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Abstract. Sentinel-2 optical time-series images obtained at high resolution are
creditable for cropland mapping which is the key for sustainable agriculture. The
presented work was conducted in a heterogeneous region in Sameerwadi with an
aim to classify sugarcane crops, with mainly two groups so as to provide a sugar-
cane field map, using Sentinel-2 normalized difference vegetation index (NDVI)
time-series data. The potential of two better-known machine learning (ML) clas-
sifiers, random forest (RF) and support vector machine (SVM), was investigated
to identify seven classes including sugarcane, early sugarcane, maize, waterbody,
fallow land, built-up and bare land, and a sugarcane crop map is produced. Both
the classifiers were able to effectively classify sugarcane areas and other land cov-
ers from the time-series data. Our results show that RF achieved higher overall
accuracy (88.61%) than SVM having an overall accuracy of 81.86%. This study
demonstrated that utilizing the Sentinel-2 NDVI time-series with RF and SVM
successfully classified sugarcane crop fields.
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1 Introduction

Agriculture plays an important role in the economy of India. To attain sustainable agri-
culture practice, accurate crop mapping needs to be in place. Satellite imagery provides
timely, accurate, and detailed spatial information about an agro-ecological environment
[1]. Cropmapping using satellite imagery would help in providing essential and accurate
information about the crops, useful to managemany agricultural resources [2]. However,
crop classification using remote sensing data is a challenging task due to crop hetero-
geneity and similar reflectance in fields. Various machine learning algorithms have been
successfully investigated for cropland mapping from single-date to time-series remote
sensing images. The cropland mapping techniques applied to time-series images have
been demonstrated to perform superior to single-date mapping techniques [3, 4]. For
example, Muller [5] successfully differentiated cropland and pasture fields from Landsat
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time series and Zheng [6] applied the SVM model on time-series Landsat Normalized
Difference Vegetation Index (NDVI) data for identification of crop type. Time-series
Landsat is explored with ensemble classifier and with other ML methods like SVM,
Neural Network, logistic regression, and extreme gradient boosting for land cover clas-
sification [7]. Senf [8] used Landsat time-series imagery, and multi-seasonal MODIS to
classify crops from Savannah. Jia [9] researched the adequacy of phenological features
processed from the MODIS NDVI time-series melded with NDVI data obtained from
Landsat 8 for cropland mapping. MODIS-Terra/Enhanced Vegetation Index (EVI) time
series have been effectively used to derive the phenological patterns for the classification
of cotton, maize, soybean, and noncommercial crops in Brazil [10]. MODIS-Terra EVI
has also been used to detect phenological stages, and MODIS NDVI to extract pheno-
logical information like the season, peak, and end of the season [11] of rice crop. Double
cropping, single cropping, forest, and pastures were mapped using the patterns of vege-
tation dynamics identified from MODIS EVI data by Maus [12]. Landsat, MODIS, and
Chinese HJ-1 time series have been successfully explored for sugarcane crop classifica-
tion. Time-series Landsat 8 [13] and time-series Chinese HJ-1 CCD images [14] were
used to automatically map sugarcane over large areas by applying object-based image
analysis and data mining techniques. Sugarcane cropping practices, including crop type
and harvest mode, were mapped using Landsat 8 NDVI time-series by Mulianga et al.
[15]. Time series of SPOT 5 images were integrated with crop growth model and expert
knowledge to deal with the issue of missing acquisitions or uncertain radiometric values
by El Hajj et al. [16] in order to detect sugarcane harvest.

Many studies have investigated the potential of a single date Sentinel-2 image to
classify crops including sugarcane using RF, SVM, DT machine learning methods. Fur-
thermore, applying RF, DTW algorithms on time series of Sentinel-2 produced the best
results for cropland mapping [17], but is not yet explored for sugarcane crop classifica-
tion. So, considering the affordability of high spatial-temporal resolution of Sentinel-2
data, and the potential of RF, SVM, andML approaches, this study aimed to evaluate the
effectiveness of time-series Sentinel-2 images and the potential of RF and SVM on this
data to classify sugarcane crop from other land covers. The rest of the paper is organized
as follows: Sect. 2 describes the study area and the data; Sect. 3 presents the proposed
methodology; Sect. 4 discusses the results followed by a conclusion.

