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For All the Gentle and Wonderful Readers



Preface

Nanomedicine—the application of nanotechnology to human health—is a promising
field of research at the interface of physical, chemical, biological, and medical
science. Nanomedicine is an interdisciplinary field in which nanotechnology, nano-
science, and nanoengineering interact with life sciences and biotechnology. Further-
more, nanoparticles are an attractive vehicle for drug targeting and long-term drug
releasing to a targeted site.

Nanomedicine and Nanosafety: Recent Trends and Clinical Evidences describes a
broad area of nanomedicine whichmainly focuses on concept, development, and clinical
application of nanomedicine including regulatory, safety, and marketing aspects of
nanomedicine. The present book has been divided into three parts: The first part contains
applications of nanobiotechnology in the development of nanomedicine. The second
part is devoted to concept, development, clinical applications, and evidences of
nanomedicine. The third part discusses regulatory, safety, and marketing aspects of
nanomedicine. This book presents a broad spectrum of topics on nanomedicine drug
delivery/drug targeting, nanobiotechnology in clinical diagnosis, nanomaterials for
alternative antibiotic therapy, herbal nanomedicine, pulmonary nanomedicine, transder-
mal nanomedicine, nanotheranostics in healthcare, nanomedicine safety/clinical toxicity,
and commercial/business perspectives of nanomedicine.

This book would be useful as a reference and guide for students, academics,
researchers, chemists, biologists, pharmaceutical scientists, nanoscientists, nano-
biotechnologists, biomedical engineers, clinicians, and healthcare professionals.

Dibrugarh, India Malay K. Das
Tampa, FL Yashwant V. Pathak
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Part I

Applications of Nano Biotechnology
in the Development of Nano Medicine



Nanobiotechnology and Its Application
in Nanomedicine: An Overview 1
Trinayan Deka, Malay K. Das, Sanjoy Das, L. Ronibala Singha,
and Punamjyoti Das

Abstract

Nanomedicine is the application of nanobiotechnologies to medicine. This chap-
ter highlights the recent trends and applications of nanobiotechnology in
emerging fields of nanodiagnostics, nanotherapeutics, and nanotheranostics
including clinical nanomedicine.

Keywords

Applied nanobiotechnology · Nanomedicine · Nanodiagnostics ·
Nanotherapeutics · Nanooncology · Nanocardiology

1.1 Introduction

The term nanotechnology is derived from the Greek word “nano” that means
“dwarf” (short man). The term “Nano” means very tiny in size, the scale 10�9 m
or less. All natural materials and systems have their roots at the nanoscale. The basic
material for any living organism, i.e., DNA itself has a nano size. Nanotechnology is
the science that deals with materials of nano size range. The most emerging field of
science and technology is nanobiotechnology that brings together biology, chemis-
try, physics, and many areas of engineering, biotechnology, and medicine
[1]. Nanobiotechnology has been evolved as an entirely new scientific and techno-
logical area from the fusion of nanotechnology and biotechnology. It reflects the
demanding importance of nanoscience and nanotools in the generation of novel
biomaterials for use in tissue engineering, nanosensors used in diagnostics,
nanopores that facilitate the passage of single molecules for DNA sequencing,

T. Deka (*) · M. K. Das · S. Das · L. R. Singha · P. Das
Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dibrugarh
University, Dibrugarh, Assam, India
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nanomaterials for application in imaging single molecules or cells, and devices for
therapeutic application [2–5]. By integrating innovative applications of nanotech-
nology into modern biological issues, many approaches of life sciences are being
developed by nanobiotechnology [6].

One of the most elegant emerging fields of applied nanobiotechnology is
nanomedicine. Nanobiotechnology has its vast application in different branches of
medical science. Tissue engineering, advance medical imaging, clinical diagnosis,
nano drug formulation, nanobiosensors are some of the important areas where
nanobiotechnology plays a leading role (Fig. 1.1).

