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Abstract

There is a growing demand for materials covered with compounds that prevent
the adhesion of microorganisms that form biofilms. Surface contamination is a
concern of the biomedical and food industry, due to the risks to the health of
patients and consumers. Thus, the interruption of microbial adhesion in its first
moments is an excellent approach for the performance of anti-adhesive
compounds. The microbial biosurfactants have the potential for the application
on surfaces of economic interest as agents that inhibit microbial fixation. They
comprise a variety of amphiphilic molecules that can be obtained directly,
synthesized by plants and microbes, or indirectly, through chemical or genetic
changes. Biosurfactant production from renewable substrates is possible, and
there is a tendency for the substitution of synthetic surfactants of biological origin
in industrialized countries. This chapter discusses the main classes of microbial
biosurfactants with anti-adhesive action, the process of microbial adhesion for the
formation of biofilms, and current studies involving the application of
biosurfactants as biofilm disturbing agents on different surfaces.
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10.1 Introduction

Advances in the area of biotechnology with the use of natural products that protect
surfaces increase the economic interest in the generation of inputs against biofouling
of the types that occur in medical devices or in places that come into contact with
food (Gopikrishnan et al. 2015; Junter et al. 2016; Giri et al. 2019).

The attachment of microbial cells to surfaces covered by particles and colloids is
the first stage in the development of the biofilm structure. As adhesion is still weak at
this stage, this would be an excellent time for the application of anti-adhesive
constituents. Microbial biosurfactants can change the surfaces they come in contact
with. When adsorbing onto polystyrene surfaces, silicon and glass microbial surfac-
tant changes the inherent hydrophobicity of such surfaces. In this way, the
biosurfactant influences the effects of fixation and ease of removal of
microorganisms depending on the type of the fouled surface (Janek et al. 2012).

Biosurfactants are versatile, stable, and biocompatible molecules, obtained from
various sources such as bacteria, fungi, and yeasts (Gutnick and Bach 2017) and
secondary compounds extracted from plants that exhibit surfactant characteristics
(Cheok et al. 2014; Zhu et al. 2019).

Biosurfactants have the same properties as synthetic surfactants. Among the
properties, we can highlight high biodegradability, low toxicity, and not inducing
allergic reactions. They can be used in extreme environmental situations due to the
stability of their properties when exposed to unusual pH occurrence, salinity, and
temperature and specific bioactivity, which give them a great potential for practical
applications in several areas (Freitas et al. 2016; Zhu et al. 2019; Liu et al. 2020).

In addition to these properties, they have antibiotic, antimicrobial, anti-biofilm,
and anti-adhesive activities (Rivardo et al. 2011; Padmapriya and Suganthi 2013;
Banat et al. 2014; Ndlovu et al. 2017). In this way, biosurfactants are used in the
fields of industries, namely cosmetics and food, and in the biomedical and pharma-
ceutical areas, and they also expand their use in the oil industries to improve the
recovery of this product (Jimoh and Lin 2019).

There is a tendency to substitute synthetic surfactants for those of biological
origin in industrialized countries, stimulated by the sustainable advantages of
biosurfactants, as they can be produced using renewable substrates, derived from
industrial residues, which cheapens the cost of this bioactivity (Satpute et al. 2017;
Araújo et al. 2019).

Glycolipids and lipopeptides are well-established classes of biosurfactants. They
exhibit broad-spectrum antimicrobial activity, anti-adhesive, and biofilm control.
They are right now applied in various areas (food, beauty products, and pharmaceu-
tical industries) as emulsifying, antimicrobial, and surfactant agents (Inès and
Dhouha 2015; Mnif and Ghribi 2016).

Biosurfactants that have anti-adhesive activity can be produced by several
microorganisms: Pseudomonas aeruginosa produces rhamnolipids, some species
of Candida sp. produce sophorolipids, Bacillus sp. produces surfactin among other
isoforms. Biosurfactants with anti-adhesive activity can also be released by lactic
acid probiotic bacteria (LAB) (Yan et al. 2019).
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This chapter deals with the main classes of biosurfactants with anti-adhesive
action, microbial fixation for biofilm formation, and studies involving the use of
microbial biosurfactants as disintegrating agents of this formation on different
surfaces.

