
Chapter 1
Beyond Planar Graphs: Introduction

Seok-Hee Hong

Abstract Recent research topics in topological graph theory and graph drawing
generalize the notion of planarity to sparse non-planar graphs called beyond pla-
nar graphs with forbidden crossing patterns. In this chapter, we introduce various
types of beyond planar graphs and briefly review known results on the edge density,
computational complexity, and algorithms for testing beyond planar graphs.

1.1 Beyond Planar Graphs: Edge Density

Recent research topics in topological graph theory and graph drawing generalize
the notion of planarity to sparse non-planar graphs, called beyond planar graphs,
either with forbidden edge crossing patterns or with specific types of edge crossings.
Examples include:

• k-planar graphs: graphs which can be embedded with at most k crossings per
edge [40].

• k-quasi-planar graphs: graphs which can be embedded without k mutually cross-
ing edges [2].

• RAC graphs: graphs which can be embedded with right angle crossings [19].
• fan-crossing-free graphs: graphs which can be embedded without fan-
crossings [17].

• fan-planar graphs: graphs which can be embedded such that each edge is crossed
by a bundle of edges incident to a common vertex [35].

• k-gap-planar graphs: graphs which can be embedded such that each crossing is
assigned to one of the two involved edges and each edge is assigned at most k of
its crossings.

Figure1.1 shows examples of forbidden crossing patterns for beyond planar
graphs.
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Fig. 1.1 Examples of crossing patterns: a fan-crossing (fan-planar and 2-planar graph, but not
fan-crossing-free graph); b 3 mutually crossing edges (not quasi-planar graph); c fan-crossing-free
and 2-planar graph (but not fan-planar); d RAC and 2-planar graph

Combinatorial aspects of beyond planar graphs are well studied, for example, the
maximum number of edges of beyond planar graphs:

• k-planar graphs: Pach and Toth [40] proved that 1-planar graphs with n vertices
have at most 4n − 8 edges.

• k-quasi-planar graphs: Agarwal et al. [2] (respectively, Ackerman [1]) proved that
3 (respectively, 4)-quasi-planar graphs have linear number of edges. Fox et al. [26]
showed that k-quasi-planar graphs have at most O(n log1+o(1) n) edges.

• RAC graphs: Didimo et al. [19] proved that RAC graphs have at most 4n − 10
edges.

• fan-crossing-free graphs: Cheong et al. [17] proved a tight bound of 4n − 8 on the
maximum number of edges for a 2-fan-crossing-free graph, and an upper bound
of 3(k − 1)(n − 2) edges for k ≥ 3.

• fan-planar graphs: Kaufmann and Ueckerdt [35] showed that fan-planar graphs
have at most 5n − 10 edges.

• k-gap-planar graphs: Bae et al. [7] proved that every k-gap-planar graph has
O(

√
kn) edges (for k = 1, an upper bound is 5n − 10). They also study rela-

tionships to other classes of beyond planar graphs.

We now briefly review latest results on beyond planar graphs, mainly focusing on
the computational complexity and algorithmic aspects.

1.2 Computational Complexity: NP-Hardness

Recently, computational complexity for testing beyond planarity has been studied.
More specifically:

• 1-planar graphs: Grigoriev and Bodlaender [29], and Korzhik and Mohar [37]
independently proved that testing 1-planarity of a graph is NP-complete. Auer et
al. [6]. showed that it remains NP-hard, even if a rotation system (i.e., the circular
ordering of edges for each vertex) is given.
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Furthermore, Cabello and Mohar [15] showed that NP-hardness holds even if the
input graph is an almost planar graph (i.e., deletion of an edge makes the result-
ing graph planar). More recently, Bannister et al. [8] studied the fixed parameter
complexity of 1-planarity.

• RAC graphs: Argyriou et al. [4] proved that testing whether a given graph admits
a straight-line RAC drawing is NP-hard, by presenting an infinite class of graphs
with unique RAC embedding.

• fan-planar graphs: Binucci et al. [12] proved that testing fan-planarity of graphs is
NP-complete; Bekos et al. [10] showed that it remains NP-hard, even if a rotation
system is given.

• gap-planar graphs: Bae et al. [7] proved that testing k-gap-planarity of graphs is
NP-complete.

1.3 Polynomial-Time Testing Algorithm

On the positive side, polynomial-time algorithms are available for testing restricted
subclasses of beyond planar graphs with additional constraints, as well as computing
such an embedding, if it exists.

For example, algorithms for testing special subclasses of 1-planar graphs are well
studied:

• Maximal-1-planar graphs: Eades et al. [21] showed that the problem of testing the
maximal 1-planarity (i.e., addition of an edge destroys 1-planarity) of a graph can
be solved in linear time, if a rotation system is given. The embedding is unique, if
it exists, and the algorithm also produces the embedding.

