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Abstract

All plants in the ecosystem are found in close association with complex group of
microbes both belowground and aboveground surfaces. Reports suggest that the
association can be harmful, neutral, or beneficial to the plants depending upon the
category of colonizing microbes. It is among them that certain microorganisms
bring about modification in the plant metabolome, maneuvering to modifications
in the biosynthetic pathway of plant metabolites of known and unknown origin.
Plant secondary metabolites are exceptional group of chemicals released as an
end product of biosynthetic pathways which have numerous secondary roles in
survival and growth of the plants. Among the multifarious roles played by the
metabolites, some of the important traits include repulsion of pathogens and
attraction of beneficial group of microbes. The present chapter thus summarizes
the till-date understanding of the role of root microbiome on the secondary
metabolic status of plants, how the remodeling affects the health and defense
status of the concerned plants, and finally the knowledge hiatus that needs to be
fulfilled for harnessing the full potential of microbes.
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16.1 Introduction

Host-associated microbial populations are reported to be engaged in elementary
roles like nutrition status, different developmental phases, and immunity of both
animal and plant kingdom. The different factors which help in architecturing the
host–microbiome interactions are inadequately understood, which hold an important
place in evolutionary and ecological sciences (Fitzpatrick et al. 2018). Talking about
the plants, the roots bring together two different microbial sections namely rhizo-
sphere and the endosphere. The colonization at the rhizospheric surface by microbes
can either be beneficial, neutral, or harmful associations, depending upon the
relationship they share with the host plant. With the advancement in technologies,
especially pertaining to sequencing, the picture of different root-associated
microbiomes is getting clearer day by day (Rout and Southworth 2013). The most
recent information which is coming out from the experimental evidences is that the
role of microbiome differs not only with plant tissues but also with the change in
environmental conditions too (Yu et al. 2019). The Next Generation Sequencing
(NGS) data clearly demonstrates that amazing number of taxonomically dissimilar
microbes colonize the plant system, whose density can be sometimes much higher
than the plant cells figures (Mendes et al. 2013; Panke-Buisse et al. 2015). The
colonization affects the plant system either directly or indirectly either by facilitating
nutrient uptake, phytohormone production, induction of systemic resistance, forma-
tion of physical barriers, and changes in secondary metabolite status of concerned
plants (Etalo et al. 2018). The most recent area of current research in plant–microbe
interaction is changes in metabolomic status of plants leading to alteration in some
key metabolites of agricultural and medical importance (Etalo et al. 2018). Hence, it
is hypothesized that exploring plant–microbe communication will pave way for not
only boosting production of metabolites of pharmaceutical importance but other
unknown secondary metabolites too. The current chapter has thus been written with
the aim to provide exhaustive information about the key players involved in alter-
ation of secondary metabolites in plants with special emphasis on beneficial
microbes, root exudates, and bioactive metabolites.

16.2 Root Microbes

Microorganisms have been defined as smallest organisms that cannot be seen with
the naked eye and can only be seen with a special equipment called microscope.
Among the diverse range of microbes, we in this chapter have specifically discussed
about the microbes colonizing the root zone of plants. Microorganisms are mostly
found as free-living microbes and when they stick around the plant roots and root
hairs, they are called root microbes.

Root microbes are classified into two types:
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1. Beneficial microbes are those microbes which work toward enhancing the yield
and overall well-being of plants and which can easily perform plant growth
promotion, for example Pseudomonas, Bacillus, etc.

2. Harmful microbes are the category of root microbes that inhibits the growth of
plants by destroying the plant cells, making the plants nutrients deficient, and
killing the beneficial microbes.

16.2.1 Beneficial Root Microbes

In the early 1904, Lorenz Hiltner observed and stated that there are numerous
microorganisms which live in the soil near the rhizospheric region than the distant
part of soil (Hiltner 1904). Soil is been widely accepted as the home for array of
microbial species, fungi, invertebrates, archaea, and mostly bacteria (Tringe et al.
2005). Hiltner gave the term Rhizosphere for that region where microbial popula-
tion was the highest near plant roots. It has also been derived that some region of soil
which is conventionally benefitted by root secretion and associated with microbes of
soil is referred to as root microbiome. Moreover, plant root system always expands
through the soil and penetrates it, resulting in release of water-soluble materials such
as amino acids, organic molecules, certain sugars, and carbohydrate derivatives
which are essential for microorganism to survive.