The use of nanobiotechnology to revolutionize the medical fields is being highly
focused by the scientist. The basic physiological mechanisms of an organism occur
at molecular level, i.e., in the nano scale. Understanding different molecular level
mechanisms related to physiological changes leads to development of new ideas in
the medical perspectives. Drug targeting at molecular level, use of nanosensors,
nanopores, quantum dots are some of the significant examples of recent development
in nanomedicine [7–10]. It plays a vital role in advanced biology and medical
analysis notably within the development of potential targeted delivery systems
with lower drug toxicities and higher efficiencies. It has applications in almost
each medical branch like neurological disorders (nanoneurology), eye diseases
(nanoophthalmology), cardiovascular disorders (nanocardiology), cancer
(nanooncology), diseases of skeletal system (nanoorthopedics), and infectious

Fig. 1.1 Emerging of nanomedicine by application of nanobiotechnology

4 T. Deka et al.



diseases. Although the application of engineering to drugs seems to be a compara-
tively recent trend, the basic nanotechnology approaches for medical application
dates back to several decades [11–15]. Nanomedicine can likewise be viewed as a
refinement of sub-atomic medication and coordinates in genomics and proteomics to
encourage the improvement of customized medication. Nanobiotechnology affects
the advancement of nanomedicine both legitimately just as by improving different
trains, for example, the delivery of nanopharmaceuticals and atomic diagnostics.
Similar advancements encourage the improvement of personalized medication
corresponding to nanomedicine [7]. Nanotechnologies can expand the limits of
current molecular diagnostics and empower purpose of care diagnostics,
theranostics, and advancement of personalized medication [16, 17].

1.1.1 Advantages of Nanomedicine

Nanomedicine is being applied to design site specific drug delivery, new techniques
for diagnosis and imaging. The advantages of nanomedicine can be categorized into
the benefits of nanotherapeutics, nanodiagnostics, and nanotheranostics [16–19]
(Table 1.1). This chapter highlights the application of nanobiotechnology in differ-
ent fields of nanomedicines. Diagnostic, therapeutic, and clinical application of
nanomedicines including recent patents are also discussed.

Table 1.1 Advantages of nanomedicine

Advantages of nanomedicine

Nanotherapeutics Nanodiagnostics Nanotheranostics

• Increases drug
absorption for effective
treatment
• Increases drug
retention time for higher
efficacy
• Useful to minimize the
amount of active drug
for treatment
• Provides site specific
drug delivery
• Helps to deliver drug
across blood–brain
barrier
• Reduced drug toxicity

• Greater optical and magnetic features
facilitate effective color coding and
labeling of biomarkers for diagnosis
• Detection of disease at very early
stage made possible by molecular
diagnostics
• Fast and more accurate detection
• Helps to identify the target site for
therapy

• Capable of diagnosis and
delivery of therapy to the
diseased cells
• Provides the capacity for
personalized medicine

1 Nanobiotechnology and Its Application in Nanomedicine: An Overview 5



1.2 Application of Nanobiotechnology in Nano Medicine

1.2.1 Diagnosis

Conventional diagnoses for most of the diseases are done by physical examination of
symptoms. As the symptom may take time to appear, treatment for those illnesses
may have lost their effectiveness. It would be convenient and effective if a disease
can be detected at the earliest state of its occurrence. Molecular diagnosis plays a
notable role to identify pathogens and diseased cells at very early stage of disease
with no symptoms. Nanobiotechnology alters the way of diagnosis by improving
sensitivity and better efficacy. Major nanodiagnostics application of
nanobiotechnology includes nanobiosensors, biochips and microarrays, nanopore
technology, biobarcode, nanoparticle based imaging and labeling, nanoproteomic
based diagnosis [20]. Most of the nanodiagnostics technologies are in clinical use
and still many are at their development phase.