• Outer-1-planar graphs:Hong et al. [30] andAuer et al. [5] independently presented
a linear-time algorithm for testing outer-1-planarity (i.e., 1-planar embedding with
each vertex lies on the outer face) of a graph. The algorithm also computes such
an embedding, if it exists.

• Optimal 1-planar graphs: Optimal-1-planar graph is a special subclass of 1-planar
graphs with themaximum of 4n − 8 edges [41]. A linear-time algorithmwas given
for testing optimal 1-planarity byBrandenburg [14], using a reduction fromoptimal
1-planar graphs to irreducible extended wheel graphs.

Figure1.2 shows examples ofmaximal 1-planar graphs and outer-1-planar graphs.
For other types of beyond planar graphs, polynomial-time algorithms are also

available for testing restricted subclasses of beyond planar graphs with additional
constraints. Examples include:

• Outer-2-planar graphs: A graph is outer-2-planar, if it admits a drawing where
each vertex is placed on the outer boundary and no edge has more than two cross-
ings. A graph is fully outer-2-planar, if it admits an outer-2-planar embedding
such that no crossing appears along the outer boundary.
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Fig. 1.2 Examples of: a maximal 1-planar graphs; b triconnected outer-1-planar graphs; c bicon-
nected outer-1-planar graphs

Hong and Nagamochi [32] showed that every triconnected full-outer-2-planar
graph has a constant number of full-outer-2-planar embeddings. Based on these
properties, linear-time algorithms for testing full-outer-2-planarity of a connected,
biconnected, and triconnected graph were presented. The algorithms also produce
a full-outer-2-planar embedding of a graph, if it exists.

• Outer k-planar graphs: Chaplick et al. [16] showed that every outer k-planar graph
has a small balanced separator of size at most 2k + 3, which allow testing outer
k-planarity in quasi-polynomial time.
It was also shown that closed outer k-planarity (i.e., the vertex sequence on the
boundary is a cycle in the graph) is linear time testable, since outer k-planar graphs
have bounded treewidth.

• Circular-RACgraphs: Circular-RACdrawing is a circular layoutwhere eachvertex
lies on the circle and all crossings are with right angles. Dehkordi et al. [18]
presented a characterization for circular-RAC graphs, and a linear-time algorithm
for testing and constructing such a drawing, if it exists.

• 2-layer RAC graphs: A 2-layer RAC drawing of a bipartite graph is a straight-line
drawing, where each vertex is placed on one of two parallel lines such that no two
vertices on the same line are adjacent, and each crossing angle is a right angle. Di
Giacomo et al. [27] characterized 2-layer RAC graphs, and presented linear-time
testing and embedding algorithms.

• Maximal outer-fan-planar graphs: A graph is maximal outer-fan-planar if it has
a fan-planar embedding, where every vertex is on the outer face, and insertion of
an edge destroys its outer-fan-planarity. Bekos et al. [10] presented a linear-time
algorithm for testing whether a graph is maximal outer-fan-planar. The algorithm
also computes such an embedding, if it exists.
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Fig. 1.3 Examples of: a B graph; b W graph; c straight-line 1-planar drawing of K4; d 1-planar
embedding of K4 containing the B subgraph

1.4 Straight-Line Drawing

The classicalFáry’s Theorem [25] showed that every plane graph (i.e., a planar graph
with a given planar embedding) admits a planar straight-line drawing. Indeed, pla-
nar straight-line drawing is one of the most popular drawing conventions in Graph
Drawing; consequently many straight-line drawing algorithms are available for pla-
nar graphs [9, 39].

On the other hand, Thomassen [42] showed that 1-plane graphs (i.e., 1-planar
graphs with a given 1-planar embedding) have two forbidden subgraphs, called B
graph andW graph, to admit a straight-line drawing. Figure1.3 shows two forbidden
subgraphs of 1-planar graphs.

As such, it opened the way for the investigation for straight-line drawings of
beyond planar graphs:

• 1-plane graphs: Based on the forbidden subgraph characterization by
Thomassen [42], Hong et al. [33] presented a linear-time testing and drawing
algorithm to construct a straight-line drawing of 1-plane graphs, if it exists. It was
also shown that some 1-planar graphs require exponential area for any straight-line
drawing.

