
Chapter 5
Algorithms for 1-Planar Graphs

Seok-Hee Hong

Abstract A 1-planar graph is a graph that can be embedded in the planewith atmost
one crossing per edge. It is known that testing 1-planarity of a graph is NP-complete.
This chapter reviews the algorithmic results on 1-planar graphs. We first review a
linear time algorithm for testing maximal 1-planarity of a graph if a rotation system
(i.e., the circular ordering of edges for each vertex) is given. A graph is maximal
1-planar if the addition of an edge destroys 1-planarity. Next, we sketch a linear
time algorithm for testing outer-1-planarity. A graph is outer-1-planar if it has an
embedding in which every vertex is on the outer face and each edge has at most one
crossing. The 1-plane graphs have two forbidden subgraphs to admit a straight-line
drawing. We review a linear time algorithm for constructing a straight-line drawing
of 1-plane graphs. Finally, we conclude with reviews on recent related results.

5.1 Introduction

Recent research topics in topological graph theory and graph drawing generalize the
notion of planarity to sparse non-planar graphs, called beyond planar graphs, either
with forbidden edge crossing patterns or with specific types of edge crossings.

This chapter reviews algorithmic results on 1-planar graphs, i.e., graphs that can
be embedded with at most one crossing per edge [25]. The 1-planar graphs are
introduced by Ringel [26] in the context of simultaneously coloring vertices and
faces of planar graphs. Subsequently, the combinatorial aspects of 1-planar graphs
have been investigated.

For example, Borodin [6] investigated coloring for 1-planar graphs, and Borodin
et al. [7] studied the acyclic colorability of 1-planar graphs; Zhang and Wu [30]
studied the edge colorability of 1-planar graphs. In particular, Pach and Toth [25]
proved that a 1-planar graph with n vertices has at most 4n − 8 edges, which is a
tight upper bound.
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There are a number of structural results on 1-planar graphs by Fabrici and
Madaras [12], and maximal 1-planar graphs by Hudak et al. [21] and Suzuki [28].
Suzuki [27] also investigated structural properties of optimal 1-planar graphs (i.e.,
1-planar graphs with the maximum number of 4n − 8 edges).

The class of 1-planar graphs is not closed under edge contraction; accordingly,
computational problems seem difficult. Grigoriev and Bodlaender [15], and Korzhik
and Mohar [22] independently proved that testing 1-planarity of a graph is NP-
complete. It remains NP-hard, even if the rotation system is given as part of the
input, shown by Auer et al. [2]. Furthermore, Cabello and Mohar [8] showed that
NP-hardness holds even if the input graph is an almost planar graph (i.e., deletion of
an edge makes the resulting graph planar). More recently, Bannister et al. [3] studied
the fixed parameter complexity of 1-planarity.

On the positive side, efficient polynomial time algorithms are known for special
subclasses of 1-planar graphs. For example, a linear time algorithm is available for
testing maximal 1-planarity, if the rotation system is given, by Eades et al. [10].
Hong et al. [16] and Auer et al. [1] independently presented linear time algorithms
for testing outer-1-planarity.

The classical Fáry’s Theorem [13] showed that every plane graph (i.e., a planar
graphwith a givenplanar embedding) admits a planar straight-line drawing.However,
1-plane graphs (i.e., 1-planar graphs with a given 1-planar embedding) have two
forbidden subgraphs to admit a straight-line drawing, shown by Thomassen [29].
Hong et al. [20] presented linear time testing and drawing algorithms to construct
such a straight-line drawing of 1-plane graphs if it exists.

This chapter reviews algorithmic results on 1-planar graphs. More specifically,
we describe three linear time algorithms in the following sections:

1. Section 5.2: linear time algorithm by Eades et al. [10] for testing maximal 1-
planarity of a graph G with a given rotation system.

2. Section 5.3: linear time algorithm by Hong et al. [16] for testing outer-1-planarity
of a graph.

3. Section 5.4: linear time algorithm by Hong et al. [20] for constructing a straight-
line drawing of a 1-plane graph.

Section 5.5 concludes with reviews on recent progress.

5.2 Testing Maximal 1-Planarity

Eades et al. [10] proved the following main theorem.

