
Chapter 10
Angular Resolutions: Around Vertices
and Crossings

Yoshio Okamoto

Abstract Angular resolution is one of the well-known esthetic criteria for graph
drawing, but its theoretical properties are not well understood. For a straight-line
drawing of a graph, its vertex angular resolution is the minimum angle formed
by two consecutive edges around a vertex, and its crossing angular resolution is
the minimum angle formed by a crossing, while the crossing angular resolution is
defined to be 2π if there is no crossing. The total angular resolution of a straight-line
drawing is the minimum of the vertex angular resolution and the crossing angular
resolution. The vertex/crossing/total angular resolution of a graph is the supremumof
the vertex/crossing/total angular resolution of any straight-line drawing of the graph.
In this chapter, we review some of the results on angular resolution in the literature,
and identify several open problems in the field.

10.1 Introduction

This chapter is concerned with straight-line drawings of undirected graphs, in which
each edge is drawn as a straight-line segment joining two points that represent ver-
tices.

Angular resolution is one of the well-known esthetic criteria for graph drawing,
but its theoretical properties are not well understood. For a straight-line drawing of
a graph, its vertex angular resolution is the minimum angle formed by two con-
secutive edges around a vertex, and its crossing angular resolution is the minimum
angle formed by a crossing, while the crossing angular resolution is defined to be
2π if there is no crossing. The total angular resolution of a straight-line drawing is
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the minimum of the vertex angular resolution and the crossing angular resolution.
The vertex/crossing/total angular resolution of a graph is the supremum of the ver-
tex/crossing/total angular resolution of any straight-line drawing of the graph. In this
chapter, we review some of the results on angular resolution in the literature, and
identify several open problems in the field.

This chapter is organized as follows. In Sect. 10.2, we introduce the necessary
notation and look at a few examples. Section 10.3 is devoted to vertex angular res-
olution, where we will see two techniques to produce drawings with large vertex
angular resolutions. The first one is to use a proper vertex coloring of the square
of a graph, and the second one is to use a fixed set of slopes. In Sect. 10.4, we turn
our attention to crossing angular resolution. There, we will see the relationship of
crossing angular resolution with right-angle crossing graphs (or RAC graphs). In
Sect. 10.5, we focus on total angular resolution, and, in Sect. 10.6, we conclude the
chapter.

As is often the case, my view of the field is biased, and I do not even try to be
comprehensive. Nevertheless, I hope this chapter still gives an introduction to the
study of angular resolutions of graph drawing for interested readers.

10.2 Definitions and Examples

Let D be a straight-line drawing of an undirected graph G. In this chapter, we do
not allow a vertex is placed on the relative interior of an edge, but we allow three
or more edges to cross at the same point. For a vertex v in the drawing, its angular
resolution is defined as the minimum angle formed by two edges incident to v. If the
degree of v is zero, the resolution is defined to be ∞, and if the degree of v is one,
the resolution is defined to be 2π . The vertex angular resolution of the drawing D
is the minimum resolution over all vertices of D and denoted by var(D).

For a crossing in D, its angular resolution is defined as theminimum angle formed
by two edges passing through the crossing. The crossing angular resolution of the
drawing D is theminimum resolution over all crossings of D and denoted by car(D).
If D has no crossing, then the crossing angular resolution is defined to be 2π .

The total angular resolution of the drawing D is the minimum of the vertex
angular resolution and the crossing angular resolution, and denoted by tar(D).

The vertex angular resolution of a graph G is the supremum of the vertex angular
resolutions of all straight-line drawings of G, and denoted by var(G). Similarly, the
crossing angular resolution of a graph G is the supremum of the crossing angular
resolutions of all straight-line drawings of G, and denoted by car(G). The total
angular resolution of a graph G is the supremum of the total angular resolutions of
all straight-line drawings of G, and denoted by tar(G).

We note that vertex (crossing, total) angular resolution is also called vertex (cross-
ing, total) angle resolution in the literature, respectively.

