
Chapter 4
1-Planar Graphs

Yusuke Suzuki

Abstract Topological graph theory discusses, inmost cases, graphs embedded in the
plane (or other surfaces). For example, such plane graphs are sometimes regarded as
the simplest town maps. Now, we consider a town having some pedestrian bridges,
which cannot be realized by a plane graph. Its underlying graph can actually be
regarded as a 1-plane graph. The notion of 1-plane and 1-planar graphs was first
introduced by Ringel in connection with the problem of simultaneous coloring of
the vertices and faces of plane graphs. In particular, in contrast to planarity testing,
testing 1-planarity of a given graph is anNP-complete problem. Even though 1-planar
graphs have been widely studied recently, we still know relatively little about them.
In this chapter, we begin with formally defining 1-plane and 1-planar graphs and
mainly focus on “maximal”, “maximum,” and “optimal” 1-planar graphs, which are
relatively easy to treat. This chapter reviews some basic properties of these graphs.

4.1 Definition and Basic Results

A drawing of a graph G on the sphere S2 is a representation of G, where vertices are
distinct points in S2, and edges are Jordan arcs in the sphere joining the points corre-
sponding to their end vertices. (Note that the sphere is the one-point compactification
of the Euclidean plane. The above drawing of G on S

2 is equivalent to a drawing
of G in the plane, except that none of the faces has a special role in the sphere.) A
crossing point is a transversal intersection of two arcs on the sphere. In this chapter,
we consider only proper drawings such that edges are simple arcs without vertices of
the graph in their interiors, two arcs having an intersection always cross-transversely,
no two adjacent edges cross each other, and no more than two edges cross at a single
point.

A graph G is 1-planar if it can be drawn on the sphere S
2, so that each edge

crosses at most one other edge. The notion of 1-planar graphs was first introduced by
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Ringel [25] in connection with the problem of simultaneous coloring of the vertices
and faces of plane graphs. For aspects of 1-planar graphs that are not covered in this
chapter, refer to a recent survey [16]. Note that all graphs in this chapter are assumed
to be simple and connected unless otherwise specified. However, we sometimes
consider 1-planar (or 1-plane)multigraphs, i.e., with loops or multiple edges, in our
statements and proofs. In some cases, we still refer to "simple graphs" for clarity. By
the above definition, notice that every planar graph is 1-planar. We can also regard
the drawing as a continuous map f :G → S

2 which may not be injective, where G is
regarded as a one-dimensional topological space. In this chapter, we call the above
map f a 1-embedding ofG into the sphere. In this case, we say that the image f (G) is
a 1-plane graph; similar to the difference between “planar graph” and “plane graph”.
(Sometimes, we denote a given 1-plane graph by G, instead of f (G), to simplify
notation. Further, we sometimes call the image G (or f (G)) a 1-embedding on S2.)
An edge is crossing if it crosses another edge in a 1-plane graph G on the sphere, and
is non-crossing otherwise. In a 1-plane graph, if an edge v0v2 crosses another edge
v1v3 and has a crossing point z, then we say that the arc zvi is a half-edge of G for
each i ∈ {0, 1, 2, 3}. In the above, vi z and vi+1z are consecutive, where the indices
are taken modulo 4. Throughout the chapter, we often use the following fact in our
argument.

Proposition 4.1 Let G be a connected 1-plane multigraph on S
2. Then, each con-

nected component of S2 − G is homeomorphic to an open disk (also known as a 2-
cell). Further, for any two consecutive half-edges v0z and v1z, where v0, v1 ∈ V (G),
there exists a connected component of S2 − G having v0 and v1 on its boundary.

Proof Suppose that there is a connected component D of S2 − G not homeomorphic
to a 2-cell. Then, the boundary of D is disconnected and has components J1, . . . , Jk
with k ≥ 2, each of which is homeomorphic to a simple closed curve. It is clear that
there exists a connected component of G corresponding to Ji for i ∈ {1, . . . , k}, and
any two of them are disjoint in G. Therefore, G is disconnected, a contradiction. The
second part of the statement holds since the closed set formed by v0z ∪ v1z is on the
boundary of some connected component of S2 − G by the 1-planarity. �

A connected component D of S2 − G whose boundary contains no crossing point
is called a face of the 1-plane graph G. In other words, the boundary of a face D
of G corresponds to a closed walk consisting of only non-crossing edges of G. A
k-gonal face of G is a face of G whose boundary walk has a length of exactly k.
On the other hand, a connected component D of S2 − G whose boundary contains
a crossing point is a fake face. Note that a fake face is not a face of G vice versa.
See Fig. 4.1. It depicts a 1-embedding of a complete graph K5, or a 1-plane graph
isomorphic to K5; as a result, K5 is 1-planar. This 1-embedding has one crossing
point, four triangular faces, and four triangular fake faces.
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Fig. 4.1 1-plane graph K5

The following is the most important fact giving the upper bound of the number
of edges of 1-planar graphs; this had been proved in some papers, e.g., see [1, 24].

Proposition 4.2 Let G be a simple 1-planar graph with |V (G)| ≥ 3. Then, we have
|E(G)| ≤ 4|V (G)| − 8.

Proof Let G be a simple 1-plane graph with |V (G)| ≥ 3. We add edges to G on S2

to obtain a new 1-plane graph, admitting loops, and multiple edges, which however
has neither 1- nor 2-gonal face. The resulting multigraph G ′ is assumed to be edge
maximal with respect to the above property. By Proposition 4.1 and the maximality
of G ′, if G ′ has a pair of crossing edges v0v2 and v1v3, then there are four edges
v0v1, v1v2, v2v3, and v3v0 such that the closed walk v0v1v2v3 bounds a 2-cell that
contains no vertex and a unique crossing point. Furthermore, observe that G ′ is
connected and that every face of G ′ is triangular; if not, we can add a diagonal edge
in the face.