Surprisingly, plant physiologists noted that soil plays a role in providing nutrients
to plants, but they forgot to add that soil is a different complex ecological system
having a huge species like protists, animals, bacteria, and fungi specially
(Bonkowski et al. 2009; Müller et al. 2016). The microorganisms’ living in soil
are the basic invisible mangers of soil fertility, and it doesn’t matter if the soil
condition or crop species favour them or not, because it is the nature which promotes
microbes to become root symbionts. These symbionts promote plant growth and
increase yield by different actions like nutrient uptake and nitrogen metabolism
resulting in nitrogen fixation, and these particular activities help plants to counter
pests, diseases, and biotic and abiotic stresses (Fig. 16.1). Collectively, by the
enhancement of plant capacity in photosynthesis and production of organic acids,
plants derive their health and the microbes which helped throughout this process are
referred as “beneficial root microbes.”

16.2.1.1 Types of Beneficial Root Microbes
The beneficial root microbes have been basically categorized into five different
types, namely actinomycetes, bacteria, fungi, protozoans, and nematodes. The
detailed information about these microbes has been discussed in the following
sections.

Bacteria
Bacteria are the smallest living organisms and major key player of soil in bringing
together the simpler forms around the root system so that the plants can firmly take
up all the nutrients important to their growth and development, for examples
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macronutrients like nitrogen, phosphorus, potassium, etc. Phosphorus is usually not
found in available form for the plants in soil, but some of the beneficial bacteria turns
the nonavailable phosphorus into available form which a plant can easily utilize. In
soil system there are huge number of bacteria which enhance plant growth and have
thus been referred to as plant growth–promoting rhizobacteria (PGPR) (Bonkowski
et al. 2009). Moreover, in obligate symbionts, PGPRs can easily interact with the
host plants and enhance growth of the plant either by direct benefit via nitrogen
fixation (Müller et al. 2016; Kloepper and Schroth 1987) or indirectly by secreting
certain enzymes and hormones which can suppress other pathogens’ activity
(Soyano et al. 2014; Ferguson and Mathesius 2014). The root hierarchy is also
dependent upon PGPRs, as the structural modification in root results in better
conduction of molecules into plant parts which is inversely proportional to better
crop yield (Pérez-Montaño et al. 2014; Lugtenberg and Kamilova 2009; Uga et al.
2013). The projectile PGPR activity and plant growth promotion attributes are also
reviewed in some articles (Ogawa et al. 2014; Ning et al. 2014).

Example – Indole-3-acetic acid production by the Rhizobium leguminosarum has
been discussed in literature for playing a key role in promoting certain effects on rice
seedlings (Biswas et al. 2000). In the same way, Azotobacter has been reported to do
the job for maize seedlings (Zahir et al. 2000).

Fig. 16.1 Role of rhizospheric microbial community in mitigating biotic and abiotic stressors
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Actinomycetes
Actinomycetes are spore-forming, gram-positive aerobic bacteria which form
thread-like structures called filaments, and work in cycling or turning up the organic
matters, mainly by decomposition of complex mixtures found from decomposed
plants, animals, or fungal sheets over rocks. Somehow these enzymes and hormones
also help in suppressing certain plant pathogens which pose threat to plants, for
example Streptomyces sp. have been found responsible for nutrient uptake and plant
growth in rice and chickpea plants (Gopalakrishnan et al. 2014, 2015). Likewise,
Frankia has been found to be responsible for nitrogen fixation in Alnus plant
(Simonet et al. 1990).

Fungi
Fungi are multicellular, eukaryotic, heterotrophic organisms that have absorptive
mode of nutrition. They live in the root zone of plants and act like natural recycling
bins, help in reabsorbing soil nutrients from dead organic matter, and redistributing
them back to plants roots. In addition, they also help in making nutrients available to
plants through formation of siderophores. For example, mycorrhizal association is a
mutual relationship which exists between roots of plant and fungus for sharing the
benefits. The association is usually two ways – ectomycorrhizal when the fungus
resides outside of root, or endomycorrhizal when the fungus penetrates inside of the
root. It is well reported in literature that most of the rhizospheric fungus produces
metabolites for the inhibition of plant pathogens (Ali et al. 2015; Saraf et al. 2014).

Example – Plant defense mechanisms can directly or indirectly be controlled by
arbuscular mycorrhizal fungi (AMF) (Di Benedetto et al. 2017). Trichoderma
harzianum are involved in active colonization of tomato root and induced systemic
resistance-like defense in Arabidopsis. (Engelberth et al. 2001). Likewise,
Trichoderma viride has been found to be responsible for elicitation of jasmonic
acid and salicylic acid biosynthesis in lima bean (Morán-Diez et al. 2009).