10.2 Biosurfactants That Display Anti-Adhesive Activity

The composition and type of microorganism are used to classify biosurfactants.
Other forms of classification are low molecular weight biosurfactants (lipopeptides,
glycolipids, and phospholipids) and high molecular weight biosurfactants
(polysaccharides, lipopolysaccharides, proteins, and lipoproteins). Low molecular
weight biosurfactants lower the surface and interfacial tension of different
substances. The ones with high molecular weight are used as emulsifiers and
stabilizers for different products (Sharma and Sharma 2018; Jahan et al. 2020).

The parameters of free energy and surface tension of the coated materials and the
surfactant itself influence the development of the surfactant film on any solid surface.
The surface orientation of the nonpolar and polar fractions of the film formed by the
biosurfactants on some solids surfaces is crucial for the balance of the hydrophobic
and hydrophilic properties of the covered solid. These behaviors of the biosurfactant
configurations are of practical importance for the protection of areas that are often
used in food handling, medical devices, and surgical implants (Zdziennicka and
Jańczuk 2018).

Not all biosurfactants are of interest as anti-adhesive surfaces. The most repre-
sentative classes that showed responses in reducing adhesion in different materials
and against microorganisms of interest are lipopeptides, with surfactin standing out,
and glycolipids being mostly represented by rhamnolipids (Cao et al. 2009; Nickzad
and Déziel 2014; Abdelli et al. 2019; Ceresa et al. 2019).

Lipopeptide biosurfactants exhibit antibacterial, antifungal, antiviral, and anti-
adhesive activities. They are divided into three main groups (surfactin, iturin, and
fengycin). Each group presents various homologs and isoforms showing distinct
constitutions of amino acids and fatty acid chains (Inès and Dhouha 2015). Due to its
attractive surfactant properties and antimicrobial and antibiofilm activities, surfactin
is the most powerful biosurfactant, with many isoforms that can be determined
genetically or by structural chromatographic analysis techniques (Ibrar and Zhang
2020; Ohadi et al. 2020).

Another important class of interest is the glycolipids. Rhamnolipids produced by
Pseudomonas sp. are the most important representative in this group. Rhamnolipids
are easily produced as a blend of homologous molecules, specifically mono-
rhamnolipids and di-rhamnolipids by P. aeruginosa (de Freitas et al. 2019). These
biosurfactants manifest surface activities and emulsifying and biological activities.
Due to this versatility, they were highlighted as versatile additives in food prepara-
tion (Nitschke and Silva 2018). Glycolipids have a polysaccharide in their main
groups. So, when this group is impacted by electrolytes or undergoes pH changes, its
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micellar structure changes (Jahan et al. 2020). This can interfere with the process of
anti-adhesion of surfaces.

Sophorolipids are other important types of glycolipid, composed of a sugar dimer
formed by the glycosidic bond to a hydroxylated fatty acid that are produced and
released mainly by yeasts, such as Candida bombicola (Shah et al. 2007). The
natural diversity of sophorolipids is triggered by variations in the acetylation stan-
dard of the sophorosis unit, by the incidence of inside esterification and by the
attributes of the hydroxylated fatty acid. A sample of sophorolipids may contain over
20 congeners; however, few of these forms will be dominant. Sophorolipids are
structurally classified into acidic and lactonic forms (Haque et al. 2017). Acidic
forms are used for cleaning purposes, while lactonic forms are primarily responsible
for bioactivity (Van Bogaert et al. 2007; Dhar et al. 2011). This biosurfactant has low
cytotoxicity and has been approved for use in food and the pharmaceutical industry
by the US FDA (Joshi-Navare and Prabhune 2013). They have antimicrobial and
anticarcinogenic properties, in addition to antifungal activity against planktonic cells
of pathogenic species (Haque et al. 2016).

Finally, we have the lactobacillus microorganisms, sometimes referred to as
probiotics, which are outstanding producers of anti-adhesive biosurfactants. Also,
they present antimicrobial, antibiofilm, and antioxidant activities in the same mole-
cule. Therefore, they can be applied in different industrial sectors (Meylheuc et al.
2006; Sambanthamoorthy et al. 2014; Merghni et al. 2017; Yan et al. 2019).

Table 10.1 emphasizes the anti-adhesive activity mentioned in some recent
studies in the literature in the area.

10.3 Biofilms and the Adhesion Process: Mechanisms
and Effects

Biofilms are complex formations of microorganisms adhered to the surface of
biogenic or inert materials. They are associated with each other through extracellular
polymeric substances forming an aggregation of microbial cells. The extracellular
substance produced by the biofilm, besides contributing to the access to nutrients,
allows the existence of these microorganisms in adverse conditions, such as compe-
tition, lack of resources, and resistance to antimicrobial treatments. Thus, biofilms
are responsible for making it difficult to treat chronic diseases with antibiotics (Roy
et al. 2018; Prasad et al. 2020).