Let c denote the number of crossing points of G ′. Now we remove a crossing
edge from each pair of crossing edges in G ′ and denote the resulting multigraph
by G ′′; note that we have removed c edges from G ′. Clearly, G ′′ is an embedding
without crossing points and each face of G ′′ is triangular. By Euler’s formula, we
have |E(G ′′)| = 3|V (G ′′)| − 6 and |F(G ′′)| = 2|V (G ′′)| − 4. Furthermore, we have
c ≤ |F(G ′′)|/2 since each crossing point in G ′ corresponds to a pair of adjacent
triangular faces in G ′′, and all other triangular faces of G ′′ are already present in G ′.
Then we obtain the inequality in the statement as follows:

|E(G)| ≤ |E(G ′)|
= |E(G ′′)| + c

≤ |E(G ′′)| + |F(G ′′)|/2
= (3|V (G ′′)| − 6) + (|V (G ′′)| − 2)

= 4|V (G ′′)| − 8

= 4|V (G)| − 8

Therefore, the proposition follows. �

The following fact is easily obtained from Proposition 4.2.

Proposition 4.3 A complete graph K7 with seven vertices is not 1-planar.



50 Y. Suzuki

Fig. 4.2 Maximal 1-plane
graph with six vertices

Proof By Proposition 4.2, a 1-planar graph with seven vertices has at most 20 edges.
However, K7 has 21 edges. �

A 1-planar graph G is optimal if it satisfies the equality in Proposition 4.2, i.e.,
|E(G)| = 4|V (G)| − 8 holds. With the terminology defined above, a 1-embedded
optimal 1-planar graph is called an optimal 1-plane graph.

Let G be a 1-planar graph. For any nonadjacent vertices u, v ∈ V (G), if G + uv
is not 1-planar, then G is maximal. On the other hand, a 1-plane graph G is maximal
if it cannot be augmented to a larger 1-plane graph by adding an edge as an arc
to G on the sphere without introducing forbidden crossings. The reader notes the
difference between these two notions of maximality, defined for 1-planar graphs and
1-plane graphs. Note that any 1-embedding f (G) of any maximal 1-planar graph
G is maximal 1-plane, but the converse does not hold in general. Figure4.2 depicts
a maximal 1-plane graph G. However, the underlying graph of G is not maximal
1-planar since we know that K6 is 1-planar (see M(6) in Fig. 4.10).

Furthermore, a 1-planar graphG with n vertices ismaximum if |E(G)| ≥ |E(G ′)|
for any other 1-planar graph G ′ with n vertices. Clearly, every maximum 1-planar
graph is maximal. It is easy to see that every optimal 1-planar graph is maximum, but
the converse does not hold true. It was proved that there is an optimal 1-planar graph
with n vertices if and only if n = 8 or n ≥ 10 (see e.g., [3, 4, 28]). In other words,
if n is either 9 or at most 7, then any maximum 1-planar graph with n vertices is not
optimal. Especially, if n ≤ 6, then the maximum 1-planar graph is a complete graph
with n vertices (see M(3), M1(4), M2(4), M(5), and M(6) shown in Fig. 4.10).

In the remainder of this section, we present some basic properties that hold for
1-planar graphs.

Proposition 4.4 Let G be a 1-plane graph with n vertices. Then, the number of
crossing points is at most n − 2.

Proof Let c denote the number of crossing points of G. For every crossing point z
created by two edges v0v2 and v1v3, we successively add a non-crossing edge vi vi+1

so that zvi vi+1 bounds a fake face of G if such an edge does not already exist for
i ∈ {0, 1, 2, 3}, where the indices are taken modulo 4. Note that we allow creating
multiple edges in the above operation. After that, we remove all crossing edges of
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G and denote the resulting plane multigraph by G ′. Note that G ′ has neither a 1- nor
a 2-gonal face. Now we have the following equality by Euler’s formula where Fk
denotes the number of k-gonal face of G ′.

∑

k≥3

(k − 2)Fk = 2n − 4

Thus, we obtain the inequality F4 ≤ n − 2. It is clear that c ≤ F4 by our construc-
tion, and hence we have c ≤ n − 2. Thus, we got our desired conclusion. �

Proposition 4.5 Let G be a maximal 1-plane graph and let {v0v2, v1v3} be a pair
of crossing edges having a crossing point z. Then, the four edges v0v1, v1v2, v2v3
and v3v0 are present in G. Furthermore, if G is 4-connected, then zvi vi+1, for i ∈
{0, 1, 2, 3} bounds a fake face with indices taken modulo 4.

Proof There exists a connected component D of S2 − G homeomorphic to an open
disk (or a 2-cell region) whose boundary contains two half-edges v0z and v1z by
Proposition 4.1. If v0v1 /∈ E(G), then G would not be maximal since we can join
v1 and v2 by an arc passing through D, a contradiction. Similarly, we can show the
existence of the other three edges.

Next, suppose that G is 4-connected. Let D be a 2-cell region bounded by v0v1
and the half-edges v0z and v1z. Assume, to the contrary, that D contains a vertex
of G. If v0v1 is non-crossing, then {v0, v1} would become a cut set, which separates
vertices in D from the others, a contradiction. If v0v1 is a crossing edge and crosses
xy ∈ E(G) where y is located in D, then {v0, v1, x} would become a 3-cut of G,
which also separates vertices in D from the others. It contradicts the 4-connectivity
condition of G. �

Proposition 4.6 Let G be a maximal 1-plane graph. Then, every face of G is either
triangular or quadrangular. Furthermore, if G has a quadrangular face, then G
contains M1(4), shown in Fig.4.10, as a subgraph. Moreover, if G is 3-connected,
then either every face of G is triangular or G is homeomorphic to M1(4).

Proof Let f be a k-gonal face bounded by a closedwalkC = v0v1 · · · vk−1 for k ≥ 4.
If C is not a cycle, then vi = v j for some i �= j . Under the condition, it is easy to see
that vi is a cut vertex of G. Then, we can join two vertices in different components
of G − vi by an arc passing through f , preserving the simplicity. It contradicts the
maximality of G. Thus, C is a cycle.

