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To my parents



Preface

Spectroscopic techniques are potential tool to analyze the quality of food and
beverages. Such techniques coupled with mathematical modeling and artificial
intelligence offer enhanced spectral data analysis experience. This volume is a
collection of five chapters and presents the current trends and practices dealing with
spectral data analysis applying spectroscopic techniques equipped with artificial
intelligence.

Chapter 1 by Jorge O. Caceres reviews the recent advances made by his group
in the field of LIBS applications in food analysis. This chapter presents the new
possibilities that LIBS can open up with the combination of mathematical modeling.
Chapter 2 by Gunawan Indrayanto and Abdul Rohman presents food composition
analysis using FTIR spectroscopy in combination with multivariate analysis. This
chapter covers basics, instrumentation, sample preparation techniques, statistical
analysis, and chemometrics with relevant examples. Chapter 3 by M. Moncada-
Basualto and C. Olea-Azar presents a review of the spectrophotometric methods
and electron spin resonance spectroscopy to determine antioxidant capacity of food.
Chapter 4 by Grzegorz Piotr Guzik and Wacław Stachowicz describes the principles
and details of thermoluminescence detection and talks about the procedural details
to enhance the effectiveness of the technique. This chapter illustrates the application
to different vegetable stuff. Chapter 5 by Sylvio Barbon Junior, Everton José
Santana, Amanda Teixeira Badaró, Nuria Aleixos Borrás, and Douglas Fernandes
Barbin describes multi-target regression methods as potential tool to enhance
spectral data analysis. The presentation style in individual chapters is so as to
introduce the novice researchers with the fundamentals and at the same time include
the latest updates for the professionals.

I sincerely thank Dr. Naren Aggarwal, Editorial Director—Books, Asia,
Medicine and Life Sciences, Springer for giving me the opportunity to present
this book to the readers. I also thank Madhurima Kahali, Editor—Books, Medicine
and Life Sciences, Springer and Mr. Selvakumar Rajendran, Production Editor
(Books), Springer for their support.

Prayagraj, India Ashutosh Kumar Shukla
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1Laser Induced Breakdown Spectroscopy
in Food Analysis

Jorge O. Caceres

Abstract

The adulteration, quality control, food safety, and traceability are serious prob-
lems in the food industry and hold great importance for the customers. During
the last years, laser induced breakdown spectroscopy (LIBS) analysis by direct
measurement of the optical emission from laser-induced plasma has been the
subject of research in food analysis, mainly because this technique presents a fast
and cost effective method. The purpose of this article is to present an overview of
the progress made by our research group in food analysis. Specific examples are
given to illustrate the ability of this technique to carry out a rapid, qualitative,
and quantitative analysis of different food samples. The implementation of
combination of LIBS technique with mathematical modeling concretely neural
networks algorithms, which have opened up new possibilities, are also discussed
with available experimental data and relevant results.

Keywords

Food analysis · Laser induced breakdown spectroscopy (LIBS) ·
Wine analysis · Honey adulteration · Oils · Milk

1.1 Introduction

Laser induced breakdown spectroscopy (LIBS) analyzes a sample by direct mea-
surement of the atomic emission of the elements from a laser-induced plasma
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2 J. O. Caceres

generated by the ablation of the sample, providing an immediate spectral fingerprint
which is representative of its elemental composition [1]. LIBS provides several
advantages over conventional methods for elemental analysis by (a) eliminating
the sample preparation step for analysis; (b) performing the analysis in any state
of matter (solid, liquid, gas); (c) providing a fast analysis in a few seconds; (d)
requiring a very small amount of sample, in the order of micrograms, that is
vaporized from the surface of the sample; and (e) providing simultaneous detection
of all elements without bias, including those present in molecules (which are
atomized during the process) [2]. Although there is a loss of molecular information
in plasma, this technique has provided excellent results for the identification of
many polymer organic compounds [3] or bacterial samples [1, 4]. In these studies,
emission lines of C, H, N, O and intensity ratios such as C/H, C/O, and C/N have
been used for the classification of organic explosives [5, 6]. Given these advantages
of detection of compounds of organic origin, LIBS has drawn attention to the food
analysis in different types of samples such as wine [7], milk [2, 8], bread [9, 10],
meat [11] vegetables [12, 13] tea samples [14], and trace elements in seafood [15].

The purpose of this paper is to briefly review the work done and recent
advances made by our research group particularly in food analysis. The review
covers studies with specific examples to illustrate LIBS ability to carry out a rapid
qualitative and quantitative analysis of different food samples. The implementation
of combination of LIBS technique with mathematical modeling concretely neural
networks algorithms is also discussed along with available experimental data and
relevant results.

LIBS qualitative analysis methods developed rely on performing an instanta-
neous identification of the sample using a unique feature of LIBS, which is its
ability to generate a spectral “fingerprint” of the sample from the emission spectra,
corresponding to of the nature of the sample and its composition. Thus, LIBS
provides a unique spectrum, representative of the sample under analysis, which
can be analyzed by multivariate data analysis techniques or neural networks (NNs)
algorithms. Using a correlation procedure, the developed LIBS-NN system can be
trained by supervised algorithms in order to recognize spectra of test sample from a
set of different samples, evaluating the similarity of unknown test spectra against a
reference spectral library of classified samples. The choice of NNs as classification
method has been made due to its significant identification capability with a relatively
simple implementation [16].

1.2 Experimental LIBS Set-Up

The LIBS technique and the methodology used in the present work together with the
most significant experimental conditions have been previously described [1]. Each
study has its own measurement parameters. Thus, only the experimental conditions
relevant to this work are presented here and should be considered as a guide to the
experimental system that can be used. LIBS measurements were obtained using a Q-
switched Nd: YAG laser (Quantel, Brio model) operating at 1064 nm, with a pulse
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duration of 4 ns full width at half maximum (FWHM), 4 mm beam diameter, and
0.6 mrad divergence. Samples were placed over an X–Y–Z manual micro-metric
positionator with a 0.5 μm stage of travel at every coordinate to ensure that each
laser pulse impinged on a fresh position. The laser beam was focused onto the
sample surface with a 100 mm focal-distance lens, producing a spot of 100 μm in
diameter. The best signal-to-background ratio was achieved at 42 mJ of pulse energy
with a repetition rate of 1 Hz. The laser crater profile was measured by means of a
confocal microscope after laser pulse irradiation on a fresh position. A narrow crater
was created with a diameter of 450 μm and 140 μm in depth. Emission from the
plasma was collected with a 4-mm aperture, and 7 mm focus fused silica collimator
placed at 4 cm from the sample, and then focused into an optical fiber (1000 μm core
diameter, 0.22 numerical aperture), coupled to a spectrometer. The spectrometer
system was an EPP2000, StellarNet (Tampa, FL) with a gated CCD detector. A
grating of 300 l/mm was selected; a spectral resolution of 0.5 nm was achieved
with a 7 μm entrance slit. The wavelength range used was from 200 to 1000 nm.
Therefore, 2048 data points were recorded for each sample. The detector integration
time was set to 1 ms to prevent the detection of bremsstrahlung, the detector was
triggered by a 2 μs delay time between the laser pulse and the acquired plasma
radiation using a digital delay generator (Stanford model DG535). The spectrometer
was computer-controlled using an interface developed in Matlab.

1.3 Neural Network Theory

Chemometric methods used for the classification of samples in the studies included
have been widely described in the literature; therefore, a brief description is only
presented here. There is a wide range of chemometric approaches for the purpose
of developing classification models in the sample discrimination processes [17–20].
Nevertheless, it is not a straightforward task to choose an appropriate method in
each case and this selection process involves a careful study of the raw data and the
results required in order to achieve a satisfactory classification result. An appropriate
chemometric method must be able to perform a classification when all the samples
presented for the training of the model are tested and classified correctly (high
sensitivity), as well as the unknown samples of the same class not included in the
training step are also correctly classified (high generalization ability). Furthermore,
in order to obtain a robust classification, the model must be able to classify a sample
that does not belong to any class as unassigned and not classify it incorrectly as one
of the classes/samples used in the training of the model (high robustness). Different
chemometric methods have been employed in LIBS data analysis to perform reliable
classification for various types of samples [21–26], even at remote sites such as
rock classification on Mars. However, none of these works includes a complete
analysis of the performance of these methods evaluating sensibility, generalization
ability, and robustness with very similar samples. In the studies carried out by our
group [26], special care was taken to deal with and include all these classification
parameters. Some examples of such studies in food analysis are commented herein.
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1.3.1 Neural NetworkModel

Home-made neural network software was developed that was specifically designed
and optimized to deal with the problem of sample classification. The NNs model
was based on a multilayer perceptron, feedforward, supervised network consisting
of several neurons (information processing units) arranged in two or more layers
receiving information from all of the neurons of the previous layer. The connections
are controlled by a weight that modulates the output of the neuron before inputting
its numerical content into a neuron in the next layer. The process that optimizes the
weights, i.e., the learning or training process was based on a back-propagation (BP)
algorithm [27, 28]. The inputs from each neuron are added by an activation function,
and the result is transformed by a transfer function that limits the amplitude of the
neuron output. In this work, the hyperbolic tangent sigmoid function was used as
the NN transfer function. Every NN model was estimated using Matlab software
(Mathworks, 2010a).

The NN topology consists of three layers (input, hidden, and output), which
is widely used to model systems with a similar level of complexity [29]. As
mentioned the conditions were those used in our studies, in particular, the input
layer consisted of 2048 nodes (spectral response in the 200–1000 nm wavelength
range). The number of neurons in the hidden layer was kept around 10 in all of the
studies, in order to avoid overfitting of the models. The output layer that provides
the classification results comprised of J neurons (where J = number of reference
samples used). The value obtained for the J neurons provided an estimation of the
similarity between the reference sample spectra and the testing sample spectrum.

1.3.2 Neural NetworkModel Training

Since supervised learning has been used for creating the NNs models, for the opti-
mization of the weight matrix, input and output data that adequately characterized
the system to be modeled was used. The spectral data of the training library was
randomly divided as a part of the training process into two subsets: 80% (64 spectra)
for training and 20% (16 spectra) for self-validation of the model. Once the training
and self-validation process was carried out, the models were validated by testing the
spectra from the samples.

The identification process of the NNs model is based on their ability to detect the
degree of similarity of the new spectrum to each reference spectra used to train the
NN model in the training process. During the training process, each class of sample
was associated with an identification number in the output layer. Therefore, correct
identification is obtained if the output from the NN model for the test samples of
the same classis matched with the identification number assigned to the sample at
the training step. An identification number of “Zero” was always used to indicate
no match at all.
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NN training was achieved by applying the BP algorithm based on the conjugate
gradient method [30], one of the general-purpose second-order techniques that helps
minimizes the goal functions of several variables. Second order indicates that such
methods use the second derivatives of the error function, whereas a first-order
technique, such as standard back-propagation, uses only the first derivatives. To
determine when the training should be stopped, an early stopping criteria based
on performance improving (error rate) of the validation set [31]. The number of
epochs was not relevant in this case. To avoid an overfitting of the NN model, the
learning process was repeated until a minimum of the mean square error (MSE) of
the verification data, defined in Eq. (1.1), was reached:

MSE = 1

N

N∑

k

(rk − yk)
2 (1.1)

where N, yk, and rk are the number of input data, the response from each output
neuron, and the observed output response, respectively. A detailed description of
the calculation process is provided in the literature [27, 31].

1.3.3 Neural NetworkModel Validation

The parameter, accuracy (A), was used to assess the classification performance
of the created models along with the relative frequency of correct and incorrect
classification (Eq. (1.2)) and was evaluated [1, 32].

A = TP + TN

TP + TN + FP + FN
(1.2)

In a classification process the output has only two possibilities: positive (P) or
negative (N). There are therefore four possible results from this binary classifier.
If the output is P, a true positive (TP) or false positive (FP) is observed if the
actual value is P or N, respectively. Conversely, a true negative (TN) or a false
negative (FN) is observed if the predicted output is N and the actual value is N or P,
respectively [1].

In order to measure the sensitivity and generalization ability of the NN model,
“success rate” has been used, which has been determined by calculating the
percentage of samples correctly classified over the total number of test spectra. In
all studies the sensitivity, also taken as internal validation, was evaluated by the
capacity of the model to provide correct classification for the test library of the
samples used in calibration, whereas the generalization ability was measured as the
percentage of correctly classified samples of the same or similar class that were not
used in the training of the model. Another very important feature of the classification
models is the robustness, which is measured by the ability to assign as “unknown”
giving an output of zero to samples of unknown origin. The success of robustness
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test lies in when the test samples of a completely class that was not included in
the training step are considered as an outsider and not belonging to any of the
classes of training data set [21]. Thus, the robustness of the model, also considered
as independent external validation, was performed by removing one class from the
training set and assessing the results for the excluded class.

To consider a sample correctly classified, the prediction of the model must match
with the actual class by an arbitrary threshold of spectral correlation (SC) (Eq. (1.3))
higher than 90% and less than 20% to the other classes, otherwise is considered
incorrectly classified. A sample was classified as unknown when the SC was less
than 90% for all classes.

SC = 100

N

∑

i

δi (1.3)

where δi is the number of spectra classified correctly and N is the total number of
spectra.

1.4 Results

1.4.1 Wine Analysis

The certification of the protected designation of origin (PDO) is one of the most
important parameters to be controlled in order to protect the production and origin
of agroalimentary products. Since the introduction of European regulations control
[33] on this matter, different strategies have been designed by the wine companies
for the confirmation of the authenticity of wines in order to bring improvement in the
PDO controls. Basically the parameters that are considered for the determination of
the quality of wine products include the type of grape, harvest, geographical origin,
and vintage; however, it is not a straightforward task to recognize these indicators
on the consumers’ end. Therefore, the only and clear sign of quality that is used by
the companies for the promotion of their products at the market is PDO, and this
parameter finally influences the final decision by the consumers [34].

The adulteration in case of wine products is done by the addition of any
external substance to the natural wine changing its composition and features. The
adulteration may occur in many ways; however, this is mostly done by addition
of water and sugar, mixing with lower quality wines and label replacing [35].
Water makes 81%, while ethanol makes between 11 and 15% of wine. The key
compounds that are two types of flavonoids, anthocyanins and flavanols, provide
color and astringency, and are also responsible for the organoleptic properties and
quality of wine. Other organic compounds in small amounts, such as acids, alcohols,
phenols, nitrogenous compounds, and inorganic substances, represent the remaining
7%, making wine a complex sample and difficult sample to analyze [36, 37].
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The sensorial analyses together with chemical assays, and mineral content anal-
ysis may not be adequate for determining the PDO of wine [35]. Chromatographic
techniques on the other hand [38–40] require to conduct separate analysis of each
component in the wine being slow and expensive process. The identification of grape
variety by means of isotopic analysis [41, 42], nuclear magnetic resonance (NMR)
[43, 44], or ADN/aRNA [45] techniques are generally used. These techniques
perform the identification based on their capacity of generating a fingerprint of
wine sample and produce accurate results, but require a large amount of sample
and expensive consumables which increases the cost and duration of the analysis.

Here we evaluate the laser induced breakdown spectroscopy (LIBS) technique
for the discrimination and the determination of geographical origin of red wines.
LIBS technique is based on the interaction of a laser beam with a material target
generating a plasma, the emission of the plasma contains spectroscopic information
of excited atoms and ions present in the sample and reflecting its elemental
composition [46]. The elemental composition of wine is generally related to soil
composition, grape variety, climate conditions, yeasts, and winemaking [39]. The
analysis of these LIBS spectral fingerprints by the supervised classification models
NN has already shown successful results in many areas of knowledge for sample
classification [16, 26, 47, 48].

Although LIBS analysis does not require sample preparation, however in some
cases avoiding a sample preparation goes in detrimental of the technique limiting its
analytical performance. The change of the physical state of the sample transforming
the liquid into solid has already been described as sample preparation [49]. The
liquid-to-solid process increases the time of analysis and introduces changes in
chemical composition but on the other hand offers significant improvements in the
increase of the ablation rate, higher plasma temperature, and electron density as well
as a better laser-to-solid interaction [50–52]. In addition, the avoiding of inherent
drawbacks of manipulating liquid samples such as splashing and surface ripples
helps obtaining lower limits of detection, better repeatability, and sensitivity [53,
54]. Different liquid-to-solid matrix conversion protocols have been described in
the literature involving precipitation, filtering, and pellets formation procedures [53,
55, 56]. Herein, the transformation of the liquid wine sample into gels by adding a
natural collagen and its subsequent drying in an air assisted oven has been used as a
new sample preparation protocol.

In this work we work on the identification of the adulteration of wines collected
from Spanish local markets and evaluate the capacity of LIBS coupled with NN to
detect the PDO of wines with negligible compositional and spectral differences and
to improve the recognition capacity of extremely similar samples that have fewer
physical and spectral differences between them.

1.4.1.1 Wine Samples
Thirty-eight Spanish red wines from eleven protected designation of origin, three
foreign red wines, and four table wines were purchased in retail stores. Main
Spanish wine regions were selected including La Mancha, Ribera de Duero, Rioja,
Valdepeñas, Vinos de Madrid, Cariñeña, Ribeiro, Ribera del Guadiana, Navarra,
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Somontano, and Toro. The foreign wines with origin from Germany, France, and
Italy were also included in the study. Most of the wines included in the study
were elaborated with Tempranillo grapes, although Cabernet Sauvignon, Garnacha,
Tinta de Toro, and Syrah were also considered. All samples belong to the 2011
vintage and were not affected by aging period (young wine). Table 1.1 shows sample
information including sample ID, commercial brand, and type of grapes.

Sample Preparation A gel of wine sample was made using a commercial collagen.
For this purpose, 50 mL of wine sample were poured into a beaker and 1 g of
collagen gel was added and dissolved in the wine sample. 2.4 ml of this solution
were allowed to stand for 15 min until the gel was formed in a square petri dish
of 4 × 4 cm. The gelled sample was introduced in a forced ventilation oven at
35 ± 2 ◦C during 12 h to evaporate the water, obtaining a dry solid sample, which
was completely flat with a thickness of approximately 0.35 mm. Figure 1.1 shows
an example of dry gel and the craters formed by single laser shots. In this process
not only LIBS analysis was simplified but also pre-concentration of the sample (pre-
concentration factor of 1:5) was done which improved the limits of detection. All
samples were prepared into gels at the same time so that same conditions could
be maintained and making sure that the wine components were not degraded or
oxidized in the process of jellification.

1.4.1.2 Wavelength Range Selection
In case of LIBS spectra the intensity value at each wavelength is referred to as
variable. Each spectrum was composed by 2048 variables taking into account the
CCD pixels. For the NN analysis a reduction in the number of variables used
as inputs was done, which has brought important advantages in the classification
process, enhancing the robustness of the models, and being more efficient in the
discrimination process, without a loss of meaningful information. Since the organic
nature of the gel may affect C, H, N, O signals, the main emission lines from the
mineral elements of wine, Mg, Ca, K, and Na were selected in seven wavelength
ranges resulting into 355 variables (Table 1.2). Furthermore, the emission lines for
these elements in the selected wavelengths intervals were not observed in the pure
gel. The selection of several ranges may not describe the data fully; however, it
describes the trend in PDO instead of the particular wine. The reduction of variables
decreases the discrimination power of the NN model but increase the ability to
generalize.

1.4.1.3 LIBS Analysis
The samples were measured directly in air at room condition. Each LIBS spectrum
was acquired from a single-shot measurement and a total of 100 spectra were
recorded for each wine sample by moving the sample stage about 0.25 mm to expose
a fresh portion of the sample surface and avoiding areas irradiated by previous
shots. For the samples M1, D1, R1, V1, and VM1, four data sets of 100 spectra
were obtained: the first data set (training library) was used to create the NN model,
whereas the last three data sets (replicate libraries) were used for validation purpose.
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Table 1.1 Samples used in the study

PDO Sample ID Commercial brand Grape variety Vintage

La Mancha M1 Libertario Tempranillo, Garnacha 2.011
M2 Vereda Mayor Tempranillo 2.011
M3 Don Lucio Tempranillo 2.011
M4 Fidencio Tempranillo, Garnacha 2.011
M5 Monte Don Lucio Cabernet sauvignon 2.011

Ribera del Duero D1 Dehesa Cabernet sauvignon 2.011
D2 Valpincia Tempranillo 2.011
D3 Barón de Santuy Tempranillo, Cabernet 2.011
D4 Mayor de Castilla Tempranillo 2.011
D5 Sangre de Castilla Tempranillo 2.011

Rioja R1 Viña Espolón Tempranillo, Garnacha 2.011
R2 Antaño Tempranillo, Garnacha 2.011
R3 Solar Viejo Tempranillo, Garnacha 2.011
R4 Barón de Urzande Tempranillo, Garnacha 2.011
R5 Castillo de Albali Tempranillo 2.011

Valdepeñas V1 Vega del Cega Tempranillo 2.011
V2 Calle Real Tempranillo 2.011
V3 Viña Albali Tempranillo, cabernet 2.011
V4 Señorío de Los Llanos Tempranillo 2.011
V5 Tanis Tempranillo 2.011

Vinos de Madrid VM1 Puerta de Alcalá Tempranillo, syrah 2.011
VM2 Vega Madroño Tempranillo, Garnacha 2.011
VM3 Alma de Valdeguerra Tempranillo 2.011
VM4 Puerta de Hierro Tempranillo 2.011
VM5 Jesús Díaz Tempranillo, syrah 2.011

Cariñena CR Castillo de Aguaron Garnacha, syrah 2.011
Ribeiro RB Pazo Tempranillo, cabernet 2.011
Ribera del Guadiana RG 5 Viñas Tempranillo, Garnacha 2.011
Navarra NV Diácono Tempranillo, Garnacha 2.011
Somontano SM MonteSierra Tempranillo, cabernet 2.011
Toro TR Cermeño Tinta de Toro 2.011
Table wine TW1 Conde Noble Mixture 2.011

TW2 Don Simon Mixture 2.011
TW3 Eroski Mixture 2.011
TW4 Viñas Altas Mixture 2.011

Chianti CH Corte Alle Mura Sangiovese 2.011
Dornfelder DR Dornfield Dornfelder 2.011
Valle central VC Cimarosa Cabernet sauvignon 2.011

All spectra were normalized in order to avoid data variations as a result of variations
in the laser pulse energy. The normalization was done by the intensity of one specific
spectral line, i.e., K (I) 766.49 nm [57]. The spectral information of each sample was
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Fig. 1.1 (a) Sample after preparation. (b) Dry gel of wine sample with visible laser spots

Table 1.2 Wavelength range
considered for wine analysis

Element Wavelength range (nm)

Mg 271–291
Ca 311–340, 390–429, 513–524
Na 581–598
Hα 640–675
K 760–783

obtained in less than 2 min considering the integration time of the spectrometer and
the frequency of laser pulses that was fixed to 1 Hz (Fig. 1.2).

