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Preface

Microbial biosurfactants are biomolecules obtained from bacteria, yeast, fungi, as
well as animals and plants. Biosurfactants owing to their biocompatible nature can
be used as emulsifying, defoaming, anti-adhesive, antioxidant, antimicrobial,
antibiofilm, and antioxidant agents. Microbial biosurfactants have a wide range of
applications starting from household detergents to cosmetics, environmental bio-
technology to agriculture, and food processing to biomedical industries. This book
reviews the applications of microbial biosurfactants in the food industry, such as
antioxidant, environmental biotechnology, biomedicine, energy, and household
detergents. It is written by experts having considerable experience in the area of
preparation and characterization of biosurfactants. It aims to cater to the needs of
people from a wide variety of disciplines from food industry to household
applications as well as from industries to biomedicine, energy, and environmental
biotechnology. It is an in-depth resource for graduate and postgraduate students,
researchers, biotechnologists, industrialist, material scientists, and R&D
professionals of food industries working in the area of biosurfactants. It contains
14 chapters. The summaries of the chapters are given below.

Chapter 1 discusses the characteristics of biosurfactants advantageous for the
food industry. Also, it addresses the concept of food additive and how the multiple
functions of biosurfactants can be used, such as emulsifier, antimicrobial,
antibiofilm, and antioxidant agent.

Chapter 2 presents a brief description of the main contaminants in food
processing and the biosurfactants applied to avoid them. It focuses on the application
of glycolipids and lipopeptides as the major microbial biosurfactants, such as
preservatives, and antimicrobial, antioxidant, and antibiofilm agents in food
processing.

Chapter 3 discusses several aspects of biosurfactants such as sources, structure,
isolation, and potential role and applications of biosurfactants. The microbial-
derived surfactants can replace synthetic surfactants in a variety of industrial
applications as detergents, emulsifiers, solubilizers, and foaming and wetting agents.
This chapter discusses the antioxidant property of biosurfactants with examples.

Chapter 4 discusses the classification and physical and chemical properties of
biosurfactants. Furthermore, it highlights the factors affecting the production of
biosurfactants and the methods of cultivation in the laboratory and industrial scale.
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Chapter 5 focuses on various classes of microbial biosurfactants, their basic
chemical properties, and the details of genes encoding various types of biosurfactants.
It also elaborates the potential industrial and pharmaceutical applications of
biosurfactants.

Chapter 6 reviews the biodegradation pathway of PAHs involving enzymes and
microorganisms. The production of biosurfactants by microorganisms and their
contribution toward the degradation of insoluble PAHs are properly discussed.

Chapter 7 discusses the different types of biosurfactants and the structure of
surfactin, along with its membrane interaction, synthesis, and regulation. Breast cancer
is a global issue. Surfactin, which is a biosurfactant, can act against breast cancer.

Chapter 8 describes the current research and knowledge of microbial
biosurfactants with anticancer potential. Information on the structure and production
of biosurfactants is detailed. The main emphasis is given to the anticancer activity in
the treatment of breast cancer, lung cancer, leukemia, melanoma, colon cancer, and
drug delivery systems.

Chapter 9 discusses the various sources of oil and petroleum pollutants and
technologies for their remediation using biosurfactants. A major focus is given on
the mode of action of biosurfactant and biosurfactant producing microorganisms for
the removal of oil pollutants from soil and water.

Chapter 10 deals with the main classes of biosurfactants with anti-adhesive
action. It also discusses the process of microbial adhesion for the formation of
biofilms and the studies involving the applications of microbial biosurfactants as
disruptive agents on different surfaces.

Chapter 11 discusses the applications of surfactants, especially biosurfactants, on
the treatment of waste-activated sludge. Recent developments on value-added
biometabolite production, bioenergy recovery, dewatering, decontamination of
organic contaminants, and heavy metal removal are covered. Besides, state-of-the-
art processes to promote biotransformation of organics from sludge are presented.

Chapter 12 emphasizes the role of biosurfactants in the medical and pharmaceu-
tical industries. Important physicochemical properties of biosurfactants are included.
Potential applications in cancer treatment, drug delivery, wound healing, and anti-
microbial therapy are described in detail. Moreover, future perspectives are also
included.

Chapter 13 discusses different types of biosurfactants and their production.
Various applications of biosurfactants are reported especially emphasizing their
antibacterial property.

Chapter 14 describes the chemical nature of biosurfactants and media composi-
tion required for microbial growth. Even genetic regulation and biosynthesis of
surfactants are also discussed with a diverse group of genes. Additionally, the
applications of biosurfactants in different industries like textile, leather, petroleum,
cosmetic, household detergents, and washing soaps are also discussed.

Aligarh, India Inamuddin
Aligarh, India Mohd Imran Ahamed
Motihari, Bihar, India Ram Prasad
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Application of Microbial Biosurfactants
in the Food Industry 1
Italo José Batista Durval, Ivison Amaro da Silva,
and Leonie Asfora Sarubbo

Abstract

The food industry has evolved over the centuries, accompanying changes in
dietary habits. Technologies have emerged to improve both the flavor and useful
life of food products. The quest for efficient additives that do not affect the health
of consumers, increase durability, offer nutraceutical advantages, and satisfy
market niches has led to increasing research into natural alternatives for the
replacement of synthetic additives. Biosurfactants emerge as a biocompatible
solution with multiple functions that can be used as emulsifying, antimicrobial,
antibiofilm, and antioxidant agents.

Keywords

Food additives · Food preservatives · Emulsifier · Antimicrobial · Antibiofilm ·
Antioxidant

1.1 Surfactants in the Food Industry

Technological advances in the nineteenth century enabled the manipulation of food
products through the use of additives, favoring the mass production of foods with a
pleasant flavor. This led to the further development and ever-increasing use of such
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additives. Moreover, changes in lifestyle in recent decades have transformed eating
habits, with the increased incorporation of added ingredients to food products
(Onaolapo and Onaolapo 2018).

Chemically synthesized surfactants are used in numerous food formulations.
Biosurfactants have also been used for this purpose, such as lecithin and some
proteins used in salad dressings and cake frosting. However, chemically synthesized
surfactants are toxic, and, therefore, biosurfactants have gained ground due to their
biodegradable nature and low toxicity, making these natural compounds more
attractive as novel functional additives for use in the food industry (Sharma 2016).

There is a growing demand on the part of consumers for the replacement of more
harmful synthetic products with less harmful natural products that perform the same
functions. In this context, biosurfactants emerge as a biocompatible solution that can
be used as emulsifying, antimicrobial, antibiofilm, and antioxidant agents
(Table 1.1) with applications in the formulation of food products (Ranasalva et al.
2014).

Biosurfactants can be used in baked goods and ice creams during the cooking of
fats and oils and for the control of consistency, extending the useful life of the
product and solubilizing aromatic oils. Rhamnolipids improve the stability of dough
as well as the volume, texture, and conservation of baked goods (Vijayakumar and
Saravanan 2015).

1.1.1 Food Additives

According to the World Health Organization (2018), food additives are substances
added to maintain or improve the safety, freshness, flavor, texture, and/or appearance
of foods. Numerous additives have been developed over the years to fulfill the needs
of food products, as large-scale food production is very different from making
products on a small scale at home. Additives are needed to ensure that processed
foods remain in a good state and safe to consume throughout their entire journey
from factories or industrial kitchens and during transportation to warehouses and
stores until finally reaching the consumer. Food additives are derived from plants,
animals, or minerals or may be synthetic. There are thousands of additives—all of
which are designed for a specific purpose, making foods safer or more attractive.

Among the fundamental principles of the use of additives, safety is paramount,
and the adoption of the procedures necessary for the acquisition of innocuous,
healthy foods is indispensable. Therefore, previous to authorization usage, an
additive must be submitted to a satisfactory toxicological assessment, considering
possible secondary effects such as accumulation, synergisms, or even protectiveness
(Brazil 1997, 2002).

Authorization for the use of additives in the food industry and the inspection of
these foods follow different standards depending on the country. This responsibility
falls to the Food and Drug Administration (FDA) in the United States and the
Agência Nacional de Vigilância Sanitária (Anvisa [National Health Surveillance
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Table 1.1 Biosurfactants with uses in the food industry

Microorganism
Biosurfactant
type Function Target References

Bacillus
sp. MTCC
5877

Glycolipid Antiadhesive,
antimicrobial

E. coli Anjun et al.
(2016)

Candida utilis Carbohydrate-
lipid-protein
complex

Emulsifier – Campos
et al.
(2019)

A. piechaudii
CC-ESB2

– Emulsifier,
antioxidant

– Chen et al.
(2015)

Pseudomonas
aeruginosa
ATCC-10145

Rhamnolipid Antimicrobial S. lutea, M. luteus,
B. pumilus,
P. chrysogenum,
C. albicans

El-
Sheshtawy
and
Doheim
(2019)

Candida
albicans
SC5314

Sophorolipid Emulsifier,
antimicrobial

Pseudomonas
aeruginosa (MTCC
424), Escherichia coli
(MTCC
723), Bacillus subtilis
(MTCC 441), and
Staphylococcus aureus
(MTCC
9886)

Gaur et al.
(2019)

Candida
glabrata
CBS138

Sophorolipid Emulsifier,
antimicrobial

Pseudomonas
aeruginosa (MTCC
424), Escherichia coli
(MTCC
723), Bacillus subtilis
(MTCC 441), and
Staphylococcus aureus
(MTCC
9886)

Gaur et al.
(2019)

Bacillus
licheniformis
VS-16

Phospho-
lipopeptide

Antibiofilm E. coli Giri et al.
(2017)

Bacillus spp. Surfactin Antimicrobial Bacillus cereus,
Listeria
monocytogenes,
Staphylococcus aureus,
Streptococcus
pneumoniae,
Salmonella
typhimurium, Serratia
marcescens, and
Klebsiella
pneumoniae

Isa et al.
(2020)

Acinetobacter
indicus M6

Glycolipoprotein Antibiofilm,
antimicrobial

P. aeruginosa ATCC
9027, Staphylococcus
aureus ATCC 6538

Karlapudi
et al.
(2020)

(continued)
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Agency]) in Brazil. Countries belonging to economic blocks, such as the European
Union, adopt norms determined by the union health board.

1.1.2 Biosurfactants as Food Preservatives

1.1.2.1 Emulsifying Agents
An emulsion is a mixture of different systems consisting of one or more immiscible
liquids, which are spread in another in the form of droplets (Santos et al. 2016).
These types of systems are characterized by low stability, which can be magnified by
surfactants, thus reducing interfacial tension, consequently lessening the surface
energy between the two phases, and forestalling the union of the particles by the
formation of hysteric and electrostatic barriers (McClements and Gumus 2016).

In food, the emulsifier acts promoting the stability of the formed emulsion. The
reduction of surface tension at the oil-water interface is the key point and results in
the control of developed droplets, as well as in the stabilization of aerated systems.
As a result, the emulsifiers work by improving the consistency and texture of the
formulated food, promoting the solubilization of aromas as well. Another function is
the increasing of shelf life. Therefore, emulsifiers are essential for food industry, in

Table 1.1 (continued)

Microorganism
Biosurfactant
type Function Target References

Nesterenkonia
sp.

Lipopeptide Emulsifier,
antioxidant,
antibiofilm,
antimicrobial

Staphylococcus aureus Kiran et al.
(2017)

Lactobacillus
casei ATCC
393

– Antioxidant,
antibiofilm,
antimicrobial

S. aureus ATCC 6538,
S. aureus 9P, S. aureus
29P

Merghni
et al.
(2017)

Candida
lipolytica UCP
0988

Rufisan Antiadhesive,
antimicrobial

S. agalactiae,
S. mutans, S. mutans
NS, S. mutans HG,
S. sanguis 12, S. oralis
J22

Rufino
et al.
(2011)

Pseudomonas
spp.

Glycolipid Antibiofilm Staphylococcus aureus Silva et al.
(2017)

Lactobacillus
pentosus

Glycolipopeptide Emulsifier – Vecino
et al.
(2015)

Bacillus
subtilis C19

Lipopeptide Antimicrobial C. albicans Yuliani
et al.
(2018)

Bacillus
subtilis SPB1

Lipopeptide Antioxidant – Zouari
et al.
(2016)

4 I. J. B. Durval et al.



which water-oil foams and emulsions are often used (Satpute et al. 2018;
Radhakrishnan et al. 2011; Patino et al. 2008).

Natural food emulsifying agents derived from plants, such as lecithin and gum
arabic, already enjoy considerable participation and acceptance in the market.
However, lecithin has functional limitations when employed in products submitted
to modern processing conditions, such as microwave cooking and irradiation.
Cream, butter, margarine, and mayonnaise are examples of emulsions.

The production of emulsifiers from microbial cultures is an alternative to existing
additives, enabling the acquisition of more resistant products that meet the
requirements of modern food processing technologies (Nitschke and Costa 2007).
There are reports of the use of biosurfactants as emulsifiers for the processing of raw
materials with applications in baked goods (affecting the rheological characteristics
of dough) and processed meats (emulsification of fat).

Biosurfactants can be used as emulsifiers to control the clustering of fat globules,
stabilize aerated systems, and improve the consistency of fatty products. Studies
report the use of rhamnolipids to improve the properties of butter, croissants, and
frozen pastries (Muthusamy et al. 2008). A bioemulsifier produced by Candida utilis
was used in salad dressings (Campos et al. 2014, 2015), and a biosurfactant
produced by Bacillus subtilis was used in the formulation of cookies (Zouari et al.
2016).

Microorganisms such as Candida utilis, Candida valida, Hansenula anomala,
Rhodospiridium diobovatum, Rhodotorula graminis, Klebsiella sp., and
Acinetobacter calcoaceticus and the alga Porphyridium cruentum were identified
as robust producers of bioemulsifiers, presenting stability superior to commercial
emulsifiers (Barros et al. 2007).

1.1.2.2 Antibiofilm Agents
A biofilm is a set of entangled microorganisms that reside within an extracellular
polymer matrix adhered to a surface. About 5 to 35% of the biofilm is comprised of
microorganisms, and the rest is extracellular matrix (Jamal et al. 2018).

In the food industry, bacterial biofilms are a potential source of contamination, the
transmission of disease and the deterioration of food products. Thus, reducing the
formation of biofilm on the surface of foods is of extreme importance to providing
quality products to consumers (Campos et al. 2013). Methods for the prevention or
eradication of biofilm encompass physical, chemical, or biological processes as well
as the development of novel or modified packaging materials (Silva et al. 2017). Due
to their considerable surface activity, biosurfactants are effective at avoiding the
formation of biofilm (Sharma 2016).

Biosurfactants are suggested to reduce hydrophobic interactions, which diminish
the hydrophobicity of the surface and impede the adherence of microbes (Mnif and
Ghribi 2015). Therefore, biosurfactants have the ability to interrupt the formation of
biofilm by controlling microbial interactions with interfaces and altering the chemi-
cal and physical conditions of the environment of the developing biofilm (Kiran et al.
2010).

1 Application of Microbial Biosurfactants in the Food Industry 5



A biosurfactant isolated from the bacterium Lactobacillus paracasei exhibited
antibiofilm activity against Candida albicans, Staphylococcus aureus, Staphylococ-
cus epidermidis, and Streptococcus agalactiae, which are all well-known food
pathogens (Gudiña et al. 2010). A biosurfactant derived from Bacillus licheniformis
reduced formation of E. coli biofilm by 54% (Giri et al. 2017). A biosurfactant
produced by Nocardiopsis sp. MSA13 significantly interrupted the formation of
biofilm by Vibrio alginolyticus (Kiran et al. 2014). A glycolipid produced by
Brevibacterium casei significantly inhibited the production of biofilm by Vibrio
spp., E. coli, and Pseudomonas spp. (Kiran et al. 2010).

1.1.2.3 Antimicrobial Agents
Numerous secondary metabolites derived from microorganisms have been described
as antimicrobial agents. The quest for compounds with action against pathogens
emerges from the need to inhibit the activity of these microorganisms, especially in
the food industry. Conventional antibiotics no longer serve this purpose due to the
occurrence of increasingly resistant pathogens (Sharma 2016).

Biosurfactants have been successfully used to inhibit or retard the development of
common microorganisms in food products. The mechanism of action depends on the
physicochemical characteristics of the bioactive compound. Some of the
mechanisms described include a change in permeability, destabilization and rupture
of the cell membrane, or destruction of protein conformations, with the alteration of
vital functions, including the generation and transport of energy (Fracchia et al.
2015).

Anjun et al. (2016) performed tests with effective results using a biosurfactant
produced by Bacillus sp. to inhibit the growth of E. coli. Yuliani et al. (2018)
investigated a biosurfactant produced by Bacillus subtilis C19 and found activity
against five pathogens (Staphylococcus aureus, Escherichia coli, Pseudomonas
aeruginosa, Salmonella enterica typhi and Listeria monocytogenes). Biosurfactants
isolated from Pediococcus acidilactici and Lactobacillus plantarum demonstrated
antimicrobial activity against Staphylococcus aureus CMCC26003 (Yan et al.
2019). Previously, some food-related pathogens, such as Bacillus cereus, Staphylo-
coccus aureus, and Micrococcus luteus decreased their proliferation when
rhamnolipids derived from P. aeruginosa were added in the culture (Costa et al.
2010).

1.1.2.4 Antioxidant Agents
Antioxidants are a class of food additive used to avoid lipid oxidation, thereby
increasing the useful life of food products. The generation of toxic compounds and
the development of rancidness and undesirable flavors are the negative effects of
lipid peroxidation, leading to a reduction in the quality and safety of the product
(Nitschke and Silva 2017).

The necessity of synthetic antioxidants replacement in food industry led the
search of natural compounds with antioxidant potential. Biosurfactants have signifi-
cant antioxidant activity and therefore have the potential to fulfill this purpose
(Sharma 2016). Biosurfactants isolated from strains of Lactobacillus casei

6 I. J. B. Durval et al.



demonstrated satisfactory activity regarding the sequestering of DPPH free radicals,
with a greater effect achieved when the concentration of the biosurfactant was
increased (Merghni et al. 2017).

Yalçin and Çavuşoğlu (2010) suggest that a lipopeptide produced by Bacillus
subtilis RWI could be used as a natural alternative antioxidant. The authors
evaluated its antioxidant activity based on its redox power, the sequestration of
DPPH, and the chelation of iron ions, concluding that the biocompound has good
antioxidant capacity for the elimination of free radicals.

1.1.3 Industrial Prospects

The properties of versatility, biocompatibility, and sustainability have led to growing
interest in biosurfactants, especially in the food industry, where there is a quest to
discover novel compounds for use as gelling, emulsifying, or dispersing agents, such
as xanthan gum and emulsan (McClements and Gumus 2016). In addition, increas-
ing of shelf life and additional nutraceutical benefits can be achieved by the use of
biosurfactants.

High production costs result primarily from inefficient bioprocessing methods as
well as the use of expensive substrates, which account for up to 50% of final cost of
the product. In order for biosurfactants to gain a significant portion of the market,
there is a need for the use of inexpensive substrates that provide high yields,
improvements in processing technologies to facilitate the recovery of the product,
greater knowledge in manipulating the metabolism of biosurfactant-producing
microorganisms, and the selection of biosurfactants for specific applications
(Campos et al. 2013). The development of fermentation technologies will also
increase the possibility of modifying the structure and function of biopolymers in
a controllable manner, enabling the development of “designer biopolymers.”

New ingredients will be developed that can tolerate modern food processing
techniques, such as ultrahigh temperatures, extrusion by microwave heating, etc.,
and can function adequately in new formulations with low salt, fat, and calorie
contents. However, the success of food products and ingredients produced by
biotechnology also depends on consumer acceptance. There is no doubt that new
discoveries in biotechnology will offer solutions to the challenges faced by the food
industry (Campos et al. 2013).

Despite the potential applications, the food industry does not yet employ
biosurfactants as additives on a large scale. Moreover, the use of biosurfactants as
novel ingredients in foods requires the approval of regulatory agencies.
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Abstract

Food security is one of the biggest concerns in food processing. In recent decades,
the effects of contaminants in food crops are currently compromising food
security and human health. Food contamination can be microbiological, chemical
and physical. It can occur on different steps of food processing, such as transport,
storage and packaging of raw or processed food, as well as during heating
processes. Therefore, substances including the additives can help to maintain
the food security during food processing until it reaches the consumers. They can
provide food preservation, maintaining freshness and preventing bacterial con-
tamination, among many others. The additives from natural sources have been
receiving more attention from food manufacturers when compared to the syn-
thetic ones, due to their higher quality and safety. An example of natural additives
are biosurfactants, which are derived from microorganisms. Interests in the use of
biosurfactants have been increasing in the food market, as a result of their
capacity to replace synthetic additives in the food industry. The objective of
this chapter is to present the main microbial biosurfactants used to avoid contam-
ination during food processing. We briefly discuss their potential applications as
food preservatives, presenting antimicrobial, antioxidant and antibiofilm
activities against food pathogens.
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Summary This chapter presents a brief description of the main contaminants in
food processing and the biosurfactants applied in avoiding them. It is focused on the
application of glycolipids and lipopeptides as the main classes of microbial
biosurfactants, as preservatives, antimicrobial, antioxidant and antibiofilm agents
during food processing.

2.1 Introduction

2.1.1 Food Contamination

The origins of food contaminants can be microbiological, physical or chemical. Data
from the World Health Organization informs around 600 million people get sick
after eating contaminated food, causing 420,000 deaths per year (World Health
Organization 2019). Understanding the origin and when it happens during food
processing can contribute to a more effective control and avoid contamination.

Chemical contaminants are one of the serious sources of food contamination.
They include the environmental contaminants (organic pollutants, heavy metals,
pesticides, disinfectants, detergents, deodorants, veterinary products); food
processing contaminants that are formed during heating, cooking or packaging
(such as furanes, polycyclic aromatic hydrocarbons and acrylamide) and processing
contaminants that are released during cooking, processing or packaging (McKay and
Scharman 2015).

In a microbiological contamination, bacteria, virus and parasites can spread in
food and cause harm to humans. The most common sources of microbiological
contamination include Salmonella spp., Bacillus cereus, C. perfringens, E. coli,
Shigella spp., Listeria monocytogenes, Clostridium botulinum, Yersinia
enterocolitica and Vibrio cholera (Hussain 2016). There is also the physical con-
tamination, which happens when any foreign matter enters food and causes illness or
injury when consumed. Examples of physical hazards could include glass, metal and
plastic fragments, hair, fingernails, dirt and insects (Echavarri-Bravo et al. 2017;
Aguiar et al. 2018).

The contamination could occur naturally or be introduced by humans. A signifi-
cant amount of food contamination can occur during food processing steps, packag-
ing, transportation and storage of raw or processed foods (Rather et al. 2017).
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2.1.2 Contamination in Food Processing

Food processing involves activities for the conversion of raw food into more stable
final products. Its goal is to increase the quality, nutritive value, taste and shelf life.
The main stages of food processing include heating, packaging, storage, distribution
and transport (Sethu and Ananth Viramuthu 2008). In order to avoid contamination
in food processing, it is important to identify the most likely contaminants from each
of these stages.

The environment of food processing inside the industry is usually one of the main
sources of contamination. The exposure to contaminated surfaces plays a major role
in possible food contamination in the industries. Equipment, utensils, hallways,
workbenches and pipes are the main sources of contamination in industries. These
contaminants can be in contact with the food or can be transferred to the food by air,
other materials and people. Employees can contaminate the food during its
processing through the direct transfer of microorganisms from their body to the
food or by carrying them from a contaminated area to another (Masotti et al. 2019).
The equipment design is also important in avoiding contamination as it influences
the cleaning and rinsing operations and therefore the removal of contaminants (Faille
et al. 2018). Good hygiene practices can limit the microbial contamination, decreas-
ing cross-contamination and formation of biofilms. Once it is formed, the biofilm
becomes a source of contamination, and it is considered one of the main concerns for
the food industry (Carrasco et al. 2012).

In addition to the processing of food in industries, food contamination can also
take place during transportation, including the transportation of raw food to the
industries and the processed food from the industries to the stores. Around 200 bil-
lion metric tons of food is transported in the world every year; 35% is transported by
land, 60% by sea and 5% by air. The possibility of contamination during transport
and storage of food is highlighted by the large amount of food transported, along
with the handling requirements for each food product (Ackerley et al. 2010). Food
contamination during transport can occur from vehicle exhausts of fuel or due to
cross-contamination. This contamination can often happen in long-distance ships,
through the use of chemicals present in cleaning products or other sources (Nerín
et al. 2016). The packages used in food are often not tested to resist and protect the
food for transportation across long distances, leading to food contamination (Rather
et al. 2017). A good example of cross-contamination happened in 1994 when around
a quarter of a million people got gastroenteritis after eating Schwan’s ice cream. The
ice cream contained Salmonella that came from eggs that were earlier transported
using the same trucks (Hennessy et al. 1996).

Heating treatment is the most recognized and used approach for food process in
the industry or at home. The heating combined with external factors during cooking
causes the release of toxic substances (Bordin et al. 2013). These compounds
including acrylamide, furanes, nitrosamines and chloropropanols are generated
during heating, cooking, fermentation, canning and backing (Nerín et al. 2016).
For example, when using a microwave, the packaging material used such as plastics,
paperboard and composites can have their components migrated to the food during
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heating. Fasano et al. (2015) detected significant amounts of plastic components
(phthalates, bisphenol A (BPA), polybrominated diphenyl ethers (PBDE) and
tetrabromobisphenol A (TBBPA)) after using a microwave to heat food in a poly-
ethylene packaging during 3 min at 800 W.

The contamination during food storage is mainly due to changes in the storage
conditions (high temperature and humidity) that can affect the packaging material
properties (Nerín et al. 2016). Direct sunlight and packaging can accelerate the
deterioration of food, causing an adsorption of unwanted off odours (Rather et al.
2017). Another contamination factor is the moisture, which can increase the suscep-
tibility of the food to microbial contamination, leading to modifications of its texture
and decreasing shelf life (Gaikwad et al. 2019). The contamination also depends on
the type of food. For example, dry and canned foods usually present a long shelf life;
however, they may deteriorate in colour, flavour and nutritive value over time
(McCurdy et al. 2009). Fresh meat, such as seafood, beef and poultry should be
maintained at low temperatures in a freezer and refrigerator. Choi et al. (2020)
demonstrated that storing beef at 4 �C was essential for the maintenance of food
quality, reducing significantly the growth of pathogens such as E. coli when com-
pared to storage at 25 �C.

These changes during storage also depend on the packaging material, as it should
exhibit very good barrier properties. The packaging needs to provide physical
protection and helps with the increase in the shelf life of the product. The use of
stabilizers, plasticizers, antioxidants and shipping agents are common in packaging
processes to enhance the characteristics of the packaging material (Conte et al.
2013). However, some substances from the packaging material can be transferred
to the food and can cause health risks to the consumers if they have toxic effects (Lau
and Wong 2000). Therefore, strict legislation is applied worldwide for the use of
substances in packaging materials. Adverse effects can be also caused by substances
that were not intentionally added to the food packaging and are present in food. They
can come from the packaging under a heating process as mentioned before and be
generated from reactions of substances present in the packaging or by the reaction of
substances with foodstuffs. Bauer et al. (2019) identified 50, in which 8 were NIAS,
in baby food from contact of the food with the polyurethane layer of the plastic
multilayer packaging.

The use of preservatives in foodstuff is crucial to prevent contamination and
deterioration of food. These substances can be used during transportation,
processing, storage and packaging of food. Benzoates, sulphites, sorbates,
propionates, nitrites and parabens are the most used antimicrobials used in food.
Regarding the synthetic antioxidants, tert-butylhydroquinone (TBHQ), butylated
hydroxytoluene (BHT), propyl gallate and butylated hydroxyanisole (BHA) are
considered as the most common (Carocho et al. 2015).

Although studied for decades, the use of these synthetic preservatives to avoid
food contamination and deterioration can cause health problems and negatively
affect the environment (Botterweck et al. 2000; Iammarino et al. 2013;
Vandghanooni et al. 2013). For this reason, the interest in natural, safe and environ-
mentally friendly preservatives has increased. Among these, the microbial
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surfactants have been extensively studied during the last few years. From this point
on, we will discuss the use and relevance of the microbial biosurfactants in
preventing contamination during food processing.

2.2 Microbial Biosurfactants Use in Food Processing

Surfactants are compounds that create micelles in a solution and adsorb to the
interfaces between a solution and a different phase (gases-liquids, liquid-liquid)
leading to reductions in the tension surface. This is possible because of the two
different functional groups with different affinity within their molecule. The
surfactants are composed of amphiphilic molecules, with a chemical structure
consisting of a hydrophilic group (carbohydrates or amino acids) and a hydrophobic
one (fatty acids). In food processing, the microbial surfactants can be used as
emulsifying, antimicrobial, anti-adhesive, antibiofilm and antioxidant agents
(Sharma et al. 2018).

The microbial surfactants present a broad variety of compounds produced by
bacteria, yeast or fungi. They are favoured over the synthetic ones in this industry
due to the non-toxicity nature, excellent biodegradability, high surface/interfacial
activity, biocompatibility, stability under extreme conditions of pH, temperature and
sanity (Nitschke and Silva 2018; Parthasarathi and Subha 2018).

The production of biosurfactants has been extensively studied. Inexpensive raw
substrates available in high amounts can be used to produce biosurfactants. Agricul-
tural and industrial wastes, by-products including hydrocarbons and oil waste can be
used for the production of these compounds, enhancing the cost-effectiveness of the
biosurfactant production process. The biosurfactants are generally extracellularly
produced (Inès and Dhouha 2015a). Downstream and recovery process has also been
widely investigated, since the most methods used increase significantly the costs of
biosurfactant production process (Jimoh and Lin 2019). Improvement of microbial
strain by using genetic strategies, optimization of media composition and develop-
ment of scaled-up methods, among others, can also help in achieving a viable
commercial production of high quantities of biosurfactants.

In food processing compounds like phospholipids, fatty acids,
lipoheteropolysaccharides and protein-sugar-lipid complex molecules are used as
biosurfactants (Nitschke and Silva 2018). They can be divided in classes according
to their chemical composition, molecular weight, physicochemical properties and
microbial source (Naughton et al. 2019). The high molecular weights are amphi-
pathic polysaccharides, proteins, lipopolysaccharides and lipoproteins. The main
group is comprised of compounds with lower molecular weights, including fatty
acids, glycolipids, lipopeptides and phospholipids. Among these, glycolipids and
lipopeptides are the most widely applied to avoid contamination in food processing.
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2.2.1 Glycolipids

Glycolipids are the most popular group of biosurfactants. It presents carbohydrate
and a fatty acid as the hydrolytic and hydrophobic portions, respectively (Abdel-
Mawgoud and Stephanopoulos 2018). When compared with synthetic surfactants,
the natural glycolipids present better surfactant activity. According to Liu et al.
(2020), the natural glycolipids present a higher molecular richness than the synthetic
ones. They present a distinctive distribution of the polarity groups over the glyco-
lipid molecule and more branched structures in comparison with the synthetic
glycolipids (Abdel-Mawgoud and Stephanopoulos 2018). However, the industrial
production and application in large scale of these natural surfactants are not viable
yet. As it is hard to separate and purify these natural surfactants, it is still not possible
to fully understand their structure-activity relationships (Liu et al. 2020).

The glycolipids can be categorized into subclasses according to the carbohydrates
and lipid portions, as follows: rhamnose lipids, trehalose lipids, sophorose lipids,
cellobiose lipids, mannosylerythritol lipids (MEL), lipomannosyl-mannitols,
lipoarabinomannans, lipomannans, diglycosyl diglycerides, monoacylglycerol and
galactosyl diglyceride (Mnif and Ghribi 2016). Among these, rhamnolipids,
sophorolipids and trehalolipids are the best known subclasses of glycolipids.

Rhamnolipids are an extensively studied biosurfactant. They are characterized by
rhamnose molecules linked to β-hydroxydecanoic acid molecules (Inès and Dhouha
2015a). Their production was first described using P. aeruginosa in 1949. The fatty
acids present in the rhamnolipid molecules ranges from 8 to 16 carbons. The
β-hydroxydecanoic acid is predominant in the rhamnolipid produced by
P. aeruginosa, whereas β-hydroxytetradecanoic acid is mostly found in the
molecules produced by Burkholderia sp. (Henkel et al. 2012).

Due to the several advantages of the biosurfactants such as rhamnolipids, many
companies have shown interests in exploiting the production of this biosurfactant as
follows: Jeneil biosurfactant (USA), Paradigm Biomedical Inc. (USA), GlycoSurf
LLC (USA), AGAE Technologies LLC (USA) Logos Technologies LLC (USA),
Rhamnolipids Companies Inc. (USA), TeeGene Biotech Ltd. (United Kingdom) and
Urumqi Unite Bio-Technology Co., Ltd. (China).

Regarding the substrates used for rhamnolipids, the most commonly ones are
plant oils, sugars and glycerol. It has been found on literature, the utilization of oil
wastes such as vegetable oil, palm oil, mango kernel oil, glycerol and glycerin,
among others (Table 2.1).

Investigations to optimize the costs and the production of these compounds are
important to enable bioprocesses, considering the potential associated with
rhamnolipid. Genetic engineering has been used in order to improve its synthesis.
Boles et al. (2005) used Pseudomonas aeruginosa, and strains with the insertion/
exclusion of rhlAB, for the production of rhamnolipid using a complex medium
(Na2HPO4; KH2PO4; NaCl; CaCl2; MgSO4; glucose, glutamate), for 48 h at 37 �C.
The rhamnolipid yield improved from 0.1 mg/mL to 0.5 mg/mL when using a
genetically modified strain in comparison with the wild strain. Zheng et al. (2020)
also achieved an increase of 32.63% on the rhamnolipid yield by Pseudomonas
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Table 2.1 Conditions of fermentation for production of glycolipids by microorganisms

Biosurfactant Microorganism Process conditions Yield Reference

Sophorolipids Rhodotorula
babjevae YS3

10% glucose, 19 �C,
200 rpm, 72 h, 5%
inoculum

19.0 g/L Sen et al.
(2017)

Sophorolipids Candida
albicans

30 �C, 72 h, 2% glucose,
150 rpm

1320 mg/
L

Gaur
et al.
(2019)

Trehalose Rhodococcus
fascians

28 �C, 24 h, Davis minimal
media

0.14 mg/
mL

Janek
et al.
(2018)

Mannosylerythritol
lipid

Pseudozyma
aphidis

28 �C, 180 rpm, soybean
oil, 240 h

61.50 g/L Niu et al.
(2019)

Sophorolipids C. Bombicola 20 g/L residual oleic acid,
30 �C, 450 rpm, 288 h,
10% inoculum

69.83 g/
L,
0.24 g/L/
h

Silveira
et al.
(2019)

Sophorolipid C. Bombicola 200–800 rpm, 50 g/L
rapeseed oil, 25 �C, 1023 h

20.22 g/g
1.07 g/L/
h

Dolman
et al.
(2017)

Sophorolipids C. Bombicola 25 �C, 200 rpm, 48 h,
168 h,
1–5 g/L rapeseed oil,
20–60 g/L glucose

11.4 g/g
1.45 g/L/
h

Liu et al.
(2019)

Sophorolipids C. Bombicola 5 mL food waste
hydrolysate, 100–120 g/L
glucose 24 h, 30 �C,
150 rpm, 9% inoculum

0.26 g/g
0.39 g/L/
h

Kaur
et al.
(2019)

Rhamnolipid Pseudomonas
stutzeri

46.55 g/1 glycerol,
150 rpm, 30 �C, 144 h

4.78 g/L Sheikh
et al.
(2019)

Rhamnolipid P. aeruginosa 25.4–116.0 g/L glycerin,
30 �C, 170 rpm, 288 h

17.6 g/L Dobler
et al.
(2020)

Rhamnolipid P. aeruginosa 12% rice-based distillers’
dried grains with solubles,
48 h, 35 �C, 180 rpm

14.87 g/L Borah
et al.
(2019)

Rhamnolipid P. guguanensis Vegetable oil,
peptone + yeast extract
150 rpm, 30 �C, 168 h,

12.5 mg/
mL

Ramya
Devi et al.
(2018)

Rhamnolipid P. aeruginosa 10 g/L palm oil waste,
glucose, 37 �C, 36 h

3.4 g/L Radzuan
et al.
(2018)

Rhamnolipid P. aeruginosa Mango kernel oil, glucose,
120 h, 30 �C

2.8 g/L Reddy
et al.
(2016)
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aeruginosa after performing the fermentation in a 1.5 L bioreactor through a new
continuous production process, based on a cyclic fermentation coupled with the
fractionation of foam when compared to the process performed in a decoupled
system.

Sophorolipid structure comprises a hydroxyl fatty acid and a disaccharide
sophorose linked by β-1, 2 bond (Varjani and Upasani 2017). This biosurfactant
can present an acidic structure, when the fatty acids’ carboxylic end is free, or a
lactonic ring structure, when this end is esterified (Sen et al. 2017). The composition
of the sophorolipids such as the length of carbon chain and the fatty acid structure
and the proportion of the acidic and lactonic forms depend on factors such as
medium composition, environment conditions (pH, temperature, aeration) and strain
used for their production (Díaz De Rienzo et al. 2015; Oliveira et al. 2015).

Different from rhamnolipids, sophorolipids are synthesized by non-pathogen
yeast strains. The most common ones used are Centrolene petrophilum, Candida
bombicola, Rhodotorula bogoriensis and Candida apicola (Banat et al. 2010). Díaz
De Rienzo et al. (2015) obtained a mixture of 45% (v/v) of acidic and lactonic
congeners of sophorolipids using the strain Candida bombicola ATCC 22214, in a
process conducted at 30 �C, using 10% (w/v) glucose, 1% (w/v) yeast extract and
0.1% (w/v) urea (GYU medium). The same strain was also used in a process
conducted with a working volume of 10 L, using Candida growth media for
7 days at 26 �C, achieving around 90% of acidic and lactonic congeners of
sophorolipids (Zhang et al. 2016).

The sophorolipids usually present antimicrobial and antibiofilm activities impor-
tant to avoid contamination in food processing (Sharma et al. 2018; Jimoh and Lin
2019). The production of this surfactant has shown greater interest from the
companies when compared to the rhamnolipids (Sen et al. 2017). The current
main companies exploring the production of this biosurfactant are Saraya (Japan),

Ecover Eco-Surfactant (Belgium), Groupe Soliance (France), MG Intobio Co.,
Ltd. (South Korea) and SyntheZyme LLC (USA).

Trehalolipids is another glycolipid biosurfactant, which is composed of a disac
charide trehalose connected at C6 to long-chain α-spread and β-hydroxy unsaturated
fats (Varjani and Upasani 2017). This subclass of biosurfactants is considered
chemically stable. Changes on pH values, salt concentrations and temperature
usually do not cause any modification in their surface activities (Kitamoto et al.
2009). The first biosurfactant of this subclass was a trehalose dimycolate (TDM)
described in 1930s and obtained by Mycobacterium tuberculosis. It plays a major
role in infections caused by this pathogen (Kuyukina et al. 2015). The TDM was
later found to be also produced by the genus Nocardia and Corynebacterium.

Similar to sophorolipids, the structure of the trehalolipids such as the size and
structure of fatty acids, the quantity of carbon molecules and the degree of
unsaturation depend on the strain and growth conditions used (Roy 2017). This
subclass presents a high variety of structure. In addition to trehalose dimycolate
(TDM), the trehalose trimycolates, mono-, tetra- and octa-acylated derivatives also
represent anionic trehalose-type molecules (Niescher et al. 2006).
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Trehalolipids can be produced by different microorganisms, including Nocardia,
Williamsia, Mycobacterium, Corynebacterium, Dietzia, Gordonia, Tsukamurella,
Skermania and Rhodococcus. The most widely studied subclass is trehalose
dimycolates obtained from Rhodococcus erythropolis (Banat et al. 2010). The
trehalolipids obtained from Rhodococcus are commonly involved in adhesion to
surfaces and increase solubility of hydrophobic compounds. They assist the cells in
accessing hydrophobic substrates, by promoting a contact between the cells and the
substrates or by indirect contact through the adhesion to the emulsified oil (Bages-
estopa et al. 2018).

Table 2.1 presents the microorganisms used, cultivation conditions and fermen-
tation strategies in the production of glycolipids.

2.2.2 Lipopeptides

Lipopeptides are consisted of a fatty acid portion connected to a peptide chain. They
can be divided into three different subclasses, depending on the sequence of amino
acids presented: surfactins (cyclic lipoheptapeptide linked to a β-hydroxy-fatty acid
group), iturins (heptapeptides cyclized by amide bond formed between the α-COO
group of the seventh amino acid and the β-NH2 group of the β-fatty acid) and
fengycins (β-hydroxy fatty acid connected to a peptide domain, composing of
10 amino acids. 8 of them are presented in a cyclic structure) (Hentati et al. 2019).

Surfactin is the most widely studied natural lipopeptides. It is characterized as
highly surface active and water soluble, and it is consisted of four isomers (surfactin
A–D). This biosurfactant is considered as cyclic lipopeptides, comprising of a cyclic
heptapeptide structure connected with a fatty acid containing 13–15 carbons. The
type of microorganism and culture conditions during its production will influence on
the amino acids composition and fatty acids presented in its molecule. The Asp and
Glu residues are generally placed in the heptapeptide ring. The ring then presents a
saddle shape containing two negative residues on each top end (Liu et al. 2020).
Surfactin can be produced by a variety of gram-positive strains of endospore-
producing, Bacillus subtilis (de Araujo et al. 2011).

A concentration of 20 μM of surfactin can cause a decrease in surface tension of
water from 72 to 27 mN/m, which is significantly lower when compared to the
reductions in surface tensions of most biosurfactants found in literature. Surfactin
also presents a critical micelle concentration (CMC) of 23 mg/L in water, which is
significant below the CMC of other biosurfactants (Chen et al. 2015). Surfactin has
been considered as antiviral, antibacterial, antifungal, anti-mycoplasma and
antibiofilm on metallic and polypropylene surfaces and also has haemolytic
properties, presenting cation-carrier and pore-forming effects (Banat et al. 2010;
Chen et al. 2015; Sharma et al. 2018; Meena et al. 2020).

The commercial surfactin produced by Kaneka Corporation (Japan) and Soft
Chemical Laboratories (South Africa) are used for contamination in food processing.
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The lipopeptides are generally produced by bacteria, moulds or yeast (Inès and
Dhouha 2015b). Bacillus species are the most known microorganism used in the
production of surfactin, iturin and fengycin (Table 2.2).

2.3 Application of Microbial Surfactants in Food Processing

Food security is one of the biggest concerns in food processing. Therefore, the main
goal of food processing is to obtain products that are safe and have good organolep-
tic properties. The use of natural additives instead of synthetic ones, as well as an

Table 2.2 Conditions of fermentation for production of lipopeptides by microorganisms

Biosurfactant Microorganism
Process
conditions Yield Reference

Surfactin Bacillus subtilis 30 �C, Luria-
Bertani broth,
200 rpm, 72 h

547.0 mg/L Meena
et al.
(2020)

Surfactin B. tequilensis 30 g/L sucrose,
30 �C,
200 rpm, 48 h

1879.43 � 30.4 mg/L Singh and
Sharma
(2020)

Fengycin B. subtilis 30 �C,
200 rpm, 16 h,
26.2 g/L
mannitol,
21.9 g/L
soybean meal

3.5 g/L Wei et al.
(2010)

Iturin A B. amyloliquefaciens 30 g/L corn
starch, 70 g/L
soybean meal,
28 �C,
230 rpm, 72 h

2013.43 � 32.86 mg/
L

Xu et al.
(2020)

Surfactin B. amyloliquefaciens
and B. subtilis

200 g/L
distillers’
grains, 30 �C,
160 rpm, 96 h

3.4 g/L Zhi et al.
(2017)

Iturin B. amyloliquefaciens 4% sunflower
oil cake, 1%
inoculum,
37 �C, 48 h,
180 rpm

819 mg/L Kumar
et al.
(2017)

Surfactin B. subtilis 2 g/L mg-Al-
layered double
hydride, 10 g/L
sucrose,
200 rpm, 30 �C
120 h

3.8 g/L Kan et al.
(2017)

Surfactin B. subtilis Trypticase soy
broth 32 �C,
170 rpm, 96 h

99.6 � 1.38 mg/L Alvarez
et al.
(2020)
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increase in environmental requirements and health concerns, has raised the need for
natural additives in food (Nitschke and Silva 2018). Therefore, the antioxidant,
antimicrobial and anti-adhesive properties of the microbial biosurfactants make
them possible to be used as additives in the food industry to prevent contamination
during food processing.

2.3.1 Biofilm Control

Biofilms are highly organized multicellular communities composed of
microorganisms enclosed within an extracellular polysaccharide matrix. The
dynamic process of biofilms is an important strategy for the microbes as a mecha-
nism of resistance and survival against antibiotics and host defence mechanisms
(Gebreyohannes et al. 2019). During the formation of biofilms, microorganisms can
adhere to the surfaces that come into contact with the food, thus leading to undesir-
able alterations in the sensory properties of the final product (Zeraik and Nitschke
2010; Sharma et al. 2018).

Biofilm formation is composed of three phases: adherence, maturation and
dispersion. For example, in P. aeruginosa, they are (1) formation of a layer and
irreversible adhesion of microorganisms to its surface, (2) microcolony formation
with the appearance of multilayers and (3) dispersal of bacteria cells which may then
colonize other areas (Gebreyohannes et al. 2019).

The presence of biofilms in food contact or food processing surfaces can cause
transmission of food-borne diseases, contamination by non-starter cultures,
advanced food deterioration and metal loss with the deterioration of pipelines used
for food transport and tanks for food storage (Sharma et al. 2018). Its formation can
be avoided by using biochemical and physical cleaning strategies. However, once it
is formed, biofilm is resistant to antimicrobial agents and mechanical removal
(Gomes and Nitschke 2012). Therefore, efficient measures are urgently needed.
One example that has shown to be effective in preventing and removing biofilms
is the use of biosurfactants (Sharma 2016).

Several studies have demonstrated that the prior adhesion of biosurfactants to
solid surfaces decreases the amount of bacterial cells attached on a surface of
stainless steel and reduces the number of bacterial cells attaching to polystyrene
surfaces, as a result of their anti-adhesive properties against food-borne pathogens,
such as Listeria innocua, Salmonella enteritidis, Listeria monocytogenes and
Enterobacter sakazakii (Sharma 2016; Nitschke and Silva 2018).

The biosurfactant can also change the physico-chemical properties of the surfaces
directly involved in the adhesion, at the beginning of the biofilm formation (Nitschke
and Silva 2018). It specifically modifies the hydrophobicity of the surface, affecting
the adhesion of the bacteria cells on the surface (Gomes and Nitschke 2012;
Harshada 2014). De Araujo et al. (2016) has demonstrated that surfactin changes
the stainless steel surfaces to become more hydrophilic by increasing the electron
acceptor components. Rhamnolipids can promote the same modification in polysty-
rene surfaces (de Araujo et al. 2016).

2 Microbial Biosurfactants for Contamination of Food Processing 21



Biosurfactants can also be used on biofilm removal. The mechanisms involved
are poorly understood, but some can be pointed out such as membrane degradation,
inhibition of the electron transport chain, the ability to make cavities within the
centre of film, improvement of cell permeability, reduction in cell surface
hydrophobicity, reduction of interfacial tension and attractive interaction and inter-
ference in quorum sensing leading to a decrease in the biofilm formation (Gomes and
Nitschke 2012; Nitschke and Silva 2018; Paraszkiewicz et al. 2019).

The mechanisms responsible for removing biofilms by biosurfactants are
correlated with their antimicrobial activity, such as anti-adhesive properties, their
excellent detergency power and membrane disruption, leading to an increase in
membrane permeability, leakage of metabolites and cell lysis (Campos et al. 2013;
Arab and Mulligan 2014; Sharma 2016). Lipopeptides, such as surfactin, fengycin
and iturin, can act similar to antibiotic, antitumour and antiviral agents and enzyme
inhibitors (Harshada 2014). They can reduce the surface tension and therefore
interfere with the adhesion and biofilm formation. Biosurfactants can modify the
permeability of the membranes of the biofilm cells by inserting into them or
chelating cations and then lead to cell disruption, swelling and death (Galié et al.
2018).

In this way, biosurfactants can be used to prevent food contamination by avoiding
the biofilm formation and removing it in industrial surfaces (de Araujo et al. 2016),
leading to an extension of the shelf life of unprocessed fruit and vegetables (Dilarri
et al. 2016).

2.3.2 Food Preservatives

Food additives are added to the food to improve and preserve chemical, biological,
physical and organoleptic properties, during production, processing, transportation,
storage and packaging of the food (Campos et al. 2013). They can be classified as
nutritional additives, flavouring agents, preservatives, colouring agents, miscella-
neous additives and texturizing agents (Carocho et al. 2015).

Heath problems related to the consumption of synthetic additives have been
increasing the demand of the food industry for natural additives. Thus, microbial
biosurfactants are good alternatives as natural additives to be used in market foods,
as a result of their favourable properties compared to synthetic additives used in food
processing.

Biosurfactants show some potential as preservatives in the food industry.
Glycolipids display certain antiviral, antibacterial and antifungal activities (Jezierska
et al. 2018). P. aeruginosa rhamnolipid, sophorose lipid and mannosylerythritol
lipids are well known by their antifungal activities. These biosurfactants are involved
in the lysis of zoospore membranes of Pythium and Phytophthora fungi (Inès and
Dhouha 2015a). An inhibition of mycelial growth and loss of mobility on
Phytophthora sp. and Pythium sp. were observed by Yoo et al. (2005) using
rhamnolipid and sophorolipid.
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An antimicrobial activity of rhamnolipid biosurfactant was reported by de Freitas
Ferreira et al. (2019) against the gram-positive food pathogens S. aureus, B. cereus
and L. monocytogenes. The biosurfactant reduced the hydrophobicity of the cell
surface and damaged the cytoplasmic membrane of the bacteria. The biosurfactant
sophorolipids can also inhibit/disrupt the biofilms formed by E. coli, P. aeruginosa
and Bacillus subtilis (Rienzo et al. 2016).

Sophorolipid biosurfactants are shown to be effective against various fungi such
as Aspergillus, Saccharomyces, Penicillium, Cladosporium, Schizophyllum,
Gloeophyllum and Fusarium. Kim et al. (2002) noted the sophorolipid produced
by Candida bombicola was effective in inhibiting the cell growth of the plant
pathogenic fungus Botrytis cinerea.

The lipopeptide biosurfactant has also presented antibacterial and antifungal
activities. Yuliani et al. (2018) reported antimicrobial activity against Escherichia
coli, Candida albicans, Staphylococcus aureus, Salmonella enterica Typhi, Listeria
monocytogenes and Pseudomonas aeruginosa of surfactin obtained by B. subtilis.
The marine Bacillus strain produced fengycin isoforms that showed to be effective
against Citrobacter freundii, Micrococcus flavus, E. coli, K. aerogenes, A. faecalis,
P. vulgaris and Serratia marcescens (Sivapathasekaran et al. 2009). The antimicro-
bial activity of the biosurfactants might act by disrupting the cell wall, affecting the
permeability of the membrane and then inhibiting the synthesis and metabolism of
proteins and DNA/RNA (Yuliani et al. 2018).

Antioxidative properties of biosurfactants are also of great interest in food
processing. The antioxidants show great technological importance during food
processing, because they act as inhibitors of non-enzymatic browning and microbial
growth as well as preventing lipid oxidation, leading to an extension of the food shelf
life (da Silva et al. 2016). Lipopeptide biosurfactants produced by Bacillus species
show great anti-adhesive, antimicrobial and antioxidant activities and also present
antibiofilm activities causing the disruption of pre-formed bacterial biofilms (Giri
et al. 2019).

Biosurfactants have also been used for metal chelation, to prevent food contami-
nation by heavy metals. The bioaccumulation of heavy metals in food crops and their
effects on human health present a big concern worldwide. Heavy metals can cause
serious human health problems, including malnutrition, gastrointestinal cancer and
mental growth retardation (Wu et al. 2019). A concentration of 80 ppm of
rhamnolipid produced by P. aeruginosa was effective in removing 53%, 62%,
56%, 28%, 20% and 7% of Cd2+, Pb, Ni2+, Ba, Zn and Sr, respectively, from
contaminated water (Elouzi et al. 2012). Glycolipid produced by Bacillus sp. was
also exploited for metal chelation and showed positive results in cadmium removal
from different vegetables (radish, garlic, potato and onion) (Elouzi et al. 2012).

Table 2.3 shows the application of microbial biosurfactants on food processing.
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Table 2.3 Food-related application of microbial biosurfactants

Biosurfactant
Producer
microorganism Target Function References

Rhamnolipids Pseudomonas
aeruginosa

Listeria monocytogenes Antibiofilm
and
antimicrobial

Davey et al.
(2003)

Surfactin Bacillus
subtilis

L. monocytogenes Antimicrobial de Araujo
et al.
(2011)

Rhamnolipids P. aeruginosa L. monocytogenes Antimicrobial de Araujo
et al.
(2011)

Rhamnolipids P. aeruginosa Listeria monocytogenes,
Staphylococcus aureus and
Salmonella enterica
Enteritidis

Antibiofilm
and anti-
adhesive

Zezzi do
Valle
Gomes and
Nitschke
(2012)

Surfactin B. subtilis Listeria monocytogenes,
Staphylococcus aureus and
Salmonella enterica
Enteritidis

Antibiofilm
and anti-
adhesive

Zezzi do
Valle
Gomes and
Nitschke
(2012)

Sophorolipids C. bombicola Bacillus subtilis and
Staphylococcus aureus

Antibacterial
and
antibiofilm

Díaz De
Rienzo
et al.
(2015)

Sophorolipids Candida
bombicola

Escherichia coli Antimicrobial Zhang et al.
(2016)

Sophorolipids C. bombicola Clostridium perfringens
and Campylobacter jejuni

Antimicrobial Silveira
et al.
(2019)

Sophorolipids C. bombicola Bacillus subtilis and
Escherichia coli

Antibacterial Gaur et al.
(2019)

Rhamnolipids Pseudomonas
aeruginosa

Bacillus subtilis Antibiofilm
and
antimicrobial

Sood et al.
(2020)

Surfactin Bacillus
tequilensis

Escherichia coli,
Pseudomonas aeruginosa,
Staphylococcus aureus,
Staphylococcus
epidermidis, Salmonella
typhi and Salmonella
typhimurium

Disinfectant-
like activity

Singh and
Sharma
(2020)

Rhamnolipids Pseudomonas
spp.

Staphylococcus aureus Antibiofilm Silva et al.
(2017)
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2.4 Concluding Remarks

Biosurfactants are a growing area of research interest within the food sciences. They
show properties such as anti-adhesive, antioxidant and antimicrobial activities that
help on decreasing contamination during food processing. In addition, the
biosurfactants present unique advantages when compared to synthetic ones, includ-
ing low toxicity, high biodegradability, easy preparation, natural origins and effec-
tiveness at different ranges of physical conditions. These particular characteristics
suggest great potential application as multipurpose additives.

The production costs of the microbial biosurfactants can be significantly reduced
by using inexpensive raw material with great availability such as by-products from
industrial and agricultural wastes. However, the large-scale production of
biosurfactant is still a challenge, since their production process is not economically
viable yet when compared to the synthetic surfactants derived from petrochemical
sources. Considering the vast application in food processing, along with increased
global concerns in the use of products obtained from nature, the market has a great
demand for biosurfactants. Novel discoveries, improvement of production
conditions, development of more cost-effective recovery and downstream processes
and development of new microbial strains from screening programmes may allow
the use of biosurfactants in large scale to prevent contamination in food processing,
among others.
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Abstract

Recent decades have shown that there is increase in the considerable interest in
research of biogenic surfactants (microbial surfactants, biosurfactants), products
of biosynthesis of various microorganisms, as well as the possibilities for their
practical use. In the present chapter, the detailed discussion was included regard-
ing sources, isolation, and potential role and applications of biosurfactants as
antioxidant agents. This chapter covers the various aspects of biosurfactants such
as sources of biosurfactants with examples. It also included the different types of
biosurfactants isolated from the microbial sources. It clearly showed the optimum
conditions for production of microbial biosurfactants in culture conditions.
Microbial-derived surfactants can replace synthetic surfactants in a great variety
of industrial applications as detergents, foaming, emulsifiers, solubilizers, and
wetting agents. Microbial surfactants or biosurfactants can be defined as a natural
class of surface-active compounds produced by microorganisms. Several
biosurfactants have strong antibacterial, antifungal, and antiviral activity. In
spite of several activities, even microbial biosurfactants have the property of
antioxidant activity which is discussed in detail in the present chapter. The
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chemical structure and properties of various biosurfactants have been extensively
discussed and presented in this chapter.

Keywords

Microbes · Biosurfactants · Plant · Screening · Optimization · CTAB assay ·
Emulsification · Antioxidant

3.1 Introduction

Surfactants are well-recognized, most lucrative, amphiphilic molecules and known
to reduce the interfacial tension between the different phases such as liquid and gases
or between solid and liquid mostly by congregating at the interface (Belhaj et al.
2020; Nakama 2017). Inclusive of its traditional role of cleansing agent, surfactants
are now widely accepted for numerous routine household and industrial applications
such as emulsifiers, defoaming agents, deinking agents, and so on (Nakama 2017;
Makkar et al. 2011). For that reason, the surfactants are no longer limited to a
particular sector or industry, rather utilized extensively in ample industries ranging
from detergents to water treatment, paint to petroleum, and food items to
pharmaceuticals as well as cosmeceuticals (Jimoh and Lin 2019). Due to these
myriad applications, the global surfactant market is anticipated to arrive at USD
66,408 million by 2025. Sorbitan esters (spans) and ethoxylated sorbitan esters
(tweens) are widely used surfactants.

Most of these frequently implemented surfactants are synthesized from either
nonrenewable petroleum products or renewable chemicals (Makkar et al. 2011;
Rebello et al. 2013). Continuous use of petroleum substrates for the production of
surfactants has increased the environmental pollution drastically, and it also
diminishes the vital nonrenewable energy sources (Jimoh and Lin 2019; Henkel
et al. 2012; Freitas et al. 2016). This may create a problem in the nearby future.
Wastewater discharge from surface-active agent-based industries causes a higher
accumulation of surfactants or their degradation products in rivers or marine water
than eco-toxicological no-effect concentration, which may impact biotic elements of
ecosystems harmfully (Rebello et al. 2013; Olkowska et al. 2014). The concentration
of surfactants higher than 0.01 g/L causes chronic toxicity to aquatic animals
(Rodríguez-López et al. 2019).

Chemical-based surfactants are comprised of diverse category compounds. viz.,
inorganic phosphates, artificial colorants, and optical brighteners (Yu et al. 2008). It
is well documented that, due to excessive accumulation of inorganic phosphates,
water becomes exceedingly enriched with minerals and nutrients that promote rapid
algae growth. This causes a depletion of oxygen in water, leaving the water incapa-
ble of supporting other aquatic life (Yang et al. 2008). Optical brighteners may cause
reproductive and respiration problems in aquatic animals (Salas et al. 2019). Further,
the synthetic detergents routinely employed to clean up oil spillages have destructed
the environment enormously. Cationic surfactants are known to impart greater toxic
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effects followed by anionic, zwitterionic, and nonionic (Rebello et al. 2013;
Rodríguez-López et al. 2019). The situation gets worse due to the slow biodegrade
nature of chemical surfactants and hence causes hazardous environmental problems.
Due to these facts, surfactants are considered as one of the most important environ-
mental pollutants (Cierniak et al. 2020). These hazardous outcomes due to chemical-
based surfactant usage have aroused a universal alert concerned to its usage, safe
disposal, and urge for alternative surfactants with least toxic impact on the
environment.