Since G is maximal, there exist edges vi v j for all {i, j} with 0 ≤ i < j ≤ k − 1
which lie outside of f ; otherwise, one could add a new edge inside f . If k ≥ 5, there
would be an edge vi v j having at least two crossing points, contrary to the 1-planarity
of G; e.g., v0v2 must cross v1v3 and v1v4. Thus, k = 4 and the edges v0v2 and v1v3
cross outside of f . Then, G clearly contains M1(4) as a subgraph, as required. If
G is 3-connected, then G has no vertex other than those in V (M1(4)); otherwise
{vi , vi+1} would form a 2-cut for some i ∈ {0, 1, 2, 3}. Therefore, we got our desired
conclusion. �
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4.2 Connectivity

It is well known that every triangulation of the sphere is 3-connected. However, we
cannot guarantee the high connectivity of 1-planar graphs even if we assume the
maximality to those graphs. We only ensure the following.

Theorem 4.1 ([8]) Let G be a maximal 1-plane graph with |V (G)| ≥ 3. Then a
subgraph formed by all non-crossing edges is spanning and 2-connected.

By the above theorem proven by Eades et al., we can immediately obtain the
following.

Proposition 4.7 Every maximal 1-plane graph G with |V (G)| ≥ 3 is 2-connected.

The above “2” is the best possible since it is not difficult to construct a maximal
1-plane graph having a vertex of degree 2; insert a vertex of degree 2 in one of the
two triangular fake faces sharing a non-crossing edge of a 1-embedded graph shown
in Fig. 4.2.

By Proposition 4.2, the average degree of every 1-planar graph is less than 8. This
implies that any 1-planar graph has a vertex of degree at most 7. This “7” is also the
best possible since Fabrici and Madaras [9] exhibited a 7-regular 1-planar graph as
shown in Fig. 4.3.

A quadrangulation (resp., triangulation) of the sphere is a simple graph embedded
on the sphere such that each face is bounded by a 4-cycle (resp., 3-cycle). By the
argument in the proof of Proposition 4.2, the graph formed by all non-crossing edges
of an optimal 1-plane graph G forms a quadrangulation of the sphere. We call it
a quadrangular subgraph of G and denote it by Q(G) (see Fig. 4.4). On the other
hand, the following holds for crossing edges.

Proposition 4.8 Let G be an optimal 1-plane graph. Then, a subgraph of G formed
by all crossing edges is disconnected.

Fig. 4.3 7-regular 1-planar
graph
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Fig. 4.4 Optimal 1-planar graph and its quadrangular subgraph

Proof LetG be an optimal 1-plane graph. It iswell known that every quadrangulation
of the sphere is bipartite and hence Q(G) is bipartite. Thus, V (G) can be decomposed
into VB(G) ∪ VW (G) so that every non-crossing edge joins vertices in different sets
while every crossing edge joins vertices in the same set. This implies that the subgraph
of G formed by all crossing edges has two components having vertex sets VB(G)

and VW (G), respectively. Therefore, we are done. �

The following theorem gives us the clear relationship between optimal 1-plane
graphs and quadrangulations of the sphere.

Theorem 4.2 ([28]) Let H be a simple quadrangulation of the sphere. Then there
exists a simple optimal 1-plane graph G such that H = Q(G) if and only if H is
3-connected.

By the above theorem, every optimal 1-planar graph is 3-connected. (In fact, “3” is
not the best possible. See the argument below.) Further, we can see that around each
vertex of an optimal 1-plane graph, crossing edges and non-crossing edges appear
alternately. Hence, each vertex of an optimal 1-planar graph has even degree; i.e.,
every optimal 1-planar graph is Eulerian. Thus, every optimal 1-planar graph has
a vertex of degree 6 and the connectivity cannot be larger than 6. (Recall that the
average degree of 1-planar graph is smaller than 8, and that the minimum degree is
at least 6 by the simplicity.) In fact, there is an infinite series of 6-connected optimal
1-planar graph obtained as follows: At first, embed a 2k-cycle v1u1v2u2 · · · vkuk into
the sphere without crossing point and put two vertices a and b in its interior and
exterior separated by the cycle, respectively. Next, we add edges avi and bui for
i = 1, . . . , k. We call the resulting graph a pseudo double wheel and denote it by
W2k (see the left-hand side of Fig. 4.5). SinceW2 has multiple edges andW4 has two
vertices of degree 2, the smallest 3-connected pseudo-double wheel is W6, which is
nothing but a cube. We add pairs of crossing edges to all the faces of W2k(k ≥ 3),
and obtain the optimal 1-plane graph called a X-pseudo-double wheel denoted by
XW2k . See the right-hand side of Fig. 4.5. We call the vertices a and b hubs of XW2k .
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Fig. 4.5 Pseudo-double wheel and X -pseudo-double wheel

Proposition 4.9 For every k ≥ 3, XW2k is 6-connected.

Proof Let G be a X -pseudo-double wheel XW2k with hubs a and b with k ≥ 3. In
fact, G − {a, b} is a graph known as the square of the cycle of length 2k ≥ 6. In
[12], it is proven that G − {a, b} is 4-connected. Since both a and b are adjacent to
all the vertices in V (G) − {a, b} and |V (G) − {a, b}| ≥ 6, G is 6-connected. �

In fact, throughout the argument in [10, 28], the following theorem had been
proven.

Theorem 4.3 ([10, 28]) The connectivity of an optimal 1-planar graph G is either
4 or 6. If the connectivity is 4 (resp., 6), then there exists a separating 4-cycle (resp.,
6-cycle) of Q(G).

