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Abstract. Electrocardiogram (ECG) signal classification is an essen-
tial task to diagnose arrhythmia clinically. For effective ECG analyses,
it has to be decluttered from embedded low and high frequency noise.
Low frequency noise include baseline wander and high frequency noise
include power line interference. We provide a comparative study for
the task of baseline wander removal from ECG signals using different
variants of Empirical Mode Decomposition, Median Filtering and Mean
Median Filtering with a major emphasis on variational mode decompo-
sition as it is a relatively new technique and much more robust towards
noise. The comparison between the aforementioned techniques depicted
that variational mode decomposition estimates better baseline as com-
pared to other techniques in terms of pearson correlation, percentage root
mean square difference and maximum absolute error. However, the time
required to decompose the signal is relatively higher than the filtering
techniques.

Keywords: Electrocardiogram · Baseline wander · Empirical Mode
Decomposition · Variational Mode Decomposition

1 Introduction

Electrocardiogram (ECG) represents the electrical activity of the heart. It is
useful in detecting irregularities in the heart rhythm that occur sporadically in
the patient’s daily life [24]. An ideal ECG wave constitutes a P-wave, a QRS-
complex, and a T-wave that represents atrial depolarization, ventricular depolar-
ization, and ventricular repolarization, respectively. Low-frequency noise caused
due to Baseline Wander corrupt ECG recordings. Baseline Wander (BW) ranges
between 0.5 ± 0.5 Hz frequency and is caused due to respiration or motion of
the subject, dirty leads and improper skin contact of electrode. BW hinders the
doctors in analyzing the ST segment as both of them have a similar frequency
spectrum [1,8] and introduces a gradual increase in the amplitude of ECG signal,
thereby degrading the PQRST morphology.
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1.1 Related Work

Baseline wander removal from ECG signal is not a new problem and has been
studied in the past. Papaloukas et al. employed cubic spline curve fitting method
for BW removal [21]. Filtering techniques [5,12,16,19,22,25] including Non lin-
ear filter banks [16], Median Filtering [5], Mean Median Filtering [12], adaptive
filters [25] and combination of wavelet and adaptive filters known as Wavelet
Adaptive Filtering (WAF) [22] have been also used to reduce distortion in ST
segment which is highly affected by BW. Lifting-based discrete wavelet trans-
form [7], statistical techniques like independent component analysis [10] have
also been used to remove artefacts from ECG. Filtered residue [13], indepen-
dent component analysis [2,10] have also been used for BW removal from ECG
singals. BW removal from ECG signal has also been performed using empirical
mode decomposition (EMD) and its variants [3,4,14,15,29,30]. EMD itself is
unable to remove BW as it distorts the QRS complex and attenuates R-peak.
So, different techniques were employed in addition to EMD including mathemat-
ical morphology [14], adaptive filter [30], and wavelet transform [15]. Ensemble
EMD was also used to remove noise [4]. Complete ensemble EMD with adaptive
noise and wavelet threshold [29] was also used to remove BW. In most of the
aforementioned techniques, filtering, wavelet transform and EMD based methods
are prevalent for BW removal. The techniques based on EMD and its variants
provide comparatively better results but require a high execution time. EMD
performs signal decomposition into high and low frequency components that are
commonly known as Intrinsic Mode Function (IMF). High frequency compo-
nent denotes the QRS complex and high frequency noise such as the interference
from power sources. Low frequency components are P, T waves, ST segments
and BW. Direct removal of higher order IMF ruptures the ST segment morphol-
ogy. Hence, EMD is used in tandem with different techniques. The problem with
wavelet transform is the requirement of the P, T wave morphology that is diffi-
cult to obtain and also the methods fail in the presence of other noises. Recently,
variational mode decomposition (VMD) was also used for baseline wander esti-
mation and removal by Prabhakararao et al. [23]. They reported that VMD is
better for BW estimation as compared to EMD and DWT.