2 Study Area and Data

2.1 Study Area

The study area is located near to Sameerwadi, Karnataka, India, at 16.38980 N and
75.03710 E (Fig. 1). Sameerwadi is a village situated inMudhol taluka, Bagalkot district
of Karnataka state in India. The study area covers four talukas, i.e. Mudhol, Jamkhandi,
Raibag, and Gokak, and around 8 lack acres of land. The area has an altitude of 541 m
above sea level with annual precipitation around 545 mm. The climate is generally
dry and the temperature ranges between 16.2 and 38.7 °C. Sugarcane is the main crop
cultivated in this region, apart from maize, turmeric, and banana. Figure 1 depicts the
study area.
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Fig. 1. FCC image of the study area

2.2 Sugarcane Crop Cycle

The phenology of sugarcane may provide valuable information for remote sensing clas-
sification in the study area. Sugarcane crop’s phenological dynamics throughout its
biological cycle needs to be perceived well to understand its spectral behavior, which is
vital because of its great impact on classification accuracy. Depending on the planting
date, sugarcane has 3 growth cycles, i.e. 12 months (Early season), 14 months (Mid-late
season), and 18 months (Late season) in the study region. The 12-month crop is planted
in the months of January and February, 14-month crop is planted between November
and December, whereas 18-month crop is planted during July–August. After harvest-
ing for the first time, the crop is regrown again 3–4 times and harvested after every
12 months. This practice is referred to as ‘ratoon’. In addition to this, it is important
to take in the growth stages and varieties of sugarcane in the classification task. There
exist four stages: germination, tillering, grand growth, and maturity of sugarcane with
varieties of CO 86032, CO 91010, SNK 2005, 265 in the study region. Due to these prop-
erties of sugarcane, a satellite image acquired on a particular date contains variations in
fields which include different growth stages of sugarcane crop, plant cane and ratoon
cane, sugarcane varieties, and other crops cultivated for the crop rotation purpose. This
necessitates the use of multi-temporal images to perform the classification with the best
accuracy. By appropriately utilizing time-series remote sensing images, the phenology
of sugarcane, which can be utilized to separate the sugarcane crop fields from the other
land, may diminish the obstruction of comparative spectra from the other vegetation in
the range and help in increasing the classification accuracy.
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2.3 Data

The Sentinel-2 launched on June 23, 2015 is an Earth Observation (EO)mission from the
EUCopernicus program that captures optical imagery at a high resolution of 10–60m for
the services and applications for agriculture monitoring, land cover classification, water
quality, and emergencies management. It has 13 bands out of which one of the three
visible bands (band 4) and the near-infrared band (band 8) were used in our study. The
images were downloaded from the European Space Agency’s (ESA) Sentinel Scientific
Data Hub which is an open source. Five satellite titles per month, used to obtain study
area, are obtained from January 20, 2019, to May 07, 2019, as listed in Table 1. The
selected temporal images were free from cloud coverage and with good quality. The
images were geo-referenced to WGS 1984 UTM zone 43 N projection system. EU
Copernicus programprovides imageswith geometrical and radiometrical corrections.All
the images were atmospherically corrected using Semiautomatic Classification Plugin
(SCP) available on QGIS 2.18 distributed under the GNU GPL license.

Table 1. Sentinel-2 images used in the study

Image no. Satellite Date (dd/mm/yy)

1 Sentinel-2A 20/01/19 to 22/01/19

2 Sentinel-2A 24/02/19 to 26/02/19

3 Sentinel-2A 06/03/19 to 08/03/19

4 Sentinel-2A 10/04/19 to 12/04/19

5 Sentinel-2A 05/05/19 to 07/05/19

3 Methodology

The proposed methodology is depicted in Fig. 2 which contains the following steps: (i)
acquisition of Sentinel-2 temporal data, (ii) atmospheric corrections of all the images,
(iii) NDVI computation, (iv) preparing an input image, v) selection of training sam-
ples and generation of Region of Interest (ROI) files, (vi) classification using RF, (vii)
classification using SVM, and (viii) classification accuracy assessment.