Now, we will see a couple of examples. Consider K4, a complete graph with
four vertices. Refer to Fig. 10.1. In the left drawing of Fig. 10.1, the vertex angular
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Fig. 10.1 Angular resolutions of K4, a complete graph with four vertices. In the left drawing, the
vertex angular resolution is π/6, the crossing angular resolution is 2π , and thus the total angular
resolution is π/6. In the right drawing, the vertex angular resolution is π/4, the crossing angular
resolution is π/2, and thus the total angular resolution is π/4

Fig. 10.2 Angular resolutions of Q3, a three-dimensional cube. In the left drawing, the vertex
angular resolution is π/4, the crossing angular resolution is 2π , and thus the total angular resolution
isπ/4. In themiddle drawing, the vertex angular resolution isπ/4, the crossing angular resolution is
π/2, and thus the total angular resolution is π/4. In the right drawing, the vertex angular resolution
is π/3, the crossing angular resolution is π/3, and thus the total angular resolution is π/3

resolution is π/6, the crossing angular resolution is 2π , and thus the total angular
resolution is π/6. On the other hand, in the right drawing of Fig. 10.1, the vertex
angular resolution is π/4, the crossing angular resolution is π/2, and thus the total
angular resolution isπ/4.A lesson learned is that introducing a crossingmay increase
the total angular resolution of the drawing. It turns out that the total angular resolution
of K4 is π/4. A proof will be given in Sect. 10.5.

Next, consider a three-dimensional cube Q3. It has 8 vertices and 12 edges. Refer
to Fig. 10.2. In the left drawing, the vertex angular resolution is π/4, the crossing
angular resolution is 2π , and thus the total angular resolution is π/4. In the middle
drawing, the vertex angular resolution is π/4, the crossing angular resolution is π/2,
and thus the total angular resolution is π/4. In the right drawing, the vertex angular
resolution is π/3, the crossing angular resolution is π/3, and thus the total angular
resolution is π/3. It turns out that the total angular resolution of Q3 is π/3. A proof
will be given in Sect. 10.5.

Next, consider the Petersen graph. Refer to Fig. 10.3. In the left drawing, the vertex
angular resolution is π/5, the crossing angular resolution is 2π/5, and thus the total
angular resolution is π/5. In the middle drawing, the vertex angular resolution is
π/6, the crossing angular resolution is π/3, and thus the total angular resolution is
π/6. In the right drawing, the vertex angular resolution is π/3, the crossing angular
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Fig. 10.3 Angular resolutions of the Petersen graph. In the left drawing, the vertex angular reso-
lution is π/5, the crossing angular resolution is 2π/5, and thus the total angular resolution is π/5.
In the middle drawing, the vertex angular resolution is π/6, the crossing angular resolution is π/3,
and thus the total angular resolution is π/6. In the right drawing, the vertex angular resolution is
π/3, the crossing angular resolution is π/3, and thus the total angular resolution is π/3

Fig. 10.4 An example in which the vertex angular resolution is never attained [13]. The vertex
angular resolution of the drawing is π/3 − ε, where ε > 0 depends on the small gap between two
vertices at the bottom

resolution isπ/3, and thus the total angular resolution isπ/3. It turns out that the total
angular resolution of the Petersen graph is π/3. A proof will be given in Sect. 10.5.

One may wonder why the definitions of angular resolutions of a graph use “supre-
mum” rather than “maximum.” This is because the maximum is not necessarily
attained. Refer to Fig. 10.4. The vertex angular resolution of the drawing is π/3 − ε,
where ε depends on the small gap between two vertices at the bottom. This gap can-
not be zero, as otherwise the drawing is degenerated (i.e., the map from the vertex
set to the plane is not injective). Thus, the vertex angular resolution of this graph is
π/3, which is never attained.

