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Abstract. Student performance prediction is a challenging problem in online
education. One of the key issues relating to the quality Massive Open Online
Courses (MOOC) teaching is the issue of how to foretell student performance in
the future during the initial phases of education. While the fame of MOOCs has
been rapidly increasing, there is a growing interest in scalable automated sup-
port technologies for student learning. Researchers have implemented numerous
different Machine Learning algorithms in order to find suitable solutions to this
problem. The main concept was to manually design features through cumulating
daily, weekly or monthly user log data and use standard Machine Learners, like
SVM, LOGREG or MLP. Deep learning algorithms could give us new opportu-
nities, as we can apply them directly on raw input data, and we could spare the
most time-consuming process of feature engineering. Based on our extensive lit-
erature survey, recent deep learning publications on MOOC sequences are based
on cumulated data, i.e. on fine-engineered features. The main contribution of this
paper is using raw log-line-level data as our input without any feature engineering
and Recurrent Neural Networks (RNN) to predict student performance at the end
of the MOOC course. We used the Stanford Lagunita’s dataset, consisting of log-
level data of 130000 students and compared the RNN model based on raw data
to standard classifiers using hand-crafted commulated features. The experimental
results presented in this paper indicate the RNN’s dominance given its dependably
superior performance as compared with the standard method. As far as we know,
this will be the first work to use deep learning to predict student performance from
raw log-line level students’ clickstream sequences in an online course.
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1 Introduction

The approximate number of Massive Open Online Courses (MOOC) students who
enrolled or took part in a single or more courses is around one hundred million students
[31]. This means that MOOCs can be considered as the prime method of knowledge
acquisition online, their main advantage being the fact that neither geographic location,
not monetary issues play a role in opting for this type of education [7]. As the MOOCs
became quite popular among students, they sparked a great deal of research interest in
MOOC data analytics [8].
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For all their benefits, the quality of MOOCs has been the target of criticism [9, 10,
11, 15]. Almost all research has pointed to their low completion rates (below 7–10% on
average) as a property preventing more widespread adoption of these courses [10, 12].
Stakeholders would benefit from knowing whether or not a given student was expected
to complete the course, especially in view of the low completion rates. To solve these
problems there has been two new research fields established: 1. Educational data mining
[17], 2. (online) learning analytics [16]. Within the fields of learning analytics and
educational data mining, we are able to create automated MOOC “dropout detectors”
or “forecast performance” [5, 15].

In terms of log data collection in the form of clickstream or social network measures,
the MOOC systems offer a treasure-trove of data. The system gathers this data when
studentswatch the various video lectures, try their hands at quizzes and interact with their
peers in the available forums, discussing the learning materials during the course [11].
The MOOC log data can be leveraged for prediction tasks through Machine Learning
approaches [20]. Eventually efficient student models were created which would serve
as a forecasting tool for estimating how many students were likely to drop out, or
preferably complete the course. This was made possible by extensive research into
comprehending and hopefully increasing the registration and completion rate, ultimately
contributing to a better all-round learning experience in MOOCs [19]. These issues
involved the application of different supervised machine learning approaches so as to
obtain an estimation for future learning results in MOOCs [7, 29]. The majority of
conventional methods is primarily based on generalized linear models, incorporating
logistic regression, linear SVMs and survival analysis. Every model takes into account
various kinds of behavioral and predictive characteristics gleaned from a number of raw
activity records, such as clickstream, grades, forum, and final grades [14].

Another solution is the Deep Learning (Deep Neural Networks) which could algo-
rithmically find structure in log data and carry out prediction on various tasks inMOOCs
[16, 18].

However, the promise of Deep Neural Networks is to learn the temporal context of
input sequences in order to make better predictions, only a few prior works explore this
opportunity. Our extensive literature survey indicates that all studies in Educational Data
Mining following the Deep Learning approach used cumulated data (daily, weekly, etc.)
of feature engineering [8, 10, 12, 13, 15, 20, 30]. We didn’t find any research where the
input of the Deep Learning model was the raw log-line-level activity data.

