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Abstract. In wireless communication systems, the received signal is
superimposed by the contemporaneous effects of both shadowing and
multipath fading. The conventional composite models fail to capture the
outliers in the fading channels. In this context, we portray the significance
of the Tsallis’ non-extensive parameter ‘q’ in modeling various fading
environments. This paper exploits the well-known q-Weibull probability
density function (pdf) in characterizing the composite fading channels.
The q-Weibull pdf yields a tight agreement over the generated fading
signals. Furthermore, the different performance metrics, viz. amount of
fading, average channel capacity, and outage probability, are obtained
in closed form. The derived results are validated using rigorous Monte
Carlo simulation procedure.
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1 Introduction

In real-life propagation scenarios, the wireless communication channels get simul-
taneously impaired by shadowing and multipath fading. This phenomena in
wireless communication systems leads to a composite fading environment [1–
3]. Several models have been propounded to characterize the multipath fading
phenomena, viz. Rician, Rayleigh, Weibull, and Nakagami, whereas shadowing
is modeled using distributions such as the Inverse Gamma, Gamma, and Log-
normal [1,3]. These distributions can be superimposed to characterize the con-
temporaneous effects of both shadowing and fading. For this purpose, different
composite models, viz. the Weibull-lognormal (WL), Nakagami-lognormal, and
Rayleigh-lognormal [4–7], have been suggested. However, the lognormal-based
mixture models are mathematically intractable which requires several approxi-
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mations techniques to obtain the desired results. In contrast, the entropy-based
approach characterizes the various fading channels in continuous range of Tsallis’
non-extensive parameter ‘q’.

It is worth noting that the Weibull distribution [1,4,8,9] is best suited to
model multipath fading channels and its proficiency can be extended by intro-
ducing the Tsallis’ non-extensive parameter ‘q’ [10,11]. The q-Weibull distribu-
tion [12] can characterize both multipath and shadowing effects simultaneously
by varying the continuous interval of non-extensive parameter ‘q’. In contrast
to the conventional composite models, for q > 1 this model has a long-tailed
behavior which provides a better fit to the tail fluctuations in the fading signals
[13].

In this paper, the importance of q-Weibull distribution [12] is portrayed to
characterize the composite fading scenarios. The different performance metrics,
viz. the outage probability (Pout), average channel capacity, and amount of fad-
ing (AOF ), are expressed in closed form. It is observed that the results obtained
are analytically tractable and the obtained measures are found to be in close
agreement with the Monte Carlo simulation results.

The remaining paper proceeds as follows: Section 2 illustrates the q-Weibull
distribution. Section 3 portrays the importance of q-Weibull model in contrast
to the well-known Weibull-lognormal distribution in capturing composite fading
environments. The numerical and simulation results for the performance mea-
sures have been discussed in Sect. 4. Finally, Sect. 5 provides the conclusion and
future works.

2 The q-Weibull Distribution

The pdf of q-Weibull distribution can be defined as [12]:

f(γ) = γα−1αλα (2 − q)
[
1 − (1 − q)(λ2γ2)

α
2
] 1

1−q

, γ > 0, 1 < q < 2, (1)

where α > 0 is the fading parameter, λ > 0 represents the scale parameter, and
γ is the received signal-to-noise ratio (SNR). When q → 1, Eq. 1 converges to the
well-known Weibull distribution. Furthermore, for q¿1 the q-Weibull distribution
follows a long-tailed behavior which enables it to smoothly characterize the tail
fluctuations in the fading signals.

From Fig. 1, it is observed that as q approaches 2, the phenomena of long-
tailed distributions are obtained and similarly as q → 1, the curve becomes
peaked and mimics the Weibull distribution.

3 Significance of q-Weibull Model

It is well known that shadowing effects are characterized by lognormal distribu-
tion [1,3]. However, the conventionally used lognormal-based composite models,
viz. Rayleigh-lognormal, WL models are inefficacious in characterizing the tail
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Fig. 1. Plot of (q-Weibull pdf ) against SNR (γ) for different values of q)
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Fig. 2. Illustration of (Weibull-lognormal) distribution corresponding to synthetic sig-
nal

fluctuations in the fading signals [13]. In Fig.2, it is observed that the well-known
WL model [4,5] fails to provide a better fit to the synthetic fading signals. The
fading signals are generated using MATLAB to mimic the real-time fading sce-
narios. However, it is possible that the entropy-based q-Weibull distribution
can characterize the entire outliers in the fading channels. In this context, the
q-Weibull model provides a better fit to the outliers in the fading signals for
1 < q < 2. The generated fading signals are well characterized by the q-Weibull
distribution corresponding to q = 1.3 as shown in Fig. 3.
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Fig. 3. Illustration of (q-Weibull distribution) corresponding to synthetic signal for
(q = 1.3)

4 Numerical Results and Discussions

In this section, various performance metrics in wireless communications systems,
viz. average channel capacity, amount of fading, outage probability in correspon-
dence to the q-Weibull model, have been illustrated. Furthermore, the obtained
measures are found to be in closed agreement with the simulation results (Fig. 4).