Theorem 5.1 There exists a linear time algorithm that tests whether graph G with
a given rotation system Φ has a maximal 1-planar embedding consistent with Φ. If
such an embedding exists, it is unique and the algorithm computes the embedding.

First, it was shown that in anymaximal 1-planar embedding, the subgraph induced
by planar edges (called the red graph) is spanning and biconnected, and that if
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Fig. 5.1 Maximal 1-planar
graph

the rotation system does admit a maximal 1-planar embedding, then it is unique.
Figure 5.1 shows an example of a maximal 1-planar graph.

Note that a rotation system Φ does not define crossings between edges. How-
ever, for a planar graph, a rotation system uniquely determines a planar embedding.
Therefore, to determine a 1-planar embedding ξ(GΦ), it is sufficient to determine a
rotation system of the planar embedding ξ(GP) of planarization GP of the 1-planar
embedding.

An embedding ξ(G) of a graph G defines the crossing-free (called red) edges as
well as the crossing (called blue) edges. Denote the subgraph of a graphG induced by
the red edges as red graph GR . Now,we sketch a linear time algorithm to testmaximal
1-planarity of a graph with a given rotation system, consisting of the following five
steps:

Algorithm: Testing Maximal 1-Planarity
Input: GΦ , a graph G with a rotation system Φ.
Output: 1-planar embedding ξ(GΦ) or “no”.

1. If |E(G)| > 4n − 8 or G is not biconnected, then return(“no”).
2. Compute the red planar subgraph GR of GΦ .
3. If GR is not planar or not biconnected, then return(“no”).
4. Test 1-planarity of GΦ , and compute ξ(GΦ) and ξ(GP).
5. Test maximality of ξ(GΦ).

Steps 1 and 3 use the Pach–Toth bound [25], a standard biconnectivity algorithm,
and a planarity testing algorithm. In the following, we sketch Steps 2, 4, and 5.

Step 2: Computing the Red Subgraph GR

Consider graph G as a directed graph, with two directed edges (u, v) and (v, u) for
each pair u, v of adjacent vertices.We say that a directed edge (v2, v3) is the rightmost
continuation of a directed edge (v1, v2), if vertex v3 is the vertex that precedes v1 in the
circular ordering of v2.We say that awalk v1, . . . , vt is a completed rightmost walk, if:
(i) for every i ∈ {1, . . . , t}, the directed edge (vi , vi+1) is the rightmost continuation of
the directed edge (vi−1, vi ), and (ii) for all i, j ∈ {1, . . . , t}, if (vi , vi+1) = (v j , v j+1),
then i = j . See Fig. 5.2, for examples.

Completed rightmost walks characterize the colors of the edges of GΦ , as in the
following lemma.
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Fig. 5.2 Examples of
a rightmost continuation;
b completed rightmost walk

Lemma 5.1 Let G be a 1-plane graph with a given rotation system Φ, whose red
graph GR is spanning and biconnected. An edge e of G is red if and only if there is
a completed rightmost walk on GΦ that traverses e only in one direction.

We can design an algorithm that takes GΦ as input, and computes the color of the
edges as follows:

(i) simply traverse the graph with rightmost walks;
(ii) by marking edges after the traversal, we can color the edges red or blue.

Step 4: Computing a 1-Planar Embedding of GΦ

We now test whether there exists a 1-planar embedding of GΦ consistent with the
colors. If such an embedding exists, we compute a planar embedding of the pla-
narization GP of GΦ .

After testing biconnectivity and planarity of GR in Step 3, we have a planar
embedding ξ(GR) of GR which preserves the given rotation system Φ of G.

Since the 1-planar embedding of GΦ is unique, if it exists, this implies that we
can use the rotation system Φ to identify the red facial cycles and the blue edges
inside each red face. Then crossings can be detected by traversing each red face; the
traversal detects any edge with more than one crossing.

Lemma 5.2 There exists a linear time algorithm that tests whether there is a 1-
planar embedding of GΦ that is consistent with Φ such that GR is the red subgraph.
If such an embedding ξ(GΦ) exists, it is unique and the algorithm computes the
planar embedding ξ(GP) of the planarization of ξ(GΦ).

Step 5: Testing Maximality of 1-Planar Embedding
Now, we show that maximality of a 1-planar embedding of G with a given rotation
system Φ can be tested in linear time. Let ξ(G) be a maximal 1-planar embedding
of a graph G, GP be the planarization of G, and ξ(GP) be the planar embedding of
GP induced by ξ(G). Let f be a facial cycle in ξ(GP).