3.1 Data Acquisition and Preprocessing

As listed in Table 1, Sentinel-2 images were obtained free of cost from the Coperni-
cus website. All images were atmospherically corrected to reduce the effects of the
atmosphere to produce the surface reflectance values. It helps in improving the use and
interpretability of images.
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Fig. 2. The proposed methodology

3.2 Data Collection and Preparation of Training Set

The classification was performed based on the NDVI values of the crops from January
2019 to May 2019. We have selected NDVI as it is proven to be the best Vegetation
Index (VI) in the literature for crop mapping [6, 7, 9, 11, 15]. All preprocessed images’
NDVI computation is performed to get the NDVI time-series. Then the study area is
extracted from these images and layer stacked to generate a multispectral input image
for the classification of sugarcane crops. Every pixel of the stacked image represents a
vector containing NDVI values corresponding to the considered images.

Training Dataset: Training dataset has been created by field survey which was
performed from January 2019 to May 2019. In this field campaign, ground truth data
has been recorded by the Global Positioning System (GPS) device (Montana 680) for
sugarcane and maize crops. Apart from this, samples for other classes were generated
from a visual interpretation based on expert knowledge. In total, 14 sugarcane polygons
and 06 maize polygons surveyed in fields were used for training, and 40 polygons were
generated for all other classes. In the study area, during the sugarcane developing cycle,
various phenological stages of sugarcane fields may coincide on the same date, ranging
from the region of reaped sugarcane, and sugarcane in different growth phases up to
the phase of grown-up sugarcane ready to harvest. In this way, we attempted to collect
samples of all sugarcane phenological stages, with the goal that all the significant sub-
classes would be represented. The testing polygons are distinct from training polygons.
The polygons were selected from the different agricultural parcels to account for many
other factors such as soil, water source, climate, and cultivation practices.

3.3 Classification

Random Forest: Random forest is a nonparametric, ensemble method [18] based on the
Classification and Regression Trees (CART). A classification tree iteratively splits the
bootstrap data into pure subsets. Many such independent classification trees are gener-
ated by setting ntree and mtry hyperparameters. The ensemble’s final decision is taken
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from the majority vote of the predictions of all the trees. RF has shown magnificent per-
formance in remote sensing applications [19–22] due to the capability of handling large
input variables, run on large datasets, to handle outliers and to provide the importance of
predictive variables on final model performance [23, 24]. RF also achieved significant
accuracy in sugarcane classification [1, 2].

Support Vector Machine: SVM is a statistical learning method used for solving
classification as well as regression problems. It does not assume the distribution of data
and finds an optimal hyperplane between the two classes to be classified. It is basically a
two-class classificationmethod but can be extended formulticlass problems [25, 26]. The
main capability of SVM of achieving high accuracy even with fewer training samples
made them very useful in remote sensing applications [6, 27]. SVM is proven to be one
of the best ML methods in various remote sensing applications which mainly include
crop classification [26], biotic stress detection [28], yield estimation, and Land Use and
Land Cover (LULC) [25, 29, 30].

Sugarcane crop has varying crop cycle and diverse planting and harvesting dates
which make classification complex. We first, classified the Sentinel-2 NDVI time-series
using ground truth data and supervised the classification into seven classes using RF
and SVM classifiers. The classes are sugarcane (sugarcane crops having age more than
six months), early sugarcane (sugarcane with age less than six months), maize, water
body, fallow land, built-up and bare land. Both themodels were trained using the training
dataset. Both models are widely used models in the crop classification and are tuned
with the hyperparameters to achieve maximum accuracy. Open-source R software is
used to implement RF and SVM classifiers. Then, recoding of the assigned classes
was performed in post-classification through ENVI software. This resulted in one early
sugarcane class and a grown-up sugarcane class. This formed the sugarcane map for
four talukas’ region.