1.2 Our Contributions

We present a detailed analysis for an efficient estimation of BW using Variational
Mode Decomposition. In addition to [23], we varied different parameters of VMD,
namely, the bandwidth constraint and number of modes for better decomposi-
tion of the input signal into a clean signal and BW. A comparison between dif-
ferent variants of Empirical Mode Decomposition, filtering techniques, namely
median, mean median filtering, and Variational Mode Decomposition, is also
performed for an effective estimation of BW. The comparison between the tech-
niques depicted that VMD estimates better BW in terms of pearson correla-
tion, percentage root mean square difference, and maximum absolute error with
slightly higher execution time required to decompose the signal.
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1.3 Paper Organization

The rest of the paper is organized as follows. Section 2 provides a brief descrip-
tion of EMD along with its different variants, VMD, and mean median filtering.
Section 3 describes the experimental setup that includes system configuration,
data description and evaluation metrics. Section 4 explains the results and dis-
cussion followed by Sect. 5 that concludes the paper with the future scope.

2 Brief Description of Techniques

A brief description of the techniques including Empirical Mode Decomposition,
Ensemble Empirical Mode Decomposition, Complete Ensemble EMD with Adap-
tive Noise, Variational Mode Decomposition, and Mean-Median Filtering is pro-
vided in subsequent subsections.

2.1 Empirical Mode Decomposition

Empirical Mode Decomposition(EMD) [11] is a data-driven technique that
decomposes a non stationary signal (generated from non linear systems) in nar-
rowband monocomponent signals also called as IMFs. IMFs are zero mean ampli-
tude modulated frequency modulated (AMFM) components. However, it is not
guaranteed that an IMF consists of a single oscillatory mode, and neither a nar-
row band signal nor its meaningfulness due to its limitations. The algorithm to
calculate EMD of signal y(t) is described as follows:

1. Determine all local maxima ymax(t) and local minima ymin(t) for y(t).
2. Interpolate ymax(t) and ymin(t) using cubic spline.
3. Calculate mean m(t): m(t) = (ymax(t) + ymin(t))/2.
4. Calculate d(t): d(t) = y(t) − m(t).
5. Check if d(t) is an IMF using the stopping criteria, if it satisfies the criteria

then goto step 6 or else goto step 1.
6. The above procedure is called sifting. After obtaining the first IMF, subtract

it from y(t) and obtain the remaining signal. Perform sifting on the obtained
signal until the residue persists any meaningful frequency information.

7. The final decomposed signal can be obtained as a sum of IMF’s dn(t) and a
residue rn(t) as provided in Eq. 1.

y(t) =
N∑

n=0

dn(t) + rn(t) (1)

2.2 Ensemble Empirical Mode Decomposition

The IMFs obtained using EMD suffers from oscillation with multiple frequencies
in a single mode or single frequency in multiple modes. This problem is commonly
known as “mode mixing”. Adding multiple realizations of a specific amount of
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noise removes mode mixing by utlizing the dyadic filter bank behaviour of EMD
[9]. This phenomenon was given by Wu et al. [27] and was termed as ensemble
EMD (EEMD). EEMD decomposes the original signal for multiple ensembles of
noise and produces the modes by averaging. EEMD of signal y(t) is described
as follows:

1. Generate a new input by adding multiple noise realizations of N(μ = 0, σ =
1).

2. Decompose each new input using EMD and obtain the IMF dn
k .

3. Assign dk as the kth IMF obtained from y(t) by averaging the corresponding
IMFs as given in Eq. 2

Dk =
1
I

I∑

i=1

dk
i (2)

Each pair of signal + noise is individually decomposed and their residue
rk

i = rk
i−1 − dk

i is obtained thereby eliminating the estimation of local means.

2.3 Complete Ensemble EMD Using Adaptive Noise

EEMD alleviates mode mixing problem but introduces the problem of residual
noise that corresponds to the difference between reconstructed and original sig-
nal. Another problem is that the averaging of IMFs is difficult due to the fact
that varying number of IMFs are generated by EEMD. This led to the develop-
ment of CEEMDAN [26] that achieved not only negligible reconstruction error
but also solved the problem of varying number of modes for different noise real-
izations. The basic intuition of CEEMDAN comes from the fact that it utilises all
final modes generated by multiple noise realization of signal for the calculation
of the next mode.

