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Abstract. Materialized view selection is a major challenge in data warehouse
management, and prioritized cube selection is further approach to find an optimal
set of prioritized cubes under resource constraints. In this paper, we introduce a
hybrid approach combining particle swarm optimization (PSO) algorithm with
tabu search (TS) to solve the prioritized cube selection problem. Our proposed
hybrid algorithm deals with PSO’s premature convergence problem through inte-
gration of TS local neighbourhood search, and thus significantly improves the
solution quality. We also present a neighbourhood reduction strategy based on
cube information obtained during PSO search to intensify the search of TS for
better solutions. Finally, we prove the effectiveness of our proposed hybrid algo-
rithm for high-dimensional prioritized cube selection problem by comparing the
results with PSO algorithm results.

Keywords: Prioritized cube selection · Hybrid algorithm · Particle swarm
optimization · Tabu search · Data warehouse · View materialization

1 Introduction

Data warehouse is a storage of enterprise-wide huge data that helps decision makers of
an organization inmaking strategic decisions. The decisionmakers issue complex online
analytical processing (OLAP) queries in data warehouse to gain business insights. In
order to provide fast processing of OLAP queries, data warehouse materializes a set of
cubes needed by some of the OLAP queries. The selection of an appropriate set of cubes
under resource constraints, widely known as a materialized view selection problem, has
been a major challenge in data warehouse design and management [1]. In the state-of-art
for selecting views [2–4], authors have defined a cost model which minimizes the cost
of processing queries under resource constraints for selection of optimal views. The
cost model includes factors such as query and view frequency, view size, view update
frequency and view update costs. These works considered all queries and cubes to be
of equal importance, however, in the real environment, queries have different relevance
based on the user and system requirements. Thus, in [5, 6], authors introduced a ‘priority’
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parameter for queries and cubes and used ‘cube priority’ as an additional factor in the
cost model (PFBCM). They converted cube selection problem into a prioritized cube
selection problem and used particle swarm optimization (PSO) algorithm to optimize
the PFBCM and selected an optimal set of prioritized cubes under space constraint.

Search space for the cube selection problem can be defined as a lattice framework
[2] representing all the possible cubes and dependency relationships among the cubes.
The lattice framework containing m cubes results in 2 m possible cube selection ways,
and the corresponding search space in the lattice framework grows exponentially with
the problem size, thus classifying cube selection as NP-hard problem [3]. NP-hard prob-
lems are unsolvable by exact algorithm in satisfactory time period, and thus a variety
of heuristic algorithms (categorized as population-based and single-solution based) has
been used in the literature for finding an approximate solution utilizing less computation
effort [7]. State-of-art for view selection problem has applied either population-based
optimization algorithms such as genetic algorithm (GA) [4, 8], particle swarm optimiza-
tion (PSO) algorithm [5, 6, 9], or single-solution-based local search algorithms such as
simulated annealing (SA) [10], greedy algorithm [3], to select an optimal views. The
population-based optimization algorithms search the global space efficiently for large
scale problems but suffer from convergence problems andmay not yield global optimum
[11, 12], whereas single-solution-based local search algorithms search the neighbour-
hood solutions in a limited search area but have a high dependence on the starting position
and become impractical for high-dimensional problems [11]. Authors in [6] also applied
PSO algorithm to select an optimal set of prioritized cubes under space constraints. How-
ever, in case of high-dimensional space, where several local optimal solutions exist, PSO
suffers from premature convergence which may be due to poor initialization of particles
or particles’ incapability to explore diverse regions when all the particles fail to escape
the local optimum region [12]. Hence, PSO is combined with tabu search (TS) widely in
large global optimization problems [13], such as scheduling problems [14, 15], vehicle
routing problem [16], to speed up computations and find improved optimized solutions.
The hybridization of the two algorithms incorporates advantages of both the algorithms:
combining TS’s local search ability of intensifying search by exploring neighbours in
limited space with the PSO’s global search ability of fast optimization and high effi-
ciency by randomly exploring the space; therefore, increasing the likelihood of finding
the global optimum.