1.2.1.1 Nanobiosensors
It is one of the most hopeful, concise systems consisting of a biological element
(responsible for sampling), and a physical element or transducer (transmitting
sampling results for further processing). Detecting an analyte using a transducer
by utilizing biochemical reaction to quantify the amount of analyte is the working
principle of biosensors [21]. For instance, carbon nanotubes (CNTs) show appropri-
ate electrochemical properties for label-free and multiplexed point-of-care
biosensitivity. These were effectively utilized to identify ions, metabolites, and
protein biomarkers [22, 23]. They had been used for detection of prostate cancer
[24]. CNT-based optical nanobiosensors have been effectively utilized for the
determination of immunoglobulins, surface-enhanced Raman spectroscopy (SERS)
based biomedical imaging, and phototherapy [25, 26]. Aptamer-AuNPs hybrid
frameworks have been showed useful for the identification of specific tumor cells
[27, 28]. Comparable hybrid frameworks have been used for combined in vitro
imaging and photothermal treatment in oral cancer epithelial cells [29]. Quantum
dots (QDs) based lab-on-chip, multiplexed sandwiched immunoassay has been
utilized to recognize various lung cancer related biomarkers, for example,
carcinoembryonic antigen (CEA), cytokeratin 19 pieces (CYFRA21-1), and
neuron-explicit enolase (NSE) in biological fluid [30]. QD based nanosensor was
in a nuclease-enzyme-based amplification approach for fluorescence resonance
energy transfer (FRET)-based detection of femtomolar concentrations of miRNA
[31]. Electrochemical molecularly bioimprinted siloxane biosensor has been utilized
for ultra-sensing of gemcitabine as a lung cancer chemotherapy medication
[32]. AuNRs modified by ssDNA probes of cadF gene have been developed for
precise detection of Campylobacter jejuni and Campylobacter coli [33]. AuNPs
conjugated mesoporous silica-graphene oxide nanoconstructs were effectively
utilized for optical bioimaging in colorimetric tumor cell diagnosis [34]. Silicon
nanowires (SiNWs) were utilized in sensors as field effect transistors (FETs).

6 T. Deka et al.



FET-SiNWs have been appeared to detect numerous prostate cancer biomarkers, for
example, PSA (prostate-specific antigen) at very early stage [35].

1.2.1.2 Biochips/Microarray
These are nanoscale devices (normally made of glass or silicon base) to coordinate
various processes for DNA/protein analysis. These chips are highly sensitive to
interact with cellular constituents. Receptor-functionalized nanomotors are capable
to isolate biological targets, for example, pancreatic cancer cells and E. coli from
biological samples [36, 37]. Protein microarrays have been used in analysis of
protein level in colon carcinoma cells with exposure to ionizing radiation
[38, 39]. This protein analysis helps in the differentiation of the protein level in
normal cells compared to premature and metastatic cancer cells [40]. Protein
microarray-based analyses of protein–protein interaction and IgE immunoassay for
allergy diagnosis have been reported [38, 41, 42].

1.2.1.3 Nanopore Technology
A nanopore is a pore of nanometer size. It comprises a pore-forming protein or as a
pore in silicon or graphene. It has been well reported to be used in DNA sequencing.
Working principle is the detection of the ionic current passing through it as a voltage
is applied across the membrane [43, 44]. Label-free detection of post-translational
modifications of protein has been achieved by using single-cell biological nanopore
and has tremendous potential for disease diagnosis and cell biology [45]. Bacterial
lower respiratory tract infections using nanopore sequencing has been reported as
rapid and potential clinical diagnosis tool to replace culture diagnosis [46]. It is
applied for cancer diagnosis and treatment through the identification and accurate
estimation of MicroRNA (miRNA—cancer biomarkers) and the determination of
aberrant DNA methylation as a robust biomarker in cancer. It offers, utilizing
MinION stage (Oxford Nanopore Technologies), a viable technique for quick,
genome-wide screening of salmonoid RNA virus, with significant potential
applications for diagnostics and details investigation concerning the origins and
spread of disease outbreaks [47].

1.2.1.4 Biobarcode
Nanoparticle based biobarcode assay is an ultrasensitive and powerful strategy for
the determination of biological targets, for example, proteins and nucleic acids. It
works on two target specific probes: Magnetic micro beads (MMB) bearing
biological probe to identify the target and the second gold nanoparticles (AuNPs)
bearing target binding molecule, called biobarcode (an oligonucleotide) [48–
51]. The biobarcode method has been successfully used for rapid and reliable
detection of amyloid-derived diffusible ligands (ADDL) in cerebrospinal liquid
(CSF) for the clinical diagnosis of Alzheimer’s disease [52], E. coli O157:H7
microbes by means of AuNP labeling and inductively coupled plasma mass spec-
trometry (ICP-MS) [53], hepatitis C virus (HCV) core antibodies utilizing a TaqMan
probe [54]. This method was reported to be potential diagnostic tool for the detection

1 Nanobiotechnology and Its Application in Nanomedicine: An Overview 7



of PSA [55], the Vibrio cholerae O1 OmpW gene [56], and Staphylococcus aureus
protein A [57].