Note that maximal 1-planar graphs have the following properties:

• Each crossing in ξ(G) induces a 4-clique.
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Fig. 5.3 Testing maximality
of an 1-planar embedding:
a testing possible addition of
a red edge; b testing possible
addition of a blue edge

• The face f has at most four real vertices, and at most eight vertices (real plus
virtual).

We can simply test whether there are two nonadjacent real vertices v1 and v2 such
that adding the edge (v1, v2) does not destroy 1-planarity as follows:

(i) First test each face whether it contains two such v1 and v2 (see Fig. 5.3a);
(ii) Then test red edge e whether we can add (v1, v2) by crossing e, where v1 and v2

are on the faces separated by e (see Fig. 5.3b).

Using the properties of maximal 1-planar graphs above, we can perform these
testings in linear time.

5.3 Testing Outer-1-Planarity

Wenow review a linear time algorithm byHong et al. [16] to test the outer-1-planarity
of a graph G. The following theorem summarizes the main results.

Theorem 5.2 There is a linear time algorithm to test whether a given graph is
outer-1-planar. The algorithm computes an outer-1-planar embedding if it exists.

To prove Theorem 5.2, a subclass of outer-1-planar graphs, called one-sided-
outer-1-planar (OSO1P) graph, was introduced as follows. Let G be a graph with
vertices s and t , and G+(s,t) be the graph obtained by adding the edge (s, t), if it is
not already in G. If G+(s,t) has an outer-1-planar embedding with the edge (s, t) on
the outer face, then G is called one-sided-outer-1-planar (OSO1P) with respect to
(s, t).

A graph is outer-1-planar if and only if its biconnected components are outer-1-
planar. Therefore, the algorithm focuses on the biconnected case, using the SPQR
tree [5] to represent the decomposition of a biconnected graph into triconnected
components. We now review the basic terminology of the SPQR tree.

Each node ν in the SPQR tree is associated with a graph called the skeleton of ν,
denoted by σ(ν). There are four types of nodes ν:
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Fig. 5.4 AOSO1P graph
consists of a parallel
composition of an OSO1P
graph and an OSO1P S-node
with a tail: a general shape
of an AOSO1P graph with
respect to (s, t); b AOSO1P
graph with respect to (s, t);
c AOSO1P graph with
respect to both (s, t) and
(t, s)
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• S-node: σ(ν) is a simple cycle with at least three vertices;
• P-node: σ(ν) consists of two vertices connected by at least three edges;
• Q-node: σ(ν) consists of two vertices connected by a real edge and a virtual edge;
and

• R-node: σ(ν) is a simple triconnected graph.

A rooted SPQR tree can be obtained by choosing an arbitrary node as its root.
Let ρ be the parent node of an internal node ν. The graph σ(ρ) has exactly one
virtual edge e in common with σ(ν), called the parent virtual edge of σ(ν), and a
child virtual edge in σ(ρ). Denote the graph formed by the union of σ(ν) over all
descendants ν of ρ by Gρ .

Letμ be an S-node with parent separation pair (u, v). A tail at u forμ is a Q-node
child (that is, a real edge) with parent virtual edge (u, x) for some vertex x . A P-node
ν is called almost one-sided outer-1-planar (AOSO1P) with respect to the directed
edge (s, t), if Gν consists of a parallel composition of an OSO1P graph with respect
to (s, t) and an S-node μ such that μ has a tail at t and μ is OSO1P with respect to
(s, t). See Fig. 5.4 for examples.

IfG is an outer-1-planar graph, then σ(ν) andGν are outer-1-planar graphs. IfGν

is a one-sided outer-1-planar (OSO1P) graph with respect to the parent virtual edge
(s, t) of ν, then denote ν as a one-sided outer-1-planar (OSO1P) node with respect
to (s, t).

Step 1: Testing OSO1P and AOSO1P
The algorithm traverses the SPQR tree of G from the leaves toward the root, com-
puting two boolean labels OSO1P(ν, s, t) and AOSO1P(ν, s, t) which indicate
whether ν is OSO1P or AOSO1P with respect to (s, t). The label AOSO1P(ν, s, t)
is computed for each P-node ν only.