10.3 Vertex Angular Resolution

Vertex angular resolutionwas first investigated by Formann,Hagerup, Haralambides,
Kaufmann, Leighton, Simvonis, Welzl, and Woeginger [13], but under the name of
“resolution.” As observed by them, the following easy upper bound for the vertex
angular resolution can be obtained. Namely, for every undirected graph G with at
least one edge, var(G) ≤ 2π/Δ(G), whereΔ(G) is the maximum degree of G. This
is because a vertex v of maximum degree is incident to Δ(G) edges and those Δ(G)

edges partition the degree of 2π . In other words, we have
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Fig. 10.5 Proof of var(G) = Ω(1/Δ(G)2) by Formann et al. [13]. The left figure shows a given
graph G, and the middle figure is the square G2, together with a proper 5-coloring. The right figure
shows how to place the vertices of G around the corner of a regular pentagon

var(G) = O(1/Δ(G)) (10.1)

for every undirected graph G.
As a general lower bound for the vertex angular resolution, Formann et al. [13]

proved that
var(G) = Ω(1/Δ(G)2) (10.2)

for every undirected graph G. This implies that the vertex angular resolution of a
bounded-degree graph is constant (i.e., does not depend on the number of vertices).
Since their argument is nice and short, we reproduce the proof here. In the proof, we
explicitly create a straight-line drawing D of G such that var(D) = Ω(1/Δ(G)2).

The idea is to use a proper vertex coloring of the square G2. The square G2 of a
graph G is defined as follows. The vertex set of G2 is the same as that of G, and two
vertices u and v are adjacent in G2 if and only if they are within a distance of two in
G.

The construction goes as follows. Refer to Fig. 10.5. First, we find a proper
vertex coloring of the square G2. It is a basic fact that the greedy algorithm
always finds a proper vertex coloring with Δ(H) + 1 colors for every undirected
graph H .1 Therefore, the vertices of the square G2 can be properly colored with
Δ(G2) + 1 = O(Δ(G)2) colors. Let χ = O(Δ(G)2) be the number of colors used
in this coloring. Then, consider a regular χ -gon, and associate each of the χ colors
with a corner of the χ -gon. For every vertex v of the graph, we place v around the
corner of the χ -gon associated with the color of v. We draw every edge as it runs
in G. This completes the construction. Note that the construction can be done in
quadratic time.

We can observe that the vertex angular resolution of the constructed drawing is
Ω(1/χ) as follows. Let v be a vertex of G, and u1, u2 be two neighbors of v. By the
construction of G2, in a proper vertex coloring of G2, the three vertices v, u1, and

1This can be seen as follows. We will color the vertices of H with colors in {1, 2, . . . , Δ(H) + 1}.
When we color a vertex v, the number of vertices that have already been colored is at most the
degree of v, which is at most Δ(H). Thus, there is still a color that remains unused and this color
can be used for v.
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Fig. 10.6 The drawing of a d-dimensional cube proposed by Formann et al. [13], when d = 4

u2 receive different colors. Therefore, the angle formed by two edges u1v and u2v
in the constructed drawing is at least π/χ approximately, which is Ω(1/χ). Since
χ = O(Δ(G)2), this gives a straight-line drawing D with var(D) = Ω(1/Δ(G)2).

This coloring argument was used to show that var(G) = Ω(1/Δ(G)) for every
planar graph G. This is true because G2 has a proper vertex coloring with O(Δ(G))

colors when G is planar. A short and simple argument for this bound can be found
in [16]. The determination of a tight upper bound for the chromatic number of the
square of a planar graph has a long history in graph theory. See [15] for the current
best bound of 3

2Δ(G) + o(Δ(G)).
Consider the case when G is a d-dimensional cube. Formann et al. [13] proved

that var(G) ≥ π/d. To this end, they gave the following algorithm. We first fix
the following set of d slopes of line segments used for drawing edges. The set is
{0, π/d, 2π/d, . . . , (d − 1)π/d}. The drawing is constructed iteratively. The one-
dimensional cube (i.e., two vertices and one edge) is drawn horizontally. Suppose
that, for each k, 1 ≤ k < d, the k-dimensional cube is drawn using the first k slopes
in our slope set. Then, to draw a (k + 1)-dimensional cube, we create two copies of
the drawing of a k-dimensional cube, and translate one of them along the (k + 1)th
slope in the slope set. Then, the missing edges between two copies are drawn using
the (k + 1)th slope. Figure10.6 shows an example. Since the slopes in the drawing
are restricted to our set, the vertex angular resolution of the constructed drawing is
π/d.