This estimates the local means of modes in an efficient and sequential manner
for each noise realization. Suppose Ek(.) generates kth IMF via EMD, where w(j)

has N(μ = 0, σ = 1). Then CEEMDAN on signal y(t) is calculated as follows:

1. For every j = {1 . . . J}, decompose each y(j) = y + β0w
(j) using EMD until

the first CEEMDAN mode is obtained. Then compute d1 = 1
J

J∑
j=1

d
(j)
1 .

2. Calculate first residue using r1 = y − d1.
3. Generate first mode of r1 + β1E1(w(j)) by EMD, where j = {1 . . . J} and

calculate second CEEMDAN mode as d2 = 1
J

J∑
j=1

E1(r1 + β1E1(w(j))).

4. For k = {1 . . . K} calculate the kth residue as rk = r(k−1) − dk.
5. Calculate first mode of rk +βkEk(w(j)) by EMD, where j = {1 . . . J} and cal-

culate the (k+1)th CEEMDAN mode as d(k+1) = 1
J

J∑
j=1

E1(rk +βkEk(w(j))).

6. Goto step 4 for the calculation of next mode k.
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Iterate steps 4 to 6 until the residue satisfies IMF conditions or it has less

than 3 local extremum points. The last residue satisfies: rK = y −
K∑

k=1

dk, where

K is the number of IMFs. Therefore, the overall signal can be represented by
Eq. 3.

x =
K∑

k=1

dk + rK (3)

Modes extracted using CEEMDAN provide exact reconstruction of the orig-
inal signal. Final number of IMFs is solely determined by the data and the
stopping criterion. However, CEEMDAN also suffers from residual noise as the
signal information appears in higher order IMF as compared to EEMD and some
“spurious” lower order modes [26]. Theoretical and mathematical literature still
lacks in finding out the number of ensembles and the amplitude of noise to be
added in order to boost performance.

2.4 Variational Mode Decomposition

Variational Mode Decomposition (VMD) [6] is also a data adaptive technique
that generates the variational modes from multicomponent signal y(t) in an
entirely non recursive and concurrent fashion. The variational modes (uk) are
quasi orthogonal and bandlimited around center frequency (ωk) that are capa-
ble to reproduce the input signal. VMD comprises of a strong mathematical
framework. It uses the concepts of Wiener filtering, Fourier transform, Hilbert
transform, analytic signal and the frequency shifting through harmonic mixing.
The algorithm to decompose a signal via VMD is described as follows:

1. For each mode, the analytical signal is computed using the hilbert transform
to acquire a unilateral frequency spectrum.

2. The spectrum of the obtained mode is mixed with an exponential that shifts
it to an estimated center frequency.

3. The bandwidth of the mode is estimated through the squared norm of the
demodulated signal.

The above procedure is performed until convergence. Mathematically, VMD
can be calculated using Eq. 4.

min
{yk},{ωk}

{
∑

k

∥∥∥∥∂t

[(
δ(t) +

j

πt

)
∗ yk(t)

]
e−jωkt

∥∥∥∥
2

2

}
s.t.

K∑

k=1

yk(t) = y(t) (4)

where, y(t) is the signal to be decomposed, uk are the modes obtained after
decomposition, ωk is the center frequency of each mode, δ is the dirac distribu-
tion, t is the time, K is the number of modes and ∗ is the convolution operator.
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2.5 Mean-Median Filtering

Mean-Median Filtering (MMF) [20] utilizes the convex combination of the sam-
ple median and sample mean of signal y(t) as provided in Eq. 5.

MMF = (1 − α) ∗ mean(y(t)) + α ∗ median(y(t)) (5)

where, α ∈ [0, 1] is the ‘contamination factor’.

3 Experimental Setup

This section describes the system configuration, database used for experimental
purposes, proposed workflow, and the evaluation metrics used for comparison of
techniques.

