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Abstract. A complex issue in handling systems with continually chang-
ing processing demands is an intractable task. A more current example
of these systems can be observed in wireless sensor networks and traffic-
intensive IoT networks. Thus, an adaptive framework is desired which
can handle the load and can also assist in enhancing the performance of
the system. In this paper, our objective is to provide the non-stationary
solution of Erlang loss queueing model where s servers can serve at most
s jobs at a time. We have employed time-dependent perturbation the-
ory to obtain the probability distribution of M/M/s/s queueing model.
The time-dependent arrival and service rates are assumed to be in sinu-
soidal form. The opted theory gives approximation for probability distri-
bution correct up to first and second order. The result shows that first-
and second-order approximations provide better approximation than the
existing ones.
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1 Introduction

Queueing system is an important tool for designing and analyzing the systems
ranging from IOT, blockchain technology to telecommunication systems [1–3].
Suitable queueing models have been designed for different systems. Erlang loss
queueing model is applicable in many domains like telecommunication networks,
transportation systems, etc. [5,6]. Such systems are designed better and analyzed
on the basis of their performance measures. In order to evaluate performance
measures, the systems are assumed to be in a steady state. Based on this assump-
tion, the systems are analyzed. The reason for this assumption is that stationary
solutions are easy to obtain. However, in reality, the systems are not in steady
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state and steady-state solutions are far from reality. The arrival and service
rates are not constant; rather, they are a function of time. For instance, the
pattern of calls or vehicles on road is different in morning and in evening [7,8].
The non-stationary solutions of the queueing models are difficult to obtain. So,
the researchers are trying to obtain approximations [6,7]. Several approxima-
tions have been found in the literature to approximate and analyze the non-
stationary queueing systems. Some of these are simple stationary approximation
(SSA), pointwise stationary approximation (PSA), modified offer load (MOL),
etc [9–13]. The arrival and service rates are assumed to be in sinusoidal form to
test these approximations. In this paper, we have opted time-dependent pertur-
bation (TDP) theory, extensively used to solve numerous problems of quantum
mechanics [13–15]. TDP is applied on the non-stationary Erlang loss model with
time-varying arrival and service rates. The sinusoidal rates are generally used so
that we can accurately estimate the performance of the approximation scheme,
although this method can also be applied for general perturbed rates.

The rest of the chapter is as follows: After the introduction section, Sect. 2
presents a literature review of non-stationary queues. Section 3 provides Erlang
loss model and its CR equations. Time-dependent perturbation theory is briefly
discussed in Sect. 4. Section 5 presents numerical results. The last section is the
conclusion.

2 Literature Review

Non-stationary queueing models developed for analyzing the systems are com-
plex in nature [13]. Simulation techniques can predict the behavior of the queue-
ing models but these techniques, for example, Monte Carlo simulation, take
more computational power as well as time. People choose approximation meth-
ods based on steady-state results to predict the behavior of systems. These
approximations are much easier and require less computation. Simple stationary
approximation (SSA) is one of the techniques based on steady-state solution.
The average rate is calculated over a time interval and inserted in steady-state
formula. Mathematically, the average arrival rate (similarly average service rate)
over a time of length T is given by:

λ̄ =
1
T

T∫

0

λ(t)dt

All Markovian queues can be evaluated by using these average arrival rates.
However, SSA method ignores non-stationarity behavior and provides stationary
solution for the number of jobs in the system. Green et al. [10] found that SSA
gives a reasonable approximation if the arrival rate function varies by only 10%
about its average arrival rate. Green et al. [10] proposed pointwise stationary
approximation (PSA) method used to compute non-stationary behavior. PSA
provides time-dependent behavior based on steady-state behavior of a stationary
model. It uses arrival and/or service rate that prevails at the time at which we
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want to describe the performance. For example, the blocking probability PB(t)
which is the probability that no server is available is calculated approximately
for M(t)/M(t)/s/s queue as:

PB(t) ≈ ρ(t)s/s!∑s
i=0 ρ(t)s/i!

where ρ(t) = λ(t)/μ(t)
The expected number of busy servers E[S(t)] can be given approximately as

E[S(t)] ≈ (1 − PB(t))ρ(t)

Massey and Whitt [12] showed that PSA is asymptotically correct as arrival
rate changes less rapidly. Modified offered load (MOL) model was introduced to
approximate telephone traffic [12]. MOL is applicable to only Erlang loss models
and works effectively if the blocking probability is small.

3 Erlang Loss Model

Consider a queueing system with s number of servers and with zero buffer size.
That is, there can be at most s jobs in the system that are under service. The
arrival pattern follows Poisson process with a non-negative time-varying rate
λ(t). The service of each job follows exponential distribution with rate μ(t). Let
p(n, t) be the probability of n jobs in the system at time t. The Chapmann–
Kolmogorov (CR) equations for M(t)/M(t)/s/s queueing system [5] are given:

d
dt

p(0, t) = −λ(t)p(0, t) + μ(t)p(1, t)

d
dt

p(n, t) = λ(t)p(n − 1, t)−(λ(t) + nμ(t))p(n, t) + (n + 1)μ(t)p(n + 1, t)

d
dt

p(s, t) = λ(t)p(s − 1, t) − sμ(t)p(s, t)

0 < n ≤ s

(1)

The non-autonomous linear differential equation in matrix form of above set of
CR equations can be written as:

dP (t)
dt

= M(t)P (t) (2)

where
P (t) = (p(0, t), p(1, t), . . . , p(s, t))T

and M(t) be a matrix obtained from the set of differential equations. The solution
of Eq. (2), if M(t) is constant (M(t) = M0), can easily be obtained by matrix
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differential equation with constant coefficients. If the initial condition p(n, 0) is
known, then the solution is given by