This drawing for d-dimensional cubes is an example of the method of a set of
fixed slopes. The method recurs for crossing angular resolution and total angular
resolution in the subsequent sections.

The lower bound in Eq. (10.2) is almost tight. Formann et al. [13] proved by a
probabilistic argument that there exists a Δ-regular graph G such that var(G) =
O((logΔ)/Δ2) for any Δ.

On the computational side, Formann et al. [13] proved that it is NP-hard to decide
if the vertex angular resolution of a given undirected graphG is 2π/Δ(G) or not, even
when Δ(G) = 4. This implies that the computation of the vertex angular resolution
of a given undirected graph is NP-hard.
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Fig. 10.7 Planar graphs G used by Garg and Tamassia [14] for which every straight-line plane
drawing D has var(D) = O(

√
(logΔ(G))/Δ(G)3)

Straight-line drawings obtained by the results in Formann et al. [13] may pro-
duce crossings. Therefore, people started to look at the vertex angular resolutions of
straight-line plane drawings, i.e., straight-line drawings without edge crossings. Of
course, in this case, graphs under investigation must be planar.

For lower bounds, Malitz and Papakostas [21] proved that every planar graph G
has a straight-line plane drawing D with var(D) = Ω(1/αΔ(G)) with α = 1/(3 +
2
√
3) ≈ 0.15. They also proved that every outerplanar graph G has a straight-line

plane drawing D with var(D) = Ω(1/Δ(G)). Their proof for planar graphs used the
coin representation of a planar graph [19] (i.e., every planar graph can be represented
by a system of touching disks) together with an appropriate Möbius transformation.
This idea was also used for the planar slope number problem by Keszegh, Pach,
and Pálvölgyi [18]. The planar slope number of a planar graph G is the minimum
number of slopes formed by edges in all straight-line plane drawings of G. Keszegh
et al. [18] proved that the planar slope number of a planar graph only depends on the
maximum degree.

For anupper bound,Garg andTamassia [14] constructed aplanar graphG such that
every straight-line plane drawing D of G has var(D) = O(

√
(logΔ(G))/Δ(G)3).

Their recursive construction is illustrated in Fig. 10.7. This gives rise to the following
open problem.

Problem 10.1 Determine the asymptotically tight bound for the maximum vertex
angular resolution over all straight-line plane drawings of a planar graph with max-
imum degree Δ.

10.4 Crossing Angular Resolution

As far as the author knows, the explicit introduction of crossing angular resolution
was first made by Di Giacomo, Didimo, Eades, Hong and Liotta [8], who simply
called the crossing angular resolution the crossing resolution. They proved that the
crossing angular resolution of a complete graph Kn with n vertices is at leastπ/�n/3�,
and at most π/(θ̄(Kn) − 1), where θ̄ (G) is the geometric thickness of a graphG. The
geometric thickness of an undirected graph G = (V, E) is defined as the minimum
number k of such that E is the disjoint union of k sets E1 ∪ E2 ∪ · · · ∪ Ek and there
exists a straight-line drawing of G in which no pair of edges in Ei crosses for any i ∈
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{1, 2, . . . , k}. Dillencourt, Eppstein, and Hirschberg [11] proved that the geometric
thickness of a complete graph with n vertices is at least �(n/5.646) + 0.342� when
n ≥ 12. Therefore, we obtain the following bounds:

3π

n
(1 + o(1)) ≤ car(Kn) ≤ 5.646π

n
(1 + o(1)).

This gives rise to the following problem.

Problem 10.2 Determine (the leading term of) the crossing angular resolution of a
complete graph with n vertices.