Protozoa
Protozoa are single-celled, microscopic, eukaryotic, and heterotrophic organisms
(using organic carbon as a source of energy). They are non-filamentous and
restricted to moist or aquatic habitats. Protozoans play important roles in the fertility
of soils by eating soil bacteria and maintaining bacterial populations. Protozoans
sometime help in promoting plant health by the mineralization of nutrients and
alteration in the hierarchy or activity of plant root–associated families (Bonkowski
2004). It was also stated and reported that predation of some of the different plant
pathogenic species has an inverse effect on the plant growth hormone production
(Krome et al. 2010) or sometimes they support the beneficial microbes to survive
(Jousset et al. 2010; Müller et al. 2013). Protozoans also excrete nitrogen in the form
of ammonium and phosphorus as products of their metabolism, and it is because of
this reason that the presence of protozoans in soil has been reported to enhance plant
growth and development.

Example – Acanthamoeba castellanii grazing has been reported to maintain the
bacterial population in the rhizospheric soil by consumption etc.
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Nematodes
Nematodes are microscopic worms which live around or inside the plant and
periodically rely and feed over bacteria, fungus, and other soil microbes. Nematodes
can easily carry live microbes over their bodies and also inside their digestive
systems, and by this activity wherever they go nematodes deliver microbes over
the roots of plant or in soil. Few nematodes are also disease causing, while others
feed over disease-causing organisms which can be identified as potential biocontrol
agents.

Example – Steinernema, Risbravis, Rhabditis, etc., are the useful nematodes
responsible for decomposing the organic matter and managing attack on insects
and other pests.

16.3 How Useful Root Microbes Boost Crop Productivity?

Beneficial root microbes present in the rhizospheric soil near plant roots ameliorate
plant productivity and its performance in a variety of ways like deterioration of
pathogens, providing resistance against any infection, and help in plant growth
promotion. The major mode action involves following steps:

16.3.1 Nutrient Availability

Rhizospheric microorganisms always take part in obtaining trace elements which are
found in insoluble forms, where microbes turn this into soluble form and make them
available to plants. By the use of certain molecules, like siderophore, iron chelation
and conversion of complex to simpler form takes place (Aznar and Dellagi 2015).
Most of the bacterial community works as key component to unlock the nutrients
which are locked in the form of hydrocarbons essential for the plants. Some of the
saprotrophs and fungi have been reported as nutrient extractors through solubiliza-
tion or reabsorption processes, among which actinomycetes play a significant role in
decaying organic matter to make it in available form (Aznar and Dellagi 2015).

16.3.2 Plant Growth Promotion

In a different manner we have seen PGPRs playing essential role in plant growth
promotion where they produce metabolites which eventually trigger the release of
plant hormones reported to play beneficial role for plants. Apart from working as
PGPRs, some microbes work as bio-remediators. As a biocontrol trait, microbes
effect plant pathogens through the different synthesis like regulation of ethylene
level in plant, siderophore activity, acquired systemic resistance, antibiosis, quorum
sensing, etc. (Babalola 2010; Olanrewaju et al. 2017). In addition, the beneficial
microbes are reported to increase photosynthesis and production of hormones and
enzymes as a result of improvement in crop growth. They also control various
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insects and plant diseases as a consequence improvement in crop quality. The use of
such kinds of microorganisms leads to reduction in the usage of chemical fertilizers.

16.4 Root Exudates: Role in Shaping Root Microbiome

In natural environment, plants health status mainly depends on complex and active
microbial community present in the rhizospheric soil. In plants, root system is the
essential part for nutrient and water conduction, which is inhabited and encircled by
a major microbial community called root microbiota or rhizomicrobiome (Del
Carmen Orozco-Mosqueda et al. 2018; Hacquard et al. 2015). Complex microbial
community present in the root microbiome is referred to as plant’s second genomic
part which consists of total rhizosphere community’s interactions present in relation
to plant health (Berendsen et al. 2012). Crop growth and yield inside natural
environment depends on microbial interactions, that is, bacteria and fungi,
actinomycetes, etc. (Schmidt et al. 2016). Attachment of microbial diversities was
preferred to be connected in two steps:

16.4.1 Rhizosphere

Rhizosphere as a term was first coined by Lorentz Hiltner (Hiltner 1904) and
reconsidered by Pinton as the zone around the plant roots in the soil which is
colonized by microbial community (Morgan et al. 2005; Pinton et al. 2007).

Example – Azotobacter, Nitrobacter, Proteobacteria, Rhizobacteria,
Actinobacteria, Pseudomonas are some of the ruling populations of bacteria over
rhizosphere (Sylvia and Prévost 2005).

16.4.2 Rhizoplane

Region of surface of the plant roots with epidermis and mucilage which is direct
contact with the soil and colonized by microbial community.

