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Abstract. Over the past few years, erasure coding has been widely
used as an efficient fault tolerance mechanism in distributed storage sys-
tems. There are various implementations of erasure coding available in
the research community. Jerasure is one of the widely used open-source
library in erasure coding. In this paper, we compared various imple-
mentations of Jerasure library in encoding and decoding scenario. Our
goal is to compare codes with different filesystems data to understand its
impact on code performance. The number of failure scenarios is evaluated
to understand performance characteristics of Jerasure code implementa-
tion.
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1 Introduction

Erasure coding for storage-intensive applications is gaining importance as dis-
tributed storage systems are growing in size and complexity. Erasure coding is
an advanced version of RAID systems in the factors like fault tolerance and
lower storage overhead and the ability to scale in a distributed environment.
This makes erasure codes superior to RAID systems and the most suitable for
storage intensive applications [1,2]. There are several implementation libraries
of erasure coding, namely liberasurecode [3], Jerasure [4], Zfec [5], LongHair [6],
Intel ISA-L [7], etc. Jerasure is a widely used erasure coding library in various
open-source software-defined distributed storages like Ceph [8]. Jerasure is one
of the stable libraries that supports a horizontal mode of erasure codes, writ-
ten in C/C++ and implements several variants of Reed—Solomon and maximum
distance separable (MDS) erasure codes (Vandermonde, Cauchy, Blaum—Roth,
RAID-6, Liberation). Jerasure implementation uses matrix-based coding with
Galois field arithmetic. GF-Complete library, which has procedures of Galois
Field arithmetic, is used in Jerasure 2.0.
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In traditional enterprise architecture having structured and unstructured
data types, filesystem plays an important role providing support for scalability,
extendibility and optimization with respect to the storage technology. Impact of
the traditional and modern filesystems needs to be evaluated with erasure cod-
ing used in distributed storage systems. Therefore, primary motivation behind
the work is to evaluate the working of traditional and modern filesystems with
respect to different erasure coding implementations, which can help in selecting
the best suitable combination for optimal data storage and access.

In this paper, encoding and decoding experiments on various code variants
of Jerasure library (version 2.0 released in 2014) are performed. The rest of the
paper is organized as follows. Section 2 provides various code implementations in
Jerasure. Section 3 mentions about the impact of filesystem on data the reading
and writing. Experimental setup is explained Sect. 4. Section 5 provides details
of benchmarks and results. The paper is concluded in Sect. 6.

2 Jerasure Coding Library

The Jerasure library with the first release in 2007 and the next release Jerasure
2.0 in 2014 is one of the oldest and most popular erasure coding libraries [4].
Jerasure implements minimum distance separable (MDS) codes, where erasure
coding is organized in the following manner for given dataset D. The data D is
divided into k equal-sized information blocks. The £ information blocks are then
coded into n blocks of equal size. The n blocks consist of &k information blocks
and m = (n — k) parity blocks. These n blocks are written into n distributed
storage nodes. The k storage nodes holding data information are called data
nodes, and those having parity information are called as parity nodes. In the
case of failure of any m nodes, the lost data can be reconstructed using the
remaining k£ nodes. Another important parameter in the erasure coding is a
strip unit w, which is the word size. All the code views each device as having w
bits worth of data. The w € {8,16, and 32} can be considered as collection of
w bits to be a byte, short word or word, respectively. The matrix-based coding
used in Jerasure is based on distribution (generator) matrix whose elements are
calculated using Galois field arithmetic GF (2%) for some value of w. Figure 1
shows the distribution matrix and calculation of data and parity blocks.

2.1 Reed-Solomon Code

Reed—Solomon codes are the widely used codes and have the longest history [9].
The strip unit, i.e., w-bit word, must be large enough to satisfy n <= 2" +1 so
that words may be manipulated efficiently, and w is usually considered to fall on
machine word boundaries: w € {8,16,32, and 64}. Most implementations hav-
ing the systems less than 256 disks choose w = 8 that performs the best. Reed—
Solomon codes treat each word as a number between 0 and 2 — 1 and operate
on these numbers with Galois field arithmetic GF(2"*), which performs addition,
multiplication and division on these words to have well-behaved system [10].
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Fig. 1. Calculation of data and parity using generator matrix

There are two types of implementations of Reed—Solomon in Jerasure library,
the Vandermonde matrix-based Reed—Solomon coding and Reed—Solomon cod-
ing optimized for RAID-6. In Vandermonde matrix-based Reed—Solomon coding,
the last m rows of the distribution matrix in GF(2") are based on an extended
Vandermonde matrix. Vandermonde matrix is an mxk matrix that has first row
and columns of the matrix, guaranteed to be all ones. In the RS-RAID-6 code,
the number of parity nodes cannot be more than 2, therefore able to handle two
disk failures at the most.