4.3 Planarization

For a given 1-plane graph G, we sometimes consider a plane graph GP called a pla-
narization of G, defined as follows. Let {a1c1, b1d1}, {a2c2, b2d2}, . . . , {akck, bkdk}
denote pairs of crossing edges of G. Roughly speaking, we regard a crossing
point formed by {aici , bidi } as a new vertex zi . Precisely, our required plane
graph GP has V (GP) = V (G) ∪ {zi |1 ≤ i ≤ k} as its vertex set and E(GP) =
E(G) ∪ {ai zi , bi zi , ci zi , di zi |1 ≤ i ≤ k} \ {aici , bidi |1 ≤ i ≤ k} as its edge set. We
call zi a false vertex of GP for 1 ≤ i ≤ k, and v ∈ V (G) ⊂ V (GP) a true vertex.
Clearly, we have degGP

(zi ) = 4, and edges ai zi , bi zi , ci zi , di zi appear in this order
around zi . The following fact is easily obtained.

Proposition 4.10 Every face of GP obtained from a simple 1-plane graph G has at
least two true vertices.
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Proof Clearly, GP is simple if G is simple. Hence, the length of any face of GP is
bounded by a closed walk of length at least three unless GP

∼= K2. If GP
∼= K2, then

such two vertices are true and hence the statement holds. Further, two false vertices
are not adjacent by our construction of GP . Thus, we are done. �

Concerning the connectivity of the planarization GP of G, the following result is
known.

Theorem 4.4 ([9]) If G is a 3-connected 1-plane graph with the minimum number
of crossings taken over all 1-embeddings f : G → S

2, then GP is 3-connected.

Before reading the following proposition, recall that a planar graph is 1-planar by
the definition of 1-planarity.

Proposition 4.11 A planarization GP of a 1-plane graph G is 5-connected if and
only if G is a 5-connected plane graph.

Proof If a 1-plane graph G has at least one crossing point, then GP has a vertex
of degree 4. In this case, GP cannot be k-connected for k ≥ 5. Thus, if GP is 5-
connected, then G has no crossing point. That is, G = GP and hence G is a 5-
connected plane graph. The converse is obvious since G = GP also holds in this
case. �

By the above fact, the connectivity of the planarization GP of a 1-plane graph
G is at most 4 if G has at least one crossing point. This raises the question of what
condition for a 1-plane graph G is sufficient to guarantee the 4-connectivity of GP?
So far, we know the following.

Theorem 4.5 ([13]) If a 1-plane graph G is 7-connected, then GP is 4-connected.

The “7” in the above theorem is the best possible. The 1-plane graph shown in
Fig. 4.6 is 6-connected. However, the planarization of the graph clearly has a 3-
vertex cut, which consists of three false vertices. Furthermore, the connectivity of a
7-regular 1-planar graph presented in Fig. 4.3 is 7.

As noted above, we can easily construct a maximal 1-plane graph G having a
vertex v of degree 2. In this case, it is easy to see that v is degree 2 also in GP .

Fig. 4.6 6-connected
1-plane graph whose
planarization has a 3-cut
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That is, “maximality” does not imply lower bounds on the connectivity. However,
for optimal 1-plane graphs, the following theorem holds.

Theorem 4.6 ([13]) The planarization of an optimal 1-plane graph is 4-connected.

Using the above result, we can easily obtain the following proposition; a proof
was previously published in [13].

Proposition 4.12 Every optimal 1-planar graph is Hamiltonian.

Proof Let G be an optimal 1-plane graph and denote the planarization of G by GP .
By Theorem 4.6, GP is 4-connected and hence GP has a Hamiltonian cycle C by
[29]. Now assume that C passes through a false vertex z corresponding to a crossing
point created by a pair of crossing edges {v0v2, v1v3}. If a 2-path vi zvi+2 is contained
in C , then we replace the 2-path by vi vi+2, which is an edge of G, where the indices
are taken modulo 4. On the other hand, if a 2-path vi zvi+1 is contained in C , we
replace it by an edge vi vi+1, which is also an edge of G by Proposition 4.5. We do
the above replacement for all false vertices contained inC , and obtain a Hamiltonian
cycle of G. �

At the end of this section, we show the following result using the notion of
planarization. The proof is based on [6].

Theorem 4.7 ([6]) A complete bipartite graph K5,4 is not 1-planar.

Proof For the sake of contradiction, suppose that K5,4 is 1-planar. Let G be a 1-
embedding of K5,4, and GP denotes its planarization. It is known that cr(K5,4) = 8
by [15], where cr(H) represents the crossing number of H . Thus, GP has at least 8
crossing points. This implies that G has at least 16 crossing edges and has at most 4
non-crossing edges.

Now, consider the following equation derived from Euler’s formula, where
degH ( f ) denotes the length of the boundary walk of a face f :

∑

v∈V (GP )

(degGP
(v) − 4) +

∑

f ∈F(GP )

(degGP
( f ) − 4) = −8.

Clearly, GP has four vertices of degree 5 and all other true and false vertices have
degree 4. Thus, we have,

∑

f ∈F(GP )

(degGP
( f ) − 4) = −12.

Since G is bipartite, G has no cycle of length 3. Thus, each triangular face has
a false vertex on its boundary. Furthermore, by Proposition 4.10, such a triangular
face is incident to a non-crossing edge. That is,GP has at most eight triangular faces.
This contradicts the above equation. �
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4.4 Edge Density

As mentioned in Sect. 4.1, every 1-planar graph with n vertices has at most 4n − 8
edges. In this section, we evaluate the number of edges of those graphs under various
additional constraints.

LetM(G , n) andm(G , n)denote themaximumand theminimumnumber of edges
taken over all graphs with n vertices in a graph class G , respectively. For example, it
is well known that M(T , n) = m(T , n) = 3n − 6 for the family of maximal planar
graphsT assuming n ≥ 3; and such graphs are known as triangulations of the sphere.
However, we know that M(P, n) �= m(P, n) (resp., M(P ′, n) �= m(P ′, n)) in
general where P (resp., P ′) denotes the family of maximal 1-planar (resp., 1-
plane) graphs. In fact, M(P, n) = M(P ′, n) represents the number of edges of a
maximum 1-planar graph with n vertices by our definition. That is, in most cases
(n = 8 and n ≥ 10), the above value equals to 4n − 8, which is the number of edges
of an optimal 1-planar graphwith n vertices. Furthermore,we haveM(P, n) = (n

2

)
if

n ≤ 6, whose underlying graph is a complete graph Kn . In the remaining cases (i.e.,
n ∈ {7, 9}), we have M(P, n) = 4n − 9. (See Sect. 4.6. Maximum 1-plane graps
with 3 ≤ n ≤ 7 vertices which are not optimal are exhibited.)