Example – Burkholderia, Acidobacterium, Dyella, and Edaphobacter are the
major genera abundant in the rhizoplane.

The soil–microbe interactions are usually specific and depend upon coevolution-
ary dilemma (Dobbelaere et al. 2003; Duffy et al. 2004); (Morgan et al. 2005). In the
underground world, the specific plant–microbe interactions hold a very important
place in various processes governing ecosystem, just like carbon metabolism,
sequestration, and nutrient cycling (Singh et al. 2004).

For the export and secretion of molecules into the rhizospheric soil, plants use a
hierarchical transport technique where plant roots along with root hairs and adventi-
tious part release root exudates either by passive or active diffusion/secretion
mechanism (Badri et al. 2009; Weston et al. 2012).
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Root exudates are usually referred to as a group of chemical molecules in
rhizosphere which are secreted by plant root systems. They are a mixture of complex
substances like sugars, organic acids, enzymes, amino acids, etc., which act as major
source of organic carbon specifically obtained from rhizospheric soil (Hütsch et al.
2002; Nguyen 2003). Usually quality and quantity of root exudates depends upon
plant species and is variable in different plants, individual plant’s age, and some
external factors like biotic and abiotic stresses. Knudson (1920) and Lyon and
Wilson (1921) were the first who had provided indication regarding root exudation
and microbe abundance in rhizosphere of the plants. Some of the important exudates
usually found in the rhizosphere have been mentioned in Table 16.1.

Table 16.1 Different types of root exudates released by the plants

Classes of
compounds Components identified

Amino acids All 20 proteinic amino acids, homoserine, aminobutyric acid, mugineic
acid, l-hydroxyproline

Lignins Coumaric acid, sinapoyl aldehyde, benzoic acid, pyroglutamic acid
phloroglucinol, gallic acid, nicotinic acid, chlorogenic acid, vanillin,
catechol, sinapyl alcohol, quinic acid

Proteins and
enzymes

Peroxidases, PR proteins, proteases, lipase, acid phosphatases, lectins,
hydrolases

Phenolics and
Coumarins

Umbelliferone, Caffeic acid, cinnamic acid, coumarin, ferulic acid,
salicylic acid, syringic acid, vanillic acid

Indole compounds Indole-3-acetic acid, brassilexin, sinalexin, methyl indole carboxylate,
camalexin glucoside, brassitin

Flavonols Strigolactone, kaempferol, quercitin, genistein, myricetin, naringin, rutin,
naringenin, and their substitutes with sugars

Sugars Galactose, mannitol, fructose, pentose, rhamnose, arabinose, raffinose,
ribose, sucrose, xylose and glucose

Sterols Stigmasterol, campestrol, sitosterol

Allomones Juglone, 5,7,40-trihydroxy-30, 50-dimethoxyflavone, sorgoleone, DIBOA
DIMBOA

Anthocyanins Pelargonidin, delphinidin, cyanidin and their substitutes with sugar
molecules

Organic acids Succinic acid, l-aspartic acid, l-glutamic acid, salicylic acid, oxalic acid,
shikimic acid, chorismic acid, acetic acid, sinapic acid,, isocitric acid, citric
acid, p-hydroxybenzoic acid, tartaric acid, gallic acid, malic acid,
protocatechuic acid, p-coumaric acid, mugineic acid, piscidic acid

Aurones Sinapoyl choline, benzyl aurones synapates

Glucosinolates Cyclobrassinone, desulphoglucoalyssin, desulphoprogoitrin,
desulphonapoleiferin, desulphoguconapin

Fatty acids Palmitic acid, linoleic acid, stearic acid, oleic acid
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16.5 Requirement of Root Exudates in Plant–Microbe
Interactions

Phytochemicals secreted by plant roots mediate certain number of interactions like

• Plant–plant interaction
• Plant–microbe interaction
• Microbe–microbe interaction

Microorganisms live in the rhizospheric soil where they interact with roots and
their components to enhance the plant health (Berendsen et al. 2012; Panke-Buisse
et al. 2015). The interaction might be neutral in some ways and either advantageous
or harmful in others (Mercado-Blanco and Bakker 2007; Raaijmakers et al. 2009).
Most probably, depending on the environment, microbes also turn the table from
pathogenesis to symbiotic association (Newton et al. 2010). In different examples,
Rhizobia includes Bradyrhizobium, Azorhizobium, symbiotic nitrogen, and
nitrogen-fixing bacteria like Sinorhizobium and Mesorhizobium (Davidson and
Robson 1986; Zahran 1999). In nitrogen-limiting conditions, attraction and intima-
tion of legume–rhizobia symbiosis result in secretion of flavones and flavonols by
legumes (Coronado et al. 1995; Zhang et al. 2009). In the same way equal exchange
of plant nutrients benefit both the partners like the mycorrhizal associations which is
a common association found in alomost 80 percent of the plant species (Kiers et al.
2011).