3.1 System Configuration

The experiments are performed on a workstation with Intel i5-6500 CPU with
a clock frequency of 3.2 GHz and 16 GB of RAM. The code was developed in
Python language.

3.2 Dataset Description

MIT-BIH database [17,18] is used for experimental purposes. It consists of 23
normal ECG and 25 arrhythmic recordings with sampling frequency of 360 Hz
for two channels, namely, modified limb lead II (MLII), and V1. We have used
MLII lead signal for experimental purposes.

Figure 1a represents a normal sinus rhythm from record 103 that is contam-
inated with BW and Fig. 1b represents the clean normal sinus rhythm (NSR).
Similarly, Fig. 2a represents a segment of ventricular tachycardia (VT) from
record 205 that is contaminated with BW and Fig. 2b represents the clean seg-
ment of VT.

3.3 Proposed Workflow

The workflow followed in this paper is illustrated in Fig. 3. For testing the robust-
ness of the models, artificially generated noise of frequency around 0.4 ± 0.4 Hz
was added to the original signal. These frequencies were selected in particular
because they correspond to the frequency of BW. The noisy signal was then pro-
vided to different baseline wander estimation techniques. The techniques include
median filter [16], MMF [20], Blanco EMD [3], combination of MMF with EMD
[28], EEMD with fixed cut off frequency [27], and VMD [6]. The estimated base-
line is further subtracted from noisy signal producing the clean signal. The clean
signal is compared to the noisy signal using the evaluation metrics provided in
Sect. 3.4.
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(a) NSR contaminated with Baseline Wander

(b) Clean NSR.

Fig. 1. Normal sinus rhythm from record 103 of MIT-BIH dataset.

(a) VT contaminated with Baseline Wander

(b) Clean VT Segment

Fig. 2. Ventricular tachycardia segment from record 205 of MIT-BIH dataset.

Fig. 3. Workflow followed
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3.4 Evaluation Metrics

For comparing the clean and noisy signal, three evaluation metrics have been
employed. In addition to the metrics, time taken by each technique for BW
removal was also taken into account. The evaluation metrics employed are Per-
centage root mean square difference (PRMSD), Pearson Correlation (PC), and
Maximum Absolute Error (MAE) as provided in Eq. 6, 7, and 8, respectively.

PRMSD =

√√√√√√√√

N∑
n=1

[x(n) − x̃(n)]2

N∑
n=1

[x(n)]2
× 100% (6)

PC =
N

N∑
n=1

x(n)x̃(n) −
(

N∑
n=1

x(n)
N∑

n=1
x̃(n)

)

√√√√
[
N

N∑
n=1

x(n)2 −
(

N∑
n=1

x(n)
)2

][
N

N∑
n=1

x̃(n)2 −
(

N∑
n=1

x̃(n)
)2

] (7)

MAE =
N

max
n=1

{|x(n) − x̃(n)|} (8)

where, x[n] represents the signal contaminated with baseline wander, x̃[n]
represents the clean signal and N represents number of samples in the signal.
x[n] and x̃[n] are similar length signal.

4 Results and Discussion

The baseline wander estimation is performed for two signals from MIT-BIH
dataset, namely 103 that represents normal sinus rhythm and 205 that repre-
sents ventricular tachycardia segment in this paper. Extensive experimentation
is performed for BW removal from normal sinus rhythm using VMD in Sect. 4.1.
A comparative analysis is then provided between different techniques: namely,
median filter, mean median filter, EMD along with its other variants, and VMD
for the task of baseline wander removal from both normal sinus rhythm and
ventricular tachycardia segment in Sect. 4.2.

4.1 Analysis of VMD for BW Removal

A detailed analysis is performed for the use of VMD on the task of BW removal
from normal sinus rhythm signal. The idea of choosing VMD as compared to
other techniques, in particular, is because it is a relatively new technique and
is not much explored for this particular task. Moreover, the variational modes
extracted by VMD for the corresponding signal precisely captures their center
frequencies The trend and mid frequency bands of the obtained modes consists of
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less spurious oscillations when compared to EMD. In addition to the above char-
acteristics, no additional spectral and temporal feature estimates are required
for discriminating the BW components from the ECG.