The idea of going green developed a special class of surfactants known as
biosurfactants. Biosurfactants are tensioactive amphiphilic biomolecules obtained
from plants and microorganisms (Jimoh and Lin 2019; Costa et al. 2018). Chemicals
produced at the microbial cell surface or excreted extracellular with distinct hydro-
phobic as well as hydrophilic portion and able to reduce surface and interfacial
tension by adsorbing at the interface are termed as biosurfactants (Costa et al. 2018;
Fakruddin 2012). Biosurfactants are membrane attached metabolites that facilitate
the growth of microorganisms on water-immiscible substrates by diminishing ten-
sion at the boundary layer and improving the availability of substrate for uptake
(Huang and Tang 2007; Desai and Banat 1997a). Biosurfactant market was at USD
3.99 billion in 2016 and is expected to reach USD 5.52 billion by 2022, at a
compound annual growth rate of 5.6% during the forecast period. The Asia Pacific
is the fastest-growing market for biosurfactants due to the technologically advancing
and emerging countries in the region demanding innovative, biodegradable, renew-
able, and less toxic biosurfactant products (Markets and Markets 2016).

3.2 Sources of Biosurfactants

Biosurfactants are mainly obtained from plants and microbes.

3.2.1 Plant-Based Biosurfactants

3.2.1.1 Saponins
Plant-based secondary metabolites mainly saponins are well-recognized and best-
known biosurfactants of plant origin (Pradhan and Bhattacharyya 2017). They
develop foam or lather when shaken with water. Saponins are abundantly distributed
in different parts including roots, shoots, flowers, and seeds of an ample plant species
belonging to nearly 100 families. Saponin-enriched dietary foods are leguminous
plants such as soya beans (Glycine max L. Merrill 6.5 g/kg), haricot bean (Phaseolus
vulgaris 4.1 g/kg), kidney beans (Phaseolus vulgaris 3.5 g/kg), and runner bean
(Phaseolus coccineus L. 3.4 g/kg) (Savage 2003). Yucca schidigera and Quillaja
saponaria are considered as plants with high content of saponins up to 10% of dry
matter. The US Food and Drug Administration (USFDA) has approved these plants
for their use in food and cosmetic products (Oleszek and Hamed 2010).
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Structure, Properties, and Types of Saponins
Saponins are amphipathic glycosides in which glycosidic bond connects aglycone
and one or more carbohydrate moieties (Chen et al. 2010). The aglycone portions are
termed genin or sapogenins (Wisetkomolmat et al. 2019). A number of sugar
fractions attached to the sapogenin core categorize saponins as monodesmosidic,
bidesmosidic, and tridesmodic (Greek desmos ¼ chain) (Benaiges and Guillén
2007).

Saponins as a Biosurfactants
An aqueous solution of saponins produces soap-like foams and micelles. Surface
tension reducing the ability of chemical surfactants is assigned to amphiphilic nature,
i.e., hydrophilic and lipophilic groups of them. Further, they are categorized as
anionic, cationic, nonionic, and zwitterionic based on the different hydrophilic
group attached to lipophiles such as long saturated or unsaturated hydrocarbon
chain (Lombardo et al. 2015). Likewise, surface-active or detergent properties of
saponins are attributed to water-soluble carbohydrate moieties and fat-soluble agly-
cone core of the molecule (Savage 2003). Hydrophilic portions of saponins are
carbohydrate or sugar chains differing mainly in the length of branches, substitution,
and composition. Mainly attached sugars are glucose, fructose, xylose, galactose,
rhamnose, and arabinose, whereas, lipophiles are steroidal or triterpene unit (Savage
2003; Oleszek and Hamed 2010). Monodesmosidic saponins possess the best
formability followed by bidesmosidic and tridesmodic. The more sugar chains
attached to the sapogenin, the lesser is the foam-producing ability. Biosurfactants
reduce the free energy of the system by replacing the bulkier molecules of higher
energy at an interface (Mulligan 2007).

Different saponin-based plants and their role as biosurfactants are summarized in
Table 3.1.

3.2.2 Microbe-Based Biosurfactants

In the late 1960s during hydrocarbon fermentation, microbial-derived surfactants or
biosurfactants were first employed as extracellular compounds. Microorganisms,
because of their large surface-to-volume ratio and diverse synthetic capabilities, are
promising candidates for widening the present range of surfactants (Desai and Banat
1997b). Akin to synthetic surfactants, biosurfactants or microbial surfactants pro-
duced by microorganisms are also consisted of distinct hydrophiles and lipophiles
causing them to reduce surface/interfacial tension by aggregating at interfaces
between two immiscible fluids of different polarities or air and water interphase
and subsequently solubilize polar compounds in nonpolar solvents (Sena et al.
2018). Different hydrophiles comprised of acid, alcohol, peptide cations, or anions
are joined by ester linkage, amide linkage, or glycosidic linkage to lipophiles made
up of unsaturated or saturated hydrocarbon chains of fatty acids. Hydrophiles cause
biosurfactants to solubilize in water and lipophiles provide capillary activity
(Mondal et al. 2015).
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Biosurfactants are mainly produced by bacteria, yeast, and fungi (Sena et al.
2018). For living or feeding purpose, microbes present in the aqueous phase produce
the surface-active agent to efficiently adsorb, emulsify, and disperse or solubilize the
water-immiscible substrates (Desai and Banat 1997b). Pseudomonas aeruginosa,
Bacillus subtilis, Rhodococcus erythropolis, Candida albicans, Acinetobacter
calcoaceticus, Halomonas sp., and Myroides sp. strain are biosurfactants producing
dominant species (Fenibo et al. 2019; Shekhar et al. 2014). Biosurfactants possess
distinct properties than chemical surfactants such as lower toxicity, higher biode-
gradability, environment-friendly nature, possible production using fermentation,
higher foaming, tolerance to extreme conditions of temperature, pH, ionic strength,
and salinity (Vijayakumar and Saravanan 2015; Shekhar et al. 2014; Mukherjee et al.
2006). Owing to these outstanding characteristics, they have been widely applied in
pharmaceutical, cosmetics, petroleum, food processing, agriculture, textile, paper,
leather, oil spill cleanup, wastewater treatment, and biodegradation industries over
the years (Fenibo et al. 2019; Shekhar et al. 2014; Mukherjee et al. 2006; Akbari
et al. 2018).

3.2.2.1 Types of Microbial Surfactants
Chemical surfactants are generally classified based on the nature of the hydrophilic
group. In contrast to this, biosurfactants are classified based on chemical composi-
tion and microbial origin. Mainly they are categorized into two major classes based
on molecular weight as follows (Fig. 3.1):

1. Low molecular weight surfactants:
(a) Glycolipids
(b) Lipopeptides or lipoprotein
(c) Phospholipids, fatty acids (mycolic acids), and neutral lipids

2. High molecular weight surfactants:
(a) Polymeric surfactants
(b) Particulate surfactants (Mondal et al. 2015; Santos et al. 2016; Sharma 2016)

Fig. 3.1 Major types of
biosurfactants
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Low molecular weight surfactants reduce the surface/interfacial tension effec-
tively, whereas, high molecular weight surfactants are effective as emulsion
stabilizers (Mondal et al. 2015). Based on ionic charges, biosurfactants are further
classified: (1) anionic, (2) cationic, (3) nonionic, and (4) neutral biosurfactants, while
considering secretion type they are classified as (1) intracellular, (2) extracellular,
and (3) adhered to microbial cells (Inès and Dhouha 2015).

Glycolipids
Glycolipids are the most studied and well-liked biosurfactant. Glycolipids are
comprised of carbohydrates (hydrophiles) linked to hydroxy aliphatic acids or
long-chain fatty acids (lipophiles) through either ester or ether linkage (Sharma
2016; Inès and Dhouha 2015). Glycolipids are characterized by high structural
diversity and effectively diminish the surface and interfacial tension. The nature of
the hydrophiles (carbohydrate moiety) and lipophiles categorizes glycolipid into
different subclasses such as (Inès and Dhouha 2015; Mnif et al. 2017; Kitamoto et al.
2002):

1. Rhamnolipids
2. Sophorolipids
3. Trehalolipids
4. Succinoyl trehalolipids
5. Cellobiose lipids
6. Mannosylerythritol lipids
7. Xylolipids
8. Mannosylribitol lipids
9. Mannosylarabitol lipids

10. Lipids of oligosaccharides

Rhamnolipids
Rhamnolipids, primarily crystalline acids, are a class of biosurfactants which are
produced by Pseudomonas aeruginosa and contain one or two rhamnose as the
sugar moiety (hydrophiles) linked to one or two β-hydroxylated fatty acid chains
(lipophiles) (Fig. 3.2) (Chong and Li 2017; Maier 2003). Fatty acid chains can be
composed of 8 to 16 carbon atoms. Based on a number of rhamnose molecules
attached, rhamnolipids are categorized as mono-rhamnolipids and di-rhamnolipids
(Chong and Li 2017). Notably, mono-rhamnolipids and di-rhamnolipids differ in
their physical-chemical properties. Mono-rhamnolipid is a more powerful
solubilizing agent than di-rhamnolipids (Maier 2003).

Firstly isolated rhamnolipids by Jarvis and Johnson (1949) from P. aeruginosa
are composed of two β-hydroxydecanoic acids linked through a glycosidic bond to
two rhamnose moieties. Ester bond connected two β-hydroxy fatty acid and 1,3-gly-
cosidic-linked disaccharide portion (Inès and Dhouha 2015; Abdel-Mawgoud et al.
2010). Genetic regulatory systems and central metabolic pathways involving fatty
acid synthesis, activated sugars, and enzymes govern the rhamnolipid production
(Pornsunthorntawee et al. 2010). These surface-active compounds can be produced
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from various types of low-cost water-miscible and water-immiscible substrates, such
as carbohydrates, vegetable oils, and even industrial byproducts (Mnif et al. 2017;
Pornsunthorntawee et al. 2010; Wadekar et al. 2012). However, the complexity
during the synthesis and pathogenicity limits the application of P. aeruginosa for the
industrial-scale production of rhamnolipids particularly to cosmetic and food
industries (Wittgens et al. 2018; Müller and Hausmann 2011). Hence other species
are also investigated.

Akin to P. aeruginosa, some other Pseudomonas species such as P. chlororaphis,
P. plantarii, P. putida, and P. fluorescens are also capable of rhamnolipid production
(Sekhon Randhawa and Rahman 2014). Several species of Burkholderia such as
Burkholderia thailandensis, B. glumae, B. kururiensis, and B. plantarii (Funston
et al. 2016; Nickzad et al. 2018). Organisms from Burkholderia species exclusively
synthesize di-rhamnolipids with long-chain fatty acids usually composed of 8 to
16 carbon atoms unlike P. aeruginosa synthesized rhamnolipids (chains of 8 to
14 carbon atoms) (Wittgens et al. 2018). These longer fatty acid chains provide some
additional properties to rhamnolipids from genus Burkholderia.

Sophorolipids
Sophorolipids are surface-active agents and one of the most imperative classes of
glycolipid biosurfactants. They are comprised of sophorose (2-O-β-D-
glucopyranosyl-D-glucopyranose), hydrophilic carbohydrate head linked to C16 to

Fig. 3.2 Chemical structure of rhamnolipids (adapted with permission from (Wittgens et al. 2018))
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C18 long lipophilic hydroxy fatty acid chain (Fig. 3.3). Sophorose is the disaccharide
consisting of two glucose units connected by the β-1,20 bond (Mnif et al. 2018).
During the fermentation process, sophorolipids exist in two conformations: (1) lac-
tone form and (2) acidic form. Lactone form exists due to esterification and forma-
tion of the macrocyclic ring between the fatty acid carboxylic group and the
disaccharide ring at fourth position. The acidic form is an open structure and consists
of two carbohydrate head with a fatty acid carboxylic group (Nguyen and Sabatini

Fig. 3.3 Structures of sophorolipids in the acid form: (a) deacetylated sophorolipid, (b, c) major
sophorolipids of Starmerella bombicola, and (d, e) major sophorolipids of Candida batistae
(adapted with permission from (Kulakovskaya and Kulakovskaya 2014))
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2011; Tulloch et al. 1968). Notably, the lactone form can exist in monomeric or
dimeric forms (Kulakovskaya and Kulakovskaya 2014).

The lactonic and acidic forms of sophorolipids differ significantly in their prime
physicochemical and biological properties. Lactone form of the sophorolipid
exhibits superior properties, hence accepted over free acid form for ample
applications in cosmetics, pharmaceuticals, and medical field (Glenns and Cooper
2006). Compared to acid sophorolipids, lactonic sophorolipids reduce the surface
tension of water more efficiently, whereas acidic sophorolipids display better
foaming properties (Mnif et al. 2018).

Sophorolipids are produced by yeasts, such as Yarrowia lipolytica, Candida
apicola, Rhodotorula bogoriensis, Starmerella bombicola, Rhodotorula babjevae,
Candida gropengiesseri, and Candida magnolia (Kulakovskaya and Kulakovskaya
2014; Shah et al. 2005; Cavalero and Cooper 2003; Sen et al. 2017; Delbeke et al.
2016). Up to eight to nine different structural classes of sophorolipids are observed
during fermentation (Shah et al. 2005; Cavalero and Cooper 2003). Different
sophorolipids differ mainly in the length of the fatty acid residues, saturations, and
degree of acetylation (Kulakovskaya and Kulakovskaya 2014; Cavalero and Cooper
2003). Acetyl groups lower the hydrophilicity of sophorolipids. Sophorolipids
diminish the surface tension of water from 72.8 to 30–40 mN/m and show a critical
micelle concentration of 40–100 mg/L (Delbeke et al. 2016). Sophorolipids obtained
by the fermentation process cannot effectively stabilize water in oil emulsions, hence
not implemented as emulsifiers. However, modifications improved their wetting,
cleansing, and emulsifying properties (Mnif et al. 2018; Van Bogaert and Soetaert
2011).

Trehalolipids
Trehalolipids produced by species of actinobacterial genera Mycobacterium,
Nocardia, Corynebacterium, Arthrobacter, Rhodococcus, Gordonia, Dietzia,
Tsukamurella, Skermania, and Williamsia. Microorganisms belonging to the
mycolate group produce surfactants with notable properties (Kuyukina et al. 2015;
Franzetti et al. 2010). Trehalolipids are comprised of trehalose and long-chain fatty
acids joined together by an ester bond. Trehalose, a nonreducing sugar, is made up of
two glycosidically linked monomeric glucose units (Sharma 2016; Kuyukina et al.
2015). Trehalolipids have gained popularity for their applicability in different fields
due to their potential ability to diminish interfacial tension and increase
pseudosolubility of hydrophobic compounds (Franzetti et al. 2010). Among all,
biosurfactants produced by a bacterium of genus Rhodococcus are extensively
studied due to its diverse biochemical properties and low toxic nature (Kuyukina
et al. 2015; Bages et al. 2018). Contrast to rhamnolipids from P. aeruginosa and
synthetic surfactant, Rhodococcus erythropolis, showed less toxicity to Vibrio
fischeri (Munstermann et al. 1992).

These biosurfactants are considered as cell-bound biosurfactants or extracellular
biosurfactants that facilitate the access of cells to water-insoluble substrates, by
either direct contact or adhesion of cells to the oil drops, respectively (Franzetti
et al. 2010; Bages et al. 2018). High hydrophobic cells promote direct contact,
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whereas lower cell hydrophobicity facilitates adhesion of microbial cells to
emulsified oils (Franzetti et al. 2010; Bouchez-Naitali et al. 2001; Van Hamme
et al. 2003).

Succinoyl Trehalolipids
Succinoyl trehalose lipids are mainly produced by rhodococci from n-alkanes and
consist of one or two succinic acids and two or three fatty acids on the 1,10-α,-
α-trehalose core (Fig. 3.4) (Jana et al. 2017). Rhodococcus erythropolis S67 and
R. erythropolis SD-74 have studied to produce succinoyl trehalose lipids (Zaragoza
et al. 2010; Luong et al. 2018; Inaba et al. 2013). Succinoyl trehalose lipids have
shown hemolytic activity, and it was mediated by colloid-osmotic mechanism
(Zaragoza et al. 2010).

Cellobiose Lipids
Cellobiose lipids consist of cellobiose and fatty acid residue as an aglycone. Cello-
biose is a disaccharide in which two monomeric glucose units are linked by a
1, 40-β-glycoside bond (Kulakovskaya and Kulakovskaya 2014). Different yeasts
such as Cryptococcus humicola, U. maydis, Pseudozyma fusiformata, and
S. paphiopedili produce cellobiose lipids and exhibit antifungal activity against
different pathological strains, namely, Cryptococcus terreus, Candida albicans,
Sclerotinia sclerotiorum, and Phomopsis helianthi (Kulakovskaya et al. 2004,

Fig. 3.4 Structures of succinoyl trehalose lipids. (Reprinted with permission from Santanu Jana,
Sumana Mondal, Suvarn S. Kulkarni. Chemical synthesis of biosurfactant succinoyl trehalose
lipids. Org. Lett. 2017, 19(7):1784–1787. Copyright (2017) American Chemical Society)
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2009; Morita et al. 2011). S. cerevisiae mutants were shown to be less sensitive to
cellobiose lipids from Cryptococcus humicola (Kulakovskaya and Mironov 2016).

Cellobiose lipid exhibits an antimycotic effect in acidic medium, where it is a
weak acid owing to carboxyl group dissociation (Trilisenko et al. 2012). The
antifungal activity of these compounds is because of enhanced permeability of the
cytoplasmic membrane, followed by the fast expelling of ATP and potassium ions
(Trilisenko et al. 2012; Kulakovskaya et al. 2008).

Mannosylerythritol Lipids
Mannosylerythritol lipids (MELs) are surface-active agents that belong to the glyco-
lipid class of biosurfactants. Recently the MELs has drawn the attention of
researchers due to its notable physicochemical and biochemical properties and
application in diverse fields such as food, cosmetics, and pharmaceutical (Coelho
et al. 2020; Fan et al. 2016). MELs are made up of 4-O-β-D-mannopyranosyl-meso-
erythritol (hydrophiles), fatty acid, and/or an acetyl group as the lipophiles and
exhibit ease in biodegradability, good stability, nontoxicity, environment compati-
bility, and excellent emulsifying activity (Coelho et al. 2020; Arutchelvi et al. 2008).
MELs are produced by yeast strains of the genus Pseudozyma, viz., Pseudozyma
aphidis, Pseudozyma aphidis ZJUDM34, Pseudozyma graminicola, P. antarctica,
and P. shanxiensis, and by Ustilago maydis and Schizonella melanogramma (Fan
et al. 2014, 2016; Arutchelvi et al. 2008; Morita et al. 2008; Goossens et al. 2016).

Different MELs such as MEL-A, MEL-B, MEL-C, and MEL-D produced by
yeast mainly vary in degree of acylation, fatty acid chain length, and saturation (Fan
et al. 2016; Goossens et al. 2016). MEL-A, MEL-B, and MEL-C are characterized
by diacetylation at the C4 and C6 and monoacetylation at C6 or C4, respectively,
whereas, MEL-D is devoid of acetyl group (Coelho et al. 2020). This difference in
the degree of acylation also influences their antibacterial activity (Nashida et al.
2018). MEL-A is extensively studied and known to form micelles in aqueous
solution and reduce surface tension up to 31.14 mN/m (Fan et al. 2014, 2016).
Interestingly, the association of MEL-A with cationic liposomes has improved the
effectiveness of liposomal delivery of different therapeutics followed by improved
biological activities such as antioxidant and antitumor (Naughton et al. 2019; Wu
et al. 2019; Sharma et al. 2015).

Xylolipids
Xylolipid is a biosurfactant and comprised of xylose as carbohydrate moiety and
β-hydroxydecanoic acid as a hydrophobic part (Sharma et al. 2015). Xylolipids are
mainly produced by Lactococcus lactis and Pichia caribbica (Shu et al. 2019;
Saravanakumari and Mani 2010). Enterococcus faecium also had shown the poten-
tial to produce the xylolipid biosurfactant similar in characteristics to that of different
Lactococcus-produced biosurfactants (Sharma et al. 2015). Lactobacillus acidophi-
lus-derived biosurfactant can effectively inhibit the microorganisms causing urinary,
vaginal, and gastrointestinal tract infections (Shokouhfard et al. 2015).
Biosurfactants produced using Lactobacillus jensenii P6A and Lactobacillus gasseri
P65 reduced water surface tension up to 43.2 mN/m and 42.5 mN/m from
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72, respectively. They also exhibited antimicrobial activity against Escherichia coli,
Candida albicans, Staphylococcus saprophyticus, Enterobacter aerogenes, and
Klebsiella pneumoniae (Morais et al. 2017). Lactobacillus helveticus-derived
biosurfactant reduced the surface tension of phosphate buffer (pH 7.2) from 72.0
to 39.5 mN/m, and its CMC was found to be 2.5 mg/mL (Sharma et al. 2014).
Biosurfactant from L. helveticus was found to be stable at a wide pH range (4 to 12)
and high temperature (125 �C) without reducing the emulsification efficiency and
showed antimicrobial and antiadhesive potential against pathogenic strains such as
Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, S. aureus, and so on
(Sharma and Singh 2014). Biosurfactants derived from Lactobacillus casei (Sharma
and Singh 2014), Lactobacillus delbrueckii (Thavasi et al. 2011), Lactobacillus
fermentum (Tahmourespour et al. 2011), and Lactobacillus paracasei (Gudina
et al. 2011) had shown potential against different pathogenic strains.

Mannose Lipids
Monomannophosphoinositide was derived from the Corynebacterium aquaticum.
Surface activity was attributed to a lipopeptide containing corynomycolic acids and
several phospholipids (Hackett and Brennan 1975). Novel glycolipid biosurfactants,
namely, mannosylribitol lipid (MRL), mannosylarabitol lipid (MAL), and
mannosylmannitol lipid (MML), were derived using Pseudozyma parantarctica.
The observed CMC value for MRL, MAL, and MML was 1.6 � 10�6 M,
1.5 � 10�6 M, and 2.6 � 10�6 M, respectively (Morita et al. 2009, 2012).

Lipopeptides or Lipoprotein
These biosurfactants are comprised of hydroxy fatty acid chains attached to a
polypeptide (Vijayakumar and Saravanan 2015; Sharma 2016). Different identified
lipopeptides differ mainly in peptide moiety, the length of the fatty acid chain, and
the linkage between the two parts (Mnif and Ghribi 2015). Lipopeptides are known
for their emulsifying, foaming, and moisturizing properties and widely applied in
food processing, pharmaceutical, and cosmetic industries (Kanlayavattanakul and
Lourith 2010). Lipopeptides are mainly produced by Bacillus sp. such as Bacillus
siamensis, B. subtilis, B. amyloliquefaciens, B. licheniformis, etc.
(Kanlayavattanakul and Lourith 2010; Ait et al. 2020; Chen et al. 2020;
Varadavenkatesan and Murty 2013). Some Pseudomonas species are also known
to produce lipopeptides (de Sousa and Bhosle 2012). They are further classified
based on producing strains as follows:

1. Bacillus-related lipopeptides
2. Pseudomonas-related lipopeptides
3. Actinomycetes-related lipopeptides
4. Fungal-related lipopeptides (Mnif and Ghribi 2015)

Bacillus-Related Lipopeptides
Bacillus species produce different lipopeptides which differ mainly in sequence and
type of amino acids, peptide cyclization, and length of fatty acid chains. They mainly
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belong to surfactin, iturin, and fengycin families. Fengycins and surfactins are
macrolactones, whereas iturins are cyclopeptides (Mnif and Ghribi 2015). Iturin
and fengycin show antifungal activities, while surfactin exhibits potent antibacterial
action (Meena and Kanwar 2015).

Surfactin
Surfactin (~1.36 kDa) is one of the lipopeptides and composed of seven amino acids
linked by lactone linkage to one β-hydroxy fatty acid chain (C13 to C16) which forms
a close cyclic lactone ring structure (Vijayakumar and Saravanan 2015; Mnif and
Ghribi 2015). It is similar to lichenysin but only differing in the first amino acid
(Chen et al. 2020). Different isoforms of surfactins mainly vary in fatty acid chain
length, their branching pattern, and amino acids in the peptide ring (Nozhat et al.
2012). Surfactins in the aqueous solution or at the air/water interface form a horse-
saddle conformation due to hydrophilic negatively charged glutamyl and aspartyl
residues which are supposed to be responsible for its notable properties (Nozhat et al.
2012; Wu et al. 2017).

Fengycin
Fengycins are cyclic decapeptides produced by several strains of Bacillus subtilis. It
contains the peptide chain of ten amino acids linked to a fatty acid chain of C14 to C17

carbon atoms (Meena and Kanwar 2015). Out of ten amino acids of the decapeptide
chain, eight amino acids form a cyclic peptide ring via lactone linkage (Pathak et al.
2012). Different isoforms of fengycin differ mainly at the sixth position in the
peptide ring and length of the β-hydroxy fatty acid chains. These variations classify
fengycin family into diverse subgroups mainly fengycin A, fengycin B, and
plipastatin A and B (Mnif and Ghribi 2015; Meena and Kanwar 2015). The presence
of Ala or Val at sixth position of peptide chain causes the formation of fengycin A
and fengycin B, respectively (Meena and Kanwar 2015; Zhang and Sun 2018).
Fengycin family shows prominent antifungal activity against different filamentous
fungi, such as Aspergillus niger, Mucor rouxii, Magnaporthe grisea, and Fusarium
graminearum (Zhang and Sun 2018). Recently, new structural analogs of fengycin
A and fengycin B have been produced using Bacillus amyloliquefaciens and named
as fengycin X and fengycin Y, respectively. Replacement of glutamic acid residue at
the eighth position of fengycin A and fengycin B by isoleucine or leucine residue
causes the formation of fengycin X and fengycin Y (Ait et al. 2020).

Iturin
Iturin (~1.1 kDa), a cyclic lipopeptide comprised of a peptide chain of 7 amino acids
(heptapeptides), connected to a fatty acid chain that varies from C-14 to C-17 carbon
molecules. They are further classified as iturin A, C, D, and E (Mnif and Ghribi
2015; Meena and Kanwar 2015). Out of these, iturin A has been extensively
synthesized and exhibits prominent antifungal activity (Dang et al. 2019).
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Kurstakins
Kurstakins were isolated from the Bacillus thuringiensis HD-1. They are
characterized by low molecular weight, and all four isolated kurstakins were differ-
ing in fatty acid chain length (Hathout et al. 2000). Recently Bacillus sp. P12 (Sabaté
et al. 2020) and Bacillus amyloliquefaciens B14 (Sabaté et al. 2017) have also
produced kurstakins.

Lichenysins
Bacillus licheniformis produces the lichenysins, an anionic cyclic lipoheptapeptide
biosurfactant which lower the surface tension of water to 27 mN/m. Based on
species-specific variations, they are named lichenysin A, B, C, D, and G and
surfactant BL86. Lichenysin removes biofilms of methicillin-resistant S. aureus,
C. albicans, and Yersinia enterocolitica (Nerurkar 2010; Coronel-León et al. 2015).

Pseudomonas-Related Lipopeptides
Cyclic lipodepsipeptides are produced by non-ribosomal peptide synthetases. In
contrast to Bacillus species, lipopeptides isolated from Pseudomonas species exhibit
a wide structural hetogenisty. Almost 100 cyclic lipodepsipeptides derived from
Pseudomonas sp. have been distributed into 14 distinct groups, namely, viscosin,
orfamide, amphisin, syringomycin, syringopeptin, tolaasin groups, bananamides,
xantholysins, entolysins, putisolvins, pseudofactins, syringopeptins, corpeptin, and
fuscopeptins (Geudens and Martins 2018). Recently milkisin, a novel lipopeptide
with antimicrobial properties, has been produced by Pseudomonas sp. Different
isomers are named as milkisin A, B, and D (Schlusselhuber et al. 2018).

Actinomycetes-Related lipopeptides
Actinomycetes particularly Streptomyces sp. such as Streptomyces canus, Strepto-
myces fradiae, and so on are known to produce diverse lipopeptide antibiotics. Some
examples are amphomycin from Actinoplanes friuliensis, krysinomycin,
glumamycin, daptomycin, etc. (Schlusselhuber et al. 2018; Genilloud 2017).

Fungal-Related Lipopeptides
Fungal strains are also known to produce lipopeptides that display notable properties
(Mnif and Ghribi 2015).

Phospholipids, Fatty Acids (Mycolic Acids), and Neutral Lipids
Diverse bacteria and yeasts produce a high amount of fatty acids and phospholipid
surfactants while growing on n-alkanes (Santos et al. 2016). Ionic surfactants like
phosphatidylethanolamine, phosphatidic acids isolated from Rhodococcus
erythropolis, showed prominent surface-active properties (Kretschmer et al. 1982).

Polymeric Surfactants
Polymeric surfactants are macromolecules that contain both hydrophilic and hydro-
phobic moieties in their structure (Raffa et al. 2016). Emulsan, lipomanan, alasan,
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liposan, and other polysaccharide-protein complexes are well-known polymeric
biosurfactants (Santos et al. 2016).

Particulate Surfactants
Particulate biosurfactants are categorized into two classes, namely, (1) extracellular
vesicles and (2) whole microbial cell. Extracellular membrane vesicles form
microemulsions and cause the hydrocarbon uptake by microbial cells (Vijayakumar
and Saravanan 2015).

3.3 Factors Affecting Biosurfactant Production

Cost-effective and higher biosurfactant production is a need of the hour. Hence,
optimization of biosurfactant production is always a concern of different industries.

3.3.1 pH and Temperature

pH and temperature have shown an effect on biosurfactant production. Singh et al.
studied the effect of pH and temperature on biosurfactant production. The higher
yield of biosurfactant from B. subtilis was obtained at pH 7 and 40 �C (Nayarisseri
et al. 2018). pH and temperature also influenced the biosurfactant isolation from
marine Nocardiopsis sp. B4. Optimum growth was observed at pH 7 and 30 �C
(Khopade et al. 2012).

3.3.2 Aeration and Agitation

Aeration and agitation facilitate the dissolved oxygen supply and mass transfer
during the fermentation process. However, they need to be optimized as vigorous
agitation and aeration lead to excessive foaming and unstabilize the fermentation
process. Joshi et al. reported the higher yield of biosurfactant production by Bacillus
licheniformis R2 when the agitation rate and aeration rate were 300 rpm and
1.0 vvm, respectively (Joshi et al. 2013). Bie et al. reported the higher surfactin
production (4.7 g/L of foam) with an agitation rate of 150 rpm and an aeration rate of
1 vvm (Yao et al. 2015).

3.3.3 Effect of Salt Salinity

Maximum biosurfactant production was obtained in the presence of 3% (w/v) of
NaCl, and it retained almost 80% of its activity in the presence of 12% (w/v) of NaCl
(Khopade et al. 2012).
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3.3.4 Optimization of Cultivation Medium

3.3.4.1 Effect of Carbon Source
The nature of the carbon substrate influences the quality and quantity of
biosurfactant production (Fakruddin 2012). Olive oil, crude oil, coconut oil, n-
hexadecane, trehalose, sucrose, fructose, maltose, glucose, and so on are used as
carbon sources. Nayarisseri et al. (2018) reported that the use of sucrose, followed by
crude oil, exhibited improved biosurfactant production, whereas biosurfactant isola-
tion from marine Nocardiopsis sp. B4 (Khopade et al. 2012) and Pseudomonas
aeruginosa CFTR-6 (Rashedi et al. 2005) was found to be improved using olive oil
and glycerol as the carbon source, respectively. The vegetable oils have emerged as
an interesting and cost-effective source to other carbon sources (Khopade et al.
2012).

3.3.4.2 Effect of Nitrogen Source
During biosurfactant production, nitrogen plays a vital role for microbial growth as
protein and enzyme syntheses rely on it (Fakruddin 2012). Different inorganic and
organic nitrogen sources are used for biosurfactant production, namely, urea pep-
tone, tryptone, yeast extract, ammonium sulfate, ammonium nitrate, sodium nitrate,
meat extract, and malt extract. Phenylalanine was the preferred nitrogen source for
growth and biosurfactant production by Nocardiopsis sp. B4 (Khopade et al. 2012),
whereas yeast extract and sodium nitrate improved biosurfactant yield in Bacillus
subtilis (Nayarisseri et al. 2018) and P. aeruginosa CFTR-6 (Rashedi et al. 2005).

3.3.4.3 Effect of Carbon to Nitrogen (C/N) Ratio
Different studies demonstrated the effect of C/N ratio on biosurfactant production
(Khopade et al. 2012; Rashedi et al. 2005). Rashedi et al. (2005) reported the
optimum biosurfactant production at C/N ratio of 55/1, whereas Kokare et al.
achieved the highest biosurfactant production at C/N ratio of 20 (Khopade et al.
2012).

3.4 Screening of Microorganisms for Biosurfactant Production

3.4.1 Oil Spreading Assay

To perform this test, take an appropriate quantity of water (20–30 mL) in the Petri
dish, and add crude oil (10–15 μl) to form a thin layer on the surface of the water.
Further, gently place 10 μl of cell-free culture broth on to the oil surface. The
presence of a clear zone on the oil surface confirms the presence of biosurfactant
(Nayarisseri et al. 2018; Aziz et al. 2014).
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3.4.2 Drop Collapse Assay

The basic principle of this assay is to monitor the destabilization or collapse of liquid
droplets by surfactants. Firstly add cell suspension drops on to the oil-coated solid or
glass surface, and monitor the behavior of the droplets. Stable drops correspond to
the absence of surfactants, whereas spreading or collapse of droplets on to the
oil-coated surface indicates the presence of surfactants. Droplets collapse due to a
reduction in interfacial tension between water and oil (Walter et al. 2010).

3.4.3 Blood Agar Method/Hemolysis Assay

Contact of erythrocytes and biosurfactants causes erythrocyte lysis. Considering this
fact, inoculate the bacterial isolates on sheep blood agar plates, and incubate for 48 h
at 25�C. The existence of the hemolysis zone (colorless ring around colonies)
corresponds to biosurfactant presence and vice versa (Aziz et al. 2014; Walter
et al. 2010).

3.4.4 Hydrocarbon Overlay Agar

Coat Zobell marine agar plates with 40 μl of kerosene, hexadecane, benzene, and
toluene separately. Inoculate bacterial culture on plates and incubate for 7–10 days at
28 �C. The existence of emulsified halo around the colonies considered indicates the
biosurfactant production (Nayarisseri et al. 2018).

3.4.5 Bacterial Adhesion to Hydrocarbon (BATH) Assay

BATH assay is based on the measurement of cell surface hydrophobicity, i.e.,
adherence ability of cells to different liquid hydrocarbons such as hexadecane or
octane. Add aqueous phase containing bacterial cells to hydrocarbon and mix well.
Separate the hydrocarbon phase, once the two phases separate. Measure the optical
density of the aqueous phase using a spectrophotometer, and determine the percent-
age of cells adhered to the hydrophobic phase using the following formula
(Nayarisseri et al. 2018; Walter et al. 2010):

H ¼ 1� A
A0

� �
� 100 ð3:1Þ

where A0 and A are the optical density of aqueous suspension before and after mixing
with the hydrocarbon phase.

3 Antioxidant Biosurfactants 51



3.4.6 CTAB Agar Plate Method/Blue Agar Assay

The cetyltrimethylammonium bromide (CTAB) agar plate method is useful to detect
extracellular glycolipids or anionic surfactants. Inoculate the culture on a light blue
mineral salt agar plate enriched with CTAB and methylene blue, and incubate at 7 �C
for 24–48 h. The formation of the dark blue zone around colonies indicates the
secretion of anionic surfactants. The development of the colored zone is attributed to
complex formation between secreted surfactant, CTAB, and dye used (Walter et al.
2010; Ibrahim 2018).

3.4.7 Phenol: Sulfuric Acid Method

Inoculate culture on minimal salt medium and incubate for 4–5 days at 37 �C. After
incubation, centrifuge the broth and collect the supernatant. Add 1 mL of 5% phenol
as well as 5 mL of conc. Add H2SO4 is added to get supernatant and mix well. The
existence of orange color from yellow color corresponds to the presence of
biosurfactant (Aziz et al. 2014).

3.4.8 Microplate Assay

This qualitative assay is based on the principle of measurement of optical distortion
of the aqueous phase. Flat and concave fluid surfaces correspond to the absence and
presence of surfactants (Walter et al. 2010).

3.4.9 Penetration Assay

Fill the cavities of a 96-well microplate with a hydrophobic paste comprised of oil
and silica gel, and cover it with oil (10 μl). Add red-colored supernatant on the paste
surface. Mixing of hydrophobic and hydrophilic phases and conversion of clear red
hydrophilic phase to cloudy white indicate the presence of biosurfactant (Walter
et al. 2010).

3.4.10 Surface/Interface Activity

The surface tension of culture supernatant can be determined using digital surface
tensiometer equipped with a Du Nöuy platinum ring (Ibrahim 2018). The
stalagmometric method or pendant drop shape technique has also been used (Walter
et al. 2010).
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3.4.11 Emulsification Activity

Mix 4 mL culture supernatant with motor oil or kerosene, vortex for 3 min, and keep
the mixture aside for 24 h at 25 �C. Calculate emulsification index (E24) by using
following equation (Walter et al. 2010; Ibrahim 2018):

E24 %ð Þ ¼ Hemulsion

Htotal
� 100 ð3:2Þ

where “H” indicates the height.

3.5 Antioxidant Properties of Biosurfactant

In recent years, the antioxidative properties of biosurfactants have gained the
attention of different industries due to superior and notable properties of natural
compounds than synthetic antioxidants. Antioxidants efficiently inhibit the forma-
tion of both reactive oxygen species and reactive nitrogen species and thereby
prevent cancer, cardiovascular diseases, and neurodegenerative diseases (Seifried
et al. 2017). Summary of research work related to antioxidant activity of
biosurfactants are reported in Table 3.2.

3.6 Conclusion

The concept of going green and environmental as well as health concerns are greater
than before creating the demand to replace the synthetic surfactants. In recent times,
biosurfactants have gained attention and served the diverse sectors including phar-
maceutical, cosmeceuticals, biotechnology, food processing, and the like due to
promising properties. Biosurfactants are getting explored as foaming, emulsifying,
antibacterial, solubilizers, detergents, and wetting agents. The thorough-going opti-
mization to obtain cost-effective methods of isolation and deliberative use of sophis-
ticate analytical techniques for biosurfactants characterization is needed to be
considered.
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Classification and Production of Microbial
Surfactants 4
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Abstract

Microbial surfactants (biosurfactants) have been industrially produced and
applied in many fields worldwide. There is an annual increase in biosurfactant
production which reflects the world attitude toward the safe and eco-friendly
products. Surfactants of biological origin have several advantages over the
chemically synthesized counterparts, which include biodegradability, specificity,
and less toxicity. Biosurfactants are composed of hydrophilic and hydrophobic
moieties in which the hydrophobic moiety is a lipid structure, in most cases.
However, sugars, amino acids, proteins, and phosphates represent the hydrophilic
moiety. Many microorganisms were reported to produce surfactants. The output
and type of the produced microbial surfactant are species-specific and depend on
nutritional and environmental factors. Biosurfactants can be classified based on
physical or chemical properties. The chemical structure of biosurfactants
represents the main criteria for their classification. Through the current chapter,
we aim to highlight the classes of microbial surfactants along with the factors
affecting their production and methods of cultivation in lab and industrial scale.
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4.1 Introduction

Biosurfactant is a portmanteau word composed of two parts: “bio” and “surfactant”
which means surfactant, surface-active agent, produced from biological origin. The
biological origin is mostly bacteria, fungi, and yeast (Mukherjee et al. 2006), though
animal and plant cells also produce biosurfactant (Geetha et al. 2018). Structurally,
biosurfactants are diverse group of amphiphiles composed of two moieties (parts):
hydrophilic (polar) and hydrophobic (nonpolar) (Fig. 4.1) (Pacwa-Płociniczak et al.
2011). Hydrophilic-lipophilic balance (HLB) is one of the biosurfactant’s character-
istic features. This feature can specify the biosurfactant potential uses.

The microbial surfactants serve to increase the water bioavailability of hydropho-
bic (water-insoluble) substances, e.g., hydrocarbons, fats, and oils, to be used as
nutritional substances by the increase of surface area of these substances. Due to
their surface activities, biosurfactants were reported by Desai and Banat (1997) as
promising and excellent dispersant, emulsifying, foaming, and wetting agents, which
made them applicable in several industries (Muthusamy et al. 2008) such as food
production, pharmaceutics, cosmetics, agriculture, and chemistry (Banat et al. 2010;
Soberón-Chávez and Maier 2011). Compared to chemically synthesized surface-
active substances, biosurfactants have many advantages (Table 4.1).

Fig. 4.1 The interface between the liquid and air and the accumulation of biosurfactants

Table 4.1 Differences between chemically synthetic surfactants and biosurfactants

Characters Synthetic surfactants Biosurfactants

Efficiency Less efficient More efficient

Tolerance to extreme conditions Low tolerance High tolerance

Biodegradability Nonbiodegradable Biodegradable

Toxicity More toxic Less toxic

Specificity Nonspecific Specific

Cost Cheap Expensive

Bulk production Short process Long process
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Among bacteria, Acinetobacter, Bacillus, and Pseudomonas (Sobrinho et al.
2013); among yeast, Kluyveromyces, Pseudozyma, Rhodotorula, Torulopsis, and
Saccharomyces (Zinjarde and Pant 2002; Amaral et al. 2006; Morita et al. 2015); and
finally, among fungi (Niu et al. 2017; Raja et al. 2017), Aspergillus, Fusarium,
Penicillium, Trichoderma, and Ustilago (Shah and Prabhune 2007; Bhardwaj et al.
2013; Balaji et al. 2014; Lima et al. 2016) are dominating the research publications
and literature of biosurfactant production. In Table 4.2 some biosurfactant-
producing microbial species are listed.

4.1.1 Global Biosurfactant Market

In 2016, the surfactant global market reached USD 30.64 billion which included
USD 3.99 billion for biosurfactant market. During the forecast period (2016–2022)
and according to the compound annual growth rate, which is worldwide and can be
abbreviated as CAGR, of 5.6%, it was forecasted that the biosurfactant market size is
going to reach USD 5.52 billion by 2022 (Markets and Markets 2016).

Middle East, Africa, and Asia-Pacific lead the worldwide surfactant production
with 29% for each, while Europe leads biosurfactant production with 32% produc-
tivity. On the other hand, Europe and North Africa were the lowest surfactant-
producing (14%) regions, and Middle East and Africa were the lowest
biosurfactant-producing (7%) regions. Figure 4.2 shows that Europe resorts to safe
and eco-friendly process for production of the surface-active agents compared with
Middle East and Africa which resort to the synthetic processes.

4.2 Types of Biosurfactants

Biosurfactant molecules possess different physical and chemical properties (Amaral
et al. 2010). They are composed of the hydrophilic (polar) part, referred to as “head”
which is made of mono-, di-, or polysaccharides, peptide cations, or anions, and the
hydrophobic (nonpolar) part, known as “tail,” made of hydrocarbon chains or
unsaturated or saturated fatty acids (Karanth et al. 1999). These structures are
capable of forming micelles and microemulsions between different phases
(Fig. 4.3) and also lowering the liquid (Smyth et al. 2010) surface tension.

Synthetic surfactants are, generally, classified according to their ionic charge into
anionic, cationic, zwitterionic, and nonionic. This ionic charge appears on the polar
part of the surfactant molecules (Christofi and Ivshina 2002). On the other hand,
biosurfactants are quite different from that of synthetic counterparts; they can be
grouped on different basis: chemical and physical properties, their mode of action,
and molecular weight.

Biosurfactants (Fig. 4.4) can be represented by molecules of low or high molecu-
lar weight. The low molecular weight biosurfactants are mostly with lipid hydro-
phobic moiety: glycolipids and lipopeptides, and can, efficiently, lower the surface
tension in liquids and form less stable emulsions (Christofi and Ivshina 2002).
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Table 4.2 Some potential biosurfactant-producing microorganisms

Microorganism
Isolation
sources

Carbon
sources/by-
products Biosurfactant Reference

Pseudomonas
sp.

Oil spilled
soil, used
edible oil

Cheese whey/
diesel/glucose/
molasses/
petrol/rice-
water/used
edible oil/whey

Rhamnolipid Anandaraj and
Thivakaran
(2010) and
Soniyamby
et al. (2011)

Pseudomonas
aeruginosa

Petroleum and
oil
contaminated
soil,
petrochemical
factory waste
water

Soap-stock,
palm oil,
glucose/
sucrose/
soybean/starch/
casein/glycerol/
sunflower
oil/sugarcane
molasses/
vegetable
oil/kerosene/
petrol/ diesel/
hexane/olive
oil/oleic acid/
soybean oil

Rhamnolipids Benincasa
(2002), Wei
et al. (2005),
Wu et al.
(2008), Priya
and Usharani
(2009), Sarachat
et al. (2010) and
Abo Elsoud
et al. (2017)

Bacillus
subtilis

Contaminated
site with crude
oil

Rapeseed oil
and crude
oil/glucose

Iturin Bayoumi et al.
(2010)

Bordetella
hinizi-DAFI

Crude oil
contaminated
sites

Molasses and
crude
oil/sucrose

Trehalose-
2,3,4,20-tetraester

Bayoumi et al.
(2010)

Trichosporon
asahii

Petroleum-
contaminated
soil sample

Diesel oil Sophorolipids Chandran and
Das (2010)

Serratia
marcescens

Petroleum
contaminated
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Pseudomonas and Bacillus species are widely known for producing low molecular
weight biosurfactant (Edosa et al. 2018). On the other hand, the biosurfactants of
high molecular weight are composed of biopolymers including proteins,
polysaccharides, lipopolysaccharides, or complexes of mixed biopolymers and are
associated with stable emulsions, although it forms inefficient liquid surface tension
(Ron and Rosenberg 2001). Most high molecular weight biosurfactants can be
produced by Acinetobacter (Edosa et al. 2018).
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Fig. 4.3 The relationship between the surface tension, biosurfactant concentration, and micelle
formation (Whang et al. 2008)

4 Classification and Production of Microbial Surfactants 69



Nevertheless, the main criteria for biosurfactant classification are their chemical
structure (Mnif et al. 2018). Accordingly, there are many distinguished types of
biosurfactants (Table 4.3): fatty acids, neutral lipids, lipopeptides, phospholipids,
polymeric surfactants, and glycolipids.

Fig. 4.4 Mechanisms of biosurfactants for hydrocarbon removal based on their molecular weight
and concentration (Rosenberg and Ron 1999; Urum and Pekdemir 2004)

Table 4.3 Classification of biosurfactant with examples of potential producing microorganism
(Pacwa-Płociniczak et al. 2011)

Biosurfactant

MicroorganismGroup Class

Glycolipids Rhamnolipids Pseudomonas sp., Pseudomonas aeruginosa

Trehalolipids Arthrobacter sp., Corynebacterium sp.,
Mycobacterium tuberculosis, Nocardia sp.,
Rhodococcus erythropolis

Sophorolipids Torulopsis apicola, Torulopsis petrophilum,
Torulopsis bombicola

Neutral lipids,
phospholipids and
fatty acids

Corynomycolic
acid

Corynebacterium lepus

Spiculisporic
acid

Penicillium spiculisporum

Phosphati-
dylethanolamine

Rhodococcus erythropolis, Acinetobacter sp.

Polymeric
biosurfactants

Emulsan Acinetobacter calcoaceticus RAG-1

Alasan Acinetobacter radioresistens KA-53

Biodisperean Acinetobacter calcoaceticus A2

Liposan Candida lipolytica

Mannoprotein Saccharomyces cerevisiae

Lipopeptides Surfactin Bacillus subtilis

Lichenysin Bacillus licheniformis
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4.2.1 Glycolipids

Glycolipids are composed of two combined parts: carbohydrates, viz., rhamnose,
sophorose, trehalose, etc., and hydroxy form of fatty acids. Glycolipids are the most
studied and known biosurfactants (Mnif et al. 2018). According to the carbohydrate
(the polar moiety) in the biosurfactant, glycolipids can be subdivided into
cellobiolipids, sophorolipids, trehalolipids, rhamnolipids, lipomannans,
lipomannosyl-mannitols, mannosylerythritol lipids, lipoarabinomannans, diglycosyl
diglycerides, galactosyl diglyceride, and monoacylglycerol. Among these,
rhamnolipids, trehalolipids, and sophorolipids are the best studied and produced
by Pseudomonas sp., Rhodococcus, and some yeast strains, respectively (Shoeb
et al. 2013).

4.2.1.1 Rhamnolipids
The group of glycolipid surfactants that are composed of 3-hydroxy fatty acids
(hydrophobic moiety) and rhamnose, a disaccharide hydrophilic moiety, is referred
to as “rhamnolipids” (Lang and Wullbrandt 1999) (Fig. 4.5). Rhamnolipids have
been widely studied and produced by Pseudomonas aeruginosa as a homologous
mixture of different species (Rahman et al. 2002).
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Fig. 4.5 Mono- and di-rhamnolipid structure
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4.2.1.2 Sophorolipids
Sophorolipids are a group of glycolipid surfactants consisting of a hydroxyl fatty
acid and sophorose, a dimeric sugar. These two moieties are linked to each other
(Asmer et al. 1988) by a β-glycosidic bond. Two types of sophorolipids can be
differentiated: lactonic and non-lactonic (Fig. 4.6). In lactonic sophorolipids, the
hydroxyl fatty acid moiety forms a cyclic lactone ring with 40-hydroxy group of
sophorose by intramolecular esterification, while in non-lactone sophorolipids, the
hydroxyl fatty acid moiety has a free carboxylic acid functional group (Hu and Ju
2001). Torulopsis sp. is the widely used microorganism for production of
sophorolipids.

4.2.1.3 Trehalolipids
Trehalolipids are glycolipid biosurfactant composed of trehalose (hydrophilic disac-
charide) linked to β-hydroxy fatty acid chain with long α-branches (Fig. 4.7),
mycolic acid. The produced trehalolipids from different microorganisms can differ
in many ways: structure (unsaturation degree) and size (carbon atom number) of
mycolic acid (Desai and Banat 1997).

4.2.2 Lipoproteins and Lipopeptides

Generally, the lipopeptide-type biosurfactants, surfactin, are produced by the Gram-
positive bacterium, Bacillus sp. A peptide loop represents the hydrophilic moiety of
surfactin (Fig. 4.8), while a fatty acid chain of 13–15 carbons long represents the
hydrophobic moiety. The peptide loop is composed of seven successive amino acids
(Chen et al. 2015), namely, L-aspartic acid, L-leucine, glutamic acid, L-leucine, L-
valine, and two D-leucines.

Fig. 4.6 Lactonic and non-lactonic forms of sophorolipids
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4.2.3 Fatty Acids

Microbial oxidation of alkanes may produce fatty acids which have been reported by
Rehn and Reiff (1981) as surfactants. These fatty acids can be either straight chain or
complex with alkyl branches and hydroxyl groups (Rahman and Gakpe 2008). The
balance between hydrophilicity and hydrophobicity of the fatty acid is highly related
to the chain length of hydrocarbon and its degree of complexity. Most surface-active
fatty acids have the length between 12 and 14 carbon atoms (Rosenberg and Ron
1999).

4.2.4 Phospholipids

The amphipathic molecules of phospholipids are composed of a hydrophobic and a
hydrophilic component. Phospholipids have hydrophilic phosphate group on one
end and hydrophobic fatty acids on the other. Phospholipid biosurfactants are major
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components of microbial plasma membrane (Fig. 4.9). The levels of phospholipids
increase, greatly, if the microbial strain grows in the presence of hydrocarbons
(Rahman and Gakpe 2008).
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4.2.5 Polymeric Biosurfactants

The polymeric biosurfactants isolated from bacterial strains are exopolysaccharide
(EPS) in nature and characterized in that they have a role in antibiotic resistance, as
they offer many regulatory pathways to act against antibiotics. The polymeric
biosurfactants that are best studied worldwide are alasan, emulsan, liposan,
lipomanan, and other protein polysaccharide complexes. At very low concentrations
(0.001% to 0.01%), emulsan was used as an emulsifying agent for hydrocarbons in
water (Lang 2002; Hatha et al. 2007).

4.3 Factors Influencing Biosurfactant Productivity

The studies (Banat et al. 2010) on biosurfactant production confirmed that
microorganisms produce various types of biosurfactants in response and adaptation
to the surrounding microenvironments in addition to other physiological and natural
functions. Microbial biosurfactant production is affected by several factors including
genetic, physiological, nutritional, and environmental. These biosurfactants can
reach maximum levels under definite nutritional and environmental conditions
(Singh et al. 2018).

Nutritional factors, which can be represented by nitrogen and carbon sources,
trace elements, and vitamins, and environmental factors, e.g., agitation, pH, incuba-
tion temperature, and aeration, have a crucial role in the production amount and type
of biosurfactant; therefore, for a cost-effective bioprocess, primary researches should
be conducted to evaluate the significance of these factor and their optimum levels.

4.3.1 Nutritional Factors

4.3.1.1 Carbon Source
The majority of biosurfactant-producing microorganisms is heterotrophs which
mean that for their growth and production of different metabolites they should
consume organic carbon sources. Therefore, carbon sources are critical factors that
influence the quantity and quality of biosurfactants (Raza et al. 2007).

Most of the biosurfactant production cost (30–40%) comes only from the pro-
duction medium preparation cost (George and Jayachandran 2013). Usually, during
cultivation of the microorganisms, carbon consumption is the limiting factor for
biosurfactant and cell biomass production rates (Singh et al. 2017). Generally, three
categories of carbon sources, hydrocarbon groups, oils and fats, and carbohydrate,
were commonly used for biosurfactant production (Nurfarahin et al. 2018). The
carbon source category and concentration depend on the microbial species and type
of biosurfactant. Several sources of carbon have been investigated for biosurfactant
production including water-soluble substrates such as sucrose, glycerol, and glu-
cose and water-insoluble substrates, e.g., hexane, crude oil, diesel, olive oil, oleic
acid, palm oil, kerosene, and petrol (Table 4.1) (Bhardwaj et al. 2013). The
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metabolic pathway associated with creation of the precursors for utilization in
biosurfactant production relies on the sources of carbon that are found in the
production medium (Figs. 4.10 and 4.11). Some researchers reported low
biosurfactant yield in case of water-soluble (hydrophilic) substrates (Mata-Sandoval
et al. 2000). However, for economic production of biosurfactants, great attention was
given by researchers to the use of agro-industrial waste to cut down the processing
cost of its purification.

4.3.1.2 Low-Cost and Waste Substrates
During the last few years, with the aim of reduction of the production cost coupled
with waste management, low-cost and waste substrates have been utilized as sources
of carbon for biosurfactant production (Banat et al. 2014) as well as other add-value
products (Satpute et al. 2017). Researchers and industry men had immense scope for
production of biosurfactants from a variety of food, agricultural, cheap, and renew-
able industrial wastes (Table 4.4). However, the raw material and waste cost is not
the only limiting factor for their use, but their variability, stability, and availability
are also to be considered as critical factors. Moreover, the characteristics of the
material to be used, including liquid and solid forms, amount, purity, texture, size of
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the particles, storage, packaging, and transportation, are all significant factors in its
final selection for the production of biosurfactants (Singh et al. 2018).

4.3.1.3 Nitrogen Source
Nitrogen is a limiting nutritional factor as it is highly critical for microbial growth
and essential for production of certain primary and secondary metabolites including
biosurfactants, protein, and enzymes (Saharan et al. 2012). Sources of nitrogen were
investigated by many researchers for biosurfactant production, e.g., extracts of yeast,
meat and malt, peptone, urea, and salts of ammonium nitrate.

Two forms of nitrogen sources, inorganic and organic nitrogen, have been
categorized on the basis of their unit structures which they present. In case of organic
nitrogen, the unit structure will be in organic molecules, e.g., peptone, yeast extract,
tryptone, or meat extract. In the other hand, inorganic nitrogen has a unit structure
that consists of positive or negative ions such as ammonium nitrate (NH4NO3). The
organic nitrogen has an advantage over inorganic nitrogen as it also contains carbon
content that significantly supports metabolite formation and cell growth (Deepika
et al. 2016). However, it has been reported that ammonia, nitrates, and amino acids
were used by many researchers as the nitrogen source of choice for production of
biosurfactants by some P. aeruginosa strains (Nurfarahin et al. 2018).

Fig. 4.11 The metabolic pathway used by hydrocarbon substrates for the synthesis of biosurfactant
(Papagianni 2012; Santos et al. 2016)

4 Classification and Production of Microbial Surfactants 77



4.3.1.4 Minerals
Two groups of minerals can be differentiated according to the amount needed:
macronutrient and micronutrient minerals (trace elements). In medium formulation,
macronutrient minerals are supplied with other nutrients. The macronutrient minerals
play important roles in the active material’s product, such as enzymes and
biosurfactants, regulation, balancing the cell wall communication, as well as the aid
in the mechanism of protein synthesize (Schobert 1992; Nurfarahin et al. 2018). It was
reported that iron, manganese, and magnesium act as cofactors for the synthesis of the
enzymes responsible for production of surfactin by B. subtilis (Gudiña et al. 2015).

Phosphates are important factors for the microbial activity and growth as it is
important for energy storage and metabolic processes including nucleic acids and
metabolite formation. Usually, phosphate is provided in the form triphosphates
(Nurfarahin et al. 2018). Furthermore, KH2PO4 and K2HPO4 are usually used as a
buffering system in the biosurfactant medium; keep the desired pH constant through-
out the production process (Epstein 2003).

As macronutrient minerals, in addition to phosphorous, calcium (Ca), iron (Fe),
potassium (K), and magnesium (Mg) are important for medium formulation to aid in
the protein synthesizing mechanism and to balance the communication of the cell
wall (Schobert 1992).

Calcium acts to mediate the processes of signal delivering between the cell
surface and intracellular of the microorganism (Dominguez 2004). Although in the
production medium of biosurfactant calcium is added in small amount, usually in
chloride or hydrated chloride salts, it is still needed to support growth and production
(Thaniyavarn et al. 2006; Thavasi et al. 2008).