16.6 Effect of Microbe–Microbe Interactions on the Soil
Microbial Communities

For plants, rhizospheric zone is a kind of nutrient-rich site where the competition for
food among microbes always takes place. Secondary metabolites produced by
microbes are released in the environment to overcome other competitors which
fight to occupy similar zone for establishing firmly itself outside or within the
roots (Thomashow and Weller 1988; van Loon and Bakker 2005; Pierson and
Pierson 2010; Kim et al. 2011). The metabolites released in environment consist
of siderophore, lytic enzymes, toxic elements, and antibiotics (Bais et al. 2006).
Some rhizospheric microbes hold a variety of genes for the production of
siderophores and other antibiotics like Bacillus amyloliquefaciens (Chen et al.
2007) and few species of Pseudomonas (Paulsen et al. 2005). Antibiotics like
2,4-diacetylphloroglucinol (DAPG) and oomycin are also products of microbes
(van Loon and Bakker 2005). The referred antibiotics play a significant role in
restraining the pathogenic microbes (Aminov 2009; Pierson and Pierson 2010;
Thomashow and Weller 1988; Kim et al. 2011).

Besides antibiotics, plant secondary metabolites also work toward altering sig-
naling pathway and metabolic activity of plants (Přikryl et al. 1985; Brazelton et al.
2008; Costacurta and Vanderleyden 1995; Kim et al. 2011). These kinds of
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microbial attributes sometime change the root exudates’ composition, leading to the
selective enhancement of any particular microbial partner in the rhizosphere (Přikryl
et al. 1985; Bulgarelli et al. 2013). The whole scenario of communication between
two bacterial communities results in release of signaling molecules which are
relatively recognized by other communities via inter- and intra-species communica-
tion (An et al. 2014). In bacteria this scenario comprises of biofilm formation,
motility, and cell adhesion (Sperandio et al. 2002; Chu et al. 2011); production of
the virulence-associated factors; and cell proliferation. This kind of density-
dependent stimulus and exchange of signals is referred to as quorum sensing
(Fuqua et al. 1994; Miller and Bassler 2001; Atkinson and Williams 2009; An
et al. 2014) (Yajima 2014).

In fungi, two important molecules namely farnesol and tyrosol have been
reported for regulating quorum sensing–controlled traits like biofilm formation,
resistance to drugs, and morphogenesis (Chen et al. 2007; Enjalbert and Whiteway
2005; Albuquerque and Casadevall 2012). Likewise, tryptophol has been reported to
control morphogenetic behavior in Saccharomyces cerevisiae through both density-
dependent approach as well via nutritional trigger (Chen and Fink 2006).

16.7 Coevolutionary Relationship of Root Exudates
with the Rhizosphere

Microbial communities present in the soil are involved in multilevel intercommuni-
cation which are known to influence vital environmental activities, like biogeochem-
ical cycling of nutrients, soil quality, and plant well-being (Barea et al. 2005; Giri
2005).

The age of the plants, crop species, and types of soil determine the variation in
microbial communities present in the rhizospheric soil (Wieland et al. 2001; Buyer
et al. 2002); (Kowalchuk et al. 2002). In some recent evidences it was observed that
specific plant species cultivate their own soil fungal community and diversity
composition, and this “culture” is mediated by root exudates (Broeckling et al.
2008).

Example – In native soil, when Arabidopsis thaliana and Medicago truncatula
were grown at different places, it was observed that Arabidopsis and Medicago
maintained its own fungal community in their resident soil. When the plants were
grown in other soil different from the native soil that did not promote Arabidopsis or
Medicago plants, the microbial communities in those soils decreased considerably.
Similarly, when root exudates were added to the soil, the same response was
observed, thus showing that plants secrete root exudates to drive these responses
and this interaction has a coevolutionary component.
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16.8 Bioactive Metabolites

Plants play a variety of roles either in metabolism or metabolites, which are required
for the sustainability of plant system. These plant metabolites could be made up of
proteins, lipids, carbohydrates, or nucleic acids which are then known as primary
metabolites. Metabolites are primarily known as helping hand for plant system
which directly intervenes in the growth and development (Ballhorn et al. 2009).
The metabolites produced by plants have been broadly categorized into two groups
namely:

16.8.1 Primary Metabolites

Primary metabolites are certain compounds which directly benefitted the plants for
their overall growth. They have been classified as carbohydrates, lipids, proteins,
etc., which are likely used by the plants directly for different works (Schafer and
Wink 2009).