In [23], authors have used VMD for BW estimation, but the effect of the
number of modes (K) and center frequency (ω) on the decomposition was not
demonstrated. The authors specified that at K = 8 and ω = 1000000 modes
with least reconstruction error (in least square sense) are obtained. We analyze
this effect for normal sinus rhythm having 3500 samples. We decomposed the
signal into its variational modes/components using VMD and then reconstructed
the original signal back from these variational modes. The difference between
the original and reconstructed signal is illustrated with the help of Fig. 4. The
number of modes/components varied from 2 to 15 and center frequencies varied
from 1000 to 60000.

Few observations can be made from Fig. 4. The PRMSD and MAE are max-
imum when number of modes is less, and bandwidth constraint is very high. As
variational modes increases, the bandwidth constraint should also be increased
in order to obtain less error while reconstructing the original signal. As a precise
value for number of variational modes and bandwidth constraint was difficult to
determine, we choose ω = 8000 and K = 8. At these two values least reconstruc-
tion error was error was obtained. As specified by [6], both over-binning and
under-binning have advantages and disadvantages. During under-binning (less
number of variational modes), mode sharing occurs between the neighbouring
frequency for small center pulsation and high-frequency variational modes are
discarded, as these modes are considered as noise for large pulsation. During
over-binning (higher number of variational modes), larger values of pulsation
allows a low-frequency band in the decomposed modes providing very compact
band in frequency spectrum but with increased execution time for mode extrac-
tion. After the signal decomposition using VMD, the baseline wander was mostly
present in the 1st component. A similar pattern can be observed for correlation
where the PC increases as K and ω increase together. In the case of low K
and high ω, the correlation becomes insignificant. The memory consumption
also increases by 50 mega bytes for each additional variational mode. The time
for mode extraction via VMD increases exponentially with each new mode as
depicted in Fig. 4. Hence, for higher number of modes, the execution time of
VMD algorithm limits the use in real world.

Therefore, we can infer that there exists a relation between the variational
modes and bandwidth constraint such that if either of them increases then the
other has to increase in order to produce consistent modes with least recon-
struction error in least square sense. It is also clear that larger values of varia-
tional modes and bandwidth constraint produce modes with compact frequency
spectrum when compared to smaller values, but the execution time and RAM
requirement also increases.
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Fig. 4. Application of Variational Mode Decomposition on Normal Sinus Rhythm
where the variational modes vary from 2 to 15 and center frequencies vary from 1000
to 60000.

4.2 Comparison of VMD with Other Techniques

After selecting parameters K = 8 and ω = 8000 for VMD, we compare it with
other BW removal techniques. For comparison, median filter, mean median filter
and EMD along with its other variants are employed for BW removal in normal
sinus rhythm and ventricular tachycardia.

For the first experiment, we employed two median filters [16] in a cascading
fashion where the output of first filter was provided as input to second filter
and a step like waveform is obtained as the resultant baseline wander. The
window length for the filters was kept at 251 and 601 for first and second filter,
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respectively. Thus providing a high value of correlation between obtained and
BW present in the signal.

For the second experiment, mean median filter [20] was chosen. The filters
were applied in a similar fashion as the median filters with similar window
length with ω = 0.6. The mean median filters produce a very smooth baseline
because of the presence of mean filter. The mean filter overestimates baseline
wander because of the presence of QRS complex and the median filter produces
trimmed mean that in turn leads to severe wave distortion. Hence, MMF not
only preserves the outline of baseline wander but also avoids step like waveform
as generated by the traditional median filter. However, the drawback is that the
discontinuity is still present in the obtained baseline at the signal endpoints.

For the third experiment, Blanco’s EMD. [3] method was chosen where they
employed EMD for signal decomposition to IMFs with multiband filtering for
BW estimation. We refer to this method as Blanco EMD for the rest of the
paper. The EMD algorithm produces high frequencies in lower order IMFs and
low frequencies in higher order IMFs. So, the baseline wander was present in
higher order IMFs (except the residual mode due to less number of extrema).
However, it is worth mentioning the fact that in our implementation, the gen-
erated baseline varied from the original baseline. The two baselines were have a
phase difference. Hence, if the two baselines are aligned together, they produce
a very high correlation. But in this paper we opt for the actual baseline obtained
from Blanco EMD method.