Table 4.4 The used low-cost waste substrates for production of biosurfactant (Singh et al. 2018)

Waste type Microbial species References

Food and Agroindustrial
residue (banana peel, cassava
waste, corn steep liquor, date
molasses, moringa residue,
orange peel, peanut oil cake,
potato peel, sesame peel flour,
sugarcane baggasse, tuna fish
residue)

Bacillus licheniformis,
Bacillus pumilis, Candida
tropicalis, Cunninghamella
phaeospora, Pseudomonas
aeruginosa,
Halobacteriaceae archaeon

Magalhães et al. (2018),
Rubio-Ribeaux et al. (2017),
Lins et al. (2016), Kumar et al.
(2016), Sharma et al. (2015)
and Chooklin et al. (2014)

Animal Waste (fish processing
waste, animal fats,
slaughterhouse waste)

Aneurinibacillus migulanus,
Nocardia higoensis,
Pseudomonas gessardii

Sellami et al. (2016), Patil
et al. (2016) and Ramani et al.
(2012)

Mil (including refinery waste)
and agroindustrial waste (olive
mill waste, palm oil industry
waste, soybean oil industry
waste, tannery pretreated
effluent)

Bacillus pseudomycoides,
Bacillus subtilis,
Brachybacterium,
paraconglomeratum,
Pseudomonas aeruginosa,

Radzuan et al. (2017), Moya-
Ramírez et al. (2016), Li et al.
(2016), Gudiña et al. (2016)
and Kiran et al. (2014)

Cooking oil waste (cooking oil
waste, frying coconut oil
waste)

Candida lipolytica,
Pseudomonas aeruginosa

Souza et al. (2016), Lan et al.
(2015) and George and
Jayachandran (2013)
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Potassium is also an important macronutrient mineral for microbial growth and
activity. It has been suggested by Tempest et al. (1966) that potassium ions should be
added to the bacterial growth medium as it is substantial to regulate the structure of
ribosomes.

Both calcium and potassium ions play vital roles in microbial cells and prevent
cell lysis in the medium by controlling the membrane potential and balancing the
osmotic pressure of the cells (Činátl 1969).

Magnesium ion is usually added in around 50 times higher concentrations than
that of calcium ions added in the production medium of biosurfactants (Thavasi et al.
2011; Saikia et al. 2012; Rekha et al. 2014). To activate ATP, the cell’s energy store,
it should bind with a magnesium ion to form Mg-ATP and result in the release of
ADP, magnesium, and energy. The amount of magnesium to be used in this reaction
increases with detection of higher metabolic activity (Gout et al. 2014).

Iron is a well-known cofactor important for the process of metabolism in various
microorganisms. Most formulations of the growth and production media utilize iron
in different forms depending on the microbial mechanism of iron uptake (Nurfarahin
et al. 2018).

Trace elements (micronutrients) are minerals that could have positive effect on
biosurfactant production and/or microbial growth when added to the production
medium in trace amounts, usually less than 0.1%. For biosurfactant production,
many trace elements have been used: boron (B), cobalt (Co), copper (Cu), molybde-
num (Mo), and zinc (Zn). However, the specific micronutrients required for produc-
tion of biosurfactant depend on the used microorganism (Nurfarahin et al. 2018).

4.3.2 Environmental Factors

The amount and characteristics of biosurfactants are highly susceptible to the
environmental factors. Therefore, it is vitally important to optimize and evaluate
the different environmental factors, temperature, pH, aeration, agitation, etc., affect-
ing the bioprocess of biosurfactant production (Fenibo et al. 2019).

Most of the studied microorganisms for biosurfactant production are mesophiles,
which grow at a temperature range between 20 and 45 �C; hence the optimum
temperature for biosurfactant production, usually, lies between 25 and 37 �C (Auhim
and Mohamed 2013).

In parallel with incubation temperature, biosurfactant production has been
reported to be influenced by the culture medium pH (Amaral et al. 2006). It was
reported that pH (the concentration of the medium hydrogen ions [H+]) disrupts
hydrogen bonding and modifies the ionization characteristics of the amino acid
functional groups and, subsequently, promotes changes in the structure and folding
of proteins and enzyme and denaturation, finally, destroying their activity. Most
studies on bacterial biosurfactant were conducted at neutral or almost neutral pH,
while for yeast and fungi, acidic conditions were guaranteed (Jagtap et al. 2010;
Fontes et al. 2010; Morais et al. 2017).

The optimum incubation period required for biosurfactant production varies
according to microbial species (Jagtap et al. 2010; Fontes et al. 2010; Bhardwaj
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et al. 2013). During the production process, the level of biosurfactants goes through
different phases including lag, exponential, stationary or apex, and finally decline
phases. Hence, the incubation period should be optimized before large-scale pro-
duction to obtain the maximum output at a minimum period (Fig. 4.12). As a
conclusion, the incubation period of biosurfactant production process is an unpre-
dictable factor.

Microorganisms can be aerobic, anaerobic, or facultative anaerobe meaning that
the amount of oxygen influences their growth, metabolism, and activity. Aeration
and agitation of the culture medium are very important factors that facilitate oxygen
transfer and distribution and, subsequently, influence biosurfactant production (Roy
2017).

4.3.3 Cultivation Strategy

For the development, economic widespread, and sustained biosurfactant production,
two bioprocess strategies, submerged and solid-state fermentation (SSF), are well
studied and applied in both lab and pilot scales. These strategies represent the most
critical part for economic production of biosurfactant and for medium optimization.
Furthermore, these strategies are key determinants for the establishments of com-
mercial and economic biosurfactants and to be able to compete with the chemically
produced surfactants.

4.3.3.1 Solid-State Fermentation (SSF)
As the name may show, the solid-state fermentation (SSF) was described to be a
biological process taking place in an inert solid matrix which acts as a support or
support and substrate in the presence of moisture or a very few amount of free water
(Fig. 4.13) (Singhania et al. 2010) to support the metabolic activity and the growth of

Fig. 4.12 Primary and secondary metabolite production in relation to microbial growth curve and
substrate concentration

80 M. M. A. Abo Elsoud



A
ir 

ou
tle

t

Li
d

O
rif

ic
e 

fo
r

in
oc

ul
um

M
od

ul
e 

ba
se

s

C
oo

lin
g 

de
vi

ce

C
ul

tiv
at

io
n

su
bs

tr
at

e

A
ir 

in
le

t
W

at
er

 s
up

pl
y

W
at

er
di

sc
ha

rg
e

In
iti

al
 la

ye
r 

of
so

il

C
op

pe
r 

co
ol

in
g

pi
pe

s

C
oo

lin
g 

pl
at

es

C
ul

tu
re

su
bs

tr
at

e

Fi
g
.4

.1
3

S
ys
te
m

of
so
lid

-s
ta
te
fe
rm

en
ta
tio

n
(S
S
F
)

4 Classification and Production of Microbial Surfactants 81



producer microorganism (Thomas et al. 2013). SSF is an emerging and promising
strategy for the production of biosurfactant compared with submerged fermentation
(SmF) (Das and Mukherjee 2007) as it overcomes the foam production problem
(Camilios-Neto et al. 2011). In addition, it is a simple process and can produce
concentrated products (Mir et al. 2017). During the past few years, the solid-state
fermentation technologies have been rapidly developed by researchers and
applicants. Worldwide, an attention and gradual development of the researches on
SSF with the impact of cost, waste management, science, technology, and sustain-
able development have made a great progress.

The substrates employed during solid-state fermentation are usually cost-free
renewable wastes such as wheat bran; banana peel; tapioca peel (Vijayaraghavan
et al. 2011); cassava bagasse; sugarcane; rice husk; oil cakes, e.g., coffee husk and
palm kernel cakes (Pandey 2008); and cassava dregs (Hong et al. 2001). All these
substrates are rich in protein and carbon contents (Pandey 2008).

4.3.3.2 Submerged Fermentations (SmF)
The processes of submerged fermentation (SmF) were described as a biological
process where the microbial cells are surrounded, completely, by liquid medium
(Fig. 4.14) (Singhania et al. 2015). This strategy comprises large varieties of
microbial processes including non-stirred or stirred. It has been reported that the
production yield of different products, by solid-state fermentation, is usually more
significant than that obtained by submerged fermentation. This may be due to the
fact that the microbes in the SSF grow under similar conditions to their natural
habitats, where they can produce certain metabolites and enzymes that are usually
produced only with a low yield and not produced at all in the submerged culture

Fig. 4.14 Aerated stirred tank used for submerged fermentation
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(Jecu 2000; Castilho et al. 2000). However, submerged fermentation has been used
for biosurfactant production by many scientists (Sayyad et al. 2007; Iroha et al.
2015; Mouafi et al. 2016; Das and Kumar 2018). Currently, biosurfactant production
is done either by batch or fed-batch processes. This can be attributed to the
limitations of data provided for continuous nutritional feeding process (Winterburn
and Martin 2012), including heat and mass transfer and biomass growth reactions,
which limit the efficiency of the process. Therefore, more efforts and research are to
be needed for conduction of integrated bioprocesses for biosurfactant continuous
production and recovery using submerged fermentation strategy.

The physicochemical properties are the main differences between SSF and SmF
processes (Table 4.5), e.g., (a) water content is very small in SSF, (b) substrates and
products are homogenous in SmF compared with SSF, (c) oxygen in addition to
other nonpolar gases is much more diffused in solid-state fermentation, and (d) heat
conduction (Roussos et al. 1997) is much smaller in solid-state fermentation. Such
differences comprise the main reasons for advantages and drawbacks of SSF, in
relation to SmF processes.

Table 4.5 Comparison between submerged and solid-state fermentation

Submerged fermentation Solid state fermentation

Fermentation may be carried out as batch, fed-batch
or continuous processes

Fermentation may be carried out as batch

Medium is added in large vessel Medium is added in flat vessel or trays

Surface area to height ratio is very less Surface area to height ratio is very high

5–10% of inoculums is added Less inoculum is added

Inoculum is usually in liquid form Inoculum is usually sprayed on surface of
medium

Product used are usually high as compared to input
cost

Product yield is comparatively less

Lesser space is required More space is required

Less contamination More contamination

If a batch get contaminated there is a loss of entire
batch

If a tray gets contaminated then there is a
loss of only tray but not the batch

Entire fermentation media is utilized by
microorganism for growth and product
fermentation

There is wastage of fermentation media

Wastewater discharge No wastewater discharge

Aeration and agitation of system is possible by use
of sparger and impeller

Aeration is usually carried out by passing
sterile air and no agitation

Power consumption is high Power consumption is less

Controlling parameters like temperature, pH is easy Controlling parameters like temperature,
pH is difficult

Foaming occurs Foaming doesn’t occurs

Automation and use of computer is easy Automation and use of computer is
difficult

Less labor required More labor required
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Microbial Biosurfactants and Their
Potential Applications: An Overview 5
Debajit Borah, Anu Chaubey, Abhijit Sonowal, Bhaskarjyoti Gogoi,
and Rupesh Kumar

Abstract

Biosurfactants are amphiphilic and one of the most versatile compounds
synthesized by certain plants and microorganisms. These compounds are well
known for their wide range of applications from domestic, personal, food and
medical up to industrial level. They are capable of emulsifying oily substances
which makes them very useful as a cleaning agent for domestic or industrial
purpose and at the same time makes it competent for the exploration of oil
through microbial enhanced oil recovery (MEOR) process. Besides they have a
major application in the form of a potential tool to fight against petroleum-based
contamination of oil and water. They are also used as an anti-adhesive agent,
emulsifying agent in bakery industry, drug delivery system, etc. They are
synthesized by a number of microorganisms such as Pseudomonas sp., Bacillus
sp., Acinetobacter sp., Candida sp., Sphingomonas sp., Cryptococcus sp.,
Pseudozyma sp., Kurtzmanomyces sp., Rhodococcus sp., Arthrobacter sp.,
Lactococcus sp., Penicillium sp., Aspergillus sp., etc. and are encoded by a
number of genes. In this regard, this chapter focus on basic chemical properties
of various types of biosurfactants, source of production, name of genes responsi-
ble for its production, and various applications.

Keywords
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5.1 Introduction

Surfactants belong to one of the important classes of chemicals which are widely
used in modern day industries. Roughly all the commercially available surfactants
are chemically synthesized from petroleum-based substrate. However, the conven-
tional chemical surfactants are mostly expensive as they are derived basically from
non-renewable petroleum-based substrates and may also act as potential threats to
the environment as petroleum-based products are mostly recalcitrants by nature. Due
to such disadvantages of chemical surfactants, various microbes are nowadays
widely studied and employed for the production of bio-based surfactants which are
popularly referred as biosurfactants. Biosurfactants have various advantages over
chemical surfactants in terms of their biodegradability in nature, low toxicity, low
cost of production from renewable sources and stability at extreme conditions such
as high temperature, wide range of pH, salinity, etc.

Microbial biosurfactants are known to be produced extracellularly by various
bacteria, yeasts, fungi, etc. as amphiphilic compounds from their cell membrane and
exhibit high surface activity just like chemical surfactants. These were first discov-
ered in the late 1960s during hydrocarbon fermentation experiments (Khan et al.
2017). Briefly, they have the potential to reduce the surface tension as well as the
interfacial tension of oily substances with the formation of foam and eventually
increase the aqueous solubility and bioavailability of non-aqueous-phase liquids
(NAPLS) (Fakruddin 2012). In general, biosurfactants may be chemically classified
based on their ionic properties in water as anionic, non-ionic, cationic and ampho-
teric and are classified summarily as glycolipids, phospholipids, polymeric
biosurfactants and lipopeptides (surfactin) based on their chemical properties
(Fakruddin 2012). They are known to be produced by various microorganisms
including various bacteria, fungi and yeast. For example, some of the strains of
Pseudomonas aeruginosa are known for the production of rhamnolipid-based
biosurfactants; Candida bombicola, one of the very lesser known yeasts, is known
to produce sophorolipid-based biosurfactants from vegetable oils and starchy
substrates; Bacillus subtilis is known to produce surfactin-based biosurfactants,
etc. (Mulligan 2005). Biosurfactants are amphiphilic in nature which bears both
hydrophobic and hydrophilic moieties which provide them the ability to accumulate
themselves within the aqueous phase such as oil-water or air-water emulsion by
reducing the surface tension of oil.

Microbial biosurfactants are nowadays exploited for their wide range of
applications in the form of household instant detergents, personal care products
such as cosmetic components and antimicrobial agents, in the field of petroleum
exploration by microbial-enhanced oil recovery (MEOR) process, in the field of
environmental biotechnology as a bioremediation agent, in food processing
industries as bioemulsifier, in pharmaceutical and health care industries as active
drug delivery molecules, etc. (Vaz et al. 2012).

92 D. Borah et al.



5.2 Classes of Biosurfactants

Biosurfactants are classified based on their ionic properties in water and also based
on their chemical nature.

Based on their ionic property, they are classified as follows:

• Anionic.
• Non-ionic.
• Cationic.
• Amphoteric.

On the other hand, based on the chemical nature of biosurfactants, they are
classified as follows:

• Glycolipids.
• Lipopolysaccharides.
• Lipopeptides and lipoproteins.
• Phospholipids.
• Fatty acids.

5.2.1 Glycolipids

Glycolipids are the most widely studied class of microbial biosurfactants.
Glycolipids are constituted with carbohydrate moieties associated with fatty acids
connected with either ester or ether group (Fig. 5.1). The most studied types of
glycolipids are rhamnolipids, trehalolipids and sophorolipids composed of mono- or
oligosaccharides attached with lipid moieties to form low molecular weight surface-
active molecules (Sharma 2016a). On the other hand, glucose, galactose, xylose or
rhamnose constitutes the sugar part of the biosurfactant, and the lipid part may be
constituted with saturated or unsaturated fatty acid (Sharma 2016b).

Fig. 5.1 Structure of
glycolipid
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5.2.2 Lipopolysaccharides

Lipopolysaccharide class of biosurfactants usually bears cyclic lipopeptides attached
to fatty acids which is also known as surfactin mostly synthesized by Bacillus
sp. (Fig. 5.2). Lipopolysaccharide is released by most of the Gram-negative
microbes as one of the primary component of the outer membrane (Stromberg
et al. 2017).

5.2.3 Lipopeptides and Lipoproteins

These are cyclic peptides with 7 amino acids, viz., L-aspartic acid, L-leucine,
glutamic acid, L-leucine, L-valine, and two D-leucines which are finally attached to
an acylated fatty acid chain which is known for its antimicrobial and more often
haemolytic activities. This class of biosurfactant is also known as surfactin and are
well known for their antibacterial, antifungal as well as antiviral activities (Fig. 5.3).
This class of biosurfactant is known to be produced by mostly endospore-producing
Gram-positive bacteria such as Bacillus sp., Lactobacillus sp., Actinomycetes, etc.

5.2.4 Phospholipids

Phospholipids are the derivatives of glycerol molecules with two molecules of fatty
acids and a negatively charged phosphate group (Fig. 5.4). The negatively charged
phosphate group in phospholipid is hydrophilic in nature, and non-polar fatty acid
chains are hydrophobic in nature. During the formation of mycelium in water, they
arrange themselves in a spherical manner with the hydrophilic head facing towards
water and the hydrophobic tails hiding themselves within the core against water.

5.2.5 Fatty Acids

Fatty acids are the fat-soluble components of all living cells which bear long straight
chain of carbon atoms along with hydrogen atoms along the length of the chain and
a –COOH (carboxyl) group at other end. If the fatty acid molecule bears single bonds
between carbon-to-carbon molecules, then they are considered as saturated (e.g.,
butyric acid, lauric acid, myristic acid, etc.), and if it bears double or triple bonds,
then they are considered as unsaturated fatty acids (e.g., palmitoleic acid, oleic acid,
myristoleic acid, linoleic acid, arachidonic acid, etc.). Some of the fatty acids also
bear branched chains and ring structures (e.g., prostaglandins).
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Fig. 5.2 Basic structure of bacterial polysaccharide (https://www.sigmaaldrich.com/technical-
documents/articles/biology/glycobiology/lipopolysaccharides.html 2020)
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5.3 Microbial Production of Biosurfactants

Biosurfactant is produced by a number of bacteria, most popularly, various strains of
Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas cepacia, Serratia
marcescens, Bacillus subtilis, Bacillus licheniformis, Bacillus mycoides, Bacillus
mojavensis, Acinetobacter bouvetii, etc., and a number of fungi, viz., Candida
petrophilum, Candida lipolytica, Candida tropicalis, Penicillium sp., Aspergillus
sp., etc. (Bordoloi and Konwar 2008; Chaprão et al. 2015; Tugrul and Cansunar
2005; Aparna et al. 2012; Mulligan 2005; Ghosh et al. 2015; Shekhar et al. 2015;
Vijayakumar and Saravanan 2015; Saravanakumari and Mani 2010; Vijayakumar
and Saravanan 2015; Youssef et al. 2004; Chan et al. 2013; Shekhar et al. 2015; Wei
et al. 2007; Saravanakumari and Mani 2010; Khan et al. 2017; Luna et al. 2012;
Fooladi et al. 2016; Ghosh et al. 2015; Ron and Rosenberg 2002; Shekhar et al.
2015). Different types of microorganisms produce different types of biosurfactant in
terms of their chemical property. Table 5.1 shows various types of biosurfactants
produced by different types of microorganisms which include both bacteria and
fungi. However, the efficacy of the production of biosurfactant is largely governed
by growth conditions such as temperature, pH, salinity, rate of agitation and also
media components such as N, Fe, Mg, etc.

Fig. 5.3 Molecular structure of surfactin
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5.4 Genes Involved in the Production of Microbial
Biosurfactants

Among all the reported types of biosurfactants, the molecular biology for
Pseudomonas aeruginosa-mediated biosynthesis of rhamnolipids and Bacillus
subtilis-mediated synthesis of surfactin was first reported (Das et al. 2008). Besides,
biosynthesis of arthrofactin, iturin and lichenysin, mannosylerythritol lipids and
emulsan synthesized, respectively, by Pseudomonas sp., Bacillus sp., Candida

Fig. 5.4 Structure of phospholipid
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sp. and Acinetobacter sp. is also well documented. For instance, srfA operon consists
of four open reading frames (ORFs) namely srfAA, srfAB, srfAC and srfAD, is
responsible for the synthesis of amino acid moieties of surfactin, whereas sfp is the
gene required for the synthesis of phosphopantetheinyl transferase enzyme that
activates surfactin by post-translational modification (Das et al. 2008). Names of a
wide number of genes responsible for the synthesis of biosurfactants in various
microorganisms are shown in Table 5.2.

5.5 Applications

The versatility of biosurfactants makes them a potential substrate for commercial
exploitation in petrochemical, pharmaceutical, food and cosmetics-based industries.
Moreover, they have various domestic applications in the form of detergents,
foaming agents, emulsifiers, etc. (Aparna et al. 2012). The detailed applications of
biosurfactant in various fields are discussed below.

5.5.1 In Petroleum Industry

Petroleum-based oil recovery is achieved in three major steps: primary, secondary
and tertiary.

• Primary oil recovery process. This involves mechanical drilling and pumping
devices to recover petroleum oil which naturally emerges to the earth’s surface
due to very high pressure of gas.

• Secondary recovery process. This employs injection of gas and water through the
drilling rigs for the displacement of petroleum oil up to the surface for easy
recovery. US Department of Energy states that more than 75% of oil may not be
possible to recover even after employing these two methods (Pacwa-Płociniczak
et al. 2011).

• Tertiary recovery process. Tertiary recovery process is also popularly known as
enhanced oil recovery process (EOR).

EOR widely involves the use of thermal recovery processes, gas and chemical
injection processes, microbial enhanced oil recovery process (MEOR), etc. and is
briefly defined below:

• Thermal recovery. This method involves the use of hot steam through the
reservoir to heat the well which minimizes its viscosity and allows easy up-flow
to the surface. Alternatively, less commonly it is practiced to burn some part of
the oil to heat the rest which is also known as in situ burning or fire flooding.

• Gas injection. This is one of the most popular tertiary oil recovery methods which
involve the injection of gases such as N2, CO2 or even natural gases through the
drilling rigs. After mixing the gas with oil increases the viscosity, but
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Table 5.2 Genes responsible for the production of biosurfactants in bacteria

Name of the organism
Name of biosurfactant
produced

Genes
responsible References

Ustilago maydis Mannosylerythritol lipid emt1 Hewald et al.
(2005)Cellobiose lipid cyp1

B. licheniformis
ATCC10716

Lichenysin licA
licB
licC

Das et al. (2008)

B. subtilis RB14 Iturin A ituD
ituA
ituB
ituC

B. subtilis Surfactin srfA
srfB
srfC
srfD

Pseudomonas sp. MIS38 Arthrofactin arfA
arfB
arfC

P. aeruginosa PG 201 Rhamnolipid rhlA
rhlB
rhlR
rhlI

Pseudomonas sp. DSS73 Amphisin gacS
amsY

P. putida PCL1445 Pultisovin I
Pultisovin II

dnaK
dnaJ
grpE

Acinetobacter
radioresistens KA53

Alasan alnA

Acinetobacter lwoffii
RAG-1

Emulsan wza
wzb
wzc
wzx
wzy

Serratia marcescens Serrawettin W1 pswP

Serratia marcescens 274 Serrawettin W1 swrW

Serratia liquefaciens MG1 Serrawettin W2 swrA
swrI
swrR

Trichoderma reesei Hydrophobins hfb1
hfb2

P. aeruginosa spp. Rhamnolipid lasR
lasI

Sullivan (1998)

Dietzia maris As-13-3 Di-rhamnolipid alkB
cyp153
algC
rmlA
rmlB
rmlC

Wang et al. (2014)

(continued)
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simultaneously it increases the pressure to push the oil up to the surface for its
easy recovery.

• Chemical injection. This is one of the least commonly used EOR methods for
petroleum recovery. It employs chemical surfactant which reduces the surface
tension of oil and causes free flow of oil and finally is recovered by water flooding
followed by mechanical with lesser effort.

• Microbial enhanced oil recovery (MEOR). This is probably the most recent
method of oil recovery which involves the use of biosurfactant-producing
microbes to minimize the surface tension of oil which further enhances the free
flow of oil to the surface with the injection of water (Fig. 5.5).

5.5.1.1 Mechanism of MEOR
A considerable amount of oil retained inside porous surface throughout the drilling
rig remains unrecovered. Such porous surface which retains oil inside is called “thief
zones”. MEOR employs hydrocarbon degrading and biosurfactant-producing micro-
organism to reduce the viscosity of oil by lowering its surface tension causing the
free flow of oil (Pacwa-Płociniczak et al. 2011). MEOR has attracted the attention of
scientific communities in recent time mainly because of its cost-effectiveness and
environment benign nature. A number of microorganisms are reported till date with a
potential of producing biosurfactants. Out of all the microorganisms, various species
and strains of Pseudomonas are most commonly reported by various researchers
worldwide (Tugrul and Cansunar 2005; Beal and Betts 2000; Bordoloi and Konwar
2008; Chaprão et al. 2015). They are reported as most commonly capable of
producing rhamnolipid- and phospholipid-based biosurfactants, whereas less

Table 5.2 (continued)

Name of the organism
Name of biosurfactant
produced

Genes
responsible References

rmlD
rhlA
rhlB
rhlC
accA
accB
accD
fabB
fabD
fabG

Starmerella bombicola Sophorolipid adh
ugtB1
mdr
at
ugtA1
cyp52m1
orf

Van Bogaert et al.
(2013)
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commonly reported as capable of producing viscosin- and ornithine-based
biosurfactants (Tugrul and Cansunar 2005; Shekhar et al. 2015). On the other
hand, various species of Bacillus are also widely reported for their capability in
the production of surfactin-, lichenysin-, iturin-, polymyxin-, fengycin- and
gramicidin-based biosurfactants (Tugrul and Cansunar 2005; Vaz et al. 2012; Wei
et al. 2007; Saravanakumari and Mani 2010; Shekhar et al. 2015).

The remaining oil after primary and secondary recovery process often entrapped
inside sand pores is very difficult to recover due to capillary pressure. The surface
tension between oil-water and oil-rock can be reduced with the help of biosurfactants
which further leads to the reduction of capillary forces preventing petroleum oil to
reach the surface (Pacwa-Płociniczak et al. 2011) (Fig. 5.5). Biosurfactants also form
emulsion by tightly binding with oil-water interface and thus stabilize the desorbed
oil in water and enable easy exploration of oil along with the injection water (Pacwa-
Płociniczak et al. 2011) (Fig. 5.5).

The critical micelle concentration (CMC) and emulsification (E) index are the
important characteristics of a surfactant. CMC is defined as the concentration of
surfactants in bulk phase above which micelles are formed and above which the
additional surfactants added to the system go to micelles (Fig. 5.6). On the other
hand, emulsification index is defined as the percentage of height of emulsified layer
(mm) divided by total height of the liquid column (mm) in a given time
(T) (Fig. 5.7).

ET index can be expressed as below:

Fig. 5.5 The process of microbial enhanced oil recovery (MEOR) process
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Height of the emulsified layer mmð Þ
Total height of the water column mmð Þ � 100

Biosurfactants released by microorganisms reduce the surface tension of oil
droplets, thus converting them into microdroplets (micelle) and making them easier
for microorganisms for their uptake (Ibrahim et al. 2013). A number of enzymes take
part in the degradation of oil droplets. Oxygenase is one of the most important
microbial enzymes found to be responsible for petroleum degradation which
converts complex hydrocarbon chains into much simpler forms which enter through

Fig. 5.6 Relationship among concentration of biosurfactant, surface tension of hydrocarbon and
micelle formation

Fig. 5.7 Formation of emulsion layer in presence of biosurfactant after incubation
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peripheral metabolic cycles before undergoing complex metabolic changes
(Hommel 1990; Cerniglia 1992; Yakimov et al. 1995; Adebusoye et al. 2008;
Ibrahim et al. 2013; Behera and Prasad 2020) (Fig. 5.8).

A large amount of carbon dioxide (CO2) gas is produced as a by-product of
metabolism over time, and this accumulated gas eventually drives up the entrapped
oil through the recovery site, whereas the by-product generated by the
microorganisms in the form of biomass accumulates between oil and sand surface
inside the drilling rig physically helping in displacing the oil. Moreover, some
microorganisms are capable of producing exopolysaccharide (EPS) which is a
slimy substance along with the biosurfactants they produce. Such EPS helps in
sealing the pores present in rocks and thief zones and facilitates the movement of
oil throughout the recovery process (Khire 2010). Successful well-documented
MEOR field trial has been reported as early as the year 2007 by Youssef et al.
(2007), with the help of biosurfactant produced by a mixture of Bacillus subtilis
subsp. spizizenii NRRL B-23049 and Bacillus strain RS-1. These strains were
supplemented with nutrients such as glucose, sodium nitrate and trace metals to

Fig. 5.8 Uptake of oil droplets by microbial cells and their degradation through metabolic
processes
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facilitate the growth and proliferation of the strains. In brief, MEOR is now proving
itself an eco-friendly, non-toxic and commercially viable technology. However, such
practices are largely governed by abiotic factors such as temperature, increasing
pressure with the increase in the depth of the drilling well, pH, salinity, relative
humidity (RH), etc.

5.5.2 Biosurfactant-Mediated Bioremediation

Spillage caused during oil exploration, transportation or by deliberate illegal dump-
ing increases the incidence of soil and water pollution in recent times in the entire
globe. Toxic inorganic and organic components such as volatile organic components
(VOCs), polycyclic aromatic hydrocarbons (PAHs), heavy metals, etc. present in
petroleum products are the most important contributors to environment toxicity and
pose potential threat to aquatic animals and also to human health. Due to the growing
demand in eco-friendly, biological treatments, bioremediation provides environment
benign and cost-effective solution to bring back contaminated soil and water to its
native condition with the help of hydrocarbon-degrading microorganisms.
Microorganisms employ quite a few strategies to augment bioavailability of those
hydrophobic components present in the pollutants which include formation of
biofilm and biosurfactant production. Hence, growth and proliferation of such
microbes on oily substrate are commonly related to their potential of producing
surface-active compounds (Cameotra and Makkar 2010). The rate of bioremediation
in a contaminated site can be augmented by adding additional microbes with a
potential to synthesize biosurfactant. On the other hand, fortification of nutrients in
the contaminated site by adding additional nutrient supplements can also be carried
out to promote the growth of native indigenous microbes in the environment which
is often referred to as biostimulation or bioaugmentation (Felix et al. 2019). Washing
of petroleum-contaminated soil was earlier practiced with chemical surfactants but is
losing popularity due the release of toxic residues. Therefore, biosurfactants which
chemically include rhamnolipids, surfactin, sophorolipids, etc. are mostly reported
as better alternative to such existing washing technology. However, saponin, a plant-
based biosurfactant which is widely distributed in the plant kingdom, is also reported
as a potential agent to treat hydrocarbon-contaminated soils and water (Zhou et al.
2013; Befkadu and Quanyuan 2018).

5.5.3 In Food Industry

Food regulation organizations in the entire world are unremittingly implementing
restrictions on the use of chemical emulsifiers over suitable bio-based food
emulsifiers which are extracted from plants and microorganisms. The growing
concern about natural and organic products in food processing industry now has
explored the use of biosurfactants not only as a bioemulsifier but also as antimicro-
bial agents. The basic role of emulsions in bakery industry is to attain consistency in
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dough making. Biosurfactants emulsifies edible oil used during food processing by
lowering the surface tension of oil and thus improves texture, cheesiness and
creaminess during dairy cheese preparation and in salad dressings. Moreover, it
may also be used as an antimicrobial agent in food industry to prevent microbial
contamination. Biosurfactants are also claimed with antioxidant potential which
further extends its futuristic applications as a food ingredient (Sharma et al. 2016).

Literature survey has shown yeast-based biosurfactants, particularly from
Kluyveromyces marxianus, with a great potential as a bioemulsifier against corn
oil, whereas Candida utilis derived biosurfactants with a potential in salad dressing.
Yeast-derived biosurfactants also show their potential application as probiotic
because of their GRAS (generally regarded as safe) status in various food industries
(Sharma et al. 2016).

5.5.4 In Agriculture

Biosurfactants are also used in agricultural practices as a vital component of pesti-
cide and herbicide. They act as bioemulsifiers which makes the plant leaves hydro-
phobic in nature which prevents direct contact between microbe and plant leaves
which minimizes the chances of infection in plants and may also prevent microbial
growth by acting as antimicrobial agent.

5.5.5 In Cosmetics

Cosmetic products take a major role in our everyday life, and it possesses a big
worldwide market potential. A large variety of surfactant-based cosmetic products
ranging from soap, shampoo, toothpaste, skin moisturizer, etc. are available which
are now gradually substituted with biosurfactant-based components to cater the
demand of natural ingredients in cosmetics among customers. It is also believed
that biosurfactants also act as “prebiotic” agent that facilitates the growth of healthy
skin microbiota.

Some study suggests that the composition of biosurfactant such as CMC and
hydrophilic-lipophilic balance (HLB) determines the use of biosurfactants in cos-
metic formulations. It has been reported as glycolipids (e.g., rhamnolipid) and
lipopeptides (e.g., surfactin) and exhibits lowest CMC value (Gudina et al. 2010).
CMC denotes the minimum concentration of biosurfactant in the medium which
undergoes micelle formation. On the other hand, HLB value of biosurfactant
determines its emulsifying ability and wettability while formulating cosmetics
(Vecino et al. 2017). Wettability is defined as the ability of a liquid to sustain contact
with a solid surface and is governed by the intramolecular surface tension of the
liquid. The wettability is more often measured in terms of contact angle which may
be defined as the angle between the surface of the liquid and the outline of the contact
surface (Fig. 5.9). The lesser the contact angle represents, the more the wettability
due to the loss of surface tension.
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5.5.6 Biosurfactant in Nanotechnology

Green synthesis of metal nanoparticles such as gold, silver, zinc, titanium, copper,
iron, palladium, platinum, etc., with the help of plant extract, is a new trend in
applied chemistry (Jimoh and Lin 2019; Prasad 2014; Prasad et al. 2018; Shrivastava
et al. 2021). However, very recently, the synthesis of metal nanoparticles by
reducing metal salts with microbial biosurfactant emerges as a substitute for plant-
based synthesis of nanoparticles due to its easy and bulk production potential and
because at the same time it acts as a stabilizing agent by capping the nanoparticles.
For instance, various strains and species of Pseudomonas, Bacillus, Lactobacillus,
etc. are largely exploited for the synthesis of silver, gold, cadmium and zinc
nanoparticles but are yet very limited (Table 5.3).

Not only as a reducing or stabilizing agent, biosurfactant finds its way also as
drug delivery agent in nanoscale which is applicable to carry and to release the drug
in a controlled manner. Such roles of biosurfactants are discussed in detail hereafter.

5.5.7 Biosurfactants as Drug Delivery Agents

With the advent of various drug delivery systems (DDS), biosurfactants also caught
the eyes of the researchers for its possible role in the form of a drug-delivering agent.
An ideal drug delivery system is expected to hold two important characteristics, viz.,
capability to carry the loaded drug to the target site followed by enhanced

Fig. 5.9 Contact angle reduces with the decrease in surface tension
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bioavailability of the drug and releasing the drug in a controlled manner. To achieve
this, polymeric, particulate or cellular carriers are most widely used. Nowadays,
lipid-based microspheres, micelles, liposomes, sphingosomes, etc. are also used as
effective DDS due to the non-cytotoxic nature of biosurfactants (Gudiña et al. 2013).
Surfactant is the principal ingredient of microemulsion-based drug delivery system
and also comprises with an aqueous and oily phase that encapsulates the drug within
the core. As per literature, a microemulsion system may possess a variety of
geometric shapes such as spherical, crystalline, hexagonal, bicontinuous, etc.
(Gudiña et al. 2013). Even though hydrocarbon oils such as heptanes, dodecane,
cyclohexanes with sodium dodecyl sulphate (SDS) or tetraethylene glycol
monododecyl ether were initially practiced by researchers for the production of
microemulsion system, SDS shows cytotoxicity in the long run. Hence
biosurfactants have emerged as a potential substitute for such applications (Gudiña
et al. 2013).

Table 5.3 Synthesis of various metal nanoparticles by reducing metal salts by microbial
biosurfactants

Name of organism
Name of the nanoparticles
synthesized References

Bacillus subtilis BBK006 Silver Eswari et al. (2018)

B. subtilis ANR 88 Silver and gold Rane et al. (2017)

Pseudomonas aeruginosa Zinc Kulkarni et al. (2019)

P. aeruginosa PBSC1 Silver

P. fluorescens MFS-1 Silver

P. aeruginosa BS-161R Silver

B. Ttequilensis Silver

Lactobacillus brevis MTCC
4463

Silver

P. aeruginosa UCP0992 Silver Farias et al. (2014)

Brevibacterium casei
MSA19

Silver Płaza et al. (2014)

Starmerella bombicola Cobalt

B. subtilis T-1 Silver Liwarska-Bizukojc et al.
(2018)

P. aeruginosa MKVIT3 Silver Liwarska-Bizukojc et al.
(2018)

B. subtilis BBK006 Gold Reddy et al. (2009)

P. aeruginosa MTCC 424 Gold Tomar et al. (2015)

B. amyloliquefaciens
KSU-109

Cadmium Singh et al. (2011)

B. subtilis BRS-07 Cadmium Singh et al. (2012)

P. aeruginosa BS01 Zinc Hazra et al. (2013)
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5.5.8 Antimicrobial Activity of Biosurfactants

Growing antibiotic resistance among pathogenic microbes due to frequent use of
antibiotic emerges itself as a major challenge in health science to treat. Some
lipopeptide-based microbial biosurfactants such as surfactin, fengycin, iturin,
bacillomycins, mycosubtilins, etc. synthesized by Bacillus subtilis have been
reported by some researchers showing antimicrobial potential against drug-resistant
microbes. Literature also shows cyclic lipopeptide-based biosurfactants such as
daptomycin produced by Streptomyces roseosporus and viscosin from Pseudomo-
nas sp., rhamnolipids produced by P. aeruginosa, sophorolipids produced by Can-
dida bombicola, mannosylerythritol lipids from Candida antarctica, lipopeptides
from Bacillus circulans, flocculosin from Pseudozyma flocculosa, etc. with potential
antimicrobial activity (Banat et al. 2010).

5.5.9 Biosurfactant as Anti-Adhesive Agent

Biosurfactants are also reported as an anti-adhesive agent who helps in removing
harmful microorganisms adsorbed on solid surface by inhibiting the adhesion. One
such practical example has shown surfacting coated vinyl urethral catheters
inhibiting the biofilms formed by Salmonella typhimurium, Salmonella enterica,
E. coli and Proteus mirabilis (Mireles et al. 2001). Salmonella sp. is one of the major
groups of microorganisms responsible for causing urinary tract infection (UTI) in
human (Mireles et al. 2001), whereas Lactobacillus sp. contributes to the normal
microbiota of female urogenital tract and maintains the healthy microbiota by
releasing lactic and biosurfactants that inhibit the growth of harmful microbes.
Based on this, Heinemann et al. (2000), have reported the inhibition of Enterococcus
faecalis and yeast-mediated biofilm on silicone rubber with the help of
biosurfactants released by Lactobacillus acidophilus and L. fermentum RC-14 by
lowering the adhesion between the substrate and the pathogen (Heinemann et al.
2000). Rodrigues et al. (2006), explained the ability of L. lactis 53- and
S. thermophilus-mediated biosurfactants to inhibit the adhesion of pathogens from
colonizing on silicone rubber voice prostheses (Salusjärvi et al. 2004). However,
such reports are very preliminary and require more research and development for
developing such products in commercial level.

5.5.10 In Fabric Washing

Biosurfactants may also have future applications as a substitute for chemical
detergents due to their surface-active behaviour and antimicrobial potential. Only a
few such literatures are available explaining such applications of biosurfactants in
real time. For instance, biosurfactants from Bacillus subtilis SPB1 were reported for
its application as laundry detergent, biosurfactants from Pseudomonas aeruginosa
BioS as a remover for white board marker and Bacillus subtilis SPB1 BioS-mediated
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biosurfactant as a cleaning agent for oil and tea stains, etc. (Bouassida et al. 2018;
Khaje Bafghi and Fazaelipoor 2012). It was also reported that sophorolipids pro-
duced by Candida bombicola (ATCC22214) showed its ability to remove stains
equivalent to some of the commercially available detergents (Joshi-Navare et al.
2013; Jimoh and Lin 2019).

5.6 Conclusions

Biosurfactants are one of the most important microbial products with a large number
of applications ranging from domestic, pharmaceutical, cosmetics and medical up to
industrial level due to their easy and cost-effective production process. Besides, their
environment-friendly nature gives it an additionally added value. A wide range of
microorganisms are reported for their ability to produce biosurfactants with desired
properties for further exploitation. Even though they have been reported for a wide
range of medical applications such as anti-adhesive agents for coating prosthetic
apparatus meant for internal use and drug delivery agents, they are very preliminary
to be exploited commercially. Till now they may be most widely used for the
purpose of MEOR and bioremediation studies as compared to their other possible
applications. Hence extensive research is required in this field to explore its potential
for commercial exploitation.
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Biodegradation of Hydrophobic Polycyclic
Aromatic Hydrocarbons 6
Daniel Chikere Ali and Zhilong Wang

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are hydrophobic, toxic, and carcinogenic
compounds which comprise of high molecular weight (HMW) and low molecular
weight (LMW) compounds and are classified based on different aromatic rings
present. PAHs have been reported on its negative implications by the US Center for
Children’s Environmental Health (CCEH) on consistent exposure to polluted envi-
ronment among the pregnant woman such as premature child delivery and delayed
in child development. In this review, biodegradation pathway of PAHs (naphtha-
lene, fluoranthene, and pyrene) and its proceeding enzymes involved for effective
degradation of PAHs are briefly discussed. However, the biodegradation efficiency
is limited because the compounds are highly lipophilic and therefore very insoluble
in an aqueous solution. The production of biosurfactants by microorganisms and its
contribution to ongoing degradation of PAHs are properly discussed.

Keywords

Biodegradation · Polycyclic aromatic hydrocarbons · Hydrophobic compound ·
Biosurfactants · Pseudomonas species

6.1 Introduction

PAHs are heteroaromatic hydrocarbons with carbon and hydrocarbon atoms. PAHs
can be substituted by sulfur, oxygen, and nitrogen (Kafilzadeh 2015; Abdel-Shafy
and Mansour 2016). They are among the complex mixture of potentially ranging to
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hundreds of different chemicals including saturated, unsaturated, and aromatic
groups (Wang et al. 2007). PAHs enventually accumulate in large quantity in the
soil and may be released into the atmosphere following the anthropogenic activities,
for example, combustion of fossil fuels (Bamforth and Singleton 2005; Dean-Ross
et al. 2002), volcano eruptions, wild fires, and erosions of ancient sediment (Boada
et al. 2015; Sousa et al. 2017). The release of these organic contaminants into
freshwater remains a big health concern across the globe (Reizer et al. 2019; Wu
et al. 2018), because they are toxic and carcinogenic compounds that occur in the
environment. These compounds are chemically stable and poorly degradable. Once
ingested, the compounds and their metabolites have the capacity to form DNA
adduct and induce mutations which can cause cancer. The carcinogenic
characteristics of PAH is a big health-related problem (Boada et al. 2015; Kafilzadeh
2015; Abramsson-Zetterberg and Maurer 2015; Seo et al. 2009).

Presently, fluorene, anthracene, acenaphthene, naphthalene, chrysene, benzo[b]
fluoranthene, pyrene, benzo[k]fluoranthene, acenaphthylene, benzo[ghi]perylene,
dibenzo[a,h]anthracene, indeno[1,2,3-cd]pyrene, benzo[a]pyrene, phenanthrene,
benzo[a]anthracene, and benzo[k]fluoranthene (Wang et al. 2007) had been
recognized among the 16 priority pollutants which are regarded as a threat to
human life by the US Environmental Protection Agency (US EPA) (Zhuo et al.
2017; Seo et al. 2009; Arun et al. 2011). Benzo[α]pyrene as a member of PAHs is
believed to undergo metabolism and therefore referred as carcinogenic, teratogenic,
and mutagenic (Guo et al. 2019; Jelena et al. 2015; Lily et al. 2009). In this regard,
the World Health Organization (WHO) has warned that continuous exposure to air
pollutants associated with PAHs has caused about seven million deaths, constituting
high environmental risk to human health across the globe (Sosa et al. 2017).
According to WHO in 2006, it was estimated that environmental pollution (air)
associated with PAHs represents 23% to 24% of the world’s morbidity/mortality rate
(Montaño-Soto et al. 2014).

PAH’s chemical and physical features are basically varying with the number of
rings and their molecular weight which show that its chemical reactivity, volatility,
and aqueous solubility decrease with an increase in molecular weight and thus
contribute to their distribution, transportation, and eco-biological effects (Seo et al.
2009). PAHs are made up of high molecular weight (HMW) and low molecular
weight (LMW) compounds, and they are classified based on different aromatic rings
present. PAHs that contain 4 to 6 aromatic rings are HMW, and their degradability is
less with native microbes, whereas PAHs that contain 2–4 aromatic rings are called
LMW and are less carcinogenic when compared to HMW (Nwaichi and Ntorgbo
2016). Those having five rings “benzo(α)anthracene, anthracene, and fluoranthene”
involve consortia in the soil and are effectively degraded. The ability to metabolize
two or more organic substrates at the same time with respect to their concentration
within suitable substrate level and bioavailable carbons contributes to biodegradable
efficiency (Toräng 2004). In this review, the toxic effect of PAHs, the PAH
pathways, and the use of biosurfactants produced by bacteria for application in
environmental degradations are exclusively reviewed.
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6.2 Health Related to PAHs

6.2.1 Consequences of Consistent of PAH Exposure by Human

PAHs can easily be absorbed from the gastrointestinal tract of a mammal because
they are highly lipid soluble with a devastating effect in bone marrow cells, e.g.,
non-Hodgkin lymphoma, leukemia, and multiple myeloma (Kafilzadeh 2015;
Montaño-Soto et al. 2014). Therefore, consistent exposure to high levels of PAH
pollutant conglomeration possesses several dangers to human health condition
including the eye, vomiting, irritation, diarrhea, and nausea. Nowadays, an increased
health risk of skin, bladder, gastrointestinal, and lung cancer among worker prior to
exposure to PAHs has become a public health concern. Naphthalene is among the
PAHs that causes skin irritants, whereas anthracene and benzo[α]pyrene causes
allergy to the skin in both animal and human (Rand and Petrocelli 1985).

According to epidemiological evaluation, there is a clear relationship between
PAHs associated with human lung and bladder cancer on exposure to the organic
compound at the workplace. Meanwhile, the relationship between PAH and cancer
is very crucial for determining occupational and environmental standards. Exposure
to PAH at the workplace is considered to be predominantly causing lung or bladder
cancer. The workplaces (sources) are rubber industries, through steel works and
diesel exhaust (Guo et al. 2019; Armstrong et al. 2004). And occupational exposure
in these types of industries encounters negative impact of PAH via inhalation and
has been considered a huge health threat such as smoking cigarettes from open
fireplaces because tobacco contains benzo[α]pyrene suspected as human carcinogen
(Kafilzadeh 2015; Guo et al. 2019).

The US Center for Children’s Environmental Health (CCEH) has warned that
pregnant woman consistently exposed to environment polluted with PAHmay likely
experience complication/advert effect in birth such as premature delivery or delayed
child development and low birth weight. Benzo[a]pyrene when gets in contact with a
pregnant woman could cause congenital disorder. Prenatal exposure to PAH causes
low intelligence quotient (IQ) during the age of three (3) and an increased behavioral
problem at six (6) to eight (8) years of childhood (Kim et al. 2013).

6.2.2 Problems Associated with PAHs Via Cytochrome P450

Human population and its activities affect freshwater ecosystem, thereby posing
health threats to the society. The health threats are due to the adverse impacts on
aquatic organisms carried by human population or activities with some organic and
trace compounds. Organisms living in PAH-contaminated environments have enor-
mous potentials to alter their metabolism and their cellular components (Balcıoğlu
2016). The role of microsomal cytochrome system (cytochrome P450 and flavopro-
tein monooxygenases) has been established in invertebrates and fish which are
familiar with mammalian systems. It further shown that cytochrome P450 is induced
by chemical substrates in fish and mammals, though invertebrates possess lower rate
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of PAH metabolism than fish. Studies reveal that after treating hepatic microsomes
of fish with aromatic hydrocarbon enhance the catalytic activities with selected
substrates. The induction of cytochrome P450 in fish increases the disposition of
hydrocarbon but also is capable of enhancing the formation of PAH’s derivatives
(Stegeman and Lech 1991; Gagnaire et al. 2010). The formation of stable DNA
adducts by PAHs and their derivatives has been reported (Luch and Baird 2010), and
this is because PAH derivatives are metabolized in the living organism leading to an
oxidatively induced DNA damage (Michel and Vincent-Hubert 2015). Additionally,
it is also reported that these oxygen species known as hydroxyl radical (OH�) may be
activated via inflammation reactions enhancing nitric oxide production in the process
(Cadet et al. 2012). The generation of nitric oxide through OH� enhances inter- and
intracellular signaling function which in turn can modify cellular biomolecules and
other accumulation associated with several diseases (Evans et al. 2004). The ability
of invertebrates to metabolize PAHs via the activities of cytochrome P450-
dependent oxidases varies. The reaction of OH� causes biological damage by
inducing significant molecules such as DNA, protein, and lipids which can lead to
genetic inflammation, instability, cell death, apoptosis, and angiogenesis. It can
result to mutation and a development leading to cancer and even death, if not
repaired (Park et al. 2005; Capó et al. 2015). Furthermore, the oxidatively induced
DNA damage can undergo repair in living cell via different mechanisms involved in
several DNA repair proteins (Dizdaroglu et al. 2015; Von 2006; Dizdaroglu and
Jaruga 2012) (Fig. 6.1), though the DNA damage repair using deletion in the Atp7b
gene present in some animals as a promising tool in studying the effect of oxidatively
induced DNA damage in the pathogenesis of transition metal-induced hepatic
Wilson’s diseases has been established (Evans et al. 2004; Dizdaroglu et al. 2015;
Wang et al. 2012; Loeb 2011; Friedberg Errol et al. 2006). DNA oxidatively
generated damage enhances a process leading to cancer as a result of mutagenesis
(Cadet et al. 2012; Dizdaroglu and Jaruga 2012).

Fig. 6.1 Oxidatively induced DNA damage via cytochrome P450
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6.3 Biodegradation of PAHs

6.3.1 Challenges of Limited Aqueous Solubility in Water

Most PAHs exist as hybrids enclosed with different structural components, e.g.,
benzo[α]pyrene (BαP). When there is an increase in the size of PAH’s molecule, it
will enhance and increase PAH’s hydrophobicity and electrochemical stability.
Thus, hydrophobicity and molecule’s stability of PAHs are the two primary factors
that determine whether HMW PAHs are capable of persisting in the environment
(Kanaly and Harayama 2000). Some basic characters of PAHs with HMW and
LMW are shown in Table 6.1. PAHs are found in a wide number of range of
molecular weight especially in vegetable oil which most of them are alkylated
compounds (Hossain and Salehuddin 2012). The solubility of PAHs in water
decreases with an increase in molecular weight which enables PAHs to settle out
of the water and accumulate in the lowest sediment. This implies that the PAH
concentration is high in the sediments of the polluted environment such as aquatic
organisms (Kafilzadeh 2015). The high molecular weight and low water solubility of
PAH have an impact in lowering the bioavailability, and this causes resistance to
microbial degradation (Bhattacharya et al. 2014). The bioavailability of a compound
determines the rate of mass transfer and soil biota intrinsic activities of a particle
compound such as PAHs (Snežana 2013). In addition, the high resonance energies of
HMW PAHs make them recalcitrant to degradation because of the dense cloud of
pi-electrons surrounding the aromatic rings (Ukiwe et al. 2013). LMW PAHs, such

Table 6.1 Characters of PAHs with HMW and LMW

No. HMW PAH LMW PAH Reference

1 It contains 4 to
6 aromatic rings

It contains 2–4 aromatic
ring

Abdel-Shafy and Mansour
(2016), Soberón-Chávez and
Maier (2011), Uzoigwe et al.
(1999) and Rosenberg and
Ron (1999)

2 It originated from
pyrolytic PAHs

Occurs from petrogenic
PAH

Kafilzadeh (2015)

3 Degradation of benzo[b]
fluoranthene and benzo
[a]pyrene is resistant to
bacteria

Phenanthrene,
naphthalene, and
fluoranthene are degraded
by the individual strains

Daugulis and McCracken
(2003) and Cui et al. (2011)

4 They are more
carcinogenic

They are less carcinogenic Nwaichi and Ntorgbo (2016),
Soberón-Chávez and Maier
(2011), Uzoigwe et al. (1999)
and Rosenberg and Ron
(1999)

5 Mineralization is higher
in HMW PAH-degrading
bacteria

Mineralization is lower in
LMW PAH-degrading
bacteria

Raquel et al. (2013)

6 They are less susceptible
to biodegradation

They are more susceptible
to biodegradation

Soberón-Chávez and Maier
(2011)
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as phenanthrene, naphthalene, and fluoranthene biodegradability decrease, are deter-
mined by the number of rings (Daugulis and McCracken 2003). Generally, LMW is
more volatile and soluble in water, and they are widely found in all environment, and
it possibly helps to detect PAH-contaminated environment (Ghosal et al. 2016a).
High melting and boiling point, low vapor pressure, very low aqueous solubility, and
resistance to oxidation and reduction are the crucial features of HMW PAHs (Boada
et al. 2015). Benzene is an example of PAHs with high vapor pressure, but the
viability of vapor pressure in different PAH compound causes the distribution of
different concentration in the vapor by individual PAHs (Kafilzadeh 2015). There is
no doubt that when the molecular weight of PAHs is high, it may likely absorb more
to the soil organic matter (Ukiwe et al. 2013).

Interestingly, the effectiveness of PAH bioremediation is limited due to their
failure to effectively remove HMW PAHs and PAH resistance to microbial degra-
dation as a result of its hydrophobic features (Potin et al. 2004). Several evidence
has emerged that the microbial consortium is more effective in the degradation of
PAHs with 4 to 5 rings occurring at faster rate (Daugulis and McCracken 2003),
whereas PAHs that contain 2–3 rings are degraded at slow rate under anaerobically
(Vaidya et al. 2017). PAHs are stable when they are absorbed into sediments
because their non-pore structures can limit its dissolution in water. LMW PAHs
are not completely insoluble, although small amounts of PAHs are capable of
dissolving, and they become induced in the pore water. An increase in PAH
concentration above aqueous solubility is enhanced by the presence of pore water
organic colloids. This is because PAHs will be water-ice onto the organic colloids
and can be easily transported via pore spaces of the sediment, thereby encouraging
an increase in mobility and bioavailability of PAHs in the sediments (Kafilzadeh
2015). An increase in molecular weight enhances an increase in PAH’s carcinoge-
nicity and at same time acute toxicity reduction (Kim et al. 2013). Additionally, the
proportion of LMW PAHs to HMW determines PAH’s origin (Nwaichi and Ntorgbo
2016).

6.3.2 Biodegradation Pathway of PAHs

Biodegradation has long been applied to address contaminated environment with
PAHs because of its abilities to treat different types of pollutant, low cost of
operation, and no secondary by-product (toxic product) (Vaidya et al. 2018; Ghosal
et al. 2016b). Bacteria are capable of using many toxic hydrocarbons in pollutant
environment as a potential substrate for their removal (Heipieper et al. 2010).
Degradation can be induced when the mechanisms are able to facilitate the proper
use of waste disposal strategies (Wu et al. 2018; Singh and Sharma 2008). Normally,
the nature of microbe and chemical structure of the chemical compounds are the two
basic factors which determine the extent PAHs can be degraded (Haristash and
Kaushik 2009).
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6.3.2.1 Naphthalene
Naphthalene is a member of PAHwhich occurs when two aromatic rings can share two
carbon atoms (Tomás-Gallardo et al. 2014) and remain the simplest PAHs which are
generally used as a vibrant instrument to study the enzymatic aromatic degradation
pathways (Selifonov et al. 1996; Jerina et al. 1976; Garrido-Sanz et al. 2019). Albeit
naphthalene possesses a relatively low aqueous solubility (32 mg/L), it is very hazard-
ous. Water has become the main target in the environmental contamination issues
because 15% of contaminants such as naphthalene is discharged into the environments
(water) where most aquatic animal dwell thereby posing health challenges.

The ration of naphthalene concentration in wastewater from the radioisotope
manufacturing facilities is 1.65 mg/L, 6–220 ng/L in municipal wastewater, dyeing
and textile wastewater 0.1–2.1 mg/L, and naphthalene sulfonic acid 285 mg/L in
effluents (Karimi et al. 2015). Naphthalene degradation via metabolic diversities by
Mycobacterium sp., Pseudomonas putida, Rhodococcus opacus, Bacillus pumilus,
and Nocardia otitidiscaviarum has been established by different researchers. Pseu-
domonas aeruginosa is the most studied isolate from soil, plants, and water (Karimi
et al. 2015; Akhtar and Husain 2006). They are gram-negative bacteria which are
capable of causing infections such as cystic fibrosis in human (Soberón-Chávez et al.
2005). The bacteria are known with its ability to utilize hydrocarbons as sources of
carbon and energy. The ability of the Pseudomonas sp. to produce biosurfactant
enhances the effective uptake of hydrophobic compounds (Calfee et al. 2005) to
degrade naphthalene which basically depends on difference in temperature range.
The study revealed that at pH 8, Pseudomonas sp. degraded 96% of naphthalene,
whereas at pH 7, 90% of naphthalene was degraded after 3 days (Karimi et al. 2015).

The degradation of naphthalene by bacteria is effective via catabolic enzymes
encoded by the plasmid Pseudomonas sp. (Seo et al. 2009). The production of
1,2-dihydroxynaphthalenes is produced through the dehalogenation of 1,2-dihydro-
1,2-dihydroxynaphthalenes by Escherichia coli recombinant strain. The Escherichia
coli recombinant strain consists of dihydrodiol naphthalene dehydrogenase gene
cloned from Pseudomonas fluorescens N3 (Cavallotti et al. 1999). The production of
1,2-dihydroxynaphthalene by pseudomonads is known as an intermediate in the
metabolism of naphthalene which is oxidized by oxygen in a reaction catalyzed by
1,2-dihydroxynaphthalene oxygenase. 1,2-Dihydroxynaphthalene have been
differentiated from catechol-2,3-dioxygenase (C230) by virtue of the greater stability
at 50 �C and the differences in control of induction (Patel and Barnsley 1980).
Naphthalene metabolic pathway via 1,2-dihydroxynaphthalene is cleaved by a
dioxygenase to an unstable ring cleavage product by Pseudomonas species and can
degrade naphthalene (Eaton and Chapman 1992).

Normally, naphthalene is degraded by the hydroxylation of phenanthrene, anthra-
cene, and fluorene and monooxygenation of acenaphthene (Resnick 1996; Ferraro
et al. 2017). The degradation pathway of naphthalene remains the base for cell-to-
cell communication via specific regulatory system, enzymes and transporters (elec-
tron) (Díaz et al. 2012). Subsequently, the oxidation of naphthalene and other PAHs
reactions is further classified as central aromatic degradation pathways popularly
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called catechol and as an intermediate depending on the specific PAHs (Selifonov
et al. 1996), before ring cleavage occurs (Jõesaar et al. 2017).