The formation of biofilm on any surface involves at least three different phases. In
the first phase, microbial cells are bound to a surface previously covered by particles
of glycoprotein origin, in the second phase, in this slime, more microbial cells
colonize forming microcolonies, and, finally, the complete development of the
biofilm through the formation of channels and the formation of firm structures.
With the maturation of the biofilm, the disintegration will occur by mechanical
and chemical processes and will influence the renewal of the biofilm by the disper-
sion of the colony (Payne and Boles 2016).
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The installation of bacteria is particularly intermediated by particle deposition,
hydrodynamic forces, and Brownian motion. Adherence to the substrate is regulated
by Lifshitz–Van der Waals, acid–base, hydrophobic, and electrostatic interaction
forces (Van Oss 1995). Biofilms need to produce biopolymers and polymeric
extracellular substances (EPS) rich in carbohydrates and proteins that function as a
protective wrapper in which microorganisms are embedded. This ensures for

Table 10.1 Examples of action of the various biosurfactants and their target microorganisms

Biosurfactant or
producing
microorganism

Application
field Target References

Pediococcus
acidilactici and
Lactobacillus
plantarum

Biomedical Staphylococcus aureus Yan et al.
(2019)

Pseudomonas
aeruginosa

Biomedical Staphylococcus aureus and
Staphylococcus epidermidis

Ceresa et al.
(2019)

Surfactin Biomedical Staphylococcus epidermidis Abdelli
et al. (2019)

Lipopeptides Biomedical
and food
industry

Staphylococcus aureus, Salmonella
typhimurium, and Bacillus cereus

Giri et al.
(2019)

Lipopeptides Agribusiness
(disease
control in
plants)

Agrobacterium tumefaciens Ben et al.
(2018)

Lipopeptides Biomedical
and food
industry

Staphylococcus aureus, Bacillus
cereus, Micrococcus luteus,
Klebsiella pneumoniae, Escherichia
coli, Salmonella typhimurium,
Salmonella entarica,
Enterobacterium sp., Aspergillus
Niger, Aspergillus flavus, Fusarium
oxysporum, Pythium ultimum,
Fusarium solani, and Rhizoctonia
bataticola

Jemil et al.
(2017)

Lactobacillus
plantarum subsp.
plantarum

Food Escherichia coli, Staphylococcus
aureus, and Salmonella enterica

Bakhshi
et al. (2017)

Rhamnolipids and
surfactin

Food Listeria monocytogenes and
Pseudomonas fluorescens

Araujo et al.
(2016)

Xylolipid Biomedical L. monocytogenes, Escherichia coli
and Bacillus cereus

Sharma
et al. (2015)

Glycolipid (glucose
+ palmitic acid)

Biomedical Candida albicans, Pseudomonas
aeruginosa, and the marine biofouling
bacterium Bacillus pumilus

Dusane
et al. (2011)

Surfactin/iturin A Food Bacillus cereus Shakerifard
et al. (2009)
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biofilms their fixation and maintenance on surfaces in different environments
(Donlan 2002).

Humidity, temperature, environmental pH value, climatic conditions, and chemi-
cal composition of the nutritive substrate are the factors that affect the growth of
biofilm. Besides, biofilms contain 80–90% water, and their depth can differ between
50 and 100 μm, depending upon the inhabited area (Kaali et al. 2012).

Materials with a hydrophobic surface favor bacterial fixation and biofilm forma-
tion, except those with a superhydrophobic surface such as Teflon that has surfaced
with contact angles with water >150� (Zeraik and Nitschke 2012; Li et al. 2016;
Yilgör et al. 2018).

The hydrophobicity of the microbial cellular membrane and the presence of
extracellular filamentous annexes can affect the ratio and degree of bacterial binding.
The progress of the hydrophobic type interaction between the exposed area of the
material and the microbial cell surface tends to be greater with the increase in the
nonpolar constitution of those involved (Donlan 2002; Krasowska and Sigler 2014).
The hydrophobic regions of the bacterial cells are partially involved in the connec-
tion with a neighboring cell (Van Oss 1995; Krasowska and Sigler 2014). Studies
carried out by many laboratories concluded that the susceptibility of materials to
microbial adhesion is greater on wood and latex surfaces. A reduction occurs from
silicone, PVC, Teflon, polyurethane, stainless steel, and titanium materials (Stoica
et al. 2016).