BW obtained through MMF resulted in discontinuities at the starting and
ending point of the baseline. Hence, the fourth experiment combines MMF and
EMD [28], where EMD smoothens the baseline obtained from MMF. Two mean
median filters with window length of 250 and 600 were used that produced the
BW. The obtained baseline wander was decomposed using EMD and noisy IMFs
were removed using statistical methods.

According to our results, BW was present up to the last 6 IMF with L = 0.05.
These values were obtained in contrast to the PRMSD and Pearson correla-
tion which turn out to be around 0.85 and 61.37. It can be observed from the
Fig. 5 that due to the shifted baseline, the performance metrics deteriorated.
We performed two more variations to the [3] approach by employing EEMD
and CEEMDAN in place of EMD that helped in better estimation of baseline
wander. However, the time required by CEEMDAN was very high making it
unreasonable for real-time applications. Hence, we have not included the results
of CEEMDAN in this study.

The performance for all the techniques for normal sinus rhythm for all eval-
uation metrics are provided in Fig. 5. The best PC was obtained for VMD at
0.98 followed by median filter, and EEMD with fix cut off frequency. Median
Filter correlation constantly reduced from 0.97 to 0.83 as the artificially induced
noise was increased. Except for Blanco EMD method, other techniques did not
produce much change in MAE when the noise was increased. Here too, VMD
produced least MAE among all at 27%. Median filter, EEMD Fixcut, and Blanco
EMD produced MAE in an increasing fashion as the noise was increased. For
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Fig. 5. Comparison between the techniques for BW removal from NSR.

PRMSD, median filter and Blanco EMD produced an increase in error as the
noise increased. VMD again provided the least error irrespective of the noise.
The time taken by decomposition techniques namely EMD, EEMD and VMD
were higher than other techniques. Median filter, MMF and MMF-EMD took
the least time at around 0.1, 0.6, and 3 s, respectively. VMD took around 5 s.
The higher the complexity of the present baseline, the more execution time the
algorithm took to decompose the signal. Hence, as the noise increased the time
tom decompose also increased. Results for CEEMDAN are not included as its
execution time exceeds by a huge margin as compared to other approaches.

Results on VT for all techniques for all evaluation metrics are provided in
Fig. 6. The best PC was obtained for VMD at 0.97 followed by EEMD Fixcut,
and median filter. The PC values for MMF and MMF with EMD were better
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Fig. 6. Comparison between the techniques for BW removal from VT segment.

than the ones obtained for NSR. Blanco EMD method performed similar to MMF
for high noise frequencies. MAE values kept varying for all the techniques at
different noise frequencies. However, VMD provided less error at most of the noise
frequencies and MMF, MMF-EMD and Blanco EMD method provided highest
error at every noise frequency. VMD, EEMD fix cut constantly low PRMSD
ranging between 20% to 25%. PRMSD for all other methods kept increasing with
MMF, MMF-EMD, and Blanco EMD producing the highest PRMSD values.
Median filter, MMF and MMF-EMD took the least time, whereas decomposition
took relatively higher execution time.

5 Conclusions and Future Work

In this paper, we analysed variational mode decomposition for the task of base-
line wander removal from normal and VT segment. An analysis between the
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relation of K and ω is also provided that affects the variational modes obtained
from VMD. A comparative study for comparison between different decompo-
sition methods, namely EMD along with its variants, VMD, median filter and
MMF was also conducted. We found that VMD performs better in almost all
aspects for both the signals at all noise frequencies. However, the time required
by VMD was slightly higher than the filtering techniques.

For future research directions, we plan to use the baseline free ECG signal
to produce features that characterize an ECG signal in an efficient way such
that it can be used to predict different classes of arrhythmia in handheld mobile
devices.
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