As we have seen, m(P, n) and m(P ′, n) are more interesting values to discuss.
Here, observe that m(P, n) ≥ m(P ′, n) for every n by the definitions. At first, we
introduce the results concerning m(P ′, n). Eades et al. [8] proved that 9n

5 − 18
5 ≤

m(P ′, n) ≤ 7n
3 − 2, and Brandenburg et al. [5] improved the above lower bound to

21n
10 − 10

3 . Further in [5], they construct maximal 1-plane graphs having 7n
3 − 3 edges

for any large n. In [5], it was also proved that m(P, n) ≥ 28n
13 − 10

3 and that there
exist maximal 1-planar graphs having 45n

17 − 84
17 edges for any large n. Very recently,

both lower bounds were improved to 20n
9 − 10

3 by Barát and Tóth [2].
Next, we introduce some results for multipartite graphs. Karpov [14] proved that

every bipartite 1-planar graph has at most 3n − 8 edges for even n �= 6 and at most
3n − 9 for odd n and for n = 6. For tripartite 1-planar graphs, we show the following
result here.

Theorem 4.8 Every tripartite 1-planar graph with n vertices has at most 7
2n − 7

edges.

Proof LetG be a tripartite 1-plane graphwith n vertices, and let c denote the number
of crossing points of G. For any pair of crossing edges {v0v2, v1v3} of G, we perform
the following operation. Observe that there exists a pair of vertices {vi , vi+1}, say
{v0, v1} without loss of generality, such that v0 and v1 belong to the same partite set.
We remove an edge v0v2 from G, and add an edge v0v1 so that v0v1v3 forms a corner
of a face or a fake face (see Fig. 4.7). Now denote the resulting multigraph by G ′.
Note that G ′ is probably not tripartite. If there exists a pair of multiple edges forming
a 2-gonal face of G ′, then such edges come from left and right pairs of crossing
edges of G; note that such edges do not exist in G since each of them joins vertices
in the same partite set (see Fig. 4.7 again). Therefore, G ′ has at most c

2 such pairs
of multiple edges. We remove an edge from every pair of multiple edges forming a
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Fig. 4.7 Operation in the proof of Theorem 4.8

Fig. 4.8 Tripartite 1-plane
graph with 7

2n − 7 edges

2-gonal face of G ′, and obtain a plane multigraph G ′′. Combining with the result in
Proposition 4.4, we obtain the following:

|E(G)| = |E(G ′)|
≤ |E(G ′′)| + c

2

≤ 3n − 6 + n − 2

2

= 7

2
n − 7.

Therefore, the theorem follows. �

The upper bound in the above theorem is sharp. In fact, the graph depicted in
Fig. 4.8 has 4k + 2 (k ≥ 2) vertices and 14k edges. Furthermore, observe that there
exist infinitely many 4-colorable optimal 1-planar graphs (see [21]). This implies
that the upper bound of the number of edges for 4-partite 1-planar graphs with n
vertices cannot be less than 4n − 8 if n ≥ 8 and n �= 9.
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4.5 Minors and Subgraphs

For terminology around miniors of graphs, refer to a general text of graph theory,
e.g., [7]. It is well known that a graph G is planar if and only if it contains neither
K5 nor K3,3 as a minor. However, 1-planarity cannot be characterized in terms of
forbidden minors. In contrast to planar graphs, it is easy to see that every graph is a
minor of a 1-planar graph; see [11]. We prove the following stronger result.

Theorem 4.9 ([27]) For every graph H, there is an optimal 1-planar graph having
a topological minor of H.

Proof We draw a given graph H on the sphere as a proper drawing. Let z be a
crossing point of v0v1, v2v3 ∈ E(H). We delete v0v2 and v1v3 from H on the sphere,
and add vertices ui and edges uivi and uiui+1 for i ∈ {0, 1, 2, 3} where the indices
are taken modulo 4. By Proposition 4.1, we may assume that the above-added edges
are all non-crossing such that u0u1u2u3 bounds a quadrangular face.We successively
apply the above operation for each crossing point of H and denote the resulting plane
graph by H ′ (see the center of Fig. 4.9).

Now,we subdivide edges of H ′ if necessary, other than those of the 4-cycles around
the crossing points above so that the resulting graph becomes bipartite. Furthermore,
we add edges so that the resulting graph H ′′ is a simple quadrangulation of the
sphere. (Note that we can add a diagonal edge to any 2l-gonal face (l ≥ 3) in the
bipartite graph preserving the simplicity by the planarity. See the right-hand side of
Fig. 4.9.) If H ′′ is 3-connected, then there exists an optimal 1-plane graph G with
Q(G) = H ′′ by Theorem 4.2 and then G clearly has a topological minor of H . If
H ′′ is not 3-connected, then we apply the following operation to H ′′. For every face
f of H ′′ bounded by a0a1a2a3, we put a 4-cycle b0b1b2b3 and edges joining ai and
bi into f for each i ∈ {0, 1, 2, 3}; all such edges are assumed to be non-crossing.
Then, the resulting quadrangulation becomes 3-connected and the theorem follows,
by the same argument as above. �

For theminors of complete graphs in optimal 1-planar graphs, we can easily obtain
the following fact since Mader [19] proved that a graph with n vertices and at least
4n − 9 edges has a K6-minor.

Fig. 4.9 Configurations in the proof of Theorem 4.9
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Proposition 4.13 Every optimal 1-planar graph has a K6-minor.

Furthermore, Suzuki proved the following theorem for K7-minors in optimal 1-
planar graphs where XW+

8 is the unique optimal 1-planar graph that can be obtained
from XW8 by a specific operation.