The main contribution of our study is to investigate this challenge, i.e. whether Deep
Neural Networks can benefit by using directly raw log data, rather than hand-designed
statistics as commulated features. In this paper, we use log-line-level data and Recurrent
Neural Networks (RNNs) to predict student performance at the end of theMOOC course
as both amulticlassification and a regression task. TheRecurrentNeuralNetworkmodels
each element of an activity log sequence (line by line), from the beginning of student’s
activity until a certain point in time, and predicts the student’s final performance at the
very end of the MOOC.

To the best of our knowledge, this will be the first work to use RNNs to predict user
performance from log-line level students’ clickstream sequences in an online course.
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The rest of the paper is organized as follows: In Sects. 1 and 2, we begin with the
design of the problem, which involves the different hypothesis we make in the problem
definition. Section 3 describes the main workflow, feature extraction, RNN-GRUs, and
the prediction model especially. In addition, Sect. 3. details the key technical points of
the research and steps to implement it. Section 4 details the key technical points of the
research and steps to implement it. Afterward, we specify the details of the datasets and
experimental setup we used in Sect. 4. Section 5 presents the experimental results of the
prediction models on datasets provided by Stanford Lagunita’s MOOCs. Finally, Sect. 6
presents our key findings and conclusions.

2 Background

Specific fine-tunings were made by stakeholders during the course of education so as to
be able to deal with both low MOOC outcome results considerable dropout rates. These
modifications included email reminders to students or offering constructive feedback to
specific learners at risk of leaving the course [13].

While this may sound like a workable solution, indeed, beneficial to the students
themselves, given the reality of learner numbers of over ten thousand at a time, it could
hardly be implemented in practice. Out of those 10,000 students there are probably an
estimated 9,000 learners who would need such online support lest they drop out [10].
To address this issue, researchers recommend an automated system capable of reliably
predicting the students’ future performance in real-time [9, 14].

The fact that the system is automatic, basing its work on learning analytics, makes
it possible to both monitor and recognize those students who are in danger of leaving
the course. At the same time, it will also be able to support early intervention design
[10]. Hence, there is a considerable and ever-increasing amount research available about
predictive modeling in MOOCs, especially focusing on models on the likeliness of a
given student’s dropout, stop out, or overall failure of completing a MOOC.

There have been earlier studies on student outcome forecast which were based on a
wide range of characteristics obtained from clickstream data and the natural language
used during postings in discussion forums, social networks, and assignment grades and
activity [19]. These works relied on trace data from the introductory week or other spe-
cific times which would then serve as the basis for predicting students’ outcome by
way of the created prediction models [10]. Such prediction method enables the efficient
detection of whether or not specific students are likely to drop out in the initial education
phase, which, however, requires considerable time for feature extraction. The most pop-
ular feature representations are the measures of the distances among log events (time,
points, etc.), aggregating the clickstream logs on a weekly basis and/or applying Natural
Language Processing (NLP) on discussion forum content.

In terms of Machine Learning architecture, most prior approaches have used gener-
alized linear models (including linear SVMs), survival analysis (e.g., Cox proportional
hazard model), and Logistic Regression [13, 20]. From another perspective, scientists
compare classification against regression approaches [21]. For instance, J. He et al. [22]
dealt with the Support Vector Machine (SVM) and Least Mean Square (LMS) algo-
rithms in order to identify what the learners’ dropout rates were or how well they were
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performing in the MOOCs during the course period. Work was also conducted on clus-
tering techniques, in which students were put into groups, clustering them on the basis
of their student behavioral patterns [23].