P (t) =
s+1∑
i=1

aie−bitmi (3)

where bi is the eigenvalue and mi is the corresponding eigenvector of M0 and
coefficients ai can be easily obtained by the initial probability values. However,
if the entries of matrix M(t) in Eq. (2) are time-dependent, then it is complex
to obtain the exact solution. For solving the differential Eq. (2), researchers pro-
posed a different method. For the support of their method, researchers assumed
that the time-varying rates are periodic in sinusoidal form [12]. But, these meth-
ods can also be applied on general rates. In the light of this assumption [13], we
assume that the time-varying rates can be split into two parts: a constant and
some perturbed part. The perturbation part of the rates is in sinusoidal form.
Formally, the rates can be written as

λ(t) = λ + ηλ sin(τλt + φλ)

μ(t) = μ + ηµ sin(τµt + φµ)

The matrix M(t) thus can be seen as a sum of two matrices M0 and X(t) where
M0 is constant and X(t) is sinusoidal form.

4 Time-Dependent Perturbation (TDP) Theory

The matrix differential equations with time-dependent coefficients are generally
found in quantum mechanics, for instance, the Schrodingers wave equation with
time-dependent Hamiltonian [14–16]. TDP theory has been very successful in
computing the solution of such problems. Equation (2) can be rewritten where
the coefficient matrix is the sum of constant and perturbed part, i.e.,

dP (t)
dt

= (M0 + X(t))P (t), P (0) = p0. (4)

In case of M(t) as constant, the solution of Eq. (4) as discussed in the previous
section is given by

P (t) =
s+1∑
i=1

ane−bitmi (5)

In a similar fashion, if the coefficient matrix as given in Eq. (4) is time-dependent,
the unknown coefficients an must be a(n, t). The general solution of Eq. (4) can
be written as

P (t) =
s+1∑
i=1

a(i, t)e−bitmi (6)
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Substituting the value of P (t) given in Eq. (6) into (4) and simplifying it, we
have ∑

i

da(i, t)
dt

e−bitmi = c
∑
i

a(i, t)e−bitmi (7)

If mj
′ is left eigenvector corresponding to eigenvalue bj and mi is right eigen-

vector corresponding to bi, then mj
′mi �= 0, if i = j, otherwise 0 [17]. So, we

multiply reduced Eq. (7) by mj
′ from left-hand side

da(j, t)
dt

= c
∑
n

mj
′X(t)mie

(bi−bj)ta(i, t)

= c
∑
n

a(i, t)Xije
(bi−bj)t

(8)

where Xij = mj
′X(t)mi.

The term a(i, t) can be expanded in the power of c as a perturbation approxi-
mation

a(n, t) = a(n, t)(0) + c1a(n, t)(1) + c2a(n, t)(2) + . . . (9)

Using this expression into Eq. (8) and on equating the coefficients of equal power
of c, one can obtain

daj
0(t)

dt
= 0 (10)

The first-order coefficients are evaluated by

daj
(1)(t)
dt

=
∑
i

Xije
(bi−bj)tmiai

(0) (11)

Similarly, higher-order coefficients can be calculated using

daj
(r+1)(t)
dt

=
∑
i

Xije
(bi−bj)tmiai

(r)(t) (12)

The zeroth-order coefficients a(n, 0) are obtained from initial condition

ζ(0) =
∑
i

ai
(0)mi

which is given in the problem. The first-order coefficients can be obtained by
using zeroth-order coefficients. The higher-order coefficients can be obtained in
the same manner [17–19].
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5 Numerical Results

In this section, we implemented TDP method on Erlang loss model. The results
obtained from TDP(correct up to first and second order), MOL and PSA are
compared with the solution obtained by the ode45 function available in MAT-
LAB ODE suit. The relative error RE of the existing and TDP methods is
computed to get insights by

RE =
Value obtained by ode45 − Approx value

Value obtained by ode45

We take M(t)/M(t)/5/5 queue as an instance to gain insight on how the solution
based on TDP correct up to first and second order performs. We take arrival
rate

λ(t) = 3 + 0.2 sin(2t)

and service rate μ(t) = 4. In Fig. 1, we can easily see that TDP (second-order
approx.) performs better than the other approximations (PSA, MOL, TDP (first-
order approx.)). Figure 2 shows the relative error of PSA, MOL, TDP (first-order
and second-order approx). For better clarity, Fig. 3 shows only the relative error
of only MOL and TDP (second-order approx). From Figs. 2 and 3, it can be
easily seen that the TDP method outperforms the other existing methods.
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Fig. 1. Average number of customers in M(t)/M/5/5. (λ = 10 + 7sin(2t), µ = 2)
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Fig. 2. Relative error of TDP(second approx.) (λ = 10 + 7sin(2t), µ = 2)
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Fig. 3. Relative error of TDP(second approx.)(λ = 10 + 7sin(2t), µ = 2)

6 Conclusion

In this chapter a time-dependent perturbation theory is used for computing
probability distribution and blocking probability for non-stationary Erlang loss
model. The scope of this study covers a plethora of systems with dynamic orga-
nization. The numerical results show that the opted theory outperforms the



A Non-stationary Analysis of Erlang Loss Model 293

existing approximations. The theory can be applied extensively to obtain approx-
imations for various non-stationary queueing models.
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