Biofilms can cause microbiologically influenced corrosion (MIC). Some
microorganisms cause MIC through extracellular electron transfer for energy.
They secrete corrosive metabolites that lead to MIC (Jia et al. 2019).

As biosurfactants reduce the surface tension between liquids and the surface, they
can wet surfaces and thus make them hydrophilic (Fig. 10.1), making microbial
fixation difficult. Furthermore, they allow greater penetration of different fluids,
including solvents and antimicrobial agents in biofilms, which can contribute to
the removal of this and other fouling.

10.4 Applications of Biosurfactants as Anti-Adhesive Agents

The pre-contact of surfaces with surfactants can lead to the adsorption of these
elements on the surfaces, which can affect the development of biofilm in two ways:
(1) modification of the biofilm formation capacity, as surfactants can act against
cellular metabolism, favoring or impairing the adhesion forces that maintain the
mechanical stability of the biofilm, and/or (2) development of biofilms with less
cohesive characteristics that can lead to the detachment of biomass (Rasulev et al.
2017).

Thus, bacterial adhesion to surfaces and the consequent development of biofilm
are natural phenomena in different environments, such as marine, freshwater, hospi-
tal, food, and other industrial systems (Ricker and Nuxoll 2016; Galié et al. 2018; de
Carvalho 2018), and biosurfactants prove to be an effective tactic to mitigate the
establishment of biofilms and other fouling organisms.
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10.4.1 Anti-Adhesive Applications in the Biomedical Field

With the development of studies in the field of bacterial biofilms, the potential threats
to health caused by infections caused by these biofilms have caused great public
concern (Yan et al. 2019).

Synthetic surfactants are already used in the medical field, especially in cleaning
infected lesions, in preparing the injured skin surface to receive surgical grafts
(Percival et al. 2017). The presence of EPS in biofilms shows a reduced sensitivity
to the host defense systems, antibiotics, among others, which contributes to bacterial
persistence in chronic infections.

A lipopeptide from Bacillus subtilis AC7 combined with a farnesol molecule was
able to neutralize biofilms of Candida albicans in silicone elastomer under simulated
physiological conditions (Ceresa et al. 2018).

Using sophorolipid from Candida bombicola ATCC 22214, Ceresa et al. (2020)
observed a significant reduction in the capacity of Staphylococcus aureus and

Fig. 10.1 Influence of biosurfactant on the surface hydrophilicity and microbial adhesion. (a)
Solution without biosurfactant, hydrophobic surface; (b) Solution containing biosurfactant, surface
becomes hydrophilic; (c) Emphasis on microbial adhesion influenced by surface hydrophobicity;
and (d) Highlight on the inhibition of microbial adhesion caused by the adsorption of the
biosurfactant on the surface
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C. albicans to form biofilms and adhere to surfaces in 90–95% of silicone used in
medical equipment. This research indicates the potential of biosurfactants as coating
agents in biomedical materials to prevent infections by Gram-positive bacteria and
fungi.

Satpute et al. (2019), using the glycolipoprotein biosurfactant produced by
Lactobacillus acidophilus, observed antibiofilm and anti-adhesive activities against
biofilm-producing microorganisms in medical implants based on PDMS
(polydimethylsiloxane), considering a potential anti-adhesive agent on various
surfaces of biomedical devices.

10.4.2 Anti-Adhesive Applications in the Food Industry Surfaces

The control of bacterial biofilms is one of the ways found by the food industry and
related areas to reduce the undesirable effects of microbial contamination. The
occurrence of biofilm can lead to food spoilage and disease transmission, which
poses a risk to consumer health (Giri et al. 2019).

Several food manufacturing procedures present precarious sanitation
environments, where microorganisms can successfully grow. These environments
can include rubber surfaces, packaging machines, piping, valves, floor and walls,
polystyrene materials, and stainless-steel materials (Faille and Carpentier 2009).

Several foodborne pathogens from different species of microorganisms such as
Bacillus cereus, Escherichia coli, Shigella sp., Staphylococcus aureus (Sharma and
Anand 2002; Sharma et al. 2015), Listeria monocytogenes, Salmonella typhi, Pseu-
domonas fragi, and Leuconostoc citreum (Dzieciol et al. 2016) among others are of
great apprehension in food processing and preparation spaces.