The paper of Jo et al. (2018) [24] reviews the variety of solutions in existing studies
on modeling student behaviors via clickstream logs. It categorizes the solutions into
top-down and bottom-up. Top-down approaches predefine a set of student behaviors
of interest, such as disengagement and sequential navigation, and corresponding click
patterns. These approaches provide interpretability, but analyses are focused only on pre-
defined behaviors and patterns. In contrast, bottom-up approaches aim to findmeaningful
click patterns from clickstream data and interpret behaviors they mean [24].

In order to discover the bottom-up approaches, several publications have been pub-
lished in the last few years, and the most common solutions operate with Feedforward
Neural Network or Self Organized Map (SOM), while other papers employ Recurrent
Neural Networks (RNNs), like Long Short-Term Memory (LSTM) Networks. In this
paper, we used Gated Recurrent Unit (GRU) which is introduced by Cho, et al. in 2014.
GRU is a variation on the LSTM (Long Short-Term Memory) and it is a specific RNN
architecture designed to model temporal sequences and their long-range dependencies
more accurately than conventional RNNs [13].

Although, during the last few years several papers have been published which started
to use Deep Learning to predict MOOC outcomes, the main concept has not change.
Kim et al. (2018) [14] collected these studies, so far these have shown low accura-
cies. The fact that accuracy tends to be low can be related to the model’s continued
reliance on feature engineering to decrease input dimensions which seems to hamper
the development of greater and improved Neural Network models [14]. A good example
is R. Al-Shabandar’s et al. (2017) [7], in which numerous characteristics were obtained
from learners’ historical data, including how many sessions they took, how often they
watched the videos, how many courses they participated in, which was then all fed
into a Feedforward Neural Network. Because of the information loss of feature extrac-
tion, current dropout or student performance prediction model’s accuracy is limited, and
Deep Learning methods could not give much better performance than classic Machine
Learning methods.

We could think that the RNN network is not robust enough for raw log-line level
data, but on the other hand, other fields – like anomaly detection – some experts applied
Long Short-TermMemory (LSTM) Networks straight on unprocessed data. Zhang et al.
[25] for instance, opted for using clustering techniques for the raw text from numer-
ous log sources so as to create feature sequences fed to an LSTM for hardware and
software failure predictions. Du et al. [26] implemented special parsing methods on the
unprocessed text of system logs to create sequences for LSTM Denial of Service attack
identification [27].

We address this challenge here by using RNNs directly on raw log-line level data,
rather than hand-designed feature extracted statistics.

3 Methodology

In terms of algorithm, this work studied the power of Deep Learning in the context of
education. The authors’ prediction algorithm is based on raw clickstream data in order
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to provide a prediction of how well students will perform in an online course. We use
the students’ final assessment quiz responses to define the course performance measure.
To do this, we measure the user performance prediction in two ways:

• as a regression problem (0–100%), and
• a multiclass problem (0–9 point). To get labels for the multiclass, we used uniform
discretization of continuous data (0–10% = 0, 11–20% = 2, etc.).

In order to compare our research with other solution, we implemented the Baseline
solutions, i.e. feature extractors on raw clickstream and used traditional classifiers and
regressors on these feature set. We compare the Baseline solution to a GRU-based model
on raw log-line level data (GRU).

3.1 Evaluation

To measure the accuracy of the prediction approaches, we build temporal performance
prediction models on a weekly basis. The log data observed on the second week were
directly added to the dataset on the first week, and similarly for other weeks as well. We
are using the data collected until the current week to predict the student’s outcome in
the very end of the course as shown in Fig. 1. We extract the commulated features from
the collected data for the Baseline solutions and train a GRU model on the raw data.

Fig. 1. Formulation of performance prediction problem

After the training step, we evaluate the accuracy of the prediction models on the
hold-out set of students. The predictions on this hold out set is compared against the
true value (either the actual score or the performance class) of the students’ final course
performance. Following Willmott and Matsuura (2005) [6], for measuring the accuracy
of the solutions, we use accuracy scores (ACC) for classification and root mean squared
error (RMSE) for regression.We split the students into four groups randomly and employ
a 4-fold cross-validation at each week.