In this paper, we design a hybrid algorithm which combines PSO and TS algorithm
to solve the prioritized cube selection problem. Our proposed algorithm incorporates
the best solution information obtained from PSO into TS to intensify the search leading
to a better solution. In the algorithm, PSO searches over the complete search space of
lattice framework till a pre-defined number of non-improving iterations occur. Then,
the algorithm initiates TS on the best solution achieved by the PSO. TS searches over
a reduced neighbourhood of cubes derived from the cube information extracted during
PSO search. The cube information is collected from the global best solutions obtained
in PSO iterations which is then used intensify the tabu search. Further, we analysed and
compared our proposed algorithm results with the PSO algorithm results [6] and our
results show a significant improvement in the optimal solution achieved.
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The paper organization is as follows—Section 2 provides some of the related work.
Section 3 summarizes the prioritized cube selection problem. Section 4 describes the
methodology adopted in the PSO-TS hybridization. Section 5 presents the experimental
results and analysis. Lastly, Sect. 6 provides the paper conclusion and the future work.

2 Related Work

Numerous works have been provided in the field of materialized view selection prob-
lem which selects optimal data cubes by applying global optimization algorithm, local
search-based optimization algorithmor both to solve the view selection problem.Authors
in [8] proposed a solution that uses a mix of evolutionary algorithm and heuristic algo-
rithm for selecting global processing plans and views. Hybrid approach outperformed
the single optimization algorithm results. Authors in [4] proposed a genetic algorithm
solution to find data cubes for materialization and greedy approach to repair infeasible
solutions found during the global search. Authors in [5, 6] applied PSO algorithm to find
optimal prioritized cubes for materialization and outperformed GA results. Authors in
[10] proposed SA algorithm which improves the set of views selected by greedy algo-
rithm for high-dimensional data. None of the works used a hybrid combination of PSO
and TS which has been proved to converge to a good optimal solution for various widely
known optimization problems in other application domains. These include job schedul-
ing problem [14, 15], vehicle routing problem [16], manpower scheduling problem [17]
and frequency assignment problem [18].

3 Prioritized Cube Selection Problem

In a real-world scenario, when a user issues an OLAP query, the query can be of varying
importance for the data warehouse system depending on how immediate the user wants it
to be answered, what type of query is being issued, what is the level of user’s department
and what is the position of the user in the organization structure hierarchy. Considering
the above factors affecting the query’s importance value, authors in [6] assigned a priority
to OLAP queries composed of local and global values. The local value is obtained as per
how quickly user requires results and the global value is obtained from the organizational
structure, wherein the value is assigned from the user level, department level and query
type. Since an OLAP query is answered from the data cube which meets up the attributes
requirement of the OLAP query, therefore, each cube can be of varying importance
depending on how much value the issuing query for the cube holds. Thus, in [6], each of
the data cube is prioritized depending on the priority value of the queries answered from
the data cube. Finally, a cost model PFBCM is proposed which includes ‘cube priority’
as an additional factor along with the other existing factors such as cube frequency, cube
size, cube update frequency and cube update cost.

According to authors in [6], given a set of n-dimensional cube set c = {c1, c2,
…cn}, where each cube ci having a frequency fci from f = {

fc1,fc2 , . . . , fcn
}
, priority

pci from p = {
pc1,pc2 , . . . , pcn

}
and update frequency gci from g = {

gc1,gc2 , . . . , gcn
}

sets, prioritized cube selection is defined as a problem of selecting an optimal set M of
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prioritized cubes for materialization by minimizing the sum of query processing cost
and view maintenance cost bound to space constraint S.

The PFBCM cost model [6] (“Reproduced by permission of the Institution of Engi-
neering and Technology”) is defined [see (1)] where the notation used in the model is
summarized as follows

α: coefficient of optimism to assign weights to priority and frequency factor;
q(ci,M ): cost of answering query from smallest ancestor cube ci selected inmaterialized
cube setM;
U(c, M): maintenance cost of cube c selected in materialized cube set M;
S(c): space required by cubes c being considered for materialization.

minimize τ(M ) =
n∑

i=1

((
αpci + (1 − α)fci

) ∗ q(ci,M )
)

+
∑

c∈M
gcu(c,M )

under space constraint S(M ) =
∑

c∈M
S(c) ≤ S (1)

4 Proposed Hybrid Algorithm

In this section, we introduce the hybrid approach combining PSO and TS algorithm to
solve the prioritized cube selection problem. In the below subsections, we define the
representation of candidate solution and different search spaces, general procedure for
the hybridization and detailed description of adopted PSO and TS phases followed by
the hybrid algorithm steps.