1.2.1.5 Nanoparticle Based Imaging and Labeling
Nanotechnologies offer various opportunities for improving existing and designing
of new imaging methods. Nanoparticles of perfluorohydrocarbons coated with a
lipid layer have been reported as an ultrasonic contrast agent [58]. Iron oxide NPs
have been clinically applied as MRI contrast agent, for example, superparamagnetic
nanoparticles [59], ultra-small SPIO improves MRI for imaging cerebral ischemic
injuries and dextran-coated iron oxide nanoparticle improves MRI visualization of
intracranial tumors [60, 61]. The fluorescent in situ hybridization (FISH) combined
with conventional fluorescence microscopy and fluorescence confocal microscopy
have been successfully used to localize abnormal gene related to a disease and to
diagnose and differentiate infected erythrocytes from normal erythrocytes [9, 62,
63]. Surface-enhanced Raman scattering (SERS) is generally applied in the detection
of small quantity of circulating tumor cells, RNA, nucleic acid, lipids, and proteins
present in blood samples [64–69]. It is also used in cancer diagnosis. The single-
photon emission computed tomography (SPECT) and positron-emission tomogra-
phy (PET) have been reported for radiotracer-based targeted in vivo imaging [70].

1.2.1.6 Nanoproteomic Based Diagnosis
Nanoproteomics can reveal critical information related to rare cell populations, hard-
to-obtain clinical specimens, the cellular heterogeneity of pathological tissues, and
disease biomarkers. These information help in early diagnosis of a disease and
monitoring of disease progression. Magnetic nanospherical probes functionalized
with antibodies were utilized to recognize anti-HSA antibody [71]. Identification of
target autoantibody GDC glutamate decarboxylase (Type 1 diabetes) was success-
fully accomplished by utilizing supramolecular nanoprobes [72]. AuNP or europium
NP-based bio-barcode identification approach utilized for signal intensification of
HIV-1 p24 immunoassay [73]. Sol–gel immobilized nanostructure zinc film was
utilized for Neisseria gonorrhoeae identification [74]. Serum small extra vesicles
proteome of tuberculosis patients showed typical deregulation and consequently,
could be helpful for designing alternate host-directed therapeutic interventions
[75]. The sputum proteomics study helps to separate active TB from non-TB patients
with moderate accuracy [76].

1.2.2 Therapeutics

Today nanoformulation plays a leading role in drug delivery and development. Due
to several advantages like high efficacy, site specific delivery over conventional drug
therapy, nanotherapeutics is now highly focused for achieving health benefits.
Polymeric nanoparticles, liposomes, nanogels, siRNA, dendrimers, and gene drug
delivery are some of the highly anticipated nanobiotechnology used in therapeutic
nanomedicine application. Over the past few decades, the US FDA has approved
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100 nanomedicine formulations [77]. This shows that nanotechnology is playing an
immense role in today’s biomedical science [78, 79].

1.2.2.1 Polymeric Nanoformulation
The polymeric nanoparticles are fabricated from synthetic and/or natural polymers.
The synthetic polymers are preferred over natural one due to their good availability
with higher purity, batch to batch reproducibility, and controlled release behavior for
the entrapped drug(s) [80]. Some examples of biodegradable and non-biodegradable
polymers commonly used in the preparation of polymeric nanoparticles are
polylactide (PLA), poly lactide-co-glycolide, copolymers (PLGA) and poly (-
ε-caprolactone), polyacrylates, and poly (methyl methacrylate) [81]. Both hydro-
philic and hydrophobic drugs can be encapsulated into polymeric nanoparticles by
emulsion solvent evaporation, double emulsion solvent evaporation technique, or
other suitable methods. A few of the popularly marketed polymeric nanoparticles are
Decapeptyl®, Gonapeptyl Depot®, Enantone Depot®, and Abraxane [82, 83].

1.2.2.2 Liposomes
Liposome based drug delivery systems enhance the therapeutic indices of various
drugs through alterations in their pharmacokinetics and pharmacodynamics. A few
liposome products have become commercially available for the management of
various cancer and fungal infections. For examples, Doxil® for the treatment of
ovarian cancer and AIDS-related Kaposi’s sarcoma [84], DaunoXome® for the
management of advanced HIV-associated Kaposi’s sarcoma [85]. A few more
commercial liposome products are Depocyt® by SkyPharma Inc., Myocet® by
Elan Pharmaceuticals, Mepact® by Takeda Pharmaceutical, Marqibo® by Talon
Therapeutics [86–88], and Onivyde™ by Merrimack Pharmaceuticals, Inc. [86–
89]. For fungal infections, the US FDA approved Amphotec® and Ambisome® in
1996 and 1997, respectively [90, 91].