The microbial (Pseudomonas) degradation of naphthalene (Yen et al. 1988) via
the metabolic steps usually proceeded via hydroxylation of one of the aromatic rings
to produce 1,2-dihydroxynaphthalene. 1,2-digydroxynaphtalene later undergo fur-
ther reaction to metabolized to salicylic acid, and further metabolized through
catechol cleaved either meta- or ortho-rings shown in Fig. 6.2 (Phale et al. 2019).
The resulting enzyme 1,2-dihydroxynaphthalene is regarded as a toxic organic
solvent with aromatic and alicyclic ring that shares two carbon atoms (Tomás-
Gallardo et al. 2009). Naphthalene degradation with bacteria nah gene is arranged
in two operons in plasmid pNAH7, where one operon codes for enzymes and can
covert naphthalene to salicylate (Tomás-Gallardo et al. 2014; Phale et al. 2019),
based on the possibility of phenol and naphthalene to induce salicylate by Pseudo-
monas sp. which further converted to C230. This showed that C230 expression with
phenol- and naphthalene-induced salicylate by Pseudomonas. Therefore, these
enzymes involved in the process can convert salicylate over catechol to pyruvate
and acetyl-coA (Jõesaar et al. 2017; Eaton and Chapman 1992).

6.3.2.2 Pyrene
Pyrene is a member of HMW PAHs and remains one of the compounds with
simplest four-fused benzene ring. They are among the most abundant PAHs in the
environment that occurred as a result of pyrolytic processes (Kafilzadeh 2015).
Pyrene consists of high water solubility of 0.4 mg per ring structure (benzo[a]
pyrene) with 1.7 � 10�3 mg/L of water solubility (Husain 2008a). Pyrene-
contaminated environment remains a public health concern, and its toxicity to
microinvertebrate Gammarus pulex capable of transmitting into quinone metabolites
termed as the agent of mutagenic and toxicity to organisms in their respective

Fig. 6.2 The degradation pathway of naphthalene
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habitant (Kim et al. 2007; Ma et al. 2013). The microbial degradation of pyrene with
more than three rings encounter challenges (Ghosh et al. 2014), though bacteria
remain one of the fastest degrading pyrene mechanisms (Shusheng et al. 2014) to
effectively study the biodegradation of HMW PAHs because it has similar structure
with other carcinogenic PAHs (Kim et al. 2007).

The microbial degradation of pyrene using metabolized substrate as sole source
of carbon and energy for the degradation of pyrene has been established (Juhasz
et al. 1997). The isolation of Pseudomonas sp. for the degradation of pyrene has been
successfully done by several researchers, but the effectiveness of its degradation of
pyrene remains a challenge because it is not a very effective degrader of pyrene.
Most work currently relied on using the six consortia such as Pseudomonas and
Burkholderia which can degrade various PAHs (Vaidya et al. 2017). The utilization
of pyrene as sole carbon source by microbes depends on their ability to produce its
metabolite (Xing-Fang et al. 1996). Pseudomonas is the promising bacteria genus for
the catabolism of aromatic compounds (Nogales et al. 2017).

The enzyme degradation pathway of pyrene was determined using an environ-
mental microbial isolate identified as Pseudomonas sp. grown in mineral medium
containing pyrene (14.7 mg/L/day) and was able to degrade 82.38% of the pyrene in
the medium used (Husain 2008b). This is because PAH degradation bacteria via the
action of intracellular dioxygenase enable PAHs to be taken up by the cells and
therefore enhance effective degradation (Obayori et al. 2008).

Pyrene degradation proceeds with oxidization via the monooxygenases and
dioxygenases, thereby encouraging the cleavage of the oxidized ring. The pyrene
can also be oxidized or mineralized by various types of microbes through
oxygenases into the carbons on the PAHs, enhancing the C-C covalent bonds to
cleave, and hydroxyl- and carboxyl-substituted moieties will be produced (Husain
2008a; Priyangshu et al. 2004; Mishra and Singh 2014). The metabolite produced by
Pseudomonas aeruginosawill be converted to dihydroxypyrene, thereby causing the
initial ring oxidation or cleavage at C-4, C-5 (K -region), C-1, and C-2 positions, and
this can form pyrene 4,5-dihydrodiol via ortho-cleavage due to ring fission leading to
the production of cis-3,4-phenanthrene dihydrodiol-4-carboxyclic acid,
4-phenanthroic acid, and phenanthrene (Ghosh et al. 2014; Obayori et al. 2008).

The dioxygenase present is relatively high since the dihydroxylation is a nonspecific
step for metabolic pathways and the dioxygenase involved may be cleaved via ortho or
meta of the aromatic nucleus to produce catechol 1,2-dioxygenase as illustrated in
Fig. 6.3 (Cenci et al. 1999; Sugimoto et al. 1999),. The structural gene pcaH of
protocatechuate 3,4-dioxygenase was considered having the ability to dissimilate aro-
matic growth substrate via the β-ketoadipate pathway (Gerischer et al. 1995; Yamanashi
et al. 2015). The decarboxylation of 4-phenanthroic acid can produce monoaromatic and
phthalic acid via cleavage. Then, the phthalic acid was further converted to an interme-
diate called pyruvate which enters the TCA cycle, and once the pyruvate enters the TCA,
it will be converted to carbon dioxide and water (Obayori et al. 2008).

6.3.2.3 Fluoranthene
Fluoranthene is a very toxic PAH mainly found in many factories especially wood
preservation plants (Herwijnen et al. 2003). Fluoranthene is made up of naphthalene
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benzene rings usually condensed with a five-member ring, widespread in the envi-
ronment, and was referred as genotoxic, mutagenic, and carcinogenic (Samanta et al.
2002) especially benzo[α]pyrene. Report showed that consistent fluoranthene expo-
sure by laboratory animal negatively affects human such as decreased body weight,
decreased blood chemistry tests, and increased liver weight. Fluoranthene can cause
neurobehavioral toxicity, lung airway anion transport defects, and suppression of the
immune system (Saunders 2003). They occur as a result of incomplete combustion
of fossil fuels or as a result of pyrolysis of organic material with high temperature.
Human exposure through inhalation of particulate due to tobacco smoking, air, or
ingestion from water or food contamination remains a health threat. They are
commonly identified in complex mixtures of PAHs in soil surface, water, and
sediments (Yu 2002; Bisht et al. 2015).

The metabolic pathways by isolated strains of bacteria’s ability to metabolize
individual PAHs have been fully established by various researchers (Dean-Ross
et al. 2002). This is because the isolated bacteria strain can utilize fluoranthene as
carbon and energy source as was first described by Weissenfels (Weissenfels et al.
1990), whereas fluoranthene-degrading pathway was discovered in Pseudomonas
sp. by Grifoll (Rehmann et al. 2001; Tersagh et al. 2016). Pseudomonas aeruginosa
on the other hand can cause different types of diseases which may be harmful to
human. Currently, P. aeruginosa has become promising bacteria used in degradation
of PAH because it can easily decompose hydrocarbons and lives in oil field (Patel
et al. 2014; Yan and Wu 2017).

Bacteria produces enzymes for degradation of PAH compound reported to
possess a broad substrate range which is one of the desirable features of bacteria
degrading PAHs (Juhasz et al. 1997). The microbial study of removal of
PAH-contaminated environment through the action of enzymes remains a promising
reward to the current focus on biodegradation of various PAHs. Interestingly, the
enzymes produced by participating bacteria are referred as catabolic enzymes
involving different mechanisms with members of PAHs. This shows that the degra-
dation of PAH is usually enhanced and initiated via hydroxylation, especially
deoxygenation in which oxygenase can be catalyzed (Simarro et al. 2013; Kweon
et al. 2011; Somtrakoon et al. 2008).

Furthermore, fluoranthene metabolism also initiates deoxygenation of the
fluoranthene molecule (Rehmann et al. 2001), which further produces 1,2- and
2, 3-dioxydrofluoranthene. The production of an intermediate 9-fluorenone-1-car-
boxylic acid by 1,2- and 2, 3-dioxydrofluoranthene cleavage through meta- or ortho-
pathway was established (Somtrakoon et al. 2008), in which upon decarboxylation
yields 9-hydroxyfuorene (Reddy et al. 2018). Thus, the production of 9-fluorenone-
1-carboxylic acid further undergoes angular deoxygenation leading to the production
of benzene-1,2,3-tricarboxylic acid in Fig. 6.4 (Dean-Ross et al. 2002; López et al.
2006). The benzene-1,2,3-tricarboxylic acid produced also showed that the degrada-
tion of 9-fluorenone1-carboxylic acid occurred via angular deoxygenation. Further
decarboxylation to phthalate and degradation of phthalate by benzene-1,2,3-tricar-
boxylic enhance central metabolism (López et al. 2006).
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6.4 Biosurfactants

6.4.1 Biosurfactants

6.4.1.1 Glycolipid
Glycolipids are active compounds with the presence of carbohydrate moiety coupled
to fatty acids. Glycolipid biosurfactant remains the most studied microbial surfactant
and is the best known biosurfactant including mannosylerythritol lipids,
sophorolipids, rhamnolipids, and trehalolipids. Glycolipids are also made up of
mono- or disaccharides which are incorporated with long-chain aliphatic acids and
sometimes hydroxy aliphatic acids as seen in Fig. 6.5 (Sen et al. 2017). Glycolipids
are made up of carbohydrate moiety referred as microbial surface-active compounds
(Mnif and Ghribi 2016; Irorere et al. 2017).

Glycolipid biosurfactants have a strong fungicidal activity (Morita et al. 2013),
and they are used in cosmetic industries because of its amazing moisturizing and
liquid-crystal-forming features (Yamamoto et al. 2012). They are well known by
their ability to lower the surface and interfacial tension (Mnif and Ghribi 2016;
Irorere et al. 2017). It is being classified as low molecular weight biosurfactant
produced by many companies for commercial utilization (Irorere et al. 2017) and has
been regarded as promising biosurfactant with respect to its adaptability such as low
toxicity, biodegradability, and chemical stability (Paulino et al. 2016; Imura et al.
2014). They are very useful in their application in biodegradation, oil recovery, food,
and pharmaceutical industries (Sen et al. 2017). Glycolipids of microbial origin are
ranging from viruses to human cells such as antiparasitic, anticancer, and immuno-
modulatory activities and antimicrobial (Abdel-Mawgoud and Stephanopoulos
2017).

Fig. 6.4 The degradation pathway of fluoranthene
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Rhamnolipids
Rhamnolipid is one of the most popular glycolipids (Mnif and Ghribi 2016) and is
made up of one or two (L )-rhamnose molecules with a glycosidic linkage. One or
two L-rhamnose molecules are hydrophobic group which contains one or two
β-hydroxyl fatty acids. Microorganisms can produce different types of rhamnolipid
congeners during fermentation. Rhamnolipid congeners vary in chain length and are
different in numbers of rhamnose molecules and unsaturation for the fatty acid chain
potential (Chong and Li 2017).

Rhamnolipid consists of rhamnose units which are composed of β-glycosidic
bond that can assist rhamnose units to link to 3-hydroxyl fatty unit/units. O-Glyco-
sidic bonds help rhamnose units to link to each other. Thus, an ester bond also allows

Fig. 6.5 The molecular structure of glycolipids. (a) rhamnolipids; (b) cellobiose lipids; (c)
sophorolipids; (d) trehalolipids; (e) mannosylerythritol lipids
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3-hydroxyl fatty acids to link to each other (Reddy et al. 2018; Twigg et al. 2018).
Rhamnolipid is a viscous sticky oily yellowish-brown liquid with fruity odor
produced by Pseudomonas aeruginosa (Irorere et al. 2017). The rhamnolipid pro-
duction by different microbes mainly in area such as soil/water samples or industrial
facilities (Irorere et al. 2017), though P. aeruginosa has been confirmed as the best-
known representative of organisms that produce rhamnolipids (Kaczorek et al.
2018).

Rhamnolipids can be used for degradation of hydrocarbon in a site contaminated
with the compound or in the petroleum industry (Irorere et al. 2017; Müller et al.
2012), and that is why they are good candidate for environmental application (Shao
et al. 2017). Zhong investigated the effect of low concentration mono-rhamnolipid
using Pseudomonas aeruginosa ATCC 9027 which was properly prepared and
grown on glucose or hexadecane to glass beads. It comprises of hydrophobic or
hydrophilic surface and was conducted via batch adsorption experiments. The result
obtained reveals that there is a hydrophobic interaction on the bacteria cells during
adsorption to the surfaces. This results to the reduction of bacterial adsorption with
much implication on cell surface hydrophobicity (Zhong et al. 2015). It confirms that
it enhances an effective degradation of hydrophobic compounds which begins with
solubilization and alters cell affinity to hydrophobic compounds by microorganism
(Zeng et al. 2018). Application of rhamnolipid biosurfactant such as degradation of
hydrophobic compounds by means of solubilization, water treatment, and soil and
waste treatment is referred as promising approach on environmental freedom
(Catherine 2013), although there are challenges with rhamnolipids as they negatively
play a role in the biodegradation of relatively volatile hydrocarbons such as n-
alkanes with short chains (Chen et al. 2013). Rhamnolipid surfactants are capable
of reducing from 72 to 28 mN/m of the surface tension of water and 43 to <1 mN/m
of interfacial tension of water-oil (W/O) (Zhou et al. 2019). It was referred as
promising target to the environmental application because it can enhance the
pollutants uptake by increasing the bacterial membrane to targeted compounds/
candidate that aids bioremediation processes (Kaczorek et al. 2018). It is also used
for agricultural control of plant diseases and protecting stored products (Mnif and
Ghribi 2016).

Cellobiose Lipids
Cellobiose lipids (CLs) are biosurfactants and a member of glycolipid which is made
up of cellobiose moiety comprising hydrophilic parts and acetyl groups and fatty
acids referred as hydrophobic part (Morita et al. 2013). CLs are produced extracel-
lularly by yeast and mycelia fungi. The CLs with a cellobiose moiety can be used is
fungicidal application, e.g., yeast which can help to preserve food from fungal attack
(Morital et al. 2011). The cellobiose lipids produced by Cryptococcus humicola have
a high surface activity (López et al. 2006).

They are surface-active compounds owing to its ability to lower the tension of
water solutions. Its specific function depends on pH and temperature stability
making the cellobiose promising compounds in the application of agricultural use
such as fumigation. And that is why the study of cellobiose lipids by biochemists and
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genetics and its ecological role are relevant (Morital et al. 2011; Trilisenko et al.
2012). The ability of microorganism to degrade cellobiose via cellulolytic
biocatalysts helps in bioprocessing (Guo et al. 2015).

Sophorolipids
Sophorolipids (SLPs) are a family of glycolipid biosurfactant which are made up of
disaccharide sophorose (20-O-β-D-glucopyranosyl-β-glycoside) and have become the
most promising glycolipid biosurfactant. SLPs have various characteristics that
make them superior to synthetic surfactants such as temperature, salinity, and
stability in the wide range of pH (Oliveira et al. 2015). Candida bombicola produces
SLPs which have become the most studied SLPs producing yeast sophorolipids
(Oliveira et al. 2015).

SLPs can also be used as biosurfactants instead of using classical chemistry-
derived surfactants in food, petroleum, cleanings, and cosmetic industries. Reports
showed that SLPs exhibit medical features including anticancer, anti-inflammatory,
anti-HIV, and antiviral activities which are useful in medical application (Ivancic
et al. 2018). Currently, SLPs are the first microbiological biosurfactants on the
market (Müller et al. 2012). SLP biosurfactant can be applied for biofuel, drug
delivery, detergent, and cleaners (Nguyen and Sabatini 2011). Sophorolipid
biosurfactants are biodegradable and less toxic, and they have been approved by
the FDA (Vasudevan and Prabhune 2018).

Trehalolipids
Trehalolipids occur naturally and consist of three isomers (α, α-; α, β-; and β, β-). It is
also called α-D-glucopyranosyl-(1! 1)-α-D-glucopyranoside (Reis et al. 2018). The
structures of trehalose-containing glycolipids are made of hydrophobic moiety with
long complex fatty acid (Kuyukina and Ivshina 2019). Trehalolipids are
characterized with high surfactant activity. The chemical diversity of trehalolipids
is vast which includes monomycolates, trehalose dimycolates, and trimycolates.
Others are nonionic acylated and anionic trehalose tetraesters and succinoyl
trehalolipids (White et al. 2013).

Trehalolipids are produced by various organisms, and the trehalolipids produced
contain different number of atoms, size, structural pattern of mycolic acid, and
degree of unsaturation (Desai and Banat 1997). Rhodococcus sp. is the most notable
bacteria that produce trehalolipid biosurfactant using hydrophobic substrates (sun-
flower oil). They are excellent emulsifying compounds and can be used in the
microbial application for oil recovery and degradation of oil-contaminated environ-
ment (Sen et al. 2017).

Mannosylerythritol Lipid
Mannosylerythritol lipids (MELs) are a glycolipid class of biosurfactants. MELs are
active compound of glycolipid biosurfactant with excellent interfacial biochemical
properties (Souayeh et al. 2014). Thus, MELs possess hydrophilic and hydrophobic
parts (Morita 2013).
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They are mainly produced byUstilago and Pseudozyma on n-alkanes. For the fact
that they are active surface compound, it can be applied in pharmaceutical, food, and
cosmetic industries due to their excellent surface activities and other peculiar
bioactivities (Yu et al. 2015). MELs are regarded as promising biosurfactants
because they are environmentally friendly and have structural diversity, mild pro-
duction versatile biochemical functions, and self-assembling properties with high
yield (Souayeh et al. 2014; Niu et al. 2019).

6.4.1.2 Lipopeptides
Lipopeptide is a low molecular weight (LMW) biosurfactant derived from amino
acids. Lipopeptide is obtained via the mixture of cyclic lipopeptides mainly from
hydroxy fatty acid chains and heptapeptides (Gudiña et al. 2013). Lipopeptides can
lower surface tension and are referred as an important bioactive compound (Baltz
2018; Kubicki et al. 2019). It is produced by various clades of microorganisms such
as the bacterial genera Lactobacillus, Bacillus, Pseudomonas, Streptomyces, and
Serratia (Kubicki et al. 2019; Park et al. 2019). Lipopeptide possesses antifungal
activity (Toral et al. 2018). Generally, lipopeptides are promising microbial
surfactants applied in the environment for oil recovery. Bacillus subtilis can produce
cyclic lipopeptide surfactin which can lower 72 to 27.9 mN/m of the surface tension
at 0.005% concentration (Arun et al. 2011; Souayeh et al. 2014).

6.4.1.3 Phospholipids
Phospholipids (PLs) are surfactants which play a vital function during cell growth in
plant and animal (Willem et al. 2015). They are amphiphilic molecules with surface-
active compounds made up of head called polar and lipophilic tail. Thus, amphi-
philic features of PL deemed it fit to be used as emulsifier, solubilizer, and wetting
agent (Jing et al. 2015). It can stablize emulsions due to its good emulsifying
features, though phospholipids enhance the hydrophilic and hydrophobic properties
due to their surface-active wetting features (Rui et al. 2013).

Bacteria and yeasts are organisms that can produce phospholipids mostly on
n-alkanes when isolated, and they are very useful in the application of various
industries such as food, pharmaceutical, and cosmetic industries (Vikbjerg et al.
2005). Meanwhile, they are also useful in the environmental application (Murínová
and Dercová 2014).

6.4.2 Polymeric Biosurfactants

Polymeric surfactants are macromolecules with hydrophilic and hydrophobic parts
in their structure. They are also called polymers with surfactant characteristics.
Polymeric microbial surfactant is produced by microorganisms with a combination
of many chemical types, and their chemical structures are exploited for commercial
purposes (Bustamante et al. 2012). The polymeric surfactants are high molecular
weight biosurfactants (Kapadia et al. 2013). They are environmentally friendly and
low toxicity, and its biodegradability can be controlled during extreme condition
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such as pH, temperature, and salinity (Almeida et al. 2016). Polysaccharide protein
consists of polysaccharide, generally produced from the surface coat of bacteria,
linked to protein carriers. Examples of polysaccharide protein complex are
lipopolysaccharides (Gautam and Tyagi 2006; Floris et al. 2018).
Lipopolysaccharides (LPS) are the primary component of the outer membrane of
Gram-negative bacteria; it is composed of high molecular weight component
associated with phospholipid and protein. LPS are useful in environmental applica-
tion (Zhang et al. 2016a: Saddler 1978).

Liposan, lipomannam, alasan, emulsan and mannoprotein are polysaccharide
protein complexes which are the most studied polymeric biosurfactants. Reports
reveal that emulsan consists of 80%(w/w) lipopolysaccharide and high molecular
weight exopolysaccharide 20% (w/w). Lipopolysaccharide is made up of fatty acid,
charge, and solution behavior, whereas exopolysaccharide is cationic in nature for
the formation of the emulsan complex by electrostatic binding mechanism. The
exopolysaccharide enhances emulsion stabilization (Pandey et al. 2015) and are
produced by Acinetobacter venetianus. Emulsan can be used as emulsifier for
hydrocarbons in water at 0.001% to 0.01% concentration. Emulsan possesses New-
tonian flow features and therefore undergoes conformational changes at W/O inter-
face. Thus, it can be applied in the bioremediation processes for oil removal. It can
also be used in the preparation of cosmetics. Emulsan helps to prevent bacteria from
adhering to buccal epithelial cells and has become a promising candidate for
cosmetic application such as toothpaste production (Saddler 1978; Mercaldi et al.
2008). Liposan can acts as emulsifier in the extracellular water-soluble, and can be
synthesized by Candida lipolytica. They are made up of carbohydrate (83%) and
protein (17%) which can be employed to different industries such as food, cosmetics
(Santos et al. 2016), and oil industries where it has many adverse processing
conditions (de Cássia et al. 2014). Mannoproteins are produced by Saccharomyces
cerevisiae; it is referred as having excellent emulsifier activity toward several oils,
organic solvents, and alkane.

6.5 Enhanced Biodegradation of PAHs by Biosurfactant

The existence of a hydrophobic organic compound in the soil has an impact on the
environmental-related problems (Cheng et al. 2018). PAHs are highly lipophilic and
soluble in organic solvent (Kafilzadeh 2015), and the low aqueous solubility of
PAHs decreases upon molecular weight increase enhancing accumulation in the
bottom sediments because of its ability to settle out of the water (Kafilzadeh 2015).
For the fact that PAHs are nonpolar in water, an increase in their molecular weight
decreases its hydrophobicity. Normally, PAHs bind to particles in the soil and are
absorbed. Therefore, the persistence of hydrophobicity of hydrocarbon in the
contaminated site (soil) affect the degradation potentials of the participating
microbes as it can lower water solubility thereby increasing their sorption to soil
particle thereby limiting their biodegradability (Barkay et al. 1999). There is an
overwhelming setback in biodegradation of PAHs because of their hydrophobicity
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coupled with low aqueous solubility of different PAHs (Kaczorek et al. 2018; Hou
et al. 2018).

6.5.1 Biodegradation in Micelles

It is very necessary to increase the apparent solubility of hydrophobic hydrocarbon
via addition of bioemulsifier alasan (surfactants) so that biodegradation will be
enhanced which can transfer PAHs to water and PAHs in micelles or emulsion for
microbial action (Kafilzadeh 2015; Barkay et al. 1999; Díaz et al. 2001). The
hydrophobic and hydrophilic nature of surfactant possesses a different degree of
hydrogen bonding and polarity (Olivera et al. 2008). Micelles could be initiated by
biosurfactant and emulsifiers, thereby enhancing biodegradation of solid or liquid
substances because they help to maintain direct cellular contact with several
compounds (Al-Turki et al. 2009). The biosurfactant released from microorganisms
is referred as detergent molecules. Detergent molecules like structure are composed
of hydrophilic head and lipophilic tail and have the ability to form spherical micelles
especially once the micelle concentration and compound are greater than surfactant
concentration (Reis et al. 2013). The hydrophobic and hydrophilic moiety features
can possibly lower surface tension and interfacial tension among molecules at the
surface and interface (Gautam and Tyagi 2006; Karlapudi et al. 2018) and are easily
biodegradable by microorganisms. The nature of their molecular weight determines
its ability to reduce interfacial surface tension such as low molecular weight, whereas
high molecular weights are stabilizing agents (Park et al. 2019; Santos et al. 2016). It
can be applied in many industries including food, pharmaceutical, and cosmetic
industries (Santos et al. 2016). They function with varying temperature, salinity, pH,
greater selectivity range (Zhang et al. 2016b), biodegradability, environmental
compatibility, and its ability to adopt to extreme temperature and low toxicity
(Saddler et al. 1979).

The use of surfactant to increase the bioavailability of poor carbon such as
hydrophobic compounds to allow free mass transfer to a contaminated soil so as to
lower the interfacial tension thereby enhancing an increase in mass transfer of the
contaminants (Norman et al. 2002; Szczepaniak et al. 2016). The surfactant-
mediated biodegradation is a process involved when PAHs in the soil are partitioned
into the hydrophobic core of surfactant micelle solubilization using surfactant at
concentration above critical micelle concentration (CMC) values. Thus, the quantity
and types of the surfactant, time, surfactant-soil interactions, and hydrophobicity of
surfactant determine the efficiency of degradation. Time plays a significant role
because the time at which hydrophobic compounds, e.g., PAHs, get in contact with
the soil is very important during the process of degradation (Szczepaniak et al.
2016).

Enhancing the biodegradation of hydrocarbons using surfactant via solubilization
aids hydrocarbon uptake by microorganisms. Biodegradation can be enhanced in
micellar solution increasing the solubility and bioavailability of substrate to bacteria
under the influence of surfactant which further increases the interfacial area.
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Importantly, the presence of surfactant enables the bacteria to get in contact at the
hydrocarbon-water interface. Also, the presence of surfactant can influence contact
between cells’ nonaqueous liquid phase and reduce diffusion path length between
the site of adsorption and site of microorganism uptake for cell adsorption to
hydrocarbon in soil particles. Thus, the effectiveness of the surfactant in enhancing
biodegradation of PAHs is specific interactions dependent between bacteria and
surfactant (Barkay et al. 1999). The biosurfactant-enhanced solubility of pollutants is
a good strategy for a potential application in biodegradation.

For the fact that low water solubility affects the hydrophobicity degradation of
PAHs, the addition of biosurfactant will enhance biodegradation, (Barkay et al.
1999) which can overcome the problems associated with PAH low aqueous solubil-
ity (Ukiwe et al. 2013). Application of biosurfactant in biodegradation enhances the
bioavailability of hydrophobic compounds. Meanwhile, the microbial growth also
increases the biosurfactant released into environment and also enhances bioavail-
ability of pollutants (Araújo et al. 2019; Borah and Yadav 2017). Finally, the effect
of degradation of hydrocarbon also depends on the growth factor and media
components involved (Ibrahim 2016). The production of biosurfactant enhances
the mechanism needed for biodegradation of water-immiscible pollutants (Schmid
et al. 1998).

6.5.2 Biosurfactant Acting as Bioemulsifier

An aqueous-organic solvent two-phase system usually an organic water-immiscible
solvent and an aqueous solution is used as a model for hydrophobic compound/
product synthesis (Oberbremer 1990). The transportation rate of the lipophilic
substrates from the organic phase to the cells is relatively and may affect the growth
in the systems. There are possible steps to improve this limitation by increasing the
volume fraction of the dispersed organic phase and also increasing the organic-
aqueous interfacial area using surfactants (Sifour et al. 2007). Biosurfactant is a
surface-active compound and can lower the surface and interfacial tension between
different phases such as liquid to liquid with a low CMC and can form stable
emulsions (Satpute 2010).

Bioemulsifiers are surface-active compounds with profound characteristics such
as biodegradability, foaming, biocompatibilities, nontoxicity, low concentrations,
pH, salinity, and temperatures (Alizadeh-Sani et al. 2018; Satpute et al. 2010). It is a
bioactive compound that currently draws much research interest because of its
function and structural diversity in the degradation of hydrocarbons. High emulsifi-
cation helps to facilitate the bioavailability of organic compound for faster hydro-
carbon degradation by the participating bacteria. The ability of the marine organism
to deliver bioemulsifiers can reduce overdependence on synthetic surfactant due to
their influence in the use of environmental biodegradation surface-active molecule
(Amodu et al. 2014).

Biosurfactant produced from Pseudomonas aeruginosa has the ability to emulsify
two liquid phases. The two liquid phases can be hydrocarbon, hydrocarbon mixtures,
and vegetable oil and capable of forming stable emulsions. The emulsification
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characteristics of rhamnolipid to hydrocarbons and vegetable oils occur simply via
lowering surface tension of the culture media (Satpute 2010). The surface-active
agent functions effectively by lowering the surface tension of the medium, thereby
enhancing the formation of two phases of emulsions and thus enhancing the bio-
availability of hydrophobic compounds (Suryanti et al. 2017). Biosurfactant such as
phospholipid and glycolipid can emulsify the hydrocarbon substrate via
synthetization, enhancing transport into the cell. For example, application of
biosurfactant can lower the surface tension of water and benzene used in the study
of the emulsification of biosurfactant by observing the emulsion stability which
suggests that biosurfactants are good emulsifiers. It also established that
biosurfactant emulsion is water in oil (W/O) emulsion (Uzoigwe et al. 2015). The
stability of emulsion decreases when the temperature is high, and it will affect the
features of oil, interfacial film, water, and solubility of surfactant in the oil and water
phases (Suryanti et al. 2017).

Bioemulsifiers are well known for its ability to emulsify liquids, thereby having
no reduction effect in surface/interfacial tension of their growth medium or between
different phases (Suryanti et al. 2017). Meanwhile, reduction effect on surface
tension reduction is very important because surface tension reduction should be
less than 35 mN/m even though many reports have recorded biosurfactant containing
high emulsification capacity of hydrophobic organic compounds where medium’s
surface tensions are above 35 mN/m. In addition, emulsion stability remains the
basic tool used in the environmental application of biosurfactants. Importantly, pH,
soil variation, salinity, and temperature are environmental factors that can lead to
de-emulsification. De-emulsification occurs as a result of stimulation and ionizations
of acid constituents of interfacial films (Satpute 2010; Suryanti et al. 2017).

6.6 Conclusions

PAHs are common causes of environmental pollution, and they have characteristic
features such as mutagenic, carcinogenic, genotoxic, and toxic. Occupational
exposures to benzo[α]pyrene through inhalation are dangerous to health. Thus, the
persistent exposures to PAHs contributed to an increased rate of cancer and other
related diseases to human. Generally, PAHs are classified into HMW and LMW,
which are based on the different aromatic rings present. HMW PAHs are less
degradable by native microbes, whereas LMW PAHs are less carcinogenic when
compared to HMW PAHs. Utilization of hydrocarbon (fluoranthene, pyrene, and
naphthalene) by microorganisms (Pseudomonas species) as their energy source via
enzymatic pathway is effective. Biosurfactants such as phospholipid and glycolipid
are apparently synthesized by the PAH-degraded microorganism to solubilize via
micelles or on other hand emulsify the hydrocarbon substrate enhancing its transport
into the cells. Meanwhile, the mass transport in emulsion is very essentials for the
movement of oil molecules from emulsion droplets to the surrounding aqueous
medium via surfactant.
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Surfactin: A Biosurfactant Against Breast
Cancer 7
Pimpi Sahu, Kumar Kritartha Kaushik, Tingli Lu, and Kai Dong

Abstract

Surfactin is a biosurfactant produced by different species of the genus Bacillus. It
poses anticancer activity against breast and other different cancers. Surfactin
suppresses cancerous growth by cell cycle arrest and programed cell death and
also captures metastasis. As a result of the fantastic impact, surfactin is widely
studied. Here the synthesis, structure, and properties of surfactin, along with its
effectiveness against breast cancer, are briefly discussed.

Keywords
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7.1 Introduction

Globally women have breast cancer, which is uncontrollable malice (Lukong 2017;
Torre et al. 2015). Because of the tremendous frequency of the disease, it is the
secondary conduit inference for the cost of life in ladies, and it is a distant imperative
to ratify vigorous remedial strategy. Breast cancer cells catalog to unveil noninter-
vention in different molecular ways (Singhal et al. 2016). The applicability of
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nanotherapeutics provides the help of raising surfactin distribution for augmented
anticancer remedy (Wu et al. 2017). Biosurfactants have straightaway spurt as a
propitious particle for its constitutional innovation, skillfulness, and plentiful
possessions that are possibly constructive for curative operation. Explicitly, consid-
ering their surface action, those molecules merge with cellular membranes of diverse
organisms and with the encompassing surroundings and hence in remedial treatment.
Some microbial surfactants comprise lipopeptides and glycolipids, which were
confirmed to restrain the propagation of cancer cells collectively and to agitate cell
membranes, which lead to their breakdown by programed cell death. Furthermore,
biosurfactants as drug carrier wagon provide economically luring and experimental
unique programs (Gudiña et al. 2013).

7.2 Biosurfactants and Its Types

Biosurfactants consist of different amphipathic particles with wonderful synthetic
systems yielded by numerous microorganisms. These molecules, which can be
specially fashioned as other metabolites, show vital aspects within the continuation
in their generation of microorganisms by way of expediting nutriment conveyor,
intrusive in a host and microbe synergy, and quorum sensing contrivance or by using
as biocide operators (Marchant and Banat 2012). Their diagnosed capacity and
organic nature have stimulated numerous studies on their available healing programs
(Fracchia et al. 2012; Rodrigues 2011). Those composites are principal to
manufactured surfactants, due to their microbe-starting place, environment friendli-
ness, and shallow toxicant (Marchant and Banat 2012). Due to those reasons, it has
been studied for foodstuff and demulcent commercial enterprise, better grease
restoration, and bioprocessing (Marchant and Banat 2012). Glycolipids are low
molecular weight biosurfactants, whereas polysaccharides, proteins, and others are
high molecular weight biosurfactants. Biosurfactants with low molecular weight
contain striking surface features (e.g., Figs. 7.1 and 7.2). Biosurfactants can influ-
ence the attachment of microorganisms as they screen at the junction of the liquid
state with awesome polarity and hydrogen bonding. Adjustments inside the substan-
tial membrane framework or adjustments in protein arrangement arise, for this
reason changing good-sized membrane capabilities that incorporate transportation
and effective production (Rodrigues 2011; Van Hamme et al. 2006; Sodagari et al.
2013). Additionally, these admixture can muddle cell membranes that results in
breaking by using extend permeability of membrane and, in the long run, to leakage
of metabolites (Bharali et al. 2013). Antibacterial, antifungal, and antiviral are some
of its features, additional to their antiadhesive quality in opposition to pathogenicity,
and probiotic attributes are the highest appropriate for the fitness-associated applica-
tion (Marchant and Banat 2012; Fracchia et al. 2012; Rodrigues 2011; Raaijmakers
et al. 2010). Drugs synthesized from biosurfactants can be used as remedial
measures. Biosurfactant is an antiadhesive coating for biological materials and for
lung immune therapy (Rodrigues et al. 2006). Lately, it has come out that
biosurfactants can act on cancer cells. As an example, lipopeptide surfactin was
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located to set off programed cell death in breast cancer cells (Cao et al. 2010).
Mannosylerythritol and succinoyl lipids were worried about boom detention and
programed cell death of tumor cells (Zhao et al. 2000; Isoda and Nakahara 1997;
Isoda et al. 1995). Many other healing applications were suggested for biosurfactants
together with new uses in nanotechnology, in particular primarily occupying on their
adjustable self-assembly (Kitamoto et al. 2009). For the therapeutic remedy for
herpes simplex virus, b-sitosterol-b-D-glucoside, complex DNA, which is a
liposomal vector, is in practice (Maitani et al. 2006). Nanovectors involving
biosurfactant raise the potentiality in genetic engineering (Nakanishi et al. 2009).
Though it appears that biosurfactants are used for multipurpose activity and effective

O

H3C

OH

HO

HO

O

OHO

H3C

OH

O

O

CH3

O
CH3

HO

O

Fig. 7.1 Rhamnolipid

H3C

CH3 O O
O

CH3

H3C
NH

CH3

H3C

O

H
N

O

HN

OH

O

O

NH

CH3

CH3

O CH3

CH3

NH

HO

O

N
HHN

O
CH3

CH3

Fig. 7.2 Surfactin

7 Surfactin: A Biosurfactant Against Breast Cancer 149



particles for remedial measures, some may be life-risking factors for human. For
example, nosocomial infection occurs by Pseudomonas aeruginosa, which produces
glycolipids for numerous pharmaceutical-associated packages (Hošková et al. 2013;
Abbasi et al. 2012).

7.2.1 Glycolipids

It is a saccharide with a polar head and hydrocarbon tail (Veenanadig et al. 2000;
Chen et al. 2007).

7.2.1.1 Rhamnolipids
It includes rhamnose (Lang and Wullbrandt 1999; Rahman et al. 2002). These were
formed with the aid of bacteria Pseudomonas sp. (Neto et al. 2008) and P. putida.
(Cha et al. 2008). P. fluorescens that forms rhamnolipids is a disaccharide with
methyl pentose and lipids. However, ester and carboxyl groups are present in the
lipid segment (Rahman and Gakpe 2008).

7.2.1.2 Sophorolipids
These are made up of sophorose (Asmer et al. 1988). They are yielded via Torulopsis
sp. or Candida sp. (Felse et al. 2007), T. petrophilum (Cooper and Goldenberg
1987), T. apicola (Tulloch et al. 1967), and Candida bogoriensis (Cutler and Light
1979). Wickerhamiella domercqiae was additionally suggested to supply
sophorolipids (Chen et al. 2006).

Non-lactonic sophorolipids that have hydroxyl fatty acids contain carboxylic
acid. Lactonic SLs form a lactone ring (Hu and Ju 2001).

7.2.1.3 Trehalolipids
These are made up of disaccharide trehalose (Desai and Banat 1997). The
microorganisms which produce trehalolipids are Mycobacterium, Nocardia, and
Corynebacterium (Rahman and Gakpe 2008). Trehalose lipids constituted of
Rhodococcus erythropolis, and Arthrobacter sp. was additionally pronounced
(Li et al. 1984).

7.2.2 Lipopeptides

Surfactin is produced from Bacillus sp. (Kakinuma et al. 1969). Microorganism,
Alcaligenes sp., produces lipopeptide containing ester group (Huang et al. 2009).
B. subtilis produces surfactin along with bacillomycin L and plipastatin
(Roongsawang et al. 2002). Biosurfactants are also produced from Klebsiella
sp. (Lee et al. 2008). Fengycin (Deleu et al. 2008) is a lipopeptide formed by
different types of B. subtilis (Vanittanakom et al. 1986; Jacques et al. 1999).
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7.2.3 Fatty Acids

They are made up of carboxyl groups, for example, corynomycolic acids (Mulligan
2005). Aerobically Penicillium spiculisporum forms spiculisporic acid (Ban et al.
1998). Alkanes that form fatty acid can be regarded as surfactin (Rehm and Reiff
1981).

7.2.4 Phospholipids

Aspergillus sp. (Käppeli et al. 1984) and Thiobacillus thiooxidans (Beebe and
Umbreit 1971) form phospholipids. Phosphatidylethanolamine wealthy sacs were
formed by using Acinetobacter sp. developed on hexadecane (Käppeli and Finnerty
1979). Phosphatidylethanolamine additionally is formed by using Rhodococcus
sp. grown on n-alkane (Rahman and Gakpe 2008).

7.2.5 Polymeric Biosurfactant

This may be carbohydrate or protein on the basis of lipids attached to it. It is of high
molecular weight (Rosenberg et al. 1979). Acinetobacter calcoaceticus A2 can also
form biodispersan, a heteropolysaccharide. Alasan, another heteropolysaccharide
protein biosurfactant, can be isolated from Acinetobacter radioresistens KA-53.
Liposan is formed by Candida lipolytica made up of 83% and 17% protein
((Navon-Venezia et al. 1995; Desai and Banat 1997; Rahman and Gakpe 2008).
Saccharomyces cerevisiae became incredible in generating big amounts of
mannoprotein. It confirmed notable emulsifier activity in the direction of numerous
oils, alkanes, and natural solvents (Cameron et al. 1988).

7.3 Surfactin: Structure, Membrane Interaction, Biosynthesis,
and Regulation

Surfactin (SUR) is formed by Bacillus subtilis (Hwang et al. 2005). It also has
antibacterial (Lee et al. 2016; Loiseau et al. 2015), antiviral (Kracht et al. 1999), anti-
inflammatory (Zhang et al. 2015; Gan et al. 2016), antiproliferative (Kim et al.
2007), adjuvant for immunization, and antitumor properties (Vollenbroich et al.
1997; Cao et al. 2009a, b, 2010, 2011; Christova et al. 2013). Surfactin constrains
the propagation of MCF-7 cells through activating programed cell death (Cao et al.
2011). Surfactin can combine together to form nanoparticles (Straus and Hancock
2006). Combining the anticancer activity of SUR and the traits of nanoparticles
consisting of enhanced permeability and retention effect results and multidrug
resistance retraction; it enhances chemotherapy utilizing surfactant to lade anticancer
drugs.
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7.3.1 Structure

It is formed by heptapeptide (Abdel-Mawgoud et al. 2008).

7.3.2 Membrane Interaction

Through hydrophobic interactions, surfactin invades automatically into lipid
membranes. Peptide communicates with polar heads in cancerous cells (Wu et al.
2010).

7.3.3 Biosynthesis

Non-ribosomal process using surfactin synthetase leads to the biosynthesis of
surfactin (Kluge et al. 1988; Shaligram and Singhal 2010). In the peptide chain,
phosphopantetheinyl cofactors act as an acceptor of the developing peptide chain.
Adenylation of ATP occurs to reinforce seven amino acids in surfactin (Nakano and
Zuber 1990; Vater et al. 1997).

7.3.4 Regulation

Genetic evaluation performs an essential part in governing biosynthesis of surfactin
(Sen 2010). Surfactin synthetase is meditated through chromosomal genes (Gabriela
and Jaroslava 2008). Srf and sfp control the synthesis of surfactin (Sen 2010).
Inducible operon, srfA, open reading frame encodes surfactin subunits (Fernandez-
Abalos et al. 2003).

7.4 Surfactin and Breast Cancer

B. subtilis-derived surfactin inhibits T47D and MDAMB-231 in a time- and dose-
dependent way (Duarte et al. 2014). The programed cell death effect of Bcap-37 cells
is due to the enhanced membrane fluidization (Liu et al. 2010).

Surfactin, a flexible bioactive molecule, is comprised of antitumor activity
(Sachdev and Cameotra 2013). Surfactin has been said to show antitumor interest
in opposition to murine mammary carcinoma cells (Sivapathasekaran et al. 2010).
JNK and ERK1/2 regulate apoptosis (Cao et al. 2010).

Oxidative stress is a consequence in the induction of apoptosis inside the cell.
DNA nicking also leads to programed cell death. DNA nicking depends on the
number of lipopolysaccharides. Some biomolecules are responsible for programed
cell death, regulation of transcription, and DNA repair (Alonso et al. 2003). Periph-
eral chromatin condensation occurs when incubated HeLa recombine with
AIF (apoptosis-inducing factor) (Cregan et al. 2004). Apoptosis-inducing factor
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launched from mitochondria and subsequent cell demise changed into proven to be
precipitated by using immoderate cellular calcium inflow (Bröker et al. 2005).

Doxorubicin (DOX)-SUR results in potent cytotoxicity against human breast
cancer. The difference in the structure of biosurfactants may be beneficial for
interdependent drug transportation (Akiyode et al. 2016).

7.5 Conclusion

There have been numerous research at the anticancer consequences of surfactin in
opposition to most cancer cellular traces that suggest its selective cytotoxicity.
Surfactin isolated from B. subtilis 573 has a cytotoxic effect on ordinary
MCT-3T3-E1 fibroblast cells (Duarte et al. 2014). Cytotoxicity of surfactin C is
examined via oral dose to rats (HWANG et al. 2009). Surfactin, drawback as an
anticancer promoter due to hemolytic action above 0.05 g/l (Dehghan-Noudeh et al.
2005). To conquer this hemolytic nature, some surfactin has been synthesized, which
is nonhemolytic in nature (Gabriela and Jaroslava 2008). An alternative way to
deliver surfactin is nanoformulation to decrease toxic effects and more desirable
anticancer effects (Wu et al. 2017).
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Abstract

Biosurfactants produced by different types of microorganisms are amphiphilic
biomolecules with active surface properties. Recently, biosurfactants have
emerged as promising agents for cancer therapy since a high diversity of these
molecules has shown the ability to induce cytotoxicity against many cancer cell
lines, thus regulating cancer progression processes. In this sense, microbial
biosurfactants are a potential alternative to current cancer therapeutics and as
drug delivery systems of anti-cancer drugs. This chapter covers the current
knowledge of microbial surfactants with anti-cancer potential, providing infor-
mation on their production, structure, and research on diverse cancer cell lines,
namely, breast and lungs cancer, leukemia, melanoma, and colon cancer. The
potential application of biosurfactants in drug delivery is also reviewed.
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8.1 Introduction

Cancer is one of the main cause of death worldwide. The World Health Organization
(WHO) presented in 2018 data estimating 9.6 million deaths and new cases growing
to 18.1 million (WHO 2018). Chemotherapy remains one of the major options in
cancer treatment, despite having known limitations and undesirable side effects
(Feinberg et al. 2019). Chemotherapeutic drugs target nonspecific, highly
proliferative cells, presenting toxicity to normal tissues, and interfering with the
life quality of cancer patients (Sak 2012). Thus, many efforts have been made to find
new drugs for cancer treatment focusing on novel agents that selectively target
cancer cells (Gudiña et al. 2016). Recently, due to their ability to control some
functions on mammalian cells, biosurfactants have demonstrated capability in the
treatment of cancer (Gudiña et al. 2013).

Biosurfactants, amphiphilic molecules with emulsifying and surface activity, are
obtained from microorganisms. With a wide-ranging of chemical structures, these
compounds show diverse properties and physiological functions (Rodrigues and
Teixeira 2010). Some of the natural roles of these compounds include a growing of
the surface area, ability for regulating the removal and binding of microorganisms
from surfaces, bioavailability of hydrophobic subtracts, heavy metal binding, bio-
film formation, antibacterial pathogenesis, antimicrobial activity, and quorum sens-
ing (Ron and Rosenberg 2001). Furthermore, biosurfactants usually have lower
toxicity and higher biodegradability than synthetic surfactants (Rodrigues and
Teixeira 2010; Marchant and Banat 2012). Some biosurfactants have also a potential
as biologically active compounds, being suitable therapeutic alternatives to synthetic
drugs (Banat et al. 2000; Singh and Cameotra 2004). Aditionally, biosurfactants
have been explored in gene delivery (Igarashi et al. 2006), drug delivery (Ag Seleci
et al. 2016), as adjuvants in immunology (Cameotra and Makkar 2004), as antimi-
crobial (Ndlovu et al. 2017), antifungal (Sen et al. 2017) and antiviral (Kracht et al.
1999) agents, and as anti-cancer therapeutics (Gudiña et al. 2016).

The anti-cancer activity of biosurfactants is related to their capacity to inhibit
cancer cells growth (Sivapathasekaran et al. 2010), apoptosis (cell death) induction
(Chen et al. 2006), activity on differentiation (Isoda and Nakahara 1997), necrosis
(Fu et al. 2008), and cell cycle arrest (Chen et al. 2006). These biosurfactants
comprise mannosylerythritol lipids (MELs) (Shu et al. 2019; Coelho et al. 2020),
succinoyl trehalose lipids (STLs) (Sudo et al. 2000), sophorolipids (Ribeiro et al.
2015), rhamnolipids (RLs), surfactin (Wu et al. 2017), serrawettins (Perez Tomas
et al. 2005; Clements et al. 2019), and monoolein (Chiewpattanakul et al. 2010). In
addition to the high potential of biosurfactants as anti-cancer therapeutics, these
molecules can also be incorporated or used as vehicles or drug delivery systems
(DDS) of anti-cancer drugs (Wu et al. 2017).

This chapter discusses the current research and knowledge of microbial
biosurfactants as anti-cancer drugs, with emphasis on their structure, production,
DDS, and potential anti-cancer activity in the treatment of breast and lung cancer,
leukemia, melanoma, and colon cancer.
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8.2 Biosurfactants Classification and Structure

Biosurfactants are mainly categorized in high- and low-molecular-weight
compounds. The first class encompasses phospholipids, fatty acids, lipoproteins,
lipopeptides, and glycolipids, while the second group comprises polymeric
biosurfactants (Bajpai Tripathy and Mishra 2016). In this chapter, only
biosurfactants with anti-cancer properties, namely glycolipids and lipopetides, are
reviewed.

8.2.1 Mannosylerythritol Lipids (MELs)

Mannosylerythritol lipids (MELs) were first characterized in 1970 by Bhattacharjee
et al. (1970). MELs are glycolipids with a acylated derivative of 4-O-β-D-
mannopyranosyl-D-erythritol, and fatty acids representing the hydrophobic groups
(Bhattacharjee et al. 1970). The structural variants of MELs occur due to: (1) the
number and position of the acetyls group on erythritol and mannose; (2) acyl groups
in erythritol and mannose amount; and (3) fatty acid chain length and saturation
(Yu et al. 2015; Arutchelvi et al. 2008). Based on the level of acetylation in
mannopyranosyl, namely, at C-60 and C-40 position, MELs are categorized as
MEL-A, MEL-B, MEL-C, and MEL-D (Fig. 8.1). MEL-A is diacetylated, while
MEL-B is monoacetylated at C-60 and MEL-C at C-40. The completely deacetylated
compound is known as MEL-D (Yu et al. 2015; Arutchelvi et al. 2008). Novel types
of MELs have been reported and identified as tri-acetylated and mono-acylated, with
C-60, C-40, and C-20 of mannopyranosyl connected with OH or OAc (Yu et al. 2015).
Fukuoka et al. (2008) found a MEL-B diastereomer type with a sugar moiety, named
as 1-O-β-D-mannopyranosyl-erythritol, but distinct from the 4-O-β-D-
mannopyranosyl-erythritol of traditional MELs, in a stereochemical way. Morita
et al. (2009) reported a distinct MEL containing mannitol as the hydrophilic part
instead of erythritol, and a mannosyl-mannitol lipid. The hydrophobic part of MELs
contains C18:1, C18:0, C16:1, C16:0, C14:1, C14:0, C12:0 and C2:0 fatty acids.
MELs fatty acid profiles are very diverse according to the species (same genus), with

O
O

CH2

CH2OH

O
O

CH3

nOR1

O

H3C

n

O

R2O

Fig. 8.1 Structure of
mannosylerythritol lipids
(MELs): MEL A:
R1 ¼ R2 ¼ Ac; MEL-B
R1 ¼ Ac, R2 ¼ H; MEL-C:
R1 ¼ H, R2 ¼ Ac; MEL-D:
R1 ¼ H, R2 ¼ H. n ¼ 6–10.
(Adapted from Arutchelvi
et al. (2008))
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one MEL produced as a main product (Yu et al. 2015). For example, MEL-A was the
principal compound produced by Candida pseudozyma sp. SY16, with C14:1,
C14:0, C12:0, and C6:0 (Kim et al. 1999), while MEL-C was the major MEL
produced by Pseudozyma hubeiensis KM-59 with C16:2, C12:0, C10:0, and C6:0
(Morita et al. 2007).

8.2.2 Succinoyl Trehalose Lipids (STLs)

Succinoyl trehalose lipids (STLs) are glycolipids synthesized from n-alkanes and the
most exciting form of trehalose lipids (Inaba et al. 2013). The chemical structure of
STLs have two or three fatty acids and one or two succinic acids linked to a trehalose
portion (Inaba et al. 2013; Tokumoto et al. 2009). The main STL-1 portion is
described as 3,4-di-O-palmitoyl- 2,20-di-O-succinoyl-α,α-trehalose, whilst STL-2
and STL-3 are known as 2,3,4-di-O-alkanoyl-O-succinoyl-α,α-trehalose and
2,3,4,20-mono-O-succinoyl-tri-O-alkanoyl-trehalose, respectively (Fig. 8.2) (Jana
et al. 2017). The acyl chains proper position in STL-2 and STL-3 is not validated,
but concerning the STL-1 structure, it is assumed that succinic acid is in the O2
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position (Jana et al. 2017). Uchida et al. (1989) reported the synthesis of two
principal forms of STL homologues from Rhodococcus sp. strain SD-74, STL-1
and STL-2. These compounds have hydrophobic acyl groups and present the
identical carbon chain length used by n-alkane as substrate. Tokumoto et al.
(2009) reported the structural characterization of STL-1 (Fig. 8.2), with trehalose
lipid comprising a hexadecanoyl residue and two succinoyl residues as described by
Uchida et al. (1989). The purified STL-1 and its fatty acid structure was assessed by
gas chromatography–mass spectrometry, with C16 (63.5%) being the major fatty
acid found, while C14 (26.6%) and C12 (9.9%) were found in less amounts.

8.2.3 Sophorolipids

Sophorolipids are biosurfactants composed of a residue of sophorose (acetylated
2-O-β-D-glucopyranosyl-D-glucopyranose), a disaccharide of glucose residues
linked by a β-1,20 bond, and a hydroxy fatty acid with a long-chain (Fig. 8.3a)
(Price et al. 2012). These glycolipids can be different depending on the position and
number of acetate groups as O-substituents in the carbohydrate residue and the fatty
acid residues (Kulakovskaya and Kulakovskaya 2014). Sophorose may be
acetylated in positions 60- and/or 6, and one terminal or subterminal of
the hydroxylated fatty acid is β-glycosidically linked to the sophorose molecule
(Price et al. 2012). The hydroxy fatty acid residue is generally C18 or C16 and may
have one or more unsaturated bonds (Fig. 8.3a) (Price et al. 2012). Moreover, the
carboxylic group of fatty acid is free (open form) or esterified (lactonic form)
(Fig. 8.3b) (Kulakovskaya and Kulakovskaya 2014). Sophorolipids can exist as
lactones, and as monomeric or dimeric forms containing C22 fatty acid residues
(Nunez et al. 2004). Sophorolipids from Starmerella bombicola and Candida
batistae are different in the hydroxylic group position in the fatty acid residue: in
sophorolipids from S. bombicola the fatty acid residues are hydroxylated mostly in
the ω-1 position, whereas those from C. batistae are hydroxylated mostly in the
ω-position (Konishi et al. 2008). Candida apicola is able to synthesize non-acetyl,
mono-O-acetyl, and di-O-acetyl sophorolipids (Price et al. 2012). Rhodotorula
bogoriensis produces sophorolipids containing a C22 fatty acid residue as an
aglycone (Fig. 8.3b) (Nunez et al. 2004).

8.2.4 Rhamnolipids (RLs)

Rhamnolipids (RLs) are glycolipid biosurfactants produced by several bacteria
(Abdel-Mawgoud et al. 2010). RLs (Fig. 8.4) were discovered in 1946 by Bergström
et al. (1946a, b) and being synthesized from Pseudomonas pyocyanea. Later, in
1965, Edwards and Hayashi (1965) found that between the two rhamnose fractions
there is an α-1,2-glycosidic bond, due to methylation and periodate oxidation.
Therefore, the authors chemically identified these RLs as 2-O-α-1,2-L-
rhamnopyranosyl-α-L-rhamnopyranosyl-β-hydroxydecanoyl-β-hydroxydecanoate.
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Overall, eight RLs congeners were found until the mid-1980s (Abdel-Mawgoud
et al. 2010).

At the end of the last century, a significant number of new RLs were identified,
and novel analogues were frequently described. Therefore, and regarding the
structures, RLs can be defined as glycosides with rhamnose and lipidic fractions,
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both connected by an O-glycosidic linkage. The rhamnose part has one (mono-RL)
or two (di-RL) rhamnose parts linked by an α-1,2-glycosidic linkage. The lipidic
part, nevertheless, is composed of one or two (occasionally three) β-hydroxy fatty
acid chains (polyunsaturated, mono-, or saturated, from C16 to C8) connected by an
ester bond established among the β-hydroxyl group of the distal chain with the
carboxyl group of the proximal chain (Fig. 8.4). In the majority of the cases, the
carboxyl group of the distal β-hydroxy fatty acid chain remains free; nevertheless,
some analogues have this group esterified with a short alkyl group (Abdel-Mawgoud
et al. 2010). Likewise, the distal 2-hydroxyl group (in relation to the glycosidic
bond) rhamnose group stays mainly free, even though in some unique homologues it
may be acylated with long chain alkenoic acid (Abdel-Mawgoud et al. 2010).

Differences in the chemical structures of RLs lead to several RLs homologues.
The variations between these homologues are in the rhamnose and/or the lipidic
fractions, contributing to the biodiversity of RLs (Abdel-Mawgoud et al. 2010).

8.2.5 Myrmekiosides

Myrmekiosides are glycolipids biosurfactants with a structure containing mono-O-
alkyldiglycosylglycerol. These types of biosurfactants are produced from
Myrmekioderma sp. and Trikentrion loeve. These compounds consist of a glycerol
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Fig. 8.4 Chemical structure of the first identified rhamnolipid; simply named as α-L-
rhamnopyranosyl-α-L-rhamnopyranosyl-β-hydroxydecanoyl-β-hydroxydecanoate and symbolized
as Rha-Rha-C10-C10. (Adapted from Abdel-Mawgoud et al. (2010))
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backbone with a mono- or diglucosyl unit or a monoglucosamine residue attached to
C-20, and a xylose and an alkyl chain at the terminal hydroxyl positions (Fig. 8.5).
Myrmekiosides A–C, are constituted by similar sugar fractions, however, presenting
distinct O-alkyl chains. Myrmekioside E-2 is a myrmekioside peracetylated deriva-
tive with N-acetylglucosamine and xylose, and a terminal alcohol group (Zhang et al.
2015).

8.2.6 Cyclic Lipopeptides (CLPs)

Cyclic lipopeptides (CLPs) are synthesized through different bacteria (Raaijmakers
et al. 2006). Structurally, CLPs comprise an oligopeptide peptidically linked to a
fatty acid. The lipid chain length (from C6 to C18) as the oxidation degree can
differ (Götze et al. 2017). The oligopeptide C-terminus (up to 25 amino acids)
creates a lactone with an amino, phenol or hydroxyl functional group from the
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side chains of the peptide or the lipid fraction, thus providing different cycles of
variable sizes (typically from 4 to 16 amino acids) (Götze et al. 2017).

8.2.6.1 Amphisin, Tolaasin, and Syringomycin CLPs
The chemical structure analysis of all CLPs from Pseudomonas sp. might be
classified into two main groups, and different subgroups (amphisin, tolaasin, and
syringomycin groups) (Raaijmakers et al. 2006). The main groups differ in the
amino acids content in the cyclic peptide fraction, whereas the subgroups can be
different due to specific substitutions in the peptide fraction, and more specifically in
the amino acids (Nielsen et al. 2002). Amphisin CLPs, including amphisin and
tensin, contain a peptide portion with eleven amino acids, linked to
3-hydroxyoctanoic acid. Both compounds contain helical structures, with a cyclic
peptide covering a water molecule. Contrarily, tolaasin group CLPs are dis-
tinct because of the several differences in the length and composition of lipid tail
(3-hydroxyoctanoic acid) and the peptide chain. The peptide part of tolaasin includes
several rare amino acids, such as homoserine and 2,3-dihydro-2-aminobutyric acid.
The cyclic fraction of the peptide part comprises from five to eight amino acids while
the lactone ring is established among the C-terminal amino acid and the allo-Thr
residue. Finally, CLPs in the syringomycin group contain also rare amino acids,
including the C-terminal 4-chlorothreonine and 2,4-diamino butyric acid. Moreover,
the lactone ring is formed between the C-terminal Thr(4-Cl) and the N-terminal Ser.
The CLPs fatty acid tail in the syringomycin group may contain a 3,4-dihydroxy or
3-hydroxy fatty acid (10–14 carbon atoms) (Raaijmakers et al. 2006).

