest algorithm a little bit vulnerable.
Many authors researched for reducing the worst case complexity O(n2) either to O(n)
or to O(nlogn). In [1] author optimized the complexity of Quick Sort algorithm to O(n)
using Dynamic Pivot selection method. The author R. Devi and V. Khemchandani in
paper [2] have used Median Selection Pivot and Bidirectional Partitioning to reduce
the worst-case complexity. The general Quick Sort algorithm takes O(n2) time. Here,
in this paper, we presented an algorithm which divides the array as half portion to
calculate the pivot and then we use this pivot in partition function that divides the
main input array. After recursive calling of the quicksort again and again finally we
get the sorted output of input array. Although this algorithm is not unique as we took
help from various papers and sources. The paper includes some section describing the

© Springer Nature Singapore Pte Ltd. 2020
N. Chaubey et al. (Eds.): COMS2 2020, CCIS 1235, pp. 329–339, 2020.
https://doi.org/10.1007/978-981-15-6648-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6648-6_26&domain=pdf
http://orcid.org/0000-0003-4545-6872
http://orcid.org/0000-0001-8611-4479
http://orcid.org/0000-0002-1997-5428
http://orcid.org/0000-0002-1972-3239
https://doi.org/10.1007/978-981-15-6648-6_26

330 Md. S. Hossain et al.

whole project more significantly. Section 2 provides the discussion of the related work
with associated limitations. Section 3.1 describes the outcomes of this research paper.
Section 3.2 includes the preliminaries where the main idea of Quick Sort has been
described. Section 3.3 describes the overview of proposed methodology including a
diagram explaining the whole process. Section 3.4 shows the algorithm of proposed
methodology in details including the pivot selection. Section 5discusses the experimental
results of the proposed method. Finally, Sect. 6 concludes the paper and shows the future
directions to this paper.

2 Related Works

Jaja, A. et al. [3] has mentioned the partitioning process of the QuickSort algorithm.
The process of a randomized selection of pivot has been discussed in detail. But the
limitation is that the proof of randomized Quick Sort is difficult to understand. The
basics of Quick Sort where the storage of computers has been given the priority and
basic algorithm has been discussed on paper [2]. The key contributions are partition,
comparison of quicksort with merge sort and cyclic exchange. But the limitation is that
it says nothing about reducing the worst-case complexity of Quick Sort.

Paper [4] also discusses the preprocessing of large data sets using the QuickSort
algorithm. Here, the method of random reference selection has been used. Key contribu-
tions are the comparison of complexity, handling of the large input set. But the random
reference element selection method is difficult to understand and implementation of this
method has not yet been discussed and these are counted as big limitations.

Paper [5] has reduced the complexity of the worst case of Quicksort algorithm to
O(n) from O(nlogn) for unsorted arrays and Dynamic Pivoting method has been used.
The key contribution is the median of five/seven/nine. Random pivot selection, recursive
calls, Boolean variable to see if the array is already sorted. The limitation is that as per
empirical analysis the proposed algorithm could not runwithO(nlogn) complexity. Paper
[6] depicts an overview of the pivot selection method. A new pivot selection method
Median of five has been introduced. Paper [1] discusses improving the complexity of
quick sort algorithmwhere key contributions are dividing the array into two equal halves
anddynamic pivoting.Dynamic pivoting,Recursive calls, Boolean variables are the basic
contributions. But the paper could not prove the experimental research.

Many parallel sorting algorithms among which three types of algorithm and their
comparative analysis has been discussed by author Sha, L. in Paper [7] and Singh Rajput,
I. et al. in paper [11]. The analysis has taken place based on average sorting time, parallel
sorting and comparing the number of comparisons. Two versions of Quick Sort the
classical and the proposed one has been discussed by Devi, R. et al. In[2]. The worst-
case running timeof quicksort has been discussed and reduced toO(nlogn) fromO(n2). In
paper [8] pivot based selection technique has been discussed and the dynamic selection of
pivot has been introduced. In this paper [8], a new dynamic pivot selection procedure has
been introduced that allows the database to be initially empty and grow later. Lakshmi, I.
et al. in paper [9] discusses four different types of basic sorting algorithm where sorting
algorithms are compared according to In paper [6] tried to explain controlling complexity
is the simplest way possible and to do this a simple reliabilitymodel has been introduced.

Optimizing Complexity of Quick Sort 331

Conceptual framework, forward recovery solution, N version programming are the key
contributions. But the explanation of controlling complexity is hard to implement and
neither assumption is easy in practice.