1.4.1.4 Sensitivity Tests
For the training of the NN model, the training library samples M1, D1, R1, V1, and
VM1 were used, producing an input matrix with 355 rows (number of variables)
and 500 columns (5 × 100 spectra of each PDO). After the learning process of
NN model is done, new spectra are presented for the classification. For the first
validation procedure, three replicate samples of the wines used in training step
were prepared and measured at the same condition, generating three new data sets
used to validate the model. Although the same wine is considered to produce the
replicates, each replica was prepared in different gels, assessing possible sample
preparation differences. These data sets were not presented to the NN for training
and are individual set of spectra. Table 1.3 gives the results of the sensitivity
analysis for NN prediction of wine replicates. The model is considered sensitive
if the correct classification is high and the misclassification rates are low. A high
sensitivity is achieved for all replicates with an average correct classification rate of
99.2% along with a negligible rate of incorrect classification and misclassification.
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Fig. 1.2 (a) LIBS spectrum of Rioja PDO with the assignation of emission lines and selected the
wavelength ranges as inputs to the NN have been highlighted in gray color. (b) Typical spectrum
of (I) dry gel, (II) M1 (La Mancha: Libertario), (III) D1 (Ribera del Duero: Dehesa), (IV) R1
(Rioja: Viña Espolón), (V) V1 (Valdepeñas: Vega del Cega), (VI) VM1 (Vinos de Madrid: Puerta
de Alcalá) within the spectral range of 200–1000 nm

This demonstrated that the model was able to classify new spectra belonging to the
samples used for training despite the intrinsic sample-to-sample variability in the
preparation of each gel.

1.4.1.5 Generalization Ability Test
Validation procedures assessing the generalization ability of the model must be
performed. This is done as a second validation, where the same NN model as
discussed in the previous section was used. In order to estimate the generalization
ability of the model, four different wine brands belonging to the PDOs used in
the training were tested to obtain the prediction result. The results are presented in
Table 1.4, showing an average of 98.6% of correct classification, without any wine
unclassified or misclassified. Therefore, all wine samples were correctly assigned to
their respective classes showing a high generalization ability and showing that the
model was flexible and lacked overfitting. A high rate in the correct classification
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Table 1.4 Classification results for the generalization ability test

Predicted group membership (spectral correlation, %)
Sample ID La Mancha Ribera del Duero Rioja Valdepeñas Vinos de Madrid Unclassified

2M2 98 0 1 1 0 0
2M3 100 0 0 0 0 0
2M4 98 1 0 1 0 0
2M5 99 1 0 0 0 0
2D2 2 98 0 0 0 0
2D3 0 99 1 0 0 0
2D4 1 98 1 0 0 0
2D5 0 100 0 0 0 0
2R2 0 0 100 0 0 0
2R3 1 0 98 0 0 1
2R4 1 1 97 0 1 0
2R5 0 2 97 1 0 0
2V2 0 0 0 100 0 0
2V3 2 1 0 97 0 0
2V4 1 0 0 98 0 1
2V5 0 0 0 100 0 0
2VM2 1 0 0 1 98 0
2VM3 0 0 0 0 99 1
2VM4 0 0 1 1 98 0
2VM5 0 0 0 0 100 0

and low rate of incorrect classification and misclassification were sought, which
means that the model was able to generalize and correctly classify other spectra
than those with which it was trained.

1.4.1.6 Robustness Test
The robustness of the NN model was assessed, evaluating the response of the
model to detect samples completely external and independent of the training set.
For this purpose, thirteen wine samples were measured and introduced into the NN
model. Six wines with Spanish PDO, four table wines, and three foreign wines were
considered. A robust model suggests a high capacity to detect unknown samples
“correctly as unknown,”, without decreasing the predicted accuracy of the known
samples. Table 1.5 presents the NN model classification results when completely
unknown samples were introduced to the model. The NN model classified correctly
these wine samples as unknown. None of the samples was classified as belonging
to other classes, providing a high robustness. Only in case of TW3 a spectral
correlation of 70% was obtained in the La Mancha class which can be attributed
to the fact that in the elaboration of table wines a variety of grapes are used, which
in many cases come from the La Mancha region. However, the SC is lower than
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the fixed threshold value and therefore classified as unknown to the model. This
highlights the robustness of NN in dealing with samples of unknown classes.

The results were satisfactory and the proposed methodology was used for the
analysis of red wines. The wavelength ranges selected, only considering the major
elements of the wine, together with NN analysis is enough to perform successful
classification of wines which is interesting as it was done without performing any
quantification of the elements. The selected intervals provide a characteristic finger-
print of the sample considering the peak profiles that include information from the
plasma which is useful in the classification process. Having the capacity to model
complex non-linear input–target relationships, NN analysis was able to recognize
the PDO pattern and classify correctly all the wines tested, maximizing inter-
PDO differences and minimizing intra-PDO variability. All validation procedures
have produced successful results. A high sensitivity and generalization ability were
achieved with an average of 99.2% and 98.6% of correct classification, respectively,
with a robustness of the 100%.

Thus, this work offers the possibility to perform red wine classification based
on LIBS measurement combined with multivariate chemometric method (NN).
This LIBS/NN methodology was able to distinguish between geographically close
regions. From the legal point of view, this methodology seems to be sufficiently
reliable to be used in quality control procedures as a screening tool. Methodologi-
cally, the developed LIBS-NN system provides a simple and fast way of identifying
the PDOs without carrying out cumbersome analysis on experimental as well as
mathematical scale.

1.4.2 Olive Oils Analysis

The adulteration and traceability of olive oils are some of the grave issues faced
by olive oil industry. Here, a similar method based on laser induced breakdown
spectroscopy (LIBS) and neural networks (NNs) has been developed and applied to
the identification, quality control, trace ability, and adulteration detection of extra
virgin olive oils [16].

Moreover, the usefulness of the developed method was demonstrated. Thus,
this model was found to be appropriate and useful in the identification of these
chemical compounds on line, for quality and control processes in the food industry,
with adequate accuracy and without pretreatment of samples. In addition, single-
shot measurements were sufficient for clear identification of the olive oils studied.
Taking this into account, the optimized NN model provides reliable results (sample
identification) for all samples analyzed. This result is the best indicator of the
capacity of the methodology presented.
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1.4.3 Milk Studies

This study focuses on the quantification of melamine in adulterated toddler milk
powder. It is based on two methodologies developed; univariate analysis using
CN emission band and multivariate calibration NN model obtaining correlation
coefficient (R2) values of 0.982 and 0.999, respectively. The results of the use of
LIBS technique coupled with chemometric analysis are discussed in terms of its
potential use in the food industry.

Due to its nutritional value, milk is counted as one of the most consumed foods
containing the main ingredients to sustain life, especially in early stages such as
toddlerhood and early childhood, where it is the principal intake. In 2016, the world
milk production reached 816 million tons/year where the European states took the
lead among the major milk exporters with 19.2 million tons [58]. This shows a
great economic importance of milk products which resultantly makes milk as one
of the main targets of adulteration. The adulteration consists of the addition of any
substance to the natural milk, which changes its composition and may occur in many
different forms. The most common practice is the addition of water to raw milk,
mixing milk of different animal species, fat replacement, and modification of the
protein or nitrogen content by introducing an adulterant as melamine (C3H6N6).
In the latter case, where melamine is used as an adulterant, its detection becomes
a difficult job in routine analysis is that base on the measurement of nitrogen
content of the milk. This occurs because the non-protein nitrogen cannot be detected
by usual procedures for protein determination [59–61]. Therefore, it is needed to
develop the methods that are simple, sensitive, and reliable to perform such analyses
with the possibility to be employed for an on-line analysis.

LIBS technique has not been sufficiently explored in food control analysis and
only few studies have been carried out till this time [10, 62–64]. The combination
of LIBS with chemometric methods offers the possibility to be used in a fast,
automatic, and on-line manner as has already been demonstrated with successful
results for sample classification and quantification [7, 16, 26, 47, 48, 65].

A wide study on the formation of CN fragments presents in the plasma and
its correlation with the carbon content of the sample is shown by Baudelet et al.
[66]. In the case of the milk analysis by LIBS, G. Bilge et al. [62] demonstrate
that LIBS in combination with multivariate methods can be successfully used
to distinguish between skimmed milk powders and whey powders, and also
to quantitatively determine the adulteration ratio of skimmed milk powder and
sweet/acid whey powder. The quantification of melamine in toddler milk powder
samples was performed, particularly observing the CN band emission correlating it
to adulteration ratios. Conventional univariate calibration curve and a multivariate
NN quantification procedure have also been compared.

1.4.3.1 Quantitative Analysis: Adulteration withMelamine
A commercial toddler milk sample was adulterated with different amounts of
melamine at concentrations between 1% and 6% to plot the calibration curve. The
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Fig. 1.3 (a) Spectral magnification on CN molecular band at different adulteration ratios and
conventional calibration curve for melamine quantification by integration of the CN band (b)
multivariate NN calibration model of adulterated milk powder (from (2))

validation sets comprised of samples at concentrations of 2, 4, and 5%. CN band
emissions were used for the quantification of melamine in the milk samples. Figure
1.3a shows the CN spectral emission of milk adulterated with melamine at different
concentrations, also demonstrating the variation in the intensity. Considering the
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Table 1.6 Statistical results
of the quantification test for
melamine adulteration by
LIBS

Univariate method NN model

Correlation coefficient (R2) 0.982 0.999
Mean prediction error, MPE (%) 24 5
Standard deviation (%) 2.2 0.3

nature and composition of melamine (C3H6N6), an increase in the CN molecule
signal with increasing concentrations of melamine was observed.

Two calibration procedures were used for quantification purpose. Firstly, a
conventional calibration curve was calculated by integrating the CN emission band
in the spectral range between 382 and 389 nm. Figure 1.3a shows the correlation
between the integrated area and the nominal adulterated ratio. Each point represents
the value averaged of 30 LIBS spectra (10 for each of the three replicates at the
same adulteration percentage) and the error bars show the relative standard deviation
(RSD) between the three measurements. Black squares represent reference values,
whereas blue circles the test value. The regression coefficient value was found to be
0.982.

A multivariate prediction curve using NN (Fig. 1.3b) was also studied. For this
purpose, the same wavelength ranges, as in the qualitative analysis, were used as
input to the NN model. In this case, an improvement in the correlation coefficient
was observed, obtaining a value of 0.999 (see Table 1.6) and showing a perfect
agreement between the actual and NN predicted concentration.

To compare both methods (univariate and multivariate), the mean prediction error
(MPE) was calculated following Eq. (1.4) [67]:

MPE = 1

N

N∑

i=1

| ri − yi |
ri

× 100 (1.4)

where N is the total number of spectra, ri the prediction output, and yi the actual
value. A MPE of 24% and 5% was obtained for the univariate and multivariate
methods, respectively. Table 1.4 shows an overview of the quantification parameters,
it is clear that the multivariate NN approach provided better results for the
quantification of adulterated milk samples.

Taken together, these results seem to indicate that NN is more accurate than
the conventional univariate method. This can be attributed to NN being able to
model complex non-linear structure of the data. Although owing to its various
functions and architecture, it may be difficult to implement NNth another standard
chemometric methods, the results obtained in this study demonstrate that LIBS
combined with NN offers significant advantages in the quantitative analysis as well
as for the classification purpose.
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1.4.4 Honey Adulteration

Honey is the third most adulterated product in the world and a non-negligible
percentage of honey consumed in Europe contains adulterants and/or contaminants.
This was confirmed in the report presented by European Commission, March 1,
2018, on the perspectives and challenges for the beekeeping sector of the European
Union (2017/2115 (INI). In addition, massive imports of honey from other countries
into Europe have caused significant economic losses for producers which represent
over 620,000 beekeepers [68]. Beekeeping sector is significant for the EU and
contributes around EUR 14.2 billion to the economy every year. This fact combined
with the suspicion of adulteration and agrochemical contamination, calls for new
approaches for honey testing, with the aim of implementing new methods of control.
One of the most common forms of honey adulteration is the addition of rice syrup
or corn syrup in it. Being a highly complex sample, it becomes really challenging
to detect adulteration in it. Furthermore, there is no single available method that can
simultaneously detect all forms of honey adulteration [69]. The real-time detection
is not simple and requires very complex instrumentation and high technical level
of the operators. On the other hand, the contamination of honey with heavy metals
or another environmental contaminant through bees is a problem that is difficult to
detect with current methods and technology.

Honey adulteration and agrochemical contamination resulting from the environ-
ment or originating from chemical products used for the treatment of varroosis
sector are two major challenges faced by EU countries in the beekeeping sector.
Honey is a natural product that has been valued for its sweetening properties since
ancient times and has a long history of medicinal use [70]. Honey consumption has
increased during the past decades due to consumers’ preference for natural and pure
products with no additives or preservatives [71]. Therefore, limited production and
complex composition of honey combined with relatively high prices can be counted
as major incentives provided for honey adulteration, thereby affecting consumers
and honey producers [69].

LIBS technique offers instant spectra acquisition, minimal sample treatment,
simplicity, versatility, experimental flexibility portability of the set-up and cost
effectiveness provide an excellent combination of features to LIBS as an analytical
tool for analysis of a wide range of food samples. In honey analysis, preliminary
results that have been obtained show that LIBS offers the expected results by
distinguishing between pure honey and adulterated honey (Fig. 1.4). In addition,
excellent difference is observed between honey with protected designation of origin
(PDO) and honey with protected geographical origin (PGO).

1.5 Conclusions

Laser induced breakdown spectroscopy (LIBS) technique has been evaluated to be
applied for a real world application for a fast and robust control of adulteration
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Fig. 1.4 Typical spectrum of a sample of pure honey obtained in air and in the environmental
conditions of the laboratory. The assignment of the emission lines to the majority elements is
shown

of olive oils, wine, milk, and honey. The results obtained indicate that although
the intensity of the spectra can change from pulse to pulse and from day to day,
it does not affect the system’s ability to identify the sample. Despite that there
are not significant/notable variations in the spectra of the samples from which the
all samples can easily be discriminated. From a mathematical point of view, each
sample can be discriminated based on its complete spectral fingerprint. The full
sets of variables (intensities at each wavelength) that constitute the sample spectrum
are vital in the process of comparison performed by the NN, which constitutes the
basis of their ability to carry out the difference. The NN is able to compute internal
parameters (weights and bias) in the training process for categorizing a given set
of input variables as belonging to particular sample, with a high tolerance for noise
and the presence of outliers.

The LIBS/NN combination allowed to clearly distinguish between the wine
and milk and honey as well as differentiating the pure samples with a 100% of
correct classification in all cases. On the other hand, the quantification of melamine
in toddler powdered milk sample showed that the multivariate analysis by NN
quantitative model produced better results than conventional calibration. It has been
demonstrated that the emission band of the CN correlates to the molecular nature
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and concentration of melamine. Although the methodology calls for further studies
to increase the reliability and accuracy, the developed LIBS/NN methodology pro-
vided a sensitive and robust analysis to detect and quantify melamine in powdered
milk sample or honey samples. The results show that LIBS/NN combination, along
with its speed of analysis, reduced cost, and ease of use has the potential to serve
as a useful screening tool in the quality control of food, both quantitatively and
qualitatively.
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Abstract

Infrared spectroscopy, one of the vibrational spectroscopies, has emerged as rapid
and powerful analytical technique for identification and quantitative analysis
of food component. FTIR spectra is fingerprint analytical technique, therefore,
by selecting the specific region, some analytical purposes can be achieved
such as identification, confirmation and quantitative analysis of analyte(s) of
interest in food samples. Equipped with some sampling technique such as
attenuated total reflectance and combined with chemometrics software such as
principal component analysis for classification and multivariate calibration for
multicomponent analysis, FTIR spectroscopy has been successfully used for
compositional analysis of food. The method is rapid with minimum or without
sample preparation and is not involving the extensive solvents and reagents.
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2.1 Introduction

Infrared (IR) spectroscopy is analytical technique related to interaction studies
between analytes and electromagnetic radiation. This interaction can be in the form
of transmission, absorption, scattering and reflection of light due to incident light
in the spectral range corresponding to infrared region into samples. The frequencies
or wavelengths, at which the samples absorb IR radiation and their corresponding
intensities (either transmittance or absorbance), are recorded into IR spectrum [1].
IR spectroscopy is the most vibrational spectroscopic techniques widely applied in
food analysis [2], which measure the vibrational energy levels in a compound [3].
IR spectroscopy is one of fingerprint analytical techniques, commonly applied in
wide application in food science. Fourier transform infrared (FTIR) spectroscopy
is an ideal technique for characterization and identification, confirmation, and
quantitative analysis of food components [4].

There are two types of spectrometer, namely dispersive instrument and Fourier-
transformed spectrophotometer based on interferometer. FTIR spectroscopy offer
some advantages in identification and quantitative analyses including fast spectral
data acquisition, without or minimal sample preparation, non-destructive in which
the analysed samples by FTIR spectroscopy can be analysed using other methods
like chromatographic-based techniques, high-throughput, low cost, applicable for
a wide range of physical sample types (liquid, semi-solid and solid samples).
Besides, IR spectroscopy can be used for analysis of multiple analytes, especially
in combination with multivariate analysis [5]. FTIR spectroscopy can be used in the
wide range of wavenumbers region which provide excellent resolution of spectra
along with the large number of peaks, which can be correlated with the presence
of certain analytes in the samples [6]. Due to its versatility with minimum use of
solvents, FTIR spectroscopy is considered as green analytical techniques which are
more environmentally friendly [7].

However, FTIR spectroscopy also has some drawbacks. The environment condi-
tion could affect the nature of spectra, therefore the temperature and humidity must
be controlled. The FTIR spectra may vary which make the spectral interpretation
more complicated [8]. The spectral data obtained are frequently complex which
need sophisticated statistical tools known as chemometrics. The advance develop-
ment of multivariate calibration can assist the resolving unique spectral patterns,
improving instrument sensitivity, and monitoring the analyte characteristics in the
analysed samples [9].

2.2 Infrared Spectroscopy

In analytical chemistry, infrared spectroscopy is considered as powerful technique
for analysing inorganic and organic samples, in the form of gases, liquids, and solids
either qualitatively or quantitatively. IR spectroscopy is based on the vibrations
(stretching or bending) of chemical bonds within the molecules at specific frequen-
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cies. The vibrations can be described by the laws of physics (Hooke laws). The
chemical bonds can absorb IR radiation; they are excited to a higher energy level
which make the vibration of bonds at specific frequency. At ambient temperature,
molecules are in the levels of zero energy [10].

The region of IR radiation can be categorized in three regions, near-infrared
(NIR), mid-infrared (MIR) and far-infrared (FIR). NIR corresponds to wavenum-
bers of 14,000–4000 cm−1 (or wavelength of 800–2500 nm), MIR corresponds to
4000–400 cm−1 (or wavelength 2500–50,000 nm) and FIR corresponds to 400–
50 cm−1 (or wavelength 50,000–1,000,000 nm). Among these regions, MIR is
the most widely used for the analytical purposes including qualitative analysis,
confirmation and quantitative analyses of food composition within the analysed
samples [11]. FTIR spectra are fingerprint spectra and can be used to characterize
the chemical compounds. FTIR spectra can be obtained using the modes of
absorbance or transmittance. The energy at any peak in IR spectrum corresponds
to the vibrational frequency of functional groups present in the sample molecule
[12].

2.2.1 Infrared Absorption Process

IR spectroscopy is mainly related to the molecular vibrations. The molecular
absorption of EMR in IR region can cause the transition between the ground (lowest)
state and the rotational and vibrational energy levels in the molecules [13]. As other
absorption processes in spectroscopic techniques, the absorption of IR radiation
is a quantized process, meaning that functional groups in molecule samples only
absorbed IR radiation at selected frequencies (energies) which corresponds to
energy changes in the order of 2–10 kcal/mol. Radiation in this range corresponds
to the stretching and bending vibrations of the chemical bonds in the most covalent
molecules [1], corresponding to the energy levels of chemical bonds. According to
Hooke’s law, the frequencies of stretching and bending vibrations are affected by
(a) the mass of the atoms, in which the higher the mass the lower the frequency, (b)
the geometrical shape of the molecules, (c) the bonds stiffness and (d) the periods
of the associated vibrational coupling.

To absorb IR radiation, bonds in the molecule must have dipole moment such
as CH2. The modes of vibration can be either stretching (change in bond length)
or bending (change in bond angle). Stretching can be symmetrical (in plane)
or asymmetrical (out of plane), and the bending vibration is identified as rock
or deformation when moved in the same or in opposite direction, respectively
[14]. Figure 2.1 illustrates the vibration modes of methylene (–CH2–) group. The
modes of vibration can be either stretching (in which bond length is observed)
or bending (in which bond angle is changed). Stretching can be symmetrical (in
plane) or asymmetrical (out of plane). The bending vibration is identified as rock or
deformation when moved in the same or in opposite direction, respectively. The
modes of vibration can be either stretching (in which bond length is observed)
or bending (in which bond angle is changed). Stretching can be symmetrical (in
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Fig. 2.1 The vibration modes (stretching and bending) in CH2 group. Adapted from [1]

plane) or asymmetrical (out of plane). The bending vibration is identified as rock or
deformation when moved in the same or in opposite direction, respectively [15].

2.2.2 Instrumentation

The instrument systems of infrared spectrometers can be in the form of dispersive
and Fourier-transformed using interferometer [16]. The dispersive type has not been
widely used in chemical analyses because some difficulties were met in sample
handling. Dispersive instrument is also not equipped with software to treat the
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Fig. 2.2 Schematic of FTIR spectrophotometer. Adapted from [20]

spectral acquisition and processing systems. Therefore, in the last decades, FTIR
instrument has replaced dispersive instrument and has appeared to become an
important method for certain analytical purposes [17].

FTIR spectrophotometers are based on interferometer, therefore, they differ fun-
damentally from dispersive spectrometer. The Michelson interferometer is typically
used in most FTIR spectrophotometers (Fig. 2.2). Michelson interferometer is
normally composed of two mirrors, namely moving mirror and stationary mirror.
In interferometer, the moving mirror will travel at constant velocity. The beam
splitter made from KBr coated with Ge is located between two mirrors [18].
Beam splitter will divide the radiation beam into two parts, one part will be
transmitted into a moving mirror while the part one is reflected into stationary
mirror. When the radiation beams are reflected back, they will recombine to
produce constructive/destructive interference patterns. After the IR energy has been
selectively absorbed by a sample located between the beam splitter and the detector,
the fluctuations in the energy intensities will reach to detector and then will be
digitalized in real time, yielding an interferogram [19].

The obtained interferogram encompasses all requisite information during FTIR
spectra of the analysed sample; however, interferogram outputs are in the time
domain. The interferogram in time domain is then converted to frequency domain
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using Fourier transformation for producing conventional FTIR spectrum. Fourier
transformation is a mathematical algorithm typically applied during the decoding
interferogram to obtain interpretable information related to individual frequencies
in FTIR spectrum. Wavelength accuracy is necessary in order to obtain correct and
highly resolved spectra. It is dependent on knowing the exact position of the moving
mirror and is achieved using an internal reference laser (He-Ne), which monitors the
position of the moving mirror during the scan. This leads to the precise scanning and
to accurate spectrum collection in relation to the wavelength position, which is a key
determinant for quantitative spectroscopy [1].