Note that the only triconnected outer-1-planar graph is K4 with unique outer-1-
planar embedding. Therefore, the R-node case is easy; however, P-node and S-node
cases are more involved.
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Fig. 5.5 Embeddings of a set of paths sharing endpoints: a planar embedding; b outer-1-planar
embedding of three non-trivial paths; c outer-1-planar embedding of three paths, where one path is
trivial; d outer-1-planar embedding of four non-trivial paths; e outer-1-planar embedding of four
paths, where one path is trivial; f outer-1-planar embedding of five paths, where one path is trivial

Figure 5.5 illustrates structural properties on the possible outer-1-planar embed-
dings of a set of paths that share endpoints. Let P be a set of paths between two
vertices s and t . A path from s to t is called non-trivial, if it contains more than two
vertices.

We now describe each case (i.e., R-node, P-node, S-node) in detail.

(i) R-node: Let ν be an R-node with parent virtual edge (u, v). Then Gν is OSO1P
with respect to (u, v) if and only if:

1. σ(ν) is isomorphic to K4; and
2. an edge (u, a) of σ(ν) with a �= v incident with u represents a child Q-node of

ν; an edge (v, b) of σ(ν) with b �= u represents a child Q-node of ν; and (u, a)

crosses (v, b); and
3. for each child ν ′ of ν, ν ′ is OSO1P with respect to (c, d), where (c, d) is the

parent virtual edge of ν ′.

Figure 5.6a shows an example of an OSO1P R-node: σ(ν) is K4, where the inner
crossing edges are real edges (i.e., Q-node children), and outer edges are OSO1P
child nodes. Figure 5.6b shows a non-OSO1P R-node, where crossing edges are not
real edges.
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Fig. 5.6 Examples of a
OSO1P R-node; b
non-OSO1P R-node

Fig. 5.7 Illustration for an
OSO1P P-node

(ii) P-node: Based on the structural properties shown in Fig. 5.5, an OSO1P P-node
can have at most three children. Let ν be a P-node with parent virtual edge (s, t).
Then Gν is OSO1P with respect to (s, t) if and only if

• ν has two children, where one is a Q-node (s, t), and the other is OSO1P with
respect to (s, t) (see Fig. 5.7a); or

• ν has two children, where one is an S-node with tail at s which is OSO1P with
respect to (s, t), and the other is an S-node with tail at t which is OSO1P with
respect to (s, t) (see Fig. 5.7b); or

• ν has three children, where one is a Q-node (s, t), another is an S-node with tail at
s which is OSO1P with respect to (s, t), and the other is an OSO1P S-node with
tail at t which is OSO1P with respect to (s, t) (see Fig. 5.7c).

It is straightforward to extend the above conditions to test whether a P-node ν is
AOSO1P.

(iii) S-node: Let ν be an S-node with children ν1, ν2, . . . , νk , where the parent virtual
edge of νi is (si−1, si ); see Fig. 5.8a. If each child νi is OSO1P with respect to
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Fig. 5.8 Examples of a S-node; b OSO1P S-node with a child ν2 that is not OSO1P; c S-node that
satisfies the necessary conditions, but is not OSO1P; d Two paths p1 and p2 in Gνi ; e The path p1
crosses the edge (si , si+1)

(si−1, si ), then clearly ν is OSO1P with respect to (s0, sk); however, the converse is
false. Figure 5.8b shows the necessary conditions, where ν is OSO1P with respect
to (s0, sk), however, the child ν2 is not OSO1P with respect to (s1, s2). Note that ν3
is a Q-node, and an edge from the skeleton of ν2 crosses this edge.

Let ν be an S-node with children ν1, ν2, . . . , νk , where the parent virtual edge of
νi is (si−1, si ), and Gν is OSO1P with respect to (s0, sk). Then for 1 ≤ i ≤ k:

• νi is OSO1P with respect to (si−1, si ); or
• i < k, νi is AOSO1P with respect to (si , si−1), and νi+1 is a Q-node; or
• i > 1, νi is AOSO1P with respect to (si−1, si ), and νi−1 is a Q-node.

The above conditions are necessary for an S-node to be OSO1P, however not
sufficient; e.g., see Fig. 5.8c. The problem is that the Q-node represented by the edge
(s1, s2) has two crossings.We can express sufficient conditions for an OSO1P S-node
recursively, as follows.