1.2.2.3 Nanogels
A nanogel is a nanoparticle composed of a hydrogel—a crosslinked hydrophilic
polymer network. Various bioactive compounds such as DNA, proteins, and drugs
can be encapsulated in polymeric mesh for drug delivery for various biomedical
applications [92, 93]. The preparation methods include micro-molding and photo-
lithographic methods, continuous microfluidics, and free radical polymerization
techniques [94]. Chitin nanogel based clobetasol (anti-psoriatic drug) exhibited
strong cytotoxicity towards THP-1 and HaCaT cell lines by MTT assay [95]. Sane
Care Nanogel, Zyflex Nanogel, Augen Nanogel Eye-care Gel, Skin Perfect Bright-
ening Nanogel, and Oxalgin Nanogel formulation are commercially available [96].

1.2.2.4 siRNA
Small interfering RNA (siRNA), sometimes known as short interfering RNA or
silencing RNA, is a class of double-stranded RNA. It is an exciting new tool in
molecular biology and the next frontier in molecular medicine [97–99]. The thera-
peutic advantages of siRNAs for treatment of viral infection, dominant disorders,
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cancer, and neurological disorders show great promise. Gold nanorod and trimer of
N-acetylgalactosamine (GalNAc) have been reported as carrier for the delivery of
siRNA [100–103]. In another study, siRNA targeting Beclin1 was conjugated to
ferric–cobalt electro-magnetic nanomaterial (CoFe2O4@ BaTiO3; MENP-
siBeclin1) to deliver siRNA into the brain. This novel drug delivery system was
effective against HIV-1 infection following on-demand release of siRNA using an
in vitro human BBB model [104]. Anticancer siRNA therapeutics has no or negligi-
ble side effects as compared to chemotherapeutics. Scientists have tried to target
undruggable oncogenes like k-RAS or c-MYC siRNA in mouse model to develop
RNAi based therapeutics [105]. siRNAs have been used against BCR/ABL
transcripts induced apoptosis [106]. siRNAs have also been used to target K-RAS
transcripts carrying the valine-112 oncogenic mutation (K-RASV112) [107]. SphK1
siRNA or JSI-124 showed strong pro-inflammatory effects on the progression of
ulcerative colitis, which may be the therapeutic target for its treatment [108].

1.2.2.5 Dendrimers
Dendrimers are three-dimensional, globular hyper branched polymeric
nanoarchistructures. Arginine terminated peptide dendrimers, along with
sonophoresis improved the transdermal penetration of ketoprofen [109]. The most
widely used dendrimers for pharmaceutical uses are poly-propyleneimine (PPI,
AstromolR, DAB) [110] and polyamidoamine (PAMAM; Starburst) dendrimers
[111]. The multifunctional dendrimers can carry cancer cell specific molecule,
anticancer drug and molecule that recognizes the signals of cell death. Dendrimers
are also capable for on-demand drug release within the cancer microenvironment
[112–114].