Because of its rapidity in scanning of FTIR spectra and its capability to
provide sensitive response, FTIR spectrophotometers are the instrument choice for
analysis of samples. FTIR instruments have distinct advantages over dispersive
spectrometers, namely: (a) Fellgett advantage capable of providing better speed
and sensitivity; (b) Jacquinot advantage by increasing the optical throughput; (c)
dispersion or filtering of slits is not needed; (d) Connes advantage as shown
by the presence of internal laser reference; (e) simpler mechanical design; (f)
the contributions of stray light and light emission are eliminated and (g) FTIR
instrument is easily connected and compatible with powerful data recording [21].
The significant advantage of FTIR instrument is the multiplexing advantage, in
which all frequencies corresponding to absorption of chemical bonds can be
measured simultaneously, as a consequence, whole FTIR spectra of analysed
samples can be obtained in a single scanning. In addition, the signal of FTIR
spectrophotometer has excellent sensitivity as indicated by higher ratio of signal
to noise (S/N) that of dispersive instrument. Another important factor in the success
of FTIR spectroscopy is the sophisticated software of chemometrics included in
the instrument which facilitates spectral scanning and spectral treatments like
derivatization and smoothing.

2.2.3 Sampling Preparation Techniques for Infrared Spectroscopy

Because of the large diversity of uses of IR spectroscopy in analysing and character-
izing of food samples, a large number of sample preparation techniques have been
developed and marketed over the years. Different sampling techniques have been
used for obtaining better quality spectra, and new sensitive techniques have been
developed and used in order to evaluate previously intractable samples. They can
be divided into a few categories, namely transmission, internal reflectance, external
reflectance, diffuse reflectance, photoacoustic detection and gas chromatography-
infrared (GC/IR) [22]. According to USP 42 general method <854> Mid-Infrared
Spectroscopy [23], the most common sample preparation techniques for FT-IR
spectroscopy are by using potassium bromide disk, mineral oil mulls, self-supported
polymer film, capillary film, liquid and solutions in transmission cells, gases,
attenuated total reflectance, diffuse reflection and microscope sampling. In principle
those techniques can be separated into transmission-, attenuated total reflectance
(ATR)-, and diffuse reflectance-technique [24].



2 The Use of FTIR Spectroscopy Combined with Multivariate Analysis. . . 31

2.2.3.1 Transmission Technique
By transmission technique, the sample is placed precisely into sample holder.
IR beam is passed through the holder containing the analysed samples, and the
transmitted light is detected and recorded as IR spectrum. Samples should be
first prepared as pellet, mull and film, before the measurement can be performed.
The transmission techniques can be used alone, or in combination or with using
accessories e.g. liquid-, gas-cells, microscope or gas chromatography.Many types of
samples such as solid powders, liquids, gas, polymer film, can be analysed by using
this technique [24]. Powdered organic and inorganic sample (1–2 mg) should be well
mixed with 150 mg alkali halide (e.g. potassium bromide, potassium chloride and
caesium iodide), finely pulverized to get homogenous mixture, and put in die to get
pellet. In order to get transparent pellets, a power of around 8 tons is applied under
a vacuum of several mmHg for several minutes. The pellet is then inserted into a
sample holder in the spectrometer for analysis [23, 25, 26]. For preparing mull, 10–
20 mg sample were pulverized in mortar then grinded with saturated hydrocarbon
mineral oil (liquid paraffin, Nujol), to obtain a suspension, then the suspension was
transferred into the cell (potassium bromide, sodium chloride, silver bromide or
caesium iodide). Liquid paraffin exhibits absorption near 3000–2800 cm, 1460 cm,
1375 cm and 730 cm. Liquid sample can be measured by dropping it into the
transmission cell, while gaseous sample can be analysed by the gas cell. Sample
as thin film can be prepared by either melting or dissolved by solvents; this thin film
method usually is used for analysing the polymers [27]. FT-IR spectrophotometer
can be connected to a GC-IR module that contains liquid-nitrogen cooled MCT-A
detector for performing GC-FT-IR analysis [28].

Some advantages of the transmission method are economical, well established,
excellent spectral information and can well applied for quantitative work [24]. The
disadvantages of transmission method that generally using alkali halide pellets or
cells are hygroscopic; it needs skilled analyst and time consuming for preparing,
liquid cells need to be filled without air bubble, homogenization of sample and
alkali halide is difficult to achieve for some substances/materials like rubbers or
other elastomers [29]. The other limitation of this technique is related to the
sample thickness (except for gaseous samples), because the amount of IR energy
absorbed by the sample is proportional to its thickness. Consequently, beyond a
certain thickness, the sample will not transmit any IR radiation in the regions of
the spectrum where it is strongly absorbing; therefore, no signal will reach the
detector. The thickness is arranged in such a way that gives the absorbance value
of 0.1–0.8 [30]. In order to overcome those disadvantages, a relatively new method
of attenuated total reflectance (ATR) mode has been developed.

2.2.3.2 Attenuated Total Reflectance
For its simplicity, the sampling technique of ATR is widely used for analysis
of the analysed samples. ATR is considered as one type of Internal Reflection
Spectroscopy (IRS). The sample is positioned in good contact against special ATR
crystal called an internal reflectance element (IRE) [31]. The basic principle of ATR
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Fig. 2.3 A multiple reflection of attenuated total reflectance (ATR) system. (Courtesy of
PerkinElmer, Shelton, CT 06484, USA) [29]

is shown in Fig. 2.3. An infrared beam enters the ATR crystal which has high
refractive index at certain angle (usually 45◦). The fraction of the light wave that
reaches into the sample is called the evanescent wave. This wave will penetrate
only a few microns (0.5–5 μ) beyond the crystal surface and then penetrate into
the sample. In those spectral regions, the evanescent wave will be attenuated due to
absorption of IR light by the analysed sample. After multiple internal reflections, the
IR beam exits from the crystal and is then directed into the detector and recorded to
get IR spectra. The system then produces an absorption infrared spectrum. During
ATR scanning, the sample must be in good contact with ATR crystal surface. All
sorts of samples can be placed directly on the surface of an ATR crystal, afterward
measurements can be directly performed, and typically it needs only within seconds
[29]. In order to attain the success of ATR, some conditions must be fulfilled namely
[1] the sample must be on direct contact with ATR crystal, because the evanescent
wave or bubble only extends beyond the crystal of 0.5–5 μ and [2] the refractive
index of ATR crystal must be higher than that of the analysed sample. Usually,
refractive index values of ATR crystals are between 2.38 and 4.01 at 2000 cm−1

[32].
There are some common crystals materials for ATR i.e. zinc selenide (ZnSe), ger-

manium (Ge), silicon, diamond and KRS-5 (thallium iodide or thallium bromide).
ZnSe (refractive index 2.43; spectral range 20,000–500 cm −1) is a relatively low-
cost ATR crystal and is perfect for analysing liquids and soft sample (gels). ZnSe
can be used between pH 5 to pH 9. Due to relatively easily to scratches of the ZnSe
crystal, care must be taken when cleaning it. Germanium (refractive index 4.01;
spectral range 5000–600 cm−1) is used to analyse highly absorbing samples like
carbon-black coloured rubbers. Ge has a much better working pH range. Ge can be
used for analysing weak acids and alkalis. Diamond (refractive index 2.40; spectral
range 40,000–100 cm−1) is the best ATR crystal material due to is robustness and
chemically inert. The drawback of diamond is relatively more expensive compared
to two other crystals. The ATR crystal must be always cleaned, usually by using a
solvent soaked in piece of tissue (MeOH, Water, Isopropanol) [29, 33].
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ATR technique provides a simple and convenient means of acquiring the IR
spectra of a wide variety of samples; many of them are not readily convenient to IR
analysis using conventional transmission measurements [34]. Some advantages of
ATR are minimal or without sample preparation, fast and easy to clean up, analysis
of sample in their natural states and excellent for thick or strongly absorbing samples
[24]. According to our experience almost all kind of samples can be well analysed
using ATR i.e. drug raw materials, drug preparations, powdered herbal drugs, dried
leaves, plastics, liquids, etc.

2.2.3.3 Diffuse Reflection Infrared Fourier Transform Spectroscopy
(DRIFTS)

By this method sample was mixed 90–99% with an IR diluent transparent matrix
(e.g. as KBr). DRIFTS can be applied of both powdered organic and inorganic
(<10 μm). The IR radiation will interact with the sample particles and then will
reflect off their surfaces, causing the light to diffuse, or scatter, as it moves
throughout the analysed sample. The scattered light is then directed into the detector.
The advantages of this method are almost no sample preparation, no need to form
KBr pellets and relatively fast [23, 24]. The original DRIFTS spectrum is recorded
as diffuse reflectance (R%) vs. wave numbers, which is the ratio of single beam
spectrum of the sample to that of non-absorbent references. Since R% is not linear
with concentrations, generally it is converted to log (1/R) for NIR spectra, while for
MIR it should be converted to Kubelka-Munk function. For sample with a higher
absorption index, larger particle size and higher refractive index, interference of
specular reflection becomes more significant [27].

2.2.3.4 FT-IR Microscopy
FT-IR Microscopy (FT-IR-M) comprises a FT-IR spectrometer, an infrared detector
and an optical microscopy. The microscope must be free from any glass lenses,
as glass can absorb all IR light. Therefore, the optical elements used are gold- or
aluminium-coated mirrors, or some other windows with IR transparent [35]. The
central elements of an infrared microscope are a pair of reflective condensing objec-
tives with a Schwarzschild/Cassegrain design, which focus/collect light to/from
samples, allowing both transmission and reflection spectroscopy [36]. Typically, FT-
IR-M can be measured using either transmission-, or reflection-mode [37, 38]. The
infrared pathway in a PerkinElmer Spotlight 200 FT-IR-M system was illustrated
by Fig. 2.4 (in transmittance form) and Fig. 2.5 (in reflectance form) [39]. The
quality of the FT-IR-M spectra was affected by spatial resolution, signal-to-noise
ratio and the spectra artefacts, which could be defined as the variation of absorbance
or location of spectral bands due to non-chemical effects [38]. Two types of MIR
array detectors commercially available for FT-IR-M are linear and focal plane array
(FPA). FPA detector can be used from near infrared to 900 cm−1, while a 16 pixels
linear array can be used for measurement to lower wavenumbers (720 cm−1) [37].
New FPA detector is comprised of a matrix of 16 × 16 up to 128 × 128 detector
elements; this allows user to acquire up to 16,000 pixels/spectra simultaneously
[40]. The relatively new Linear Array Detector (LAD), capable of incorporating
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Fig. 2.4 Path of the infrared beam for collecting an image in transmittance in spotlight 200 FT-IR
microscopy system. Light from the spectrophotometer is reflected off the toroid onto the lower
dichroic mirror which sends it through lower Cassegrain; the upper dichroic mirror reflects the
beam onto the detector Cassegrain; the detector Cassegrain focuses onto the detector (Courtesy of
PerkinElmer, Shelton, CT 06484, USA) [41]

Fig. 2.5 Path of the infrared beam for collecting IR spectra in reflectance in spotlight 200 FT-IR
microscopy system. The toroid moves to send the beam to the reflectance illuminator assembly
dichroic mirror, which sends it to through upper Cassegrain; The beam reflected off sample and
back through to the other side of Cassegrain toward the remote aperture; the detector Cassegrain
focuses onto the detector (Courtesy of PerkinElmer, Shelton, CT 06484, USA) [41]
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high-quality mercury cadmium telluride (MCT) is arranged as 16 gold-wired IR
detector elements. MCT has been already patented by Perkin Elmer, and MCT
detector can measure up to wavenumbers of 580 cm−1 [39]. The spatial resolution
is depended to its numerical aperture (NA), while the smallest distance (δ) at which
two points of the analysed sample can still be separated is inversely proportional to
NA (δ = 0.61 λ/NA).

Because the numerical aperture of the objective mirror in FTIR microscopes
is about 0.6, then δ value is equal to wavelength λ [40]. For transmission mode
sample can be placed directly on sample windows that employ IR transparent
materials (NaCl or BaF2); BaF2 is preferred due to its low water solubility. If
the sample is too thick it can be flattened by using a roller blade or a micro
compression cell; other method for transmittance mode is by placing the sample in
two diamond windows, or as a thin section that can be obtained by microtome. ATR
FT-IR-M is frequently used for reflectance mode by using a micro-ATR objective;
Germanium (5500–600 cm−1) and Silicon (7800–800 cm−1) are generally used
as ATR objective crystal materials [41–43]. Recently Agilent developed a Laser
Direct Infrared Imaging System (LDIR); this LDIR can relatively collect data faster
compared to conventional FT-IR-M [44]. The main advantage of applying FT-IR-M
is non-invasive; it does not need staining or labelling of the sample; the molecules
are identified based on their characteristic IR vibrations. FT-IR-M delivers the group
of compound information of the targeted area. Therefore FT-IR-M is also called as
chemical imaging method [40].

2.2.3.5 Two-Dimension FT-IR Correlation Spectroscopy (2D FT-IR)
Sometimes it is very difficult to differentiate different samples by carrying out a
conventional FT-IR only (absorbance- or transmission-mode) due to their close
similarity. To overcome this problem, the conventional FT-IR spectra can be
converted to their second derivative infrared spectra, and/or performing a 2D FT-IR
[26]. 2D FT-IR can be prepared by using a KBr pellet, which will be perturbed by
some physical or chemical stimulus using a special device; these stimuli will induce
a dynamic 2D spectrum. A physical thermal stimulus was usually used for preparing
a 2D FT-IR spectrum [45]. As example, 2D FT-IR spectra of some Polygonum minus
can be prepared by using a thermal stimulus at certain range of temperatures (e.g.
40–120 ◦C, interval of 10 ◦C) [46]. The dynamic 2D infrared spectra can be obtained
by plotting absorbance intensities and variables (wave number and perturbations);
the spectra can be shown as three-dimensional spectra or as a contour plot. Two-
dimension (2D) correlation infrared spectra, synchronous and asynchronous 2D,
can be directly observed. A synchronous 2D FT-IR spectra of powdered Curcuma
longa (KBr pellet) which was prepared at our laboratory was presented in Fig. 2.6
(unpublished work).

In synchronous FTIR spectrum, peaks presented the coincidence of the spectral
intensity’s differences (increase or decrease) at corresponding variables wave
numbers vi and vj during perturbations. The synchronous correlation intensity of
wave numbers (vi, vj) characterizes the degree of coherence between two signals
that are measured concurrently. This intensity becomes maximum if the variations
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Fig. 2.6 How to generate two-dimension (2D) correlation spectrum of powdered Curcuma longa
by using five levels thermal perturbations (unpublished results)

of the two dynamic IR signals are totally in phase with each other, and minimum if
they are antiphase. IR signals which are nearly orthogonal to each other should yield
almost no synchronous correlation intensity. A cross peak (at vi, vj) was observed if
the spectral intensities at vi and vj changed instantaneously when perturbation was
applied. The cross peak is positive if the intensities of vi and vj both increase (or
decrease) along the perturbation, otherwise the cross peak is negative. 2D FT-IR
spectrum is symmetric with respect to the diagonal line in the synchronous spectra.
The variation of the spectra intensity at a variable is always the same as itself so
there are only positive peaks that defined as auto peaks along the diagonal of the 2D
synchronous spectrum. An auto peak characterizes the overall susceptibility of the
spectral signal to change intensity when an external perturbation is applied [26, 45].

The asynchronous spectra afford the sequence of the spectral intensities’ varia-
tions at different wave numbers vi and vj during the perturbations. The asynchronous
correlation intensity on the other hand will characterize the coherence degree
between signals measured at two different instances, which are separated by a
correlation time. The asynchronous correlation intensity will be maximum if the
dynamic signals are orthogonal to each other, and will be minimum when the signals
are exactly in phase or antiphase with each other. A cross peak at vi, vj is detected if
the spectral intensities at vi changed before or after the variations of vj. No diagonal
peaks are observed in asynchronous 2D correlation spectrum [26, 45].
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2.3 Chemometrics

The success of FTIR spectroscopy for analysis of food composition is supported by
statistical analysis and chemometrics. Fortunately, some sophisticated instruments
were equipped with statistical and chemometrics software [47]. Chemometrics,
also known as multivariate data analysis (MDA), is a branch of chemistry which
apply mathematics and statistics sciences to treat chemical data either quali-
tative or quantitative data (pH, concentrations, weights, etc.). Some topics are
covered in chemometrics, namely descriptive statistics, the experimental design,
process optimization, signal detection and signal processing, multivariate calibra-
tion, classification modelling and analytical quality assurance [48]. Chemical data
typically include properties and values of numerous compounds as determined
by instrumental methods and having various sources of variance. Accordingly,
statistical evaluation of such data should use one or more multivariate data statistics
(chemometrics). Multivariate statistics allows the simultaneous analysis of several
independent variables (factors) against several dependent variables or responses
[49].

Chemometrics is exploited for multivariate data collection and analysis proto-
cols, calibration modelling, classification and cluster modelling, signal correction
and compression, method optimization and statistical process control. Singh et al.
[50] stated that chemometrics is useful means for the real-time in-process testing
and is a valuable process analytical tool. In general, chemometrics or MDA are
categorized in two classes: (a) chemometrics for qualitative data analysis intended
for identification or classification purposes using pattern recognition methods and
(b) multivariate calibration intended for facilitating the quantitative analytical
purposes.

In analytical purposes, the most widely uses of MVA in FTIR spectra include
confirmation, qualitative analysis, purity test and quantitative analysis of food
components are (a) FTIR spectra processing by applying some pre-treatment spectra
of mean centring, Savitzky-Golay derivatization, smoothing, etc. Spectra pre-
treatment can enhance the accuracy and robustness of spectra resulting in reliable
data, while spectra derivatization (1st, 2nd, 3th or higher order) can enhance the
resolution of overlapping peaks [51–53]; (b) pattern recognition either unsupervised
such as principal component analysis and cluster analysis or supervised like
discriminant analysis with its algorithm variations; (c) multivariate calibrations
(MC) using several algorithms including principle component regression and partial
least square; (d) experimental design typically used for optimization of analytical
conditions during food analysis [55]. Some methods such as analysis of variance and
response surface methodology are widely used for optimization of factors affecting
food analysis [54].

The steps of analytical procedures which involved FTIR spectroscopy and
chemometrics techniques in food analysis can be briefly described as: (a) definition
of food analysis problems, i.e. confirmation, identification (qualitative analysis) or
quantitative analysis, (b) sampling process, (c) acquisition of FTIR spectra using
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FTIR spectrophotometer, (d) pre-treatment (processing) of FTIR spectral data, (e)
selection of chemometrics models, (f) selecting calibration and validation sets of
samples, (g) the chemometrics model optimization in calibration using selected
variables, namely absorbance values at specific wavenumbers region, (h) validation
of chemometrics model and (i) making conclusion of chemometrics models [56]. All
these steps can be assisted using sophisticated statistics software, among these are
Minitab®, Unscrambler®, SIMCA® SIRIUS®, Matlab® and Pirouette®, Grams®

32 [57, 58]. Currently, free interface software of Chemoface has been developed by
Prof. Cleiton A. Nunes et al. for chemometrics analysis [59].

2.4 Applications of FT-IR for Food Analysis

Some books and review articles, which described and discussed the general appli-
cation of FT-IR for the analysis and quality control of food preparations, have been
published in the last ten years. In 2009, Sun [27] edited a book entitled “Infrared
Spectroscopy for Food Quality Analysis and Control”, this book consisted of seven
chapters on fundamental/instrumentation, and eight chapters for applications, which
were comprised of meat, fish, milk, cereal, fruit and vegetable, fruit juice, wine and
beer, egg and related products. Sun et al. [26] published a nice book that discussed
in detail the methods and application of FT-IR for the analysis of complex mixtures
of foods and traditional Chinese medicines. Rodriguez-Saona and Allendorf [60]
wrote a review article on the application of FT-IR combined with MVA for the
authentication and detection of food’s adulterants. A mini review on the application
of mid-infrared as a tool for phenotyping tool of milk trait has been published
by Marchi et al. [61]. Khan et al. [62] described the application of FT-IR for
identification of food’s adulterants in honey, milk, wines, fat and oils. A review
article on the application of FT-IR for detecting specific regulated or toxic plant
in plant food supplements and herbal drugs has been published by Deconinck et
al. [63]. Su and Sun [64] published a review article on the application of FT-
IR, Raman and hyperspectral imaging techniques for quality determinations of
powdery foods (e.g. milk, tea, cocoa, coffee, soybean floor, wheat flour, culinary
powder). Application of FT-IR for checking the quality and safety of fat and oils
was recently reviewed by Li et al. [65]. FTIR and its combination with various
techniques (NIR, MS) for detecting food adulterants has been reviewed by Valand
et al. [66]. Furthermore, Rohman [5] published mini review on the application of
FT-IR for traceability and authentication of meat and meat products.

The objectives of the applications of FT-IR, 2D FT-IR combined with multivari-
ate analysis (MVA) or chemometrics for analysis of food, which were described
and discussed in books and article, which were cited in this present chapter, can
be been summarized in Box 2.1. Our experiences showed that all kind of raw
material (RM) from plant origin (including leaves, fruits, beans, herbs, etc.), meats
and related animal products can be analysed by FT-IR. Sun et al. [67] and Sun
et al. [26] have outlined a tri-level infrared identification for qualitative analysis
by using FT-IR. Sample usually could be identified or differentiated by comparing
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Fig. 2.7 By using two-dimension Fourier transform infrared (2D FT-IR) sample of Wuweizi
(Schisandrae chinensis Fructus) and Nanwuweizi (Schisandrae sphenantherae Fructus) (Courtesy
of PerkinElmer, Shelton, CT 06484, USA) [39]

their FT-IR spectra, and this is known as primary identification. The secondary step
of identification is based on the second derivative infrared spectroscopy (SD-IR);
some overlapped peaks, which were observed in the primary identification could be
well differentiated by using SD-IR. In case, it was not possible for identification
of a sample by using primary- and secondary-step, due to almost similar observed
spectra, a two-dimensional correlation infrared (2D-IR) spectroscopy method can be
applied; this 2D-IR is known as a tertiary step of identification method. Figure 2.7
showed the FT-IR spectra of the two fruits, which were similar, so the differentiation
of those two fruits was difficult, but by using 2D FT-IR, both fruits can be easily
discriminated. For identification and classification purposes by using primary and
secondary identification methods, generally MVA was applied for data evaluations
(e.g. PCA, PLS-DA, SIMCA). See Sect. 2.3.

Quantitative analysis by FT-IR can be performed by construction of a linear
regression between concentrations of standard against the ratio of intensities of two
specific wave number of the absorption FT-IR spectra; concentration of sample can
be calculated from the linear calibration regression curve [26]. Quantitative analysis
of the sample can be also done also using MVA (PLS); this will be discussed in
section Chemometrics. It is very important to note, that before any data collections,
method validation should be first performed. This present review will be focused on
the application of FT-IR for analysing for fat, oil, fruits, beans and related products
which appeared in the last ten years.