Let ν be an S-node with children ν1, ν2, . . . , νk , where the parent virtual edge
of νi is (si−1, si ), and let G(ν1, ν2, . . . , νk) denote the series composition of graphs
Gν1 ,Gν2 , . . . ,Gνk . Then Gν is OSO1P with respect to (s0, sk) if and only if:

• Gν1 is OSO1Pwith respect to (s0, s1) andG(ν2, ν3, . . . , νk) is OSO1Pwith respect
to (s1, sk); or

• ν1 is a Q-node, Gν2 is AOSO1P with respect to (s1, s2), and G(ν3, ν4, . . . , νk) is
OSO1P with respect to (s2, sk); or

• Gν1 is AOSO1P with respect to (s1, s0), ν2 is a Q-node, and G(ν3, ν4, . . . , νk) is
OSO1P with respect to (s2, sk).
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Fig. 5.9 Testing O1P at the
root node: a Root R-node; b
Root P-node

Step 2: Testing Outer-1-Planarity
After computing labels OSO1P(ν, s, t) and AOSO1P(ν, s, t) for all internal nodes
ν of the SPQR tree, we can test whether the whole graph G (i.e., the root ρ) is outer-
1-planar. We can require the root node ρ to be an R-node or a P-node.

For the root R-node, the algorithm tests the following conditions (see Fig. 5.9a):
G is outer-1-planar (O1P) if and only if

1. σ(ρ) is isomorphic to K4, and
2. at least two children of ρ are Q-nodes, and
3. for each child node ν of σ(ρ) with parent virtual edge (a, b), Gν is OSO1P with

respect to (a, b).

For the root P-node, testing O1P is simpler: G is outer-1-planar if and only if
σ(ρ) is a parallel composition of two OSO1P graphs (see Fig. 5.9b).

5.4 Straight-Line Drawing Algorithm for 1-Planar Graphs

The classicalFáry’s Theorem [13] proved that every plane graph (i.e., planar topolog-
ical embedding of a planar graph) has a planar straight-line drawing. Indeed, planar
straight-line drawing is one of themost popular drawing conventions in Graph Draw-
ing [4, 24]. For example, de Fraysseix et al. [14] showed that planar straight-line
grid drawing can be efficiently constructed in a quadratic area.

On the other hand, Thomassen [29] showed that there are two 1-plane graphs that
cannot be drawn with straight-line edges. More specifically, he proved that a 1-plane
graph G admits a straight-line 1-planar drawing if and only if G contains neither the
B graph (see Fig. 5.10a) nor the W graph (see Fig. 5.10b).

Based on Thomassen’s characterization, Hong et al. [20] presented linear time
testing and drawing algorithms, proving the following main theorem.
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Fig. 5.10 a The B graph; b
the W graph; c 1-plane
embedding of K4 containing
B subgraph

Fig. 5.11 Example of an
augmentation: a 1-plane
graph without the B graph or
the W graph; b bad
augmentation introducing B
graph; c good augmentation
not introducing B graph

Theorem 5.3 There is a linear time algorithm to test whether a 1-plane embedding
contains theBgraph or theWgraph, and a linear time drawing algorithm to construct
a straight-line 1-planar drawing if it exists.

Here, we mainly explain the drawing algorithm consisting of two steps: an aug-
mentation step and a drawing step.

Step 1: Red-Maximal Augmentation
The first step, called red-maximal augmentation, is to augment a 1-plane graph G by
adding edges without introducing new crossings while preserving the straight-line
drawability of G. Denote the crossing-free edges of a 1-plane graph G as red edges.

A red augmentation G ′ = (V, E ′) of G = (V, E) is a 1-plane graph with E ⊆ E ′
such that no edge in E ′ − E has a crossing. A 1-plane graph is red-maximal if the
addition of any edge makes a crossing. The red-maximal 1-plane graphs have nice
properties, which are helpful for the drawing algorithm.

Computing a red-maximal augmentationG+ of a 1-plane graphG, preserving the
absence of B and W subgraphs, consists of two steps: (i) the first step adds edges for
each crossing γ with a 4-cycle; (ii) the second step triangulates any remaining faces.