4.1 Candidate Representation and Search Space

Given a lattice framework containing n cubes c = {c1, c2, . . . , cn}, a candidate solution
for cube selection is encoded as a n-dimensional bit vector (c1, c2, . . . , cn) where ci is
set to 1 if cube ci is materialized and set to 0 otherwise.

Letϕ be the set of all possible n-dimensional bit vectors representing complete search
space containing feasible and infeasible solutions:

ϕ = {
c : c ∈ {0, 1}n} (2)

A feasible search space ϕF containing all the solutions which follow the defined
space constraints for cube selection is defined as:

ϕF =
{

c ∈ {0, 1}n :
n∑

i=1

S(c) ≤ S

}

(3)
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A limited feasible search space ϕFK containing all the feasible solutions restricted
in a k-dimensional hyperplane and k is defined by the index of cubes eligible for search
exploration.

ϕFK =
{

c ∈ {0, 1}n :
n∑

i=1

S(c) ≤ S ∪ ck ⊂ c

}

(4)

4.2 Hybridization Procedure

Our hybrid algorithm comprises of two search phases. First phase applies PSO search
till a specified number of iterations with non-improving solution is reached. Then, the
second phase applies TS on the solution obtained from the first phase to obtain a final
solution. The subsections belowdescribe the detailed procedure of the two search phases.

4.2.1 First Phase—Particle Swarm Optimization (PSO)

PSO starts with a randomly initialized swarm comprising of particles and each particle
is encoded as n-dimensional bit vector and a velocity vector. All the particles pass
information in the swarm during the search to accomplish a common goal of reaching to
an optimized solution. During each iteration, each particle improves its flying experience
to reach an optimized solution by updating its position (p_best_pos) and velocity vector
(vi) which is based on its self-best (pbest) solution and the swarm-best (gbest) solution
[19, 20].

We adopted the PSO approach used by authors in [6, 21] with a modification of
maintaining an n-dimensional count vector as cvector = {count1, count2, . . . , countn}.
The count vector contains information about the data cubes chosen for materialization
in the best solution during the search process. In every iteration, count value for the data
cube being selected in the best solution’s (gbest) position gbestpos = (

cg1 , cg2 , . . . , cgn
)
is

updated in the count vector as follows

cvector =
{
counti = counti + 1 if cgi = 1;
counti = counti if cgi = 0; for∀i ∈ {1, . . . , n} (5)

Thus, count vector maintains a promising set of data cubes that are chosen to be a
part of the best solution in the global search of PSO process. PSO search is terminated
when the best solution does not improve for a defined count of iterations.

4.2.2 Second Phase—Tabu Search (TS)

This phase starts when PSO failed to improve the solution further and TS is initiated on
the best solution found by the PSO. TS [22] is a local search strategy that tries to find
the best solution in its neighbourhood while preventing cycling back to the recent past
solutions. This is achieved by declaring themoves resulting in the recent past solutions as
tabu moves, stored as a short-termmemory (i.e. tabu list), and such moves are prohibited
from search for some fix number of iterations (i.e. tabu tenure). Two essential elements
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for TS are its neighbourhood structure and its search space [23]. The neighbourhood
structure defines the local transformations to be performed on the current solution that
produce its neighbourhood solutions and the search space defines the possible search
regions to consider during the neighbourhood search.

Neighbourhood Structure for TS In our work, we use two neighbourhood structures for
TS: restricted one-flip neighbourhood N1(x) [23] and restricted two-flip neighbourhood
N2(x). These neighbourhood structures are defined from two moves: one-flip move and
two-flip move, respectively, that have been used in the literature [23, 24] for solving
binary problems.

For a solution x = (c1, c2, . . . , cn), the one-flip move is defined by changing a cube
bit cqwith its complement value

(
1 − cq

)
and the restrictedone-flip neighbourhoodN1(x)

[see (6)] is formed from all the feasible neighbouring solutions obtained by performing
one-flip moves on cubes.

For a solution x = (c1, c2, .., cn), the two-flip move is defined by changing two
cube bits cp and cq with the complement value s

(
1 − cp

)
and

(
1 − cq

)
, respectively,

and the restricted two-flip neighbourhood N2(x) [see (7)] is formed from all the feasible
solutions obtained by performing two-flip move on cubes.