2.4.1 Application of FT-IR for Fruits, Beans and Related Products

The objective of application of FTIR spectroscopy in combination with multivariate
data analysis (MVA) in food analysis is compiled in Box 2.1. Furthermore, Table 2.1
summarized publications that reported the application of FT-IR for analysing fruits,
beans and related products. As shown in the table, ATR method was the most used
method, this could be due to its simplicity of the method. Almost all publication
used MVA for evaluations the FT-IR data.
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Box 2.1 The Objectives of the Application of Combination FT-IR, 2D FT-
IR and MVA for Food Analysisa

a. Identification of raw RM; discrimination of the same RM, which was
based on variants, geographical origins, harvested time and treatments
b. Rapid identification of genuine and counterfeit products
c. Quality control of the products
d. Differentiate products from different manufacturers
e. Stability evaluation of the RM and related products
f. Performing qualitative and quantitative analysis of compounds or group of
compounds in RM and/or products
g. Monitoring and analysing the manufacturing and extraction processes
h. Performing rapid qualitative identification of RM in various formulations
of the product.

aModified from PerkinElmer, Complete Solution for Traditional Medicine
Research and Analysis [68]

The distribution of certain class compounds (e.g. lipids and or sugars) in the
cross section of a tomato fruit can be clearly observed by using FT-IR-M. Figure 2.8
showed the distribution of the absorbance at 1740 cm−1 (C=O lipid) corresponding
to the lipid distribution, while Fig. 2.9 showed the distribution of sugars or carbohy-
drate can be detected using absorbance at 1050 cm−1 (OH); the red area corresponds
to a high concentration of lipid relative to the blue area. The distributions and
relative concentrations of proteins, carbohydrates and the waxes/lipids in the cross
section of a wheat stem can be also easily determined by using FT-IR-M [40]. This
showed that FT-IR Microscopy can be well used for searching and determining the
locations and distribution of a certain compound or group of compounds in certain
tissue(s) or organ(s) of plant and animal. Unfortunately, there is not many works
that have been published on the application of FT-IR-M for food analysis.

2.5 Advantages and Disadvantages of Infrared Spectroscopy
in Food Analysis

Some advantages of the application of FT-IR in food analysis are: the FT-IR
spectrometer is relative cheap, sample preparation is simple, sample also can direct
to be measured without any sample preparation, a small of amount of sample is
required, non-destructive method of analysis, less use of hazardous solvent and
decreasing hazard to environmental and human, rapid detection, analysing time
is relatively very fast, various sample analysis can be analysis (such as, solids,
liquids, semi-solids, powder samples, herbs etc.), relatively low operational cost,
FT-IR can be used for both quantitative and qualitative methods, repeatability of the
measurements is relative good, by using standardized method good reproducibility
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Fig. 2.8 Distribution of the absorbance at 1740 cm−1 corresponding to the lipid’s distribution in
the cross section of tomato (Courtesy of PerkinElmer, Shelton, CT 06484, USA) [39]

Fig. 2.9 Distribution of the absorbance at 1050 cm−1 corresponding to the sugar’s distribution in
the cross section of tomato (Courtesy of PerkinElmer, Shelton, CT 06484, USA) [39]

can be achieved. The disadvantages of FT-IR are: biological samples are difficult
to analyse using FT-IR due to strong absorption of OH, FT-IR is sensitive to the
environment change (CO2 and water vapour can affect the spectra), FT-IR cannot
detect atoms and monoatomic ions, elements or inert gas, FT-IR cannot detect
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diatomic molecules such as nitrogen and oxygen [67, 69]. To overcome the problem
of analysing biological fluids by FT-IR, Pupeza et al. [70] proposed a new method
called Field-resolved infrared spectroscopy; detailed discussion of the new method
can be referred in their recent publication.

2.6 Conclusion

Infrared spectroscopy method equipped with modern instrument and sampling
handling technique such as attenuated total reflectance, Diffuse reflection infrared
Fourier transform spectroscopy (DRIFTS), FTIR microscopy and Two-Dimension
FT-IR Correlation Spectroscopy (2D FT-IR) is ideal technique for qualitative
and quantitative analyses of food composition due to its capability to provide
fingerprinting technique. FTIR spectroscopy is widely used for food composition
analysis intended to confirmation and identification of raw materials, discrimination
of food from different origin, authentication of food products as well as the
monitoring and quality control of food production. In the future, the miniature
of FTIR spectroscopy instrumentation makes this technique suitable for on-site
application for rapid quality control.
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University, Surabaya (2016), Dr. Robert Packer (PerkinElmer, Shelton, CA, USA) and Dr. Tan
Boon Chun (PerkinElmer Selangor, Malaysia) for permission to reproduce some figures, Ms. Febry
Ardiana (PT Bernofarm, Sidoarjo, Surabaya) for reference (USP 42, General method <854>) [23].

References

1. Pavia DL, Lampman GM, Kriz GS (2001) Introduction to spectroscopy, 3rd edn. Thomson
Learning, Inc., Boston, p 579

2. Cozzolino D (2014) An overview of the use of infrared spectroscopy and chemometrics in
authenticity and traceability of cereals. Food Res Int 60:262–265. https://doi.org/10.1016/
j.foodres.2013.08.034

3. Teixeira AM, Sousa C (2019) A review on the application of vibrational spectroscopy to the
chemistry of nuts. Food Chem 277:713–724. https://doi.org/10.1016/j.foodchem.2018.11.030

4. Tan HP, Ling SK, Chuah CH (2011) One- and two-dimensional Fourier transform infrared
correlation spectroscopy of Phyllagathis rotundifolia. J Mol Struct 1006(1–3):297–302. https:/
/doi.org/10.1016/j.molstruc.2011.09.023

5. Rohman A (2019) The employment of Fourier transform infrared spectroscopy coupled with
chemometrics techniques for traceability and authentication of meat and meat products. J Adv
Vet Anim Res 6(1):9–17

6. Moros J, Garrigues S, De Guardia M (2010) Vibrational spectroscopy provides a green tool
for multi-component analysis. Trends Anal Chem 29(7):578–591. https://doi.org/10.1016/
j.trac.2009.12.012

7. Gredilla A, De Vallejuelo SF, Elejoste N, De Diego A, Madariaga JM (2016) Trends in
analytical chemistry non-destructive spectroscopy combined with chemometrics as a tool for
green chemical analysis of environmental samples: a review. Trends Anal Chem 76:30–39.
https://doi.org/10.1016/j.trac.2015.11.011

http://dx.doi.org/10.1016/j.foodres.2013.08.034
http://dx.doi.org/10.1016/j.foodchem.2018.11.030
http://dx.doi.org/10.1016/j.molstruc.2011.09.023
http://dx.doi.org/10.1016/j.trac.2009.12.012
http://dx.doi.org/10.1016/j.trac.2015.11.011


2 The Use of FTIR Spectroscopy Combined with Multivariate Analysis. . . 47

8. Li YS, Church JS (2014) Raman spectroscopy in the analysis of food and pharmaceutical
nanomaterials. J Food Drug Anal 22(1):29–48. https://doi.org/10.1016/j.jfda.2014.01.003

9. Callao MP, Ruisánchez I (2018) An overview of multivariate qualitative methods for food fraud
detection. Food Control 86:283–293

10. Pallone JAL, dos Caramês ET, Alamar PD (2018) Green analytical chemistry applied in food
analysis: alternative techniques. Curr Opin Food Sci 22:115–121

11. Maree JE, Viljoen AM (2011) Fourier transform near- and mid-infrared spectroscopy can
distinguish between the commercially important Pelargonium sidoides and its close taxonomic
ally P. reniforme. Vib Spectrosc 55(2):146–152. https://doi.org/10.1016/j.vibspec.2010.10.005

12. Man YBC, Syahariza ZA, Rohman A (2011) Fourier transform infrared (FTIR) spectroscopy:
development, techniques, and application in the analyses of fats and oils. In: Fourier transform
infrared spectroscopy: developments, techniques and applications. Nova Science Publisher,
New York

13. Chakraborty DS (2016) Instrumentation of FTIR and its herbal applications. World J Pharm
Pharm Sci 5(3):498–505

14. Rohman A (2017) The use of infrared spectroscopy in combination with chemometrics for
quality control and authentication of edible fats and oils: A review. Appl Spectrosc Rev 52:7

15. Ma G, Allen HC (2004) Handbook of Spectroscopy, Volumes 1 and 2 Edited by Günter
Gauglitz (University of Tübingen) and Tuan Vo-Dinh (Oak Ridge National Laboratory). Wiley-
VCH Verlag GmbH & Co. KGaA: Weinheim. 2003. 1168 pp. $435.00. ISBN: 3-527-29782-0.
Vol. 126. J Am Chem Soc 34:8859–8860

16. Ballabio D, Todeschini R (2009) Infrared spectroscopy for food quality analysis and control
multivariate classification for qualitative analysis. Infrared Spectrosc Food Qual Anal Control
2009:83–104

17. von Aulock FW, Kennedy BM, Schipper CI, Castro JM, Martin D, Oze C et al (2014) Advances
in Fourier transform infrared spectroscopy of natural glasses: From sample preparation to data
analysis. Lithos 206–207(1):52–64. https://doi.org/10.1016/j.lithos.2014.07.017

18. Hashimoto K, Badarla VR, Kawai A, Ideguchi T (2019) Complementary vibrational spec-
troscopy. Nat Commun 10(1):1–6. https://doi.org/10.1038/s41467-019-12442-9

19. Davis SP, Abrams MC, Brault JW (2001) Theory of the ideal instrument. Fourier Transform
Spectrom 2001:29–39

20. Robertson M, Elements V, Table P, Library B, Society TR, Society TR et al (2004) Organic
spectroscopic analysis

21. Baeten V, Dardenne P (2002) Spectroscopy: Developments in instrumentation and analysis.
Grasas Aceites 53(1):45–63

22. Stuart BH (2004) Infrared spectroscopy: fundamentals and applications, vol. 8, Methods, p
224. Available from http://doi.wiley.com/10.1002/0470011149

23. United Stated Pharmacopeia (USP) 42, General method <854> mid infrared
spectroscopy. https://online.uspnf.com/uspnf/document/GUID-21493947-8F57-4FC7-9338-
FD47C1354A3A_4_en-US?highlight=854 © 2019 USPC. November 15, 2019

24. Thermo Scientific (2013) Introduction to FT-IR sample handling. Thermo Fish Sci Inc.,
Waltham, pp 1–8

25. Shimadzu. Measurement Methods for Powder Samples : SHIMADZU (Shimadzu Corpora-
tion). [cited 2020 Mar 21]. Available from https://www.shimadzu.com/an/ftir/support/ftirtalk/
talk8/intro.html

26. Sun S-Q, Zhou Q, Chen J-B (2020) Infrared spectroscopy for complex
mixtures: applications in food and traditional Chinese medicine. 2011
[cited 2020 Mar 21]. Available from http://books.google.es/books/about/
Infrared_Spectroscopy_for_Complex_Mixtur.html?id=SUhIMwEACAAJ&pgis=1

27. Sun DW (2009) Infrared spectroscopy for food quality analysis and control. infrared spec-
troscopy for food quality analysis and control. Elsevier Inc., Amsterdam

28. Thermo Scientific (2019) Move from investigate to solve Forensics compendium. Move from
investigate to solve Forensics compendium. Thermo Scientific, Waltham

http://dx.doi.org/10.1016/j.jfda.2014.01.003
http://dx.doi.org/10.1016/j.vibspec.2010.10.005
http://dx.doi.org/10.1016/j.lithos.2014.07.017
http://dx.doi.org/10.1038/s41467-019-12442-9
http://doi.wiley.com/10.1002/0470011149
https://online.uspnf.com/uspnf/document/GUID-21493947-8F57-4FC7-9338-FD47C1354A3A_4_en-US?highlight=854
https://www.shimadzu.com/an/ftir/support/ftirtalk/talk8/intro.html
http://books.google.es/books/about/Infrared_Spectroscopy_for_Complex_Mixtur.html?id=SUhIMwEACAAJ&pgis=1


48 G. Indrayanto and A. Rohman

29. PerkinElmer (2005) FT-IR Spectroscopy Attenuated Total Reflectance (ATR). PerkinElmer
Life Anal Sci. pp 1–5. Available from http://www.utsc.utoronto.ca/~traceslab/ATR_FTIR.pdf

30. Griffiths PR, De Haseth JA (2006) Fourier transform infrared spectrometry, 2nd edn. Wiley,
Hoboken, pp 1–529

31. Sciences N, Mada UG, Utara S, Mada UG, Utara S (2017) Attenuated total reflectance-FTIR
spectra combined with multivariate calibration and discrimination analysis for analysis of
patchouli oil adulteration. Indones J Chem 1:1–8

32. Smith BC (2002) Quantitative spectroscopy: theory and practice. Elsevier, Amsterdam, p 212
33. Bruker Optics Inc. Attenuated Total Reflection (ATR) – a versatile tool for FT-IR spectroscopy.

Appl Note AN # 79. 2011. p 4
34. Van De Voort FR, Sedman J, Russin T (2001) Lipid analysis by vibrational spectroscopy. Eur

J Lipid Sci Technol 103(12):815–826
35. Wellner N (2013) Fourier transform infrared (FTIR) and Raman microscopy: principles and

applications to food microstructures. In: Food microstructures: microscopy, measurement and
modelling. Elsevier Ltd, Amsterdam, pp 163–191

36. Infrared Microscopy Applications. [cited 2020 Mar 21]. Available from https://www.gia.edu/
gia-news-research-Infrared-Microscopy-Applications

37. Kazarian SG, KLA C (2013) ATR-FTIR spectroscopic imaging: recent advances and applica-
tions to biological systems, vol 138. Royal Society of Chemistry, London, pp 1940–1951

38. Kimber JA, Kazarian SG (2017) Spectroscopic imaging of biomaterials and biological systems
with FTIR microscopy or with quantum cascade lasers. Anal Bioanal Chem 409(25):5813–
5820

39. Perkinelmer. Infrared Imaging and Microscopy Systems. [cited 2020 Mar 21]. Available from:
https://www.perkinelmer.com/lab-solutions/resources/docs/BRO_Spotlight400A.pdf

40. Bruker Optics Inc. FT-IR microscopy - a powerful chemical imaging tool. [cited 2020 Mar 21].
Available from https://www.azom.com/article.aspx?ArticleID=5949

41. PerkinElmer, Inc. Spotlight 200 FT-IR microscopy system redefining IR microscopy. [cited
2020 Mar 21]. Available from www.perkinelmer.com

42. Maryse JEM. Application of FTIR microscopy to cultural heritage materials . 2009. [cited 2020
Mar 21]. Available from: http://amsdottorato.unibo.it/1404/

43. Prati S, Joseph E, Sciutto G, Mazzeo R (2010) New advances in the application of FTIR
microscopy and spectroscopy for the characterization of artistic materials. Acc Chem Res
43(6):792–801

44. Paper W. Microplastics analysis doesn’t need to be so hard simplify microplastics analysis
through a rapid

45. Noda I (1990) Two-dimensional infrared (2D IR) spectroscopy: theory and applications. Appl
Spectrosc 44(4):550–561

46. Khairudin K, Sukiran NA, Goh HH, Baharum SN, Noor NM (2014) Direct discrimination
of different plant populations and study on temperature effects by Fourier transform infrared
spectroscopy. Metabolomics 10(2):203–211

47. Rohman A, Arsanti L, Erwanto Y, Pranoto Y (2016) The use of vibrational spectroscopy and
chemometrics in the analysis of pig derivatives for halal authentication. Int Food Res J 23:5

48. Daszykowski M, Walczak B (2006) Use and abuse of chemometrics in chromatography. TrAC
- Trends Anal Chem 25(11):1081–1096
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Abstract

“Antioxidant” is a popular term that applies to bioactive compounds that are
not necessarily nutrients but can deliver added value to food. Therefore, the
determination of the antioxidant capacity of foods has been of considerable
interest for several decades.

The determination of antioxidant capacity of secondary metabolites present
in food has been commonly associated with the health benefits of those who
consume them. Currently there are numerous antecedents that discuss the
potential benefits of these metabolites to health and how this term has been used
by the advertising industry in the supply of food with added value. However, the
fact that a food has an antioxidant capacity or not can account for its quality in
terms of its organoleptic properties, their resistance to pathogens, among others.
For the determination of antioxidant capacity there are several methodologies
that allow obtaining information about the antioxidant power of food. In this
chapter we will analyze the most used methods to determine the antioxidant
capacity in food and raw materials.
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3.1 Introduction

Free radicals are highly unstable molecules that contain unpaired electrons, gen-
erated in vivo during metabolic processes. These molecules are neutralized by
antioxidants, produced naturally by the body. However, environmental or behavioral
stressors (pollution, exposure to sunlight, smoking cigarettes, excessive alcohol
consumption, etc.) or simply a malfunction of the production of endogenous antiox-
idants can lead to excess free radicals, which results in oxidative stress. Oxidative
stress can damage lipids, proteins, enzymes, carbohydrates, and DNA, preventing
the normal functioning of the cell. These biochemical alterations build the molecular
basis in the development of cancer, neurodegenerative and autoimmune disorders,
cardiovascular diseases, and diabetes. Under such conditions, the external supply of
antioxidants is essential to compensate for the harmful consequences of oxidative
stress. Since antioxidants are naturally present in vegetables, a balanced diet helps
the body prevent these diseases and deliver added value to plant products [1, 2].

At the end of the 19th century, antioxidant compounds were generally used
in industrial processes against metal corrosion and rubber vulcanization. Later,
the use in the prevention of rancidity caused by the oxidation of unsaturated fats
became prevalent [3]. This is how the demand for raw materials of natural origin for
production of food supplements, nutraceuticals and cosmetic products is growing.
Raw extracts of fruits, herbs, vegetables, cereals, and other plant materials rich in
phenolic compounds have an increasing interest in the food industry, as they hinder
the oxidative degradation of lipids and, therefore, improve the quality of food and
nutritional value [3–6].

3.2 Antioxidants in Food

The antioxidants present in food, also called dietetics, perform important functions
in food and/or in mammals by counteracting oxidation processes and preventing
chronic diseases related to oxidative stress. These compounds exert their activity
through: (1) inhibition of free radicals, (2) inhibition of reactive oxygen/nitrogen
species (ROS/RNS), or (3) chelating metals that catalyze oxidative reactions. For
decades, studies have been conducted that indicate the antioxidant profiles of
different foods. Different antioxidants of synthetic origin have been described that
prevent rancidity in food caused by the oxidation of unsaturated fats. Likewise,
naturally occurring antioxidants were discovered, isolated, and used for the same
purpose [5].

Subsequently, synthetic antioxidants such as butylated hydroxytoluene (BHT),
butylated hydroxyanisole (BHA), propyl gallate (PG), and ethoxyquin (EQ) were
developed. These compounds or their combinations are commonly used in various
foods to retard rancidity [7–9]. However, it has been reported that such antioxidants
possibly increase health risks due to their toxicity and carcinogenicity, creating the
need to identify natural sources that have antioxidant potential.
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These sources contain different types of antioxidant compounds (tocopherols,
ascorbic acid, carotenoids, and phenolic compounds). As a general classification,
antioxidants were grouped into carotenoids (condensed tannins, xanthophylls, and
carotenes), vitamins (ascorbic acid, tocopherols), flavonoids (flavones, isoflavones,
flavonols, flavanols, flavanones), phenolic acids (hydroxybenzoic acid, acid hydrox-
ycinnamic), sulfur-containing antioxidants, stilbenes, phenolic alcohols, tannins,
lignans, and neoformed compounds (melanoidins) [5, 10–12].

• Tocopherols have been used to prevent the oxidation of lipids and prevent the
oxidative destruction of carotenes due to their chain breaking activity [12, 13].
Their antioxidant mechanism could be summarized as: they are able to turn off
lipid radicals and regenerate lipid molecules, and then produce a tocopheryl
semiquinone radical that can form a stable tocopheryl quinone molecule and
a regenerated tocopherol molecule. Natural sources of this type of compounds
are nuts, vegetable oils, herbs, and spices [14]. The structure of tocopherols is
described as a polar chromanol head group with a hydrophobic tail derived from
isoprenoids. The number and substation of the methyl groups attached to the
chromanol ring determined the types of tocopherols (α-, β-, γ-, or δ-) [14, 15].

• Carotenoids (xanthophylls and carotenes) are highly soluble compounds in
lipophilic media, these contain 40-carbon terpenoids with a basic isoprene
structural unit. These compounds have been used as lipid oxidation inhibitors
when turning off singlet oxygen. In addition to its use potential scavenging of
reactive oxygen species [16]. It was shown that β-carotene, α-carotene, lycopene,
lutein, and cryptoxanthin constituted almost 90% of the carotenoids in the human
diet. Green leafy vegetables, carrots, tomatoes, and cereals were found as the
most common carotenoid sources [17].

• Ascorbic acid, also known as vitamin C, was described as one of the most
important antioxidant compounds for human metabolism. The activity of this
compound is characterized by being a radical chain terminator by transformation
to non-toxic and non-radical products [18]. Ascorbic acid was observed to be
capable of donating electrons to a wide variety of substrates such as superoxide
radical anion, peroxide of hydrogen, hydroxyl radical, singlet oxygen, and oxide-
reactive nitrogen [19].

Despite the above, compounds with highest antioxidant capacity are phenolic
compounds and their derivatives. These correspond to most numerous groups of
secondary metabolites of plants and are classified into flavonoids, phenolic acids,
phenolic alcohols, stilbenes, lignans, and tannins. The antioxidant properties of
these compounds are due to aromatic ring in its structure, which stabilizes the
unpaired electron by delocalization. Additionally, the presence of substituents such
as hydroxyl groups produces diversity in its structure and antioxidant capacity [20–
22].

The largest group of phenolic compounds, flavonoids have variations of lateral
groups in rings B and C that give rise to the diversity of flavonoid classes such
as flavones, isoflavones, flavonols, flavanols, and flavonones. Several studies have
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been carried out to elucidate the relationship between the structure of the phenolic
compounds and their antioxidant capacity, and it was reported that the number
of hydroxyl groups and the position of the substituents determine the antioxidant
capacity [23, 24].

Phenolic acids consist of a benzene ring attached to a carboxylic group (benzoic
acid) or a propenoic acid (cinnamic acid). They are classified according to their
structure into hydroxycinnamic acids and hydroxybenzoic acids. Another group
of phenolic compounds are stilbenes that are characterized by their antioxidant
capacity. Resveratrol, one of the most common stilbenes in nature, has been reported
to prevent oxidative stress in humans [25]. In addition, beneficial effects of stilbenes
(especially resveratrol) have been associated with popular alcoholic beverages such
as wine. However, it must be considered that it is not possible to absorb the
recommended therapeutic dose by drinking only wine.

Likewise, it has been described that the fragments of peptides present in gelatin,
egg yolk, meat, fish, chicken, and legumes have antioxidant capacity and are
considered natural sources [26]. The antioxidant capacity of proteins is due to the
elimination of free radicals by amino acid residues, as well as the chelation of pro-
oxidative transition metals. The antioxidant capacity of the amino acids cysteine and
methionine is due to the sulfhydryl groups that can eliminate free radicals [27].

Also, it has been described that antioxidant compounds could occur during
food processing. Maillard reaction products (MRP), which occurred as a result of
the reaction between carbonyl groups and amino groups, could exert antioxidant
capacity in food systems [28–32]. The antioxidant mechanisms of melanoidins
generated are: (1) capture of charged electrophilic metabolites, (2) elimination of
oxygen radicals, (3) metal chelation, and (4) synergism [33].