Indeed, the upper bound holds in general: Di Giacomo et al. [8] also proved that

car(G) ≤ π

θ̄(G) − 1
(10.3)

for every undirected non-planar graph G. Equation (10.3) has several implications.
Among others, we observe that the crossing angular resolution of bounded-degree
graphs can be arbitrarily small. To see this, we use the following fact proved by Barát,
Matoušek, and Wood [5]: for all Δ ≥ 9 and ε > 0, there exists a Δ-regular n-vertex
graph H such that θ̄ (H) = Ω(

√
Δn1/2−4/Δ−ε). Their proof is based on a counting

argument, and thus non-constructive. Then, by Eq. (10.3), for that graph H

car(H) = O(1/
√

Δn1/2−4/Δ−ε). (10.4)

On the other hand, this bound only holds whenΔ ≥ 9 and it is not clear if the crossing
angular resolution of an undirected graph G can be bounded by a function of the
maximum degree Δ(G) when Δ(G) ≤ 8. When Δ(G) = 3, this is possible, as we
will see in Sect. 10.5. However, the following is still open.

Problem 10.3 Can the crossing angular resolution be bounded by a constant from
below if the maximum degree is between 4 and 8?

As one might have already guessed, the crossing angular resolution is closely
related to the so-called right-angle crossing drawings of graphs. A straight-line draw-
ing of an undirected graph is a right-angle crossing drawing (or a RAC drawing) if
the crossing angular resolution is at least π/2. An undirected graph is a right-angle
crossing graph (or a RAC graph) if it admits a straight-line RAC drawing.

The concepts of RAC drawings and RAC graphs were first introduced by Didimo,
Eades, and Liotta [9]. They proved that every RAC graph with n ≥ 4 vertices can
have at most 4n − 10 edges, and this is tight. Argyriou, Bekos, and Symvonis [3]
proved that it is NP-hard to decide if a given undirected graph is a RAC graph. This
implies that the computation of the crossing angular resolution of a given undirected
graph is NP-hard.

Motivated by RAC graphs, Dujmovic, Gudmundsson, Morin, and Wolle [12]
studied the large-angle crossing graphs. Let α be a real number such that 0 < α <
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π/2. A straight-line drawing of an undirected graph is an α-angle crossing drawing
(or an αAC drawing) if the crossing angular resolution is at least α. An undirected
graph is an α-angle crossing graph (or an αAC graph) if it admits a straight-line αAC
drawing. Dujmovic et al. [12] proved that every αAC graph with n ≥ 3 vertices has
at most (π/α)(3n − 6) edges. This implies the following: if an n-vertex graph G has
more than (π/α)(3n − 6) edges, then car(G) ≤ α. For example, if the graph G has
Θ(n2) edges, then car(G) = O(1/n). Similarly, if we denote the minimum degree
of G by δ(G), then the number of edges is at least δ(G)n/2, and consequently

car(G) = O(1/δ(G)) (10.5)

for every graph G.
So far, we mainly looked at upper bounds for the crossing angular resolution of a

graph. Now, we move our attention to lower bounds.
When a graph G is planar, we know there exists a straight-line plane drawing of

G by Fáry’s theorem. By definition, the crossing angular resolution of a straight-line
plane drawing is 2π . Therefore, the crossing angular resolution of every planar graph
is 2π .

As we have already seen in this section, for a complete graph Kn , we have
car(Kn) = Θ(1/n). For a complete bipartite graph Km,n , we have car(Km,n) =
Ω(1/max{m, n}). This is a consequence from its total angular resolution; see
Sect. 10.5.

As a useful method to give a straight-line drawing with large crossing angular
resolution, we employ the method of a set of fixed slopes. We used this method
for the drawing of the d-dimensional cube with large vertex angular resolution in
Sect. 10.3, and we will revisit this method for total angular resolution in Sect. 10.5.
Here, we concentrate on bounding crossing angular resolution. For example, if each
edge is drawn horizontally or vertically, then the crossing angular resolution will be
π/2.