N1(x) =
{

x ⊕ flip(q) :
n∑

i=1

S(c) + S
(
1 − cq

) ≤ S, 1 ≤ q ≤ n

}

(6)

N2(x) =
⎧
⎨

⎩
x ⊕ flip(p, q) :

n∑

i=1
S(c) + S

(
1 − cp

) + S
(
1 − cq

) ≤ S,

1 ≤ p ≤ n, 1 ≤ q ≤ (n − 1)

⎫
⎬

⎭
(7)

Search Space for TS Heuristic For an n-dimensional solution x = (c1, c2, . . . , cn), a
complete search space consists of |n| possible one-flip moves and |n * (n − 1)/2| possible
two-flip moves. As the search space becomes very large for high-dimensional space, the
space and time complexity increase exponentially. Thus, in this study, we try to reduce
both the complexity by reducing the neighbourhood search space. The aim is to intensify
the local search in the direction of neighbouring cubes that appear to be promising. The
information of promising cubes is maintained in the count vector cvector that records the
cubes that have been spotted most of the times in the global best solutions seen in PSO
iterations. To select the promising cubes for reduced neighbourhood, we sort values of
cvector in descending order and choose top-k cubes from the list. Thus, we narrowed our

search space from
(
|n| +

∣∣∣ n(n−1)
2

∣∣∣ ≈ n2
)
to

(
k +

(
k(k−1)

2

))
≈ k2 where k2 
 n2. The

narrowed space corresponds to the limited feasible search space ϕFK defined above in
Sect. 4.1 and the k-dimensional hyperplane comprises of top-k cubes chosen from the
count vector.

Our TS chooses a best neighbour solution in ϕFK search space by applying
neighbourhood structures defined in the above subsection and returns the best-found
solution.
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4.3 Hybrid Algorithm

Algorithm 1 provides the proposed hybrid algorithm code and describes the two search
phases working as follows—the first phase applies PSO search methodology which
randomly initiates the swarm population (Step 1) and explores through complete lattice
search space φ (Step 2). It explores both the feasible and infeasible regions and tries to
finds a best solution (gbest) in each iteration. Simultaneously, it also maintains a count
vector (cvector) to record the data cubes being selected in the best solution’s position(
gbestpos

)
for each iteration. The count vector indicates how many times each data cube

was selected in the best solution and hence stores the most promising data cubes. When
PSO does not improve the best solution for a pre-defined number of iterations, the
algorithm initiates the second search phase by passing the best solution and the count
vector to the second phase.

The second phase employs tabu search which considers the best solution obtained
from the first search phase as its starting point (Step 3). It explores the limited feasi-
ble search space ϕFK consisting of promising reduced neighbourhood search regions
obtained from the explored zones of PSO which are stored in the count vector (Step 4).
TS provides the best solution s* found in the neighbourhood and s* is provided as the
final solution. Such hybrid methodology aims to intensify the neighbourhood search of
TS by gaining information from the PSO search and provides an improved optimized
solution.

Algorithm 1 Step 1 First phase (PSO) initialization: Randomly initialize PSO’s
swarm particles position and velocities. Initialize cvector to zero;

Step 2 First phase search: For each iteration until the termination condition is reached,
run Step 2; else go to Step 3. Termination condition is a pre-defined count of
iterations with non-improving fitness value.

(a) Evaluate each particle’s fitness value using fitness function given in Eq. (1).
Update each particle’s pbest value and swarm’s best gbest value if improved
from previous values;

(b) Update count vector cvector as defined in Eq. (5) based on current iteration’s(
gbestpos

)
;

(c) Update velocity of the particle i using equation

vi(t + 1) = ωvi(t) + c1R1

(
pbestposi − xi(t)

)
+ c2R2

(
gbestposi − xi(t)

)

d) Update particle’s position as defined below

if rand() < S(vid(t + 1))
then xid(t + 1) = exchange(xid(t))

else xid(t + 1) = xid(t)
where S(vid) = 2|sigmoid(vid) − 0.5|

Step 3 Second phase (TS) initialization:

(a) Initialize TS particle to the gbest particle obtained from PSO and tabu list
to ø;



354 A. Gosain and H. Madaan

(b) Arrange count vector cvector in descending order and select top-k cubes to
form limited feasible search space φFK

Step 4 Second phase search: For every iteration, until specified number of generations
have been completed, repeat Step 4; otherwise go to Step 5.