Biosurfactants can either serve as a colonization factor for a specific microorgan-
ism or are also able to prevent or delay the establishment of other microorganisms.
Scientific research with microbiological surfactants has already indicated anti-
adhesive activities of these molecules against food-borne microbial pathogens.
Therefore, microbiological surfactants, acting as antimicrobials, affected the growth
of free and fixed forms of microbial cells of these organisms (Nitschke and Silva
2018).

When adsorbed on the surfaces of different materials that come into contact with
food, biosurfactants were able to inhibit adhesion and biofilm formation. On poly-
styrene and AISI 304 stainless steel surfaces, the bacterium surfactin Bacillus
subtilis ATCC 21332 and rhamnolipid from Pseudomonas aeruginosa PA1
(Petrobras) were tested against Gram-positive and -negative microorganisms.
These biosurfactants significantly reduced the formation of biofilm pathogens from
Gram-positive food sources (Listeria monocytogenes ATCC 19112 and ATCC
7644) and Gram-negative microorganisms (P. fluorescens ATCC 13525) (Araujo
et al. 2016).

The biosurfactants of Bacillus subtilis VSG4 and Bacillus licheniformis VS16 are
demonstrated to be notable blockers of microbial adherence and biofilm generation
of microorganisms associated with food contamination. Thus, the authors propose
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that both the biosurfactants have the potential to be exploited as an antioxidant,
antimicrobial, and anti-adhesive and thus mitigate the development of microbial
biofilms in the biomedical and food industries (Giri et al. 2019).

The DCS1 lipopeptide synthesized by Bacillus methylotrophicus DCS1 showed
antimicrobial activity against several tested microorganisms. Besides, they
interrupted the preformed biofilm and also presented anti-adhesive activity in the
formation of biofilm. Thus, the authors suggested the viable use of the DCS1
lipopeptide as a substance that inhibits oxidation, acting as antimicrobial and anti-
adhesive in reducing microbial adhesion and biofilm formation and its applicability
also in biomedical devices and the food sector (Jemil et al. 2017).

Biosurfactants isolated from Lactobacillus paracasei showed antimicrobial
properties and anti-adhesive and antimicrobial properties against various food
pathogens at different levels of inhibition. Therefore, they recommend the
biosurfactant tested against various food pathogens as an alternative antimicrobial
agent (Gudiña et al. 2010).

Biosurfactants also show differences in anti-adhesive and antibiofilm action
depending on the type of surface material treated. In a test carried out by Araujo
et al. (2016), rhamnolipids reduced the fixation on the polystyrene surface up to 79%
and on stainless steel up to 83%. Surfactin reduced 54% and 73%, respectively, in
the same materials. pH is an important factor to be considered in the development of
strategies based on rhamnolipids for the control of food pathogens. Rhamnolipid
showed antimicrobial action against Gram-positive pathogens (Bacillus cereus,
Listeria monocytogenes, and Staphylococcus aureus). This activity was related to
the increase in the acidity of the environment caused by the different pH levels.
The susceptibility of these pathogens was associated with a reduction in the
hydrophobicity of the microbial surface layer and consequent deterioration of the
cytoplasmic membrane (de Freitas et al. 2019).

10.5 Future Trends and Conclusions

Due to a large number of applications, biosurfactants are exceptionally useful
molecules. The surfactant, antimicrobial, and emulsifying properties of these
molecules have been implemented in several industries, such as pharmaceutical,
cosmetic, food, and biotechnological. The application of anti-adhesive activity is of
great importance mainly in the pharmaceutical and food industries. Recent advances
related to the identification of microorganisms that produce biosurfactants, purifica-
tion, and characterization of their compounds, as well as cultivation with different
residual raw materials and scale-up studies, have enabled the production of
biosurfactants with different functionalities. However, the high production cost
does not allow for large-scale synthesis, limiting the availability of these molecules.

The biosurfactants mentioned here can be used in the development of new
strategies to delay the colonization of the surface, i.e., be used as antifouling agents.

Smart antibacterial coatings may contain fixed microorganisms that release
biosurfactants with anti-adhesive action. These same coatings may also be
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antimicrobial by encapsulating these agents. Both are promising strategies since they
can be doubly effective in presenting anti-adhesive and antimicrobial functions in
the same product. Hence, investments in research for the development and industrial
production of natural anti-adhesive products based on biosurfactants are necessary
for the elucidation of chemical structures and their application in different sectors.
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