As an example, consider a four-dimensional cube Q4. Refer to Fig. 10.8. It has
two disjoint copies of a three-dimensional cube Q3. Since Q3 is planar, it has a
straight-line plane drawing. Now we squeeze those copies so that they are almost
flat, and all edges are almost horizontal. We place each of them beside parallel lines,
and complete our drawing of Q4 by drawing the remaining edges vertically between
the two subcubes. Then, the crossing angular resolution of the resulting drawing
is π/2 − ε, where ε depends on the “flatness” of the drawing of Q3. Therefore,
car(Q4) ≥ π/2.

The same method shows that car(G) ≥ π/2 when G is a three-dimensional
grid (Fig. 10.9) and a six-dimensional cube Q6 (Fig. 10.10 (left)). If we use three
slopes 0, π/3, 2π/3, then we can obtain the crossing angular resolution π/3. This
is illustrated with a nine-dimensional cube Q9 in Fig. 10.10 (right). In general, the
crossing angular resolution of a d-dimensional cube Qd is at least π/�d/3�, which
can be observed by using �d/3� slopes. Note that Qd has dn/2 edges, and thus
car(Qd) < 6π/d by the result on α-angle crossing drawings mentioned above [12].
This motivates the following problem.
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Fig. 10.8 The crossing angular resolution of a four-dimensional cube. The left figure shows a
straight-line plane drawing of a three-dimensional cube. In the right figure, this drawing of a three-
dimensional cube is made almost flat and duplicated. Adding the vertical edges results in a straight-
line drawing with crossing angular resolution approximately π/2

Fig. 10.9 The crossing angular resolution of a three-dimensional grid is π/2. The left figure is a
“usual” straight-line drawing, and the right figure is a straight-line drawing with crossing angular
resolution approximately π/2

Fig. 10.10 The crossing angular resolution of a six-dimensional cube is π/2 (left), and the crossing
angular resolution of a nine-dimensional cube is at least π/3 (right)

Problem 10.4 Determine the crossing angular resolution of a d-dimensional cube.

Another example was given by Didimo, Kaufmann, Liotta, Okamoto, and Spill-
ner [10]. They studied a leveled drawing of a leveled tree. In a leveled tree, distinct
real numbers are associated with the vertices, and in a leveled drawing of a leveled
tree, the y-coordinate of each vertex vmust be identical to the real number associated
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Fig. 10.11 A leveled
drawing of a leveled tree
(left), and another leveled
drawing of the same leveled
tree with crossing angular
resolution π/2 − ε (right).
The arbitrarily selected root
is depicted by white

to v. Didimo et al. [10] proved that every leveled tree has a straight-line leveled draw-
ing of crossing angular resolution π/2 − ε for every ε > 0. They used the slopes of
π/4 and −π/4 in their drawings. Refer to Fig. 10.11. First, fix an arbitrary vertex as
a root. Then, each edge is drawn with the following rule. For an edge {u, v} of the
tree, suppose that u is the parent of v. The edge {u, v} is drawn with slope π/4 if the
y-coordinate of v is larger than the y-coordinate of u; otherwise, the edge {u, v} is
drawnwith slope−π/4.Wemay need to perturb the vertices a little to avoid degener-
acy. The resulting drawing has the crossing angular resolution π/2 − ε, where ε > 0
is an artifact of the perturbation.

Recent results on crossing angular resolutions can be found in [6].

10.5 Total Angular Resolution

The total angular resolution was first introduced by Argyriou, Bekos, and Symvo-
nis [4], where the total angular resolution was simply called the total resolution.
They proved that tar(Kn) = Θ(1/n) for a complete graph Kn , and tar(Km,n) =
Θ(1/max{m, n}) for a complete bipartite graph Km,n . Their bounds can be observed
in the following way.

For upper bounds, by combining the upper bound for the vertex angular resolution
in Eq. (10.1) and the upper bound for the crossing angular resolution in Eq. (10.3),
we obtain

tar(G) = O(min{1/Δ(G), 1/(θ̄(G) − 1)}) (10.6)

for every non-planar graphG. SinceΔ(Kn) = n − 1 andΔ(Km,n) = max{m, n}, we
readily obtain tar(Kn) = O(1/n) and tar(Km,n) = O(1/max{m, n}).