1.2.2.6 Gene Drug Delivery
Gene delivery is the process of introducing foreign genetic material, such as DNA or
RNA, into host cells. Genetic material must reach the nucleus of the host cell to
induce gene expression. It is essential in gene therapy of human genetic diseases.
The gene therapy is a promising therapy for inherited disorders, viral infection, and
cancers. DNA-based gene delivery systems have been carried out for lentivirus,
poxvirus, adenovirus, adeno-related virus, retrovirus, human foamy virus (HFV),
and herpes virus [115]. RNA-based gene delivery systems have been done for HIV
with lenti-viral vectors-adjusted CD 34(+) cells in patients experiencing transplanta-
tion for AIDS-related lymphoma [116]. In case of cancer, the cytokine immune-gene
therapy is a promising strategy [117–119]. The previous literatures report on the
development of gene delivery carriers. For examples, the cationic non-viral lipid-
based gene carriers “lipoplexes” [120, 121], biodegradable poly (ethyleneimine) for
plasmid DNA delivery [122], branched poly (ethyleneimine)-cholesterol water-
soluble lipo-polymers [123], and polyethylene glycol-grafted poly (L-lysine) as
polymeric gene carriers [124, 125] have been developed.
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1.2.2.7 Other Nanoformulations
Nanoparticulate drug delivery systems can alter the PK/PD of poorly soluble drugs
by increasing their solubility and bioavailability. Drugs loaded in NPs can be
protected against external environment making them less sensitive to physical/
chemical changes due to photo-oxidation [126–128]. US FDA approved nanocrystal
drug formulations for target specific delivery, dose reduction, and enhanced safety
profile. For examples, Tricor (fenofibrate, AbbVie), Emend (Aprepitant, Merck),
and MAT2501 nanocrystal (Amikacin) [129–131]. Drugs can also be encapsulated
into lipid and/or polymer core to alter their PK/PD properties [132, 133]. For
examples, resveratrol loaded lipid-core nanocapsules (RSV-LNC) for targeting
colon cancer [134] and ciprofloxacin loaded SLNs for better antibacterial activity
[135]. Various delivery routes such as oral, dermal, pulmonary, ocular, and rectal
routes have been investigated for the administration of nanocapsules [136–
141]. Some iron oxide nanodrugs have been approved by US FDA for iron replace-
ment therapies. For examples, Venofer (iron sucrose infusion, American Regent,
Inc.), Ferrlecit (sodium ferric gluconate complex in sucrose infusion, Sanofi-Aventis
U.S.), Infed (iron dextran infusion, Actavis Pharma), and Dexferrum (iron dextran
infusion, American Regent, Inc.) indicated for anemia associated with chronic
kidney disease [130]. There are also colloidal gold bound tumor necrosis factor
and TNF-bound colloidal gold for anticancer effects [131].

1.2.2.8 Nano Surgery
Nanobiotechnology has significant application in the field of surgery. The develop-
ment of surgical nanorobot is a significant achievement in the field of surgery. It can
act as a semi-autonomous on-site surgeon inside the body guided by a human
surgeon. Surgical procedures are performed through various functions such as
pathology, diagnosing and correcting lesions by nanomanipulation via coded ultra-
sound signals, coordinated by an on-board computer and a human surgeon [142]. In
femtosecond laser surgery, femtolaser is considered as a pair of nanoscissors by
vaporizing tissue locally while leaving adjacent tissue unharmed [143]. Proteolytic
liposomal NPs of collagenase were reported to enhance periodontal remodeling of
the oral connective tissues that replaced surgical blades [144]. Nanorobotic
microbivores have been developed for spying and removing unwanted pathogens
from bloodstream [145].

1.2.2.9 Medical Implants
Medical implants are devices or tissues that are placed inside or on the surface of the
body as prosthetics or for drug delivery or to control physiological functions or for
giving support to body parts. Previous literatures showed that a significant develop-
ment has been done in the field of medical implants using nanobiotechnology.
Titanium spinal implants with surface modification through the addition of titanium
oxide/zirconium nanoparticles have shown increased bone formation compared to
conventional smooth implants [146]. Cervical cages modified with silicon nitride
nanoparticles have shown multiple biomechanical advantages and commercially
available [147]. The nanoLOCK™ by Titan Spine technology has been found to
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induce a higher osteogenic and angiogenic growth factors than with traditional
titanium polyether-ether-ketone cages [148]. Additionally, arthroplasty implants
[149], orthodontic implants [150], dental nanorobots [151], and dental implants
[152] have also been reported in the literatures. Some commercially available
medical implants include Nano TiteTM (Bicon LLC, Boston, USA), Nano TiteTM
(Biomet 3i, Palm Beach Gardens, USA), OSSEANTM (IntraLock International,
Boca Raton, FL, USA), and Osseo SpeedTM (Astra Tech, AB, Mӧlndal,
Sweden) [153].

1.2.3 Clinical Advances and Patents

Currently, the approval process for nanomedicines in humans is regulated by the US
FDA, and is essentially the same as that for any other regulated drug, device, or
biologic [77]. As of October 2019, 68 clinical trials including the term “nano” were
listed as “recruiting” or “active” on ClinicalTrials.gov. Likewise, 165 clinical trials
including the term “liposome” were listed [154]. Both diagnostic and therapeutic
nanomedicine those are in clinical trials or recently patented are listed in Tables 1.2
and 1.3.