16.8.2 Secondary Metabolites

Plant secondary metabolites are those compounds which do not having any direct
role in plant metabolism and are often useful in respect to defense-related properties.
They are usually low molecular weight around 3000 dalton (Osbourn et al. 2003).
The production and secretion of secondary metabolite varies from species to species
and somehow difference between natural products and secondary metabolites is hard
to define (Vasconsuelo and Boland 2007).

In so many different ways, secondary metabolites are involved in upregulation of
primary metabolism and act as triggers for signaling any known process. Secondary
metabolites often maintain the balance of plant molecules with the environment
either via adaptation mechanism or by making a complementary framework to
intricate fine balance (Osbourn et al. 2003; Berni et al. 2018; Grayson 1998).

16.9 Principal Groups of Secondary Metabolites

Plant secondary metabolites have been majorly categorized into four major classes
(Goldberg 2003). These four categories include terpenoids, nitrogen-containing
compounds, phenolics, and sulfur-containing compounds (GSH, defensins, and
lectins) (Mazid et al. 2011).
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16.9.1 Terpenes

Terpenoids are the on the whole most varied class of plant secondary metabolites as
they have approximately 40,000 dissimilar compounds, and thus they stand out as
the biggest class of important plant metabolites (Bohlmann and Keeling 2008).

16.9.2 Phenolics

Phenolics are molecules that have an aromatic ring bound with one or more hydroxyl
groups (Nicholson and Hammerschmidt 1992). By the chemical formula and its
structure, it differs from simple phenols like catechol to catechol melanins through a
long chain polymer. Phenolic compounds are reported to guard plants from different
herbivores and pathogens. Apart from protecting plants from above-mentioned
stressors, phenolics also protect plants from UV radiation, heat shock, and frost
situation (Parr and Bolwell 2000).

16.9.3 Alkaloids

Alkaloids are amino acids–derived nitrogen-containing compounds just like tyrosine
and tryptophan. They also present in huge amount but take 20% of total metabolites
(Hegnauer 1988). Alkaloids occupy a major share in drug industry and are being
mainly used as narcotics or in pharmaceuticals (Hesse 2002; Yao et al. 2004). The
most common alkaloids derived from plant sources are vincristine and vinblastine,
morphine, and codeine (Crozier et al. 2006).

16.9.4 Sulfur-Containing Secondary Metabolites

Sulfur-containing metabolites are derived from two different ways; one group is
formed from hydrolyzation of glucosinolates by myrosinase enzyme. Second group
is made up of allin by alliinase enzyme found basically in onion and garlic. Both of
these groups are in nature for a purpose which we always face off with and help in
guarding plants from the herbivores (Ober et al. 2003).

16.10 Role of Rhizospheric Microbiome on Plant Growth
Promotion

Microbial communities are well acclaimed for playing a crucial part in the overall
development and growth of plants by manipulating diverse physiological processes.
The shaping of rhizospheric microbiome is a mutual process which is largely
influenced by the rhizodeposits (Sharma and Chauhan 2017). Recently, people
have started focusing on studying the microbiome associated with host plants in
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order to expand sustainable farming customs via the utilization of microbial
biopesticides and biofertilizers. Within a given set of soil type, the indigenous plants
restructure and reframe the native rhizospheric microbial community by applying a
selective pressure. It is exhaustively reported in literature that within a given set of
soil type, the indigenous plants put forth a selective pressure on this immense
biodiversity pool, thereby reshaping the rhizospheric microbial community
structure.

Manipulation of bacterial microbiome has attracted more attention of researchers
in recent times than the other groups of organisms, as it has helped the scientists in
altering numerous plant beneficial activities, namely enhancement in growth and
yield, as well as suppression of phytopathogens with final effect on the usage of
chemical fertilizers which is considerably reduced (Adesemoye and Kloepper 2009).
Microorganisms living belowground are known to affect composition and total yield
of natural plant communities directly and indirectly (Van Der Heijden et al. 2008;
Turner et al. 2013). It is because of this reason that the soil microbial richness has
been directly linked with the diversity and productivity aboveground plant (Lau and
Lennon 2011; Wagg et al. 2011).

16.11 Role of Rhizospheric Microbiome on Plant Secondary
Metabolite Status

The interconnection between plants and their microbial communities is active
practice in which plants interact to their surrounding environment and accordingly
respond to the changes (Chaparro et al. 2012). Microbes play important role in
agriculture in order to maintain environmental equilibrium (Fig. 16.2). Both the
shoot and root systems of plant are directly or indirectly contact with diverse group
of microorganisms. Due to the presence of infinite number of microbes, various
mechanisms occur around the plant root, and one of them is secretion by root
exudate. The root exudation comprises the secretion of carbon-containing
compounds that are primary and secondary metabolites products and many more
molecules (Uren 2000).