Theorem 4.10 ([27])A 6-connected optimal 1-planar graphG contains a K7-minor
if and only if G is isomorphic to neither XW2k (k ≥ 3) nor XW+

8 .

In fact, the characterization for general optimal 1-planar graphs without the con-
nectivity condition to have a K7-minor is given in the same paper. However, we do
not describe it here since it would require several additional conditions.

On the other hand, if G is 1-planar, then any subgraph of G is also 1-planar; in
other words, 1-planarity is closed under taking subgraphs. A graph G is aMN-graph
if G is not 1-planar but for any edge e of G, G − e is 1-planar. For example, Korzhic
[17] proved that K7 − E(K3) is the unique MN-graph with seven vertices. It easily
follows from the above fact that any graph obtained from K7 by deleting any two
nonadjacent edges is 1-planar. Furthermore, it had been proven in [17, 18] that there
are infinitely many MN-graphs with a minimum degree of at least 3.

However, if graphs are restricted to complete multipartite graphs, their 1-planarity
is completely determined as follows.

Theorem 4.11 ([6]) Let G be a complete k-partite 1-planar graph with k ≥ 2. Then,
G is isomorphic to a graph in Table4.1:

In Table4.1, a − b (resp., a−) represents {i ∈ Z|a ≤ i ≤ b} (resp., {i ∈ Z|a ≤
i}). For example, K2−3,2,1,1 stands for two graphs K2,2,1,1 and K3,2,1,1. Furthermore,
note that K1,1,1,1,1,1 is equal to K6. As we have already seen, any complete 7-partite
graph G is not 1-planar since G contains K7 as its subgraph.

For example, we can see that K5,4 is not 1-planar; this fact can also be found
as Theorem 4.7 in Sect. 4.3. Furthermore, we also see that K4,3,2 is not 1-planar.
However, this is clear since K4,3,2 contains K5,4 as its subgraph. In addition, K4,3,2

has 26 edges and it cannot be 1-planar by Theorem 4.8.

Table 4.1 1-Planar complete
multipartite graphs

k 1-planar complete k-partite graph

2 K1−,1; K2−,2; K3−6,3; K4,4

3 K1−,1,1; K2−6,2,1; K2−4,2,2; K3,3,1

4 K1−6,1,1,1; K2−3,2,1,1; K2,2,2,1−2

5 K1−2,1,1,1,1; K2,2,1,1,1

6 K1,1,1,1,1,1
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4.6 Re-embeddings of 1-Planar Graphs

Let G be a 1-planar graph. For the precise definition below, assume that every edge
e = uv ofG has amiddle point p ∈ e − {u, v} such that p corresponds to the crossing
point if e is crossing in a 1-embedding. Two 1-embeddings f1, f2 :G → S

2 are
equivalent to each other if there exists a homeomorphism h :S2 → S

2 such that
h f1 = f2. If not, they are inequivalent. If there is exactly one equivalence class of
1-embeddings of G, we say that G is uniquely 1-embeddable into the sphere, up to
equivalence.

For two 1-embeddings f1 and f2 ofG, if there exists an automorphism σ :G → G
and a homeomorphism h :S2 → S

2 such that h f1 = f2σ , they are weakly equivalent
to each other. Roughly speaking, they have the same picture when we ignore the
labeling of vertices.

In this section, we especially discuss “re-embeddability” of maximum 1-planar
graphs. The notion of “re-embeddability” of optimal 1-planar graphs was first given
by Schumacher [26], who proved that if G is a 5-connected optimal 1-planar graph
other than XW2k(k ≥ 3), then G is uniquely 1-embeddable into the sphere, up to
equivalence. In fact, the 5-connectivity condition is unnecessary in the above result,
and Suzuki proved the following theorem.

Theorem 4.12 ([28]) Let G be an optimal 1-planar graph other than XW2k(k ≥ 3).
Then G is uniquely 1-embeddable into the sphere, up to equivalence.

In fact, XW2k(k ≥ 4) has only two 1-embeddings as follows. See the right-hand
side of Fig. 4.5 again, and exchange the labels a and b in the figure. Then we obtain
another 1-plane graph; e.g., av1 is non-crossing in the original 1-plane graph while
it is crossing in the latter one. Note that the underlying graph of the resulting 1-plane
graph is isomorphic to XW2k . That is, the two 1-embeddings of XW2k are inequivalent.

For k = 3, XW6 has exactly eight inequivalent 1-embeddings. In fact, XW6 is
isomorphic to K2,2,2,2, and is obtained from a cube H by adding a pair of crossing
edges to each face of H ; thus, XW6 has the rich symmetry. Furthermore, it is easy to
see that all the inequivalent 1-embeddings of XW6 are given by the same picture as
the above example XW8. Therefore, it follows that every optimal 1-planar graph is
uniquely 1-embeddable into the sphere, up to weak equivalence.

The notion of the above re-embeddings of optimal 1-planar graphs is applied to
the construction of maximal 1-planar graphs having small number of edges, which
is discussed in Sect. 4.4. Let G be an optimal 1-planar graph with n vertices that
is not isomorphic to XW2k(k ≥ 3). Let e = uv be a non-crossing edge of G. Then,
we add a new vertex of degree 2 to G adjacent to u and v. For each non-crossing
edge of G, we do the same operation, and denote the resulting graph by G ′. It
is easy to check that G ′ is maximal 1-planar since G is uniquely 1-embeddable
into the sphere by Theorem 4.12. Now, G ′ has n′ = n + (2n − 4) = 3n − 4 vertices
and (4n − 8) + 2(2n − 4) = 8n − 16 edges. Consequently, G ′ has n′ vertices and
8
3n

′ − 16
3 edges. However, the above coefficient is not better than that presented in

[5] with a different construction, which was mentioned in Sect. 4.4.
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Fig. 4.10 Maximum 1-planar graphs which are not optimal with n ≤ 7

Next, we consider maximum 1-planar graphs other than optimal 1-planar ones.
In fact, the maximum 1-planar graphs that are not optimal in the unlabeled sense are
determined as follows.