(a) Evaluate fitness value using Eq. (1) of all the neighbours lying in the search
space φFK where neighbours are formed following the neighbourhood
structures defined in Sect. 4.2.

b) Get the best move v (either one-flip move or two-flip move) and the new
best neighbour solution x′, then update the best solution xwith x′ and update
tabu list with move v tabued till its tabu tenure.

Step 5 The solution found by TS is the best solution s* for the hybrid algorithm.

5 Experimental Analysis

This section provides complete details of our experimental setup and analysis of
the obtained results. Section 5.1 details the datasets on which experiments are per-
formed. Section 5.2 describes the parameter settings done for conducting experiments.
Section 5.3 provides the experimental results comparing the performance of our proposed
algorithm with PSO algorithm.

5.1 Datasets

In our study, we consider the publicly available data warehouse datasets (i.e. Microsoft’s
Contoso Data Warehouse [25] and Microsoft Azure’s WideWorldImporters Data Ware-
house [26]), also used by authors in [6], for experimental evaluation and comparisons.
We consider the five-dimensional star schema with fact table ‘Movement’ and seven-
dimensional star schema with fact table ‘Order’ from WideWorldImporters Data Ware-
house; and six-dimensional star schema with fact table ‘FactOnlineSales’ from Contoso
Data Warehouse for building a three different dimensional lattice framework required
for experimental analysis. We calculated the frequency and priority value of queries and
cubes following the same procedure defined by authors in [6].

For our experimental setup, we considered 100, 200 and 300 queries workload for
five-dimensional, six-dimensional and seven-dimensional dataset, respectively, under
Gaussian distribution.Our proposed algorithm’s performance ismeasured on the average
value obtained from 200 runs performed on each dimensional dataset using our proposed
hybrid algorithm and the previously used PSO algorithm in MATLAB, and results are
compared for both the algorithms in terms of PFBCM fitness value.

5.2 Parameter Settings

The two phases in the proposed hybrid algorithm require several parameter values to
be set. The parameters for the first search phase (PSO) have been set to the common
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settings adapted in previous research [20]. The swarm size has been set to 40, c1 and c2
as 2.0, and inertia weight ω increases linearly from 0.2 to 0.6. Termination criteria for
PSO have been set to 10 non-improving iterations determined experimentally.

The parameter values for the second search phase (TS) have been set empirically. The
termination criteria for TS, i.e. the number of iterations is 5 for five-dimensional and six-
dimensional lattice and 10 for seven-dimensional lattice framework as no improvement
was observed after the specified number of iterations. Tabu tenure has been set to 3.
An important parameter in TS is the k-dimensional hyperplane defining the size of TS
neighbourhood that directly affects algorithm’s computational efficiency. We analysed
our algorithm’s performance with different neighbourhood size sets in an additional
experiment. In the experiment, we choose values of k as {5, 10, 15, 20, 25, 30} for 5-D
lattice and 6-D lattice; whereas, for 7-D lattice, we considered values of k as {10, 20, 30,
40, 50, 60}. The algorithm was run for 100 instances independently for each value of k
and different dimensional datasets. The results are averaged for the 100 instances which
are plotted in Fig. 1 and recorded in terms of runtime value and fitness value achieved
for different k values.

Fig. 1. Fitness and runtime trade-off with respect to different neighbourhood size for a five-
dimensional, b six-dimensional and c seven-dimensional lattice

Figure 1a shows that in a 5-D lattice framework with the increase in the neighbour-
hood size, there is no significant difference in fitness value and increase in runtime.
However, on the other hand, Fig. 1b, c shows that as the problem size increases, i.e.
for 6-D and 7-D lattice framework, respectively, there is a significant improvement in
the fitness value, but runtime also increases linearly with the increase in neighbourhood
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size. Although when considering full neighbourhood, we observed improvement in fit-
ness value but the time consumption of the algorithm is also drastically large due to a
large neighbourhood search.