Antioxidants in food are produced as a combination of two or more antioxidants.
To understand their antioxidant effect, the effect was studied by combining α-
tocopherol and flavonoids or ascorbic acid; evidencing a higher antioxidant capacity
than the sum of its antioxidant effects due to the regeneration of α-tocopherol, an
effect called synergism [34]. However, it was observed that some combinations
of antioxidants such as α-tocopherol with rosemary extract or the combination
BHA with peanut extract caused a decrease in antioxidant capacity than the simple
addition of its individual effects, which is called antagonistic interaction [35, 36].

During the past decade, numerous studies focused on antioxidant synergy
between ascorbic acid, tocopherols, carotenoids, and phenolic compounds have
been conducted to understand the mechanism of synergy in food and simulated
physiological conditions [37]. Antioxidant concentration was also considered deter-
mined the type of interaction (antagonistic or synergistic) with other antioxidants
or their pro-oxidant effect. Due to the above, the favorable dose of antioxidants in
the diet must be taken into account to maintain the balance between oxidants and
antioxidants [5].
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3.3 Methods for Determining Antioxidant Capacity

Quantification and determination of antioxidant capacity has become an area of
interest for decades among food scientists. To date, many different analytical
methods have been developed with various procedures that are mostly based on
spectrophotometric techniques and electron spin resonance (ESR) [38].

These methodologies involve the following reaction mechanisms between
antioxidants and free radicals:

1. Transfer of a hydrogen atom (HAT). In this HAT mechanism (Eq. (3.1)), an
antioxidant H-atom (Fl-OH) is transferred to the free radical (R·) and forms a
radical (Fl-O), which is more stable than R. This blocks the additional chain
reaction. Greater stability of Fl-O represents a stronger antioxidant capacity of
the antioxidant.

R. + Fl − OH → RH + Fl − O. (3.1)

2. Single-electron Transfer (SET), the antioxidant molecule could donate an elec-
tron to the free radical, thus becoming a radical cation (Eq. (3.2)); the latter can
be done sequentially, either by transfer of an electron followed by proton transfer
called SET-PT mechanism (Eq. (3.3)) and another mechanism referred to the loss
of a proton followed by delivery of an electron called SPLET (Eq. (3.4)) [2, 39].

R. + Fl − OH → R− + Fl − OH.+ (3.2)

Fl − OH → Fl − OH+ + e− (3.3)

Fl − OH+ → Fl − O + H+

Fl − OH → Fl − O− + H+ (3.4)

Fl − O− → Fl − O + e−

In first step of SET-PT, an electron was transferred from an antioxidant molecule
to a free radical and followed by a detonation of the radical cation. As for SPLET,
the first step was the detonation of the antioxidant, thus forming an anion, and then
an electron was transferred from the anion to the free radical.

Based on these mechanisms, there are several methodologies that allow to
determine the antioxidant capacity of both foods of natural origin and processed
foods (Table 3.1) [40]. Due to different mechanisms involved in the determination
of antioxidant capacity, the analysis of affected results by methodologies it is usually
not comparable to each other.
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Table 3.1 Methods for determining antioxidant capacity based on the mechanisms of hydrogen
atom transfer and electron transfer

Hydrogen atom transfer methods (HAT) Electron transfer methods (ET)

• Oxygen radical absorbance capacity (ORAC)
method
• Cellular antioxidant activity (CAA) assay
• Scavenging of hydroxyl radical by ESR
• ABTS radical scavenging method
• Lipid peroxidation inhibition capacity (LPIC)
assay
• Total radical trapping antioxidant parameter
(TRAP)
• Inhibited oxygen uptake (IOC)
• Crocin bleaching nitric oxide radical inhibition
activity
• Hydroxyl radical scavenging activity by
p-NDA (p-butrisidunethyl aniline)
• Scavenging of H2O2
• Scavenging of super oxide radical formation
by alkaline (SASA)

• Ferric reducing antioxidant power (FRAP)
• DPPH free radical scavenging assay
• Total phenols by Folin–Ciocalteu
• Trolox equivalent antioxidant capacity
(TEAC) decolorization
• Copper (II) reduction capacity
• N,N-dimethyl-p-Phenylenediamine (DMPD)
assay

The type of methodology to use depends on several factors, where the main ones
are the chemical nature of the antioxidants that they want to analyze in a food and
the way of extraction of said compounds from the food matrix.

Despite the above, it must be clear that antioxidant methodologies are com-
plementary to each other and many times an attempt is made to find correlations
between them. However, these may not correlate due to the nature of the trials.

Next, different methodologies used in determination of antioxidant capacity
in foods or by-products associated with the nutritional quality of these will be
described.

3.4 Hydrogen Atom TransferMethodologies Used
in Determining Antioxidant Capacity in Food

3.4.1 Oxygen Radical Absorbance Capacity (ORAC)Method

ORAC method is one of the most widely used tests; in fact, the ORAC fruit
databases have been recently built to emphasize the benefits and establish the
antioxidant capacity of foods rich in polyphenolic compounds [41]. Currently, it
has been known that the ORAC index is strongly influenced by the type of probe
used in the determination of antioxidant capacity [42]. Dorta et al. [43] indicated
that the ORAC index is not directly related to the ability to eliminate free radicals,
present in a sample, since its determination not only involves the concentration of
antioxidant, but also the chemical nature of compound, and its possible interaction
between the antioxidants present in a complex matrix.
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Fig. 3.1 FL fluorescence decay curve induced by AAPH in the presence of different Trolox
concentrations

Method consists in transfer of hydrogen atoms of the antioxidant compound
to the free radical generated by thermolysis at 37 ◦C of 2,2′-azo-bis- (2-amidino-
propane) (AAPH). To demonstrate this reaction, probes of different nature are used,
which reacts with the free radicals generated in the thermolysis once the antioxidant
concentration decreases or if the reaction rate of the antioxidant is slower than
that of the probe with the generated radical. Therefore, absorbance or fluorescence
is recorded in this technique as a function of time at different concentrations of
antioxidant (Fig. 3.1), depending on the type of probe [2, 43, 44].

Figure 3.1 shows the decay curve of the normalized fluorescence of the FL probe
as a function of time, it can be shown that as the concentration of the antioxidant
(Trolox) increases there is a time that no decrease in fluorescence is evidenced
(induction time); this indicates that there is protection of the probe by the antioxidant
until its concentration decreases and the reaction of the radicals with the probe
begins.

Based on the above, the use of the probe in ORAC methodologies accounts
for the antioxidant capacity in terms of reaction stoichiometry (ORAC-FL) or in
terms of antioxidant reactivity (ORAC-PGR) [42, 45, 46]. This difference in profiles
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must be seen because the thermolysis of the AAPH generates both radicals peroxyl
(ROO•) as alkoxy (RO•), the latter being more reactive [43].

Zheng et al. [47] investigated the antioxidant activity of various spice extracts,
which have been popularly described as medicinal agents, by the ORAC technique;
determining that the diversity and complexity of the phenolic compounds present
in the extracts are difficult to characterize and evaluate each of its antioxidant
properties. Prior et al. [48] indicated that the ORAC test provides valuable results
in the analysis of samples of natural products regarding antioxidant capacity,
provided that the advantages, disadvantages, and deficiencies of the in vitro assay
are understood. This test could represent a practical way to evaluate the potential
that a certain food can have to contribute to the antioxidant state of the organism.
However, for a full description of the antioxidant capacity it must be complemented
with other techniques [49].

Another of the ORAC methodologies widely used and that reduces the problems
regarding the type of radical generated is the use of Electronic Spin Resonance by
means of the spin trapping technique. This technique involves the generation by
thermolysis or photolysis of the radical RO•, which reacts with a spin trap (usually
5,5-dimethyl-1-pyrroline-N-oxide (DMPO)), generating a radical species with a
longer life, which decreases its concentration based on the increase in antioxidant
concentration (Fig. 3.2) [50–53].

RO• + DMPO
kST→ [DMPO − OR]• (3.5)

RO• + AOH
kAOH→ Product (3.6)

In ORAC-ESR methodology, the antioxidant capacity is evaluated in terms of
reactivity of the competing compound of the spin trap as opposed to the ORAC-FL
methodology.

In addition, other ORAC methodologies have been developed that involve other
reactive oxygen species such as superoxide anion, hydroxyl, hydrogen peroxide,
singlet oxygen, and peroxynitrite. The sum of the antioxidant capacity measured
by these six radicals was described as ORAC Multiple Radicals [54]. However, it
was found that these tests were inconvenient to determine the antioxidant capacity
of foods, since some of them were not suitable for quantifying non-antioxidants.
Enzymatic, some of them were difficult to apply and it was not practical to use in
routine analysis by peroxyl radicals [5].

This methodology can be used to determine the quality of food or its durability.
The oxidative rancidity of food includes the deterioration of proteins and lipids. In
the case of meat, special attention has been paid to the oxidation of its proteins by
peroxyl radicals [55], generating oxidation products (carbonyls), the consumption
of tryptophan, and the formation of high molecular weight protein aggregates
associated with meat digestibility [56, 57]. Oxidation of these proteins has been
described as involving the formation of the perferrilmyoglobin radical, originating
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Fig. 3.2 (a) Decrease in the intensity of the ESR spectrum of the DMPO-RO spin adduct • as
a function of sulfated fucan (antioxidant) concentration; (b) Relationship between normalized
intensity in ESR spectra by adding sulfated fucan [50]

from of metmyoglobin. Based on the above, extracts of natural origin have been
used to prevent the oxidation of meat products, due to the scavenging of peroxyl
and perferrilmyoglobin radicals generated during lipid peroxidation [58, 59].
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Along these lines, the use of food by-products has been the focus of attention
in recent years, in order to deliver added value to these wastes. Thus, inhibition of
peroxyl radical mediated oxidation of tryptophan residues in myofibrillar proteins
by the use of mage by-products (seed, peel, and pulp) has been studied. These
were studied using the ORAC-FL and ORAC-PGR tests. The data obtained using
the ORAC-FL assay indicated similar values of antioxidant capacity of pulp, seed,
and peel. However, by means of ORAL-PGR it was possible to differentiate the
antioxidant activity of the samples, with the pulp being higher, followed by peel
and finally seed. All extracts demonstrated inhibition capacity of peroxyl radical-
mediated tryptophan oxidation and it was correlated with that determined by
ORAC-PGR. The latter would indicate that the ORAC-PGR method could be used
to predict this inhibitory effect [60].

3.4.2 Cellular Antioxidant Activity (CAA) Assay

Despite wide usage of these chemical antioxidant activity assays, their ability
to predict in vivo activity is questioned for a number of reasons. Some are
performed at nonphysiological pH and temperature and none of them considers
the bioavailability, uptake, and metabolism of the antioxidant compounds. The
protocols often do not include the appropriate biological substrates to be protected,
relevant types of oxidants encountered, or the partitioning of compounds between
the water and lipid phases and the influence of interfacial behavior. Biological
systems are much more complex than the simple chemical mixtures employed,
and antioxidant compounds may operate via multiple mechanisms. The different
efficacies of compounds in the various assays attest to the functional variation.
The best measures are from animal models and human studies; however, these are
expensive and time-consuming and not suitable for initial antioxidant screening of
foods and dietary supplements. Cell culture models provide an approach that is
cost-effective, relatively fast, and address some issues of uptake, distribution, and
metabolism.

Despite wide use of ORAC-FL, PGR, or EPR antioxidant assays, which involve
the transfer of a hydrogen atom. There is evidence that indicates that these methods
cannot correctly predict activity in in vivo systems, since this type of test, like
others, may not contemplate physiological conditions, such as pH, temperature,
bioavailability, absorption, and metabolism of antioxidant compounds. Where one
of the most important factors is the bioavailability of the compounds, which
implies the solubility in the physiological medium and the interaction with the
lipid membrane that could limit the activity in the biological medium [2, 51, 61].
Therefore, the best measures of antioxidant capacity would be animal models and
human studies; however, these involve large costs, time, and may not be adequate
for the study of antioxidant compounds in food and dietary supplements [62]. It
is then that cell models would provide a cost-effective approach to address some
problems of absorption, distribution, and metabolism [61, 63].

Based on the above, a cellular antioxidant activity (CAA) assay has been
developed to quantify the antioxidant activity of phytochemicals, food extracts,
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and dietary supplements. This assay uses dichlorofluorescein as a probe that
permeates cell membrane and is easily oxidized to a fluorescent probe, fluorescent
dichlorofluorescein (DCF). The method determines the ability of antioxidants to
prevent peroxyl radical-mediated DCF formation generated by 2,2′-azobis (2-
amidinopropane) dihydrochloride (ABAP) thermolysis in mammalian cells. The
area under curve between fluorescence intensity in cells treated with antioxidant
compounds as a function of time. Control cells (without addition of antioxidant)
indicates antioxidant capacity of the compounds inside treated cells (Fig. 3.3) [2, 51,
64]. The latter because cells are washed before formation free radicals. Therefore,

Murine cells 5x104 macrophages / mL

+ 100 µL of dichlorofluorescein

diacetate (20 µM)

Incubation
30’, 37 °C

100 µL sample and 100 µL RPMI 1640

culture medium

Incubation
20’, 37 °C

100 µL of ABAP (0,6 mM)

Excitation wavelength 488

nm and emission 528 nm.

1 h, 37 °C

Phosphate buffer

wash pH 7.4

Phosphate buffer

wash pH 7.4

a

b

Fig. 3.3 (a) Proposed method and principle of the assay of cellular antioxidant activity (CAA)
in murine RAW 264.7 cells. (b) Fluorescence intensity curve as a function of time for different
concentrations of quercetin [61]
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cellular antioxidant activity also informs the ability to traverse cell membranes of
antioxidant compounds.

Wolfe et al. determined the antioxidant activity of selected phytochemicals and
fruit extracts were evaluated and the results were expressed in micromoles of
quercetin equivalents per 100 μmol of phytochemical or micromoles of quercetin
equivalents per 100 g of fresh fruit. Quercetin had the highest CAA value, followed
by kaempferol, epigallocatechin gallate (EGCG), myricetin, and luteolin among the
pure compounds tested. Among the selected fruits tested, blueberry had the highest
CAA value, followed by cranberry > apple = red grape > green grape. The CAA
assay is a more biologically relevant method than the popular chemistry antioxidant
activity assays because it accounts for some aspects of uptake, metabolism, and
location of antioxidant compounds within cells.

Wolfe et al. [61] determined the cellular antioxidant activity of phytochemicals
and fruit extracts. Activity results were expressed in micromoles of quercetin
equivalents per 100 μmol of phytochemicals or 100 g of fresh sample. Quercetin had
the highest CAA value, followed by kaempferol, epigallocatechin gallate (EGCG),
myricetin, and luteolin among the tested antioxidants. Among fruits evaluated,
bilberry had the highest CAA value, followed by the bilberry, apple; being the
least active the green grape. The CAA assay is a more relevant method than the
antioxidant capacity assays discussed above, since it involves aspects of absorption,
metabolism, and location of antioxidant compounds within cells.

The high amount of bioactive compounds present in fruit co-products can be used
as natural food additives, especially considering that agroindustrial waste is rich in
dietary fibers (DF), among them pectins. Several efforts have been made for the
harnessing of fruit industrial waste, and studies have already reported the utilization
of peels from mango, yellow passion fruit, watermelon and Ponkan mandarin,
pomace of grape, tomato, pumpkin, and carrot, among others for the production
of pectin and other bioactive compounds [65, 66].

Food products may incorporate fiber-rich co-products as inexpensive, non-caloric
bulking agents for partial substitute of flour, fat, or sugar, or as enhancers of water
and oil retention and to increase emulsion or oxidative stabilities. Moreover, DF
presents beneficial human health effects related to promoting better functioning of
the digestive system, mainly due to increased satiety and the volume and weight
of fecal matter. It also reduces the risk and occurrence of obesity, hyperglycemia,
hypercholesterolemia, constipation, coronary heart disease, hemorrhoids, and colon
cancer [67]. Furthermore, DF can be substrate for fermentation by bacteria in
the large intestine, producing various end compounds (such as short chain fatty
acids), energy, and biomass, leading to the maintenance of the gut microflora and
improvement of the immune system [66].

Antioxidant capacity is another important DF benefit as it significantly con-
tributes to positive health effects. Antioxidant DF can be defined as a product
containing expressive amounts of natural antioxidants, such as phenolic compounds,
associated with the fiber matrix.

Schneider et al. [66] studied the characterize DF obtained from guavira fruit
pomace and investigate its antioxidant potential in a cell model. The DF were chem-
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ically characterized as containing arabinan, highly methoxylated homogalacturonan
and arabinogalactan. The cellular viability by MTT and DCFH-DA assay was
performed to assess, respectively, changes in cell viability and the potential intracel-
lular antioxidant activity against H2O2-induced oxidative stress in murine NIH 3T3
fibroblast. DF exhibited no effects on cell viability, moreover, when administered
48 h prior the induction of H2O2 toxic effects, it protected the cells, significantly
increasing the cell viability compared to control. This protection may be related to
the observed reduction of reactive oxygen species levels. Thus, the pre-treatment
of cells with guavira DF for 48 h remarkably induced a cytoprotection against pro-
oxidant conditions and may be a valuable functional compound recovered from an
unexploited agroindustrial waste. These results demonstrated the protective effect
of guavira DF against the oxidative stress induced by the H2O2 in NIH 3T3 cells.

3.4.3 Scavenging of Hydroxyl Radical by ESR

Since its development by Zavoisky in 1940 this non-destructive technique, which
enables the detection and identification of paramagnetic species in different matri-
ces, has been applied in several investigation fields such as food antioxidants [2].
One of most reactive radical species, which can be found in biological systems and
has been used in the characterization of the antioxidant capacity of foods is hydroxyl
radical [53].

The formation of hydroxyl radical can come from catalytic Fenton reactions,
which involves the use of an active redox metal such as Fe+3 or non-catalytic in
a basic medium. In both cases, hydrogen peroxide can be used; however, in the
case of products of natural origin or food, the non-catalytic method is preferable
(Eq. (3.7)), since Fe+3 can be chelated by polyphenolic compounds, reducing the
scavenging capacity of the hydroxyl radical [68].

2H2O2 + OH− → OH• + O•−
2 + H2O (3.7)

The hydroxyl-scavenging ability can be assessed by a non-catalytic and competi-
tive Fenton system that uses DMPO or 5-diethoxyphosphoryl-5-methyl-1-pyrroline-
N-oxide (DEPMPO) as the spin trap in basic media. The spin trap reacts with
hydroxyl radicals to generate a spin adduct that shows a control signal, which is
quantified by electron spin resonance (ESR, Fig. 3.4) [2, 68, 69].

Quantification can be performed based on percentage decrease of one of signals
of formed spin adduct (area under the curve) or through a calibration curve with an
antioxidant recognized by means of intensity of signals (Fig. 3.4). Figure 3.4 shows
decrease in signal of spin adduct of hydroxyl radical in ESR spectra by adding
increasing concentrations of a fucoidan (polysaccharide with antioxidant capacity)
[50].

The determination of the antioxidant capacity through the elimination of the
hydroxyl radical can explain the quality of the wine products. In particular, the loss
of wine aroma can be explained by its aeration, since controlled oxidation in the
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Fig. 3.4 Decrease in the intensity of the hydroxyl radical signals in the ESR spectra by the
addition of fucoidan and Ratio between the normalized intensity in ESR spectra by the addition of
fucoidan [50]

vinification and aging process is due to the reactions between molecular oxygen
and phenolic compounds. Therefore, during aeration, the formation of quinones is
stimulated, which in turn react with reduced sulfur volatiles such as hydrogen sulfide
and alkyl thiols such as ethane thiol. This is a more likely explanation for the loss
of aroma in this product [70, 71].

Espinoza et al. [69] studied four different types of Chilean wines (Cabernet
Sauvignon, Merlot, Carmenere, and Syrah) examined for their free radical scav-
enging capabilities by electron spin resonance (ESR). Among the wines evaluated,
Cabernet Sauvignon was the one that had the most activity against radicals. The
presence of copper or iron added to the wines resulted in a reduced free radical
scavenging capacity for all types of wines studied. The latter, probably due to
the formation of coordination compounds between the phenolic compounds and
metals present in the wine, which inactivate the redox capacity of the hydroxyl
groups. Therefore, this methodology could explain the sensory quality of this type
of product.
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3.5 Electron TransferMethodologies Used in Determining
Antioxidant Capacity in Food

3.5.1 Total Phenols by Folin–Ciocalteu

Many procedures have been developed for the quantification of the total phenolic
content in foods. Although separation methods such as high performance liquid
chromatography are powerful techniques for identifying phenolic compounds in
complex samples, their application to estimate total phenolic content may be
inaccurate, time-consuming, and expensive [72].

For the quantification of total polyphenols, the methods available for the most
part are based on colorimetric reactions, which allow their determination in the
visible region [73]. Among which, one of the most used is the Folin–Ciocalteu
(FC test); several studies have been able to correlate the content of polyphenols
determined by this method with the antioxidant activity determined by electron
transfer and hydrogen atom tests (ABTS + • and DPPH •, for example) [74]. For
this reason, the method described by Singleton and Rossi has been proposed as a
routine standardized method for measuring the measurement of antioxidant capacity
of food products and/or dietary supplements [75]. In addition, the new designation
“reducing capacity of FC reagents” was suggested [49].

Despite the above, it should be borne in mind that phenolic compounds within
a sample of natural origin are not the only reducing species, since other reducing
agents such as carbohydrates with terminal reducing ends can also reduce the
reagent generating a false positive. For this reason, the inclusion of other methods
of determining phenolic compounds is recommended for more exhaustive studies.

Magalhães et al. [72] described an automated procedure for the evaluation of
the content of phenolic compounds and/or antioxidant capacity, which consists of
the automated injection of the reagent and has been used for the determination in
various food products, using as reference phenol. Different strategies were tried to
mix the sample and the reagent, achieving a higher yield in the determination using
100 μL of sample + 100 μL of reagent. The application of the proposed method to
compounds with antioxidant activity (both phenolic and non-phenolic) and to food
samples and alcoholic beverages provided similar results to those obtained by the
conventional batch method.

3.5.2 Ferric Reducing Antioxidant Power (FRAP)

The ferric reducing antioxidant power (FRAP) assay proposed by Benzie and Strain
in 1996 monitors the reaction of Fe2+ with 2,4,6-Tripyridyl-s-Triazine (TPTZ) to
form a violet-blue color with an absorbance maximum at 593 nm (Fig. 3.5) [2,
76]. Some FRAP assays employ phenanthroline, bathophenanthroline, ferricyanide,
or ferrozine as a chromogenic ligand [77]. However, all FRAP assays detect
compounds with a standard reduction potential (EO) below +0.77 and which reduce
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Fig. 3.5 Formation of the colored complex between Fe+2 and TPTZ, after the redox reaction
between ferric ion and the antioxidant AOH

Fe3+ to Fe2+. The characteristics of the TPTZ-FRAP assay have been compared
with other total antioxidant capacity (TAC) assays [78]. FRAP assays are compatible
with auto-analyzer and manual assay formats [79, 80].