Elicitors are chemical compounds for stress factors which when applied in minute
quantity to a living being enhances the biosynthesis of metabolites, mainly second-
ary metabolites (Radman et al. 2003). In context to the plant system, elicitors play
vital role in defense process against pathogens and environmental stress. The biotic
elicitors include bacteria, fungi, and viruses whereas abiotic elicitors involve metal,
ions, and inorganic molecules. Thus, PGPR can produce elicitors which in turn will
originate the synthesis of secondary metabolites (Sekar and Kandavel 2010)
[Table 16.2]. The herbaceous plant Catharanthus roseus, which is commonly called
rose periwinkle, belonging to family Apocynaceae releases bioactive compound
ajmalicine under drought stress (Jaleel et al. 2009). Likewise, in another study
Pseudomonas fluorescens, a plant growth–promoting rhizobacteria was reported to
increase the production of ajmalicine under drought stress. This bacterium also
increased plant biomass and helped in protecting the plants against stress condition.
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C. roseus is also reported to secrete some metabolites like serpentine, catharanthine,
tabersonine, and vindoline but among all of them ajmalicine content was found to be
maximally increased (Jaleel et al. 2009).

The perennial plant Crocus sativus, commonly called saffron crocus, secretes
crocetin, picrocrocin, and safranal compounds. In a study it was found that the
contents were increased when plants were inoculated with Bacillus subtilis FZB24
(Sharaf-Eldin et al. 2008). Among all the compounds, crocetin was found to be
increased maximally. Trichoderma belonging to fungal genera is usually present in
almost all soil types (Hermosa et al. 2012). It has property to kill other harmful
bacteria and fungi that act as biocontrol agent for the plant (Druzhinina et al. 2011).
Trichoderma acts as a biotic elicitor for oleanolic acid which is secreted by Calen-
dula officinalis plant. Oleanolic acid amount is intensified by application of
Trichoderma viride (Wiktorowska et al. 2010).

Scopolia parviflora is a flowering plant belonging to family Solanaceae, which
produces scopolamine compound whose concentration was found to be increased
along with the amount of tropane alkaloids by different microbes such as Bacillus
cereus and Pseudomonas aeruginosa (Jung et al. 2003). Tropane alkaloids concen-
tration is high in roots as compared to stem and leaves. Tropane has cyclic amine
group which has piperidine and pyrrolidine ring with single nitrogen atom and two
carbon atoms (Hanuš et al. 2005). They are used as anesthetics, bronchodilators, and
mydriatics (Grynkiewicz and Gadzikowska 2008).

Apart from PGPRs, endophytes are those bacterial or fungal microbes that live
their entire life with living cells of plant without causing any disease to the host
(Wilson 1995; Sturz et al. 2000). Nowadays endophytes have been considered as an
important source for secondary metabolites which include phenols, alkaloids, and

Fig. 16.2 Schematic representation of the role of rhizospheric microbiome on the growth, second-
ary metabolite, and defense status of host plants
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Table 16.2 Effects of different beneficial microbes on the status of important secondary
metabolites

S. No. Plant name
Secondary
metabolite Microbes Reference

1. Medicago
sativa

Luteolin Rhizobium meliloti Hartwig et al.
(1990)

2. Capsicum
annum

Capsidiol Trichoderma viride Brooks et al.
(1986)

3. Catharanthus
roseus

Ajmalicine Trichoderma viride Namdeo et al.
(2002) and
Namdeo (2004)

4. Catharanthus
roseus

Ajmalicine Pseudomonas
fluorescens

Bais et al. (2002)

5. Catharanthus
roseus

Serpentine Pseudomonas
fluorescens

Jaleel et al. (2009)

6. Salvia
miltiorrhiza

Tanshinone IIA Trichoderma
atroviride

Ming et al. (2013)

7. Gymnema
sylvestre

Gymnemic acid Saccharomyces
cerevisiae

Chodisetti et al.
(2013)

8. Gymnema
sylvestre

Gymnemic acid Bacillus subtilis Chodisetti et al.
(2013)

9. Gymnema
sylvestre

Gymnemic acid Escherichia coli Chodisetti et al.
(2013)

10. Datura metel Atropine Bacillus cereus Shakeran et al.
(2015)

11. Taverniera
cuneifolia

Glycyrrhizic acid Rhizobium
leguminosarum

Awad et al. (2014)