In summary, for selection of k-parameter in tabu search, a small value of k reduces
runtime but restricts the search region and can miss high-quality solutions, while the
large value of k may result in high-quality solutions but it is very time-consuming to
search large neighbourhood. Thus, in general, selecting a medium value of k maintains
a good balance between the fitness value quality and the computing speed. Therefore,
we have selected one-third size of the complete neighbourhood set, i.e. k = 10 for
five-dimensional 32 cubes set; k = 20 for six-dimensional 64 cube set; and k = 40
for seven-dimensional 128 cube set; which resulted in good-quality solutions within
acceptable running time.

5.3 Results and Comparison

Our experimental results for 5-D, 6-D and 7-D datasets are summarized in Table 1.
Columns 2 and 3 show the average fitness value obtained by running previously applied
PSO algorithm [6] and our proposed hybrid PSO-TS algorithm, respectively, for 200
instances. Column 4 presents the percentage improvement in the fitness value obtained
by our proposed algorithm compared to the PSO algorithm. Column 5 shows how many
instances improvement in the fitness value was seen after applying our proposed algo-
rithm. Moreover, we also conducted paired t-test on the fitness values to prove the
statistical significance of our algorithm compared to PSO.

Table 1. Average fitness value results reported by PSO algorithm and our proposed hybrid PSO-
TS algorithm

n-dimensional
problem

PSO algorithm Our proposed
hybrid PSO-TS
algorithm

% improvement
in fitness value
obtained (%)

# instances when
fitness improved

5-D 597,646.3 597,587 0.015 23 (11.5%)

6-D 16,925,031 16,871,207a 0.29 171 (88.5%)

7-D 4,073,202 4,016,931a 1.38 200 (100%)
aSignificant at p<0.001

Figure 2a compares the fitness values obtained by our proposed algorithm and PSO
algorithm on five-dimensional dataset. The results show that there is no significant
improvement in the fitness value and the same is also indicated statistically from paired
t-test results. Our algorithm could improve fitness value for only 11.5% instances. How-
ever, our proposed algorithm significantly outperforms PSO algorithmwhen the problem
size increases.

Figure 2b, c shows the comparison of fitness values obtained from our proposed algo-
rithm and PSO algorithm for six-dimensional and seven-dimensional datasets, respec-
tively. The results show that the PSO algorithm alone could not obtain global optimum
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Fig. 2. Fitness value comparison for 200 instances obtained by our proposed PSO-TS algorithm
vs PSO algorithm for a five-dimensional, b six-dimensional and c seven-dimensional lattice

solution (shown in red circles) as the algorithm got stuck in premature convergence
problem. This proves the PSO’s disadvantage of facing premature convergence when
the problem size increases. However, our proposed algorithm overcomes the PSO’s pre-
mature convergence problem and improves the solution obtained from PSO algorithm
for 88.5% and 100% instances (as shown in blue marks) in 6-D and 7-D lattice frame-
work, respectively. Further, paired t-test was conducted to check if themean fitness value
obtained by our proposed algorithm is significantly different from PSO algorithm. The
statistical results prove a significant improvement in the fitness value obtained by our
proposed algorithm in comparison with PSO algorithm at 99.9% confidence interval
level as depicted in Table 1.

In summary, with the increase in the dimensional space, our proposed hybrid algo-
rithm outperforms the PSO algorithm significantly with an increase in the improvement
in obtained fitness value and number of cases having improved fitness value.
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6 Conclusion and Future Work

In this paper, we proposed an algorithm hybridizing PSO and TS to solve prioritized
cube selection problem. Earlier, in the literature, heuristic algorithms such as genetic
algorithm, PSO had been applied to optimize the cost function for cube selection prob-
lem but such algorithms suffer from premature convergence problem. Therefore, we
overcame the premature convergence problem of PSO in this paper by combining PSO
with TS heuristic. The proposed algorithm started searching in the global search space
using PSO algorithm, and when stuck in local optimum, initiated TS algorithm to move
search in the promising zone of cubes. A reduced neighbourhood is defined, to reduce the
search and time complexity for TS, which is based on the promising cubes information
collected during PSO search. Finally, we evaluated the performance of our algorithm
in terms of fitness value and the experimental and statistical results showed that our
hybrid algorithm outperforms the PSO algorithm results. In our future work, we will
try to refine TS neighbourhood structure and search space, and explore more diversified
hyperplanes for solving prioritized cube selection problem.
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