Microplate-based FRAP (mFRAP) assays were introduced recently leading to
improved sample throughput compared to the manual FRAP assay [81]. However,
the optical pathlength for microplate readers is not fixed and results may be affected
by changes of sample volume and composition. The pathlength dependence on
sample volume leads to microplate results being less readily compared between
different laboratories.

The FRAP assay has been applied widely in nutritional science. Apart from
measuring the “total antioxidant content” of various foods, the FRAP assay has
been used also to explore absorption of antioxidants from foods, such as soya
milk, cocoa, and tea, and to investigate the effect of processing and cooking on the
antioxidant content of foods. It is well recognized that transport to market, storage,
and cooking practices affect the content of labile antioxidants in foods, and the
World Health Organization (WHO) has taken this information into account in their
recommendations for vitamin and mineral requirements in human nutrition. WHO
recommendations for cooking foods containing labile antioxidants are to steam or
stir fry. If water is used in the cooking of vegetables, it may be advisable to also
consume the cooking water, as it contains antioxidants released from the food. The
FRAP assay has also been used as part of a quality control system in the agri-food
industry, and to assess the effect of genetic variation, season, growing conditions,
and storage on the “total antioxidant content” of foods [78, 82, 83].

Dragović-Uzelac et al. [84] determined total antioxidant content of blueberries
of the same cultivar grown in the same field can vary by up to 25% depending on
the harvesting year, and variation of up to 47% in total antioxidant content is seen
in different cultivars grown in the same area and harvested in the same year.
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3.5.3 DPPH Free Radical Scavenging Assay

This assay uses the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical to assess the
antioxidant capacity of pure compounds, natural extracts, or food. In this test,
instead of evaluating the reactivity of antioxidants against radicals with low half-life
times, X •, such as O2 •-, HO •, LOO •, LO •, or NO •, the decrease in the intensity
of the signal or area under the curve, it is evaluated against the stable radical
DPPH, as shown in Fig. 3.6. This radical has a longer half-life, since it contains
tri-nitrohydrazyl in its structure where the derailed electron is located between the
group Hydrazyl NN limited by the two adjacent phenyl rings. Scavenging of this
radical can be followed at a wavelength of 517 nm [85, 86].

The results obtained from this test can be expressed in terms of 50% inhibition
of radicals (EC50), through a calibration curve of a reference antioxidant such as
trolox or by means of the scavenging percentage of the radical.

The DPPH assay was used to determine the antioxidant capacity of thiols,
ascorbic acid, tocopherol, polyphenols, isoflavones, and aromatic amines. This
methodology has been used to determine the antioxidant capacity of complex
plant matrices, such as plant extracts and tomato seed oil, alcoholic beverages,
among others. Furthermore, this methodology has been combined with HPLC
for the detection of antioxidant secondary antioxidant metabolites. In addition,
automated methods involving flow injection analysis with multiple syringes have
been used to determine the antioxidant capacity of various food products with good
reproducibility and detection limit [87–89].

The antioxidant capacity can be reported, as previously mentioned, as IC50
(that is, the concentration of AOH necessary to reduce 50% of the DPPH), a
concentration equivalent to that of some reference antioxidant, percentage of

Fig. 3.6 Reaction of DPPH with antioxidant showing competition reaction with other reactive
species
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scavenging, among others. Due to the poor solubility of DPPH in water, studies
are conducted on methanol. In this test, the presence of transition metals, solvent,
incubation time, concentration, and molecular size of the antioxidant could affect
the determination of antioxidant capacity. Likewise, the dependence of IC50 on
various experimental conditions, the IC50 value for a particular antioxidant could
vary from study to study and is therefore very qualitative and is only presented in
terms of antioxidant capacity in relation to standards such as Trolox or ascorbic
acid. Several recommendations have been suggested for an interpretation of the
antioxidant capacity studied by the DPPH assay, such as: (1) measurement of
the initial reaction rate (0–2 min), preferably using stopped flow mixture instead
of the final absorbance after a long incubation that ignores effects of antioxidant
concentration, reaction saturation, and effect of antioxidant molecular size; and (2)
the use of an antioxidant concentration range instead of a single one to identify a
valid linear response range, saturation levels, and differentiate reactivity patterns
[90]. Interpreting the antioxidant capacity of complex mixtures as in Extracts
should only reflect the general antioxidant capacity of the mixture by itself without
reference to a particular component [85].

Different foods have different bioactive compounds with varied antioxidant
capacities that can have different types of matrix interactions. When foods are
consumed together, the total antioxidant capacity of food mixtures can be modified
through synergistic, additive, or antagonistic interactions between these compo-
nents, which in turn can alter their physiological impacts, considering that they
may have different diffusion capacity in biological media. Wang et al. [91]
investigated interactions and identified synergistic combinations. Eleven foods from
three categories, including fruits (raspberry, blackberry, and apple), vegetables
(broccoli, tomato, mushrooms, and purple cauliflower), and legumes (soybeans,
adzuki beans, red beans, and black beans) were combined in pairs. The DPPH
assay was used to determine the antioxidant capacity of individual foods and
their combinations. The results indicated that within the same food category, 13,
68, and 21% of the combinations produced synergistic, additive, and antagonistic
interactions, respectively.

On the other hand, while the combinations produced 21, 54, and 25% of syner-
gistic, additive, and antagonistic effects, respectively, in all the food categories. The
combination of specific foods in all categories (for example, fruits and vegetables)
was more likely to generate synergistic antioxidant capacity than combinations with
one food group. Also, the combination of raspberry and adzuki bean extracts demon-
strated synergistic interactions. The results of this study suggest the importance of
strategically selecting foods or diets to obtain maximum synergies, as well as for
minimal antagonisms in antioxidant activity.

As described, the antioxidant methodologies are varied and useful for different
food matrices. In addition, these are complementary to each other and can provide
information about the nutritional quality that a food may have or the application of
by-products that prevent the oxidation of a particular material or food. However, it
should be borne in mind that all these methodologies have limitations. The main
ones are due to the solubility of the probe, for example, DPPH which is insoluble
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in an acid medium and partially soluble in hydroalcoholic mixtures. Also, many of
these do not consider the bioavailability of antioxidant compounds, which is why
all antioxidant methodologies are complementary but not necessarily correlated due
to the antioxidant mechanism involved.
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77. Berker KI, Güçlü K, Tor İ, Apak R (2007) Comparative evaluation of Fe(III) reducing power-
based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline,
tripyridyltriazine (FRAP), and ferricyanide reagents. Talanta 72:1157–1165

78. Benzie IFF, Choi S-W (2014) Chapter one - antioxidants in food: content, measurement,
significance, action, cautions, caveats, and research needs. In: Henry J (ed) Advances in food
and nutrition research, vol 71. Academic, Cambridge, pp 1–53

79. Bolanos de la Torre AAS, Henderson T, Nigam PS, Owusu-Apenten RK (2015) A universally
calibrated microplate ferric reducing antioxidant power (FRAP) assay for foods and applica-
tions to Manuka honey. Food Chem 174:119–123

80. Phonsatta N, Deetae P, Luangpituksa P, Grajeda-Iglesias C, Figueroa-Espinoza MC, Le Comte
J, Villeneuve P, Decker EA, Visessanguan W, Panya A (2017) Comparison of antioxidant



3 Spectrophotometric Methods and Electronic Spin Resonance for. . . 75

evaluation assays for investigating antioxidative activity of gallic acid and its alkyl esters in
different food matrices. J Agric Food Chem 65:7509–7518

81. Jimenez-Alvarez D, Giuffrida F, Vanrobaeys F, Golay PA, Cotting C, Lardeau A, Keely BJ
(2008) High-throughput methods to assess lipophilic and hydrophilic antioxidant capacity of
food extracts in vitro. J Agric Food Chem 56:3470–3477

82. Chen T-S, Liou S-Y, Wu H-C, Tsai F-J, Tsai C-H, Huang C-Y, Chang Y-L (2010) New
analytical method for investigating the antioxidant power of food extracts on the basis of their
electron-donating ability: comparison to the ferric reducing/antioxidant power (FRAP) assay.
J Agric Food Chem 58:8477–8480

83. Ou B, Huang D, Hampsch-Woodill M, Flanagan JA, Deemer EK (2002) Analysis of antioxi-
dant activities of common vegetables employing oxygen radical absorbance capacity (ORAC)
and ferric reducing antioxidant power (FRAP) assays: a comparative study. J Agric Food Chem
50:3122–3128

84. Agriculture C, Affairs F, Zagreb J, Brala A, Levaj B, Bursać Kovačević D (2010) Evaluation of
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Abstract

The chapter is related to food irradiation, a method of microbial decontamination
of foodstuffs with the use of ionizing radiation, i.e. 60Co gamma rays or 10 MeV
accelerated electrons. The method is adapted to dried spices, herbs, and season-
ings. The control of irradiated food is achieved with the use of standardized
detection methods. Thermoluminescence method is presently considered the
leading detection method for irradiated food and is widely adapted in food
control laboratories around the world.

The chapter compiles the principles and description of detection procedure of
thermoluminescence method as well as the glow curves recorded with minerals
isolated from irradiated and not irradiated foodstuffs, the basis for the evaluation
of investigated food sample whether irradiated. Discussion on heating rate one
of the important operational parameters of TL measurement is carried out. The
selection of suitable solvent is discussed in terms of the effectiveness of mineral
separation from foods.

The list of results of thermoluminescence analyses obtained with 15 vegetal
foodstuffs taken as an example and identified irradiated and not irradiated is
enclosed.

The selection method of solvents suitable for mineral isolation from foodstuffs
is successfully adapted in food control laboratories in Poland. The results of
thermoluminescence analysis of vegetal foodstuffs enclosed were obtained in
food control laboratories in Poland as well.
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4.1 Introduction

The treatment of food with ionizing radiation called irradiation or sometimes cold
pasteurization is one of the effective methods of microbiological decontamination
preventing potential consumer against infection with food-borne diseases.

From 1984 irradiation technique is approved and issued [1] by WHO/FAO
Codex Commission and recommended for a common use similarly to thermal
pasteurization or deep freezing. The Council of the European Union of European
Parliament dated for 1999 [2, 3] formulates basic regulations concerning radiation
treatment of food as specification of recommended irradiation sources, suitable
dose levels, and maximal dose limit. The labeling of irradiated food is obligatory
including foodstuffs containing the admixture of irradiated component only. The
assortment of irradiated foodstuffs admitted for distribution in trade is in countries
more or less limited while the control of irradiated foodstuffs became obligatory.

Detection of irradiated food is not an easy task. Any foodstuff undergone
radiation treatment is not distinguished visually or by taste from not irradiated one
while negligible chemical or structural changes expected to occur are not identified
with analytical methods for the control of food quality. The development of
dedicated analytical methods only delivered promising result. A number of physical,
chemical, and biological methods have been proposed and tested. The Committee
of Standardization (CEN) in Brussels [2, 4–6] approved 10 from 21 positively tested
detection methods as sensitive and reliable enough to be recommended for the
routine control of various assortments of irradiated foodstuffs in trade. The selected
methods elaborated by the expert in the field have been stepwise issued in the form
of European Standards suitable for the common use.

Thermoluminescence is one of the detection methods approved by CEN and
published in 1996 as European Standard EN 1788 [4]. The method is presently
considered the leading detection method for irradiated food and adapted in the
most of food control laboratories around the world. The advantage of the method
is high sensitivity, reliability, and suitability for the control of many assortments
of food of vegetal origin and seafood. Currently, foodstuffs of vegetal origin
undergone radiation treatment are reported to appear in world food market and
require irradiation control in many countries. Thermoluminescence as only suitable
method capable to meet this requirement becomes today universal detection method
adaptable to identify radiation treatment of all assortments of vegetal foods fresh,
died, powered, or pre-processed. The specificity of all kinds of vegetal food despite
fresh or reprocessed not commonly realized is a constant contamination with
minerals from soil like crystalline quartz or feldspar being adjacent to the surface
of leaves, roots, etc., of plants. The crystalline lattice of mineral grains incorporated
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with plants and subsequently with foods represents potential sides for trapping of
radiation energy during radiation treatment. The trapped radiation energy is durably
stored inside the crystal lattice of minerals for years and is freed by intentional
heating only. The stored energy is released as light defined thermoluminescence.

Thermoluminescence method is currently used for the detection of radiation
treatment of fresh and dried spices, herbs, fruits, vegetables, mushrooms, etc., as
well as food concentrates and foodstuffs with low content of irradiated ingredient
only.

Diet supplement, a recently popular product in the market, is classified as
foodstuff by FAO/WHO Codex Alimentarius [1] and normative directives of EU
Parliament [2, 3]. From the other side diet supplement is considered a medical prod-
uct and as such undergoes obligatory microbial decontamination preferentially with
the use of ionizing radiation if distributed powdered (tablets, capsules, etc.). Con-
sequently, according to international regulations mentioned above diet supplement
undergoes obligatory irradiation control. The essential component of commercial
diet supplements produced today are vegetal extracts qualified foodstuff as well.
These relatively new products of pharmaceutical industry developed on industrial
scale was not applied earlier in the production of diet supplements which contained
powdered spices, herbs, fruits, or vegetables controlled by thermoluminescence
method whether irradiated [4]. Recently it has been found that less effective control
effect of vegetal extracts with thermoluminescence method in the past has been
improved by the modification of preparative step of thermoluminescence detection
method based on European standard.

4.2 Principles of Thermoluminescence

Thermoluminescence is a form of luminescence released under heating from
crystalline materials such as minerals the components of soil. The energy previously
absorbed in crystalline lattice of minerals defined ionizing radiation is re-emitted
as light. The phenomenon is distinct from black-body radiation. According to
Aitken engaged in thermoluminescence dating [7] and Keizars studying natural
thermoluminescence from sands containing quartz grains [8], thermoluminescence
emission occurs in three subsequent stages.

1. irradiation: ionizing radiation naturally emitted from rocks or generated from
irradiation sources as beam of high energy photons or accelerated electrons
when passing across crystalline materials loses a part of energy which becomes
dissipated in crystal lattice and trapped in lattice imperfections of crystals;

2. storage: trapped radiation energy becomes stabilized and durably stored due to
the lack of sufficient interior energy to escape crystal lattice;

3. eviction: heat energy delivered to crystal lattice of minerals from outside
stimulates the release of trapped radiation energy from storage sides in the form
of light defined thermoluminescence.
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Quantum-mechanically interpreted, the energy storage states are stationary and
have no formal time dependence but are not stable energetically. Heating of irradi-
ated material frees trapped states to interact with phonons, while lattice vibrations
evoked initiate rapid decay to lower-energy states followed by the emission of
thermoluminescence photons.

The amount of thermoluminescence is proportional to the original dose of
radiation received. In dating of ancient remains TL intensity vs. irradiation dose
relationship is employed to estimate the date of burials of investigated objects that
have been exposed in the past to ionizing radiation generated from radioactive soil
elements and/or were coming from cosmic rays in proportionality to present age.
The proportionality is successfully explored in the thermoluminescence dosimeter
[9–11], the device measuring radiation dose received by a chip of suitable material
carried by a person or placed with an object exposed to radiation. The discussed
proportionality cannot be employed, however, for the determination of dose deliv-
ered to food by radiation treatment. It is because mineral fraction isolated from
foodstuffs is characterized being different and undefined proportion from sample to
sample between the content of thermoluminescence active minerals like quartz and
feldspar and those not thermoluminescence active amorphous soil components like
loams, gneiss, etc., which are always present. It is obvious that proportion between
the contents of both kinds of minerals isolated from the same portion (batch) of
food in the form of small grains can differ and cannot be evaluated. It is reflected
in some statistical dispersion of thermoluminescence measurements which does not
influence the reliability of the result of radiation detection. The difference between
the measurements is higher if the volume of isolated mineral fraction is lower. It is
advised, therefore, to isolate always suitably high portion of mineral fraction from
investigated food sample.

4.3 Detection of Irradiated Foods by Thermoluminescence
Method

The European Standard EN 1788 titled “Thermoluminescence detection of irra-
diated food from which silicate minerals can be isolated” is certainly the basic
normative document comprising the rules and nuances concerning the applicability
of thermoluminescence method in the practice. High sensitivity and reliability
proven as well as suitability of irradiation detection in numerous assortments of veg-
etal food and seafood grounded on positive results of inter-laboratory comparative
studies on international level [4] classify thermoluminescence the leading method
of irradiation detection for foods (Fig. 4.1).

The content of silicate minerals (Fig. 4.2) is found very low in all foods not
higher than 0.1% by weight in the order of milligrams. The maximal volume of
fresh or dried food portion which can be measured by thermoluminescence in the
reader is limited for technical reason despite the quality of measuring device used. In
consequence, the thermoluminescence intensity of original food sample is extremely
low and hardly detected. The solution was found in the isolation of mineral fraction
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Fig. 4.1 Examples of foodstuffs controlled with thermoluminescence method. Powdered spices
(red paprika, knoblauch granulate, and lutein marigold) in left. Vegetables in whole (garlic and
Hedera helix) in right

Fig. 4.2 Mineral fractions isolated from dried herbs in whole (left) and from spicy vegetal
concentrate (right) on stainless steel TL measuring cups stabilized with silicon spray. Mean
dimensions (diameter) of mineral grains ca. 140 nm (left) and ca. 80 nm (right) in diameter

from organic residue of food by applying the density separation method taking
advantage of high molecular density of mineral fraction markedly lower from that
of organic constituents of food. The advantage of density separation method is
that the volume of fresh product from which mineral is separated can be relatively
high, facilitating to obtain the volume of mineral suitable for TL measurement. The
volume of minerals isolated from foodstuff suitable for TL measurement becomes
sometimes low and not sufficient to proceed reliable sample classification especially
if food concentrates containing the irradiated component in minority as illustrated
in Fig. 4.2 in right.

The intensity of thermoluminescence is expressed as number of bleaches reg-
istered per second (counts per second) in photomultiplier, the basic part of TL
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Fig. 4.3 TL reader adapted for the detection of irradiated foods (TL/OSL DA-20 model by RISØ
Denmark)

reader as shown in Fig. 4.3. The result of TL measurement is obtained as a record
presenting the TL intensity vs. heating temperature in the form of graph assigned
Glow 1. The numerical values of TL intensity are also available.

Silicates and/or quartz grains contained in mineral fraction isolated from food-
stuff evoke by linear heating thermoluminescence registered by TL reader in the
temperature range 150–250 ◦C and are characterized by the TL peak with the
maximum near to 200 ◦C, as shown in Figs. 4.4 and 4.5. Each of mineral samples
preliminary TL measured stabilized with silicon spray on stainless steel measuring
cup or plate undergoes subsequent irradiation with 1 kGy of gamma rays. The
intention of this treatment is to ascertain the reliability of the result obtained in
the first measurement (Glow 1). The glow curve obtained after normalization (Glow
2) resembles that recorded with irradiated sample (Fig. 4.5) despite investigated
sample was or was not irradiated before giving rise of Glow 1 curve as shown in
Fig. 4.4.

Thereafter, from Glow 1 and Glow 2 records the integrated numerical TL inten-
sities are obtained and the ratios Glow 1/Glow 2 are estimated. TL glow ratios of
irradiated foodstuffs are typically greater than 0.1, whereas those obtained from not
irradiated samples are lower than 0.1. This is a basic criterion for the classification
of investigated food sample whether irradiated or not irradiated, recommended for
general use by European standard EN 1788. It has to be noted that in addition the TL
intensity of Glow 2 should always exceed the minimum detection level, an important
factor which has to be estimated before each TL measurement on investigated food
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Fig. 4.4 The glow curve (Glow 1) of minerals isolated from not irradiated majoran. The area in
black represents TL intensity (C/s) integrated within the heating temperature range from 150 ◦C
to 250 ◦C. The maximum seen outside the range typical for irradiated samples represents the so-
called geologic TL luminescence from radioactive micro components of soil containing uranium
or thorium. No maximum specific for irradiated sample seen

sample and represents the numerical value of TL measurement on blind sample
(preparative and measuring procedure without mineral sample). Nevertheless, by
the identification of radiation treated multicomponent foodstuffs which contain only
admixture of irradiated ingredient (presumably aromatic spices or herbs) the glow
ratio becomes sometimes lower than 0.1. Under such circumstances the glow ratio
criterion must be strengthen by the analysis of the shape of Glow 1 curve. The
identification of a peak distinguished from glow curve and having the maximum
near to 200 ◦C becomes the only reliable criterion for the qualification of such
sample as radiation treated.

The list of basic measuring parameters (TL reader settings) recommended by
European Standard EN 1788 as found satisfactory if adjusted for the TL analysis of
foods is given in Table 4.1.
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Fig. 4.5 The TL glow curve (Glow 1) of minerals isolated from irradiated majoran. The area in
black represents TL intensity (C/s) integrated within the heating temperature range from 150 ◦C to
250 ◦C. The maximum near to 200 ◦C as seen within this temperature range is typical for irradiated
samples

Table 4.1 Operational
parameters of TL
measurements on irradiated
food

Parameter Value

Initial temperature of heating 70 ◦C
Final temperature of heating 450 ◦C
Linear heating time ca. 65 s
Heating rate 6 ◦C/s

4.4 Aspects of Heating Rate

Heating rate and linear heating time are operational factors which could theoret-
ically influence the sensitivity of TL measurement. Presently adapted universal
heating rate of 6 ◦C/s by experimental fitting (see Table 4.1) seems to meet the
requirements.

The relevant literature data [12–15] deliver interesting consideration concerning
the heating rate if TL measurement on inorganic materials like minerals isolated
from foodstuffs is considered. The shape of round, oval, or shapeless (powdered)
grains of minerals and their mean dimensions may influence the surface of the
contact between the mineral and stainless steel area of TL heating cup or plate.
These are the factors which no doubt influence in some degree the gradient effect
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of heat transfer between mineral and heating plate and theoretically the heating rate
too.

According to the authors [4, 7] the optimal conditions for the achievement of a
favorable thermal contact between powdered sample and the surface of heating plate
are:

• the mean dimensions of powder grains between 80 and 140 nm;
• the weight of powdered samples not exceeding 4 mg per one TL measuring cup;
• fixing of the powdered samples on stainless steel cups with silicon spray,

preferably ACMOS 70–2406 by ACMOS CHEMIE KG company.

It has to be noted, however, that the above consideration concerns mainly the
crystalline materials while mineral fraction isolated from foodstuffs contains silicate
minerals (quartz, silicate minerals) indeed but it contains also some of TL inactive
amorphous soil originated mineral components disturbing in some degree the heat
convention inside mineral fraction.

It has to be noted that various heating rate methods (heat treatment on different
samples in a function of temperature) have been proposed by several authors [12–
15] for the calculation of activation energy of the processes involved. It is interesting
that the results obtained with several TL phosphors showed that TL emission from
phosphor samples (area under the glow curve recorded) indicated a shift of the
temperature maximum towards higher temperatures [16–18].

It has been also reported that drastic decrease of TL response appears in some
materials as a function of heating rate. This behavior has been attributed to thermal
quenching effect [16–18].