1.3 Challenges for Nanobiotechnology in Nanomedicine

The use of nanobiotechnology to nanomedicines is being expanding and developed
day by day. However, numerous difficulties have also been faced by the researcher,
industry, and regulators for doing as such [156]. Characterization of novel
nanocompounds for their safety and toxicity is one of the major difficulties in
nanomedicine development. Huge efforts have been given to discover how structure
of nanoparticles and their properties like charge, size, shape, surface coats, and so on
interact with living body system [129]. Lack of specific protocols for assessing of
nanomedicines at the physicochemical and biological level influence their develop-
ment [157]. US FDA has published guidelines regarding the importance of
nanomaterial characterization [129]. The Nanotechnology Characterization Labora-
tory (NCL), set up by the National Cancer Institute, has additionally published
guidelines about innovative platforms for the development of nanodrugs for cancer
treatment [156]. Reports have been released in regard to the tendency of certain NPs
to show toxicity at molecular, cellular, and tissue level [158]. Biological toxicities of
NPs include oxidative stress, inflammation, immunotoxicity, genotoxicity, neuro-
toxicity, and carcinogenicity [159]. The harmful properties of NPs might be used
positively for surgical removal of diseased tissues and cancer immunotherapy.
Additionally, the toxicity of NPs can be reduced through surface coating with
hydrophilic polymers to improve cell viability [160]. Cost for the development
and regulatory approval of nanoformulations is other challenge, which is difficult
to compensate for low selling nanomedicine. The withdrawal of nanomedicines from
the market post FDA approval may be due to the toxicity issues. For examples,
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Feruglose and Resovist. Hence, phase 4 post-marketing pharmacovigilance is the
major concern to further assess the safety of nanomedicine [161].

1.4 Conclusion and Future Aspects

Nanotechnology provides innovative nanodevices and nanosystems those are much
smaller than a human cell. Such tools can be used at molecular and cellular levels to
kill cancer cells or take over the function of subcellular organelles. Nanodiagnostics
will enable routine detection of single particles of viruses or bacteria in minuscule
samples. Nanobiotechnology will give nanodevices to look at tissues in minute
details. Biosensors those are smaller than a cell would provide us an interior check
out of cellular operation. With lab-on-chip utility using nanobiochips, routine check
of diagnostic parameters of patients will come to a precise and fast effective
theranostic measure. Research is increasing daily to find out newer drug delivery
options, newer targeting strategies for medicinal products by the use of
nanobiotechnology. Successful implementation of liposomal carrier system, DoxilR,

Table 1.3 Recent US FDA approved nanomedicines [155]

Name Type Indication Year

Esperoct Antihemophilic factor
(recombinant), glycopegylated-exei

Use to treat and control bleeding in
adults and children with hemophilia
A

2019

Jivi Antihemophilic factor
[recombinant] PEGylated-aucl

Use in previously treated adults and
adolescents (12 years of age and
older) with hemophilia A
(congenital factor VIII deficiency)

2018

Vyxeos Liposomal combination of
daunorubicin, and cytarabine

Treatment of adults with newly-
diagnosed therapy-related acute
myeloid leukemia (t-AML) or AML
with myelodysplasia-related
changes (AML-MRC)

2017

Onivyde Irinotecan liposome injection Combination with fluorouracil and
leucovorin, for the treatment of
patients with metastatic
adenocarcinoma of the pancreas
after disease progression following
gemcitabine-based therapy

2015

Marqibo Vincristine encapsulated in
sphingomyelin/cholesterol
liposomes

Treatment of adolescent young adult
with Philadelphia chromosome-
negative (Ph-) acute lymphoblastic
leukemia

2012

Exparel Bupivacaine liposome injectable
suspension

Administration into the surgical site
to produce postsurgical analgesia

2011

Ozurdex Intravitreal implant containing
dexamethasone in the Novadur
solid polymer sustained-release
drug delivery system

Treatment of macular edema
following branch retinal vein
occlusion (BRVO) or central retinal
vein occlusion (CRVO)

2009

1 Nanobiotechnology and Its Application in Nanomedicine: An Overview 17



in drug market is a land mark of nanomedicine that inspires industry and regulators
to bring forward many more nanodrug formulations for human use. Increasing
scenario of the clinical trials and FDA approved nanoformulation represent the
growth of awareness utility and knowledge in this area. Such trends in nanoverse
will lead to hand to hand use of medical application in the near future.