The structure of other CLPs from Pseudomonas sp. has been elucidated in the last
years. For example, a new compound was recognized as CLP (pseudofactin II)
containing an N-terminal group of eight amino acids in the peptide fraction linked
to a palmitic acid. The carboxylic group of the final amino acid forms a lactone with
the hydroxyl of Thr3 (Janek et al. 2012).

8.2.6.2 Iturin and fengycin CLPs
CLPs produced by other bacteria have been also reported. Iturin (Fig. 8.6a) from
Bacillus subtillis is a cyclic peptide containing seven amino acids connected to a
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Fig. 8.6 Primary structure of iturin (a); primary structure of fengycin, n ¼ 14–17 (b). (Adapted
from Meena and Kanwar (2015))
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β-amino fatty acid chain which differ in the number of carbon (C14–C17) (Meena
and Kanwar 2015). Mixirins A–C (three cyclic acylpeptides) included in the iturin
class have been also synthesized by Bacillus sp. (Mondol et al. 2013).

Fengycin (Fig. 8.6b), also produced by B. subtillis, contains saturated or unsatu-
rated bonds in the β-hydroxy fatty acid of the lactone ring (Meena and Kanwar
2015). The structure of fengycin contains a fatty acid chain varying from C14 to C17
carbon atoms linked to a peptide chain of ten amino acids, with isomers and different
homologous compounds giving rise (Fig. 8.6b). Moreover, fengycin compounds
display heterogeneity in the peptide fraction (6th position) and in chain length of the
β-hydroxy fatty acid, being classified as fengycin A (comprises Ala at position 6)
and fengycin B (contains Val at position 6) (Meena and Kanwar 2015).

8.2.6.3 Surfactin CLP
The surfactin biosurfactant, produced by different strains of B. subtilis, is the most
studied CLP. Surfactin is constituted by a heptapeptide with a chiral sequence
connected to the chain of β-hydroxy fatty acid, which forms a closed cyclic lactone
ring structure (Fig. 8.7) (Wu et al. 2017; Tsan et al. 2007). Surfactin hydrophobic
amino acids are found at the 20, 30, 40, 60, and 70 positions. On the other hand,
hydrophilic aspartyl and glutamyl residues are placed in positions 50 and 10, giving
the molecule two negative charges (Wu et al. 2017). Two conformations of surfactin,
S1 and S2, have been found by Bonmatin et al. (1994). Surfactins S1 and S2 exhibit
a conformation with two charged side chains gathered on the same side. Surfactin
conformations form a “claw” and offer a hydrophilic head and opposite to a
hydrophobic domain (Tsan et al. 2007). Baumgart et al. (1991) described that
B. subtilisOKB 105 and ATCC 21332 produced three types of surfactin compounds.
Among them, two are specifically different in the Leu amino acid, since it is
substituted by Val and Ile. In another work, Liu et al. (2007) reported that
B. subtilis produced three distinct surfactins in the peptide fractions:
(1) N-Asp-Leu-Leu-Val-Glu-Leu-Leu-C sequence; (2) N-Glu-Leu-Leu-Val-Asp-
Leu-Leu-C sequence; (3) peptide chain methyl esterified. Moreover, these
biosurfactants contain different fatty acid fractions, such as iso C12, iso C13, anteiso
C13, iso C14, n C14, iso C15, anteiso C15, n C15, anteiso C16, and anteiso C17
beta-hydroxy fatty acids (Liu et al. 2007).

CH3 (CH2)n CH

CH2

CO

O D-Leu6

LGlu1 L-Leu2 D-Leu3

L-Val4

L-Asp5L-Leu7

Fig. 8.7 Primary structure of
surfactin, n ¼ 9–11. (Adapted
from Wu et al. (2017))
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8.2.7 Rakicidns and Apratoxins

Rakicidins contain a 3-hydroxyfatty acid and three amino acids. So far, four different
compounds (Fig. 8.8), namely, rakicidins A and B produced by Micromonospora
sp. and rakicidins C and D by Streptomyces sp., are described (Igarashi et al. 2010).
All rakicidins share mutual amino acid constituents, namely, glycine, 4-amino-2,4-
pentadienoate and hydroxyaspargine (or glutamine in rakicidin C), and an unit of
3-hydroxyfatty acid differing in the methylation pattern and chain length (Valliappan
et al. 2015).

Marine cyanobacteria produce several secondary metabolites with fascinating
biological characteristics and molecular constructions, namely, apratoxins.
Apratoxins are cyclodepsipeptides with N-methylated amino acids, a proline residue,
a dehydroxylated fatty acid fraction, and a modified cysteine residue (Fig. 8.9)
(Masuda et al. 2014). Apratoxins A to G have been categorized and several
modifications, comprising the nonexistence of a C- or N-methyl group at different
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Fig. 8.8 Structure of rakicidins A, B, C, and D. (Adapted from Sang et al. (2016))
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sites, a replacement of a terminating proline residue with an N-methyl alanine, and
an additional polyketide synthases module early in the biosynthetic sequence, were
observed (Nunnery et al. 2010).

8.2.8 Serrawettins

Serrawettins are produced by different Serratia genera and were first isolated in
1985. Specifically, serrawettin W1 and serrawettin W2 are biosynthesized by
S. marcescens and S. surfactantfaciens strains, respectively (Clements et al. 2019).

Serrawettin W1 (or serratamolide A (Fig. 8.10)), includes in its structure a
symmetrical dilactone with two L-serine amino acids connected to two β-hydroxy-
based fatty acids (Eckelmann et al. 2018). However, different homologues have been
described, namely, serratamolides B to G, related to differences in the chain length of
the fatty acid (from C8 to C14) and the absence or presence of double bonds in the
structure of serrawettin W1 (serratamolide A) (Clements et al. 2019).

Otherwise, serrawettin W2 comprises five amino acids (D-leucine/isoleucine-L-
serine-L-threonine-D-phenylalanine-L-isoleucine/ leucine) connected to the fatty acid
fraction of β-hydroxy, and variations in the chain length of the fatty acid (C8 or C10)
or the 1st, 2nd, or 5th amino acid positions result in serrawettin W2 equivalents
(Clements et al. 2019).
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Fig. 8.9 Chemical structures of apratoxins: (a) apratoxin A: R1 ¼ Me, R2 ¼ Me; apratoxin B:
R1 ¼ Me, R2 ¼ H; apratoxin C: R1 ¼ H, R2 ¼ Me; (b) apratoxin D. (Adapted from Masuda et al.
(2014))
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8.2.9 Monoolein

Monoolein (1-Monoolein (1-(cis-9-Octadecenoyl)-rac-glycerol)) includes a chain of
hydrocarbon (oleic acid) connected, by an ester bond, to the glycerol backbone
(Fig. 8.11). The other two hydroxyl groups from the glycerol fraction give hydro-
philic characteristics to this part of the compound (Kulkarni et al. 2011; Ganem et al.
2000). In an aqueous environment, the glycerol part can establish hydrogen bonds
with water, and is commonly referred to the head group (Ganem et al. 2000). The
strongly hydrophobic hydrocarbon chain includes a cis double bond at the nine and
tenth positions (Kulkarni et al. 2011; Ganem et al. 2000), making monoolein a
molecule with amphiphilic characters.

8.2.10 Fellutamides

Fellutamides are a class of lipopeptide biosurfactants containing a (3R)-β-hydroxy
alkanoate tail and a C-terminal aldehyde (Fig. 8.12). A, C, and D types of
fellutamides include a β-L-threo-hydroxy-glutamine amino acid, whereas
fellutamides A and B contain a fatty chain based on β-hydroxylated amide, which
is originated from (3R)-hydroxy lauric acid (Giltrap et al. 2013). However, in the
literature other distinct products were called fellutamide C, and therefore, to solve
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Fig. 8.10 Structure of serrawettin W1 (serratamolide A). (Adapted from Shanks et al. (2012))
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Fig. 8.11 Structure of monnolein. (Adapted from Kulkarni et al. (2011))
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the similarity between them, Singh’s fellutamide C has been renamed as fellutamide
E (Pirrung et al. 2016).

8.3 Biosurfactants Production

The manufacture of biosurfactants should be performed by applying secure and
nonpathogenic microorganisms to prevent problems with pathogenicity (Ghasemi
et al. 2019). Furthermore, most biosurfactants are considered secondary metabolites,
playing crucial roles for the survival of the producing microorganisms, since they
facilitate nutrient transport, promote microbe-host interactions, and act as natural
green biocides (Van Hamme et al. 2006). Accordingly, many biosurfactant
applications substantially depend on whether they can be economically produced.
Thus, extensive efforts have been made in process optimization. Biosurfactants
production from low-cost raw materials and cheap substrates can decrease produc-
tion cost (Mukherjee et al. 2006). In this sense, substrates such as olive oil mill
effluents, corn steep liquor, vegetable cooking oil waste, animal fat, soap stock, and
dairy industry waste, among others, have been deeply investigated (Santos et al.
2016). The selection of waste biomass for biosurfactant production should guarantee
a balanced supply of nutrients to ensure a proper microbial growth (Santos et al.

Fellutamide R1 R2 X Y

A iBu C9H19 O OH

B iBu C9H19 O H

C iBu C9H19 H, OH H

D iBu C11H23 O OH

E iPr C11H23 O OH

F iAmyl C9H19 OH, OH H

Fig. 8.12 Structure of fellutamides. (Adapted from Pirrung et al. (2016))
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2016). Nevertheless, it should take into account that the use of substrates with
reduced prices for biosurfactants production does not bring only advantages, but
also some disadvantages, as summarized in Fig. 8.13. Banat et al. (2014) discussed
this topic (renewable sources) and the cost-effectiveness of the related processes in
their review.

In summary, the development of economically competitive biosurfactant produc-
tion processes is urgent, and must include the culture conditions optimization and the
development of cost-effective recovery processes to improve the yield and quality of
biosurfactants.

8.3.1 Factors Involved in Biosurfactants Production

The production of biosurfactants (type, quality and quantity) is usually affected by
the sources of nitrogen and carbon, and by the concentration of different ions
(phosphorous, magnesium, ferric, and manganese) present in the broth medium
(Bajpai Tripathy and Mishra 2016). Moreover, the growth conditions of the culture
can be affected by the biosurfactant synthesis procedure, i.e., agitation speed,
temperature, pH, aeration, and dilution rate (Bajpai Tripathy and Mishra 2016).
During their production, different preliminary techniques have been used to find and
choose the more effective factors/conditions to achieve a high yield and quality of
biosurfactants (Bajpai Tripathy and Mishra 2016). These factors are discussed
below.

Disadvantages

Processing or treatment of the substrates 

(carbon, nitrogen, or energy source)

Final product can carry addi�onal impuri�es from the 

substrates 

Addi�onal purifica�on techniques need to be 

employed

May increase the produc�on process due to the need 

of purifica�on steps 

Composi�on of raw materials may vary compromising 

the con�nuous supply in industrial processes

Advantages

Commercial produc�on costs can be reduced

Different renewable substrates are available in a 

high quan�ty

Improved yield of biosurfactant

Func�onal proper�es of the product do not 

change

Does not prove as harmful to microorganisms

Most components are eco-friendly and safe

Waste biomass in biosurfactants produc�on 

Fig. 8.13 Advantages and disadvantages associated with the use of waste biomass in
biosurfactants production. (Adapted from Banat et al. (2014))

8 Anti-Cancer Biosurfactants 173



8.3.1.1 Source of Carbon
The growth of microorganisms and biosurfactants production are closely related to
the carbon source. Usually, the sources of carbon applied in biosurfactant production
are carbohydrates, hydrocarbons, and vegetable oils (Kaskatepe and Yildiz 2016).
Among them, aqueous soluble carbon sources like dextrose, sucrose, fructose, and
glycerin are normally applied (Bajpai Tripathy and Mishra 2016). Reports from the
literature indicated that the application of carbon mixtures in biosurfactants produc-
tion can be more efficient than the use of one source. For instance, Cooper and
Paddock (1984) demonstrated that the use of a carbon source composed only of
glucose or vegetable oil does not change the biosurfactant yield (1 g/L) by
T. bombicola. However, if both sources were supplied at the same time, the yield
improved up to 70 g/L (Cooper and Paddock 1984). A similar behavior was found
for the sophorolipids production from C. bombicola, with the best production yield
(120 g/L) obtained using a mixture of carbon sources (sugar and oil) (Casas et al.
1997). Furthermore, when an industrial waste (soap stock) was used for the produc-
tion of sophorolipids by C. apicola and Candida antarctica, yields of 7.3 g/L and
13.4 were obtained, respectively (Bednarski et al. 2004). Additionally, Pseudozyma
(C. antarctica) converted C12 to C18 n-alkanes into MELs with a yield of 140 g/L
applying the following carbon source: soybean oil (Kitamoto et al. 2001).

8.3.1.2 Source of Nitrogen
Nitrogen source is a crucial parameter in the production of biosurfactants by
microorganisms, since it is essential for growth and the regulation of protein
synthesis (Bajpai Tripathy and Mishra 2016). Distinct sources of inorganic and
organic nitrogen, such as sodium nitrate, ammonium sulfate, urea, and ammonium
nitrate have been used in the production of biosurfactants (Bajpai Tripathy and
Mishra 2016). Usually, a high carbon/nitrogen (C/N) ratio conducts to a reduction
in cell growth and a rise in the cell metabolism (Santos et al. 2016). On the other
hand, a low C/N ratio leads to a reduction in cell growth and an increase in cell
metabolism (Santos et al. 2016). For instance, biosurfactant production using
Arthrobacter paraffineus was enhanced when nitrogen sources such as ammonium
salts and urea were used, while by Pseudomonas aeruginosa and Rhodococcus
sp. the highest yield was obtained when nitrates were used (Bajpai Tripathy and
Mishra 2016). In a similar work, Mulligan and Gibbs (1989) reported biosurfactant
production by P. aeruginosa using ammonium, amino acids, and nitrates as nitrogen
sources. In general, when compared to ammonium, the assimilation of nitrate is
usually lower, simulating nitrogen restriction, being one advantage in the production
of a biosurfactant (Santos et al. 2016). As an example, the overproduction of RLs
biosurfactants by Pseudomonas sp. strain DSM-2874 was achieved by nitrogen
restriction at the beginning of the stationary phase growing (Mouafo et al. 2018).
Amani et al. (2013) also showed maximum RLs production after nitrogen limitation
(120 mg/L). As reported by Hommel et al. (1987), nitrogen concentration appears to
be a mandatory factor for a high biosurfactant yield.
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8.3.1.3 Effect of Ions
The addition of multivalent cations such as magnesium, ferric, manganese, among
others, into the culture media has been found to affect the production of
biosurfactants (Bajpai Tripathy and Mishra 2016). More specifically, the limitation
of multivalent cations is reported to enhance the production of biosurfactants (Bajpai
Tripathy and Mishra 2016). For instance, better yields of RLs produced by B. subtilis
were achieved by reducing the concentrations of calcium, sodium, potassium, and
magnesium salts and residue elements (Bajpai Tripathy and Mishra 2016). Further-
more, the addition of other chemicals like ethylenediaminetetraacetic acid (EDTA),
ethambutol, chloramphenicol, and penicillin influence the production of
biosurfactants (Karanth et al. 1999). The biosurfactant production control, using
these type of compounds, is produced by their impact on the solubilization of apolar
substrates or through their impact on the production of polar substrates.

8.3.1.4 Physical Factors
Growth culture conditions, namely, pH, temperature, time, and agitation speed, also
affect biosurfactants production (Bajpai Tripathy and Mishra 2016). For example, at
a pH range between 6.0 and 6.5, the production of RLs by Pseudomonas sp. was
highest, decreasing considerably at pH values above 7.0. On the other hand, the
production of surfactin by B. subtilis was favored at neutral pH (Abdel-Mawgoud
et al. 2008), whereas the production of sophorolipids by Candida batistae was
maximized at pH 6.0 (Konishi et al. 2008).

Overall, the most favorable temperature during biosurfactants production is
around 30 �C, as verified for several species of Candida (Santos et al. 2016). The
same temperature conditions were verified during surfactin production by B. subtilis
(Hmidet et al. 2017). However, the highest RLs concentration (1892 mg/mL) was
reached when the fermentation of P. aeruginosawas carried out at 42 �C (Eraqi et al.
2016). In relation to the incubation time, it was found that after 5 days the maximum
production of RLs by P. aeruginosa was achieved (Kaskatepe and Yildiz 2016),
whereas the incubation periods for C. bombicola in the production of sophorolipids
were from 7 to 11 days (Mouafo et al. 2018; Felse et al. 2007). Finally, the agitation
is also an important factor since it is responsible for an efficient oxygen transfer
during the biosurfactant production from the phase of gas to the phase of liquid.
Oliveira et al. (2009) found the rise in agitation favored the production of RLs by
Pseudomonas alcaligenes. Wei et al. (2005) studied the agitation speeds (between
50 and 250 rpm) in the production of RLs by P. aeruginosa and observed a better
result at 200 rpm. However, other studies have concluded that high agitation speed
(>500 rpm) had a negative effect on surfactin production by B. subtilis (Ha et al.
2018).
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8.4 Anti-Cancer Activity of Biosurfactants

Biosurfactants have been investigated as anti-cancer compounds due to their
promising intercellular recognition steps, which comprise selective block cancer
cells proliferation by signal transduction (Rodrigues et al. 2006). The first approach
in cancer treatment includes induction of terminal differentiation and apoptosis (the
main method of programmed cell death) pathways of cancer cells (Rodrigues et al.
2006; Reed 2003). Diverse mechanisms have been proposed to describe
biosurfactants’ anti-cancer capacity, such as: (1) cell evolution delay; (2) inhibition
of signaling pathways; (3) apoptosis induction by death receptors in cancer cells;
(4) natural killer T (NKT) cells stimulation; and (5) angiogenesis decrease
(Fig. 8.14) (Duarte et al. 2014). Moreover, biosurfactants are able to disrupt cell
membranes by lysis and increasing membrane permeability (Gudiña et al. 2013).

Hannun and Bell (1989) reported a review article regarding the discovery of
glycosphingolipids and lysosphingolipids as active compounds in cell differentiation
and in cell proliferation modulation in oncogenesis (Hannun and Bell 1989). Since
then, a diversity of compounds, such as polar compounds, glucocorticoids, fatty
acids with short-chain and retinoids, were noticed to stimulate differentiation in cell

Fig. 8.14 Mechanisms to exemplify the anti-cancer activity of microbial biosurfactants
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lines and can trigger apoptotic events (Wakamatsu et al. 2001; Bursch et al. 1992).
The current state of biosurfactant as potential therapeutic applications of cancer
(breast and lungs cancer, leukemia, melanoma, and colon cancer) are presented in
Table 8.1 and discussed in this section.

8.4.1 Breast Cancer

Breast cancer is a common type of cancer affecting one in eight women, with more
than one million additional cases per year (Chu and Lu 2008; Davis et al. 2020).
Early detection of breast cancer can be an effective strategy to reduce the number of
cases; however, in an advanced stage, conventional cancer treatments are required.

Despite improvements in early detection and treatment, around 50% of patients
will either not succeed in chemotherapy or will develop resistance to chemothera-
peutic drugs (Jana et al. 2020). Biosurfactants have been reported as a potential
therapeutic alternative to combat breast cancer. Cao et al. (2009, 2010) showed the
apoptosis of MCF-7 human breast cells by surfactin. This biosurfactant produced
reactive oxygen species, indicating the involvement of reactive oxygen species
generation in surfactin-induced cell death (Cao et al. 2010). Duarte et al. (2014)
also studied the anti-tumor capacity of surfactin from B. subtilis 573 for both cell
lines T47D and MDA-MB-231. The results show that surfactin leads to a decrease in
cell viability and proliferation by induced cell cycle arrest at G1 phase after a contact
of 48 h, without negatively affecting normal fibroblasts (Duarte et al. 2014). In an
additional work, a surfactin from Micromonospora marina was tested on MCF-7
breast cancer cell lines (Ramalingam et al. 2019). This compound presented cyto-
toxicity against cancer cells by inducing apoptosis and cleaving mitochondrial
membrane, while did not affecting normal cells (Ramalingam et al. 2019).

Other types of biosurfactants studied against breast cancer cell lines are iturins
(lipopeptides), produced by Bacillus strains. Iturins were found to significantly lead
the initiation of apoptosis in breast cancer cells (Dey et al. 2015; Trischman et al.
1994; Zhang et al. 2004). In vitro and in vivo tests of iturin A were carried out in
human breast cancer. The results revealed that apoptosis occurred by proliferation
inhibition of the cell lines MCF-7 and MDA-MB-231 (Dey et al. 2015). Moreover,
iturin A was able to decrease tumor growth with lowered expressions of proteins
based on P-MAPK, CD-31, Ki-67, P-GSK3β, P-FoxO3a, and P-Akt (Dey et al.
2015).

S. bombicola was able to produce biosurfactants, namely sophorolipids. These
compounds were evaluated regarding to their cytotoxicity in breast cancer
MDA-MB-231 cells (Ribeiro et al. 2015). High cytotoxic effect at the Critical
Micelle Concentration (CMC) of the sophorolipids was observed in cancer cells.
The higher cytotoxicity was obtained in sophorolipids (C18:0 and C18:1), with
compound C18:1 being able to intracellularly increase reactive oxygen species
(ROS) involved in cancer cell death, and inhibit cells migration without cellular
damage. This finding has a potential in the treatment of tumor growth in initial
phases (Ribeiro et al. 2015).
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Table 8.1 Anti-tumor activity of biosurfactants against cancer cells

Cancer
type Biosurfactant Activity References

Breast
cancer

Surfactin Induces apoptosis, inhibits
proliferation, reduces cell
viability and induces cell cycle
arrest at G1 phase

Cao et al. (2009, 2010)
and Ramalingam et al.
(2019)

BioEG from
Lactobacillus
paracasei

Induces cell cycle arrest at G1
phase

Duarte et al. (2014)

Iturin from
Bacillus sp.

Leads the apoptosis induction and
inhibits tumor growth

Dey et al. (2015),
Trischman et al.
(1994) and Zhang
et al. (2004)

Sophorolipids
from Starmerella
bombicola

Interferes with cell migration and
intracellular ROS increase

Ribeiro et al. (2015)

RLs from
Pseudomonas
aeruginosa

Induces p53 gene Rahimi et al. (2019)

Rakicidins from
the
Micromonospora

Interferes with the invasiveness Poulsen (2011)

Lungs
cancer

Surfactin Induces cell cycle arrest at
G0/G1 phase and induces
apoptosis

Routhu et al. (2019)

Somocystinamide
A from Lyngbya
majuscula

Induces apoptosis Wrasidlo et al. (2008)

Glycolipoprotein
from
Acinetobacter M6

Decreases cell viability and
induces cell cycle arrest at G1
phase

Karlapudi et al. (2020)

Fellutamides from
Aspergillus
versicolor

Cytotoxic effects Lee et al. (2010, 2011)

Fengycin from
Bacillus subtilis

Induces cell cycle arrest at the
G0/G1 phase and promotes
apoptosis

Yin et al. (2013)

Rakicidin B from
Micromonospora
chalcea

Induces apoptosis Xie et al. (2011)

Apratoxins from
Moorea

Cytotoxic effects Thornburg et al.
(2013)

Myrmekioside
from
Myrmekioderma
dendyi

Cytotoxic effects Farokhi et al. (2013)

Dolyemycins A
and B

Anti-proliferative effects Liu et al. (2018)

(continued)
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Table 8.1 (continued)

Cancer
type Biosurfactant Activity References

Leukemia STL from
Rhodococcus
erythropolis

Induces cell differentiation,
inhibit growth and induce
morphological changes

Isoda et al. (1997b)

MEL from
Candida
Antarctica

Induces cell differentiation Isoda et al. (1997b)

Cyclic lipopeptide
from Bacillus
natto

Inhibits cell growth by inducing
apoptosis

Wang et al. (2007)

RLs Antiproliferation Shen et al. (2020)

Iturin from
Bacillus subtilis

Induces paraptosis and apoptosis,
and inhibits autophagy

Zhao et al. (2018)

Serratamolide
from Serratia
marcenses

Induces apoptosis Perez Tomas et al.
(2005)

Monoolein from
Exophiala
dermatitidis SK80

Morphological cell changes such
as cell shrinkage, membrane
blebbing, and DNA
fragmentation

Chiewpattanakul et al.
(2010)

Melanoma MEL Inhibits cell growth and induce
apoptosis

Zhao et al. (1999)

PFII from
Pseudomonas
fluorescens

Induces apoptosis Janek et al. (2013)

MEL from
Candida
Antarctica

Induces cell differentiation by
promoting apoptosis by the
condensation of chromatin, DNA
fragmentation, and sub-G1 arrest

Sudo et al. (2000)

Mixirins from
Bacillus sp.

Cytotoxic effects and inhibits
cancer growth

Zhang et al. (2004)

Colon
cancer

Surfactin and
fengycin from
B. circulans

Selective anti-proliferative
activity

Sivapathasekaran et al.
(2010)

Marine lipopeptide Anti-proliferative activity Das et al. (2015)

Rakicidins Cytotoxic effects

Serrawettin W2
from Serratia
surfactantfaciens

Selective cancer cell lines growth
suppresion

Su et al. (2016)

New molecule
from
Sphingobacterium
detergens

Anti-proliferative effects and
apoptosis activity

Burgos-Díaz et al.
(2013)

Surfactin from
Bacillus subtilis

Apoptosis induction, cell cycle
arrest and survival signaling
suppression

Kim et al. (2007)

(continued)
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RLs, the most popular glycolipid biosurfactants, were studied by Rahimi et al.
(2019). In this work, the cytotoxic effect of mono and di-RLs produced by
P. aeruginosa on MCF-7 breast cancer cells was explored. Both compounds studied
were found to induce the expression of the p53 gene (Rahimi et al. 2019). A new
glycolipid biosurfactant produced by Planococcus maritimus was evaluated as anti-
cancer agent in MCF-7 cell line with a high cytotoxicity effect (Waghmode et al.
2019, 2020). The anti-cancer capacity was associated with hydrophobic and Van der
Waal interactions; however, the mechanism involved was not presented (Waghmode
et al. 2019, 2020).

Rakicidins from Micromonospora are also known as breast anti-cancer agents.
Even though no cytotoxicity of the derivatives C and D of rakicidin (containing
small chain of lipids) was found, derivative E inhibited the cancer cell lines (Banat
and Thavasi 2019).

8.4.2 Lung Cancer

Lung cancer is a typical and frequent cancer following breast cancer (females) and
prostate cancer (males). Recently, the prevalence this type of cancer exceeded
diseases related to the heart, the primary cause of mortality being due to smoking.
Unfortunately, most lung cancer patients are diagnosed in an advanced stage. Thus,
researchers are continuously looking for improved diagnosis and better alternatives
of lung cancer treatment (Huq et al. 2009), which include the use of biosurfactants as
suitable alternative therapeutic agents. A surfactin produced by B. atrophaeus was
studied by Routhu et al. (2019). This biosurfactant presented cytotoxicity against
A549 lung carcinoma cell line (Routhu et al. 2019). The anti-cancer activity
occurred due to cancer cell inhibition, cycle progression in G0/G1, and induced
apoptosis via ROS accumulation (Routhu et al. 2019).

Wrasidlo et al. (2008) studied somocystinamide A production by Lyngbya
majuscula. Somocystinamide A is a lipopeptide type of biosurfactant displaying
considerable cytotoxicity for cell line A549. The anti-proliferative activity was due
to the induction of programmed cell death. Moreover, caspase 8 colocalization and
ceramide aggregation in treated cells was found (Wrasidlo et al. 2008).

A biosurfactant of the glycolipoprotein class produced by Acinetobacter M6
strain demonstrated anti-cancer activity against A549 cancer cells. The overall

Table 8.1 (continued)

Cancer
type Biosurfactant Activity References

Viscosin from
Pseudomonas
libanensis

Inhibits migration of metastatic
cells

Saini et al. (2008)
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results showed that cell viability decreased with increasing biosurfactant
concentrations and incubation time (Karlapudi et al. 2020).

Fellutamides biosurfactants produced by the fungus Aspergillus versicolor
presented cytotoxic properties for A549 cell lines (Lee et al. 2010, 2011). Fengycin
produced by B. subtilis was used in mice to combat the growth cell line 95D (Yin
et al. 2013). This biosurfactant can inhibit the proliferation of cancer cells due to
apoptosis via mitochondrial pathway and at G0/G1 phase, the arrest of cell cycle
(Yin et al. 2013).

Rakicidin B (FW523-3) derivative from Micromonospora chalcea has also been
described as a functional compound for A549 and 95D cell lines (Xie et al. 2011).
This biosurfactant promoted apoptosis in cell lines of lung cancer while blocking the
pathways signs of MAPK and JNK/p38. Moreover, this rakicidin inhibited cell
growth of cancer cells while at the same time induced apoptosis of the cancer cell
through the MAPK and mitochondrial routes (Xie et al. 2011).

Another type of biosurfactants for lung cancer are apratoxins analogues. For
example, apratoxins produced by Moorea producens, namely, apratoxin H and
apratoxin A sulfoxide, were studied against NCI-H460 human cell line (Thornburg
et al. 2013).

Myrmekioside, an o-alkyl-diglycosylglycerol, is a glycolipid biosurfactant pro-
duced by Myrmekioderma dendyi. Myrmekioside derivatives were used to combat
cell lines A549 and NSCLC-N6 (Farokhi et al. 2012). It was concluded that
cytotoxicity was not similar among myrmekiosides E-1, E-2, and E-3 due to their
different polarities. Peracetylated myrmekioside E-2 has a liposoluble character.
Thus, this compound can easily diffuse into lipid bilayer and cross quickly the cell
membrane (Farokhi et al. 2012). Liu et al. (2018) isolated two new cyclopepetides,
dolyemycins A and B, from Streptomyces griseus. These molecules presented action
in combating the spread of A549 cell lines. The mechanism of action of these
molecules on lung cancer cells was yet not presented (Liu et al. 2018).

8.4.3 Leukemia

Leukemia is a group of highly heterogeneous cancer types of the blood,
characterized by excessive cell proliferation of lymphoid or myeloid origin in the
bone marrow and secondary blood (Al Ageeli 2020). Leukemia can be subdivided
into different varieties, such as: (1) acute myeloid leukemia; (2) acute lymphoblastic
leukemia; (3) chronic myeloid leukemia; and (4) chronic lymphocytic. Eight percent
of cancers are from these four types of leukemia. Additionally, leukemia is the main
type of cancer in infants (Kouhpeikar et al. 2019). Besides a number of alternatives
for the therapy of leukemia, such as radiation, chemotherapy, and transplantation of
bone marrow, novel methodologies applying biosurfactants have also been explored.

STLs produced by Rhodococcus erythropolis and MELs produced by Candida
antarctica T-34, both glycolipid biosurfactants, were evaluated in human HL-60
promyelocytic leukemia cells (Isoda et al. 1997a). In this work, MELs and STLs
have shown to markedly induce HL-60 cell differentiation towards granulocytes
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instead of cell proliferation, suggesting that STLs and MELs differentiation capacity
are not by the surfactant effect (Isoda et al. 1997a). In another work from the same
research group, STL-1 from R. erythropolis SD-74 significantly inhibited U937
human monocytoid leukemia cell line growth, and also promoted variations in the
morphology (Isoda et al. 1995). STL-3 containing saturated carbon chains with even
or odd numbers induced HL-60 cell differentiation (Sudo et al. 2000). The results
proved that STL-3 on HL-60 was dependent on the of STL-3 structure (Sudo et al.
2000).

The cyclic lipopeptide biosurfactant from Bacillus natto inhibited human K562
cells progression by inducing apoptosis (Wang et al. 2007). Surfactin cyclic
lipopeptide stimulated apoptosis in leukemia K562 cancer cells by regulating the
activation of Ca2+ extracellular-related protein kinase (Wang et al. 2009).

The anti-cancer potential of RLs was studied in human chronic myeloid leukemia
K562 cells (Shen et al. 2020). The study showed an antiproliferation activity of
cancer cells, without affecting healthy blood cells. This phenomenon was related to
the stiffness of the cells, since K562 cells are characterized by a greater corticol
membrane tension than healthy blood cells (Sudo et al. 2000).

The lipopeptide iturin produced by B. subtilis was evaluated for the treatment of
chronic myelogenous leukemia, using K562 cells (Zhao et al. 2018). The
biosurfactant showed an anti-proliferative activity against cancer cells and acted
via three pathways. The existence of a caspase as an inhibitor, stimulated by iturin
paraptosis, prevented the autophagy progress, and also induced apoptosis by causing
ROS burst (Zhao et al. 2018).

The application of serratamolide (serrawettin W1) as a chemotherapeutic agent
against various cancer types was patented in 2005 by Tomas et al. (2005). The
studies were based on acute human T cell leukemia cells (jurkat clone E6-1) and
peripheral blood acute human lymphoblastic leukemia (Molt-4) (Perez Tomas et al.
2005). This biosurfactant was found to induce apoptosis, reducing cancer cell
viability, with no negative effects on healthy cell lines (Perez Tomas et al. 2005).

Chiewpattanakul et al. (2010) discovered monoolein produced by Exophiala
dermatitidis. In U937 leukemia cell lines, this molecule presents an anti-proliferative
activity, in addition to not showing toxic effects on healthy cells (Chiewpattanakul
et al. 2010). Monoolein acts by morphologically modifying the cell and its DNA,
including cell shrinkage, membrane blebbing, and DNA fragmentation
(Chiewpattanakul et al. 2010).

8.4.4 Melanoma

Melanoma is a destructive type of skin cancer with no fast improvements in novel
treatments. This concern raises the need to discover new therapeutic agents. Some
studies from the literature have shown that biosurfactants induce apoptosis and
growth arrest in melanoma tumor cells. The work of Zhao et al. (1999) corresponds
to the first evidence that MELs significantly reduce the growth and apoptosis of B16
melanoma cells. In the following work of Zhao et al. (2000), MELs were used as a

182 F. F. Magalhães et al.



potent inhibitor for the proliferation growth of mouse melanoma B16 due to the
sub-G1 arrest, chromatin condensation, and fragmentation of DNA, thus inducing
B16 cell apoptosis (Zhao et al. 2000). MELs from C. Antarctica induced cell
differentiation by promoting apoptosis via destruction of DNA and chromatin
condensation, and sub-G1 arrest (Coelho et al. 2020). These findings indicate that
MELs biosurfactants induce the differentiation markers expression of melanoma
cells. In addition, an improved melanin production was obtained, showing that
MELs induced both cell differentiation and apoptosis (Coelho et al. 2020; Dey
et al. 2015; Shen et al. 2020).

Other biosurfactants with biological activity for melanoma cancer cells include
pseudofactin I+I (PFII), a cyclic lipopeptide biosurfactant from Pseudomonas
fluorescens BD5 (Janek et al. 2013). This type of surfactant was applied to explore
the impact of A375 and PFII on cells of melanoma (Janek et al. 2013). Melanoma
A375 cells exposed to PFII had an apoptotic death through DNA fragmentation. The
authors concluded that the death of melanoma A375 cell was due to permeabilization
of plasma membrane through the surfactant micelles (Janek et al. 2013). Abdelli
et al. (2019) studied a surfactin produced by Bacillus safensis and its anti-cancer
activity against B16F10 mouse melanoma cells (and T47D breast cancer cells). The
results showed potential cytotoxic activity against both cell lines (Abdelli et al.
2019).

8.4.5 Colon Cancer

Colon cancer normally starts from benign lesions, and due to the accumulation of
DNA damage the lesions become malignant (Dienstmann et al. 2017). Besides many
efforts to develop a more effective therapeutic, this type of cancer continues to be the
main life threatening malignancy (ten Hoorn et al. 2018). Thus, novel effective
treatment approaches for fighting colon cancer are mandatory, in which
biosurfactants may play a role. In this way, three different acylpeptides (itaurin
based-biosurfactants), such as mixirins A (C48H75N12O14 (18 unsaturations)), B
(C45H69N12O14), and C (C47H73N12O14) produced by a Bacillus sp. were evaluated
for anti-tumor activity in colon tumor cells (HCT-116) (Zhang et al. 2004).
Mixirins A, B, and C demonstrated to be cytotoxic and reduced the progression of
human colon cancer cells (HCT-116), variant A being the most effective (Zhang
et al. 2004).

Surfactin and fengycin isoform lipopeptides produced by marine bacterium
B. circulans DMS-2 presented selectively to fight HT-29 and HCT-15 human cells
(Sivapathasekaran et al. 2010). The effect of surfactin produced by B. subtilis was
evaluated in the anti-tumor activity of a human colon carcinoma cell line, LoVo cells
(Kim et al. 2007). Surfactin strongly inhibited the propagation of these cells through
survival signaling suppression, cell cycle arrest, and apoptosis induction. In this
work, the anti-proliferative effect of this biosurfactant was due to the inhibition of
the protein kinase (extracellular) and phosphoinositide 3-kinase/Akt stimulation
(Kim et al. 2007).
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A marine biosurfactant with a new isoform was evaluated as an anti-cancer agent
in human colon adenocarcinoma cell line HT-29 (Das et al. 2015). The results
presented for the first time an anti-proliferative activity of biosurfactants in
nanomolar concentrations by programed cell death, and at the same time, with no
antioxidant activity (Das et al. 2015).

Serrawettin W2 produced by S. surfactantfaciens showed anti-tumor activity
against human colon cancer cells CaCo2 (Su et al. 2016). This biosurfactant can
suppress the growth of cancer cell lines, without negatively affecting the viability of
healthy cell lines (Su et al. 2016). Burgos-Díaz et al. (2013) studied a new
biosurfactant produced by Sphingobacterium detergens against CaCo2 human
colon cancer cells. The results showed an anti-proliferative effect and apoptosis
activity on cancer cells. However, more studies are required to fully understand the
apoptosis activity of this biosurfactant (Burgos-Díaz et al. 2013). Finally, surfactin
from B. subtilis demonstrated a reduced proliferative potential in LoVo cells by
apoptosis initiation, cell cycle arrest, and survival signaling suppression (Zhang et al.
2004).

8.5 Biosurfactants as Drug Delivery System (DDS)

A DDS is designed to induce a therapeutic compound introduction into the body,
while improving the safety and efficacy (Jain 2008; Gangwar et al. 2012). The two
main characteristics of controlled DDSs are: (1) an optimal drug loading capacity,
which improves drug bioavailability and reach the target; and (2) a controlled drug
release (Jain 2008; Gangwar et al. 2012). Since chemotherapy is limited by the anti-
cancer drugs’ poor penetration into tumor tissues, along with their severe side effects
on healthy cells, novel biosurfactants-based DDS constituted by liposomes,
niosomes, and nanoparticles have been developed (Ag Seleci et al. 2016).

8.5.1 Liposomes

Liposomes are bilayered lipid vesicles useful for hydrophobic and hydrophilic drugs
encapsulation, sustained drug release, degradation protection, and therapeutic effi-
cacy increase, and have low adverse effects. The performance of a gene transfection
from a cationic liposome was improved by MEL-A. MEL-liposome (MEL-L)
comprised of 3β-[N-(N0,N0-dimethylaminoethane)-carbamoyl] cholesterol
(DC-Chol), dioleoyl phosphatidylethanolamine (DOPE), plus MEL-A exhibited
efficiency in DNA transfection into cells through enhancing association of
lipoplexes among serum cells (Igarashi et al. 2006; Jain et al. 2014; Gao and
Huang 1991; Vigneron et al. 1996). Apart from being described as a useful vector
for transfection of DNA, clinical trials with advanced melanoma patients by injec-
tion of DNA-liposome complexes into tumor nodules occurred without
complications; in metastatic melanoma patients treated with catheter injection of
DNA-liposomes into tumor masses were well tolerated, displaying the safety of
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therapeutic direct gene transfer in humans (Farhood et al. 1994, 1995; Zhou and
Huang 1994; Nabel et al. 1993, 1994).

Maitani et al. (2006) produced 300-nm-sized aggregated liposome-plasmid DNA
(pDNA) complexes (lipoplexes) through the addition of biosurfactants, such as
β-sitosterol β-D-glucoside and MEL-A, to cationic liposomes, which can be applied
in intratumoral and intravenous injections. Sit-G-liposome exhibited potential as a
vector in gene-based therapy, since it demonstrated low cytotoxicity and displayed
high luciferase transfection of gene performance in the human serum
hepatoblastoma HepG2 cell line (Maitani et al. 2006; Hwang et al. 2001).

Overall, liposomes drug delivery has gathered attention in cancer therapy. In fact,
liposomes became the first nanoparticles to reach clinical trials, mainly in breast
cancer therapy (Varshochian et al. 2014). Furthermore, triggered release liposomes
have been introduced in order to guarantee successful treatments through an efficient
and immediate drug release in tumor tissues due to: (1) inner stimulants (pH and
enzyme); and (2) outer stimulants (local heating, ultrasound, magnetic field, light)
(Varshochian et al. 2014).

8.5.2 Niosomes

Niosomes are nonionic biosurfactant bilayer vesicles formed by biosurfactants with
or without combinations of cholesterol or diverse lipids, whose stability, low-cost,
biodegradability, biocompatibility, nonimmunogenicity, and structural characteriza-
tion flexibility reinforce their potential as drug delivery vehicles (Ray et al. 2018).
Their amphiphilic nature is essential for encapsulating lipophilic or hydrophilic
drugs, where the hydrophilic core is the ideal medium for incorporating hydrophilic
drugs and hydrophobic drugs are predominantly confined to the lipid layer
(Fig. 8.15) (Ray et al. 2018). The properties of niosomes are adjustable by changing
the vesicles’ composition, surface charge, size, lamellarity, tapped volume and
concentration. However, niosomes’ stability depends on the biosurfactant type,
encapsulated drug nature, storage temperature, detergents, membrane-spanning

Hydrophilic head Hydrophobic tail

Hydrophobic drug

Hydrophilic drug

Amphiphilic drug

Fig. 8.15 Graphic illustration of a niosome
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lipids use, interfacial polymerization of surfactant monomers in situ, and charged
molecule inclusion (Ray et al. 2018; Karim et al. 2010; Naughton et al. 2019).

Wu et al. (2017) revealed that surfactin could be included into nano-formulations,
such as niosomes, since it effortlessly positions itself inside their hydrophobic/
hydrophilic core-shell structure because of its amphiphilic structure and surface-
active property (Wu et al. 2017). Recently, Haque et al. (2017) showed
sophorolipids-based niosomes for amphotericin B (AmB) delivery against
C. albicans in a cost-effective way (Haque et al. 2017).

8.5.3 Nanoparticles

Microbial biosurfactants are growing as exciting options for quick nanoparticles
synthesis (Kasture et al. 2008; Sharma et al. 2009; Reddy et al. 2009a; Rodrigues
2015). Kasture et al. (2008) described silver nanoparticles synthesis using
sophorolipids biosurfactants as reducing and capping agents (Kasture et al. 2008).
Reddy et al. (2009a, b) showed that surfactin can be used as a stabilizing agent for
silver and gold NPs synthesis (Reddy et al. 2009a, b). Palanisamy and Raichur
(2009) reported an eco-friendly alternative method, using RLs for microemulsion
synthesis of spherical nickel oxide NPs (Palanisamy and Raichur 2009). Maity et al.
(2011) displayed a methodology based on surfactin reverse microemulsion for
nanocrystalline brushite particles (nanospheres and nanorods) synthesis (Maity
et al. 2011).

Surfactin combined with other chemotherapeutic drugs can be loaded into nano-
formulations and used as an adjuvant in anti-cancer treatment (Wu et al. 2017).
Taking this into account, Huang et al. (2018) took advantage of the anti-cancer drug
doxorubicin (DOX) to develop DOX-loaded surfactin nanoparticles (DOX@SUR),
which presented higher cytotoxicity for resistant human DOX breast cancer MCF-7/
ADR cells than free DOX, by exhibiting an increased cellular acceptance besides
diminished cellular efflux due to inhibition of the P-glycoprotein expression (Huang
et al. 2018). Furthermore, DOX@SUR presented higher in vivo tumor suppression
and lower adverse effects in MCF-7/ADR-bearing nude mice (Huang et al. 2018).
Consequently, DOX@SUR displayed potential as an anti-cancer drug carrier to
reverse multidrug resistance in cancer chemotherapy (Huang et al. 2018). Therefore,
surfactin nano-formulations have significant potential in anti-cancer nanomedicine
treatment. However, their full potential still remains unexplored (Wu et al. 2017).

8.6 Conclusions and Future Challenges

The ability of biosurfactants to act on cancer cells, without negatively affecting
healthy cells, makes their use as anti-cancer agents an excellent alternative to current
treatments, especially when compared to chemotherapy. However, their application
in this field is still a challenge. Firstly, the immensity of microorganisms and their
metabolites leads to the continuous discovery of new biosurfactants, with the
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existing ones being unexplored in what concerns their potential of application.
Secondly, only a few studies were dedicated to understanding the action mechanisms
of biosurfactants. Furthermore, some studies used semi-purified fractions with
biosurfactants, affecting the interpretation of results and the understanding of the
underlying mechanisms. Lastly, many of the existing studies are in the stage of
in vitro testing with cell lines. In order to reach the in vivo stage, a significant amount
of work is still required up to their final approval by the respective health regulatory
agencies.

DDS using biosurfactants are an additional area with relevant therapeutic poten-
tial. Additional research on the interactions between DDS constituents and DDS
interaction with cells is still required. Overall, this field is still in its infancy with a
small number of works reported up to date. However, given the promising results
reported, this field of research will certainly increase in the following years.
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Biosurfactants for Oil Pollution
Remediation 9
Huria Rizvi, Jitendra Singh Verma, and Ashish

Abstract

Petroleum industries are considered as major energy resources, but as simulta-
neously producing large amounts of hydrocarbon wastes that are discharged into
soil and water bodies. Environmental pollution due to exponential development
of the petrochemical industries was a major concern in the twentieth century. Oil
and oil products contamination, which belong to the carcinogenic and neurotoxic
organic pollutants family, pose a severe threat to general health of public, choke
aquatic life to death, and accumulate in soil and disturb the ecosystem. Numerous
different technologies have been used for the removal of hydrocarbon/oil
pollutants from polluted sites, such as physical, chemical, and biological
methods. Conventional physical and chemical methods can only immobilize at
site or transfer’s contaminants from one medium to another and can even result in
production of toxic by-products. Hence, petroleum oil and petroleum
hydrocarbons cannot be entirely eradicated with physical and chemical methods.
Thus, focus is being given to biological methods generally. Biosurfactants are
considered as a promising alternative for the removal of oil pollutants due to their
amphiphilic nature: they have the capability to reduce interfacial tension, disperse
oil particles, high surface activity, lower toxicity, biodegradability and environ-
mental friendliness, and are active under extreme conditions of salinity, pH and
temperature. This chapter briefly discusses how microorganisms produce
biosurfactant when they feed on insoluble substrates such as oil/petroleum
waste. It also reveals the biosurfactant mode of action to remove petroleum
waste and its derivatives (heavy metals, PAHs, etc.) from oil spills, cleaning
pipelines, and containers. Biosurfactants emerge as potential biomolecules in
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petroleum industry waste bioremediation and need to be scaled up for the
upcoming years.

Keywords

Biosurfactant · Hydrocarbon · Bioremediation · Oil waste · Oil spill

9.1 Introduction

The rapid deterioration of environmental condition due to fast industrialization,
urbanization and increasing population pressure is a major concern all over the
world. Petrochemical industries produce large amounts of hydrocarbon wastes that
are discharged in soil and water bodies. Environmental pollution from the increased
expansion of the petrochemical industries along with associated chemical industries
was a major concern in the twentieth century (Okada 2002). Petroleum products are
considered as the main energy source for various industries, chemical factories and
routine life. For various pollutants soil and water bodies are the most common sites
for disposal that could disturb the nutrient value and biodiversity of the ecosystem.
Soil and water contamination with these hydrocarbon pollutants occurs by different
routes, mainly through pipelines and storage tanks leakage, accidental spills, and
inadequate waste disposal (Hill 2009). It was reported that the amount of crude oil
seepage was 600,000 metric tons every year with 200,000 metric tons uncertainty
range per year worldwide (Das and Chandran 2011). Panagos et al. (2013) reported
around 342 thousand identified contaminated sites with an estimation of 2.5 million
potential contaminated sites found in European countries. Petroleum hydrocarbons
and heavy metals are the main pollutants responsible for approximately 60% soil
contamination. Hydrocarbons pollutants include alkanes, alkenes, cycloalkanes,
aromatic compounds, PAH, asphaltenes, heterocyclic nitrogen, etc. Due to these
compounds’ high toxicity value and their ability to accumulate and persist in nature,
they are considered to be toxic to environmental and human health. Oil pollutants
strongly enhance soil hydrophobicity, which induces water repellency and reduction
in moisture retention, and thus, the natural flow pattern of water and air destroyed.
Petroleum contaminants cause substantial changes in soil properties, such as struc-
tural, physicochemical, and biological properties (Das and Chandran 2011). The
accumulation of oil/petroleum pollutants and their derivative pollutants have detri-
mental effects on the ecosystem in a global level because of their toxic nature and
very low biodegradability, causing disturbances in the food chain and the ecosystem
(Haritash and Kaushik 2009).

Numerous technologies were developed and used for removal of hydrocarbon
pollutants from contaminated sites, such as physicochemical (soil washing, soil
vapor extraction and centrifugation, etc.) or biological methods (in situ and ex situ
remediation). Conventional physical and chemical methods have some limitations in
the removal of spilled oil, such as removal by simply transferring pollutants from
one medium or site to another that have a risk of producing toxic by-products.
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Hence, physiochemical methods cannot provide a complete solution for crude oil
cleanup. Thus, biological alternatives for bioremediation have received more atten-
tion lately. The physical methods used for pollutants removal involve further
processing and are not economical due to relatively high application cost as com-
pared to other remediation methods (Morgan and Atlas 1989). Pollutants removal by
biodegradation is encouraged in the current era due to increasing public awareness
towards more environment friendly methods. Bioremediation through
microorganisms and plants offer advantages over conventional physicochemical
methods as they are practical, economical, and do not leave behind any toxic
by-products. Bio-remedial methods do not require any other treatment and also
help in restoring the natural flora and fauna of contaminated sites (Mani and
Kumar 2014).

Biosurfactants are considered as one of the promising biomolecules for the
remediation of petroleum pollutants from the ecosystem. Biosurfactants are amphi-
philic compounds which have the ability to decrease interfacial tension and disperse
oil particles into small droplets, breaking them into non-toxic compounds (Ubalua
2011). Among different types of biosurfactants, rhamnolipid, sophorolipid, and
surfactin have been widely used for the bioremediation of hydrocarbon/oil from
contaminated sites. Microbial species such as Pseudomonas, Bacillus, and Candida
have been generally used for biosurfactant production and subsequently for oil
degradation, while many other microbial species were also reported for the same.
Biosurfactants have several advantages compared to chemically derived surfactants,
such as biodegradability, nontoxicity, biocompatibility, stability under stress
conditions (pH, temperature and salinity), useful for bioremediation particularly
petroleum-contaminated soils and water bodies (De et al. 2015).

This chapter provides an inclusive knowledge of various sources and hazards of
petroleum oil pollutants to the environment and its clean up method through
biosurfactants, which play a significant key role in oil remediation. This is because
they have potency as dispersion and remediation agents, are nontoxic in nature, and
have high biodegradability (Singh et al. 2009). Biosurfactants have very wide
applications in different industrial processes and can hold large market value in
the future. They were used in storage tanks oil residue removal, enhanced oil
recovery, oil spills cleanup, and soil and water remediation (Silva et al. 2014).
Biosurfactants having diverse structures with useful properties are of great industrial
potential. Biosurfactants can improve the availability of low-solubility compounds
such as petroleum oil pollutants, and facilitate mobilization of hydrophobic
compounds within microbial cells as a substrate (Maier 2003).

This chapter also reveals the potential role and applications of biosurfactants,
focusing on oil pollution and bioremediation processes, and provides brief informa-
tion about the biosurfactants’ mode of action on oil spills.
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9.2 Oil Pollution and Its Remediation

9.2.1 Oil Pollution

Petroleum oil and petroleum oil derivative products as well as waste oil sludge from
petroleum refineries are major pollutants of the environment. The most important
and common path for petroleum hydrocarbon contaminants to enter into soil and
marine systems are through seepage from oil deposits and oil explorations where
marine environments serve as the biggest reservoirs and ultimate receivers of
pollutants (Ossai et al. 2019).

Averages of 2500 accidental petroleum substances leakages are recorded every
year in Poland (Hewelke et al. 2018). Oil spills due to earthquakes, storms, human
error, or mechanical failure build-up to huge total losses. Over the period
1970–2018, 5.86 million metric tonnes loss of petroleum hydrocarbon into the
marine environment by oil tanker spill was reported (http://www.itopf.org/
fileadmin/data/Documents/Company_Lit/Oil_Spill_Stats_2018.pdf).

Häder et al. (2020) estimated that 600,000 metric tonnes oil per year are released
into marine environments due to natural seepage, which account for 47% of total
(Häder et al. 2020). Hydrocarbons present in petroleum oil comprise of a variety of
organic substances, mainly hydrocarbons along with some mixture of oxygen-,
nitrogen-, and sulfur-containing organic compounds and some inorganic
components, i.e., metals (Varjani and Upasani 2017). Various hydrocarbon
compounds are present in petroleum oil that can be categorized as aromatic
compounds, including polycyclic aromatic hydrocarbons (PAHs) such as naphtha-
lene; monoaromatic, e.g., ethylbenzene, toluene, benzene, xylene; paraffins or
aliphatic saturated compounds, e.g., cycloalkanes, n-alkanes, unsaturated alkenes,
alkynes; asphaltenes including esters, fatty acids, ketones, phenols, porphyrins;
cardaxoles, pyridines, sulfonates, amides, tars and waxes (Ossai et al. 2019). Petro-
leum oil non-hydrocarbon content consists of sulfur compounds such as thiols,
sulfides, disulfides, dibenzothiophene, benzothiophene and naphthobenzothiophene;
esters, ethers, carboxylic acids, furans, and ketones; oxygen compounds include
alcohols, and nitrogen compounds include benzo(a)carbazole, carbazole, pyridine,
pyrrole, indole, benzo(f)quinolone, nitriles, quinoline, and indoline (Ossai et al.
2019).

These hydrocarbons pose serious threat to health and affect all life in the
environment directly or indirectly, through population dynamics alteration and by
disrupting ecological interaction within ecosystem. Hence, attention has been
focused on the development of alternative technologies and methods for the elimi-
nation of petroleum pollutants (Effendi et al. 2018).

9.2.2 Oil Remediation in Polluted Environments

It is very well known that the presence of petroleum oil pollutants in the environment
poses a massive threat to ecological balance. Remediation techniques play a crucial
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role in the restoration of environment by cleaning containment, removal, and
destruction of petroleum oil hydrocarbons. The selection of remediation methods
deployed depends mainly on the properties of contaminants and conditions of
contaminated sites along with microbial community present or required augmenta-
tion considered.

Remediation methods used for hydrocarbon/oil contaminated sites
(Chukwunonso et al. 2020):

1. Containment: Containment of the pollutants can be achieved by excavation and
disposal either by on-site or off-site landfill; stabilization and immobilization by
chemical treatment; by physical methods, e.g., site cover, vertical barriers,
booms, skimmers, liners, solidification, vitrification, and encapsulation.

2. Separation method:
(a) Oil/water separation can be achieved by chemical dosing, gravity separation,

reverse osmosis, ultra-filtration, micro-filtration, air-floatation, membrane
bioreactor, electrocoagulation, electro-floatation, freeze/thaw, and
adsorption.

(b) Oil/soil separation can be achieved by washing, flushing, steam stripping,
vacuum extraction, solvent extraction, particle separation, ultrasound
assisted-separation, electrokinetic process, microwave heating, radio fre-
quency heating, thermal desorption, and air microbubbles.

3. Destruction method: This method is achieved by the following technologies:
(a) Biological remediation technologies, such as bioremediation, which includes

biostimulation, bioaugmentation, bioventilation, and phytoremediation,
which includes phytostabilization, phytodegradation, and photovolatization.

(b) Chemical remediation, such as solidification, dehalogenation, emulsification,
chemical oxidation reduction, ultraviolet oxidation, dispersion, activated
carbon treatment, supercrtitical fluid oxidation, sonochemical process, acous-
tic cavitation, phocatalytic process, nanoremediation.

(c) Thermal remediation, e.g., pyrolysis, incineration, and microwave-assisted
low-temperature remediation (Lim et al. 2016; Luo et al. 2019).

These techniques when used in situ or ex situ or both along with chemical,
physicochemical, biological, electric, thermal, ultrasonic, and electromagnetic treat-
ment techniques are helpful in the complete destruction of pollutants in the polluted
environment. Therefore, the next section is focused on the various treatment
methods mentioned in this section.

Physical and chemical methods have certain major disadvantages, such as unsuit-
able for weathered soil, high treatment cost, and the chemical oxidation treatment of
soils making them unfit for vegetation, or further bioremediation in the future (Lim
et al. 2016).

Bioremediation is an uncomplicated, sustainable, environment-friendly, and eco-
nomical method for accelerating the decay of petroleum pollutants by
microorganisms (fungi, yeast, and bacteria). Microorganisms degrade and neutralize
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crude oil and hydrocarbon pollutants in the soil pore into harmless or simpler
compounds (e.g., CO2 and H2O) through oxidation under aerobic conditions
(Chukwunonso et al. 2020; Lim et al. 2016; Prasad and Aranda 2018).

Bioremediation methods are efficient in degrading oil contaminants and various
organic contaminants completely without leaving behind any detrimental effects on
the environment. Besides, biological treatment methods are universally accepted by
the public as they are aesthetically pleasing and an economical alternative to other
remediation methods. However, bioremediation methods require long time for
treatment, it can take from months to many years to achieve acceptable removal
efficiency results. It was also noticed that high concentrations of oil pollutants
decrease the microbial activity, which resulted in very low or insufficient degrada-
tion efficiencies (Chukwunonso et al. 2020).

9.3 Biosurfactants

Biosurfactants are amphiphilic compounds produced by microbes which act as
emulsifying agents or surface-active agents with an array of biochemical structure
such as fatty acids, glycolipids, lipopeptides, phospholipids, particulate, and poly-
meric structures (Effendi et al. 2018; Huszcza and Burczyk 2003). Surfactants are
surface-active agents which help in reducing the surface tension and interfacial
tension at interfaces such as water-oil and air-water (Akbari et al. 2018).
Biosurfactants mainly produced by microorganism using low-cost substrates in
large quantities. They are an attractive alternative compared to synthetic chemical-
derived surfactants because of their bioavailability, biodegradability, non-toxicity,
and high foaming capability. These properties make them safe and attractive com-
pared to synthetic chemical-derived surfactants, especially in cosmetics, food items,
and pharmaceuticals (Akbari et al. 2018).

Biosurfactants have achieved much attention from researchers worldwide
because of their potential for bioremediation of petroleum pollutants and heavy
metal removing capability from water and soil (Dell’Anno et al. 2018; Jimoh and
Lin 2019). Biosurfactants enhance the dispersal of hydrophobic pollutants in the
aqueous phase and raise its bioavailability to microbes, with subsequent eradication
of such contaminants through biodegradation (Silva et al. 2014).