Schneider,K. et al. in paper [7] described aMultiwayQuicksort tomake the algorithm
more efficient which gives reason to believe that further improvements are possible with
multiway Quicksort. Aumüller, M. et al. in paper [8] explained multi-pivot Quick Sort
which refers to a variant of a classical quicksort wherein the partitioning step k pivots
are used to split the input into k + 1 segments.

Aumüller, M. et al. in paper [9] tried to introduce a model that captures all dual-
pivot algorithms, give a unified analysis, and identify new dual-pivot algorithms that
minimize the average number of key comparisons among all possible algorithms and
explained that dual-pivot quicksort benefits from a skewed choice of pivots. In paper
[10], Kushagra, S. et al. proposed a 3-pivot variant that performs very well in theory and
practice that makes fewer comparisons and has better cache behavior than the dual-pivot
quicksort.

Authors Faujdar N and Ghrera P in paper [11] showed an evaluation of quick sort
alongwithmerge sort usingGPA computing which includes the parallel time complexity
and total space complexity taken by merge and quick sort on a dataset. In paper [12],
authors showed an comparison of parallel quick sort with the theoretical one. A special
kind of sorting which is double hashing sort can be known with the help of paper [13].
With the help of paper [14], optimized selection sort and the analysis of the optimization
process can be understood very well. A dynamic pivot selction method is presented in a
very well method on the paper [15].

3 Methodology

The authors of many papers tried in many ways to reduce the complexity of Quick Sort
using different ways. In this algorithm worst case of Quick Sort has been modified by
calculating mean as the pivot element. The pivot selection method has been done by
dividing the array into two sub-array of equal size. Then the maximum and minimum
element of both sub-array is calculated. The average value of all these four values is
considered as pivot element. Then the partitioning is happening by comparing each
element of both sub-array with the pivot element. Thus the loop will be running half of
the array only. Here, if the element of the right subarray is smaller than the pivot, the
loop variable will increment. Similarly, if the element of the left subarray is greater than
the pivot, the loop variable will decrement. After that swap function is called. When the
size is equal or less than 3 then the Manual Sort procedure is called which is actually a
compare between the elements. As there is no loop in this function, the time is reduced
because the recursion function is not called. Thus this algorithm does not lead to the
worst case of O(n2) and it becomes near to O(n) (Fig. 1).

Here in the above flow chart, the algorithm has been presented in short. When the
QuickSort function is called, it checks whether the input size is greater than 3 or not. If
input size is greater than 3 then it calculates pivot taking the average of maximum and
minimum values from both sub-array. After calculating the pivot, the partition function
is called where the values are compared with pivot. After completing all the functions,
we get a sorted array which is our desired output.

332 Md. S. Hossain et al.

Fig. 1. Flow chart of our proposed algorithm.

3.1 Pseudocode of the Classical Algorithm

The classical algorithm consists of two portions. The main function Quick Sort is called
in the first portion where the last element is selected as pivot and passed as an argument
in the second portion which is partition function where each element is compared with
the pivot i.e. last element.

Optimizing Complexity of Quick Sort 333

3.2 Step by Step Simulation of the Classical Algorithm

Let an array be [9,−3,5,2,6,8,−6,1,3] and obviously not sorted. In the classical Quick
Sort last element 3 is considered as a pivot. Each element is compared with pivot and
divided into two array where left array is less than pivot and right array is greater than
the pivot element. From the divided two array last element is again selected as pivot and
again they are divided into sub arrays. This process continues until we get a final sorted
array (Fig. 2).

Fig. 2. Step by step simulation of classical Quick Sort.

3.3 Pseudocode of the Proposed Algorithm

This algorithm has three portions. In the first portion, Quick Sort function is called if
the size is greater than or equal to 3 otherwise Manual Sort will be called. Then the
second portion contains the partition details where each element is compared with the
pivot element.

334 Md. S. Hossain et al.

3.4 Step by Step Simulation of the Proposed Algorithm

Let, an array be arr [88,77,66,55,44,33,22,11]. Here, the array is not sorted and as the
size is greater than 3 it will not call manual sort. So by the pivot selection method this
array will be divided into two sub-array of right [88,77,66,55] and left [44,33,22,11].
The max element of the right subarray is 88 and the Min element is 55 whereas the Max
element of the left subarray is 44 and the Min element is 11. So the pivot will be the
mean of the array. Now each element of two sub-array will be compared with this pivot

Optimizing Complexity of Quick Sort 335

element and after applying our proposed Quick Sort algorithm to this array, the results
we get are shown through a tree below (Fig. 3, Fig. 4and Fig. 5):

Fig. 3. Tree diagram of PIVOT selection method in Quick Sort.