Certainly, one of the obstacles to be overcome when creating predictions in MOOCs
is how to deal with sparse data [12]. In Stanford Lagunita’s datasets, the majority of
learners failed to provide answers to every quiz question in the relevant MOOC, which
in turn, resulted in a sparse set of quiz replies for each individual student. To handle
this problem, we only use those users who has filled second quiz after the first week, or
filled third quiz after the second week, etc. To avoid under or over learning problem, we
moved extreme outliers [28] from datasets.
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3.2 Baseline Solutions

For the baseline solutions, we extracted commulated features from the raw data (see in
Table 1). All of these features are normalized by min-max scaling with the maximum
and minimum values of each feature in training dataset.

Table 1. Feature set of Stanford’s course

Feature Explanation (feature aggregated on a weekly basis)

Lecture view Number of lecture videos viewed by a student

Number of times a student visits a lecture site

Number of plays, stop, pause, forward, backward

Number of plays, stop, pause, forward, backward

The distance of time between two log events

Quiz attempt Number of quizzes attempted by a student

In this study, three popular Machine Learning algorithms were employed from the
gradient boosting framework, andRidgeRegression to train and predict over the commu-
lated feature set. We used the gradient boosting (XGboost) for classification and Ridge
Regression, XGBregression for regression tasks. Our main goal is not to find the most
accurate model, so we did not perform any hyper-parameter tuning.

3.3 Deep Learning Architecture

We propose a Deep Learning method based on raw data, to compare the prediction
performance with baseline algorithms.

Fig. 2. Architecture overview of the proposed RNN model.

Our Recurrent Neural Network architecture consists of GRU cells as hidden units. In
the model training, hidden states learned raw log-line by raw log-line to catch sequential
information, which is able to absorb past information. Our GRU model also takes the
dropout technique to prevent overfitting in training process. As the experiment result
has shown in the result section, the usage of GRU and dropout technique helps us to
achieve the training goal. Although there are various suitable algorithms in terms of this
prediction, the authors opted for time series/sequence-based neural network predictor,
mainly based on its frequent implementation in numerous research fields, thus also
student knowledge tracing [12]. Sequence-based neural networks are Recurrent Neural
Networks, with feedback connections enclosing several layers of the network. Gated
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Recurrent Unit (GRU) networks is an example of Recurrent Neural Networks. GRU is a
good choice at solving problems that require learning long-term temporal dependencies.
Figure 2 depicts the architecture of our proposed Deep Learning model consisting of
nine layers.

The input layer of our deep network uses a flat feature structure (one hot encoded
3-dimensional data), as we can see in Fig. 3. The rows in our 3D dataset contain user-
generated log data. These rows are representing a user-generated 2D sequence of actions,
which set up in chronological order. In this 2D sequence, a line is a 1714 length vector,
which represents one of the 1713 possible actions which illustrated with a One Hot
Encoded vector, along with a single feature which is the time elapsed since the last
action. An action encodes either the type of action (e.g. “video stop”) or the item the was
accessed. For example, when the student opens “Lecture1 Part3” which is a webpage
containing a lecture video we log this event. Next, when the student plays the video, we
add a new action to the sequence, but we only store its action type “video play”. While
this condensation of data is necessary for keeping the input space at tractable size, we
expect from the RNN, that it can learn the representation of items in its hidden states.

Fig. 3. Figure1, Formulation of 3-dimensional data

RNN is likely to quickly overfit a training dataset. To reduce the chance of overfitting,
we used dropout layers which offers a very computationally cheap and remarkably
effective regularization method to reduce overfitting and improve generalization error
in our model.

Following the GRU and dropout layers we applied fully connected (dense) hidden
layers with different number of neurons. We use the same network architecture for the
regression and classification tasks besides the output layer, At the regression task, we use
the result from the single output neuron without any transformation. At the multi-class
classification task, the output layer consists of a vector that contains values for each class
along with a SoftMax activation function.