The first step adds edges to a 1-plane graph G without the B subgraph or the
W subgraph until each crossing γ is surrounded by a 4-cycle. Note that there are
different ways to add the edge (a, b), as shown in Fig. 5.11: Fig. 5.11b introduces
the B subgraph, while Fig. 5.11c does not.

Furthermore, theremaybemany crossing verticesγ that share the sameneighbors,
(a, b), as shown in Fig. 5.12c. Nevertheless, it is always possible to route the edge
(a, b) without introducing the B subgraph, using the orientation of crossings with
respect to (a, b): clockwise (see Fig. 5.12a) or anticlockwise (see Fig. 5.12b). For
example, in Fig. 5.12c, the edge (a, b) can be added between γ j and γ j+1 without
introducing the B graph.
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Fig. 5.12 a The crossing γ is clockwise with respect to (a, b); b γ is anticlockwise with respect to
(a, b); c (a, b) is a separation pair with many crossings: the edge (a, b) can be added between γ j
and γ j+1 without introducing the B graph

Fig. 5.13 Example of a
red-maximal augmentation:
a 1-plane embedding; b
red-maximal augmentation
of a

Based on the orientation of crossings, we can add edges to obtain an augmenta-
tion such that each crossing is surrounded by a 4-cycle, without introducing the W
subgraph and the B subgraph.

The second step is triangulating the remaining faces. Let a and b be two nonad-
jacent vertices in the 1-plane graph G ′ after the first step, sharing a face f . We can
add the edge (a, b) inside f , without crossing any edge, and without introducing the
W subgraph and the B subgraph. Figure 5.13 shows an example of a red-maximal
augmentation.

The following lemma summarizes the results of the augmentation step.

Lemma 5.3 Let G be a 1-plane graph without the B subgraph or the W subgraph.
Then there is a red-maximal augmentation G+ of G without the B subgraph or the
W subgraph, which can be computed in linear time.

Properties of Red-Maximal 1-Plane Graphs
The structure of a red-maximal 1-plane graph is relatively simple; this simplifies the
drawing algorithm. Let G+ be a red-maximal 1-plane graph that does not contain
the B subgraph or the W subgraph, and G∗ be the planarization of G+. Then G+ and
G∗ have the following properties:

• If f is an internal face of G∗ with no crossing vertex, then f is a 3-cycle.
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• If f is an internal face of G∗ with a crossing vertex, then f is either a 3-cycle,
4-cycle, or 5-cycle.

• If f is the outer face of G∗, then f has no crossing vertices.
• If f is the outer face of G∗, then f is either a 3-cycle or 4-cycle. If f is a 4-cycle,
then it induces a 4-clique with a crossing.

• If γ is a crossing between edges (a, c) and (b, d), then there is a path P of red
edges from a to b such that the cycle C in G∗ formed by the edges (a, γ ) and
(γ, b), and P contains no vertices strictly inside C .

Step 2: Drawing Algorithm
The input of the drawing algorithm is a red-maximal augmentation G+ without the
B subgraph or the W subgraph. Let Gr be the subgraph of red edges of G+. Based
on the structural properties of G+, both G+ and Gr are biconnected. Therefore,
the drawing algorithm uses the SPR tree, a simplified version of the SPQR tree [5]
without Q-nodes.

Let σ(ν) denote the skeleton of node ν in the SPR tree, which has one of the three
types: (i) S-node: σ(ν) is a simple cycle with at least three vertices; (ii) P-node: σ(ν)

consists of two vertices connected by at least three edges; (iii) R-node: σ(ν) is a
simple triconnected graph.

The algorithm uses the SPR tree of the red subgraph Gr of G+, rooted at a node
whose skeleton contains the vertices on the outer face. Let σ(ν)− denote a graph after
deleting the parent virtual edge from σ(ν). The algorithm uses a similar approach
for star-shaped drawings of planar graphs [17], however, in a simplified way due to
the nice properties of the red-maximal augmentation.

More specifically, the algorithm recursively processes each node ν in the SPR tree
in a top-down manner, from the root node to the leaf nodes, as follows:

1. Construct a convex drawing Dν of σ(ν) in a given convex polygon Pν .
2. Re-insert crossing edges in the corresponding face of Dν with straight-line edges.
3. For each child μ of ν, define a convex polygon Pμ and replace the corresponding

virtual edge in Dν with a drawing of σ(μ).