12. Vicia sativa 7,30-Dihydroxy-
40-methoxyflavone

Rhizobium Zaat et al. (1989)

13. Pisum
sativum

Apigenin and
eriodictyol

Rhizobium Firmin et al.
(1986)

14. Sesbania
rostrata

7,40-
Dihydroxyflavaone

Azorhizobium Messens et al.
(1991)

15. Glycine max Daidzein and
genistein

Bradyrhizobium
japonium

Kosslak et al.
(1987) and
Bassam et al.
(1988)

16. Trifolium
repens

7,40-
dihydroxyflavone
and geraldone

Rhizobium Redmond et al.
(1986)

17. Ocimum
basilium

Rosmaric acid Aspergillus niger Bais et al. (2002)

18. Glycine max (i) Iturine Bacillus subtilis Ohno et al. (1995)

19. Hyoscyamus
niger L.

(i) Hyoscyamine
(ii) scopolamine

Pseudomonas putida
and Pseudomonas
fluorescens

Ghorbanpour et al.
(2010)

20. Crocus
sativus L.

Picrocrocin,
crocetin and
safranal compounds

Bacillus subtilis Sharaf-Eldin et al.
(2008)

.21. Calendula
officinalis L.

Oleanolic acid Trichoderma viride Wiktorowska
et al. (2010)
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terpenoids products. For example, hypericin is a bioactive compound which was
isolated from Hypericum perforatum and whose production was increased upon
inoculation of Thielavia subthermophila (Kusari et al. 2008, 2009).

Plumbago rosea L., commonly called Indian leadwort, is classified under
angiosperms. It is used for medicinal purposes like in curing of certain kinds of
chronic diseases, skin diseases, and used as an anticancer plant (Parimala and
Sachdanandam 1993). It releases useful metabolite compound plumbagin from its
root and Aspergillus niger, Rhizopus oryzae, Bacillus subtilis, and Pseudomonas
aeruginosa have been reported to be its elicitor. Among the above-mentioned
genera, fungal elicitors enhanced the content of plumbagin, whereas bacteria
elicitors were not so effective (Komaraiah et al. 2002) The maize crop (Zea mays)
discharges a compound named benzoxazinoid whose amount changed by
rhizobacterium Pseudomonas putida KT2440, which protects the plant from patho-
genic microorganism (Neal et al. 2012). These compounds function naturally toward
the protection of plants. In cell culture roots of Taverniera cuneifolia (shrub),
glycyrrhizic acid content was intensified when treated with bacteria Rhizobium
leguminosarum as compared to the control roots. Other bacterial origin elicitors
observed in Taverniera cuneifolia are B. aminovorans, B. cereus, and
Agrobacterium rhizogenes which were also found to increase the amount of
glycyrrhizic acid. But when it is treated with Agrobacterium tumefaciens, no signifi-
cant increase in glycyrrhizic acid was found. In another plant, namely Hypericum
perforatum compound hypericin and pseudohypericin is released, whose concentra-
tion is reported to be increased by Rhizobacterium (Mañero et al. 2012).

Alfalfa (Medicago sativa) belonging to family Fabaceae is a medicinal plant,
which is a rich source of vitamins A, B, and C (Rashmi and Sarkar 1997). Luteolin is
a bioactive compound released by alfalfa plant whose production is enhanced by
plant growth rhizobacteria Rhizobium meliloti (Peters et al. 1986). Likewise, in
Datura metel, Bacillus cereus and Staphylococcus aureus were found to increase
the content of atropine, a compound largely used for relieving pain (Shakeran et al.
2015).

16.12 Conclusion and Future Prospects

Owing to the presence of diverse variety and multidimensional role of secondary
metabolites, we can assume that these organic compounds are of immense impor-
tance for the growth, development, defense, and survival of plants. Plants preferably
produce these compounds when they encounter herbivores or pathogen attacks. In
totality, these compounds are also produced when plants face challenges like abiotic
stresses, that is, salinity, drought, UV radiations, heavy metals, and harsh climate. In
addition to the above, the biotic elicitors, namely rhizospheric microbes many times
positively change the status of plant secondary metabolites production. Additionally,
being relatively an unexplored area, the rhizospheric microbiome offers a huge
potential for not only manipulating the plant growth but also the secondary metabo-
lite status of plants too.
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Therefore, though significance of the microbiome present in the rhizosphere has
been identified way back, but still tremendous efforts needs to be put in to explore
the potential of organisms which might have good properties for our plants and
surrounding environment. Pairing traditional techniques with high-end, next-gener-
ation sequencing techniques for identifying cues, exudates and other molecules will
really help in understanding the complex underground communication existing
between plants and microbes.
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