4.1 Amount of Fading

In wireless fading scenarios, the amount of fading (AOF) is an important per-
formance metric as it specifies the severity of fading and is given as [4,5]:

AOF =
E[γ2]

(E[γ])2
− 1 (2)

The rth moment of γ is obtained as:

E[γr] =

∞∫

0

γr×γα−1αλα (2 − q)
[
1 − (1 − q)(λ2γ2)

α
2
] 1

1−q

dγ (3)

or,

E[γr] = λα(2−q)

Γ( 1
q−1 )

[
((q − 1) λα)−(1+ r

α )Γ
(
1 + r

α

)
Γ

(
−1 − r

α + 1
q−1

)]
(4)

From Eqs. (2) and (4), analytical expression for AOF is given as:

AOF =

{
((q−1)λα)

−(1+ 2
α )Γ[1+ 2

α ]Γ[−1− 2
α + 1

q−1 ]
((q−1)λα)

−2(1+ 2
α )Γ2[1+ 1

α ]Γ2[−1− 1
α + 1

q−1 ]
× Γ[ 1

q−1 ]
λα(2−q)

}
− 1 (5)
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Fig. 4. Analytical solution with simulation results for amount of fading against fading
parameter (α) corresponding to different q

4.2 Average Channel Capacity

It is an important performance metric that defines the maximum transmission
rate a channel achieves with a small probability of error. In ergodic sense, the
average channel capacity is expressed as [5,14]:

C

B
=

1
ln(2)

∞∫

0

ln(1 + γ)f(γ)dγ, (6)

where B denotes the bandwidth of the fading channel. Equation(1) and Eq.(6)
yield:

C

B
=

1
ln(2)

∞∫

0

αλα (2 − q)ln(1 + γ)γα−1×
[
1 − (1 − q)(λ2γ2)

α
2
] 1

1−q

dγ (7)

As Eq. (7) is not analytically tractable, using Meijer’s G approximations of the
polynomials [15]; ln(1 + γ) = G12

22

[
γ

∣∣∣1,1
1,0

]
and exp(−γ) = G10

01 [γ |.0 ], Eq. (7)
becomes:

C

B
=

αλα

ln(2)

∞∫

0

γα−1G
12
22

[
γ

∣∣∣1,1
1,0

]
G

10
01

[
(λ2γ2)

α
2 |.0

]
dγ (8)

Using Eq. (8) and the substitutions in [16], the average channel capacity is
obtained as:

C

B
=

αλα

ln(2)
H31

23

[
λα

∣∣∣(−α,α),(1−α,α)
(0,1),(−α,−α),(−α,α)

]
(9)
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Fig. 5. Plot of average channel capacity against fading parameter (α) corresponding
to different values of parameter q

In Fig. 5, it is evident that the analytical and simulation results of average
channel capacity are in close agreement with each other when q → 1.

4.3 Outage Probability

It is one of the significant performance measures for communications systems
over several fading channels. It is denoted as Pout and defining the probability of
output SNR γ under a specified threshold value γth [4,5] (Fig. 6). It is expressed
as [1]

Pout =

γth∫

0

f(γ)dγ (10)

Equations (1) and (10) yield:

Pout = αλα (2 − q)

γth∫

0

γα−1[1 − (1 − q)(λγ)α]
1

1−q dγ (11)

Hence, outage probability can be obtained as:

Pout = 1 − (1 + γth
α (q − 1) λα)1+

1
1−q (12)

5 Conclusion and Future Work

The theoretical results of the important performance metrics, viz. outage prob-
ability, average channel capacity, and amount of fading with respect to the q-
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Fig. 6. Analytical solution with simulation results for Pout against threshold SNR for
different α

Weibull model, were derived. It is profound that Weibull distribution incorpo-
rated with the Tsallis’ non-extensive parameter ‘q’ can characterize the com-
posite fading channels. The q-Weibull model captured both fast fading and
shadowing effects corresponding to different wireless communication channels
for continuous interval of the non-extensive parameter ‘q’, i.e., 1 < q < 2. It is
worth noting that the q-Weibull model provided a better fit with the synthetic
fading signal corresponding to q=1.3 and also characterized the tail fluctuations
in the fading signal in contrast to the composite WL model. It would be inter-
esting and challenging in characterizing fading channels and computation of the
symbol error probability using the aforementioned ‘q’-Weibull model over the
other existing complex models on the basis of non-extensive parameter ‘q’.
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