2.2 Cauchy Reed—Solomon (CRS) Codes

CRS codes are modified from RS codes [9]. They create the generator matrix
using Cauchy matrices instead of Vandermonde matrices. They also eliminate the
complicated multiplications of RS codes by converting them to XOR, operations.
The Cauchy matrix M can be calculated using

. 1
Mgl = 5T
Instead of operating on single word, CRS coding operates on entire strips. In
Jerasure library, there are two implementations of CRS codes, Cauchy original
and Cauchy good. Cauchy good is the improved version of Cauchy original, where
the improved matrix is generated by first dividing each column by its element
in row 0, then similarly improving the rest of the rows.

2.3 Minimal Density Codes

Minimal density RAID-6 codes are the MDS codes that are based on binary
matrices which satisfy a minimum bound on the number of nonzero entries. In
minimal density codes, the bit matrix elements do not correspond to elements
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in GF(2%); however, the bit matrix itself satisfies MDS property. In this code,
the bit matrix is encoded with (k — 1) + ’“2—;1 XOR operations per coding word.
These codes perform better when w is large; thus, minimal density RAID-6
codes perform faster than Reed—Solomon and Cauchy Reed—Solomon codes for
the same parameters values [11]. There are three examples supported in Jerasure
Liberation coding, Liber8tion coding, and Blaum—Roth.

e Blaum-Roth codes when w + 1 is prime [12].
e Liberation codes when w is prime [13].
e The Liber8tion code when w = 8 [14].

3 Filesystem Characteristics

A filesystem is an important component in determining the overall performance
of an application on operating system and external devices like storage disk. It
serves as the interface for interacting with external storage devices. Accessing
storage devices may introduce significant latency when making the data avail-
able to an application, thus affecting system performance. Filesystem implemen-
tation by incorporating feature enhancement helps in reducing this latency. The
Linux kernel supports a number of block-based filesystems like XFS, BTRFS,
EXT2/3/4, etc. This flexibility of choice makes it important to evaluate which
filesystem delivers the best throughput performance for specific application
goals. The goal of experiments is to compare the performance of different encod-
ing and decoding on filesystems storage under similar workloads. In this paper,
we considered three filesystems XFS, BTRFS and EXT4 and calculated encoding
and decoding performance of implementations in Jerasure library.

o XFS: SGI released XFS for open-source community 1999. The community
has integrated XFS into the kernel of the Linux OS, available for Linux dis-
tributions. XFS supports large files, and it can handle filesystems of up to
18 exabytes, with a maximum file size of 9 exabytes. XFS is a journaling
filesystem and provides guaranteed consistency of the filesystem and speeds
up the recovery in the various failure events such as power failures or system
crashes.

e BTRFS: BTRFS is a modern filesystem that began with development in 2007.
It was integrated in Linux kernel and distributed in the Linux 2.6.29 release.
BTREFS is GPL-licensed but currently considered unstable and is experimen-
tal. Thus, even though Linux distribution provides BTRFS in distribution as
an option, it is not yet present as the default filesystem. BTRFS is consid-
ered to offer better scalability and reliability. It is a copy-on-write filesystem
that can address various weaknesses in the existing Linux filesystems. Pri-
mary focus points of BTRFS are to include fault tolerance, easy repair and
easy administration filesystem. BTRFS can support up to sixteen times of
the data of Ext4 as mentioned in documentations.

e EXT4: The EXT4 filesystem is an extension of EXT2 and EXT3, designed
primarily to improve using journal checksums. In EXT4, data allocation was
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Fig. 2. Encoding performance

modified from fixed block allocation to extent allocation. In EXT4, an extent
is described by its starting and ending place on the hard drive. Thus, it possi-
ble to describe a very long and contiguous files in a single inode pointer entry.
This reduces the number of pointers required to describe the location of all
the larger data files. To reduce fragmentation, other allocation strategies have
been implemented in EXT4. Fragmentation is reduced by scattering newly
created files across the disk so that they are not bundled up in one location,
as was happening in earlier filesystems. Additional strategies are used such
as to pre-allocate extra disk space during new file creation or expansion of
the existing file. This helps to ensure that fragments are not created dur-
ing file expansion. New files are not allocated immediately after the existing
files; this also prevents fragmentation of the existing files. There are many
more features added in EXT4 such as delayed allocation for strategizing the
contiguous allocation of the files.

As per the performance evaluation performed in white paper [15], for all
the above mentioned filesystem, BTRFS performs better in case of small files
(sequential as well as random). For sequential read operation XFS, BTRFS and
EXT4 have similar throughput; however in case of performance of random read
operation, BTRFS performs better than EXT4 and XFS [16].