Theorem 4.13 ([28]) Let G be a maximum 1-planar graph with n ≥ 3 vertices that
is not optimal. Then a 1-embedding of G in the sphere is equivalent to one of M(3),
M1(4), M2(4), M(5), M(6), M(7) and Ml(9)(l = 1, . . . , 6), up to weak equivalence.

The 1-plane graphs in the above theorem denoted by M(3), M1(4), M2(4), M(5),
M(6) and M(7) can be found in Fig. 4.10. (The reader should refer to [28] for
Ml(9)(l = 1, . . . , 6).) Note that the underlying graph of both M1(4) and M2(4) is
isomorphic to K4. That is, K4 has two inequivalent 1-embeddings, up to weak equiv-
alence. Actually, it has been proven in [28] that K4 is the unique maximum 1-planar
graph having such a property; additionally, recall the result of optimal 1-planar graphs
discussed above.

Let f :G → S
2 be a 1-embedding of a graphG into the sphere. An automorphism

σ :G → G of G is called a symmetry of f if there is a homeomorphism h :S2 → S
2

such that h f = f σ . The symmetry group of f is defined as the set of all symmetries
of f and is denoted by sym( f ) or by sym( f (G)). Then sym( f ) is a subgroup of
aut(G), i.e., an automorphism group of G, possibly not normal.

Let G be a 1-planar graph and f be its 1-embedding. We denote a set of 1-
embeddings that are weakly equivalent to G by emb( f ) or by emb( f (G)); emb( f )
should be a quotient set by the equivalence of 1-embeddings. Then, the follow-
ing relation is well known: |emb( f )| = |aut(G)|/|sym( f )|. Let Emb(G) denote
the quotient set of G’s 1-embeddings by the equivalence. If G admits precisely
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Table 4.2 The number of 1-embeddings of maximum 1-planar graphs

f (G) |aut(G)| |sym( f )| |emb( f )|
M(3) ∼= K3 6 6 1

M1(4) ∼= K4 24 24 1

M2(4) ∼= K4 24 8 3

M(5) ∼= K5 120 8 15

M(6) ∼= K6 720 12 60

M(7) ∼= C3 + C4 48 4 12

M1(9) 4 2 2

M2(9) 4 2 2

M3(9) 4 2 2

M4(9) 432 12 36

M5(9) 2 2 1

M6(9) 1 1 1

k inequivalent 1-embeddings f1, . . . , fk , up to weak equivalence, then we have that
Emb(G) = emb( f1) ∪ · · · ∪ emb( fk).

Table4.2 presents the numbers of 1-embeddings ofmaximum1-planar graphs (see
the rightmost column). In the table, ifG is not isomorphic to K4, we have Emb(G) =
emb( f ) for some f , as mentioned above. For example, the 1-embedding M(6) of
K6 attains the maximum value |emb(M(6))| = 60, which comes from |aut(K6)| =
6! = 720 and |sym(M(6))| = 12. If G ∼= K4, we have Emb(G) = emb(M1(4)) ∪
emb(M2(4)), and hence |Emb(K4)| = |emb(M1(4))| + |emb(M2(4))| = 1 + 3 = 4.

In [18], the notion of a PN-graph, defined as a 3-connected planar graph having
no 1-embeddings into the sphere with at least one crossing point was introduced. It is
well known that every 3-connected planar graph can be uniquely embedded into the
sphere (without crossing points). That is, any PN-graph has the unique 1-embedding
into the sphere. Note that, in most cases, the unique 1-embedding of a PN-graph is
not maximal, and used for constructing 1-planar graphs with our desired property
by adding edges; e.g., 3-connected maximal 1-planar graphs having small number
of edges (see [13]).

4.7 Difference from Optimal 1-Planar Graphs

For every plane graphG, we can obtain a maximal plane graph by adding edges toG.
Recall that such a maximal plane graph is a triangulation of the sphere. However, as
we mentioned above, a maximal 1-plane graph is not necessarily optimal. Observe
that maximum 1-plane graphs that are not optimal (listed in Theorem 4.13) are such
examples. Furthermore, it is easy to see that a 1-plane graph having the subgraph
shown inFig. 4.11 clearly cannot be augmented to an optimal 1-plane graph by adding
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Fig. 4.11 1-plane graph
which cannot be augmented
to an optimal one

edges to it; note that we deal with only simple graphs in this chapter. Moreover, a
1-plane graph with minimum degree at least 7, e.g., the 7-regular graph shown in
Fig. 4.3, cannot be augmented to anoptimal 1-plane graph, either; it is an easy exercise
for the readers.

We define the following family of graphs to relax the condition. A 1-plane graph
G is near optimal, if (i) any face of a subgraph H of G formed by all non-crossing
edges is either triangular or quadrangular (i.e., H is known as a mosaic), (ii) any
quadrangular face bounded by v0v1v2v3 of H contains the unique crossing point
created by a pair of crossing edges {v0v2, v1v3}, and (iii) no two triangular faces of
G share any edge. For example, it is easy to check that M(6) ∼= K6 and M(7) in
Fig. 4.10 are near optimal. Furthermore, the 7-regular graph depicted in Fig. 4.3 is
also near optimal. It is clear that every optimal 1-plane graph is near optimal, and
hence this notion can be regarded as a generalization of optimal 1-planar graphs.
Note that any near optimal 1-plane graph has an even number of triangular faces; by
applying the Handshake lemma to the dual of the mosaic H .

Proposition 4.14 Every near optimal 1-plane graph with n vertices has at least
18
5 n − 36

5 edges.

Proof Let G be a near optimal 1-plane graph with n vertices. Denote the subgraph
of G formed by all non-crossing edges by H . By the above definition (i), H is a
plane graph having only triangular and quadrangular faces. Let F3 and F4 denote
the numbers of triangular and quadrangular faces of H , respectively; thus, we have
|F(H)| = F3 + F4 where F(H) is the set of faces of H . Further, note that 3F3 +
4F4 = 2|E(H)|, and that 3F3 ≤ 4F4 by property (iii). Then, we have the following
by substituting these into Euler’s formula:

2|V (H)| − (3F3 + 4F4) + 2(F3 + F4) = 4

2|V (H)| − 4 = F3 + 2F4

6|V (H)| − 12 ≤ 4F4 + 6F4

3

5
|V (H)| − 6

5
≤ F4..