INITIALLY:

PIVOT UNSORTED ARRAY

AFTER IMPLIMENTING QUICK SORT:

ELEMENT<PIVOT UNKNOWN ELEMENT ELEMENT>PIVOT
 i j

Fig. 4. Comparison with PIVOT in Quick Sort.

Here, LP = Left Part
RP = Right Part

4 Complexity Analysis

The Best case time complexity of this Quick Sort algorithm is O(nlogn), the Worst case
time complexity of this algorithm is O(nlogn). Analysis of this complexity is described
below:

4.1 Time Complexity

Time taken by quicksort, in general, can be written as follows:

T(n) = T(k) + T(n− k− 1) + (n)

336 Md. S. Hossain et al.

Here, the first two terms are the two recursive call and the last term is the partition of
n elements. The time taken by this algorithm depends on the input of the array and the
partition process.

Best Case Analysis
The best-case occurs the algorithm is conducted in such a way that always the median
element is selected as the pivot and thus reduces the complexity. The following time is
taken for the best case.

T(n) = 2T(n/2) + (n)

The solution of the above recurrence is O(nlogn). It can be solved usingMaster Theorem.
So, the best case of this algorithm is nlogn where n is the size the array.

Average Case Analysis
In average case analysis, we need to consider all possible permutations of an array
and calculate the time taken by every permutation. The average case is obtained by
considering the case when partition puts O(n/9) elements in one part and O(9n/10)
elements in other parts. The following time is taken for this:

T(n) = T(n/9) + T(9n/10) + O(n)

Although the worst-case time complexity of Quick Sort is O(n2) which is more than
many other sorting algorithms Quick Sort can be made efficient by changing the pivot
selection method.

Worst Case Analysis
The proposed algorithm gives a better running time than a classical quick sort algorithm.
The pivot selection procedure is repeated for each iteration of the quick until the size
of the array becomes less than or equal three. In this case, we go for a manual sort
where we compare two elements normally. There might be a situation where a worst-
case partitioning will be required. When the array will be already sorted or sorted in
descending order then worst case partitioning will be needed. Thus mean is calculated
and it always comes between extreme values, so, partitioning splits the list into 8-to-2.
Thus, the time taken for the proposed algorithm is:

T(n) = T(8n/10) + T(2n/10) + cn

The recurrence comes to an end when the condition is log10/8(n). The total time taken
becomes O(nlogn). An 8-to-2 proportional split at every level of recursion making the
time taken O(nlogn), which is the same as if the split were right down the middle.

Space Complexity
Quick Sort is mainly an in-place sorting algorithm which means it does not need any
extra memory. This algorithm works on the 1D array and so it consumes space of n
which is basically the size of an array. Thus the space complexity of the full algorithm
is O(n) means that the program is running on a linear space algorithm.

Optimizing Complexity of Quick Sort 337

5 Experimental Result

In the previous section, we have shown the calculation of the time complexity and space
complexity of our proposed algorithm asymptotically. As the new proposed algorithm
is not unique, it has some similarities with some sources as all of these are based on the
same idea. We have compared our proposed algorithm with these existing algorithms
for different input sets in the following sections.

28500000
29000000
29500000
30000000
30500000
31000000
31500000
32000000
32500000

Best Case Average Case Worst Case

COMPARISON BETWEEN CLASSICAL AND
PROPOSED QUICK SORT

 Classical Our algorithm

Fig. 5. Runtime comparison chart between the proposed algorithm and the classical algorithm.

Table 1. Runtime(nanosecond) of our proposed algorithm.

Number of input set Number of elements Best case Average case Worst case

01 25 1000000 1100000 1230000

02 50 2000000 2120000 2230000

03 100 30000000 31000000 32000000

Table 2. Runtime(nanosecond) of the classical algorithm.

Number of input set Number of elements Best case Average case Worst case

01 25 1000000 1100000 1230000

02 50 2000000 2100000 2220000

03 100 30000000 31000000 32300000

338 Md. S. Hossain et al.

Table 3. Time complexity comparison with previous works.