The heating rate effect on TL glow peaks has been discussed by G. Kitis [19,
20] who considers the heat effect as a dynamic parameter rather than a simple
experimental setup variable. His study has been carried out on a single, well
separated TL glow peaks, considering the experimental characteristics. The first
thing to be taken into consideration is a possible delay between the temperatures
monitored by thermocouple fixed on the surface of heating stainless steel cup with
the sample. According to M. S. Rasheedy [21, 22], the decrease of the TL intensity
with increasing heating rate cannot be explained using the kinetics equations in their
usual time-dependent forms.

4.5 Improvement of Mineral Isolation by Using Suitable
Solvents

It has been confirmed in the analytical practice addressed to trade [private communi-
cation INCT] that the effectiveness and consequently the yields of mineral isolated
from foodstuffs like vegetal extracts, depend on the quality and choice of solvent
used. The appropriate choice of solvent facilitated the dissolution of investigated
food sample. According to European Standard EN 1788 the following solvents
are recommended preferentially to be used for mineral separation: (1) distilled or
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column purified water, (2) 98% methanol of analytical purity, or (3) 6M water
solution of hydrochloric acid. It has been proven experimentally, however, that
not only the choice of solvent is important. A more satisfactory result has been
obtained by the application of appropriate composition of solvents recommended
in European standard EN 1788 [private communication INCT]. In addition the time
of keeping the sample submerged in the experimentally selected composition of
solvents influences markedly the separation efficiency.

In Table 4.1 the most effective solvents and solvent compositions are listed which
have been selected through the laboratory fitting tests as effective in facilitating
of mineral separation from herbs, seasonings, and plant ingredients of foodstuffs
and pharmaceutics. The important factor influencing the effectiveness of mineral
separation from organic remaining was also stated the time of the keeping the
crushed herbs, seasonings, and plant ingredients of pharmaceutics submerged in
solvent. For some of products one hour was sufficient while for the other ones
positive effect of separation appeared after several hours only (see Table 4.2).

4.6 Examples of Irradiation Detection in Different Foodstuffs
by ThermoluminescenceMethod

The results of irradiation control of foodstuffs in INCT laboratory are presented
below. The numbers listed are the average of two TL analyses accomplished for each
product. The selected set of results presents 10 samples identified irradiated and
five samples classified not irradiated. Five of investigated samples were powdered
spices, five extracts in the form of powders, and five fresh leaves and fruits of
popular herbs. Ten of selected samples were found irradiated while the other five
not irradiated.

The results of thermoluminescence measurements on mineral fractions isolated
from the investigated samples are comprehended in Table 4.3. Mineral fractions
listed were isolated from investigated products by means of experimentally assorted
sorbent or composition of solvents while the TL measurements have been accom-
plished with the use of TL reader, model TL/OSL DA-20 from RISØ TL/OSL
System Company, Denmark. All steps of TL analysis were performed in accord
with EN 1788 European standard while mineral separation was enriched in the
application of appropriate solvent selected experimentally.

The results comprehended in Table 4.3 are divided in three groups—
commercially powdered spices, herbs, and seasonings, vegetal extracts, and fresh
spices and herbs irradiated in whole.
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Fig. 4.6 Fresh paprika green taken in whole after drying and crushing to pieces (left) In right after
subsequent cutting to smaller pieces (right) for better dilution in solvent

The weight of portions of selected products taken for further investigation were
from 32.8 g (min) to 264.2 g (max), respectively. Fresh leaves and fresh fruits were
dried and cut to smaller pieces suitable for mineral isolation from organic pulp with
the use of selected solvent or solvent mixture ensuring effective density separation
of both phases (Fig. 4.6).

The examples of thermoluminescence diagrams recorded with irradiated spices
and plant ingredients of pharmaceutics studied are shown below (Figs. 4.7, 4.8, and
4.9).

4.7 Comments

Among 15 products controlled 10 were found irradiated. The remaining five samples
were classified not irradiated. By accident only the selected powdered spices and
vegetal extracts were identified irradiated while spices and herbs in whole—not
irradiated. The classification of all samples controlled given in the table is repeatable
(two consistent TL measurements done in parallel) and reliable as additionally
controlled elsewhere.
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Fig. 4.7 Thermoluminescence record of Glow 1 obtained with mineral isolated from irradiated
grains of red pepper. Glow peak with the maximum at 203 ◦C proves radiation treatment on sample.
Broad higher peak with maximum at 370 ◦C is of geologic origin as derived from radioactive
components of soil (U, Th)

4.8 Final Remarks

As known from reliable sources new, economic technologies of microbial decon-
tamination of foodstuffs are recently adapted by food producers and distribu-
tors based on the application of combined thermal-irradiation or high pressure-
irradiation treatment on foodstuffs. It is announced that such combined disinfecting
process of food requires much lower than recommended doses of ionizing radiation.
High sensitivity of thermoluminescence detection method, however, confirmed in
experimental studies on the variety of foodstuffs irradiated with low doses of
ionizing radiation approves the applicability of this method for positive control of
foodstuffs undergone new technology too. Nevertheless, special attention has to be
paid by irradiation control of foodstuff showing extremely low thermoluminescence
intensity which can also appear by the control of foods after prolonged storage.
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Fig. 4.8 Thermoluminescence record of Glow 1 obtained with minerals isolated from not
irradiated fresh leaves of common periwinkle (Vinca minor). Broad peak with maximum at ca.
378 ◦C is of geological origin (see comment above (Fig. 4.7)

Separation of mineral from organic pulp for thermoluminescence analysis of herbs,
seasonings, and plant ingredients of pharmaceutics, executed with the use of
selected solvents makes possible to identify samples irradiated with the doses
of 0.5 kGy and lower. The study undertaken in specialized Radiation Control
Laboratories in Poland proved also the successful isolation of mineral fraction from
multicomponent foodstuffs and diet supplements in quantities sufficient to proceed
reliable TL analysis.
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Fig. 4.9 Thermoluminescence record of Glow 1 obtained with minerals isolated from fresh fruit
of Quince (Cydonia oblonga) not irradiated. Broad peak with the maximum at 350 ◦C is of
geological origin, as above
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5Advantages of Multi-Target Modelling
for Spectral Regression
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Abstract

Spectral methods usually produce a large amount of data, and have been
greatly applied to food and agricultural products. These products demand several
analyses to determine different parameters, that will further indicate their quality.
There have been several approaches reported to deal with multi-target regression
in recent years, with different applications demanding a specific approach. Multi-
target modelling could provide a useful tool for spectral methods, specially
when applied to food products, as it could deal with prediction of different
parameters from a single data source. This chapter provides an overview of
multi-target regression methods, presenting the performance evaluation metrics
and discussing its potential application for spectral data. In addition, recent
applications to food products are presented, and the future trends discussed.
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5.1 Preliminaries

Regression analysis is a valuable method in statistics. This analysis can be grouped
in three basic areas:

• Univariate analysis, which refers to a single variable, and its analysis does not
attempt to infer relationships, but to find the pattern in the data itself;

• Bivariate analysis, which refers to an independent variable (the feature of the
object to be studied) and a dependent variable (the target or the expected
outcome) and attempts to extract relationships between them;

• Multivariate analysis, which refers to three or more variables and attempts to
extract relationships among them.

Bivariate analysis can be made by a simple regression model. In other words, in
bivariate analysis the dependent variable can be described as function of a single
independent variable.

In contrast, if more than one independent variable is involved in the problem,
multiple regression models are required. For instance, in multiple linear regres-
sion the relationship established between a dependent (Y ) and m independent
(X1,X2, . . . , Xm) variables can be defined as

Y = β0 + β1X1 + β2X2 + · · · + βmXm + ε, (5.1)

in which β0, β1, β2, . . . , βm correspond to the regression coefficients and ε is a
random error term [36].

Another common multiple linear regression model is a polynomial function of
j -th order, which, ignoring the possible interaction among factors, can be expressed
as

Y = β0k + β1kXk + β2kX
2
k + · · · + βnkX

j
k + εj , 1 ≤ j ≤ m, (5.2)

There are many non-linear functions that can be used in regression: Logistic,
exponential, trigonometric, and inverse functions are very usual examples, to name
a few.

The regression analysis can be used in two approaches: first, in the use for
prediction of a corresponding target, and, second, for causal relationship between
the predictor and the target. Usually, regression analysis establishes a correlation
between the target variable and the independent variables in the dataset. To develop a
causal relationship between the dependent and independent variables, it is necessary
to understand the theoretical connection between them [11, 18].

Moreover, regression analysis can be performed by different methods, including
machine learning (ML) approaches. ML has allowed to predict the most distinct
parameters from the most diverse fields. In traditional supervised ML, an algorithm
is used to learn how the input information is related to one output (or target) based
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on historical data. Generally, the result of this learning process leads to a model that
can be used to predict the output of new samples.

However, in several situations there is more than one target of interest. For
instance, if you receive in your laboratory a sample of meat, how many physico-
chemical tests would you apply? Normally, it should be carried out physical tests
(colour), chemical tests (protein and fat content), and physico-chemical (drip loss,
pH). Moreover, many of these parameters are related to each other. Considering this,
multi-target regression (MTR) has emerged with the main concern of developing
special methods that could be more suitable to problems with multiple continuous
targets.

5.2 Multi-Target Regression

5.2.1 Definition

Essentially, MTR deals with problems that are composed by more than one
continuous response variable, i.e. multiple continuous targets. There are many
examples of possible numerical continuous variables in food analysis, from pH
to colour, texture, and protein content. Usually, these problems have the following
characteristics [7]:

– An input set X with m features, in such a way that each example i is associated
to an input vector xi = (xi1, xi2 , . . . , xim);

– An output set Y with d continuous targets, in such a way that each example is
associated to an output vector yi = (yi1, yi2, . . . , yid );

– A set of samples D with n pairs of xi and yi , with 1 ≤ i ≤ n , i.e. D =
{(x1, y1), . . . , (xn, yn)} .

Figure 5.1 exemplifies a generic MTR problem and states the adopted nomencla-
ture in this work.

In this way, the MTR task is to find a model h that, for each input vector xi

produces a prediction of ŷi = h(xi ) that best approximates the true output vector yi

[45].

Fig. 5.1 Generic MTR
problem ...

... ... ......

...

...

...
...

...

... ... ......

...

...

...
...
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Fig. 5.2 Single-target
method

There are several ways of finding h; the most intuitive is building independent
models for each output. Take as an example a dataset with X = {x1, . . . , xn}
corresponding to the spectral information and Y with three output variables: pH and
colour L∗, and a∗. In this way, hpH could be created considering X and Y1 = YpH ,
hL∗ could be created considering X and Y2 = YL∗ , and ha∗ could be created
considering X and Y3 = Ya∗. The final models h will be, then, composed by the
models hpH , hL∗ , and ha∗ , as illustrated in Fig. 5.2.

This method is known as single-target regression (ST) since it looks indepen-
dently to each target to build a separate model at once. Traditional ML regression
algorithms belonging to different families can be used to create these models: linear
regression, random forests [8], support vector regression machines [16], gradient
boosting machine [19], decision tree, k nearest neighbour, etc.

One may note that some of the output variables of a problem might be correlated.
Looking back at our example, pH and colour have some correspondence. In this
case, it is reasonable to assume that exploiting the dependencies among the targets
when creating the models could lead to better predictions.

Considering this, several MTR methods were specially designed to capture the
correlation among the targets and aiming at developing improved models. There
are two general ways of doing that: by means of algorithm adaptation or problems
transformation. Figure 5.3 shows one possible characterisation of the classes of
methods existing in MTR. This classification is based on [7] and is extended to
include the later works present in the current MTR literature.

In different works, different implementations of the MTR methods were used
based mainly in Java and R programming languages. These implementations can be
found in Mulan,1 Clus,2 Mulan-extended,3 Multi-target Framework,4 and glmnet
R package.5

1http://mulan.sourceforge.net.
2http://dtai.cs.kuleuven.be/clus/.
3https://github.com/lefman/mulan-extended.
4http://www.uel.br/grupo-pesquisa/remid/?page_id=145.
5https://cran.r-project.org/web/packages/glmnet/index.html.

http://mulan.sourceforge.net
http://dtai.cs.kuleuven.be/clus/
https://github.com/lefman/mulan-extended
http://www.uel.br/grupo-pesquisa/remid/?page_id=145
https://cran.r-project.org/web/packages/glmnet/index.html
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Shallow methods

Multi-target
Regression

Algorithm 
Adaptation

Problem
Transformation

Statistical based 

Kernel based

Deep methods

Mapping based

Chaining based

Tree based

Artificial Neural
Networks based

Support Vector
Regression based

Stacking based

Rule based

Fig. 5.3 MTR methods classification

5.2.2 AlgorithmAdaptationMethods

Algorithm adaptation methods are based on algorithms and techniques which are
used for problems with a single output. Most of these methods produce a single
model h that predicts all the targets simultaneously and can capture the relationships
among the targets. Since they generally generate a unique model, this approach is
considered to be more concise than transforming the problem.

5.2.2.1 Statistical-BasedMethods
Statistical methods can be seen as the first proposals to predict multiple targets
simultaneously. Multivariate regression analysis for problems with more than one
dependent variable is a particular case of MTR.
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Other more complex methods also belong to this class. For instance, reduced-
rank regression [21] imposes a rank of constraints to the matrix of estimated
coefficients.

Multi-output contour regression [1], another statistical method, uses a combina-
tion of linear regressions and quantile mapping to reduce the error and obtain joint
relationships among the targets.

5.2.2.2 Tree-Based Methods
Tree-based MTR methods are another class of algorithm adaptation. These meth-
ods tend to generate smaller trees than individual trees for each target. Struyf
and Džeroski [46] suggested the construction of multi-objective regression trees
(MORTs) by imposing constraints of size and accuracy.

For this, it initially builds a large tree and after that prunes it. Figure 5.4
exemplifies a very simplified MORT. One of the greatest differences between a
traditional regression tree and a MORT is that the latter has a vector in its leaves,
with each element of this vector corresponding to one target.

Both [26,27] applied bagging (sampling training examples with replacement) and
random forests (bagging combined to random sampling of attributes during training)
to build MORTs. The multi-objective random forest (MORF), corresponding to

Asorbance for
wavelength 9000 nm

Asorbance for
wavelength 9050 nm

Fig. 5.4 Illustration of a MORT
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random forest of MORTs, increased the predictive performance but decreased the
interpretability of the problem.

5.2.2.3 Rule-BasedMethods
Rule methods were also developed for multi-target learning. Fitted rule ensembles
(FIRE) [2] adapts and transforms the result given by an ensemble of trees in the
format of rules. After that, it optimises the number of rules.

FIRE was further developed in [3]. In this work, the rules were associated with
linear functions, and the weight of each rule to the final estimated value is adjusted
by a gradient-directed optimisation algorithm.

5.2.2.4 Support Vector RegressionMachine Methods
Support vector regression (SVR) machine is also the basis of some methods due
to characteristics of performance and low sensitivity to input size. One example is
multi-output least squares support vector regression machines [51], which adapts
the least squares support vector regression machine (LS-SVR) to deal with the
multi-output case, capturing, in this way, the underlying cross relatedness among
the targets.

Other methods, such as multi-output twin support vector regression (M-TSVR)
and multi-output parameter-insensitive twin support vector regression (M-PITSVR)
[30], attempt faster learning by using up-and-down-bound functions. These func-
tions are solved by smaller-sized programming problems.

5.2.2.5 Kernel-BasedMethods
Kernel methods were also released to improve the results of MTR. Multi-output
learning via spectral filtering [4] applied regularised kernel methods to the learning
of vector-valued functions. For this, it performed a filtering in the spectrum of the
kernel matrix defined for each type of problem.

5.2.2.6 Artificial Neural Networks Methods
Artificial neural networks (ANNs) can also be adapted to be used for MTR. In
fact, the definition of architecture with the number of output neurons equal to the
number of targets can be seen as an algorithm adaptation method. Figure 5.5 shows
an example of a traditional ANN applied to our study case.

Multi-layer multi-target regression (MMR) [52] has an architecture composed of
input, hidden, and output layers. In these methods, matrix elastic nets are used to
obtain inter-target correlations. It also takes advantage of a kernel trick to explore
non-linear relationships.

Deep multi-target regression [40] uses a deep architecture to model the inter-
target and inter output correlation. It shares a chain of layers with all the targets,
which allows exploring the commonalities among them. There is also a chain of
non-shared layers that are associated with each target, trying to represent their
specificities.
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Fig. 5.5 ANN illustration

...

...

5.2.3 Problem TransformationMethods

In problem transformation, the data is modified for using the ML algorithms in their
original versions. Generally, the problem is subdivided into d simpler problems.
Until this point, it is very similar to ST, in such a way that some authors consider
ST a particular case of problem transformation. However, methods that follow this
approach modify the input training data in several different ways to explore the
targets’ correlation. We can split the transformation methods into two main groups:
shallow and deep methods according to the number of subdivisions in a perspective
of layers for iterative recombination of problem transformations.

5.2.3.1 ShallowMethods
Shallow methods subdivide the problem in a single or reduced number of re-
combinations. This kind of method can be divided into three types, based on
stacking, chaining, or statistics.

Stacking is an ensemble technique often used by MTR methods. It consists
of building multiple models to obtain intermediate predictions and building new
models (meta-regressors) that consider those predictions. This technique has as
premise that the models in a further training phase can correct the error from a
previous phase. Stacked single target, multi-target augmented stacking, and multi-
target stacked generalisation are examples of stacking methods.

Chaining methods, such as ensemble regressor chains, multi-output tree chaining
and support vector regression via correlation regression chair, consider target orders
when creating the models. The first attempt in this branch, regressor chain, created
a single chain in the exact order the targets figured in the dataset. However, it was
found a performance sensitivity in relation to this order. Then, other methods were
created trying to overcome this drawback.

Finally, mapping-based method, e.g. random linear target combinations, maps
the source input to new variables to generate a matrix of coefficients related to the
inter-correlation among the targets.
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Fig. 5.6 SST training
illustration

SST
Stacked single target (SST) [45] is one of the most used methods. First, it builds one
independent regressor for each target, as in ST. After that, it predicts the values of the
targets using these models. These predictions (Y1) are concatenated to X, forming
a new input data X2 = X|Y1. After that, one model is created for each of the targets
again. The predictions of the meta-regressors (Y2) are the final predictions. In this
sense, it produces d models in the first phase and other d models in the second
phase. Figure 5.6 illustrates the training of SST.

MTAS
Multi-target augmented stacking (MTAS) [42] uses more than one regression
algorithm for each target in the first phase. Considering r the number of used
regression algorithms, it produces r × d regressors in the first phase. After that, it
predicts the values of the targets using these models. Before concatenating these
predictions, they are assessed in terms of contribution to the explanation of the
problem. Only the useful predictions are then aggregated to the input set for the
second phase training. In this phase, one regression algorithm is chosen to generate
the meta-regressors, producing one model for each target. Again, d models are
produced as final models. Figure 5.7 illustrates the training of MTAS considering
r = 2: linear regression (LR) and random forest (RF).

MTSG
Multi-target stacked generalisation (MTSG) [43] is very similar to MTAS, as shown
in Fig. 5.8. The main difference between them occurs during the second phase
training. MTSG does not use the X set as part of input data. It means that only
the useful predictions obtained by the models in the first phase will be considered
as input for the meta-regressors.

ERC
Ensemble of regressor chains (ERC) [45] defines distinct permutations of the
targets order (which defines the chain) and then builds regressors sets. In each
set, the models are trained sequentially, following the chain. A first model is built
considering only X and the first target in the chain; The second model is built
considering X, the first target, and the second target in the chain. This procedure is



104 S. Barbon Junior et al.

LR

RF

Fig. 5.7 MTAS training illustration

repeated until the end of the chain. The final output of the method for each target will
be the average of predictions of all regressors trained for that target in the different
chain sets.

Figure 5.9 shows how would be the training for the dataset example mentioned
in the beginning of this chapter. Since there are 3 targets, there are 3! = 6 distinct
permutations of the targets. If the number of targets is greater than 3, the number of
chains used to train is limited to 10, which are randomly chosen.

MOTC
Multi-output tree chaining (MOTC) [33] creates a chain in the form of a tree. This
tree is built by evaluating the correlation of the targets. The models are then built
from leaves to the root. When compared to ERC, MOTC uses less training time and
memory. One advantage of these methods is the interpretability, in the form of a
graph, on the number of times a given target was used to explain the other.

Figure 5.10 illustrates the interpretability promised by MOTC: it is possible to
extract how many times pH, L∗, and a∗ were used to explain each other. If there is
no connection between two targets, it means that they were not used to explain each
other directly. The edge values are related to the strength of the correlation.
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LR

RF

Fig. 5.8 MTSG training illustration

Fig. 5.9 ERC training illustration
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Fig. 5.10 MOTC output
graph

18

12

5

Fig. 5.11 SVRCC training
diagram

SVRCC
Melki et al. [35] proposed SVR correlation chains (SVRCC). This method creates
a single chain that extracts the maximum inter-target correlation. In this way, the
targets will be sorted in decreasing order, starting with the most correlated and
ending with the least correlated.

Figure 5.11 shows an example in which YL∗ is the most correlated target,
followed by YpH and lastly Ya∗ .

RLC
Random linear target combinations (RLC) [48] is an ensemble method which
maps the original input variables to q new variables. For this, it creates a random
coefficient matrix C of size d × q and obtains the product of Y and C, generating a
matrix Y′ of size n × q .

The problem is divided as in ST. Predictions of these new variables are obtained
(Y′1) and then an inversion of the combination is applied to obtain predictions of
the original targets (Y 1).

5.2.3.2 DeepMethods

DRS
Deep regressor stacking (DRS) [41] can be seen as an extension of SST to multiple
layers of regressors. In a first phase, it creates d regressors using a single regression
algorithm. After that, the predictions Y1 are obtained and concatenated to the
original input X, forming X2. Then, in a second phase, d regressors are obtained
considering X2 and Y . New predictions Y2 are obtained and concatenated to X2,
forming X3 = X2|Y2. In this way, consecutive training phases are executed
until a predetermined number of layers (λ) is reached. Figure 5.12 shows the
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Fig. 5.12 DRS training illustration

training mechanism of DRS. In the last training phase, the input set consists of
the predictions of all previous layers, i.e. Xλ = X|Y1|Y2| . . . |Yλ−1.

DSTARTS
Deep structure for tracking asynchronous regressor stack (DSTARS) [34] also builds
multiple layers, as DRS. However, only correlated targets are concatenated to the
input set at each training phase. Another difference is that the stop of training is
determined by the method itself according to a user predefined improvement factor.
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Thus, DSTARS explores different levels of inter-dependencies among the targets
based on the dataset seeking to find the best composition of stacked regression
models to decrease the prediction error.

It is important to note that DSTARS relies on certain hyperparameter choices,
including the sampling strategy used to separate the data, error improvement
hyperparameter, and threshold.

5.3 Near Infrared Spectral Analyses

Spectroscopy implies in energy absorption from chemical bonds present in organic
molecules. Multivariate analysis has been used together with near infrared spec-
troscopy (NIRS) and near infrared hyperspectral imaging (NIR-HSI) techniques
for spectral data interpretation. Multivariate data analysis includes a branch of
exploratory, non-supervised and supervised, qualitative and quantitative techniques
[25].