To prove the lower bounds, Argyriou et al. [4] studied particular straight-line
drawings of Kn and Km,n . For Kn , they placed the vertices on the corners of a regular
n-gon. For Km,n , they considered a square, and placed the vertices of one partite set on
the top side and the vertices of the other partite set on the bottom side, respectively.
For concrete constructions, see Fig. 10.12. In the figure, K4,5 is drawn, where the
partite set A with four vertices lies on the bottom side and the partite set B with five
vertices lies on the top side. On the top side, one vertex of B is placed at the top-left
corner of the square, and four rays emanate from that vertex to the bottom side. The
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Fig. 10.12 Total angular resolutions of complete graphs and complete bipartite graphs: the con-
struction by Argyriou et al. [4]

angle formed by each consecutive pair of those four rays is equal, and the rightmost
ray goes through the bottom-right corner of the square. Then, the four vertices in
A are placed at the intersections of those rays and the bottom side. Symmetrically,
five rays emanate from the bottom-right vertex of the square to the top side, and the
intersections with the top side determine the positions of five vertices in B. Argyriou
et al. [4] proved that in this drawing, the total angular resolution is attained by the
angle formed by the rightmost edge and the second rightmost edge incident to the
vertex at the bottom-left corner of the square.

Themethod of a set of fixed slopes can be used to bound the total angular resolution
of a graph from below. For example, the drawing produced by Formann et al. [13]
for d-dimensional cubes Qd proves the total angular resolution of Qd is at least
π/d. Refer to Fig. 10.6. Another example is a leveled drawing of a leveled tree.
For the definition, see Sect. 10.4. Didimo et al. [10] constructed a leveled drawing
of a leveled tree with total angular resolution π/Δ − ε, where Δ is the maximum
degree of the tree and ε > 0 is arbitrary. Refer to Fig. 10.13. In their drawing, we
use the slopes in {iπ/Δ + α | i ∈ {0, 1, . . . , Δ − 1}}, where α is any constant such
that 0 < α < π/Δ. We first fix an arbitrary vertex as root and then consider a proper
edge-coloring with Δ colors, which always exists. Then, an edge e is drawn with
the i th slope iπ/Δ + α if and only if e receives the i th color. The drawing can be
obtained by traversing the tree from root to leaves. It may happen that a vertex is
placed on an edge: in that case, we introduce a tiny perturbation to slide the vertex
along the direction parallel to the x-axis. The resulting drawing has the total angular
resolution π/d − ε, where ε > 0 depends on the perturbation.

The method of a set of fixed slopes can be used to draw an undirected graph with
maximumdegree three. To this end,weuse a result byMukkamala andPálvölgyi [22].
They proved that an undirected graph with maximum degree three has a straight-line
drawing that only uses the slopes in {0, π/4, π/2, 3π/4}. Examples are given in
Fig. 10.14. Therefore, their drawing readily gives a straight-line drawing of total
angular resolution π/4. This bound is tight as a complete graph with four vertices
shows; recall Fig. 10.1.

On the other hand, the total angular resolution cannot be bounded by a constant
for bounded-degree graphs because the crossing angular resolution cannot as we saw
in the previous section. As with the crossing angular resolution, we do not know if
this is the case already when the maximum degree is 4, 5, 6, 7, or 8.
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Fig. 10.13 Total angular resolution of a leveled drawing of a leveled tree, studied by Didimo et
al. [10]. In this example, themaximumdegreeΔ is equal to four, and thus the total angular resolution
is π/4 − ε for any arbitrary small ε. The left figure shows a given leveled tree with a proper edge
coloring with Δ = 4 colors. The right figure shows the construction of a leveled drawing with total
angular resolution π/4. You may observe that the edges with the same color share the same slope

Fig. 10.14 Total angular resolutions of graphs of maximum degree three. Since they can be drawn
only with slopes of 0, π/4, π/2, 3π/4, the total angular resolution is at least π/4. The top row
shows the Frucht graph, and the bottom row shows the second Blanuša snark. In the right figures,
only the four slopes are used

Problem 10.5 Can the total angular resolution be bounded by a constant from below
if the maximum degree is between 4 and 8?