4 Experimental Setup

In our experiments, we used the activity log dataset of the Stanford Lagunita’s MOOC
Computer Science 101 from the summer of 2014. The MOOC ran for six weeks, with
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video lectures, optional homework assignments, discussion forums, and quizzes. The
original main dataset contains 39.6 million action items from around 142,395 students,
where each action represents accessing a particular event in the course, like video view,
assignment view, problem view. From the 142,395 students, 28,368 were active (went
through almost every curriculum) and 12,015 completed enough assignments and scored
high enough on the exams to be considered “certified” by the instructors of the course.
The certified students accounted for 17.79 million of the original 39.6 million actions,
with an average of 1,135 action items per certified student. In our research the set of
12,015 students were used.

To assess ourmodel’s ability to spin up rapidly and predict final outcome,we limit our
scope to first 5 weeks, and we make a prediction after every week with the baseline and
GRUmodels. At eachweek, we compared baseline andDeep Learning solutions for both
a regression and classification tasks. In the regression task, the goal was to predict student
performance over a range of 0–100%, while in the multiclass classification problem we
targeted seven classes of student performance. In each experiment, we employed a 4-
fold cross-validation over students. In the GRU, our learning rate is fixed to 0.001; for
training we used the ADAMAX optimizer; we didn’t use padding, instead we create
variable sequence length for all user with fit generator function; our model used two
GRUs layer with 100 hidden units; two Dropout layers (ranged 50%), two Dense layers
with 100 hidden units each, and one Dense with 13 hidden unit.

The experiments were implemented in python by using Keras [1], Google’s
TensorFlow [2], Sckikit learn [3] and XGBoost [4] package.

5 Empirical Results

We ran ourmodels at the end of eachweek, i.e. after a quiz, and based on that information,
we predicted the final completion of the course. For example, week1 represents all
collected log data from the start of the course until the end of the first week, and week2
represents the collected data until the end of the secondweek. The results of the proposed
GRU method and the baseline methods on Computer Science 101 dataset are shown in
Table 2 respectively.

Table 2. Results of Gru and by baseline methods

RMSE MAE Accuracy

XGBreg Ridge GRU-reg XGBreg Ridge GRU-reg XGBoost GRU-class

Week1 16.010 18.451 10.001 11.706 12.854 7.743 0.361 0.496

Week2 16.217 19.173 9.831 11.784 13.564 7.451 0.378 0.486

Week3 15.730 20.779 9.378 11.251 13.101 7.117 0.39 0.545

Week4 15.346 29.207 8.746 10.202 15.378 6.096 0.405 0.559

Week5 15.265 25.355 8.653 10.585 15.280 6.568 0.405 0.551
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The results of the two experiments in Table 2 shows that the GRUmodel is generally
better than the XGBoost-regression and XGBoost and both RNN based models increase
their prediction quality week by week. This shows that RNNs with raw datasets have
more sensitivity to “catch” patterns than XGBoost or XGBoost-regression. This was
not surprising, as standard machine learning methods without deep feature investigation
cannot make evaluable results. In addition to basic transformations (sum, avg, normal-
ization), we also used other methods to increase the performance of the XGBoost model,
as discussed in Sect. 3, but apparently this solution was not sufficient. Remarkably, for
all week in the proposed method outperforms the best baseline by 15% of ACC or 30 of
RMSE. As expected, performance starts out poor (low ACC or high RMSE) but steadily
improves as more data are fed into the model. Predictions continue to improve until
approximately week 3, after which performance levels out. After 3 weeks of observa-
tions, our model achieves an accuracy of 54%, significantly better than the 39% baseline
of predicting the class role.