5.3.1 Modelling Spectral Regression

5.3.1.1 Qualitative or Classification Techniques
Among the techniques of exploratory analysis found in the literature, principal
component analysis (PCA) is the most used. Considering a NIR or NIR-HSI dataset,
which contains hundreds of variables, there is a lot of irrelevant information that
do not contribute or can jeopardize data interpretation. Therefore, methods such
as PCA are able to compress these variables to a smaller number, which carries
all the information necessary to explain the variance among samples. These new
variables, called principal components (PCs), are a combination of the original
variables, and, usually, just few of them are necessary to identify the differences
between the studied samples. Moreover, PCA is an unsupervised method, so no prior
information is required. This is a great advantage of this technique and explains why
PCA usually is used as a first step in data modelling [32].

The linear and non-linear qualitative methods used in multivariate analysis
include linear discriminant analysis (LDA), partial least squares discriminant
analysis (PLS-DA), k-nearest neighbour (k-NN), artificial neural networks (ANNs),
support vector machine (SVM), and so on. The main idea of these supervised
techniques is to discriminate between classes of samples. When performed in a
spectral dataset, these methods search for the similarities between the spectrum
of each sample in order to develop a model that is able to correctly discriminate
samples according to the predetermined group. In the food field, this qualitative
analyses can be used, for instance, to determine samples origin, variety, pure and
adulterated samples, among many other applications.

Apart from these methods, soft independent modelling of class analogy (SIMCA)
is also widely used in qualitative determinations. The main difference between this
method and the others is the capacity of classifying a sample as belonging to more
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than one class or none of them, while the other methods discriminate between the
established classes [32]. Therefore, qualitative modelling gives the possibility of
determining many outputs with the same dataset. For example, a dataset containing
the spectral information about corn grains from different varieties, harvest year, and
country. With this same dataset, models can be developed to discriminate or classify
these samples within the respective classes.

5.3.1.2 Quantitative or Prediction Techniques
On the other hand, linear and non-linear quantitative methods for multivariate
analysis provide the possibility of prediction of different parameters, such as protein
and fat content, percentage of adulteration, and so on. Partial least squares regression
(PLSR), principal component regression (PCR), multiple linear regression (MLR)
are some quantitative techniques used for this propose. Their main idea is to
establish a relationship between independent variables (e.g. spectral information)
and a dependent variable (e.g. chemical parameter).

As in qualitative determinations, the same dataset can provide the information
for many predictions. For example, the measurement of meat quality involves the
determination of parameters such as protein, fat, colour, pH, moisture, and others
[17]. By relating the spectral information regarding meat samples and the reference
values of the parameters to be determined, one model can be developed for the
prediction of each property. The performance of these models is evaluated based on
the relationship between the predicted and the reference value [32, 39]. Therefore,
the inference about the conformity or the quality of some product can take the
determination of more than one parameter, consequently, the development of more
than one model.

Currently, partial least square regressions (PLS) is the most common method
used for prediction of parameters of interest. The use of linear techniques has shown
to be good enough for most of the determinations based on spectral data. However,
due to some changes that may occur in sample properties, there may be an increase
in the complexity of the data and the appearance of non-linearities, which cannot be
modelled by linear models. In this context, machine learning (ML) includes many
algorithms that are able to handle complex and non-linear data [9, 22, 28].

5.3.1.3 Multi-Target Regression
Recently, MTR has played an important role in machine learning and has been
widely applied in various fields. Considering the fact that spectroscopy has been
used for prediction of many outputs using the same dataset, and MTR implies
the prediction of many outputs, MTR would be a great deal for spectral data
interpretation [15, 22].

The algorithms used in MTR can be categorised in two groups: algorithm adap-
tion methods and problem transformation methods. Algorithm adaption methods
use the single target regression algorithms to directly solve MTR tasks. Therefore,
prediction of an unknown sample is possible by the development of one single
model. The main advantage of this approach, but still a challenge, is the possibility
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of exploring the relationship not only between the inputs and outputs, but also the
existence of a correlation between targets [50].

On the other hand, the problem transformation methods basically transform
MTR in individual single target regression problems. Although these single target
methods are well-known scenarios, by developing different models, the reference
values regarding other targets are included in the calibration of the desired target,
causing an accumulated error that may reduce the MTR performance. Moreover, this
approach does not consider the correlation between the outputs. In other words, the
prediction of n outputs of a given unknown sample would take the development of n
single models, each one for its specific target without considering their relationship
[35, 50].

In the literature, some works can be found in different fields regarding the use
of MTR, such as the prediction of healthcare resource utilisation [12], drug efficacy
[29], stock market [13], and quality prediction in a mining process [15]. However,
not much is found regarding the development of MTR with spectral data.

5.4 NIR Spectral Analysis in Food Samples

Near infrared spectroscopy has been used in the assessment of different features in
food samples, performed by the association of NIR spectra with the parameter of
interest in the product.

However, when it comes to food products, the complexity of food matrices can
be a challenge for this technique. Food products are very heterogeneous materials,
and taking one measurement from one point of the sample might not be enough
to represent the whole sample. To deal with this impasse, it is interesting to have
spatial information of the whole sample. Hence, spectral techniques that are able
to give also spatial information as near infrared hyperspectral imaging is a great
alternative.

The quality and safety of food products are essential requirements for producers,
consumers, and food regulatory agencies. The assessment of food quality and
safety includes the evaluation of sensory (e.g. texture, colour) and chemical (e.g.
protein, fat) parameters, authentication of adulteration (e.g. adulteration by cheaper
products), contamination (e.g. toxin, allergens), and any other aspects that can affect
the consumers health or even the product acceptance.

This search for high-standards in food quality led to the development of
analytical tools that are able to confirm if the product is able or not to be in the
market. Currently, many tools are available for food analysis such as the conven-
tional wet chemical methods, mass spectrometry (MS), high performance liquid
chromatography (HPLC), and so on. Although these methods are commonly used
and provide high quality information, they are mostly time-consuming, destructive,
and some of them even hazardous [47, 49], with the added handicap that it only
applies to a small portion of the batch. Therefore, the development of methods that
are able to assess food quality and safety without these drawbacks is required.
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In this context, vibrational techniques such as near infrared spectroscopy (NIRS)
and near infrared hyperspectral imaging (NIR-HSI) have been reported to be
promising tools in many sectors, specially in the food field. These techniques have
proven to be an good alternative to the traditional methods of analysis, since it is
fast, non-destructive, appropriate to be applied in/on-line, chemical-free, and so on
[31].

5.4.1 NIRS and NIR-HSI in Food Products

NIR spectroscopy and NIR-HSI have demonstrated to be very efficient in the
determination of many parameters in the most varied types of products.

5.4.1.1 Determination of Quality Parameters
The assessment of quality parameters in grains and flours includes the determination
of protein, carbohydrate, fat, moisture contents, among other parameters. Chickpea
flour (also called besan) is used as ingredients for other products, making chickpea
an important staple food, specially in South Asia. In this context, [23] studied the
possibility of using a lab-built predispersive filter-based NIR spectrometer (700–
2500 nm) for rapid characterisation of quality parameters in besan. The authors
determined protein, carbohydrate, fat, and moisture contents using partial least
square regression (PLSR), principal component regression (PCR), interval partial
least squares (iPLS), and synergy interval partial least squares (siPLS). PLSR and
PCR models were developed based on full wavelengths and had R2 over 0.96
and RMSEP below 0.05 for all parameters. After that, wavelength selection was
performed and iPLS and siPLS models were developed. RMSEP of these reduced
models were determined and compared to the RMSEP of full spectra. Wavelengths
from 2100 to 2345 nm were able to predict moisture content with RMSEP of 0.005
by iPLS. SiPLS models were able to predict carbohydrate, fat, and protein contents
and reduce by 0.41%, 0.1%, and 1.1%, respectively, when compared to the models
built with full wavelengths. Hence, this work showed the feasibility of using NIR
spectroscopy for rapid determination of quality parameters in chickpea flour.

Protein content is one of the most important parameters for the determination of
wheat quality. Aiming to determine the protein distribution in whole wheat kernels,
[10] used a near infrared hyperspectral imaging system (980–2500 nm). The authors
studied varied wheat samples that were analyzed by NIR-HSI and by the Dumas
combustion method as the reference value of protein content. Partial least squares
regression models were developed with the information of the single kernel spectra.
The protein content determined by Dumas method ranged from 6.2 to 19.8%. PLSR
models were able to predict the protein content with a coefficient of determination of
0.79 and root mean square error of 0.94%, showing the feasibility of using NIR-HSI
for protein quantification in whole wheat kernels.
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5.4.1.2 Sensory Attributes
Sensory attributes play an important role in product acceptance. Therefore, the
development of a method that is able to quantify the sensorial properties is very
interesting. In this sense, [20] applied near infrared reflectance spectroscopy in
different samples of cheese (cow, ewe, goat) to evaluate different sensory attributes,
such as surface features (presence of holes), salty and buttery taste, texture
(hardness, chewiness, creamy), flavour (rancid aroma), and other sensory attributes
(pungency, retronasal sensation). The reference values of sensorial properties were
defined by trained panellists. Modified partial least squares (MPLS) regression was
used to quantitatively evaluate the attributes. The models performance was evaluated
by comparing the results of NIR spectral data and the reference feature of calibration
samples with those of samples left out for external validation by means of Student’s
t-test. The significance levels obtained were between 0.84 and 0.01 for the rancid
flavour and chewiness, respectively. The results for residuals were between 0.9
(detection of holes) and 0.4 for sensory attributes creamy, chewiness, and retronasal
sensation. Root mean standard error (RMSE) values were 1.0 and 0.4 for holes and
creamy, respectively. The results obtained by NIR spectroscopy were comparable to
those obtained by the panel experts, showing the potential of NIR in determination
of sensory attributes in cheese.

Coffee is one of the most consumed beverages worldwide, and the determination
of sensory attributes in coffee is part of its quality determination. Usually, this
analysis is performed by a “cupping test”, which depends on the expertise of
trained testers. Although these testers have developed an acute sensibility for these
evaluations, the analysis is still very subjective. Therefore, [5] evaluated the use of
near infrared spectroscopy for the assessment of sensory attributes in commercial
roasted and ground coffee samples. The reference values of powder fragrance, drink
aroma, acidity, bitterness, flavour, body, astringency, residual flavour, and overall
quality used for the development of PLSR models were obtained by the “cupping
test”. The performance of the models was evaluated based on many parameters
of merit, including coefficient of correlation, RMSEP, and limits of detection and
quantification. The coefficients of correlation were between 0.73 and 0.84, RMSEP
between 0.09 and 0.29, limits of detection between 0.06 and 0.72, and limits of
quantification between 0.19 and 2.17. These results showed the possibility of using
NIR and chemometrics for prediction of sensorial properties of coffee without drink
preparation.

5.4.1.3 Adulteration
Adulteration of food products is commonly practiced around the world. Most of
these adulterations are hardly detected, due to the similarity between the product
and the adulterant. Regarding minced meat, this is even hard because the variation of
morphological characteristics is eliminated during mincing process. Therefore, [24]
used a hyperspectral imaging system (400–1000 nm) as a fast and non-destructive
technique to detect adulteration in minced beef meat with horse meat. PLSR
models were developed with spectral information of samples at different levels of
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adulteration. The coefficient of determination and the standard error of prediction
were 0.98 and 2.23%, respectively. After that, the regression coefficients were
evaluated to select important wavelengths (515, 595, 650, and 880 nm) in order to
develop prediction maps for the evaluation of the adulteration level in each pixel of
the hyperspectral images. The results demonstrated that HSI has a great potential as
a rapid screening technique for determination of adulterated minced meat.

Paprika is a spice widely used as food additive in processed foods, acting as dye
and flavour agent. Due to this, paprika powder is very susceptible to adulteration,
which is not easy to detect. Recently, [38] tested a portable NIR spectrometer for
rapid detection of paprika adulteration. The authors adulterated different paprika
samples (sweet, smoked, and spicy) from different suppliers, adding different
amounts of acacia gum, annatto, and potato starch. Data analysis was performed
using classification models (partial least squares discriminant analysis—PLS-DA)
and prediction models (partial least squares regression—PLSR). PLS-DA was
performed to identify samples as adulterated or non-adulterated and the type of
adulterant. All the models performed well, with specificity over 90% and error rate
below 2%. After, PLSR models were used to predict the level of adulteration in
paprika samples. Additionally, reduced models based on selected wavelengths were
developed. The model performance had values of R2 = 0.87 and RMSEP = 1.74
for prediction of adulteration with acácia gum, R2 = 0.97 and RMSEP = 1.74
for annatto, and R2 = 0.95, and RMSEP = 2.12 for potato starch. The authors
demonstrated that NIR spectroscopy can be applied as a screening technique for
detection of adulteration in paprika.

5.4.1.4 Contamination
Wheat is the major cereal consumed around the world, and, as any cereal, is very
susceptible to fungal contamination. Ochratoxin A (OTA) is a mycotoxin commonly
found in cereals and its level is controlled by many regulatory agencies in order to
avoid the excessive intake by consumers. In this context, [44] evaluated infected
wheat samples with a hyperspectral imaging system. Principal component analysis
was applied on spectral data and important wavelengths were selected (1280, 1300,
and 1350 nm) based on the highest factor loadings. Information regarding these
wavelengths (six statistical and ten histogram features) was extracted and used
as inputs to linear, quadratic, and Mahalanobis discriminant classifiers. Healthy
and fungal-infected kernels were correctly classified with an accuracy higher than
90% for all the three classifiers. Pair-wise, two-way, and six-way classification
models were developed and the quadratic discriminant provided classification
accuracy higher than the linear and Mahalanobis classifiers. Moreover, apart from
these wavelengths, one specific wavelength (1480 nm) was detected in samples
contaminated with Ochratoxin A. These samples were identified with an accuracy
of 100%, showing the ability of NIR hyperspectral imaging system to differentiate
between wheat samples in different fungal infection stages and with different levels
of Ochratoxin A.

Recently, [14] used Fourier Transform near and mid-infrared spectroscopy (FT-
NIR, FT-MIR) for evaluation of wheat samples contaminated with OTA. Partial least
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squares discriminant analysis (PLS-DA) and principal component-linear discrim-
inant analysis (PC-LDA) models were performed on spectral data to differentiate
between highly contaminated and low contaminated wheat samples (limit set at
2 μg/kg OTA). Overall, the models were able to discriminate samples with accuracy
above 94% for both techniques, regardless the classification model. A rate of 6% of
misclassifications were obtained for both spectral techniques and both classification
models. These results indicated that both spectroscopy techniques offer a promising
alternative for a cheap and easy-to-use screening tool for discrimination of OTA
contaminated wheat samples.

5.4.1.5 Identification
The meat industry and consumers are greatly concerned about the quality and
safety of meat products. These parameters include a series of evaluations regarding
composition, authenticity (e.g. fresh meat), adulteration, and so on. Moreover, the
identification of meat parts and processed products can play an important role in
product authentication. In this context, [37] explored the possibility of using a
portable near infrared spectrometer (900–1700 nm) for the identification of chicken
parts (breasts, thighs, and drumstick). Since the traditional methods of analysis can
successfully deal with this task, physical–chemical analysis (pH, L∗a∗b∗ colour,
protein, fat, moisture, and ash contents) was also carried out, but some disadvantages
as time and use of chemicals are evident. Then, the authors associated NIR spectral
data and machine learning (ML) techniques in order to develop a rapid and nonin-
vasive technique for chicken parts identification. Principal component analysis was
used as screening step, and support vector machine (SVM) and random forest (RF)
algorithms were performed for classification of chicken parts. The models were able
to differentiate breast from thighs and drumstick samples with an accuracy of 98%,
showing the feasibility of using a portable NIR spectrometer for rapid discrimination
of chicken parts and the potential of using this technique in the meat industry.

Recently, [6] evaluated the potential of near infrared (NIR) spectroscopy (400–
2500 nm) as a rapid technique to discriminate turkey cuts (wing, leg, drumstick,
breast, and skin) and processed turkey meat products (blanquette, cooked ham,
turkey breast, and smoked breast). Principal component analysis (PCA) was per-
formed on spectral data in order to explore the samples spectral information and as
a tool for selecting relevant wavelengths for linear discriminant analysis (LDA). The
effect of chemical and physical information of turkey meat and processed products
could be observed on PCA score plots. LDA models developed with raw data were
able to discriminate turkey cuts with an accuracy over 80% and processed products
with an accuracy over 71%, suggesting that NIR spectroscopy is a promising tool
for evaluation of raw turkey meat and ready-to-eat turkey products.

Although it was reported here a wide range of applications of NIR spectral
methods in food samples, there has been few of them using MTR. It can be seen
that several of the applications used several independent models to predict different
attributes from samples, using the same information as predictors, the spectra. Thus,
MTR could find an interesting niche in food applications, combined with NIR
spectroscopy or imaging.
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5.4.2 Multi-Target Regression Applied to Food Samples

Characterising food products is an extensive process performed from production
to consumption, identifying nutritional content, product quality, and at even health
risks to consumers. Physico-chemical analysis can reveal a great part of food char-
acteristics, exposing hydration properties, rheological behaviour, texture properties,
surface properties, capacity for formation and stability, surfactant agents, optical
and thermal properties.

Several food properties present linear and non-linear inter-correlation, providing
an opportunity to employ MTR methods. Boosted by the capacity of NIR and NIR-
HSI, recent projects have been taking advantage of MTR methods to improve the
predictive performance of food analysis.

In this section, two projects addressing meat and flour applications of MTR over
NIR spectra are deeply discussed.

5.4.2.1 ChickenMeat
Nutritional analysis in poultry science usually requires carcass chemical analysis to
estimate the nutritive value of meat. Thus, the quality of chicken meat is connected
to physico-chemical features ordinarily assessed in the breast muscle. Santana et al.
[42] proposed a new method, called multi-target augmented stacking (MTAS), to
predict several attributes (colour features, pH determination, chemical composition,
water holding capacity, cooking loss, and tenderness) in poultry breast muscles.
MTR methods were compared to evaluate the efficiency of spectral data in the
prediction of poultry meat parameters, as Fig. 5.13 shows.

To support the hypothesis of MTR application, the authors extract the linear
and non-linear correlation of poultry parameters using Pearson correlation and
random forest importance, respectively. Several parameters from a different type of
characteristics exposed to be high-correlated, sustaining the usage of MTR methods.
Further, in this work, the authors proposed a new method combining the MTRS
stacking-based idea with the addition of multiple base learners. Thus, the MTAS
takes advantage of the different levels of correlation and integration among target
variables, assuming that each pair of parameters need to be modelled differently.

The NIR signal was pre-processed and the first seven principal components (PC)
were used to characterise each sample. The authors compared the performance of:

• Multi-target regressor stacking (MTRS)
• Ensemble of regressor chains (ERC)
• Multi-target augmented stacking (MTAS)
• Deep regressor stacking (DRS)

To predict many poultry meat quality parameters, including moisture, protein,
lipids, ashes, pH, colour, and texture, the authors compared support vector machine
(SVM), random forest (RF), and classification and regression tree (CART) as
regressors. As result, the work explored not only the advantages of using MTR in
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Fig. 5.13 Overview of proposed approach in [42]

NIR data, but also the different interactions between the outputs. The results showed
the proposed method, MTAS, was very successful, and it achieved an increase of
7.9% in the models performance.

5.4.2.2 Flour
Several variables affect the quality of bread wheat flour, e.g. varietal differences,
cultivation practices, and environmental effects. These factors, in turn, influence the
regional and year to year variations and the climatic circumstances, which influence
the quality of wheat flour, estimated throughout the trading. Recently, [22] tested
MTRs and machine learning algorithms as a strategy to improve the prediction
performance of quality parameters in wheat flour (hectolitre weight, falling number,
protein content, alveographic indexes, and farinograph stability), based on near
infrared (NIR) spectral data.

The authors used Pearson correlation coefficient to calculate the inter-correlation
among all parameters. Protein content and alveographic index W were the most
correlated. On the other hand, hectolitre weight and falling number presented
no-correlation, but all of the parameters had at least one average correlated
parameter. NIR reflectance spectra was acquired using a Bruker MPA Multi Purpose
FT-NIR Analyzer, with an integrating sphere and a RT-PbS detector in the 12,500–
3600 cm−1 range.
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Fig. 5.14 Overview of proposed approach in [22]

Using traditional NIR signal pre-processing (i.e. scaling and mean-centering),
the authors extracted the latent variables of PLS from the dataset to predict the
wheat flour parameters. It was compared the performance of several multi-target
methods:

• Multi-target regressor stacking (MTRS)
• Ensemble of regressor chains (ERC)
• Deep structure for tracking asynchronous regressor stack (DSTARS)

Three distinct machine learning algorithms were compared as: support vector
machine (SVM), random forest (RF), and linear regression (LR). In Figure 5.14 it
is possible to observe the overview of the proposed approach in [22].

The authors reported that MTR allowed an increase of 7.9% in the performance
of prediction models for quality parameters of wheat flour. Further, two contribu-
tions for the analysis of spectral data have been achieved, as the advantages of
non-linear modelling by using latent variable from PLS and RF, and the possible
advantages of multi-target prediction in general. Considering the results exposed in
[22], we recommend the use of MTR over PLS modelled by ML algorithm. This
alternative is capable to deal with drawbacks of PLS by non-linear ML modelling.
Particularly, RF delivers further information from RF relevance and requires less
hyperparameters to be used.

5.5 Future Trends

In the current chapter, we present a comprehensive discussion on the state of the art
of multi-output regression. It is presented an overview and comparison of the main
techniques reported in the literature, with respect to prediction accuracy based on
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the evaluation metrics, computational complexity, and interpretation of results. The
chapter then focuses on performance of MTR to spectral data, and its application to
food quality and composition measurements.

Before considering the most promising usage and future implementations of
MTR methods, their drawbacks need to be discussed to pave the way for the future
proposal. The most recent problem transformation methods have already overcome
the former MTR methods (i.e. MTRS and ERC) when considering predictive perfor-
mance. On one hand, the shallow methods have a similar computational complexity
of MTRS and ERC, but some studies exposed a strict relation between problem
and regressor. Thus, the demand for tuning and choosing optimal hyperparameters
for machine learning regressor is more relevant than MTR method for many of
problems. On the other hand, deep methods are computationally expensive, in
several cases, the improvement obtained is not significant enough due to cost.

When using algorithm adaptation, the architecture and deep knowledge required
to modify an algorithm pose some additional challenges to this type of solution.
This fact is indicated by the growing usage of problem transformation applications.

An interesting area for future works would be to compare different approaches
of MTR to spectral data obtained from food matrices. Researchers that work on the
subject could make data publicly available for further tests, or new data could be
acquired with this purpose. It could allow prediction of several attributes at once,
which is a promising application for complex matrices such as food and agricultural
products.

Another interesting application will be grouping the different approaches avail-
able according to prediction performances, identifying the most useful methods for
each type of product, based on their performances for that given sample based on
the multiple targets of interest.

Definitely predictive performance improvement is mandatory when selecting
a MTR solution based on NIR spectra from food. Nevertheless, recent studies
suggested more comprehensive and uncomplicated methods to interpret the inter-
correlation of targets, helping to understand relationships between physic chemical
attributes of the food product. Further, it is expected that visual models from MTR
can help interpretation of the obtained predictive pattern by food specialists.
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