Glycolipids, one of the most common biosurfactant type are made up of
carbohydrates attached to long chain of aliphatic fatty acids or hydroxy aliphatic
acid. They comprise of trehalolipid, rhamnolipid, sophorolipid, trehalose
dimycolates, and trehalolipid (Effendi et al. 2018). Biosurfactants have potential
applications in the bioremediation of hydrocarbons, heavy-metal-contaminated
environments such as surfactin, syringafactin, arthrofactin, lichenysin, emulsan,
liposan, biodispersan, streptofactin, saponin (Dell’Anno et al. 2018; Effendi et al.
2018). Numerous studies have been done and reported for the removal of
hydrocarbons and heavy metals by different biosurfactants (Table 9.1).
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9.3.1 Synthesis of Biosurfactants

Different moieties of biosurfactant and their linkage were synthesized by following
possibilities (Satpute et al. 2010):

1. Hydrophilic and hydrophobic moieties synthesis by two independent de novo
pathways.

2. Substrate-induced synthesis of hydrophobic moiety and hydrophilic moiety
synthesized by de novo pathway.

3. Substrate-dependent synthesis of hydrophilic moiety and hydrophobic moiety
synthesized by de novo pathway.

4. Hydrophilic and hydrophobic moieties both synthesized by substrate dependent
synthesis.

9.3.2 Biosurfactant Role in Oil Degradation

Biosurfactants can elevate the hydrocarbon degradation by three ways: mobilization,
solubilization, and emulsification. Hydrocarbon removal mechanism of
biosurfactant is affected by its concentration and molecular mass. Biosurfactants
with low molecular mass remove hydrocarbons by mobilization when their concen-
tration is below critical micelle concentration (CMC) and by solubilization when

Table 9.1 Biosurfactants used for the remediation of hydrocarbons and heavy metals

Anthracene Rhamnolipids Sphingomonas sp. Cui et al. (2008)

Rhamnolipids Pseudomonas sp.

Phenanthrene Rhamnolipids Sphingomonas sp. Gottfried et al. (2010)

Rhamnolipids Paenibacillus sp. Pei et al. (2010)

Rhamnolipids Pseudomonas aeruginosa ATCC
9027

Shin et al. (2005)

Rhamnolipids Pseudomonas putida ATCC
17,484

Dean et al. (2001)

Pyrene Rhamnolipids Pseudomonas aeruginosa 57SJ Bordas et al. (2005)

Rhamnolipids Pseudomonas aeruginosa SP4 Jorfi et al. (2013)

Crude oil Rhamnolipids Pseudomonas aeruginosa Nikolopoulou et al.
(2013)

Glycolipids Pseudozyma sp. NII 08165 Sajna et al. (2015)

Glycolipids Candida bombicola Kang et al. (2010)

Heavy metals Di-
rhamnolipids

Pseudomonas aeruginosa BS2 Juwarkar et al. (2008)

Lipopeptide Bacillus subtilis Mülligan et al. (2001)

Sophorolipid Torulopsis bombicola Mülligan et al. (2001)

Saponin Plant-derived biosurfactant Chen et al. (2008)

Lichenysin B. licheniformis Zouboulis et al.
(2003)
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their concentration is above CMC. High-molecular-mass biosurfactants remove
hydrocarbons by emulsification (Pacwa-Płociniczak et al. 2011).

During mobilization of hydrophobic compounds (oil/hydrocarbons),
biosurfactants decrease the surface and interfacial tension. In reduced interfacial
force, biosurfactants increase the contact angle and this will result in reduction of
capillary force that hold oil and soil together. Solubilization of hydrocarbon takes
place when biosurfactant concentration is above critical micelle concentration.
During solubilization, biosurfactant molecules link together and form micelle,
thereby increasing the solubility of oil. In biosurfactants, hydrophobic ends are
connected together, while hydrophilic ends are exposed towards aqueous phase,
resulting in the formation of micelles. Thus, a suitable environment for hydrophobic
molecules is created by the micelle in its interior side. The process of micelle
formation by incorporation of these molecules is called solubilization.

The process of emulsion formation in which very fine droplets of oil get
suspended in water is called emulsification. It was reported that biosurfactants
with high molecular weight show efficient emulsification which are used as a
stimulant additive for removal of oil or oil-derived contaminants from the environ-
ment (Pacwa-Płociniczak et al. 2011; Urum and Pekdemir 2004).

9.4 Application of Biosurfactants Used for Oil Remediation

Biosurfactants and biosurfactant-producing microorganisms have great application
in bioremediation as they are economically feasible, less toxic to environment and
living beings, and biodegradable. Biosurfactants are used in various industries, such
as agrochemicals, petrochemicals, mining and metallurgy (mainly bioleaching),
cosmetics, fertilizers, foods and beverages, pharmaceuticals, etc. (Fig. 9.1). Also,
they play a significant role in enhanced oil recovery and bioremediation of heavy
crude oil pollutants because of their high interfacial and surface-tension-decreasing
ability (Volkering et al. 1997). Biosurfactants are widely used in remediation of
petroleum pollutants in soil and ocean spill, biodegradation of toxic contaminants
such as PAHs (polycyclic aromatic hydrocarbons) and MEOR (microbial enhanced
oil recovery), in cleaning tanks for oil storage, for enhancing oil flow via pipelines, in
bioremediation of heavy metals, etc. (Batista et al. 2006; Behera and Prasad 2020).

9.4.1 Oil-Polluted Soil Bioremediation

The various processes of petroleum industries such as oil reserves exploration,
storage, transportation, and crude oil processing lead to acute soil contamination
due to improper leakage from storage tanks, improper disposal, oil spills due to
mechanical or human error, etc. Oil-contaminated soil poses a high risk to public
health and environmental imbalance, which needs to be addressed by remediation.
Bioremediation of oil components and organic compounds has raised serious con-
cern due to the presence of various toxic compounds such as PAHs, benzene, and its
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derivatives (Wang et al. 2019). High molecular weight of these compounds makes
them insoluble or of very low solubility in water, thus preventing the natural
biodegradation process (Erdogan and Karaca 2011). Biosurfactants emulsification
property can enhance their solubility, reduce surface tension and increase the
displacement of hydrophobic molecules from soil particles (Banat et al. 2000). In
this way insoluble substrate (oil) gets solubilized and becomes easy to consume by
microorganisms as a carbon substrate source as shown in Fig. 9.2, which is then
decomposed and converted to nontoxic end products, such as CO2, CH4, and H2O.

9.4.2 Bioremediation of Marine Oil Spills and Petroleum
Contamination

Hydrocarbons have been part of the marine ecosystem for thousands of years. The
Oil Tanker Spill Statistics 2019 has recently updated the total volume of oil lost into
the marine environment in 2019 was approximately 1000 tonnes and the same
quantity was recorded in 2012 (https://www.itopf.org/knowledge-resources/data-
statistics/statistics/). The major causes of oil spills are drilling rigs and oil wells,
spill of crude oil during transportation, off-shore platforms, and oil refineries
products and their waste. These oil spills in the ocean have a severe negative effect
on marine life. Oil spills have always wreaked havoc in the organisms present in
affected marine environments. Massive causalities of marine life involving fish,
coral reefs, otters, seals, and birds have often been witnessed (Patel et al. 2019).
Crude oil forms a viscous surface slick, blocking oxygen exchange and sunlight
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Fig. 9.1 Applications of biosurfactants
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penetration into water (Freitas et al. 2016). In the time of high wind and tide in ocean,
oil spillage invades the coastal area, often wreaking havoc on marine life (Wang
et al. 2014). The toxic effect of oil slick on aquatic life goes way further than
anticipated perils. Therefore, mitigation interventions are crucial to get rid of thick
oil in order to maintain ecological aquatic balance and environmental health
(Brussaard et al. 2016).

The spilled oil which cannot be degraded physically/chemically can only be
completely broken down through biodegradation processes. Thus, biodegradation
is a key option for the eradication of oil and its derivative pollutants from the
environment which remains on the surface after recovering and minimize the
environmental impact of a spill (Prince et al. 2003). Biosurfactants increase the
dispersal of hydrophobic pollutants (oil/hydrocarbon) in the aqueous phase and this
causes an increase in their bioavailability as substrates for microorganisms, with
eventual removal of such contamination through bioremediation without disturbing
the aquatic ecosystem.

Fig. 9.2 Illustration of biosurfactant action on oil/hydrocarbon. (1) Microorganisms get attached to
soil surface in which oil is trapped, producing biosurfactants. (2) Removal of oil droplet from soil by
entrapping in micelles. (3) Detachment of hydrocarbon and biosurfactant: this droplet is available as
substrate to microbes
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9.4.3 Cleaning of Oil Tanks and Pipelines

Biosurfactants have been successfully used in the removal of oil sludge deposited in
storage tanks and to improve heavy crude oil transportation process though pipelines
(De Almeida et al. 2016). Different types of biosurfactants (as shown in Table 9.2)
degrade such oil pollutants and hydrocarbons by increasing microbial accessibility,
increasing their solubility in water, and boosting oil displacement (Vijayakumar and
Saravanan 2015). Biosurfactants lower the interfacial tension between oil and
surface of pipelines and oil storage tanks, which raises oil availability for microbial
uptake and mobilize it to detach from the surface of tank and pipe line this leads to
their cleaning (Pacwa-Płociniczak et al. 2011).

9.4.4 Bioremediation of Heavy Metals and Toxic Pollutants

Industrialization and urbanization lead to excessive accretion of heavy metals
present in petroleum hydrocarbon pollutants in the soil which causes serious threat
to the environment (Pandey and Madhuri 2014). In the petroleum industry, the

Table 9.2 Different type of biosurfactant produced during bioremediation process

Biosurfactant
group Microorganisms Applications References

Rhamnolipids Indigenous soil
microflora

Degrading petroleum
hydrocarbon

Benincasa (2007)

Glycolipid Nocardiopsis sp.
Arthrobacter sp.
Corynebacterium
sp.
R. wratislaviensis
BN38

Enhancement of the
biodegradation of
hydrocarbons in soil and
marine environment

Pacwa-Płociniczak
et al. (2011) and
Franzetti et al. (2010)

Lipopeptides Bacillus
licheniformis
Bacillus subtilis
N. alba strain
MSA10

Enhancement of oil recovery;
removal of heavy metals from
contaminated soil, sediment,
and water

Chen et al. (2009),
Bennur et al. (2015)
and Jenneman et al.
(1983)

Surfactin Indigenous soil
microflora

Degrading diesel oil Whang et al. (2008)

Polymeric
biosurfactants

Saccharomyces
cerevisiae
Candida
lipolytica

Stabilization of hydrocarbons
in water emulsions

Cirigliano and
Carman (1985) and
Cameron et al. (1988)

Sophorolipid Indigenous soil
microflora

Degradation of crude oil,
naphthalene, hexadecane,
pristane

Kang et al. (2010)

Fatty acids Acinetobacter sp.
Rhodococcus
erythropolis

Increasing the tolerance of
bacteria to heavy metals

Appanna et al. (1995)
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generation of fuel from source rocks results in heavy metal pollution. The heavy
metal contamination is prominent at terminals, tanker accidents, spills, offshore oil
exploration, industrial land sources, and recreational and agricultural development.
The removal of heavy metals such as Cd, Cu, Mn, Fe, Ni, Pb, and Zn is considered as
one of the important areas in remediation research (Sose et al. 2018). Biosurfactants
accumulate on the surface and form hemi-micelles at soil and air interface. These
hemi-micelles remove heavy metals by reducing the interfacial tension and electro-
static attraction, which results in the incorporation of heavy metals into the micelle
and ultimately their removal from the surface (Ochoa Loza 1998).

Persistent toxic organic pollutants found in oil waste, such as PAHs (pyrene,
anthracene), are carcinogenic and exposure to such pollutants has been linked to
cardiovascular disease and poor fetal development. They are hydrophobic
compounds and their water solubility reduces with the incremental number of
rings in their molecular structure, which aggravates the low bioavailability of these
compounds, making biodegradation of PAHs difficult. Solubility in water of PAHs
can be enhanced by addition of biosurfactants as it increases the surface area of
hydrophobic water-insoluble compounds contributing in bioremediation of toxic
pollutants (Yin et al. 2009).

9.5 Conclusion

Due to the rapid growth of human population, the demand for petroleum and
petroleum-based products also increases day by day as it is considered a major
energy resource. However, crude oil/petroleum is also considered as a major source
of pollutants. It causes serious harm to the ocean ecosystem, soil, and human health.
Due to the hydrophobic nature of oil, its degradation is quite difficult so it persists in
water and soil that enhance its toxicity in ecosystem. Many traditional physicochem-
ical methods were implemented for removal of hydrocarbon pollutants but they were
not able to completely remove them. Thus, more focus is being given to biological
remediation methods and the use of biosurfactants for hydrocarbon removal from
environment is one of the most promising methods considered nowadays. The
amphiphilic nature of biosurfactants with lower toxicity, biodegradability, ecologi-
cal acceptability, high surface activity, environment friendliness, and active under
extreme condition of temperature, pH, and salinity makes them most suitable
candidates for removal of hydrocarbon pollutants. Many microorganisms, such as
bacteria, yeast, and fungi, feed on insoluble substrates, for which they secrete
biosurfactants to facilitate the insoluble substrates across cell membranes. This
chapter reviewed the previous and latest research results, including the remediation
of oil-contaminated sites through physicochemical methods and by the use of
biosurfactants. Comparative study of these methods according to their efficiency
and suitability for removing the oil/hydrocarbon from the environment was also
revealed in this chapter. The mode of action of biosurfactants and biosurfactant-
producing microbes for the removal of oil/hydrocarbon and other heavy metals was
briefly discussed.
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Finally, crude oil and petroleum products represent the major sources of
oil/hydrocarbon contamination in soil and aquatic environments. Application of
biosurfactants in the destruction of hydrophobic pollutants makes them favorable
and promising biomolecules. Today, biosurfactants are produced mainly by micro-
bial fermentation at the laboratory scale and therefore industrial scale-up is needed
for higher production yields for subsequent applications at field levels.

This chapter provides necessary information on the application of biosurfactants
as an assuring alternative to synthetic chemicals in the petroleum industry and the
bioremediation of oil spills recovery, removal of heavy metals, and utilization in oil
pollution control and oil storage tank cleanup.
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Potential Applications of Anti-Adhesive
Biosurfactants 10
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Abstract

There is a growing demand for materials covered with compounds that prevent
the adhesion of microorganisms that form biofilms. Surface contamination is a
concern of the biomedical and food industry, due to the risks to the health of
patients and consumers. Thus, the interruption of microbial adhesion in its first
moments is an excellent approach for the performance of anti-adhesive
compounds. The microbial biosurfactants have the potential for the application
on surfaces of economic interest as agents that inhibit microbial fixation. They
comprise a variety of amphiphilic molecules that can be obtained directly,
synthesized by plants and microbes, or indirectly, through chemical or genetic
changes. Biosurfactant production from renewable substrates is possible, and
there is a tendency for the substitution of synthetic surfactants of biological origin
in industrialized countries. This chapter discusses the main classes of microbial
biosurfactants with anti-adhesive action, the process of microbial adhesion for the
formation of biofilms, and current studies involving the application of
biosurfactants as biofilm disturbing agents on different surfaces.
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10.1 Introduction

Advances in the area of biotechnology with the use of natural products that protect
surfaces increase the economic interest in the generation of inputs against biofouling
of the types that occur in medical devices or in places that come into contact with
food (Gopikrishnan et al. 2015; Junter et al. 2016; Giri et al. 2019).

The attachment of microbial cells to surfaces covered by particles and colloids is
the first stage in the development of the biofilm structure. As adhesion is still weak at
this stage, this would be an excellent time for the application of anti-adhesive
constituents. Microbial biosurfactants can change the surfaces they come in contact
with. When adsorbing onto polystyrene surfaces, silicon and glass microbial surfac-
tant changes the inherent hydrophobicity of such surfaces. In this way, the
biosurfactant influences the effects of fixation and ease of removal of
microorganisms depending on the type of the fouled surface (Janek et al. 2012).

Biosurfactants are versatile, stable, and biocompatible molecules, obtained from
various sources such as bacteria, fungi, and yeasts (Gutnick and Bach 2017) and
secondary compounds extracted from plants that exhibit surfactant characteristics
(Cheok et al. 2014; Zhu et al. 2019).

Biosurfactants have the same properties as synthetic surfactants. Among the
properties, we can highlight high biodegradability, low toxicity, and not inducing
allergic reactions. They can be used in extreme environmental situations due to the
stability of their properties when exposed to unusual pH occurrence, salinity, and
temperature and specific bioactivity, which give them a great potential for practical
applications in several areas (Freitas et al. 2016; Zhu et al. 2019; Liu et al. 2020).

In addition to these properties, they have antibiotic, antimicrobial, anti-biofilm,
and anti-adhesive activities (Rivardo et al. 2011; Padmapriya and Suganthi 2013;
Banat et al. 2014; Ndlovu et al. 2017). In this way, biosurfactants are used in the
fields of industries, namely cosmetics and food, and in the biomedical and pharma-
ceutical areas, and they also expand their use in the oil industries to improve the
recovery of this product (Jimoh and Lin 2019).

There is a tendency to substitute synthetic surfactants for those of biological
origin in industrialized countries, stimulated by the sustainable advantages of
biosurfactants, as they can be produced using renewable substrates, derived from
industrial residues, which cheapens the cost of this bioactivity (Satpute et al. 2017;
Araújo et al. 2019).

Glycolipids and lipopeptides are well-established classes of biosurfactants. They
exhibit broad-spectrum antimicrobial activity, anti-adhesive, and biofilm control.
They are right now applied in various areas (food, beauty products, and pharmaceu-
tical industries) as emulsifying, antimicrobial, and surfactant agents (Inès and
Dhouha 2015; Mnif and Ghribi 2016).

Biosurfactants that have anti-adhesive activity can be produced by several
microorganisms: Pseudomonas aeruginosa produces rhamnolipids, some species
of Candida sp. produce sophorolipids, Bacillus sp. produces surfactin among other
isoforms. Biosurfactants with anti-adhesive activity can also be released by lactic
acid probiotic bacteria (LAB) (Yan et al. 2019).
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This chapter deals with the main classes of biosurfactants with anti-adhesive
action, microbial fixation for biofilm formation, and studies involving the use of
microbial biosurfactants as disintegrating agents of this formation on different
surfaces.

10.2 Biosurfactants That Display Anti-Adhesive Activity

The composition and type of microorganism are used to classify biosurfactants.
Other forms of classification are low molecular weight biosurfactants (lipopeptides,
glycolipids, and phospholipids) and high molecular weight biosurfactants
(polysaccharides, lipopolysaccharides, proteins, and lipoproteins). Low molecular
weight biosurfactants lower the surface and interfacial tension of different
substances. The ones with high molecular weight are used as emulsifiers and
stabilizers for different products (Sharma and Sharma 2018; Jahan et al. 2020).

The parameters of free energy and surface tension of the coated materials and the
surfactant itself influence the development of the surfactant film on any solid surface.
The surface orientation of the nonpolar and polar fractions of the film formed by the
biosurfactants on some solids surfaces is crucial for the balance of the hydrophobic
and hydrophilic properties of the covered solid. These behaviors of the biosurfactant
configurations are of practical importance for the protection of areas that are often
used in food handling, medical devices, and surgical implants (Zdziennicka and
Jańczuk 2018).

Not all biosurfactants are of interest as anti-adhesive surfaces. The most repre-
sentative classes that showed responses in reducing adhesion in different materials
and against microorganisms of interest are lipopeptides, with surfactin standing out,
and glycolipids being mostly represented by rhamnolipids (Cao et al. 2009; Nickzad
and Déziel 2014; Abdelli et al. 2019; Ceresa et al. 2019).

Lipopeptide biosurfactants exhibit antibacterial, antifungal, antiviral, and anti-
adhesive activities. They are divided into three main groups (surfactin, iturin, and
fengycin). Each group presents various homologs and isoforms showing distinct
constitutions of amino acids and fatty acid chains (Inès and Dhouha 2015). Due to its
attractive surfactant properties and antimicrobial and antibiofilm activities, surfactin
is the most powerful biosurfactant, with many isoforms that can be determined
genetically or by structural chromatographic analysis techniques (Ibrar and Zhang
2020; Ohadi et al. 2020).

Another important class of interest is the glycolipids. Rhamnolipids produced by
Pseudomonas sp. are the most important representative in this group. Rhamnolipids
are easily produced as a blend of homologous molecules, specifically mono-
rhamnolipids and di-rhamnolipids by P. aeruginosa (de Freitas et al. 2019). These
biosurfactants manifest surface activities and emulsifying and biological activities.
Due to this versatility, they were highlighted as versatile additives in food prepara-
tion (Nitschke and Silva 2018). Glycolipids have a polysaccharide in their main
groups. So, when this group is impacted by electrolytes or undergoes pH changes, its
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micellar structure changes (Jahan et al. 2020). This can interfere with the process of
anti-adhesion of surfaces.

Sophorolipids are other important types of glycolipid, composed of a sugar dimer
formed by the glycosidic bond to a hydroxylated fatty acid that are produced and
released mainly by yeasts, such as Candida bombicola (Shah et al. 2007). The
natural diversity of sophorolipids is triggered by variations in the acetylation stan-
dard of the sophorosis unit, by the incidence of inside esterification and by the
attributes of the hydroxylated fatty acid. A sample of sophorolipids may contain over
20 congeners; however, few of these forms will be dominant. Sophorolipids are
structurally classified into acidic and lactonic forms (Haque et al. 2017). Acidic
forms are used for cleaning purposes, while lactonic forms are primarily responsible
for bioactivity (Van Bogaert et al. 2007; Dhar et al. 2011). This biosurfactant has low
cytotoxicity and has been approved for use in food and the pharmaceutical industry
by the US FDA (Joshi-Navare and Prabhune 2013). They have antimicrobial and
anticarcinogenic properties, in addition to antifungal activity against planktonic cells
of pathogenic species (Haque et al. 2016).

Finally, we have the lactobacillus microorganisms, sometimes referred to as
probiotics, which are outstanding producers of anti-adhesive biosurfactants. Also,
they present antimicrobial, antibiofilm, and antioxidant activities in the same mole-
cule. Therefore, they can be applied in different industrial sectors (Meylheuc et al.
2006; Sambanthamoorthy et al. 2014; Merghni et al. 2017; Yan et al. 2019).

Table 10.1 emphasizes the anti-adhesive activity mentioned in some recent
studies in the literature in the area.

10.3 Biofilms and the Adhesion Process: Mechanisms
and Effects

Biofilms are complex formations of microorganisms adhered to the surface of
biogenic or inert materials. They are associated with each other through extracellular
polymeric substances forming an aggregation of microbial cells. The extracellular
substance produced by the biofilm, besides contributing to the access to nutrients,
allows the existence of these microorganisms in adverse conditions, such as compe-
tition, lack of resources, and resistance to antimicrobial treatments. Thus, biofilms
are responsible for making it difficult to treat chronic diseases with antibiotics (Roy
et al. 2018; Prasad et al. 2020).

The formation of biofilm on any surface involves at least three different phases. In
the first phase, microbial cells are bound to a surface previously covered by particles
of glycoprotein origin, in the second phase, in this slime, more microbial cells
colonize forming microcolonies, and, finally, the complete development of the
biofilm through the formation of channels and the formation of firm structures.
With the maturation of the biofilm, the disintegration will occur by mechanical
and chemical processes and will influence the renewal of the biofilm by the disper-
sion of the colony (Payne and Boles 2016).
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The installation of bacteria is particularly intermediated by particle deposition,
hydrodynamic forces, and Brownian motion. Adherence to the substrate is regulated
by Lifshitz–Van der Waals, acid–base, hydrophobic, and electrostatic interaction
forces (Van Oss 1995). Biofilms need to produce biopolymers and polymeric
extracellular substances (EPS) rich in carbohydrates and proteins that function as a
protective wrapper in which microorganisms are embedded. This ensures for

Table 10.1 Examples of action of the various biosurfactants and their target microorganisms

Biosurfactant or
producing
microorganism

Application
field Target References

Pediococcus
acidilactici and
Lactobacillus
plantarum

Biomedical Staphylococcus aureus Yan et al.
(2019)

Pseudomonas
aeruginosa

Biomedical Staphylococcus aureus and
Staphylococcus epidermidis

Ceresa et al.
(2019)

Surfactin Biomedical Staphylococcus epidermidis Abdelli
et al. (2019)

Lipopeptides Biomedical
and food
industry

Staphylococcus aureus, Salmonella
typhimurium, and Bacillus cereus

Giri et al.
(2019)

Lipopeptides Agribusiness
(disease
control in
plants)

Agrobacterium tumefaciens Ben et al.
(2018)

Lipopeptides Biomedical
and food
industry

Staphylococcus aureus, Bacillus
cereus, Micrococcus luteus,
Klebsiella pneumoniae, Escherichia
coli, Salmonella typhimurium,
Salmonella entarica,
Enterobacterium sp., Aspergillus
Niger, Aspergillus flavus, Fusarium
oxysporum, Pythium ultimum,
Fusarium solani, and Rhizoctonia
bataticola

Jemil et al.
(2017)

Lactobacillus
plantarum subsp.
plantarum

Food Escherichia coli, Staphylococcus
aureus, and Salmonella enterica

Bakhshi
et al. (2017)

Rhamnolipids and
surfactin

Food Listeria monocytogenes and
Pseudomonas fluorescens

Araujo et al.
(2016)

Xylolipid Biomedical L. monocytogenes, Escherichia coli
and Bacillus cereus

Sharma
et al. (2015)

Glycolipid (glucose
+ palmitic acid)

Biomedical Candida albicans, Pseudomonas
aeruginosa, and the marine biofouling
bacterium Bacillus pumilus

Dusane
et al. (2011)

Surfactin/iturin A Food Bacillus cereus Shakerifard
et al. (2009)
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biofilms their fixation and maintenance on surfaces in different environments
(Donlan 2002).

Humidity, temperature, environmental pH value, climatic conditions, and chemi-
cal composition of the nutritive substrate are the factors that affect the growth of
biofilm. Besides, biofilms contain 80–90% water, and their depth can differ between
50 and 100 μm, depending upon the inhabited area (Kaali et al. 2012).

Materials with a hydrophobic surface favor bacterial fixation and biofilm forma-
tion, except those with a superhydrophobic surface such as Teflon that has surfaced
with contact angles with water >150� (Zeraik and Nitschke 2012; Li et al. 2016;
Yilgör et al. 2018).

The hydrophobicity of the microbial cellular membrane and the presence of
extracellular filamentous annexes can affect the ratio and degree of bacterial binding.
The progress of the hydrophobic type interaction between the exposed area of the
material and the microbial cell surface tends to be greater with the increase in the
nonpolar constitution of those involved (Donlan 2002; Krasowska and Sigler 2014).
The hydrophobic regions of the bacterial cells are partially involved in the connec-
tion with a neighboring cell (Van Oss 1995; Krasowska and Sigler 2014). Studies
carried out by many laboratories concluded that the susceptibility of materials to
microbial adhesion is greater on wood and latex surfaces. A reduction occurs from
silicone, PVC, Teflon, polyurethane, stainless steel, and titanium materials (Stoica
et al. 2016).

Biofilms can cause microbiologically influenced corrosion (MIC). Some
microorganisms cause MIC through extracellular electron transfer for energy.
They secrete corrosive metabolites that lead to MIC (Jia et al. 2019).

As biosurfactants reduce the surface tension between liquids and the surface, they
can wet surfaces and thus make them hydrophilic (Fig. 10.1), making microbial
fixation difficult. Furthermore, they allow greater penetration of different fluids,
including solvents and antimicrobial agents in biofilms, which can contribute to
the removal of this and other fouling.

10.4 Applications of Biosurfactants as Anti-Adhesive Agents

The pre-contact of surfaces with surfactants can lead to the adsorption of these
elements on the surfaces, which can affect the development of biofilm in two ways:
(1) modification of the biofilm formation capacity, as surfactants can act against
cellular metabolism, favoring or impairing the adhesion forces that maintain the
mechanical stability of the biofilm, and/or (2) development of biofilms with less
cohesive characteristics that can lead to the detachment of biomass (Rasulev et al.
2017).

Thus, bacterial adhesion to surfaces and the consequent development of biofilm
are natural phenomena in different environments, such as marine, freshwater, hospi-
tal, food, and other industrial systems (Ricker and Nuxoll 2016; Galié et al. 2018; de
Carvalho 2018), and biosurfactants prove to be an effective tactic to mitigate the
establishment of biofilms and other fouling organisms.
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10.4.1 Anti-Adhesive Applications in the Biomedical Field

With the development of studies in the field of bacterial biofilms, the potential threats
to health caused by infections caused by these biofilms have caused great public
concern (Yan et al. 2019).

Synthetic surfactants are already used in the medical field, especially in cleaning
infected lesions, in preparing the injured skin surface to receive surgical grafts
(Percival et al. 2017). The presence of EPS in biofilms shows a reduced sensitivity
to the host defense systems, antibiotics, among others, which contributes to bacterial
persistence in chronic infections.

A lipopeptide from Bacillus subtilis AC7 combined with a farnesol molecule was
able to neutralize biofilms of Candida albicans in silicone elastomer under simulated
physiological conditions (Ceresa et al. 2018).

Using sophorolipid from Candida bombicola ATCC 22214, Ceresa et al. (2020)
observed a significant reduction in the capacity of Staphylococcus aureus and

Fig. 10.1 Influence of biosurfactant on the surface hydrophilicity and microbial adhesion. (a)
Solution without biosurfactant, hydrophobic surface; (b) Solution containing biosurfactant, surface
becomes hydrophilic; (c) Emphasis on microbial adhesion influenced by surface hydrophobicity;
and (d) Highlight on the inhibition of microbial adhesion caused by the adsorption of the
biosurfactant on the surface
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C. albicans to form biofilms and adhere to surfaces in 90–95% of silicone used in
medical equipment. This research indicates the potential of biosurfactants as coating
agents in biomedical materials to prevent infections by Gram-positive bacteria and
fungi.

Satpute et al. (2019), using the glycolipoprotein biosurfactant produced by
Lactobacillus acidophilus, observed antibiofilm and anti-adhesive activities against
biofilm-producing microorganisms in medical implants based on PDMS
(polydimethylsiloxane), considering a potential anti-adhesive agent on various
surfaces of biomedical devices.

10.4.2 Anti-Adhesive Applications in the Food Industry Surfaces

The control of bacterial biofilms is one of the ways found by the food industry and
related areas to reduce the undesirable effects of microbial contamination. The
occurrence of biofilm can lead to food spoilage and disease transmission, which
poses a risk to consumer health (Giri et al. 2019).

Several food manufacturing procedures present precarious sanitation
environments, where microorganisms can successfully grow. These environments
can include rubber surfaces, packaging machines, piping, valves, floor and walls,
polystyrene materials, and stainless-steel materials (Faille and Carpentier 2009).

Several foodborne pathogens from different species of microorganisms such as
Bacillus cereus, Escherichia coli, Shigella sp., Staphylococcus aureus (Sharma and
Anand 2002; Sharma et al. 2015), Listeria monocytogenes, Salmonella typhi, Pseu-
domonas fragi, and Leuconostoc citreum (Dzieciol et al. 2016) among others are of
great apprehension in food processing and preparation spaces.

Biosurfactants can either serve as a colonization factor for a specific microorgan-
ism or are also able to prevent or delay the establishment of other microorganisms.
Scientific research with microbiological surfactants has already indicated anti-
adhesive activities of these molecules against food-borne microbial pathogens.
Therefore, microbiological surfactants, acting as antimicrobials, affected the growth
of free and fixed forms of microbial cells of these organisms (Nitschke and Silva
2018).

When adsorbed on the surfaces of different materials that come into contact with
food, biosurfactants were able to inhibit adhesion and biofilm formation. On poly-
styrene and AISI 304 stainless steel surfaces, the bacterium surfactin Bacillus
subtilis ATCC 21332 and rhamnolipid from Pseudomonas aeruginosa PA1
(Petrobras) were tested against Gram-positive and -negative microorganisms.
These biosurfactants significantly reduced the formation of biofilm pathogens from
Gram-positive food sources (Listeria monocytogenes ATCC 19112 and ATCC
7644) and Gram-negative microorganisms (P. fluorescens ATCC 13525) (Araujo
et al. 2016).

The biosurfactants of Bacillus subtilis VSG4 and Bacillus licheniformis VS16 are
demonstrated to be notable blockers of microbial adherence and biofilm generation
of microorganisms associated with food contamination. Thus, the authors propose
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that both the biosurfactants have the potential to be exploited as an antioxidant,
antimicrobial, and anti-adhesive and thus mitigate the development of microbial
biofilms in the biomedical and food industries (Giri et al. 2019).

The DCS1 lipopeptide synthesized by Bacillus methylotrophicus DCS1 showed
antimicrobial activity against several tested microorganisms. Besides, they
interrupted the preformed biofilm and also presented anti-adhesive activity in the
formation of biofilm. Thus, the authors suggested the viable use of the DCS1
lipopeptide as a substance that inhibits oxidation, acting as antimicrobial and anti-
adhesive in reducing microbial adhesion and biofilm formation and its applicability
also in biomedical devices and the food sector (Jemil et al. 2017).

Biosurfactants isolated from Lactobacillus paracasei showed antimicrobial
properties and anti-adhesive and antimicrobial properties against various food
pathogens at different levels of inhibition. Therefore, they recommend the
biosurfactant tested against various food pathogens as an alternative antimicrobial
agent (Gudiña et al. 2010).

Biosurfactants also show differences in anti-adhesive and antibiofilm action
depending on the type of surface material treated. In a test carried out by Araujo
et al. (2016), rhamnolipids reduced the fixation on the polystyrene surface up to 79%
and on stainless steel up to 83%. Surfactin reduced 54% and 73%, respectively, in
the same materials. pH is an important factor to be considered in the development of
strategies based on rhamnolipids for the control of food pathogens. Rhamnolipid
showed antimicrobial action against Gram-positive pathogens (Bacillus cereus,
Listeria monocytogenes, and Staphylococcus aureus). This activity was related to
the increase in the acidity of the environment caused by the different pH levels.
The susceptibility of these pathogens was associated with a reduction in the
hydrophobicity of the microbial surface layer and consequent deterioration of the
cytoplasmic membrane (de Freitas et al. 2019).

10.5 Future Trends and Conclusions

Due to a large number of applications, biosurfactants are exceptionally useful
molecules. The surfactant, antimicrobial, and emulsifying properties of these
molecules have been implemented in several industries, such as pharmaceutical,
cosmetic, food, and biotechnological. The application of anti-adhesive activity is of
great importance mainly in the pharmaceutical and food industries. Recent advances
related to the identification of microorganisms that produce biosurfactants, purifica-
tion, and characterization of their compounds, as well as cultivation with different
residual raw materials and scale-up studies, have enabled the production of
biosurfactants with different functionalities. However, the high production cost
does not allow for large-scale synthesis, limiting the availability of these molecules.

The biosurfactants mentioned here can be used in the development of new
strategies to delay the colonization of the surface, i.e., be used as antifouling agents.

Smart antibacterial coatings may contain fixed microorganisms that release
biosurfactants with anti-adhesive action. These same coatings may also be
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antimicrobial by encapsulating these agents. Both are promising strategies since they
can be doubly effective in presenting anti-adhesive and antimicrobial functions in
the same product. Hence, investments in research for the development and industrial
production of natural anti-adhesive products based on biosurfactants are necessary
for the elucidation of chemical structures and their application in different sectors.
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Abstract

Waste activated sludge (WAS) is in dire need of prudent disposal due to its
abundant organics, as well as the latent refractory contaminants and heavy metals,
for instance. Applications of surfactants, especially biosurfactant, provided com-
prehensive opportunities for WAS treatment via alleviating the stiff protection of
extracellular polymeric substances (EPS) matrix and microbial cell wall,
facilitating the value-added bio-metabolites and energy recovery,
decontaminating the refractory organics, dehydrating WAS flocs, and removing
heavy metals. In this chapter, applications of surfactants for the short-chain fatty
acid (SCFA) extraction was covered with specific attention on the promotion of
both hydrolysis and acidification via increasing available organics and
hydrolyzing enzyme, as well as inhibiting the methanogenesis step. Also, the
effect of surfactants on bio-energy recovery, including methane and hydrogen,
was discussed. Benefited from the surfactant pretreatment in anaerobic digestion
(AD) process, the performance in sludge dewaterability was comprehended. Due
to the hydrophobic nature of some refractory organics, the surfactant micelles
were employed to decontaminate polycyclic aromatic hydrocarbons (PAHs),
dyes and, polychlorinated biphenyl (PCB) in WAS. Furthermore, recent efforts
in heavy metal desorption from sludge flocs were addressed. Finally, state-of-the-
art processes to promote organics biotransformation from WAS were presented,
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including co-pretreatment, interfacing AD with bioelectrochemical systems and
optimizing process conditions.

Keywords

Waste activated sludge (WAS) · Anaerobic digestion (AD) · Value-added
bio-metabolite recovery · Energy production · Dewatering · Heavy metals

11.1 Introduction

Recently, with the increasing sewage disposal rate in China, large amount of
wastewater treatment plants (WWTPs) have been developed. As a result, massive
waste activated sludge (WAS) generated as the inevitable by-product, which caused
increased operational cost and severe environmental risks (Zhen et al. 2017). As
reported previously, cost in sludge disposal ranked second contributor of the total
operation cost, right after the aeration power during the traditional wastewater
treatment process (Chai et al. 2015). Besides, the environmental impact related
with inadequate treatment/disposal of WAS has attracted more social attentions
with the increased awareness in environmental protection (Pradel et al. 2016; Cao
and Pawłowski 2013). Taking the current sludge disposal in China as example, most
Chinese WWTPs used the basic configuration of “thickening-coagulation-mechani-
cal dewatering”; however, the dewatered sludge still contained 80% moisture, far
beyond the safety threshold of 60% (Yang et al. 2015). Thus, promising and
alternative dewatering technologies were needed. Even for the disposed sludge via
landfilling, which accounted for more than 50% application rate in China (Zhang
et al. 2016), the related environmental footprint could not be negligible. As recorded
by Yi and colleagues, landfill would make a contribution in net energy consumption
of 4.9 GJ/t dry matter (DM) and global warming potential (GMP) of 1302 kg CO2

eq./t DM (Yi et al. 2013). Notably, some contaminants, e.g., heavy metals, antibiotic,
and pesticide, were introduced in the generated sludge due to inadequate regulation
of sewage into the pipe, further complicating the sludge disposal (Feng et al. 2019;
Jang et al. 2018). Therefore, an efficient, cost-effective, and promising handling
route is strongly desired for WAS treatment. Taken the composition of WAS into
consideration, it is better if the wrapped organic resource could be reused; mean-
while, the heavy metals and refractory contaminants could properly handle before
entering the environment.

Anaerobic digestion (AD) has shown great potential in energy and resource
recovery from WAS. However, its efficiency was constrained by the limited hydro-
lysis step, and only 30–50% of the organic resources in rawWAS could be degraded
with a long time of 20–30 days (Ruffino et al. 2014). It was the stiff structure,
consisted of extracellular polymeric substances (EPS) and microbial cells, that
protected both the intracellular and extracellular organic matters from being released
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and available for enzyme attack, thereby reducing the effective decomposition of
WAS (Guangyin and Youcai 2017). As elaborated in Fig. 11.1, a double-reinforced
barrier is formed in the sludge flake. As a result, not only the EPS itself but also the
other organics being wrapped in it cannot be effectively extracted due to the low
bio-availability. Several refractory contaminants were included in the loosely bound
EPS (LB-EPS) layer, like antibiotic and pesticide. Similarly, bound water was
locked, and strong repulsion forces were developed between flocs, which made
dehydration more difficult (Guan et al. 2017). This was attributed to the negatively
charged surface of the microbial cells, EPS, and sludge flake, resulted from the
ionization of anionic groups (i.e., carboxylic and phosphate) (Liu and Fang 2003).
Thus, WAS pretreatment, focusing on EPS solubilization, was very crucial to
disintegrate the sludge matrix and release both organic and inorganic compositions,
thereby facilitating the subsequent biotransformation of WAS. In practice, extensive
researches concentrating on WAS pretreatment have been undertaken, including
thermal, mechanical, chemical, and biological methods (Zhen et al. 2017).

Surfactants have been recently investigated as a novel pretreatment to dissolve the
EPS matrix and facilitate energy and resource recovery fromWAS (He et al. 2019a).
With both hydrophilic and lipophilic groups, it can reduce the surface/interfacial
tension and change the sludge structure, organics solubility, microbial activity, and
metal speciation by interacting with organics and metals. There are various
categories of surfactants, including cationic, anionic, amphoteric, non-ionic, and
complex types. When applied as WAS pretreatment, surfactants could break up the
EPS matrix and reduce the surface tension between water and sludge particulate
(Fig. 11.1). Subsequently, polysaccharide and proteins were released (Zhou et al.
2015), as well as the bound water and exoenzyme were blocked in the sludge flake
(Huang et al. 2015). Concomitantly, both acidification and methanogenesis could be
improved with more available organic matter and enzyme activity. Notably, the
binding force caused by surfactant micelles was more powerful than that of the flocs,
devoting to the desorb of refractory pollutants from WAS flocs (He et al. 2019a).
Heavy metal irons could be either replaced by cationic surfactant via ion exchange or
bound in the form of metal–surfactant complexes via ionic bonds (He et al. 2019a).
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Fig. 11.1 Schematic of interaction between surfactants and WAS components
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Linear alkylbenzene sulfonates (LAS), sodium dodecyl benzene sulfonate (SDBS),
sodium dodecyl sulfate (SDS), glucolipid (GL), rhamnolipid (RL), lipopeptide (LP),
surfactin (SF), saponin (SP), and phospholipid (PL) have been widely used as WAS
pretreatments (Ji et al. 2010; Mayer et al. 1999).

Given the comprehensive function of surfactants in the transformation of WAS
components, a review focused on the recent developments of surfactants on value-
added bio-metabolites and bio-energy recovery, dewatering, organic contaminant
decontamination, and heavy metal removal was covered. Besides, state-of-the-art
processes to promote organics biotransformation from WAS were also addressed,
including combined pretreatment, combination with microbial electrolysis and feed-
stock conditioning.

11.2 Applications of Surfactants for Value-Added
Bio-Metabolites Recovery from WAS

Anaerobic digestion of WAS is mainly composed of three steps, hydrolysis, acidifi-
cation, and methanogenesis. In contrast to the time-consuming methane generation
process (20–30 days) and low utilization efficiency of organics (30–50% of dry
weight) from WAS, the production of higher value-added soluble metabolites, such
as SCFAs (0.33–2.09 €/kg) and ethanol (0.3–1.5 €/kg) vs. 0.09–0.20 €/kg methane,
could be regarded as a promising recovery route due to the relatively short produc-
tion cycle (3–8 days) (Moscoviz et al. 2018). Specifically, SCFAs could be used as
an ideal carbon source for many bioprocesses. More importantly, it was believed that
SCFAs played a crucial role in biological nutrient removal (BNR) process as
electron donors. Acetate (HAc) held the highest denitrification rate compared with
other carbon sources, while propionate (HPr) was critical in phosphorus removal,
with the capacity of improving the activity of phosphorus-accumulating bacteria
(PAO) but hampering the activity of glycogen accumulating organisms (GAOs)
(He et al. 2019a). However, for example, most of the HAc produced nowadays is
oil-based, with only 10% being bio-based in 2015. Thus, SCFA extraction via
anaerobic fermentation of WAS has been considered as one of the most cost-
effective alternatives for both sludge reduction and resource recovery.

Therefore, researches on boosting SCFA production from WAS has attracted
many attentions, especially for the studies on various pretreatments undertaken to
break the bottleneck of particulate hydrolysis. Surfactants has been investigated as
an alternative pretreatment method for SCFA recovery from WAS bio-refinery,
mainly because it is easier to operate, requires fewer treatment facilities, and has
less corrosion to equipment. When surfactants are added into WAS treatment
system, it could be absorbed on the solid–liquid interface and reduce the surface
tension, thereby improve the dissociation of sludge flocs due to its high solubility
and surface activity (Fig. 11.2). In terms of composition transformation of WAS, for
instance, some tightly bound EPS (TB-EPS) and LB-EPS would transform into
slime layer EPS assisted by the surfactants solubilization, leading to the release of
organics wrapped in sludge flake into the aqueous phase (Guan et al. 2017). The
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surfactant can not only accelerate degradation of the organics wrapped in the WAS
flocs to facilitate its hydrolysis but also make liberation of hydrolyzing enzymes
bounded by EPS matrix. It was both the increase of enzyme activity and the
availability for organic matters that enhance the efficiency of acidification by
fermentative acidogenic bacteria.

Jiang and colleagues investigated the effect of SDS on the SCFAs yield from
WAS during the AD process (Jiang et al. 2007a). It recorded the maximum concen-
tration of SCFAs of 2243.04 mg chemical oxygen demand (COD)/L at 6 days with
SDS dosage of 100 mg/g vs. 191.10 mg COD/L in the untreated group. A maximum
value of SCFAs with 2599.1 mg COD/L at 6 days was reached (with only 339.1 mg
COD/L in the control), when 20 mg/g SDBS was added into the sludge (Jiang et al.
2007b). However, when higher concentrations of SDS or SDBS were employed,
longer lag time was observed to reach the maximum yield of SCFAs, which was
attributed to the toxicity of the chemical surfactants on the acidogenic bacteria
(Feitkenhauer 2003). Meanwhile, the inhibition of methanogenesis step also
appeared, which would devote to the SCFA accumulation coupling with the efficient
hydrolysis and acidification steps (Jiang et al. 2007b; Su et al. 2007).

Except the toxicity to acidogenic bacteria, chemical surfactants had the unavoid-
able adverse impact on the environment due to its low biodegradability. By contrast,
due to their biodegradability, biocompatibility, and low toxicity, biosurfactants have
broad prospects in environmental applications. Lipopeptides and glycolipids were
two kinds of well-known biosurfactants (Kosaric et al. 1987). Our previous study
believed that RL, as a kind of microbial-derived biosurfactants, was effective to
boost the solubilization and acidification of WAS. When the RL dosage was 0.04 g/g
TSS, the maximum SCFA concentration (5844 � 97 mg COD/L) was 1.16-, 3.63-,
and 5.24-fold higher than that obtained from the SDS-, SDBS-, and untreated WAS

Fig. 11.2 The mechanism of surfactants on anaerobic fermentation of WAS
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(Zhou et al. 2013b). In addition, SP, a kind of plant-derived biosurfactant, was also
applied in the promotion of SCFA accumulation during WAS fermentation. SCFA
concentration sharply increased to 4047 mg COD/L in 72 h with the SP dosage of
0.20 g/g TSS, which was 3.51-fold higher than that in the raw WAS (Zhou et al.
2015). Huang et al. compared the effect of three types of biosurfactants (SP, SF, and
RL) on the SCFA production from WAS fermentation (Huang et al. 2015). Results
revealed that comparable increase in SCFA production was obtained in all groups,
with approximately fourfold over the control. Some researchers realized subtle
differences for the mechanism of promoting SCFA production from WAS among
different kinds of biosurfactants. Lipopeptides promoted the SCFA recovery mainly
via increasing the amounts of available organics, while glycolipids not only
increased the organics for SCFAs production but also protect the accumulated
SCFAs from consuming by methanogenesis, due to its inhibition on microbial
activity.

11.3 Applications of Surfactants for Energy Recovery from WAS

Compared with the SCFA production, relatively few researches were focused on
methane promotion when employing surfactants on WAS treatment. Kavitha et al.
observed the enhanced methane production with SDS addition. A maximum 50 mL/
g volatile solid (VS) yield was achieved at the SDS dosage of 0.02 g/g SS, which was
mainly due to the enough available substrates (Kavitha et al. 2016). Another study
reported that low dosage of SDS with 0.02 g/g SS can increase the biochemical
methane potential (BMP) of WAS by 49% (0.315 L/g VS) vs. 0.212 L/g VS in the
raw WAS (Kavitha et al. 2014). Ushani employed 0.009 g/g SS dioctyl sodium
sulfosuccinate (DOSS) as the pretreatment and harvested 0.225 g methane per gram
WAS (as COD) (Ushani et al. 2017). External addition of LAS homologs (5–10 g/g
SS) could also slightly improve the methane yield (Garcia et al. 2006).

Some researchers found that the introduction of surfactant could inhibit the
methane production to some extent. For example, an increase of SDS dosage from
20 to 300 mg/g would definitely inhibit methane production from a hindrance ratio
of 3%–100% (He et al. 2019a). SDBS with dosage higher than 0.1 g/g SS also
prevented the methane production procedure with high toxicity on the acetoclastic
methanogenesis (Shcherbakova et al. 1999). Similarly, inhibition of benzalkonium
chlorides (BACs) was also recorded (He et al. 2019b). One possible reason for the
inhibition of methanogens was attributed to the lowered pH derived by the accumu-
lation of SCFAs, which was out from the optimal neutral pH range for
methanogenesis. The activity of key enzymes were also affected. For example,
after RL addition, the activity of F420 and acetate kinase reduced by 40% and
26%, respectively (Huang et al. 2015). Meanwhile, the inhibition was significantly
dependent on the characteristics of surfactants. For example, SP showed weaker
inhibition than RL, because it was more biocompatibility (Huang et al. 2016b). As
revealed by Garcia and colleagues, while studying the effect of different LAS
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homologs on biogas inhibition, the higher alkyl chain length was correlates closely
with lower toxicity (Garcia et al. 2006).

Hydrogen has tremendous potential as a promising alternative clean energy; its
combustion product has zero pollution (only water), and it possesses a higher energy
density of 120 MJ/kg than other gaseous fuels (i.e., methane (50 MJ/kg) and ethanol
(26.8 MJ/kg) (Kadier et al. 2016). During traditional AD process, hydrogen can be
produced accompanying with acidification step. However, with rapid consumption
of hydrogen by methanogens, little hydrogen could be accumulated, with a recovery
rate of only 23–25%. Yang et al. observed less than 3 mL hydrogen per gram sludge
(as VS) was obtained all through the fermentation period (Yang et al. 2020). Lower
hydrogen accumulation value was also recorded with less than 1.5 mL/g VS by Liu
et al. (2020). Therefore, some researchers employed efficient pretreatments to
disintegrate the particulate organics in WAS and avoid hydrogen consumption by
methanogens. Liu et al. presented the peak value of hydrogen yields with
6.4 � 0.3 mL/g VS (156 h) and 4.5 � 0.2 mL/g VS (144 h) from dark fermentation
of sole freezing-pretreated (�5 �C, 4 h) and nitrite-pretreated (400 mg/L) WAS,
respectively. Co-pretreatment further raised the H2 yields to 19.40 mL/g VS (Liu
et al. 2020). A synergetic effect driven by freeze and nitrite pretreatments was
believed to boost the WAS disintegration, with more available organics releasing.
Besides, the related hydrogen-consuming microorganisms, methanogens,
homoacetogens, and sulfate-reducing bacteria were severely suppressed. A compa-
rable yield with 19.2 mL/g VS was also recorded by Yang et al. via dark fermenta-
tion of pH 9.5 + K2FeO4 pretreated WAS (Yang et al. 2020).

Notably, high hydrogen production was expected by sole surfactant pretreatment
with abundance substrates from upstream hydrolysis while less consumption in the
downstream methanogenesis. As previously reported, with the addition of 0.20 SP
g/g TSS, the WAS hydrolysis was dramatically improved within 48 h, with 4.77-fold
and 5.87-fold increase in soluble proteins and polysaccharides concentrations com-
pared with the control test (Zhou et al. 2015). As revealed by Huang et al., several
biosurfactants (RL, SF, and SP) can enhance the activity of hydrolyzing enzymes in
different degrees (Huang et al. 2015). As a result, SCFA production was signifi-
cantly enhanced, particularly with higher concentration of HAc, which would
contribute to hydrogen production. Meanwhile, the inhibition of methanogen was
remarkable. As recorded, methanogenesis is suppressed with a conversion efficiency
of 0.18 � 0.03%, 1.89 � 0.15%, and 6.63 � 0.77% for RL, SDS, and SDBS,
respectively (Zhou et al. 2017). Till now, hydrogen recovery from surfactant-
pretreated WAS was relatively rare. Microbial electrolysis cells (MECs) emerged
as a promising solution for hydrogen production, with dual advantages of fermenta-
tion organisms and electroactive bacteria (EAB). Single-chamber MECs have been a
prevailing application for hydrogen recovery from WAS. Wang et al. recovered
8.5 mg H2/g VSS from SDS-treated sludge fermentation liquid (SFL) with an energy
efficiency of 138% � 8% in single-chamber MECs (Wang et al. 2014a). As a
biosurfactant, RL outperformed chemical surfactants in hydrogen production. Our
previous study produced the largest hydrogen production of 12.90, 9.36, and
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3.18 mg H2/g VSS in a MECs fed with RL-pretreated, SDS-pretreated, and SDBS-
pretreated WAS (Zhou et al. 2017).

11.4 Applications of Surfactants for Refractory Organic
Decontamination from WAS

Refractory organics contained in WAS are generally hydrophobic organic
compounds, e.g., polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphe-
nyl (PCB), dyes, benzopyrene, antibiotics, and oil (Guan et al. 2017). Inadequate
removal of these organics could trigger the contamination in soil, air, and ground-
water via landfilling and land-application, for instance. Traditional WAS disposal
methods were insufficient to decontaminate these pollutants. EPS matrix processed a
strong ability to absorb complex pollutants onto sludge surface, with various active
functional groups and hydrophobic regions (Sheng et al. 2008). The latter one may
be the main driven for organic compounds adsorbed by EPS (Rogers 1996). Besides,
EPS usually carry a negative charge, which can also bind positively charged
refractory organics through electrostatic interactions (He et al. 2019a). External
addition of surfactants has been regarded as an efficient alternative to significantly
improve the dissolution of organics due to the characteristics of hydrophilic and
hydrophobic parts (Fig. 11.3). Three aspects were attributed, i.e., the emulsification
of refractory organics, micellar solubilization, and accelerated transport, which can
promote the contact between microbial cells and refractory organics, thereby
strengthening the decontamination of these organics (He et al. 2019a). Emulsifica-
tion occurred directly between the cells and refractory organics, due to the change of
the hydrophobicity in microbial cells assisted by external surfactant addition.
Besides, micelle could be formed by surfactants, encasing the refractory organics
in the micelle core and improving its solubility. Furthermore, due to the reduced

Fig. 11.3 The mechanisms of surfactants on the decontamination of refractory organics in WAS
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surface tension, more refractory organics can be transformed into the aqueous phase
with raised availability, facilitating the biodegradation by the microorganisms
(Yu et al. 2017).

11.4.1 PAHs Decontamination

PAHs are a kind of volatile hydrocarbon produced by incomplete combustion of
organic polymers. They belong to persistent organic pollutants (POPs) with stable
physical and chemical structures (Zheng et al. 2007). Cai et al. detected the concen-
tration of 44 semi-volatile organic contaminants in the sludge from 11 wastewater
treatment plants in nine Chinese cities. Their research showed that PAHs were the
most abundant contaminants, the total concentration ranging from 1.4 to 79 mg/kg
dry sludge (Cai et al. 2007). Surfactants with the combination of other treatments
were efficient in solubilization of PAHs. Surfactant was tend to aggregate and self-
assemble to form micelles, which could encapsulate PAHs into it via a form of host–
guest complexes, increasing its availability (Guan et al. 2017). Previous research
showed that the lower weight compounds (two-ring, three-ring, and four-ring PAHs)
behaved better degradability than the higher ones (�5-ring PAHs) (Cerniglia 1992).
Zheng et al. investigated the PAH removal fromWAS by adding Tw80 (Tween 80, a
nonionic surfactant) during mesophilic aerobic digestion (MAD) and chemical metal
leaching (METIX-AC) processes (Zheng et al. 2007). Results showed that 90% of
three-ring PAHs (0.5 g/L) were rapidly removed in both MAD and MAD + Tw80
tests. The total removal rates of PAHs in MAD and MAD + Tw80 reached
54 � 2.9% and 60 � 2.0%, respectively. However, chemical metal leaching process
coupling with Tw80 was less efficient in PAH removal than sole METIX-AC. This
was attributed to the easily cracking characteristics of double bond by Fenton-like
reagents in Tw80. Then Tw80 would lose its functionality completely. To avoid this
clash, similar surfactants with saturated lipophilic side chains could be served as
substitutes. Bernal-Martínez et al. studied the effect of three surfactants (tyloxapol,
tergitol, and Brij-35) on PAH removal from anaerobic digestion of urban sludge by
the combination of ozone and H2O2 (Bernal-Martínez et al. 2005). It revealed that
PAH removal was enhanced by the sole ozone pretreatment with the removal
efficiency of 61%. With synergistic effect of ozone pretreatment and the three
surfactants addition (1 g/L), PAHs could be efficiently removed with a removal
rate of 77–81%.

11.4.2 Dye Decontamination

Dyes are widely used in many industrial fields, resulting in large amounts of
dye-containing wastewater. Because it is difficult to remove dyes completely by
conventional biological treatment process, some dyes remain in WAS, causing
serious colored issue (Davis et al. 1994; Han et al. 2009). In recent years, the
application of surfactants for the removal of dyes had been attracting attentions
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due to the interactions between dyes and oppositely charged surfactants. Petzold
et al. prepared a kind of complex with the polyelectrolyte P-SSNa and the surfactant
dodecylamidoethyl-dimethylbenzyl-ammoniumchloride (Quartolan) to remove the
dyes in sludge (Petzold and Schwarz 2006). The results showed that the removal rate
of dyes can be increased by the polyelectrolyte–surfactant complexes, which
achieved 99% for “pure” dye green. Previous studies also indicated that this complex
can remove dyes due to the formation of a triple complex (Buchhammer et al. 2001;
Zliobaite 1998; Klimavičiūté 2004). It is not only the hydrophobic interaction
between the complex and dyes but also the complex charge that played a great
role in promoting the dye removal.

11.4.3 PCB Decontamination

PCB is a synthetic organic compound, which is widely used in the industry as heat
carriers, insulating oils, and lubricants. PCB belongs to POPs, which is also harmful
to human health and environment (Clarke et al. 2010). PCB is poorly water soluble,
so it is easy to precipitate and then absorb on the sludge particles. The concentration
of PCB in sludge can vary from 1.0 to 10.0 mg/kg dry sludge (Rosinska and
Karwowska 2017; El-Hadj et al. 2007). Previous study showed that the desorption
of PCB could be significantly promoted via the combination pretreatment of
ethylenediamine disuccinic acid (EDDS) and SP (Cao et al. 2013). The maximum
desorption of PCB was 45.7% with the addition of 3 g/L SP and 10 mM EDDS.
Results further confirmed that EDDS had little effect on the desorption of PCB.
However, SP had significant effects on the removal of PCB and phenanthrene, for
instance (Song et al. 2008; Xia et al. 2009; Cao et al. 2013). Laha et al. concluded
that the nonionic micelle-forming surfactant was efficient for increasing the solubi-
lization of various hydrophobic organic compounds (HOCs) (Laha et al. 2009).