The algorithm uses a convex drawing algorithm of Chiba et al. [9] as a subroutine
for drawing R-nodes, as follows: It takes a convex polygon Pν and the plane graph
σ(ν) as input, and computes a convex drawing Dν of σ(ν). Since each face of Dν is
a convex polygon, we can re-insert the crossing edges using straight lines, without
introducing any new crossings.

In fact, the algorithm processes each node ν differently, based on its type (i.e.,
R-node, S-node, and P-node). Here, we give a brief sketch for each case.

(i) R-node: First, construct a convex drawing Dν of σ(ν) for the root R-node (respec-
tively, σ(ν)− for non-root R-node) inside a given convex polygon Pν . Next, re-insert
the crossing edges in the corresponding face in Dν as straight-line segments.

After inserting crossing edges, define a drawing region and a convex polygon Pμ

for drawing σ(μ) of each child node μ recursively. Figure 5.14 shows an example
of a root R-node.
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Fig. 5.14 Example of a root R-node ν: a G+; b Gr ; c SPR tree of Gr ; d convex drawing of σ(ν);
e re-insert crossing edges in a convex face and define a drawing area and convex polygon Pμ for
drawing σ(μ) of a child node μ; f re-insert crossing edges inside Pμ

Fig. 5.15 Example of a root S-node ν: a G+; b Gr ; c SPR tree of Gr ; d convex drawing of σ(ν);
e re-insert crossing edges in a convex face and define a drawing area and convex polygon Pμ for
drawing σ(μ) of child node μ; f re-insert crossing edges inside Pμ

(ii) S-node: If ν is a root S-node, draw σ(ν) as a triangle or a rectangle; re-insert
the crossing edges, if σ(ν) is a 4-cycle. Then define a drawing region and a convex
polygon Pμ for drawing σ(μ) of each child node μ recursively.

If ν is a non-root S-node, then we draw σ(ν)− as a path. Then, the main task is
to define a drawing area and a convex polygon Pμ for drawing σ(μ) of each child
node μ recursively. Figure 5.15 shows an example of the root S-node.
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Fig. 5.16 Defining drawing area for the children of a P-node ν: a σ(ν); b define left trapezoids for
μ1 andμ2, and right trapezoids forμ3 andμ4; re-insert crossing edges in a convex drawing of σ(μ1)

(respectively, σ(μ4)) and define a drawing area and convex polygon Pμ2 (respectively, Pμ3 ) for
drawing σ(μ2) (respectively, σ(μ3)); c re-insert crossing edges in the drawing Dμ2 (respectively,
Dμ3 )

(iii) P-node: The main task for P-node is to define a drawing area and a convex
polygon Pμ for drawing σ(μ) of each child node μ recursively. For R-node child μ,
define Pμ as either a triangle or a rhombus; for S-node child μ, define Pμ as either a
triangle or a trapezoid, based on the properties of the red-maximal augmentation.

Let vertices s and t be the separation pair of ν, and denote the virtual edges
between s and t as u1, u2, . . . , um , in left-to-right order, as in Fig. 5.16a. Denote
the corresponding children of ν as μ1, μ2, . . . , μm . Suppose that the edge e = (s, t)
occurs between uk and uk+1. The polygons Pμi must be drawn based on the order-
ing: define a left triangle (or trapezoid) for μ1, μ2, ..., μk , and a right triangle (or
trapezoid) for μk+1, μk+2, ..., μm to avoid edge crossings. See Fig. 5.16b.

First, draw σ(μ1) inside the polygon Pμ1 , and re-insert crossing edges in the
drawing Dμ1 . Then, define a drawing area for σ(μ2) with a convex polygon Pμ2 ,
such that it does not cross any edges already drawn in Dμ1 . For an example, see
Fig. 5.16b.

Next, draw σ(μ2) inside the polygon Pμ2 , and re-insert crossing edges in
the drawing Dμ2 . Repeat this process until we process σ(μk). Similarly, process
μk+1, μk+2, ..., μm symmetrically, starting from μm and working toward μk+1. See
Fig. 5.16c for an example.

When replacing each virtual edge in the convex drawing Dν ofσ(ν)with a drawing
of σ(μ), where μ is a child node of ν, we can define a convex polygon Pμ for the
boundary of σ(μ) thin enough not to create any new crossings.