Our empirical results demonstrate the feasibility of usingRecurrentNeural Networks
on raw log-line level dataset to predict MOOC students’ performance. We do expect,
however, that a more extensive search for the optimal choices of number of units and
hidden layers (through e.g., hyper-parameter tuning, embedding layer) will improve our
prediction quality further.

Fig. 4. Boxplots of average error (AE) achieved by GRU-reg and XGBReg in the function of
student’s log sequence length

To better understand our results, we performed other examination (see in Fig. 4),
where the relation between the number of log-data and the absolute error (AE) of the
model is plotted. In this process we calculated AE for every user falling in a particular
bin of log-data sequence length and made a boxplot form this data to compare two
models’ outputs. In the first two weeks, the GRU network provides better results than the
traditional approach on any log size. In weeks 3, 4, 5 traditional approaches outperform
RNNs at short log sequences and GRU is only superior when it has got more data of
longer sequences that provide extra information.

Other problem is length of the sequence, which is not same long for all users. For
example, some users finish 6-week course very fast and short way (exp. Doesn’t check
additional information), while other users look into everything and spend more time
checking the details. These results also show that there is a significant correlation between
the length of the sequences and the prediction quality of the RNN.
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RNN model do temporal processing and learn from sequences, e.g., perform
sequence recognition or temporal association, which is impossible to solve with regres-
sion. On the other hand, XGBreg is more sensitive to overfit. To avoid XGBoost-
regression disadvantages, we experimented with various regression models, but they
provide almost the same or worse result (Ridge regressor was among the best one, see
its results in Table 2).

This fact is also supported by our prediction density distribution graph of real and
predicted course outcomes (Fig. 5). The diagram shows thatXGBRegwas not able to find
any useful relationship among its features. On the other hand, GRUreg was capable to
identify different class-like regions in its prediction space. The results are not exhaustive,
but they do encourage us to explore further.

Fig. 5. The distribution of student’s final outcomes - the test results of the proposed GRUmethod
and the baseline (XGBRegression) methods on computer science 101 dataset at fourth week (n=
2159)

6 Conclusions

In this study, we propose a Recurrent Neural Network for solving outcome performance
prediction problem in online learning platform. The main task of this paper is to build
prediction model which could use raw datasets, and get same or better results than regu-
lar prediction models. The key advantage of our model is that, there is no manual feature
engineering is needed, because it could be automatically extracted from the raw log-line
level records. In this way, this approach could save a lot of time and human force, and
ignore the possible inconsistency introduced by the hand-made process. Experimental
results on Stanford Lagunita’s dataset show that the expected model can achieve sig-
nificantly better than the baseline models. The results for our model are sufficient to
demonstrate the feasibility of using Recurrent Neural Networks. Additionally, archi-
tectural insights can be gleaned from the RNN applied, which may in the future lead
to designing more effective models. The methodology in this study aimed to predict
the outcome performance of student participations in MOOCs. In Table 2, we see that
our GRU-Reg and GRU-Class algorithms are especially useful for predicting the perfor-
mance of studentswho answer quizzes.Our neural networks givemuch better results than
regular solutions. On the other hand, we compare a high-end solution with poor pred-
icators, an important step for the feature work would be to implement a well-designed
baseline model which could be enough powerful for the “fair play”. In this paper our
main goal, is not to find the most accurate model, but in the next possible interventions



484 G. Kőrösi and R. Farkas

could be to improve these parameters from 55% to 80%. In the future, we still need
to take some optimization techniques to adjust hyper parameters of the proposed RNN
model, which is helpful to improve the accuracy. There are several ways that we plan to
extend this ongoing work. First, we would like to use a hyper-parameter tuning to find
the best number of units and layers in GRU network. We also plan to address the role
imbalance by resampling and improve generalization, and layer normalization. Finally,
we plan to use embedding layer which could give us an information what is happened
inside of the neural network, this work also includes evaluating the system on different
datasets which will provide by Stanford Lagunita.
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