11.5 Applications of Surfactants for WAS Dewatering

Dewatered WAS with low moisture content and smaller volume would be easier to
transport and store (Chen et al. 2001). Thus, it is necessary to execute sludge
dewatering before the subsequent disposal or utilization due to the high moisture
content of WAS (95%–99%), although it is hard to decrease to less than 80% by the
basic configuration. Moreover, the recovering value-added bio-metabolites from
fermented sludge is generally associated with sludge dewaterability. Free and
bound water are the two forms of water in sludge. The former can be easily removed
by simple mechanical technology, while the latter needed special treatment, like
adding polyelectrolytes (Liu and Fang 2003). Bound water could be further
subdivided into interstitial (driven by capillary forces), surface (bound by adsorption
and adhesive forces), intracellular, and hydrated water. Only the first two forms
could be partially stripped by inorganic and organic polymer flocculants (Chen et al.
2004; Neyens et al. 2004), which leads to the low dehydration efficiency. EPS
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played a critical role in the sludge dewatering process. Generally, microbial cells are
cross-linked within EPS, jointly forming a polymer network covered with pores and
channels, which contain abundant free and bond water. As depicted in Fig. 11.4,
effective EPS decomposition is the prerequisite for the water release. In fact, this can
not only improve the dehydration efficiency of fermented/digested WAS but also
affect the previous SCFAs and methane production during AD process. Zhu et al.
found that thermal-alkaline co-pretreatment led to a higher filtration resistance and
viscosity, which is 522-fold higher than that of raw WAS, leading to efficient EPS
release with severe disintegration of sludge flake (Zhu et al. 2015). Anaerobic
fermentation can alleviate the filtration resistance by almost 99% via consuming
EPS to SCFAs. In this sense, the dewatering performance is closely correlated with
the release and consumption of EPS.

Accordingly, surfactants with efficient performance of EPS release, combining
with AD is expected to improve sludge dehydration. Via weakening or definitely
breaking the stiff structure within sludge flake by dissolving EPS, the bound water
could be released in AD system with surfactant addition (Chen et al. 2013). On the
one hand, surfactant addition is benefited for enzyme release, leading to more
organics transferred into the liquid phase (Chen et al. 2001). On the other hand, it
can neutralize the negative charge distributed on the surface, reducing the repulsive
force among sludge floc, resulting in compact structure with more water released
(Jiang et al. 2007b). However, higher concentration of surfactants is adverse to WAS
dewatering, which would be adsorbed on the sludge flocs to regenerate electrostatic
repulsion, causing flocs dispersion (Flemming and Wingender 2010). Furthermore,
micelles would be formed once the concentration of surfactants surpass critical
micelle concentration (CMC), leading to the connection of polar groups between
micelles and macromolecular organics of EPS (e.g., proteins and nucleic acid)
(Flemming and Wingender 2010). The hydrophilic groups prefer to the liquid
phase, reducing the liquid–solid interfacial tension (Muthukumar et al. 2007), further
enhancing the solubility of organics existed in the liquid phase, achieving WAS
disintegration and cells apoptosis (Wang et al. 2014b). Ultimately, the dewatering

Fig. 11.4 The mechanism of surfactants on WAS dehydration
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performance of WAS is promoted with the intracellular water released (Huang et al.
2015).

As mentioned above, the effect of surfactants on WAS dewatering is depended on
EPS composition and content. The solubilizing and dispersing effects of surfactants
would transfer EPS from the solid phase to the liquid phase (Chen et al. 2001).
Generally, dewatering rate would increase with the augment of EPS entering liquid
phase and the release of bond water. However, excessive release of EPS under high
dosage of surfactants (beyond a reasonable threshold) would lead the stripped water
re-absorbed in the sludge flocs through hydrogen bonding and electrostatic force,
which is unconducive to sludge dehydration (Tang et al. 2017). Furthermore, the
effect of surfactants on EPS species (S (slime layer)-EPS, LB (loosely bound)-EPS
and TB (tightly bound)-EPS) and their components (i.e., proteins, carbohydrates,
and nucleic acids) has been demonstrated to be consistent with the mentioned trend
of EPS content (Sun et al. 2014; Raszka et al. 2006). For instance, dodecyl dimethyl
benzyl ammonium chloride (DDBAC) can weaken the combination of sludge flocs
with TB-EPS and LB-EPS, which would transform into S-EPS. Our previous study
showed the detaching of LB-EPS and TB-EPS from WAS was evidently improved
by SB treatment (Zhou et al. 2015). Accordingly, the solubility of proteins and
polysaccharides can be significantly improved accompanying with the release of
bound water.

Surfactants can also dissolve macromolecular organics like membrane proteins,
existed on microbial cells, via the above-mentioned mechanism (Andersen and
Otzen 2014). For example, cetyltrimethylammonium bromide (CTAB) can be
adsorbed on the surface of sludge due to its small molecular volume, which can
easily penetrate the internal pores of sludge flocs. CTAB can be adsorbed on cells by
electrostatic attraction, hydrogen bonding and hydrophobic interaction forces, lead-
ing to the aggregate of cell walls, further inhibiting nutrient intake and cause cell
decay (Huang et al. 2015). Ultimately, it is reflected as the release of intracellular
substances and water. However, the proportion of the intracellular water is relatively
small in the sludge flocs. Generally, the sum of surface water and internal-free water
of sludge flocs accounts for around 10% of the total moisture (Wang et al. 2014b).
Therefore, the contribution of surfactants to the release of internal-free water through
cell disintegration is relatively small in the overall WAS dewatering process.

11.6 Applications of Surfactants for Heavy Metal Removal
from WAS

As mentioned before, inadequate regulation led some undesirable pollutants into
sewage and sludge, which may raise risks in both environmental and human health.
Among these, heavy metals are attracting increasing attentions recently as serious
environmental contaminants and very harmful to the environment (Wang et al.
2015). Therefore, the removal or passivation of the heavy metals before final
disposal of sludge was an urgent demand. Application of surfactants in heavy
metal removal had confirmed to be feasible and effective by several literatures.
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Benefited from more powerful force between surfactants and heavy metals than that
between flocs and heavy metals, heavy metals can be easily desorbed from sludge
flocs with less residue on the sludge surface (Kuczajowska-Zadrożna et al. 2015;
Guan et al. 2017). Ren et al. investigated the performance of heavy metal removal
from pre-acidified and Fenton oxidized sludge with various surfactant addition (Ren
et al. 2014). Four most common and cheap surfactants were undertaken with various
removal efficiency of heavy metal, including the anionic SDBS, nonionic Tween-20
and Tween-60, and a cationic hexadecyl trimethyl ammonium chloride (HTAC).
Especially, Tween-60 nonionic surfactant significantly contributed to promoting the
sludge leaching process. Specifically, the removal of copper reached 85%, followed
by 60% for cadmium and 30% for lead. By contrast, HTAC and SDBS showed the
inhibition effects. Kiliç et al. used SP to treat tannery sludge for chromium
(Cr) recovery and achieved 24% extraction (Kiliç et al. 2011).

Combination of surfactants with other technologies can also enhance the heavy
metal removal, bioleaching, and electro-kinetic (EK) process, for instance. Yuan and
Weng explored three enhanced electro-kinetic processes, i.e., processing fluids of tap
water (TW), SDS, and citric acid (CA), for the removal of different heavy metals
(Yuan and Weng 2006). In the EK-SDS process, removal priority varied with each
heavy metal due to different mobility. The investigated rank is:
Cu > Pb > Ni > Fe > Zn > Cr; and the removal efficiency is in the range of
37–77%, with Ni and Pb reaching to 77% and 51%, respectively. Tang and
colleagues used the combined RL and SP treatment for metal removal from sludge.
The maximum specific removal efficiency was 74% for Zn, followed by 68% for Ni,
and 60%–64% for Mn, Cu, and Cr, while the removal to Pb reached to only 15%
(Tang et al. 2019).

11.7 State-of-the-Art Processes to Promote Organics
Biotransformation from WAS

Due to the limitation of low hydrolysis efficiency, nutrient out-of-balance, instability
during traditional AD biotransformation for WAS, various strategies were
undertaken to maximize the resource and energy recovery, which included but not
limited to the following descriptions (Fig. 11.5): (1) releasing the abundant organics
both in EPS matrix and microbial cells by sole/co-pretreatments; (2) balancing the
nutrients via co-digestion with diverse carbon-rich feedstocks; (3) accelerating elec-
tron transfer efficiency by interfacing AD with bioelectrochemical systems; and
(4) optimizing the process conditions, e.g., pH, temperature, HRT, or introducing
multi-stage process.

11.7.1 Co-Pretreatment

Due to the relatively mild effect of surfactants on EPS decomposition and cell wall
disintegration, combination with other pretreatments, i.e., co-pretreatment, was
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alternative for efficiently organics biotransformation to resource and energy from
WAS. The effects of surfactants combined with other assistant technologies on
producing SCFAs from WAS fermentation were investigated. Luo et al. employed
SDS and mixed enzyme pretreatments and harvested only 628.07 mg COD/L in the
control test that increased 1.82- and 2.32-fold for the SDS and SDS and mixed
enzyme system (Luo et al. 2011b). Chen and colleagues attained 2056 mg COD/L
SCFAs from SDBS and pH 10 co-pretreated sludge, which were 1142 and 910 mg
COD/L in the sole SDBS and pH 10 tests (Chen et al. 2013). The combination of
biosurfactants with alkaline pretreatment could further boost the SCFAs yield, for
example, 420 mg COD/g VSS was harvested from SP and pH 10 pretreated WAS
fermentation, which was 1.5 and 4.7 times of the sole pH 10 and the control tests,
respectively (Huang et al. 2016a).

As mentioned before (in the Sect. 11.2), the inhibition of surfactant on functional
microbiomes, e.g., acetogens and methanogens, was documented during WAS
digestion, calling for alternative strategies to offset this status. As a result, several
pretreatments were employed assisting with surfactants. Tanaka and Ichikawa
advocated the detoxification of surfactants to improve the methane production
during WAS digestion via photolytic pretreatment with UV irradiation by a TiO2

catalyst. As a result, the toxicity was reduced by 50–60%, due to a cleavage of the
benzene ring in the surfactants, including anionic SDS, sodium dodecyl benzene
sulfonate (ABS), and nonionic p-nonylphenyl poly(oxyethylene) ether (NPE). Par-
ticularly, more methane was produced after 100% reduction in the toxicity of the
cationic tetradecyldimethylbenzyl ammonium chloride (TBC), 30–50% higher than
that in the control (Tanaka and Ichikawa 2015). Similarly, S. Kavitha recorded the
improved biogas production with 0.467 L/g VS by SDS pretreatment of 0.02 g/g SS
mediated with extracellular enzymes secreted by thermophilic bacteria (Kavitha
et al. 2014).

11.7.2 Interfacing AD with Bioelectrochemical Systems

Although AD has achieved great success in degrading organics and producing
biogas from WAS, it still has limitations, such as instability, weak substrate decom-
position, inadequate thermodynamic input, and low particulate organic transforma-
tion. This underscores the need for interfacing complementary technologies into AD
process. Recent researches showed that aforementioned bottlenecks could be solved
by electrical stimulation in the bioelectrochemical systems (BES) by adding a small
voltage. Furthermore, inserting electrodes into the traditional AD system is an
effective way to enhance organics biotransformation from WAS, which could also
enhance organics recovery due to the CO2 capture and conversion to methane/
hydrogen. Liu et al. reported a tripled methane production rate in the AD process
stimulated by the microbial electrolysis (ME), with 91.8 g CH4/m

3-reactor/d in
ME-AD reactor and 30.6 g CH4/m

3 reactor/d in the control reactor (Liu et al.
2016). In order to avoid the influence of direct interspecies electron transfer
(DIET) in the anode biofilm on methane production, Cai et al. designed an
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innovative MEC-AD reactor with separated anode and cathode chambers via an
anion exchange membrane, which produced higher methane production rate than
AD reactor (0.070 vs. 0.027 m3 CH4/m

3/d) (Cai et al. 2016). As mentioned in the
Sect. 11.3, our previous studies showed that combining surfactants with the
AD-MEC cascading system were more beneficial for the organics transformation
to recover bio-energy from WAS (Zhou et al. 2017; Wang et al. 2014a).

Meanwhile, the operating parameters, i.e., applied voltage, hydraulic retention
time (HRT), influent COD, and temperature, were also very important for the
cascading treatment system. Escapa et al. found that hydrogen production rate
(0.18–1.42 L/L anode/d) and COD removal (46–94%) increased followed with
applied voltage (0.6–1.0 V) and HRT (8–12 h) (Escapa et al. 2013). Xu et al.
optimized the external voltage of 0.8 V for maximum hydrogen production in the
MECs feeding with sludge fermentation liquid (Xu et al. 2013). Beegle et al.
optimized the fermentation stage in an anaerobic baffled reactor, and higher H2

production rate (1.31 L/L d) and TCOD removal efficiency (99.0%) were obtained in
a single-chamber MECs feeding with the acetic acid-rich fermentation effluent
(Beegle and Borole 2018).

11.7.3 Optimizing Process Conditions

Except the pretreatments mentioned above, the stable operation of AD feeding with
WAS was also significantly affected by several parameters, including nutrient
balance, pH value, temperature, and end-product inhibition. Therefore, the optimi-
zation of operating parameters was required according to the specific aim of efficient
organics biotransformation. Due to various proportion of proteins and
polysaccharides in WAS, the nutrient was severely unbalanced with the ratio of
carbon to nitrogen (C/N) lower than 7.0. As a result, much more ammonia was
accumulated with the hydrolysis of proteins, inhibiting the normal growth and
metabolism of functional microbe and leading to failure of the AD system. Accord-
ingly, various substrates with rich carbon sources were applied to balance the C/N
ratio of raw WAS. The conditioning feedstock included food waste (FW), crop
straw, animal manure, and fats, oils, and grease (FOGs) (Kübler et al. 2000;
Scaglione et al. 2008; Liu et al. 2013; Esteban-Gutierrez et al. 2018; Zhou et al.
2013a).

The optimal pH value for WAS solubilization was reported to be 10.0 (Huang
et al. 2016b). Coupling with the strong decomposition of alkaline agents on sludge
flake and cell walls, both EPS and intracellular material were easily released, raising
the SCFA production by adequate substrates (Zhang et al. 2009). Demand on
alkaline agents can be reduced when other pretreatment was a combination of
ultrasonic (Sahinkaya 2015) and surfactants (Huang et al. 2016b), for instance. It
was worth noting that alkaline could inhibit the activity of methanogens, whose
optimal pH condition has been reported in the range of 6.5–7.2. Therefore, pH
should be regulated with caution, consistent with the specific purpose of either
SCFA extraction or biogas production. AD was usually performed in either
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thermophilic or mesophilic conditions. Higher temperature tended to lead to higher
hydrolysis of particulates in WAS, facilitating the acidification, while methane
production was more sensitive with environmental conditions. The elevated temper-
ature was also beneficial for increase in WAS dewaterability due to the increase of
released water and reduction of sludge viscosity.

Given the distinct difference in metabolic pathways and living conditions for
acid-producing bacteria and methanogen, a system permits the selection, and enrich-
ment of functional bacteria in separate reactor is preferable for the stable and efficient
operation of AD system. Generally, the first stage for acid-producing bacteria was
with pH value of 5–6 and a short HRT of 1–3 days, and the second one for
methanogens with neutral pH of 6.8–7.2 and HRT of 14–28 days (Luo et al.
2011a; Muha et al. 2013). Eliminating the inhibition of VFA accumulation on the
methanogen, both the recovery of SCFAs and methane under optimal conditions
were anticipated with higher efficiency accompanying with higher VS reduction,
more stable system, and fewer lag phase (Kumaran et al. 2016). Liu et al. gained
106.4 mL H2/g VS and 353.5 mL CH4/g VS by the two-stage AD treatment of food
waste (FW) and WAS, respectively (Liu et al. 2013). Martín-Pascual et al. optimized
the first stage for methane production from WAS, in parallel with the conventional
one-stage AD system. As revealed, at least 10.8 days can be reduced for the total
HRT with comparable performance in VS reduction. Besides, methane production
was maximized with the optimal HRT of 2.18 days for the acid stage (Martín-
Pascual et al. 2017). Similarly, temperature-phased anaerobic digestion (TPAD) was
evolved with superior performance in methane production, consisting of a thermo-
philic phase operated at high organic loading rate (OLR) (~15 g COD/L/d) under
low HRT of 2–5 days and a mesophilic one at OLR of 2–5 COD/L/d with
10–20 days (De Vrieze et al. 2016). Hydrolysis and acidification of macromolecular
organics are proceeded in the thermophilic phase, while the processes of syntrophic
acetogenesis and methanogenesis occurred in mesophilic phase. Better process
control could be achieved in TPAD, due to the different condition optimization
(i.e., pH, HRT, and OLR) of SCFA accumulation and methanogenesis (Pervin et al.
2013).

11.8 Conclusion

As an inevitable by-product in the biological wastewater treatment process, WAS
includes a large amount of organic resources, meanwhile accompanying with certain
amount of pollutants, e.g., heavy metals and refractory contaminants. Although AD
has shown great potential in energy and resource recovery from WAS, its benefits
were partially offset by the limited available organics due to the protection of the stiff
EPS matrix and microbial cells. As discussed above, surfactants can efficiently
dissolve the EPS and facilitate the AD efficiency with comprehensive roles including
resource and energy recovery, refractory organics decontamination, dewaterability
promotion, and heavy metal removal. However, more studies need to be addressed
but not limited due to the following deficiencies: (1) the mechanism of resource
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and/or energy recovery via surfactant combined with other pretreatments; (2) the
microbial response to the external addition of surfactants; (3) the interplay of value-
added resource recovery and pollutants removal, if multiple goals were simulta-
neously addressed; (4) the specific environmental footprint for surfactants addition,
when the upstream data were incorporated.

Notably, biosurfactants were reported in improving the biotransformation of
WAS organics with excellent microbial compatibility and low environmental risks.
Nevertheless, there was still a long way to implement the large-scale application of
biosurfactants, due to its high costs than chemical surfactants. Thus, solutions
addressing in razing the biosurfactant with low cost is worthy of further study. It
would be more prominent during WAS digestion for in situ synthesis of some
biosurfactants, RL, for instance. Moreover, despite the multiple advantages, the
applications of biosurfactant was closely related with the disposal routes for WAS.
With the widespread practice of value-added resources and/or bio-energy recovery
and the heightened concern on the contaminants removal, the application of
biosurfactants for WAS treatment could be improved.
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Application of Microbial Biosurfactants
in the Pharmaceutical Industry 12
Sib Sankar Giri

Abstract

Numerous studies on the characterization and application of microbial
biosurfactants have been carried out. Low in toxicity, environmental compatibil-
ity, and higher biodegradability of biosurfactants make them an attractive choice
for numerous applications. Their structural novelty, diverse properties, and ver-
satility make them an attractive group of compounds for potential use in a wide
variety of industrial and biotechnological applications. Biosurfactants like
glycolipids or lipopeptides are able to damage cell membranes and inhibit the
proliferation of cancerous cells, which eventually lead to cell lysis via apoptosis
pathways. As drug delivery molecules, biosurfactants can have promising
applications in the biomedical field. Surfactin, a lipopeptide biosurfactant,
exhibits interesting properties like insecticidal, anti-microbial, antitumor, and
anti-mycoplasma activities. In this chapter, the current status of biosurfactant
research for its potential application in pharmaceutical industry is discussed.
Potential for the development of biosurfactants as novel molecules with multifar-
ious functions and numerous applications are also discussed.
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12.1 Introduction

Surfactants are amphiphilic compounds and their use worldwide has increased in the
last decade. They contain hydrophobic and hydrophilic moieties which reduce
surface tension. Due to dispersing, emulsifying, foaming, solubilizing, and wetting
properties, surfactants are widely utilized in cosmetic, pharmaceutical, and food
formulations (Varvaresou and Iakovou 2015). The unfavorable environmental
concerns during the synthesis and use of chemical surfactants constitute an increas-
ing concern worldwide. With increased environmental awareness and rapid biotech-
nological advancement, there has been a demand for environmentally friendly
surfactants that can replace chemically synthesized compounds. Recently,
biosurfactants are in great demand due to their advantages over chemical surfactants.
Microbial surfactants or biosurfactants are surface-active molecules produced by
various classes of microorganisms (Sen 2010). Microbial biosurfactants are basically
secondary metabolites, which are either secreted outside the cells or remain adhered
to microbial cells. Biosurfactants have several potential advantages over synthetic
surfactants: (1) susceptible to biodegradation by microorganisms, (2) specificity of
biosurfactants usually better than currently available commercial surfactants,
(3) lower toxicity, and (4) higher foaming (Cameotra et al. 2010; Jahan et al.
2020). Surfactants are amphiphilic in nature and their molecular weight is low.
They have a hydrophobic tail and hydrophilic head group. The balance between
two groups (i.e., hydrophobic and hydrophilic) is the driving force behind surface
activity (Martins and Martins 2018). Microbial genera, such as Aspergillus,
Acinetobacter, Brevibacterium, Bacillus, Candida, Saccharomyces, Citrobacter,
Pseudomonas, Corynebacterium, Leuconostoc, Clostridium, Penicillium,
Enterobacter, Rhodococcus, Lactobacillus, and Thiobacillus are well-known
biosurfactant producers (Jimoh and Lin 2019).

The estimated annual production of surfactants is above 15 million tons world-
wide. The production is projected to arrive at 24 million tons approximately with
estimated cost of 42,120 million USD per annum (Gudiña and Rodrigues 2019).
Commercial productions of biosurfactants are expensive. Generally, microbial
biosurfactants are a complex blend of congeners (Marchant and Banat 2012). High
similarities in physical properties and molecular characteristics make it complicated
to purify and take apart one element of the surfactant from another. Comprehensive
knowledge about the physiochemical properties and detailed molecular structures of
biosurfactant molecules are not yet elucidated fully (Jana et al. 2017). In this chapter,
the author attempts to elaborate the broad overview of biosurfactants that are
exploited for its usefulness in the pharmaceutical industry.

12.2 Mechanism of Interaction of Biosurfactants

Biosurfactants in a heterogeneous system tend to network with the phase boundary
between two phases, known as interface (Perfumo et al. 2018). For all interfacial
systems, organic molecules have a tendency to immobilize at the solid interface from
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the aqueous phase. The conditioning film formed at the interface is responsible for
changing the surface energy and wettability of the original surface (Rodrigues et al.
2006). Interaction of biosurfactants with interfaces may influence bacterial adhesion.
A certain degree of uniformity may be observed after 4 h, and the composition of the
adsorbed material becomes substratum independent (Neu and Marshall 1990).

As previously mentioned, biosurfactants are amphiphilic in nature, and due to this
numerous interactions are involved in the possible adsorption of charged
biosurfactants to the interface. To investigate the interactions of ionic biosurfactants
at interfaces, ionic condition and pH are to be considered as important parameters
(Craig et al. 1993). The behavior of a surfactant at interfaces is influenced by its
molecular structure. It is well known that the condition in a natural system is
multifarious and requires consideration of several added parameters.

12.3 Physiochemical Properties

The adsorption of biosurfactants to interfaces has practical importance. For success-
ful application of biosurfactants, we need to know their physicochemical properties.
Here, we briefly discussed about the production and origin of microbial or
biosurfactants.

12.3.1 Surface Tension

The main role of biosurfactants is to lessen surface tensions at interfaces. At
interfaces (air/liquid, liquid/liquid, solid/liquid), biosurfactants are absorbed due to
their twofold nature, i.e., hydrophilic and hydrophobic. Water or oil molecules at the
interface are replaced by surfactant molecules, then the reduction of intermolecular
forces between solvent molecules takes place, which reduces the interfacial or
surface tension (Jahan et al. 2020).

Various isotherms described adsorption of biosurfactant at air/water interface.
Lateral interactions of adsorbed molecules have been described by the Frumkin
model (Onaizi et al. 2016). The adsorption of biosurfactants can significantly reduce
surface tension at air/water interface. At the interface, rhamnolipid forms a dense
monolayer. This is an example of adsorption isotherm described in the Frumkin
model (Chen 2004). When an ionic surfactant adsorbs at the surface of an aqueous
solution, a reduction in the surface tension is usually observed (Kolev et al. 2002).
This phenomenon enhances surface electric charge, and develops an electric double
layer. Biosurfactant (rhamnolipid) extracted from P. aeruginosa LBI was capable of
reducing the surface tension of water (Benincasa et al. 2004).

The head group and hydrophobic compartment of biosurfactants are involved in
the reduction of interfacial tension. One of the promising applications of
biosurfactants is the increment of transportation of thinly soluble hydrocarbons to
microbes (Hung and Shreve 2001).
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Adsorption of biosurfactants to solid/liquid interfaces can be applied in various
fields. For solid/liquid interfaces, the Langmuir isotherm is usually used (Feng et al.
2013). Rhamnolipid increases cell hydrophobicity, which in turn decreases the
surface tension on the bacterial cells in water. Feng et al. (2013) reported that
Pseudomonas putida 852 hydrophobicity was increased by rhamnolipid and tergitol.
The same authors reported the decrease of hydrophobicity of Rhodococcus
erythropolis 3586 by rhamnolipid and tergitol (Feng et al. 2013).

12.3.2 Biosurfactant and Self-Assembly

Above the CMC, micelles are formed from surfactants in aqueous solution. Forma-
tion of micelle is a process for equilibrium. Van der Waals interactions and hydro-
phobic and hydrogen bonding are the main reasons behind the self-assembly
tendency of biosurfactants (Kitamoto et al. 2009). Biosurfactant concentration,
temperature, pH, salt content, and pressure modulate the shape or size of the
micelles. The repulsive forces between headgroups constrain the micelle association
number. Therefore, larger micelles cannot be seen beyond CMC, even at higher
surfactant concentration; however, it increases the number of micelles (Benincasa
et al. 2004).

Chemical composition and chemical environment is associated with the CMC of
rhamnolipids (Manko et al. 2014). The CMC of monorhamnolipids is lesser than
dirhamnolipids and the difference is about 36% (Raza et al. 2010). Rhamnolipids
form lamella, micelles, or vesicles at concentrations higher than CMC. However, it
depends on the concentration and pH of the solution, and on the presence of
electrolytes (Nitschke et al. 2011). The self-assembly behavior of rhamnolipid is
driven by the solution’s ionic strength and pH (Helvaci et al. 2004). Further,
electrostatic effects of the metal ions may control the morphology of self-assembled
structures in surfactants solutions (Raza et al. 2010).

It has been reported that in aqueous solution, surfactin can form various self-
assembled nanostructures (Arutchelvi et al. 2014). The surfactin biosurfactant
isolated from B. subtilis YB7 formed CMC in aqueous solution. However, addition
of just 200 μM of divalent ions (e.g., Cd2+, Ca2+, Zn2+, and Ni2+) decreased CMC
formation (Arutchelvi et al. 2014; Janek et al. 2018). Using isothermal titration
calorimetry (ITC) spontaneous binding of surfactin analogs with phospholipid
vesicles is determined. This is an endothermic reaction and driven by entropy
process (Razafindralambo et al. 2009). At the air/water interface, surfactin molecules
could form a robust film in association with perdeuterated leucine groups. The
variation of pH or the number of absorbed surfactant molecules did not influence
the film structure (Goussous et al. 2017).
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12.3.3 Emulsification Activity

Emulsions are kinetically stabilized, non-equilibrium systems. The stability, struc-
ture, and appearance of emulsions depend on the composition, components, and
conditions involved in their preparation (e.g., temperature and pressure) and pro-
cesses (equipment type, mixing duration, input energy) (Kaizu and Alexandridis
2016). Mechanisms like flocculation, creaming, coalescence, coagulation, and
Ostwald ripening can break emulsions over time (Heeres et al. 2014).

Bacillus subtilis LAMI005 produced a surfactin biosurfactant. The LAMI005
surfactin showed a high emulsification index (E24 > 50%) on soybean oil and
kerosene (de Oliveira et al. 2013). The emulsion behavior is controlled by the pH
and salinity of the system. B. subtilis ATCC 21332 surfactin at pH >7.4 produced
stable emulsions. Kerosene exhibited emulsification ratio of about 98%, at pH 7.4
but no emulsification was observed below pH 3 (Long et al. 2017). The interfacial
adsorption properties of rhamnolipids are influenced by pH range. This in turn
influences the surface tension, CMC, and elasticity coefficient. The E24 value for
rhamnolipid was increased from 0 to 70% in a saline kerosene system when the pH
augmented from 3 to 6. Increased E24 is possibly associated with the long chain size
of the hydrophobic sources (Lovaglio et al. 2011).

Surfactants enhance the stability of emulsions. Surfactants can form self-
assembled structures, which can better stabilize emulsions through electrostatic
and steric barriers (Santos et al. 2016). When electrostatic effects are present, more
complexity is observed in emulsion stability. If pH varies then ionization and
protonation of the carboxyl groups in rhamnolipids can be seen. The ionized
carboxyl group prevails with a negative charge at pH above 5.6. Increased concen-
tration of OH¯ enhances the emulsifying activity and stability of rhamnolipid
extracted from P. aeruginosa LBI (Lovaglio et al. 2011).

12.4 Application of Biosurfactants in Pharmaceutical Industry

Basically, microbial origin and composition are considered to classify
biosurfactants. Sometimes they are categorized based on their molecular weight.
Lipopolysaccharide is a high-molecular-weight biosurfactant. Lipopeptide is a com-
mon example of low-molecular-weight biosurfactants (Naughton et al. 2019).
Among glycolipids, sophorolipids (source: fungi), rhamnolipids (source: Pseudo-
monas), glycolipids, cellobiose lipids, trehalolipids, and mannosylerythritol lipids
(MELs) are mostly studied. In terms of pharmaceutical potential, glycolipids
(Marchant and Banat 2012) and the LPs are of particular interest. Most low-
molecular-weight biosurfactants have been reported to be released extracellularly.
They have profound applications in transplantations and device manufacturing units.

Biosurfactant decrease the surface tension between two immiscible or miscible
liquids, block hydrogen-bonding, and augment hydrophobic/hydrophilic
interactions (Jimoh and Lin 2019). Biosurfactants are broadly utilized in various
fields, for example, agriculture, cosmetics, chemistry, horticulture, food sector, and
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in pharmaceutical industry (Table 12.1). Here, we discuss about the potential
applicability of a few important biosurfactants in pharmaceutical industry and their
notable biological activities.

12.4.1 Biosurfactant as an Antitumor/AntiCancer Agent

Glycolipids-led apoptosis and growth blocking of mouse B16 cells (malignant
melanoma) have already been proven. In the sub-G0/G1 phase, the accumulation
of B16 cells was observed when exposed to increasing concentration of
mannosylerythritol lipids (MELs). Chromatin condensation and fragmentation of
DNA was observed (Zhao et al. 2000).

The exposure of HL60 cells to MELs markedly increased general differentiation-
related characters in granulocytes (e.g., expression of Fc receptors, ability to reduce
nitroblue tetrazolium, and phagocytic activities). MELs can suppress the action of
PKC. Thus, both apoptotic and differentiation mechanisms can be triggered by MEL
biosurfactants (Zhao et al. 2010; Isoda et al. 1997).

Table 12.1 Application of biosurfactants in medical/pharmaceutical fields

Biosurfactant type Microorganisms Application

Surfactin Bacillus subtilis Antimicrobial and antifungal activities

Antitumor activity against Ehrlich’s ascites
carcinoma cells

Inhibition of fibrin clot formation

Iturin Bacillus subtilis Antimicrobial activity and antifungal activity
against profound mycosis

Increase in the electrical conductance of
biomolecular lipid membranes

Nontoxic and nonpyrogenic immunological
adjuvant

Lichenysin Bacillus
licheniformis

Antibacterial activity

Chelating properties (membrane-disrupting effect
of lipopeptides)

Rhamnolipid Pseudomonas
aeruginosa

Antiadhesive activity

Antimicrobial activity against Mycobacterium
tuberculosis

Mannosylerythritol
lipid

Candida antartica Antimicrobial activity

Immunological and neurological properties

Induction of cell differentiation in the leukemia cell
line HL60

Treahalose lipid Rhodococcus
erythropolis

Antiviral activity against herpes simplex virus

Antiviral activity against influenza virus

Surlactin Lactobacillus Antiadhesive activity against several pathogens,
including enteric bacteria

Glycolipid Streptococcus
thermophilus

Antiadhesive activity against several bacterial and
yeast strains
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Wickerhamiella domercqiae produced sophorolipid biosurfactant. Exposure
H7402 cell (human liver cancer cells (H7402) to this biosurfactant resulted in
apoptosis by activating caspase-3, blockage of cell cycles (during G1), and by
enhancing concentration of Ca2+ in cytoplasm (Chen et al. 2006). Exposure of
pancreatic carcinoma cells to sophorolipids resulted in cytotoxic activity (Fu et al.
2008). The effect of various sophorolipids on human esophageal cancer cell lines
were determined (Shao et al. 2012). Sophorolipids having higher degrees of acety-
lation exhibited stronger inhibitory activities. The completed inhibition of cells was
observed in cells exposed to diacetylated lactonic sophorolipid (30 mg/mL). How-
ever, in the case of monoacetylated lactonic sophorolipid, double concentration was
necessary to inhibit the cells completely. The strongest cytotoxic effect was recorded
in sophorolipid possessing a double bond in the fatty acid portion. Antitumor
activities of acidic sophorolipids are very scarce. Those researchers speculated that
anticancer activities of various sophorolipids may have different anticancer
mechanisms.

Biosurfactant monoolein was extracted from the fungus Exophiala dermatitidis
SK80 (Chiewpattanakul et al. 2010). Monoolein efficiently inhibited the prolifera-
tion of leukemia (U937) and cervical cancer cell lines (HeLa) in a dose-dependent
manner. It did not show cytotoxicity even at higher concentrations. In both cancer
cell lines, morphological changes of DNA and cell were observed, which include
DNA fragmentation, membrane blebbing, and cell shrinkage. The biosurfactant
extracted from Acetinobacter indicus M6 inhibited the propagation of A549 (lung
cancer cells) at G1 phase and confirmed its antitumor activity (Karlapudi et al. 2020).
This biosurfactant showed low toxicity and strong drug-like properties.

Surface activity profiles of biosurfactants will be altered if there is any change in
lipid profiles. Preetha et al. (2005) studied the phospholipid profiles of both cancer-
ous as well as normal cervical tissues. They found that phosphatidylcholine levels
were higher (around five times) in cancerous tissue than that of normal tissue. These
authors suggested that presence of phospholipids may change the membrane perme-
ability of cancer cell membranes. Biosurfactants are capable of altering the lipid
content to modulate interfacial properties and fluidizing the rigid cancerous tissues.
If rigidity increased then surface tension will be lower and the drug penetration
through such membranes will be reduced. Use of fluidizers can reverse those
rigidifying effects and may improve penetration of drug into cancerous tissues
(Gudiña et al. 2015). Therefore, biosurfactants could be exploited further for their
potential use in drug delivery systems.

12.4.2 Biosurfactants as Drug Delivery Agents

In the case of passive immunization, biosurfactants may be suitable for delivering
drugs. Due to the side effects and limited availability of antifungal drugs, the
treatment of candidiasis seems to be difficult (Naughton et al. 2019). If antifungal
drugs incorporate into suitable drug delivery systems then this problem can be
solved. Various types of drug carriers (e.g., particulate, polymeric, cellular, and
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macromolecular carriers) are being investigated and also being used in drug delivery
(Prasad et al. 2017). In biomedical and agricultural industries, micelles, lipid
particles, microspheres, and vesicular systems (noisome, liposomes, sphingosomes,
and virosomes) are currently being used (Gangwar et al. 2012).

Microemulsions are isotropic mixtures of oil and water. They are transparent, and
thermodynamically stable. To stabilize the system, an interfacial film of surfactant
molecules in combination with a co-surfactant is often used. A microemulsion
system mainly consists of surfactants. Depending on self-aggregation, the structure
of the microemulsion varies. Hydrophobic or hydrophilic drugs can be encapsulated
or solubilized into those structures in the presence of a dispersed phase within its
structural vicinity (mostly spherical). Thereby, dispersed phase partitioned from the
continuous phase (Israelachvili 1994). Example: for microemulsion formulation,
sucrose esters (non-ionic surfactants) possessing a sucrose (hydrophilic) and
lipophillic group are used often (Csizmazia et al. 2012). Recently, as greener
alternatives to synthetic surfactants, use of biosurfactants as templates for nanoparti-
cle synthesis is gaining momentum (Palanisamy 2008).

Mannosylerythritol lipid (MEL)-A is a glycolipid biosurfactant and its liposomes
can increase the efficiency of gene transfections in mammalian cell culture (Ueno
et al. 2007). Noisomes have also been used as drug delivery systems (Khan and
Irichhaiya 2016). In a recent study, the potential of SL-AmB niosome was compared
with a commercial one (Haque et al. 2017). Noisome-treated biofilm had less fungal
hyphae. However, treatment of biofilm with phosome (AmB) had budding cells
(AmB). In Candida albicans, one of the crucial virulence factors is pseudohyphae/
true hyphae (Mayer et al. 2013). Cheng et al. (2009) demonstrated that SL-AmBmay
downregulate the expression of hyphal genes by interfering with its gene expression
(Cheng et al. 2009).

12.4.3 Wound Healing and Dermatological Applications

Zouari et al. (2016) isolated lipopeptide from B. subtilis SPB1. They evaluated the
wound healing capacity of lipopeptide rats (Zouari et al. 2016). These researchers
observed that CICAFLORA™ treatment significantly increased wound healing in
experimental rats.

Gupta et al. (2017) in an in vivo experiment demonstrated the potential of
biosurfactant glycolipid in healing of wounds in rats. Another study showed that
lipopeptides from Acinetobacter junii B6 enhanced histopathological remission and
free-radical scavenging activities (Ohadi et al. 2017). Lydon et al. (2017) isolated
glycolipid biosurfactant sophorolipids from yeast Starmerella bombicola. Purified
sophorolipids inhibited the growth of Pseudomonas aeruginosa and Enterococcus
faecalis. The sophorolipid (< 0.5 mg/mL) had no undesirable effects on endothelial
or keratinocyte-derived cell lines.

Probiotic Lactobacilli strains are nontoxic, environmentally friendly, and provide
beneficial effects on the host (Satpute et al. 2016). The biosurfactant isolated from
C. lipolytica UCP 0988 (yeast) exhibited expected antiadhesive activity against
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E. coli compared with those produced from other probiotic bacteria L. helveticus and
L. paracasei (Sharma and Saharan 2016; Gudiña et al. 2010). Rhamnolipids and
lactonic sophorolipid inhibited oral pathogens (Actinomyces naeslundii, Neisseria
mucosa, Streptococcus oralis, Streptococcus mutans, and Streptococcus sanguinis)
both in planktonic and oral biofilm states (Elshikh et al. 2017).

The antiadhesive and antimicrobial properties of Lactobacillus pentosus-derived
glycolipid (PEB) were investigated and its activity was compared with glycolipids
isolated from Lactobacillus paracasei (PAB) (Vecino et al. 2018). Both PEB and
PAB exhibited antimicrobial activity against E. coli, S. aureus, P. aeruginosa,
Streptococcus agalactiae, C. albicans, and Streptococcus pyogenes. The lipid con-
tent in PAB biosurfactant was lower than that of PEB biosurfactant. The Lactoba-
cillus helveticus-derived glycolipid exhibited elevated antimicrobial potential
against S. epidermidis and E. coli (Sharma and Saharan 2016). These properties
suggest the potential of biosurfactant for various pharmaceutical applications.

12.4.4 Potential Antimicrobial Application

As various bacteria are showing resistance to different antibiotics, there is demand
for new antimicrobial compounds. Lipopeptide biosurfactants have been used
widely as antimicrobial agents. The antimicrobial lipopeptides produced by probi-
otic Bacillus inhibited the growth of pathogenic bacteria present in GI (gastrointes-
tinal) tract (Hong et al. 2005). A cell-free biosurfactant was isolated from
Lactobacillus spp. and it exhibited a broad spectrum of antimicrobial activity against
B. cereus, E. faecalis, Escherichia coli, and Salmonella spp. (Augustin and
Hippolyte 2012). The cell-free biosurfactant from Lactobacillus rhamnosus
inhibited the growth of bacteria causing urinary tract infections (Salman and Alimer
2014). Biosurfactants isolated from B. licheniformis VS16 and B. subtilis VSG4
inhibited the growth of various Gram-positive and Gram-negative bacteria (Giri
et al. 2019). Moreover, those biosurfactants have excellent antiadhesive activities
against tested organisms. Similarly, biosurfactants from L. lactis and
B. licheniformis exhibited antimicrobial activities against pathogenic methicillin-
resistant S. aureus (MRSA) and E. coli (Saravanakumari and Mani 2010). Coryne-
bacterium xerosis NS5 produced a novel lipopeptide biosurfactant coryxin (Dalili
et al. 2015). Coryxin disrupted the biofilms of Pseudomonas aeruginosa (30%),
E. coli (66%), Streptococcus mutans (80%), and S. aureus (82.5%).

Various probiotic bacilli produce antimicrobial lipopeptides (Hong et al. 2005).
Lipopeptide biosurfactant marine Bacillus circulanswas effective against Alcaligens
faecalis, Proteus vulgaris, MRSA, and other multidrug-resistant pathogens (Das
et al. 2008). Lipopeptide biosurfactants are useful in preventing fungal diseases in
plants. Surfactin, fengycin C, and Iturin A isolated from B. subtilis strain
EA-CB0015 were effective against fungus Mycosphaerella fijiensis (González-
Jaramillo et al. 2017). Mannosylerythritol lipid (MEL) produced by Pseudozyma
aphidis exhibited bactericidal and bacteriostatic effects on spores and vegetative
cells of Bacillus cereus. The minimum inhibitory concentration (MIC) of MEL
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against B. cereus cells was 1.25 mg/mL and minimum bactericidal concentration
(MBC) of MEL against the same bacteria was 2.50 mg/mL (Shu et al. 2019).
Recently, chitosan biopolymer was used in combination with rhamnolipid
biosurfactants as an antimicrobial substance (Marangon et al. 2020). This combina-
tion had low toxicity and was highly effective against S. aureus and S. epidermis
biofilm nanoparticles combining the biopolymer chitosan with the biosurfactant
rhamnolipid.

In a recent study, uniformly dispersed silver nanoparticles (AgNPs) were
synthesized in lipopeptide biosurfactant reverse micelles (Bezza et al. 2020).
These nanoparticles displayed remarkable inhibitory effect against B. subtilis CN2
and P. aeruginosa CB1 strains in a dose-dependent decline of cell viability and loss
of membrane integrity (Bezza et al. 2020; Aziz et al. 2014, 2015, 2016). Waghmode
et al. (2020) explored the therapeutic potential of glycolipid biosurfactant produced
by Planococcus maritimus. The biosurfactant was capable of inhibiting the growth
of Mycobacterium tuberculosis H37Ra at IC50:64.11 � 1.64 μg/mL and MIC at
160.8 � 1.64 μg/mL. Biosurfactants inhibited the growth of P. falciparum at EC50
34.56 � 0.26 μM. Ohadi et al. (2020) assessed the in vitro biofilm inhibition
potential of lipopeptide biosurfactant isolated from Acinetobacter junii. These
authors observed that biosurfactants at concentrations just below CMC inhibited
bacterial growth. Further, the biosurfactant damaged the biofilm formed by
P. aeruginosa, S. aureus, and Proteus mirabilis (Ohadi et al. 2020).

Sophorolipid biosurfactants were isolated from Candida albicans SC5314 and
Candida glabrata CBS138 (Gaur et al. 2019). Isolated sophorolipid biosurfactant
was effective against S. aureusMTCC9886, B. subtilisMTCC44, E. coliMTCC723,
and P. aeruginosa MTCC 424. Flow cytometry analysis demonstrated that
biosurfactants at 60 mg/L killed 65.8% of B. subtilis (Gaur et al. 2019). Recently,
Bucci et al. (2018) reported that surfactin could enhance the effect of plant natural
product terpinen-4-ol (TP) as antiadhesion and antimicrobial agent. Synthetic
surfactants and surfactin promote the antimicrobial activity of TP against
S. mutans. S. mutans is the responsible for tooth decay.

Lahkar et al. (2018) investigated the antifungal role of biosurfactant.
Biosurfactant isolated from P. aeruginosa JS29 was tested for its efficacy in
controlling anthracnose disease. They demonstrated the significant disease reduction
in fungal spore. Moreover, in detached-fruit assay it was observed that biosurfactant
could effectively inhibit the growth of fungus in different storage conditions.
Planococcus halotolerans IITR55 and P. rifietoensis IITR53 produced rhamnolipid
biosurfactants (Gaur et al. 2020). Both biosurfactants inhibited the growth of a
variety of bacteria. Biosurfactants released extracellular DNA and protein content
at a concentration of 40 mg/mL. At very low concentrations, they generated signifi-
cant amount of ROS. These results showed their antimicrobial potential.

Lactococcus lactis produced a polycyclic peptide, namely, nisin. Sophorolipids
and nisin exhibited inhibitory activities against Staphylococcus aureus with MICs of
32 and 0.5 μg/mL, respectively (Chen et al. 2020). Biosurfactant produced from
Candida bombicola URM 3718 using low-cost substrates exhibited noteworthy
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emulsifying and antioxidant activities, which shows its potential for application in
food systems (Da Silva et al. 2020).

12.4.5 Other Applications in the Pharmaceutical Field

Sambanthamoorthy et al. (2014) isolated biosurfactants from Lactobacillus
rhamnosus and Lactobacillus jensenii cell surfaces. Acinetobacter baumannii,
E. coli, and MRSA are known to form biofilms on wounds, medical implants, and
industrial surfaces. Biosurfactants isolated from L. rhamnosus or L. jensenii
exhibited antibacterial activity against those bacteria at concentrations between
25 to 100 mg/mL. Microscopic analysis revealed that biosurfactants damaged either
cell wall or cell membrane of A. baumannii and S. aureus.

Bielinska et al. (2007) used nanoemulsions to prepared recombinant Bacillus
anthracis protective antigen (rPA) against anthrax. They used soybean oil-water
nanoemulsion used for the preparation. The formulated nanoemulsion was stable and
functioned as an effective mucosal adjuvant in inducing robust, long-lasting, and
precise cellular responses, without any negative effect (Bielinska et al. 2007).

Ohadi et al. (2017) investigated the antioxidant and related biological properties
of a lipopeptide biosurfactant isolated from Acinetobacter junii B6 (Ohadi et al.
2017). Rats were wounded in the depilated thoracic region and treated with
biosurfactant. A biosurfactant dose of 5 mg/mL exhibited best histopathological
remission of scar wounds. A recent study revealed that biosurfactants could be used
to remove tetracycline contamination in aquatic environment (Liu et al. 2020). Via
biotransformation mechanism, co-culture of B. amyloliquefaciens and B. clausii
efficiently bio-removed oxytetracycline (76.6%) and chlortetracycline (88.9%).

Sophorolipids showed spermicidal, antibacterial, and anti-HIV activities. Further,
it has shown anti-inflammatory, antimicrobial, anticancer, and immunomodulatory
activities against chronic inflammatory conditions and septic shock (Morya et al.
2013; Jahan et al. 2020). Most lactobacilli biosurfactants are usually surlactin type
with high potential toward impeding pathogens adherence (Satpute et al. 2016).
Some microorganisms are known to produce cell-free biosurfactants which have
biomedical applications. L. brevis CV8LAC produced a cell-free biosurfactant
which prevents the adhesion of C. albicans on medical-grade silicone elastomeric
disks (Ceresa et al. 2015). These researchers recently demonstrated that sophorolpids
could reduce biofilm formation S. aureus by 75% on pre-coated silicon discs (Ceresa
et al. 2020). Moreover, sophorolipid inhibited the C. albincans biofilm effectively
(Ceresa et al. 2020). Cyclic lipopeptides, fengycin and surfactin produced by
Bacillus subtilis BBG111 induced systemic resistance against Rhizoctonia solani
infection in rice (Oryza sativa L.) but it has no effect against Magnaporthe oryzae
(Chandler et al. 2015).
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12.5 Applications of Surfactin in Pharmaceutical Industry

Surfactin is an amphiphilic cyclic lipopeptide biomolecule. It consists of hydropho-
bic as well as hydrophilic moieties (Banat et al. 2010). Surfactin derived from
Bacillus subtilis KLP2015 inhibited the growth of Escherichia coli NCTC 10418,
Klebsiella pnemoniae, Salmonella typhimurium NCTC 74, and Staphylococcus
aureus ATCC 6538. This surfactin had a strongly dislodged biofilm formed by
S. aureus ATCC 6538 (Meena et al. 2020).

Cytotoxicity of surfactin toward cancer cells has been aimed in many studies
(Gudiña et al. 2016). The cytotoxic effect of surfactin on K562 leukemia cells and
human Bel-7402 hepatoma cells was investigated (Cao et al. 2009). Surfactin
isolated from Bacillus natto TK-1 had cytotoxic effect on those cells as revealed
by MTT assay. The IC50–48 h values of K562 and Bel-7402 were 19.1 and 30.2 μg/
mL, respectively, which indicated cancer chemo-preventive potential of surfactin
(Cao et al. 2009). Cytotoxic potential of surfactin was studied in 47D and
MDA-MB-231 cancer cells (Duarte et al. 2014). Cell viability was decreased
when surfactin concentration and exposure duration was increased. The cell viability
in MDA-MB-231 decreased sharply (reached up to 75% in 24 h) when surfactin
concentration was 0.5 g/L; however, 0.5 g/L of surfactin resulted in 40% reduction in
T47D cell viability after 24 h exposure (Duarte et al. 2014).

Surfactin-induced apoptosis pathways in MCF7 cells were investigated (Cao
et al. 2010). They demonstrated reactive oxygen species (ROS)-driven apoptosis
in MCF7 cells (Carrillo et al. 2003). Hydrophobic interactions help surfactin to
penetrate into the plasma membrane. This increased the surface pressure which
disturbs the order of hydrocarbon chain and eventually alters the thickness of the
membrane. After this, conformational changes due to heptapeptide facilitate the
mechanism of interaction (Maget-Dana and Ptak 1995). Seydlová et al. (2011)
indicated that surfactin’s integration into membranes induced specific dehydration
of phospholipid polar heads. Therefore, destabilization of membrane integrity takes
place which triggers the cascade of cellular events (Carrillo et al. 2003). Seydlová
and Svobodová (2008) demonstrated that a low concentration of surfactin can be
miscible with phospholipids, and penetrates into the membrane. Surfactin could
exhibit strong detergent action at high concentration and hence could disrupt the
membrane (Heerklotz and Seelig 2007).

Surfactin can rupture mycoplasmic wall completely through the osmotic influx of
medium (Vollenbroich et al. 1997; Grau et al. 1999). Therefore, it may be used to
control mycoplasma-related infections in manufacturing therapeutics and care
products. The antiviral properties of surfactins against enveloped viruses (e.g.,
retrovirus and herpes virus) have also been reported. Surfactin can directly act on
the lipid envelope of these viruses (Vollenbroich et al. 1997; Kracht et al. 1999). The
nonpolar part of surfactin can penetrate into proteins and increase their stability by
forming a noncovalent complex (Santos et al. 2018). It has potential application in
oral delivery of insulin. Surfactin can pass through the gastrointestinal tract (Zhang
et al. 2016). The potential capability of surfactin in boosting insulin uptake of
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intestine was investigated in mice model. Lipopeptide did not exert any noteworthy
influence on bioavailability of hormones (Zhang et al. 2016).

Anti-biofilm property of surfactin is an important aspect. Surfactin, at low
concentrations, disrupted the biofilm formed by various pathogens (Gomes and
Nitschke 2012). Surfactin could be a potential antibiofilm agent in the medical
industry; especially to eradicate bacterial biofilm from surfaces of surgical devices
and biomaterials to prevent microbial colonization (Moryl et al. 2015). Presently,
nanotechnology has been used to attenuate the toxicity of surfactin (Santos et al.
2018). To load doxorubicin (DOX), lipopeptide molecules were self-assembled into
nanoparticles (NP) in treating multidrug-resistant problems in cancer treatment
(Huang et al. 2018). Moreover, surfactin was applied in biological synthesis of NP
(Singh et al. 2011). Surfactin-stabilized silver nanoparticles in diabetic mice reduced
the wound surface (Krishnan et al. (2018).

12.6 Concluding Remarks

Although the biosurfactant market is expanding, the use of biosurfactants is being
confined within a few specialized field of applications. Due to low toxicity, bioavail-
ability, exceptional physicochemical characteristics, and renewable-resource origin,
biosurfactants are a suitable alternative to their chemical counterparts. Several
microbial surfactants exhibited antibacterial, antifungal, antiviral, anti-biofilm, and
antiadhesive properties, which indicates their great potential application in the
biomedical and healthcare industries. Biosurfactant molecules may be useful in
blocking the growth of carcinoma cells. They damage the cell membranes and
their mechanism of action associated with cellular lysis. To date, their major
applications are limited to bioremediation. Due to less investment and lack of
large-scale industrial production, wider application has not been achieved (Naughton
et al. 2019).

In addition to an increasing demand for the biomedical applications of
biosurfactants, their interactions with various components in microemulsions need
to be explored further. Their use as adjuvant in microemulsion formulations are yet
to be addressed adequately. The lack of adequate medical research about the use of
biosurfactants is a challenge in the area of drug delivery. Few biosurfactants have
fulfilled the criterions of drug regulatory systems. These successful outcomes will
clear the path for the booming use of biosurfactant molecules in the pharmaceutical
industry.
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Antibacterial Biosurfactants 13
Debojyoti Mukherjee, Bipin Rooj, and Ujjwal Mandal

Abstract

When we say surfactant the first thing that comes in our mind is detergent.
Obviously surfactants are detergents but they are more than that! Surfactants
are very important for their versatile applications, as detergents and lubricants and
in drug manufacturing, food processing, bioremediation, crude oil degradation,
cosmetic production, removal of heavy metals, etc. The list can be really long but
here we are only interested in the antibacterial activity of biosurfactants.
Biosurfactants are formed by the microorganisms when the latter lives in a
competitive environment. As a result, biosurfactants possess antibacterial
properties. Different strains of microorganisms can produce various types of
biosurfactants. Multiple drug resistance (MDR) against standard drugs is a
challenge nowadays. Antibacterial biosurfactants, owing to their large variety
can be a remedy to this problem. The sources of biosurfactants are very cheap,
because, generally, they are produced from industrial waste, food waste, and
cheap raw materials. Due to industrial application, medicinal importance, and
economic viability, biosurfactants find a niche in our daily life. Lots of researches
are ongoing to explore their full potential. This chapter provides a very basic
discussion on biosurfactants and recent developments in this field.
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13.1 Introduction

The history of biosurfactants (BS) is almost 70 years old. It started in 1949 when
Jarvis and Johnson (1949), for the first time, showed that crystalline glycolipids
isolated from Pseudomonas aeruginosa possess antibiotic activity against tubercu-
losis in mice. Back in 1949 there was very little knowledge about biosurfactants and
their antibacterial activity. In 1968 Arima et al. (1968), from Tokyo University,
Japan, first purified and characterized “surfactin.” They were able to isolate it as
white needle crystals and named it “surfactin.” In 1971 another research group from
Japan filed a US patent for a new antibiotic named macromomycin obtained from a
new strain of Streptomyces designated as Streptomyces macronomyceticus
(Umezawa et al. 1971). The antibiotic macromomycin was nothing but a
biosurfactant. Many other groups later reported on different biosurfactants obtained
from various microorganisms and among them some recent works are referenced
here (Felix et al. 2019; Gaur et al. 2019; Mohd Hafez Mohd et al. 2020; Sood et al.
2020; Ashitha et al. 2020; Ohadi et al. 2020; Waghmode et al. 2020; Hussain et al.
2020; Cheffi et al. 2020; Meena et al. 2020; Ceresa et al. 2020; Lima et al. 2020).
Depending on the nature of sources, surfactants can be classified into two categories
(1). One is chemical surfactant and the other is biosurfactant (BS). Petroleum
resources, mainly, are used for the production of chemical surfactants.
Biosurfactants are naturally occurring, and different types of living cells are used
to produce them. Our increased concern for the environment compelled us to use
nature-derived products wherever possible and for that reason nowadays people are
more inclined to use BS compared to chemical surfactants. The main reasons for
preferring BS are as follows: reduced toxicity, higher biodegradability, environmen-
tal friendliness (Giri et al. 2019). They are often considered as alternatives to
synthetically produced surfactants not only due to their physicochemical properties
but also because of the trend towards renewable resources and environmentally
friendly compounds. In addition, BS can function well under very adverse
conditions like high salinity, elevated temperatures, and wide pH ranges, where
chemical surfactants fail to work (Bezza and Chirwa 2015). Biosurfactants are very
benign to the nature and work very well at extreme conditions. In the long run they
may replace synthetic surfactants (Kaur et al. 2017).

Hydrocarbons (CxHy) are a rich source of carbon and energy. Microorganisms
use hydrocarbons as their food source (Soussi et al. 2019). It is necessary to carry
these hydrocarbons inside cells. Microorganisms produce various types of
compounds to solubilize them for transport inside cells. These compounds are
known as biosurfactants. There are also some other types of microorganisms
which can modify the cell wall by producing nonionic surfactants enabling the
passage of the hydrocarbons or any other water-insoluble substrates. Sometimes
biosurfactants are classified into two categories: low molecular weight and high
molecular weight (Ron and Rosenberg 2001). Biosurfactants that show their action
through dissolution are known as emulsifiers. Generally high molecular weight BS
fall in this class. Low molecular weight biosurfactants show their activity by
modulating the surface tension, interfacial tension, and other surface properties.
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Biosurfactants may also be divided into different classes depending on the chemical
structures of their hydrophilic and hydrophobic groups. These classes are broadly
glycolipids, lipopeptides, phospholipids, fatty acids, and polymeric structures (Desai
and Banat 1997). Glycolipids, lipopeptides, and phospholipids are examples of low
molecular weight biosurfactants. For glycolipids the carbohydrate part is often
formed by monosaccharides like rhamnose or disaccharides, such as sophorose or
trehalose (Zajic and Seffens 1983). Biosurfactants may be derived from a broad
range of bacterial and fungal species. But there are some typical producers of distinct
surfactant groups. For instance, many rhamnolipids are formed by Pseudomonads,
while sophorolipids can often be found in yeasts. On the other hand, Bacillus species
typically act as producers of many lipopeptides and lipoproteins (Desai and Banat
1997). Different types of microorganisms produce a variety of biosurfactants and as
a result they show different physiological roles. These surfactants have huge poten-
tial for its antibacterial, antifungal, and cosmetic applications. Biosurfactants show
their activity mainly through changing surface tension and or interfacial tension. The
antiadhesive property of biosurfactants is another reason for which they show
antibacterial activity as microorganisms find it very difficult to stick to the surfaces
and tissues (Abdelli et al. 2019). Strong detergency effect in general can explain the
antibacterial property. Some other mechanisms are interaction with membrane
phospholipids or the alteration of the electrical conductance of membranes through
which antibacterial properties are shown. Biosurfactants are used for the extraction
of heavy metals and find applications in the production of antimicrobial and anti-
biofilm compounds (Sharma and Saharan 2016). They are also used as natural food
preservatives. According to WHO, one death out of ten is due to contaminated food.
Food-borne diseases are responsible for this. People nowadays prefer natural
additives over artificial ones. Rhamnolipids show antibacterial activity and have
been used to preserve foods. From a long list of microorganisms and their different
strains we can get even a longer list of biosurfactants. Hence it is necessary to find
some way to verify whether a biosurfactant possesses antibacterial property or not.
Minimum inhibitory concentration (MIC) is the lowest amount required to inhibit
the growth of a microorganism after 24 h. Low value of MIC indicates better
antibacterial property. The MIC test for a biosurfactant is performed against the
microorganisms we are interested in (Abdelli et al. 2019). Microorganisms which
can diminish the surface tension by 40 mN/m are considered as good biosurfactant
producers and this fact is used to find antibacterial biosurfactants (Shete et al. 2006;
De Jesus et al. 2013; Gaur et al. 2019).