The following lemma summarizes the results of the drawing step.

Lemma 5.4 Let G+ be a red-maximal 1-plane graph without the B subgraph or
the W subgraph. Then there is a linear time algorithm to construct a straight-line
1-planar drawing of G+.

Exponential Area
It was also shown that some 1-plane graphs require exponential area for any straight-
line grid 1-planar drawing. More specifically, for all k > 1, there is a 1-plane graph
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Fig. 5.17 A 1-plane graph
Gk for which every
straight-line grid 1-planar
drawing has exponential
area. Here, the case k = 6 is
shown

Gk with 2k vertices and 2k − 2 edges such that any straight-line grid (i.e., each
vertex has integer coordinates) 1-planar drawing of Gk requires at least 2k−1 area.
See Fig. 5.17 for an example, where k = 6.

5.5 Recent Progress

This chapter reviews the algorithmic results on 1-planar graphs. More specifically,
we review three linear time algorithms for testing maximal 1-planar graphs with a
given rotation system, testing outer 1-planar graphs, and drawing 1-plane graphs
with straight-line edges.

We now briefly review recent results on related topics, mainly focusing on the
algorithmic aspects.

• Testing full-outer-2-planarity:Agraph is fully-outer-2-planar if it admits an outer-
2-planar embedding (i.e., each vertex is placed on the outer boundary and no
edge has more than two crossings) such that no crossing appears along the outer
boundary.
Hong and Nagamochi [19] showed that triconnected full-outer-2-planar graphs
have a constant number of full-outer-2-planar embeddings. Based on these prop-
erties, linear time algorithms for testing full-outer-2-planarity of a connected,
biconnected, and triconnected graph were presented. The algorithms also produce
a full-outer-2-planar embedding of a graph, if it exists.

• Re-embedding 1-plane graph: Re-embedding of a 1-plane graph is to change a
given 1-planar embedding with B or W subgraph to a new 1-planar embedding
without the B subgraph or the W subgraph, by changing the rotation system or the
outer face of the given 1-planar embedding, while preserving the same set of pairs
of crossing edges.
Hong and Nagamochi [18] presented a characterization of forbidden configuration
(i.e., a given 1-plane graph can be re-embedded into a straight-line drawable 1-
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planar embedding if and only if it does not contain the configuration). Based on
the characterization, a linear time algorithm for finding a straight-line drawable
1-planar embedding or the forbidden configuration was presented.

• Straight-line drawings of almost planar graphs: The almost planar graph consists
of a planar graph plus one edge, also called graphs with 1-skewness (i.e., removal
of an edge makes the graph planar).
Eades et al. [11] presented a characterization of almost planar topological graphs
that admit a straight-line drawing. Based on the characterization, linear time algo-
rithms for testing whether an almost planar graph admits a straight-line drawing,
and for constructing such a drawing if it exists, were presented. It was also shown
that some almost planar graphs require an exponential area for any straight-line
grid drawing.

• Straight-line drawings of general embedded non-planar graphs: Nagamochi [23]
investigated the stretchability problem of a general embedded topological graph.
He showed that there is a 3-planar embedding and quasi-planar embedding that
admits no straight-line drawing, which cannot be characterized by forbidden con-
figuration.
He also considered a problem of whether a given embedded graph G admits a
straight-line drawing under the same frame, which is defined by afixed biconnected
planar spanning subgraph ofG. He presented forbidden configurations (i.e., a given
embedding admits a straight-line drawing under the same frame if and only if it
contains no forbidden configuration) for the problem.
It was shown that if a given embedding is quasi-planar (i.e., no pairwise crossing
edges) and its crossing-free edges induce a biconnected spanning subgraph, then
the stretchability can be tested using forbidden configurations in polynomial time.

For the last decades, 1-planar graphs have been extensively studied and con-
sequently many combinatorial and algorithmic questions are already solved. Many
combinatorial results are also available for k-planar graphs, including structural prop-
erties, geometric representations, as well as the relationships between various beyond
planar graphs. For details, we refer to corresponding chapters in this book.

However, many fundamental algorithmic questions on the other classes of beyond
planar graphs are remained to be solved and deserve further investigation. For details,
we refer to open problems listed in corresponding chapters in this book.
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