Algorithm Best time complexity Average time
complexity

Worst time complexity

Paper[1] O(nlogn) �(nlogn) O(n2)

Paper[3] O(nlogn) �(nlogn) O(n)

Paper [9] O(nlogn) �(nlogn) O(n)

Proposed Algorithm O(nlogn) �(nlogn) O(nlogn)

Here, we present the run time using time function for three different sizes of input
sets. For each input set, we have calculated the best case, average case and worst-case
execution time in nanoseconds (Table 1 and Table 2):

In Table 3 we represent the comparison of time complexity with other previous
works.

6 Conclusion and Future Recommendation

Many researchers researched on the algorithm of Quick Sort to reduce the complexity
and make this sorting algorithm more efficient. We presented an algorithm where we
tried to use a different method of pivot selection that reduces the comparison and we
successfully turned the time complexity to a logarithmic function.We turned it O(nlogn)
fromO(n2) for the worst time complexity. Obviously, the final choice of implementation
will depend on circumstances under which the program will be used. In the future, it
seems possible to do further research to calculate pivot in a different way, make the
partition process more efficient and handle the worst-case time complexity as perfectly
as possible. Moreover, this algorithm is not optimal for large datasets. So in the future,
a scope will be created to work with this issue also.

References

1. Latif, A. et al.: Enhancing Quick Sort algorithm using a dynamic pivot selection technique.
Wulfenia J. 19(10), 543–552 (2012)

2. Devi, R., Khemchandani, V.: An efficient quicksort using value based pivot selection an
bidirectional partitioning. Int. J. Inf. Sci. App. 3, 25–30 (2011)

3. Rajput, I.S.: Performance comparison of sequential quick sort and parallel quick sort
algorithms. Int. J. Comput. Appl. 57, 14–22 (2012)

4. Bustos, B.: A dynamic pivot selection technique for similarity search, pp. 105–112 (2008)
https://doi.org/10.1109/sisap.2008.12

5. Lakshmi, I.: Performance analysis of four different types of sorting algorithm using different
languages. Int. J. Trend Sci. Res. Dev. 2, 535–541 (2018)

6. Sha, L.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28 (2001)
7. Wild, S.: Dual-Pivot quicksort and beyond: analysis of multiway partitioning and its practical

potential. Inf. Technol. 60(3), 173–177 (2018). https://doi.org/10.1515/itit-2018-0012. eISSN
2196-7032, ISSN 1611-2776

https://doi.org/10.1109/sisap.2008.12
https://doi.org/10.1515/itit-2018-0012

Optimizing Complexity of Quick Sort 339

8. Aumüller, M., Dietzfelbinger, M., Klaue, P.: How good is multi-pivot quicksort? ACMTrans.
Alg. 13, Article no. 8 (2016)

9. Aumüller, M., Dietzfelbinger, M.: Optimal partitioning for dual-pivot quicksort. ACM Trans.
Alg., vol. 12, Article no 18 (Association for Computing Machinery) (2015)

10. Kushagra, S., López-Ortiz, A.: Multi-pivot quicksort: theory and experiments (2013)
11. Faujdar, N., Prakash, S., Professor, G.: Performance evaluation of merge and quick sort using

GPU computing with CUDA. Int. J. Appl. Eng. Res. vol. 10 (2015)
12. Abdulrahman Hamed Almutairi, B., Helal Alruwaili, A., Hamed Almutairi, A.: Improving of

quicksort algorithm performance by sequential thread or parallel algorithms (2012)
13. Bahig, Hazem M.: Complexity analysis and performance of double hashing sort algorithm.

J. Egyptian Math. Soc. 27(1), 1–12 (2019). https://doi.org/10.1186/s42787-019-0004-2
14. Jadoon, S., Salman, F.S., Rehman, S.: Design and analysis of optimized selection sort

algorithm. Int. J. Elect. Comput. Sci. IJECS-IJENS 11(02), 19–24 (2011)
15. Rathi, N.: QSort-Dynamic pivot in original quick sort. Int. J. Adv. Res. Devel. (2018)

https://doi.org/10.1186/s42787-019-0004-2

	Optimizing Complexity of Quick Sort
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Pseudocode of the Classical Algorithm
	3.2 Step by Step Simulation of the Classical Algorithm
	3.3 Pseudocode of the Proposed Algorithm
	3.4 Step by Step Simulation of the Proposed Algorithm

	4 Complexity Analysis
	4.1 Time Complexity

	5 Experimental Result
	6 Conclusion and Future Recommendation
	References