Major functions played by biosurfactants include surface property modification
(Rosenberg and Ron 1999). Through solubilization, biosurfactants increase the
bioavailability of hydrophobic substrates. Hydrophilic and hydrophobic groups of
biosurfactants help them to aggregate at interface of fluids with different polarity and
decrease their interfacial tension (Banat 1995; Karanth et al. 1999). All these
properties make biosurfactants potential antibacterial agents.
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13.2 Glycolipids

Among all the biosurfactants glycolipids are the most important and most studied.
These exist as a combination of one or more carbohydrates with one or more fatty
acids. Here hydroxy fatty acids are connected by ester or ether group. Here the lipid
backbones are connected with sugar having α or β configuration. Though there are
different types of glycolipids, the most important glycolipids are sophorolipids,
rhamnolipids, and trehalose lipids (Rikalovic et al. 2015).

13.2.1 Rhamnolipids

Rhamnolipids are surface-active glycolipids. They are a crystalline acid. They
normally originate from Pseudomonas aeruginosa (Abdel-Mawgoud et al. 2010;
Shekhar et al. 2015). Rhamnolipids are divided into mono- and dirhamnolipids
(Figs. 13.1 and 13.2). There are many pseudomonas species reported which produce
rhamnolipids. Also there are some bacteria which produce rhamnolipids. In the
structure of rhamnolipids there are two parts, one part contains one rhamnose
molecule and other part contains two rhamnose molecules. Another part is the
aglycon part which contains β-hydroxy fatty acid chain. The fatty acids are linked
through ester bond formation. In these glycolipids, rhamnose molecules are
connected with β-hydroxy carboxylic acid. But β-hydroxy decanoic acid is the
most studied one. The first rhamnolipid contained two molecules of rhamnose and
two molecules of β-hydroxy decanoic acid (Fig. 13.3) (Edwards and Hayashi 1965).
These types of lipids are found to be an excellent emulsifying agent (Hisatsuka et al.
1971). In the past decades vast research has been done on rhamnolipids and they’ve
been found to have many applications in different fields. Among the biosurfactants,

Fig. 13.1 Structure of mono rhamnolipids
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rhamnolipids have some noticeable activity, which finds a broad range of industrial
applications. The major applications of rhamnolipids are bioremediation,
pharmaceuticals, therapeutics, cosmetics, detergents, cleaners, agriculture, antimi-
crobial, and many more areas. Hisatsuka et al. (1971) measured the surfactant
properties of the firstly characterized lipid and got its surface tension value

Fig. 13.2 Structure of dirhamnolipids

Fig. 13.3 Chemical structure of the first identified rhamnolipids
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40 dyn/cm. It was found that the lipid forms very stable emulsion more efficiently
than the two commercial surfactants Noigen EA 141 and Tween 20.

13.2.2 Sophorolipids

Sophorolipids, important class of biosurfactants, fall under the category of
glycolipids. Torulopsis magnoliae is the source from where Gorin et al. in 1961
first isolated sophorolipids (Gorin et al. 1961). They are produced by several
microorganisms, but among these microorganisms Candida bombicola ATCC
2214 is the most significant (Shah et al. 2007). They have both polar and nonpolar
characteristics and are produced in 40 different types and associated isomers (Lang
and Philp 1998). Here a disaccharide sophorose is linked to the hydroxyl function of
a carboxylic acid chain through a glycosidic linkage (Li et al. 2015). Here one fatty
acid is bound through one or two acetate group(s) with the disaccharide moiety but at
that time the site of attachment was not determined. Later a modified sophorolipid
was isolated by Jones (1967) and Tulloch et al. (1967) in which both the hydroxyl
and carboxylic acid groups are attached to the disaccharide and the sites of attach-
ment were determined (Copper et al. 1980). Addition of a secondary substrate can
influence their structure and yield (Tulloch et al. 1967; Jones 1967). Here we draw
the lactone configuration of a sophorolipid (Fig. 13.4).

13.2.3 Trehalose Lipids

Trehalose lipids are nonreducing disaccharides. 6,60–dimycolate is the most reported
trehalose lipid. Suzuki et al. in 1969 isolated trehalose lipids from Arthrobacter
Paraffineus KY4303 grown on n-paraffins (Martin et al. 1991). Each lipid molecule
contains trehalose and mycolic acid. Mycolic acid is β-hydroxy α-branched fatty
acid. Arthrobacter, Nocardia, Rhodococcus, Gordonia are the mycolate group
microorganisms that are responsible for the production of different trehalose-
containing glycolipids (Barenholz and Thompson 1980). Glycolipids containing

Fig. 13.4 Structure of sophorolipids in lactone configuration
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trehalose lipids have also been isolated from different sources (Rapp et al. 1979).
The most studied trehalose lipids are cord factors (Das et al. 1969). Mycolic acid has
the general formula R1-CH(OH)-CHR2-COOH. Here R1 vary from 18–23 carbons
and R2 from 7 to 12 carbon longs. Trehalose lipids from various organisms vary in
size and structure for mycolic acid (Asselineau and Asselineau 1978). Here we see a
general trehalose lipid structure in Fig. 13.5.

13.3 Lipopeptides

Lipopeptides are the most exoteric biosurfactants. These are the amino acid-
containing biosurfactants. In 1949 the first lipopeptide polymyxin A was isolated
from Bacillus polymyxa (Jones 1949). But lipopeptides produced from bacillus
subtilis is the most useful biosurfactants reported. It has diverse applications in
different fields, like pharmaceutical industry, food industry, biotech industry, etc.
Lipopeptides, isolated from different Bacillus strains, have excellent antibacterial
activity (Nishikiori et al. 1986; Peypoux et al. 1984; Grangemard et al. 1999). They
have diverse structure due to variation of length, configuration, number, and com-
position of lipids and amino acids (Tally et al. 1999). Lipopeptides obtained from
Bacillus are divided into three types surfactin, fengycin, and iturin (Raaijmakers
et al. 2010).

Fig. 13.5 Structure of trehalolipids n ¼ 6–11
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13.4 Phospholipids

From the term phospholipid it is clear that the lipid contains phosphorus.
Phospholipids are amphiphilic molecules. They have an ionic part and a nonionic
part in their structure. On the basis of alcohol contained they are categorized into two
types: glycerophospholipids and sphingomyelins. In glycerophospholipids the back-
bone is glycerol. The chemical structure of different glycerophospholipids depends
upon different factors, like head group, length of hydrophobic side chain, number of
aliphatic chain, nature of linkage between the aliphatic moiety, and glycerol back-
bone. Phosphatidylcholine, phosphatidylserine, phosphatidic acid, etc., are the dif-
ferent glycerophospholipids which are different due to their different head groups.
Dioleoyl and distearoyl PC are different glycerophospholipids which are different
due to saturation of aliphatic groups (Lecithin 1995).

The next type of phospholipids are sphingomyelins. Johann Ludwig Wilhelm
Thudichum in 1884 first reported sphingomyelins. Here a phosphatidylcholine is
attached to an acyl chain of fatty acids.

All sphingomyelins obtained from natural sources have a D-erythro configu-
ration (Paltauf and Hermetter 1990). Here the backbone is sphingosine. Again
on the basis of sources, phospholipids are of two types, natural and synthetic.
Natural phospholipids are generally found in vegetable oils and animal tissues.
Soybean, sunflower, and corns are the main sources of vegetable oil. Egg yolk
and bovine brain are the main sources for animal tissues (Eibl 1980). Naturally
occurring phospholipids are cheap (Shapiro 1962). Another type of phospholipids
are synthetic phospholipids. To get proper structure and configuration, chemists
try to synthesize phospholipids in the laboratory (Garedew et al. 2004). There
are two types of synthetic methods, semisynthesis and total synthesis. Head
group, tail group, or both are changed in the semisynthesis method. Formation
of ether or ester bond to glycerol backbone falls under the total synthesis
method. Here we present a general sphingomyelins phospholipid structure
(Fig. 13.6).

Fig. 13.6 Structure of general sphingomyelins phospholipids
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13.5 Antibacterial Activity

Recently, microbial infection has become a severe clinical threat. There are many
bacteria which are very harmful in our daily life. They attack our foods and spread
diseases. Some examples are,

1. Salmonella is one type of bacteria which can taint any type of food, but mostly
affects eggs, tomatoes, salad, greens, and processed foods.

2. E. coli generally affect ground beef, raw juice, and milk. They also taint fruit and
vegetables.

3. Botulism bacteria are known to damage canned foods.
4. Hepatitis A is causes by improper food handling.

There are many more bacteria beside these which can trouble our daily life as they
cater various types of diseases. Researchers have adopted different methods to study
antibacterial activity. But here we will discuss some main methods. The methods are
used to check whether the testing samples are antibacterial active or not and to
determine the MIC value. A high-throughput system was proposed by Pitner et al.
(2000). Diffusion is a very important and old method to study antimicrobial activity.
There are many types of diffusion methods; one of them is agar disk diffusion. This
method was developed in 1940 (Balouiri et al. 2016). This is a well-known method
for routine antibacterial activity test. In this process agar plates are vaccinated with
the tested microorganisms. Then a tested microorganism containing filter paper disc
with known concentration is placed on the agar surface. Generally diffusion of
antimicrobial agent onto the agar surface takes place and suppresses the growth of
microorganisms, and the diameters of reduced growth zones are measured. But this
method is not properly applicable to measure MIC. But an imprecise MIC can be
calculated for some microorganisms (Nijs et al. 2003). Although not very accurate,
this process has many benefits, like cheap and capable to test huge number of
samples. The second diffusion method is antimicrobial gradient method. This
method works based on the combined principle of dilution and diffusion methods.
For MIC determination of antibiotics, this method has been used. It is a simple
method, but costly if many samples are tested (Goodall and Levi 1946). Agar plug,
agar well, poisoned food, cross streak, etc., are few other diffusion methods. Besides
this diffusion method, another testing method is Thin Layer Chromatography (TLC)
Bioautography method. Goodall and Levi (1946) combined paper chromatography
with bioautography to detect different penicillins (Goodall and Levi 1946). Later
Fisher and Lautner introduced TLC in the same field (Fischer and Lautner 1961).
Generally three bioautography techniques are used, i.e., agar diffusion, direct
bioautography, and agar overlay assay. In the agar diffusion process at first the
tested microorganisms are vaccinated to the agar plate. Then the transfer of antimi-
crobial agent through diffusion process to the agar plate takes place (Choma and
Grzelak 2011). Direct bioautography method is better among the three. In this
method in a microbial suspension the TLC plate is dipped. Tetrazolium salts are
applied for viewing the microbial growth. These salts are switched to the respective
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intensely colored formazan (Marston 2011). The next TLC method, agar overlay
bioassay, is a hybrid method of the agar diffusion and direct bioautography methods.
This method is used for the separation of complex mixture; it is straightforward and
cheap (Al-Bakri and Afifi 2007; Liang et al. 2012; Monteiro et al. 2012; Kuhn et al.
2003). In this method to cover TLC plate it has been treated with a molten agar
medium. Here the plates are kept at reasonable temperature before incubation. After
incubation, a mark is made with tetrazolium dye. The next method is the dilution
method, which is the best one for the determination of MIC. To check antimicrobial
activity, broth dilution method is a good method among the dilution methods. Here
we can monitor antibacterial activity more accurately. Among many instructions
available for antibacterial activity test the most standard and uniform guidelines are
given by CLSI. There are two types of broth dilution: macro and micro. Some
drawbacks of this method are time consuming, manual handling, and risk of errors
during sample preparation for each test. For detecting MIC end point in the analysis
of antibacterial activity, some dye reagents have been used. They act as growth
indicators (Meletiadis et al. 2001; Gomez-Lopez et al. 2005). Inoculum size, growth
medium, incubation time, etc., can influence MIC, so this method has been
standardized by CLSI (Rodriguez-Tudela et al. 2003). One more dilution method
is agar dilution method. This method is somewhat rapid and simple, and no sophis-
ticated equipment is required. Here known concentration of test material is fused into
the agar end and bacteria are put into the surface. Many sets can be made by varying
the concentration of the test substances. This method have several limitations, like
some fungi may be very slow growing, separation from agar by hydrophobic
extracts, etc. But the most problematic work is incorporating stably essential oil in
aqueous situation. To overcome this problem the most common method is the use of
surfactants (Hammer et al. 1999).

13.6 Polymeric Surfactants

Extracellular polymeric substances (EPS) are secreted from some bacteria when they
stick to a surface, where the bacteria develop and cover the surface like a film, often
called as biofilm. Polymeric substances generally contain polysaccharides, DNA,
proteins, and lipids (Falk 2019). Extracellular polymeric substances are biopolymers
formed from different genera of bacteria. There are three major paths by which
polymeric biosurfactants are produced. These are (1) secretion by microorganisms
when they interacts with the environment, (2) formation of compounds due to
substrate metabolism, and (3) during the lysis of microorganisms. EPS comes with
a variety of chemical structures and as a result they show various unique properties.
EPS find wide application in wound healing, food preservation, bio remediation of
heavy metals, and hence waste water treatment, oil cleaning, etc. Acinetobacter
strains are most well known to produce different types of polymeric surfactants. A
few examples of the polymeric surfactants along with the key microorganisms that
produce them are Emulsan: Acinetobacter calcoaceticus, Yasan: Yarrowia
lipolytica, Alasan: Acinetobacter radioresistens, Biodispersan: Acinetobacter
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calcoaceticus RAG-1, Liposan: Acinetobacter radioresistens, and many more
(Fenibo et al. 2019). In a current article Dhagat and Jujjavarapu (2020) reported
the synthesis of a bioemulsifier (emulsan) capable of working at high temperatures.
The synthesis of emulsan in Acinetobacter calcoaceticus was started with adding
glucose as the carbon source. Glucose is taken into the bacterial cell membrane and
through a series of enzyme-catalyzed reactions, UDP-N-acetylglucosamine is pro-
duced (Dhagat and Jujjavarapu (2020).

Polymeric surfactants find wide application in the petroleum industry. They
reduce the viscosity of oil products and facilitate their pipeline transport (Zhao
et al. 2016). Polymeric surfactants are well known for their antibacterial and
antifungal properties (Hayder 2015). Bio emulsifier produced from Acinetobacter
sp. BE-254 has the potential to be used as a cleaning agent (Kim et al. 1996) as it
forms stable emulsions with different hydrocarbons, organic solvents, and
waste oils.

13.7 Fatty Acids

Fatty acids are organic carboxylic acids having long carbon chain which may have
double bonds and which are found in almost every living creature on earth. They
may be in two isomeric forms (with respect to double bonds) one is cis and another
one is trans. In nature most of them are of cis form and generally trans form is rare.
Fatty acids exist in the biosystems mostly in bounded form of glycerol, fats, or lipids.
Animal origin generally consists of a large extent of saturated fatty acids, whereas
those originating from plants are mostly unsaturated fatty acids. Fatty acids have a
carboxylic head with a long hydrocarbon chain, while in biological systems these are
made of 10 to 28 even-numbered carbon atoms. All fatty acids have one carboxylic
end (hydrophilic end) and a methyl group end (hydrophobic end). On the basis of
carbon atoms fatty acids are of two types. Fatty acid having carbon atoms less than
6 are fatty acids of small chain and carbon atoms greater than 18 are called fatty acids
of longer chain. In most of the cases free fatty acids do not occur because of their
chemical affinity to react with different protein molecules and with others like
glycerol, sugars, or phosphate head groups resulting in the formation of lipids, a
biological potent compound, in chloroplast, mitochondria. Lipid is a vital compo-
nent of almost all cell structure. Cell membranes, which are constituted by
phospholipids are important sources of molecular signaling, composed of fatty
acids, and also act as energy stores. These biomolecules, with fatty acid as a major
component, can function as intracellular referees or as extracellular indicators, and
are important in interspecies connection and plant defense. As mentioned earlier,
free fatty acids have higher affinity towards other biomolecules, but release of fatty
acids are possible from membrane by the activity of enzymes which are highly
specific towards particular fatty acids. Free fatty acids have potent applications in the
biological field. Lipase is such a lipolytic enzyme that can break fatty acid attached
to lipids and this enzymatic activity depends on various factors like the position of
the head group, carbon chain length, and also in the position of unsaturation.
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13.7.1 Bio-Sources of Fatty Acids

Plants and animals are sources of different free fatty acids. The seeds and fruits of
many plants contain fatty acids in the form of lipids acting as storage of energy for
the utilization of various physiological activities. There are lots of saturated fatty
acids starting from the smallest one named butyric acid with the molecular formula
CH3(CH2)2COOH to the largest one named cerotic acid with the molecular formula
CH3(CH2)24COOH. Some major sources of butyric acid are different plant oils,
butter, and animal fat. Cerotic acid is a long chain fatty acid having molecular
formula C26H52O2 mostly found in beeswax. The other examples are caproic acid,
caprylic acid, capric acid, lauric acid, and myristic acid. Palmitic acid having
16 carbon atoms is the most abundant fatty acids found in plant leaf lipids majorly
though it can be seen in seed of plant to some extent. Another fatty acid, stearic acid
(saturated fatty acid containing 18 carbon atoms) is abundant in seed fats. On the
other hand, fatty acids with unsaturation contain C¼C double bonds in the hydro-
carbon chain which gives rise to two isomeric form, cis and trans. The degree of
unsaturation generally varies between one and two. With respect to the abundance of
palmitic, linoleic are major fatty acids and, in particular, α-linolenic acids. The
tri-unsaturated linolenic acid is get-at-able. The membranes of chloroplasts contain
exceptionally high (about 90% in some lamellae) percentages of α-linolenic acid.
Trans fatty acids are not obtained in nature.

Oieicacid (cis)

Elaidicacid (trans)

The major source of trans fatty acids are meat and milk of livestock. These are
produced inside their body through fermentation process in the presence of different
microorganisms. This is also available in milk derivatives. Some other examples of
fatty acids with monounsaturation are myristoleic acid, palmitoleic acid, sapienic
acid, oleic acid, elaidic acid, vaccenic acid. Fatty acids with double unsaturation are
linoleic acid, linoelaidic acid. Fatty acids with tri-unsaturation are α-linolenic acid,
etc. Tetra-, penta-, hexa-unsaturated fatty acids are also available.

13.7.2 Role of Fatty Acids as Antimicrobials

The antibacterial role of free fatty acids is well established since several years. Fatty
acids are occasionally added as antibacterial food additives to cease the growth of
unhygienic microorganisms. The antibacterial activity of fatty acids is equally
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comparable with antimicrobial polypeptides in vitro. Cerdeiras et al. identified 11-O-
(60-O-acetyl-β-D-glucopyranosyl)-stearic acid as the main antibacterial component
of aerial parts of Ibicellalutea. This fatty acid derivative exhibits antibacterial activity
towards various Gram-positive and Gram-negative bacteria. Again fatty acids can
have a role in different systems of multicellular organisms like mollusks,
mammalians, plants, seaweeds, and amphibians. Fatty acids can perform a major
role in human defense systems among which lauric acid, myristic acid, palmitic acid,
sapienic acid, and cis-8-octadecenoic acid are the most abundant in the skin and
mucosal surfaces. They are good enough to stop bacterial activity on the skin. The
most effective fatty acids found in human skin are long chain monounsaturated fatty
acid exudates. The lack of these and other fatty acids make the skin more sensitive to
colonization by the pathogen, Staphylococcus aureus. Fatty acids that are available
on the epidermis and dermis layer of the skin always developed environment which
retard the process of growth of certain bacteria by controlling the pH of the surface
within acidic range. It has also the capability to kill the bacteria and inhibit the
activity of bacteria. Most important is that free fatty acids can disrupt cell-to-cell
signaling, which is mandatory for bacteria to lead to infection which is also known as
bacterial virulence factors. The saturated and unsaturated fatty acids can also stop
bacterial adhesion and biofilm formation. Saturated fatty acids having carbon num-
ber greater than five can stop the swarming behavior of the urinary tract pathogens,
proteus mirabilis. Some fatty acids can also down the activity of certain toxins,
enzymes, and hemolysins that can suppress the activity of drugs. Fatty acids can be
produced from coconut oil by the enzymatic activity of Candida rugosalipase and
are used against Gram-negative and Gram-positive bacteria. Jae-Suk Choi et al.
(2013) studied the antibacterial efficacy of various saturated and unsaturated fatty
acids against various oral pathogens responsible for dental caries, stomatitis, gingi-
vitis, and periodontitis. They conclude that the ε-3 and the ε-6 poly unsaturated fatty
acids are strong antimicrobial against Porphyromona gingivalis KCTC 381.

13.7.3 Structural Effect on the Antibacterial Activity of Fatty Acids

There is always an inherent relationship between the structure and antibacterial
activity of carboxylic acids with a long carbon chain. Fatty acids having less carbon
atoms (C6 or less) are effective toward Gram-negative bacteria at higher
concentrations and this antibacterial activity is influenced by the pH of the medium
(Knapp and Melly 1986; Bergsson et al. 1998). Fatty acids having greater than C8
cannot affect the Gram-negative bacteria. Whereas long chain fatty acids are suscep-
tible towards Gram-positive bacteria (Galbraith et al. 1971) at low concentrations
and their response is independent of pH. For fatty acids having greater than 12 carbon
atoms the number and location of double bonds are more important than fatty acids
having less than 12 carbon atoms. The most effective saturated, mono-, and poly-
unsaturated fatty acids are C12, C(16:1), C(18:2) (Benkendorff et al. 2005). Another
aspect is that Gram-positive bacteria get more influenced by the fatty acids than
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Gram-negative bacteria. Fatty acids exert a greater effect on yeast with 10–12 carbon
atoms (Cerantola et al. 2007).

13.7.4 Mechanism

The scenario of how fatty acids act against microorganisms is not transparent. The
fatty acids mainly target the cell membrane and stop some of the vital physiological
activities that happen inside the bacterial cell. Fatty acids have a hydrophobic tail
(nonpolar part) and a hydrophilic head (polar part). This property makes them very
susceptible to microorganisms. It enhances the capability of fatty acids to stick to the
cell membrane of microorganisms and creates porous cell membrane. This hydro-
phobic interaction leads to solubilization of the cell membrane and releases lots of
proteins and lipid molecules. Other ways that can lead to the death or inhibit the
growth of microorganisms are the following:

1. Cell lysis.
2. Suppression of enzyme activity.
3. Deprivation of nutrient uptake.
4. Production of toxic peroxidation and auto oxidation products,
5. Disruption of electron transport chain.
6. Interruption of oxidative phosphorylation.

13.7.5 Cell Lysis

When a cell loses its integrity by breakdown of cell membrane, it is known as cell
lysis. Due to the favorable structure of free unsaturated fatty acids they can easily be
encapsulated inside the cell membrane of microorganisms, leading to a lot of
porosity on the cell membrane of different sizes resulting in greater cell membrane
permeability and increased fluidity of the cell (Wang et al. 1992). This placing of
unsaturated medium and long chain fatty acids results in the leakage of cellular
granules to outside of the cell. This can inhibit the growth and sometimes lysis of the
cell (Galbraith and Miller 1973).

13.7.6 Suppression of Enzyme Activity

Free fatty acids are good inhibitors of various enzymes. Fatty acids with unsaturation
can exhibit greater enzyme inhibitory effect than those without unsaturation. Fatty
acids can inhibit the activity of enzymes that are vital for membrane formation, cell
division, and also for molecular signaling. The incorporated fatty acids can affect the
synthesis of fatty acids by the microorganisms itself and thus alter the composition of
the cell membrane, which alters the fluidity and permeability of the cell membrane
that results in cell death (Sado Kamdem et al. 2009).
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13.7.7 Deprivation of Nutrient Consumption by Cell

The process of taking nutrients like amino acids by the cell of bacteria can be
interrupted by saturated and unsaturated fatty acids (Galbraith and Miller 1973).
Therefore the bacteria starve for nutrients to survive. But the exact mechanism of this
inhibition process by fatty acids is not clear enough. It may be that the fatty acids
directly bind to the transporter proteins that are attached to the cell membrane or fall
short of the energy that is essential for active transport.

13.7.8 Peroxidation and Autooxidation

Another concept for the antibacterial action of fatty acids is the peroxidation and
autooxidation of fatty acids. The physiological activity of bacteria gets hampered by
hydrogen peroxide and oxygen species that are formed during peroxidation of fatty
acids (Schonfeld and Wojtczak 2008; Wang et al. 1992; Knapp and Melly 1986;
Hazell and Graham 1990). On the other hand, unsaturated fatty acids undergo self-
oxidation that generates oxylipins and aldehydes of low molecular weight that have
inherent antibacterial properties. The exact mechanism by which the fatty acid shows
its antibacterial property by either stopping the bacterial growth or causing death will
depend on the structure and concentration of the fatty acid, nature of the bacteria,
binding sides, pH, and temperature. There may be involvement of multiple
mechanisms depending on various factors (Galbraith and Miller 1973; Kabara and
Varble 1977; Coulondre and Miller 1977; Greenway and Dyke 1979; Wang et al.
1992; Sun et al. 2004).

13.7.9 Disruption of Electron Transport Chain

Electron transport chain is a system of complexes that transport electron from
electron donors to electron acceptors via redox reactions and also attached with
transport of proton (H+) and ultimately produces ATP which is essential to drive all
the physiological process for bacteria. In the case of Gram-positive and Gram-
negative bacteria, the electron transport chains are situated on the inner side of the
cell membrane and thus energy production takes place there. The various electron
transporters residing in the cell membrane supply electrons from the carrier to the
receptor as far as two electrons are attached to the receptor, resulting in the
production of oxygen and two protons which finally gets converted into water.
The proton produced inside the cell is exported to the outside which creates a higher
gathering of electrons inside the cell. It develops an electrochemical gradient of
proton and finally a potential difference across the cell membrane. ATP synthase
produce ATP under this cell membrane potential (Mitchell 1961). Now the medium
and long chain saturated and unsaturated fatty acids which are attached to the cell
membrane can disrupt this process by binding with them directly or displacing them
from the cell membrane entirely (Galbraith and Miller 1973). The saturated and
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unsaturated fatty acids can attach with the electron transport chain directly but only
unsaturated fatty acids can displace them from the cell membrane due to their better
capability to increase membrane fluidity (Greenway and Dyke 1979). The reason
behind this greater activity of the cis isomer of fatty acid with unsaturation is its
curved structure; it cannot bind to cell membrane tightly. Thus incorporation of
medium and fatty acids with double bonds and a greater number of carbon atoms
imposes defects in cell membrane structure that increases the fluidity of the cell
membrane (Stulnig et al. 2001). On the other hand, trans isomer of medium and long
chain fatty acids due to their linear structure bind to the cell membrane tightly and
reduce membrane fluidity and disrupt the electron transport chain within the cell
membrane (Sheu and Freese 1971). In all aspects, the process of electron transfer by
the electron transport chain is impaired and thus the production of ATP gets reduced.
These causes death of bacteria cells.

13.7.10 Interruption of Oxidative Phosphorylation

The energy that is produced within the cell is utilized by ATP synthase (Sheu and
Freese 1971; Greenway and Dyke 1979; Beck et al. 2007) to convert ADP to ATP;
this is known as oxidative phosphorylation, which takes place within the cytosol of
bacteria cells. Free fatty acids interrupt this process in many ways. One of which is
saturated or unsaturated fatty acid can directly bind to the ATP synthase itself and
diminish its activity. In other ways fatty acids can alter the electrochemical gradient
across the cell membrane, which changes the driving force for proton transportation
and the activity of ATP synthase. For these reasons energy produced by the different
electron transporters results heating effect rather than be used by ATP synthase
which converts it into useful form of energy.

13.8 Conclusion

Biosurfactants have a wide range of applications such as in food, cosmetics,
pharmaceuticals, oil industry, and other different fields. They are produced from
microorganisms. Different strains of microorganisms are responsible for producing
different types of biosurfactants. Here in this chapter we have discussed various
types of biosurfactants and their antibacterial activity. Biosurfactants are mostly
biodegradable, nontoxic, and very efficient antibacterial agents. So people are more
inclined to use them. The sources for biosurfactants are cheaper than chemical
surfactants. Several biosurfactants have been reported so far but there are lots
more to see. Research in the field of biosurfactants will be highly rewarded in the
near future.
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Microbial Biosurfactants as Cleaning
and Washing Agents 14
Sameer Nadaf, Vijay M. Kumbar, Suresh Killedar, Anand I. Torvi,
Joy H. Hoskeri, and Arun K. Shettar

Abstract

Surfactants derived from microbes belong to the diverse group of surface-active
metabolites which are secreted during their growth on hydrophobic substrates.
The use of chemical surfactants as a detergent in different industries such as
leather, petroleum, paper, dairy, cosmeceuticals, and pharmaceuticals is limited
due to their hazardous effects on the aqueous and territorial ecosystem. This
found the basis for the use of biosurfactants as a detergent for industrial and
household applications. In recent years, the use of biosurfactants in the cleaning
of storage tanks in petroleum industries, cleaning of membranes during ultrafil-
tration, and remediation of leather dust from the leather industry is increased.
Different companies are manufacturing biosurfactant-based dish-washing agents.
Some patents are also claiming the role of biosurfactants in hair and skin
cosmetics. This chapter describes the chemical nature of biosurfactants, media
composition required for microbial growth, genetic regulation and biosynthesis of
surfactants, and the application of biosurfactants in different fields as cleansing
agents.
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14.1 Introduction

For many years, surfactant molecules of amphiphilic characteristics are well
recognized for decreasing the surface tension in two different phases and termed
as surface-active agents. Being amphiphilic, i.e., presence of both hydrophilic head
and non-polar tail, makes to adsorb in interfaces between water and oil systems or
solid and gases. Surfactants are utilized for diverse applications, for example,
detergent, emulsifiers, dispersant, wetting agents, cleaning agents, and foaming
agents (Marchant and Banat 2012). Surfactants are a diverse group of chemical
molecules, comprised of alkyl chains with 8–22 carbons which form the molecular
clusters in solution and named as micelles (Nakama 2017).

Nowadays, chemical surfactants have occupied the market enormously, and this
is ascribable to their high use in many of the household detergents and cleaning
products (Kogawa et al. 2017). However, to improve the efficacy of chemical
detergents as cleaning agents, some additives such as phosphates are used. After
using these surfactants, their products are discarded as effluents into the environment
mainly into the surface waters and sludge disposal on lands (Ying 2006). Excessive
discharge of phosphates into the surface water system promotes the growth of algae
due to their nutrient phenomenon and leads to eutrophication of waters (Kogawa
et al. 2017; Yang et al. 2008). Phosphates from the discharge of surfactants form the
white foam on the water surface which restricts the entry of oxygen and light in
water. Different surfactants affect the environment differently. Positively charged
and uncharged surfactants exhibit relatively major sorption for soil and oil sediments
compared to anionic surfactants (Ying 2006). Hence, it was essential to find some
alternatives to combat these circumstances. This caused the existence and explora-
tion of biosurfactants.

Biosurfactants are amphiphilic in characters and generally refers to surfactants of
microbial origin. When microbes like bacteria, fungi, and actinomycetes are cultured
on media containing hydrophilic and hydrophobic substrates, they lead to the
production of surfactants as extracellular products (Havasi 2011). Surfactants pro-
ducing microorganisms mainly belong to Bacillus, Agrobacterium, Streptomyces,
Pseudomonas, and Thiobacillus (Liu et al. 2015).

Their amphiphilic characters allow them to accumulate at interphase existing
between two liquids or solid/gas interphase. Nowadays, microbial surfactants have
gained huge popularity because of their unique characteristics, viz. specificity, less
toxicity, and ease of preparation (Vijayakumar and Saravanan 2015). Due to this,
biosurfactants are finding their applicability in different industries such as agricul-
ture, pharmaceutical, cosmeceuticals, petroleum, petrochemicals, food processing,
mining, metallurgy, agrochemicals, and fertilizers (Volkering et al. 1998).
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14.2 Chemical Nature of Biosurfactants

Unlike chemical surfactants, biosurfactants consist of diversity in their chemical
composition and microbial origin. Based on the chemical structure of hydrophobic
moieties, biosurfactants are categorized as (1) glycolipids, (2) fatty acids, neutral
lipids, and phospholipids, (3) lipopeptide type, and (4) polymeric surfactants (Morita
et al. 2016). The major types of microbial surfactants with their properties are
reported in Table 14.1.

14.3 Microbial Production of Biosurfactants

Usually microbial surfactants produced through culture conditions consist of water-
immiscible substrate. They reduce the interfacial tension existing at the interphase
and improve the availability of potential biodegradable substrate for uptake (Huang
and Tang 2007). Certain microorganisms produce the non-ionic biosurfactants to
change the structure of their cell wall (Vijayakumar and Saravanan 2015). The rate
of production of biosurfactants is affected by different factors.

14.3.1 Carbon Source

Carbon sources are used mainly to promote the cell growth and formation of
biosurfactants. Specifically, microorganism produces surfactants when they are
cultured in rich carbon source like hydrocarbon-polluted soil or produced using
proven agriculture waste as a carbon source (Fenibo et al. 2019). The carbon
consumption rate of microorganisms during cultivation decides the biomass and
product formation (Singh et al. 2017). The carbon source is a prime rate-limiting
factor for biosurfactants production which are classified into various categories:
carbohydrates, hydrocarbons, and vegetable oils and fats (Tan and Li 2018;
Nurfarahin et al. 2018).

14.3.1.1 Carbohydrates
Glucose considered as frequently used major carbon source for microbial production
of biosurfactants and microorganisms can metabolize it with ease by glycolysis
pathway in the production of energy and also results into higher yield product. It
acts as a precursor for the production of both hydrophilic and hydrophobic moieties
(Singh et al. 2017). Different researchers revealed the use of sugars for the produc-
tion of biosurfactants (Table 14.2). Pseudomonas and Vibrionaceae strains have
been used previously for biosurfactant production (Persson and Molin 1987).

14.3.1.2 Vegetable Oil and Fats
The cost for production of biosurfactants depends on the type of carbon source used.
This demands on the application of cheap substrates in the production. Vegetable
oils are made up of saturated or unsaturated fatty acids chain with 16–18 carbon
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atoms. High uses of oils in homes and restaurants are drastically increased in recent
years and have found to produce the waste product at a higher rate (Table 14.3).
Disposal of these wastes into the environment causes the pollution of soil and water,
and their disposal is a severe issue (Md Badrul Hisham et al. 2019). This motivated
many researchers to use different sources of oils and fats as a substrate for
biosurfactant production. Different oils namely soybean, olive, castor, sunflower,
and coconut fat are reported to produce biosurfactants.

Table 14.2 Carbohydrates as a carbon source for biosurfactant production

Source
Concentration
(g/L) Microorganism Biosurfactant References

Glucose 24.2 Pseudomonas
aeruginosa

7.5 mg/mL Rashedi et al. (2006)

10–70 Bacillus sp. 1–2.46 g/L Heryani and Putra
(2017)

30 Fusarium fujikuroi – Reis et al. (2018)

40 Bacillus subtilis SPB1
strain

4.92 g/L Ghribi and Ellouze-
Chaabouni (2011)

Sucrose 20 Bacillus subtilis strain
ANSKLAB03

0.324 g/
100 mL

Nayarisseri et al.
(2018)

20 Pseudomonas putida
MTCC 2467

1.3 g/L Kanna et al. (2014)

Apart from glucose and sucrose, other sugars such as maltose, lactose, starch, and xylose as a
carbon source (Hu et al. 2015)

Table 14.3 Vegetable oils, fats, and industrial waste products for biosurfactant production

Substrate Microorganism Biosurfactant

Surface
tension
(mN/m) References

Used cooking oil Bacillus sp. HIP3 9.5 g/L 38.15 Md Badrul
Hisham et al.
(2019)

Vegetable oil
refinery wastes

Pseudomonas
aeruginosa EBN-8

8.50 28.5 Raza et al. (2007)

Waste cooking oil Pseudomonas
SWP-4

13.93 24.1 Lan et al. (2015)

Sunflower acid oil Pseudomonas
aeruginosa

4.9 30.12 Jadhav et al.
(2019)

Sunflower oil Serratia
marcescens

29.75 Ferraz et al.
(2002)

Soybean oil Candida
antarctica

13.86 32 Accorsini et al.
(2012)

Vegetable fat
waste

C. glabrata 24 de Gusmão et al.
(2010)

Animal fat and
corn steep liquor

C. lipolytica
UCP0988

1–2.2 28 Santos et al.
(2013)
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Waste from different industries such as corn steep liquor (Gudiña et al. 2015),
sugarcane molasses (Takahashi et al. 2011), banana peel (Chooklin et al. 2014),
orange peel (Kumar et al. 2016), soybean meal and rice husk (Massi et al. 2014),
potato process effluents (Thompson et al. 2000), potato peels (Sharma et al. 2015),
and processing have also been utilized as a potential carbon source for biosurfactant
production.

14.3.2 Nitrogen Source

Like carbon source, even nitrogen is considered as essential requirement for the
growth of microorganisms. Nitrogen used is either organic or inorganic, and both
can impact the biosurfactant production (Desai et al. 1994). Yeast extract, meat
extract, tryptone or peptone, beef extract, and urea are widely used as organic
nitrogen sources, whereas ammonium chloride, ammonium sulfate, potassium
nitrate, etc. are used as inorganic nitrogen sources (Ghribi and Ellouze-Chaabouni
2011). Different nitrogen sources used as a component of fermentation medium are
reported in Table 14.4.

14.3.3 Carbon to Nitrogen Ratio (C/N)

The balance of carbon to nitrogen ratio (C/N) is an essential factor that needs to be
monitored and optimized for escalating the biosurfactant production. The optimized
C/N ratio significantly impacts the biosurfactant yield. Higher proportion of C/N
ratios inhibits the growth of bacteria, favoring metabolism of cell in the production
of metabolites (Nurfarahin et al. 2018). The yield of biosurfactant in the case of
Bacillus sp. with glucose as a carbon source was around 1–2.46 g/L. The maximum
yield was noted when the C/N ratio was kept at 12.4 (Heryani and Putra 2017).

Table 14.4 Nitrogen sources used for biosurfactant production

Nitrogen source Microorganism
Biosurfactant
(mg/L) References

Urea B. subtilis 720 Ghribi and Ellouze-
Chaabouni (2011)

Ammonium nitrate Pseudomonas
fluorescens

3.3 g/L Abouseoud et al. (2008)

Ammonium sulfate and
yeast extract

Yarrowia lipolytica
IMUFRJ 50682

Fontes et al. (2010)

Yeast extract Torulopsis bombicola
ATCC22214

18.0 Cooper and Paddock
(1984)

Peptone Candida sp. SY 16 37 Kim et al. (2006)

Ammonium nitrate P. aeruginosa RS29 0.80 Saikia et al. (2012)

Ammonium nitrate C. lipolytica UCP 0988 8 Rufino et al. (2014)

Urea Virgibacillus salaries Elazzazy et al. (2015)
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Abouseoud et al. screened Pseudomonas fluorescens Migula 1895-DSMZ for
biosurfactant production. The higher yield was found with the use of olive oil, and
ammonium nitrate was used as carbon and nitrogen sources at the ratio of
10 (Stoimenova et al. 2009). In another study, isolated Bacillus subtilis produced a
high-yield biosurfactant when cultured in medium containing crystal sugar and
ammonium nitrate at the ratio of 3 (Fonseca et al. 2007).

14.3.4 Minerals

Calcium, iron, potassium, an magnesium are added as a nutrient to the production
medium to facilitate the growth of microorganisms. Cameotra and Makkar et al.
studied the effect of metal cations in the production of biosurfactants in the case of
Bacillus subtilis. It has already been reported that the presence of metal cations has
improved the biosurfactant production by twofold. The maximum yield of
biosurfactant was obtained when Mg2+ and Ca2+ were used at a concentration of
2.43 mM and 0.36 mM, respectively (Makkar and Cameotra 2002). Lu et al. studied
the effect of Mn2+ on the production of surfactin by Bacillus subtilis ATCC 21332.
Media enriched with Mn2+ increased surfactin production by 6.2-fold compared to
media devoid of Mn2+. Mn2+ enhanced the glutamate synthase activity, changed
nitrogen utilization, and increased the absorption of nitrogen and thereby amino acid
availability for surfactin synthesis (Huang et al. 2015). Fermentation medium
supplemented with Fe2+ (4.0 mM) improved the surfactant yield from B. subtilis
ATCC 21332 by tenfold compared to those without Fe2+ provision (Wei et al. 2004).
Use of metal ions causes in the formation of novel surfactin variants (Bartal et al.
2018). Use of chemicals like potassium dihydrogen phosphate and dipotassium
hydrogen phosphate in fermentation medium maintains the required pH throughout
the process (Nurfarahin et al. 2018).

14.3.5 Amino Acids

Role of different amino acids such as aspartic acid, asparagine, and glutamic acid in
the fermentation process and thereby biosurfactant production are well established.
B. subtilis MTCC 2423 separately cultivated in numerous amino acids, namely
aspartic acid, asparagine, glutamic acid, valine, and lysine increased the final yield
of biosurfactant by about 60% (Makkar and Cameotra 2002). In another interesting
study, cultivation of B. subtilis TD7 shows that the presence of different amino acids
and fatty acids increases the proportion of surfactin variants. In this, culture medium
supplemented with arginine, glutamine, or valine increased the production of
surfactin variants with even β-hydroxy fatty acids, whereas the addition of cysteine,
histidine, isoleucine, leucine, methionine, serine, or threonine enhanced the propor-
tion of surfactin variants composed of odd β-hydroxy fatty acids (Liu et al. 2012).
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14.3.6 Vitamins and Growth Promoters

Although useful, vitamins are rarely used during biosurfactant production. This is
attributed to the fact that the majority of carbon sources such as vegetable oils,
molasses, cashew apples, etc. contain some amount of vitamins (Makkar et al. 2011).
Sidkey and Al Hadry reported the effect of vitamins for biosurfactant production in
Bacillus cereus B7. None of the tested vitamins increased the biosurfactant yield
(Sidkey and Al Hadry 2014). Qazi et al. used vitamin B2 in culture medium prepare
for on the biosurfactant production by Pseudomonas putida SOL-10 (Qazi et al.
2013).

14.4 Genetic Regulation and Biosynthesis of Surfactants

Biosynthesis of surfactants involves the formation of different hydrophilic and
hydrophobic moieties using carbon, nitrogen sources, as well as micronutrients
followed by their joining to produce biosurfactants (Marchant and Banat 2012).
However, this is a complex process governed by a particular metabolic pathway,
certain enzymes, and genetic makeup of the producer organisms as well (Das et al.
2008). Among all biosurfactants, rhamnolipid produced by Pseudomonas
aeruginosa and lipopeptide biosurfactants (surfactin) produced by Bacillus and
Pseudomonas spp. are primarily studied for molecular genetics. Lipopeptide
biosurfactants (LPBSs) consist of peptide groups and fatty acids. The cyclic structure
is formed by binding between two different functional groups like C-terminal
peptide residue with β-hydroxy fatty acid, hydroxyl group of the peptide residue,
or β-amino acid (Roongsawang et al. 2010). An enzyme called nonribosomal peptide
synthetases (NRPSs) causes the formation of this linkage (Koglin and Walsh 2009).

Surfactin and lichenysin are LPBSs mainly produced by B. subtilis and
B. licheniformis, respectively. NRPSs involved in their synthesis are surfactin and
lichenysin synthetases; both are identical in structure. Surfactin synthetase
comprised of three protein subunits (SrfA, ComA, and SrfC) and four open reading
frames (ORFs) (srfA-A, srfA-B, srfA-C, and srfA-Te) that can be further divided into
functional domains. Lichenysin synthetases also composed of four ORFs, namely
licA, licB, licC, and lic-Te (Das et al. 2008; Roongsawang et al. 2010; Konz et al.
1999). Other LPBSs such as fengycin, bacillomycin, iturin, and mycosubtilin are
also produced non-ribosomally by a multienzyme peptide synthetase complex
(Tsuge et al. 2001; Wu et al. 2007).

Rhamnolipids are the type of glycolipids composed of either one or two (L)-
rhamnose molecules, glycosidically linked to one or two β-hydroxy fatty acids.
P. aeruginosa is the largest producer of rhamnolipid and its synthesis is catalyzed
by a different rhamnosyltransferase. The biosynthesis of rhamnolipids is cross-
linked with the production of different species of polysaccharide species (Müller
and Hausmann 2011). Rhamnolipid biosynthesis involves the conversion of glucose
to D-glucose-1-phosphate by gluconeogenesis and Entner–Doudoroff pathways.
Substrate D-glucose-1-phosphate is then producing L-rhamnose (Chong and Li
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2017). Three quorum sensing systems, namely las, rhl, and pqs, are present in
P. aeruginosa, which regulate rhamnolipid production. LasI and RhlI synthases
produce their signal molecules, homoserine lactones 3OC12-HSL and C4-HSL.
These signal molecules bind and modulate LasR and RhlR, respectively, and control
the biosynthesis of rhamnolipids (Dobler et al. 2016). The three key enzymes that
govern the rhamnolipid biosynthesis are RhlA, RhlB, and RhlC. Synthesis of
precursor 3-(3-hydroxyalkanoyloxy) alkanoic acid (HAA) that constitutes the hydro-
phobic component of rhamnolipid is catalyzed by RhlA, whereas RhlB and RhlC
catalyze the reaction between L-rhamnose and HAA or mono-rhamnolipid (Déziel
et al. 2003). Different genes clusters involved in production of different
biosurfactants are summarized in Table 14.5.

14.5 Application of Biosurfactants as Cleansing and Washing
Agents

Washing and cleaning agents are the chemical substances which are used for
removing dirt, including dust, stains, bad smell, and clutter. These are available as
liquids, powders, sprays, or granules (Nitsch et al. 2003). Chemical cleaning agents
are mainly grouped based on composition of acid/base, surfactant, enzyme, chelating
agent, and oxidants (Li and Elimelech 2004). Modern cleansing agents are either
surfactants or sequestering agents. Uses of these chemical surfactants are limited due
to their different environmental impact. They are known for several properties like
more reactive, low toxicity, easily biodegradable, and produced from renewable
sources (Mahanti et al. 2017). Biosurfactants are used as cleaning agents in different
fields.

14.5.1 Dairy Industry

The reduction of the membrane performance during the ultrafiltration process
involved in dairy industries is very common, and it happens due to membrane
fouling. Chemical agents such as sodium dodecyl sulfate (SDS) and polysorbate
(Tween) have been used to remove fouling and sustenance of permeability; however,
their use is limited due to their damaging effect on the membrane and hazardous
impact on the environment (Madaeni et al. 2010; Kim et al. 2015). Zhang et al. (Kim
et al. 2015) used rhamnolipid for the cleaning of ultrafiltration membranes.
Rhamnolipid (below pH 9) removed the foulant from the polysulfone, polyacryloni-
trile, and polysulfone-g-polyethylene glycol membranes and restored the water flux
to about 94% of the initial level, whereas SDS and Tween 20–treated membranes
showed lower flux recovery (50–70%). Rahimpour et al. (Aghajani et al. 2018) also
explored the rhamnolipid which novel cleaning agent used in ultrafiltration mem-
brane fouled by whey and compared with chemical cleaners such as sodium hydrox-
ide (NaOH), SDS and Tween 20. Rhamnolipid along with NaOH as cleaning agents
showed 100% of flux recovery (Aghajani et al. 2018).
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Table 14.5 Genetic regulation of microbial surfactants

Biosurfactant Microorganism Enzyme

ORFs/
gene
cluster/
modules/
proteins References

Surfactin B. subtilis Surfactin synthetase SrfA–A,
SrfA–B,
SrfA–C
and
SrfT–e

Das et al.
(2008) and
Roongsawang
et al. (2010)

Lichenysin B. licheniformis Lichenysin
synthetase

licA,
licB,
licC, and
lic-Te

Das et al.
(2008) and
Roongsawang
et al. (2010)

Iturin Bacillus subtilis Malonyl coenzyme
A transacylase

ituD,
ituA,
ituB, and
ituC

Tsuge et al.
(2001)

Fengycin Bacillus spp. Fengycin
synthetase

FenC,
FenD,
FenE,
FenA,
and
FenB

Wu et al.
(2007)

Locillomycins B. subtilis 916 Peptide synthetases Loc Luo et al.
(2014)

Mycosubtilin Bacillus subtilis
ATCC6633

Mycosubtilin
synthetase

fenF,
mycA,
mycB,
and
mycC

Duitman et al.
(1999)

Bacillomycin D B. subtilis 916 Peptide synthetases bamD,
bamA,
bamB,
and
bamC

Moyne et al.
(2004)

Fusaricidin Paenibacillus
polymyxa PKB1

Fusaricidin
synthetase

fusA Li and Jensen
(2008)

Syringomycin Pseudomonas
syringae B301D

Syringomycin
synthetase

SyrB1,
SyrE,
(SyrB2,
SyrC,
SyrP

Scholz-
Schroeder
et al. (2001)

Syringopeptin Pseudomonas
syringae B301D

Syringopeptin
synthetase

SypA,
SypB,
SypC

Roongsawang
et al. (2010)
and Scholz-
Schroeder
et al. (2001)

(continued)
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Table 14.5 (continued)

Biosurfactant Microorganism Enzyme

ORFs/
gene
cluster/
modules/
proteins References

Arthrofactin Pseudomonas
sp. MIS38

Arthrofactin
synthetase

arfA,
arfB, and
arfC

Roongsawang
et al. (2003)

Orfamide Pseudomonas
sp. CMR12a

Orfamide
synthetase

ofaA,
ofaB,
and ofaC

Olorunleke
et al. (2017)

Sessilins Pseudomonas
sp. CMR12a

Sessilins synthetase sesA,
sesB,
and sesC

Tolaasin Pseudomonas
tolaasii NCPPB
1116

Peptide synthetase TL1,
TL2, and
TL

Rainey et al.
(1993)

Viscosin Pseudomonas
fluorescens
PfA7B

Viscosin synthetase Vsp1,
Vsp2,
and Vsp3

Braun et al.
(2001)

Massetolide P. fluorescens
SS101

Massetolide
synthetase

massA,
massB,
and
massC

de Bruijn et al.
(2008)

Syringafactin A to
F

Pseudomonas
syringae
pv. tomato
DC3000

Syringafactin
synthetase

syfR,
syfA,
syfB,
syfC, and
syfD

Berti et al.
(2007)

Entolysin Pseudomonas
entomophila

Entolysin
synthetase

EtlA,
EtlB,
EtlC

Vallet-Gely
et al. (2010)

Rhamnolipids Burkholderia
thailandensis
P. aeruginosa

Rhamnosyl
transferase

rhlA,
rhlB,
and rhlC

Dubeau et al.
(2009)

Sophorolipid Starmerella
bombicola

Glucosyltransferase
Cytochrome P450
monooxygenase

adh,
ugtB1,
ugtA1,
ugtA1,
and
cyp52m1

Van Bogaert
et al. (2013)

Amphisin Pseudomonas
sp. strain DSS73

Amphisin
synthetase and
sensor kinase

amsY
and gacS

Nielsen et al.
(2005)

Emulsan Acinetobacter
lwoffii RAG-1

Emulsan synthetase Wee A–
Week,
wza,
wzb,
wzc,
wzx, wzy

Nakar and
Gutnick
(2001)

(continued)

304 S. Nadaf et al.



14.5.2 Textile Detergent

Nowadays, textile end products are needed to satisfy the different quality attributes.
Hence, they are processed through different pretreatment that involves the removal
of natural and synthetic fiber admixtures and lubrication of fabrics using oils as well
as waxes. Removal of these lubricants is a critical step because of repeated emulsifi-
cation and redeposition of oil on its fiber surface. Traditional treatments with
detergents have a hazardous effect surrounding atmosphere. This urges the use of
biosurfactants (Kesting et al. 1996). Campos-Takaki et al. investigated the ability of
surfactants isolated from Cunninghamella echinulata and used as a textile detergent
to clean cotton fabric used to remove traces of hydrophobic residues from the
automobile industry (Andrade et al. 2018). Biosurfactant obtained from
Ochrobactrum intermedium strain MZV101 has shown good stability at pH 9–13
and shown strong oil removal (Zarinviarsagh et al. 2017). Lipopeptide biosurfactant
produced by Bacillus subtilis SPB1 together with commercial detergents improved
their oil stain removal and tea stain removing ability (Bouassida et al. 2018).
Similarly, two other Bacillus subtilis strains (DM-03 and DM-04) produced cyclic
lipopeptide biosurfactants and exhibited thermal stability and surface-active property
(Mukherjee 2007). Rhamnolipid-based washing powder produced by Bafghi and
Fazaelipoor effectively removed the edible oil, chocolate, and albumen stains from
cotton clothes (Khaje and Fazaelipoor 2012). Sophorolipids synthesized using
C. bombicola ATCC22214 also exhibited stain removal capability (Joshi-Navare
et al. 2013).

Table 14.5 (continued)

Biosurfactant Microorganism Enzyme

ORFs/
gene
cluster/
modules/
proteins References

Alasan Acinetobacter
radioresistens
KA53

Alasan synthetase AlnA,
AlnB,
and
AlnC

Toren et al.
(2002)

Serrawettin Surfactantfaciens
sp. nov. YD25T

Peptide synthetase Pig,
swrA

Su et al. (2016)

Mannosylerythritol
lipids

Ustilago maydis Glycosyl
transferase

Emt1,
Mac1,
Mac2,
and
Mat1

Hewald et al.
(2006)

ORFs open reading frames
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14.5.3 Petroleum Industry

The petroleum industry is one of the continuously growing fields and involves the
purification, transport, as well as storage of its crude products in storage tanks. Being
crud in nature, the contaminants from the oil settle at lower surface and deposit on
the sidewalls of the storage tanks. These viscous deposits later solidify and cannot be
detached even with pumping. Periodical cleaning with cleaning agents is time-
consuming and labor-intensive, and final disposals are hazardous to the environment
(Matsui et al. 2012). Biosurfactants are effectual in the washing of storage tanks due
to their ability to form emulsion that diminishes the viscosity of sludges as well as
solid deposits and thereby facilitates pumping of waste (de Cássia et al. 2014).
Notably, biosurfactants produced by Pseudomonas aeruginosa SH 29 effectively
cleaned the oil storage tanks and observed the complete recovery of oil from the
bottom and sidewalls of the tanks after 15 min of treatment (Diab and Din 2013).
Matsui et al. investigated the potential of biosurfactant produced by Gordonia
sp. strain JE-1058 and reported that biosurfactant at concentrations of 1–10 g/L
effectively removed the oil tank bottom sludge (Matsui et al. 2012).

Petroleum industries generate waste products during extraction, refining, and
transportation, and oil spillage in the marine environment and groundwater poses a
serious issue which disturbs the marine ecosystems drastically and causes the low
penetration of light which results in the death of aquatic organisms (Fenibo et al.
2019; de Cássia et al. 2014). Biosurfactants effectively reduce interfacial tension,
disperse the oil particles, and degrade them into non-toxic debris (Patel et al. 2019).
Further, in the microorganisms, they induce the changes in the surface of cells to
convert into more hydrophobic and subsequently increase the pinocytosis index of
hydrocarbons (Fenibo et al. 2019; Patel et al. 2019). Among all biosurfactants, the
rhamnolipid, sophorolipid, and surfactin have been explored for this purpose.
Biosurfactant produced from Gordonia sp. strain JE-1058 effectively clean up oil
spills from contaminated seawater and sea sand (Saeki et al. 2009). Another study of
Feng et al. revealed the use of lipopeptide surfactant produced from Bacillus subtilis
HSO121 for oil spill remediation (Feng et al. 2019).

14.5.4 Leather Industry

Pretreatment processes on leather, for example, shaving and buffering generate the
waste products comprised of numerous contaminants mainly chromium that can
hazardously impact the aquatic and terrestrial ecosystem. Many studies showed that
already microorganisms were effectively used in the bioremediation and recycling of
waste materials (Greenwell et al. 2016). Raman et al. investigated the usefulness of
biosurfactant produced from Bacillus subtilis SA-6 for bioremediation of leather
dust. Results showed that biosurfactant increased the chromium concentration
(190.81 � 20.18 mg/L) in cell-free supernatant and reduced the surface tension
(30.13 � 0.15 mN/m) during fermentation (Greenwell et al. 2016).
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14.5.5 Food Industry

Several classes of biosurfactants are being used as antimicrobial agents to avoid
contamination in food processing industries. Effective cleaning is essential to reduce
or eliminate microorganisms found on food contact surfaces (Sharma 2016).
Biosurfactants (rhamnolipids) have explored in food processing as a cleaning
agent (Meng and Zhang 2012).

14.5.6 Household Detergent and Dish Wash

The use of detergents and dishwashing products in the household is inevitable.
Biosurfactants are useful as a component of household detergents for the advantage
of their unique properties such as easily degradability, cost-effectiveness, and
environmental compatibility. Sophorolipids produced from C. bombicola ATCC
22214 were found to be useful in hard surface cleaning and automatic dishwashing
rinse aid formulations. At a concentration of 36 mg/L, the contact angle of
sophorolipids was similar to that of the reference surfactant. Sophorolipid exhibited
comparable surface activity with that of alkyl polyglucosides (Develter and
Lauryssen 2010). Glycoside surfactants effectively increased the wetting
characteristics of conventional low foaming non-ionic surfactant-based
compositions (Furuta et al. 2004).

14.5.7 Cosmetic Industry

Cosmetic industries make use of biosurfactants (glycolipids and lipopeptides) par-
ticularly in dermatological preparations due to their cleansing, foaming, skin hydrat-
ing properties, and antimicrobial potential (Varvaresou and Iakovou 2015).
Cosmetic formulation comprised of lipopeptide biosurfactant exhibited an excellent
washability and low skin irritation and provided high skin comfort (Yoneda 2006).
Moreover, Allef et al. prepared different hair and skin cleaning formulations
comprised of biosurfactants, for example, shower gels, shampoos, conditioners,
body cleansers, or skin cleansers (Allef et al. 2014).

14.6 Conclusion

Biosurfactants are the naturally produced surfactants using different microbial
strains and have occupied the market due to their superior characteristics compared
to chemical surfactants. Biosurfactants can be produced on a larger scale using
abundantly available cheap raw material and waste products of different industries.
In addition to this, biodegradable, non-toxic nature, and environmental compatibility
of biosurfactants make it feasible for different industries to use biosurfactants for
cleansing and washing applications.
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