• Re-embedding 1-plane graphs: Re-embedding a 1-plane graph is to change the
rotation system or the outer face of the given 1-planar embedding of the 1-plane
graph, while preserving the same set of pairs of crossing edges.
Hong and Nagamochi [31] considered the problem of re-embedding a 1-plane
graph, which contains the forbidden subgraphs (i.e., B graph or W graph), to
a new 1-planar embedding which admits a straight-line drawing (i.e., 1-planar
embedding without B graph or W graph). They presented a characterization of
forbidden configuration.
Based on the characterization, a linear-time algorithm for finding a straight-line
drawable 1-planar embedding or the forbidden configuration was presented.
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• Almost planar graphs: Almost planar graph consists of a planar graph plus one
edge, also called graphs with 1-skewness (i.e., removal of an edge makes the graph
planar).
Eades et al. [22] presented a characterization of almost planar topological graphs
that admit a straight-line drawing. Based on the characterization, linear-time algo-
rithmswere presented for testing whether an almost planar graph admits a straight-
line drawing, and for constructing such a drawing if it exists. It was also shown that
some almost planar graphs require exponential area for any straight-line drawing.

• General embedded non-planar graphs: Nagamochi [38] investigated the stretch-
ability problem (i.e., straight-line drawings) of general embedded graphs. It was
shown that there is a 3-planar embedding and quasi-planar embedding that admits
no straight-line drawing, which cannot be characterized by forbidden configura-
tion.
He also considered a problem of whether a given embedded graph G admits a
straight-line drawing under the same frame, which is defined by afixed biconnected
planar spanning subgraph of G, and presented forbidden configurations (i.e., a
given embedding admits a straight-line drawing under the same frame if and only
if it contains no forbidden configuration).
If a given embedding is quasi-planar (i.e. no pairwise crossing edges) and its
crossing-free edges induce a biconnected spanning subgraph, then the stretchabil-
ity can be tested in polynomial time using forbidden configurations.

1.5 Outlook and Open Problem

This chapter introduces beyond planar graphs and briefly reviews known results on
the edge density, computational complexity and algorithmic results on testing and
drawing beyond planar graphs.

Many combinatorial results are also studied for beyond planar graphs, including
structural properties, various geometric representations, as well as the relationships
between beyond planar graphs. Examples include:

• Structural properties: Structures of 1-planar graphs are well studied.
For example, Borodin [13] studied the coloring problemof 1-planar graphs. Fabrici
and Madaras [24] presented structural results on 1-planar graphs, while Hudak et
al. [34] studied structural properties of maximal 1-planar graphs. Suzuki [41]
investigated structural properties of optimal 1-planar graphs.

• Geometric representation: Various geometric representations of beyond planar
graphs, such as orthogonal drawings, polyline drawings, visibility representations,
and book embeddings are also studied.
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For example, Biedl et al. [11] studiedRVR (RectangleVisibilityRepresentation) of
embedded graphs. Di Giacomo et al. [28] studied polyline drawings of topological
graphs with few bends per edge.

• Relationships between beyond planar graphs: Relationships between k-planar
graphs, RAC graphs, k-quasi-planar graphs, fan-planar graphs and gap-planar
graphs are well studied.
For example, Eades and Liotta [23] studied the relationship between RAC and
1-planar graphs. Angelini et al. [3] showed that every simple k-planar topological
graph can be transformed into a simple k-quasi-planar topological graph.

For more details, we refer to corresponding chapters in this book and a recent
survey on 1-planar graphs [36] and beyond planar graphs [20].

Finally, we conclude with open problems related to the topics covered in this
chapter.

• Computational complexity: For most beyond planar graphs, testing problem is
known to be NP-complete. However, it is still open for some classes of beyond
planar graphs.

– Open Problem 1: Is it NP-complete to test quasi-planarity?
– Open Problem 2: Is it NP-complete to test whether a given graph is a fan-
crossing-free graph?

• Testing algorithm: Polynomial-time algorithms are available for testing restricted
subclass of beyond planar graphs. For example, testing problem becomes tractable
when further restrictions such as a rotation system,maximality/optimality, or outer-
beyond planarity are assumed.

– OpenProblem3: Is it polynomial time solvable to testmaximal quasi-planarity?
– Open Problem 4: Is it polynomial time solvable to test whether a given graph
is a maximal fan-crossing-free graph?

• Straight-line drawability: Forbidden subgraph characterization to admit a straight-
line drawing and linear-time algorithm to construct straight-line drawing if it exists
are known for 1-planar graphs and almost planar graphs. For other beyond planar
graphs, straight-line drawability problem need further investigation.

– Open Problem 5: Characterize forbidden configuration of RAC graphs to admit
a straight-line drawing. Is there an efficient algorithm to construct a straight-line
drawing of a RAC graph?

– Open Problem 6: Characterize forbidden configuration of 2-skewness graphs
(i.e., removal of two edges makes the resulting graph planar) to admit a straight-
line drawing. Is there an efficient algorithm to construct a straight-line drawing
of a 2-skewness graph?
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