Clearly, we have |E(G)| = 3|V (G)| − 6 + F4 and hence the inequality in the
statement follows; observe that |V (G)| = |V (H)|. �

The lower bound in Proposition 4.14 is sharp. See Fig. 4.12. The graph depicted
in the figure is the smallest one attaining the lower bound in the proposition; in the
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Fig. 4.12 Near-optimal
1-plane graph with 12
vertices

graph, no two fake faces share a non-crossing edge of G. In fact, we can construct
an infinite sequence of graphs attaining the lower bound. (The reader should try to
construct such an infinite series of graphs.) Observe that if F3 = 0 in the above proof,
then G is optimal and has 4n − 8 edges.

Proposition 4.15 Every 5-connected maximal 1-plane graph G is near optimal.

Proof Let G be a 5-connected maximal 1-plane graph. By Proposition 4.5, each
crossing point of G lies in a quadrangular face of the subgraph of G formed by all
non-crossing edges. Since G is not isomorphic to K4, any face of G is triangular by
Proposition 4.6.

Assume, to the contrary, that G has two triangular faces v0v1v2 and v1v2v3 sharing
v1v2. Since G is a maximal 1-plane graph, there exists an edge joining v0 and v3.
If v0v3 is non-crossing, then G would have a separating 3-cycle C = v0v1v3 which
consists of only non-crossing edges; otherwise, C bounds a face of G and v1 would
have degree 3, contrary to G being 5-connected.

If v0v3 is crossing, it crosses another edge u1u2. By Proposition 4.5 again, there
exists non-crossing edges v0u1, u1v3, v3u2 and u2v0. Here, observe that we have
{v1, v2} ∩ {u1, u2} = ∅; otherwise,G would have a vertex of degree 4, which is either
v1 or v2. Under the situation, either v0v1v3u1 or v0v1v3u2 is separating, contrary to G
being 5-connected. Therefore, the statement holds. �

Note that Proposition 4.15 implies that every 5-connected 1-plane graph G can
be augmented to a near-optimal 1-plane graph by adding edges to G. In the above
proposition, the 5-connectivity condition is necessary since the unique 1-embedding
M(5) of K5 is not near-optimal.

To obtain an optimal 1-plane graph, we actually need stronger conditions; e.g.,
the 5-connectivity condition is not sufficient since M(6) in Fig. 4.10, which is the
unique embedding of K6 up to weak equivalence is maximum; and hence maximal
but not optimal. However, we know some graph classes having our desired property.
First, it is easy to see that every 3-connected quadrangulation can be augmented
to an optimal 1-plane graph by adding pairs of crossing edges by Theorem 4.2.
Furthermore, Noguchi and Suzuki proved the following theorem.
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Theorem 4.14 ([23])Every triangulation T of the sphere contains a spanning quad-
rangulation as a subgraph. Furthermore, if T is 5-connected, then every spanning
quadrangulation subgraph of T is 3-connected.

The lower bound 5 on the connectivity of T in Theorem 4.14 is the best possible;
i.e., there exist infinitely many 4-connected triangulations of the sphere that do not
have the property. As a corollary of the above theorem, it follows that every 5-
connected triangulation T of the sphere can be augmented to an optimal 1-plane
graph by adding edges to T . Moreover, Noguchi and Suzuki proved the following
theorem.

Theorem 4.15 ([23]) Let Q be a quadrangulation of the sphere with |V (Q)| ≥ 6.
Then Q can be augmented to a 4-connected triangulation of the sphere by adding a
diagonal edge in every face of Q.

Using the above result, we can easily prove the following proposition, which was
also shown in [23].

Proposition 4.16 Let G be an optimal 1-plane graph. Then G contains a spanning
4-connected triangulation as a subgraph.

Proof By Theorem 4.2, G has a 3-connected quadrangulation Q as its subgraph.
Since the cube having 8 vertices is the smallest 3-connected quadrangulation of the
sphere, Q satisfies the condition of Theorem 4.15. Thus, we can choose one diagonal
edge from each pair of crossing edges in the face of Q, so that the resulting graph
becomes a 4-connected triangulation. Thus, we got a conclusion. �

The “4” in the above proposition is clearly the best possible; recall that there are
optimal 1-planar graphs with connectivity 4. By the above proposition, we can prove
Proposition 4.12 in Sect. 4.3 more easily by using the result [29] again.

4.8 Open Problems

At the end of this chapter, we show some open problems concerning the topics dealt
in the chapter.

1. Is every 6-connected (or 7-connected) 1-planar graph Hamiltonian? In fact,
Noguchi [22] constructed a infinite sequence of non-Hamiltonian 5-connected
1-planar graphs.

2. Improve the bounds for the number of edges in maximal 1-planar or 1-plane
graphs, mentioned in Sect. 4.4.

3. Characterize optimal 1-planar graphs havingno Kn-minor forn ≥ 8. Furthermore,
characterize optimal 1-planar multigraphs having no Kn-minor for n ≥ 5.
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4. Is every 7-connected 1-planar graph uniquely 1-embeddable into the sphere? If
this is true, then “7” is the best possible since every X -pseudo doublewheel, which
is 6-connected by Proposition 4.9, has at least two inequivalent 1-embeddings,
up to equivalence.

5. Is the underlying graph of every near-optimal 1-plane graph is maximal 1-planar?
6. Extend the problems in this chapter for 1-embeddings on non-spherical closed

surfaces. In [20], it was shown that there is a one-to-one correspondence between
simple optimal 1-embeddings of a non-spherical closed surfaceF2 and polyhedral
quadrangulations of F2, i.e., 3-connected and 3-representative quadrangulations
of F2. However, little is known about general 1-embeddings on non-spherical
surfaces.
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