Determining the total angular resolution of a given graph is NP-hard. As it was
pointed out in Sect. 10.3, Formann et al. [13] proved that deciding if a given graph of
maximum degree four has a straight-line drawing of vertex angular resolution π/2 is
NP-hard. Their reduction indeed proves that deciding if a given graph of maximum
degree four has a straight-line drawing of total angular resolution π/2 is NP-hard.

In Sect. 10.2, we saw a few examples of graphs with their total angular resolutions.
Here, we give proofs of the correctness. First, consider the complete graph K4 with
four vertices. Then, the convexhull boundary of a straight-line drawingof K4 contains
at most four vertices. Therefore, the convex hull must have at least one vertex of angle
at most π/2. Since three edges of the graph are incident to that vertex, the vertex
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angular resolutionmust be atmostπ/4,which implies that the total angular resolution
must be at most π/4, too.

For the three-dimensional cube Q3 and the Petersen graph, we proceed as follows.
As a common property of those two examples, we use the fact that those two graphs
are 3-regular (i.e., every vertex has degree three). Now, for the sake of contradiction,
suppose that the total angular resolution is more than π/3. Then, observe that the
convex hull boundary of a straight-line drawing of those graphs must contain at least
seven vertices. To see this, suppose that the convex hull boundary contains at most
six vertices. Then, one of the convex hull vertices has an angle of less than 2π/3.
Since that vertex is incident to three edges, it should create an angle smaller than
π/3.

Consider a straight-line drawing D of those graphs of total angular resolution
more than π/3. By the above observation, the convex hull boundary of D has at least
seven vertices. Let D̃ be the planarization of D in the sense that we insert vertices
at all crossings so that the D̃ is a straight-line plane drawing. See Fig. 10.15 for
the construction. Let n be the number of vertices of D, and let c be the number of
crossings in D, which is equal to the number of newly inserted vertices in D̃. Let
V (D̃), E(D̃) and F(D̃) be the sets of vertices, edges and faces of D̃, respectively.
Then, |V (D̃)| = n + c and |E(D̃)| ≥ 3

2n + 2c. Since we have assumed that the total
angular resolution of D is more than π/3, the drawing D̃ has no triangle face.
Therefore, by counting the number of pairs of incident edges and faces in two ways,
we obtain 2|E(D̃)| ≥ 4(|F(D̃)| + 7 = 4|F(D̃)| + 3, where we use the assumption
that the convex hull boundary contains at least seven vertices. Then, Euler’s formula
tells us that |V (D̃)| − |E(D̃)| + |F(D̃)| = 2, which implies that

2 = |V (D̃)| − |E(D̃)| + |F(D̃)|
≤ |V (D̃)| − |E(D̃)| + 1

2
|E(D̃)| − 3

4

= |V (D̃)| − 1

2
|E(D̃)| − 3

4

≤ (n + c) − 1

2

(
3

2
n + 2c

)
− 3

4

= 1

4
n − 3

4
.

Therefore, n ≥ 11. This leads to a contradiction since Q3 has eight vertices and the
Petersen graph has ten vertices.

Recent results on total angular resolutions can be found in [1].
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Fig. 10.15 A straight-line drawing with crossings (left) and its planarization (right). In the right
drawing, white vertices are newly inserted at the crossings of the left drawing

10.6 Concluding Remarks

From the examples in this chapter, we may observe that there are trade-offs between
vertex angular resolution and crossing angular resolution. Total angular resolution
tries to balance those two aspects of esthetics in graph drawing. Recently, several
authors have started to study the trade-offs between several esthetic criteria in graph
drawing, such as area, edge lengths, the number of crossings [2, 7, 17, 20]. This
will lead to studying the aspect of multi-criteria optimization in graph drawing and
information visualization, which is another open area to be explored further.
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