3.4 Accuracy Measures

In remote sensing, accuracy is the measure to validate the correctness and quality of the
generated classification maps. The evaluation is performed through the overall accuracy
and kappa coefficient measures, and accuracy of an individual class is measured through
producer’s and user’s accuracy. Sometimes, F1 score is used to determine class-wise
accuracy [2]. In this work, the accuracy was determined with overall accuracy and
kappa coefficient measures.

4 Results and Discussion

Sentinel-2 five tiles, covering the study area, in every month for five months were
obtained, then mosaicked and ROI was cropped from that image. Then, layered stacking
of NDVI was performed, and the resultant image was used for sugarcane and other land
cover classification. Two well-known ML classifiers RF and SVM discriminated the
sugarcane and other classes very well. The RF’s overall accuracy is obtained as 88.61%
and the kappa coefficient is 0. 8387 (Table 2).
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Table 2. Accuracy assessment of RF and SVM

Overall accuracy
(%)

Kappa coefficient

RF 88.61 0.8387

SVM 81.86 0.7623

The classified imageusingRF is shown inFig. 3.Theoptimumaccuracywas achieved
by tuning the parameter mtry with value 2. SVM’s achieved overall accuracy is 81.86%
and kappa coefficient is 0.7623 (Table 2), and the classified image is given in Fig. 4.
From Tables 3 to 4, it is observed that the work resulted in classifying sugarcane, early
sugarcane, built-up and bare land classes more accurately by RF than SVM. Fallow land
class achieved the lowest producer’s accuracy with RF, and Maize is less accurately
classified by SVM.

Fig. 3. The classified image by RF

The total area classified into each of the classes by RF and SVM is presented in
Fig. 5.

After classifying the time-series image into seven classes, reclassification was per-
formed that resulted in two sugarcane classes (early sugarcane and grown-up sugarcane),
and a sugarcane map is generated which is shown in Figs. 6 and 7.
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Fig. 4. The classified image by SVM

Table 3. Producer’s and user’s accuracy for RF

Class name Reference
totals

Classified
totals

Number
correct

Producer’s
accuracy in %

User’s accuracy
in %

Waterbody 10 11 9 90.00 81.00

Fallowland 13 8 5 38.46 62.50

Builtup 87 92 85 97.70 92.39

Sugarcane 29 29 26 89.66 89.66

Maize 10 8 7 70.00 87.50

Bareland 22 22 20 90.91 90.91

Early
Sugarcane

30 31 27 90.00 87.10

5 Conclusion

In this study, we evaluated the potential of RF and SVM to discriminate sugarcane crop
from other land covers using Sentinel-2 NDVI time-series images and a limited number
of training polygons. We utilized Sentinel-2 images of five months from January to May
2019 which covers two main phenology of sugarcane, i.e. tillering and grand growth,
January–December temporal coverage is required for precise crop classification. The
achieved producer’s and user’s accuracies reach 97.70 and 92.39 respectively. RF clas-
sifier achieved 88.61% accuracy whereas SVM reached up to 81.86% concludes RF’s
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Table 4. Producer’s and user’s accuracy for SVM

Class name Reference
totals

Classified
totals

Number
correct

Producer’s
accuracy in %

User’s accuracy
in %

Waterbody 6 7 5 83.33 71.43

Fallowland 34 25 23 67.65 92.00

Builtup 39 36 33 84.62 91.67

Sugarcane 43 47 38 88.37 80.85

Maize 15 11 9 60.00 81.81

Bareland 23 30 22 95.65 73.33

Early
Sugarcane

33 37 28 84.85 75.68
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Fig. 5. Class-wise coverage of the total area in hectares

superiority in sugarcane classification in the study area. Thus from the results, we con-
clude that our spectral-temporal approach for classification gave reliable discrimination
between sugarcane and other land covers. Future investigation will be to evaluate differ-
ent vegetation indices like GNDVI, EVI, etc. from time series data to discriminate all
four phenology of sugarcane crops in the study area.
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Fig. 6. Sugarcane map on RF-classified image

Fig. 7. Sugarcane map on SVM-classified image
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