4 Evaluation Setup and Testing Methodology

In this paper, the encoding and decoding performance of Reed— Solomon, Cauchy
Reed—Solomon and Minimal Density codes for the data from different filesystems,
namely XFS, BTRFS and EXT4, is evaluated. The experiments are performed
on a Dell workstation with an Intel Core i5 CPU running at 1.6 GHz with 2 GB
of RAM, a L1 cache of 32 KB, a L2 cache of 256 KB and a L3 cache of 3 MB.
The operating system is Debian GNU Linux revision 4.15.0-9 generic-i686.
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A set of hypotheses that encompass the most important performance aspects
of erasure codes in storage systems, such as encoding and decoding for unavail-
ability of number of data blocks, has been devised. Our focus on benchmarking
efforts is toward exploring and validating the following hypotheses:

e H1 The system decoding performance decreases with the unavailability of
encoded data (disk failures).

e H2 For the similar parameter values, minimal density codes have better per-
formance due to its reduced complexity.

e H3 The storage overhead of erasure coding is irrespective of coding imple-
mentations in Jerasure library and is proportional to the disk redundancy.

Evaluation of encoding and decoding patterns with respect to filesystem is
also one of the objectives of experiments. To this end, we employed a sequential
testing strategy in all the three filesystems in order to establish the theoretically
expected performance for various code implementations of Jerasure. Encode and
decode functions are executed 100 times each, and average throughput (MB/s)
is calculated for all codes in Jerasure library. The decoding experiments are
performed for number of tolerated disk failure for each code in Jerasure. All the
experiments are performed by taking care to flush filesystem buffers and drop
caches before the running each test.
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Fig. 3. Decoding performance—one disk failure
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5 Microbenchmarks

The encoding and decoding of large movie file of 396.8MB are performed for
each code implementation of Jerasure library for a video file on three filesystem
formats XFS, BTRFS and EXT4. In this section, coding algorithm performance
characteristics e.g. encoding, decoding and storage overhead with respect to the
coding parameters and selected filesystem type, are evaluated.

5.1 Coding Algorithms Performance Characteristics

Parameters k£ and m for encoding and decoding are considered as follows. RS-
Vandermonde, Liberation, Cauchy, Blaum—Roth: £k = 6, m = 4, n = 10.

Figure 2 presents the encoding performance for various code implementa-
tions, for three filesystem, namely XFS, BTRFS and EXT4. It is observed that
encoding in case of BTRFS performs better than other two filesystems for all
code implementations. If code implementations are compared, Blaum—Roth cod-
ing in BTRFS gives better encoding throughput (around 1170.93 MB/s) than
other coding implementations. In case of RAID-6 implementations, Liber8tion
in BTRFS performs better than RS-RAID6 (around 1501.02 MB/s).

Figure 3, 4, 5 and 6 show the decoding performance of all the codes of one,
two, three and four disk failures, respectively. It is observed that as the number of
disks fails representing unavailability of coded blocks, the decoding throughput
to recreate the data information decreases. Comparing filesystem performance
for decoding, the results are as expected, i.e., BTRFS decoding is high perfor-
mance or all three decoding scenarios. In case of coding library comparison,
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blaum roth in BTRFS for one, two and four disk failure scenarios performs bet-
ter. In case of RAID-6 implementations, Liber8tion code performs better than
RS-RAID codes.
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Fig. 5. Decoding performance—three disk failures

5.2 Storage Overhead

For various experiments done in this paper, a video file of 396.8 MB is considered.
With all the Jerasure coding implementations, the encoded n files each of size
66.2 MB are created. In case of RAID-6 implementations the total encoded size
n is 8(k = 6, m = 2) and for other implementations n is 10 (k = 6, m = 4).
Storage overhead is the difference between the actual size of the file and the
encoded size of the file and represented as follows.

n x encoded file size-actual file size

t head = 100
storage overtiea x actual file size

6 Conclusion

In this paper, the performance characteristics of Jerasure library code implemen-
tations for different filesystem data are evaluated. The experiments are based on
three different widely used Linux file formats XFS, BTRFS and EXT4. The con-
cluding remarks for hypothesis backed by empirical results with various experi-
ments carried are as follows.
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Fig. 6. Decoding performance—four disk failures

e BTRFS filesystem performs better than other two filesystems for encoding
as well as decoding [17]. As mentioned in various research articles, BTRFS
has better performance due to reduced complexity of bit matrix design based
on scalability and deterministic data access. This is now backed by empirical
proof.

e The Blaum—Roth coding in BTRFS gives better encoding throughput (around
1170.93 MB/s) than other coding implementation

e Minimal density codes compared with RS and Cauchy RS codes. The demon-
strable results are as follows

— In case of RAID-6 implementations, Liber8tion in BTRFS performs bet-
ter than RS-RAID6 for data encoding with throughput around 1501.02
MB/s.

— It is observed that as the number of disks fails representing unavailability
of coded blocks, the decoding throughput decreases.

— The coding library comparison, blaum_roth, in BTRFS for one, two and
four disk failures performs better than other coding implementation. For
three disk failure scenarios, liberation code in BTRFS performs better.

— In case of RAID-6 implementations, Liber8tion code performs better than
RS-RAID codes.

— For three disk failure scenarios, liberation code in BTRFS performs bet-
ter.

e The storage overhead for 396.8 MB file is around 33.46% for RAID-6 codes
and around 66.83% for other code implementations.
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