Nanomedicines have shown nice potential to handle clinical needs in various
diseases. However, toxicity and ethical problems with nanomedicine are the major
challenges. Fortunately, with the outburst of public and scientific awareness of
nanobiotechnology, there is a detail discussion on these ethical and toxicological
issues. The potential applications provided by nanotechnology for diagnosis, pre-
vention, and treatment of diseases are presently terribly broad. Therefore, to pursue
the sensible application of nanomedicine, there is a demand of straightforward
approaches, and systematic development in conjunction with creativeness and
visionary power.
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Abstract

Cancer-associated mortality and morbidity is linked to tumor metastasis in more
than 90% cases. Primary tumor sheds millions of circulating tumor cells (CTCs)
in the blood circulation as single or clusters of cells every day, which may initiate
the metastases in the presence of metastatic precursors. Very little is known about
the biology of CTCs and their role in cancer metastasis. An increased understand-
ing of the biology and heterogeneity of CTCs and their interaction with other cells
can help us to understand the metastatic process in details so that we can identify
novel drug targets. Conventional cancer therapeutics, the most common mode of
cancer treatment currently employed in the clinic, have a relatively short circula-
tion time in the blood, which may render the killing of CTCs inefficient due to
reduced exposure of CTCs to drugs. So therapeutic targeting of CTCs in the
bloodstream and neutralization may be a good approach to prevent the metastasis
even before its initiation and increase survival outcomes. Recent developments in
the field of nanoscale-material science and nanobiotechnology allow the
researchers to continuously explore new nanoplatforms for therapeutic targeting
and eliminating CTCs efficiently and thereby inhibiting tumor metastasis. In this
chapter, we discuss the relation of CTCs with metastatic progression. We also talk
about the recent advances in CTC-targeted cancer therapy exploiting the unique
properties of the nanomaterials. We conclude by introducing developments in
CTC-directed nanosystems and other advanced technologies currently in (pre)
clinical research.
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2.1 Introduction

Cancer is the second leading cause of death worldwide after heart disease and is
responsible for an estimated 9.6 million deaths in 2018 of which 70% was reported
from low- and middle-income countries [1]. Chemotherapy, the most common mode
of cancer treatment currently employed in the clinic, on one side has severe side
effects due to nonspecific damage to normal cells and on the other side shows limited
and individually different therapeutic responses [2]. With the hope to overcome
those existing problems, new possibilities are constantly being explored for more
active and less toxic (to normal cell) treatment alternatives.

The vast majority of research works in the field of cancer blames cancer metasta-
sis as the key cause behind the cancer-related deaths, which accounts for almost 90%
of the total mortality [3, 4]. Though it is not completely understood, roughly
speaking, cancer metastasis is a complex sequential process, which involves the
shedding of cells from the primary tumor, invasion through the surrounding tissues,
penetration of basement membranes, entry into the blood vessels, survival within the
blood, exit the bloodstream, extravasation and premetastatic niche formation, and
ultimately growth into a fully developed metastatic lesion in distant organs [5].

Circulating tumor cells (CTCs) are cells (single or clusters) that have shed into the
vasculature or lymphatic from a primary tumor and are carried around the body in
the blood circulation. CTCs in the blood are very common because a fully matured
primary tumor sheds millions of cells every day, but metastasis is very rare, which
indicates that the process of metastasis is very inefficient and very specific in time.
So early detection and neutralization of CTCs in the blood may be a good therapeutic
approach for arresting tumor metastasis.

Till date, FDA has not approved any drug that can prevent cancer metastasis by
targeting it [6]. The recent knowledge of molecular profile, isolation techniques of
CTCs, and their pivotal role in metastatic progression provides sufficient reason to
target CTCs to eliminate cancer. It is an interesting idea to isolate CTCs from the
blood sample of the deceased and then profile these CTCs to consider the best
therapeutic treatment options. With the fast technological progress in the field of
nanomaterials and its applications in biomedical, the scientists are designing and
formulating different types of therapeutic systems for eliminating CTCs and arrest
metastasis. In this chapter, we discuss the relation of CTCs with metastatic progres-
sion. We also talk about the recent advances in CTC-targeted cancer therapy
exploiting the unique properties of nanomaterials.
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2.2 Biology of Circulating Tumor Cells

Metastasis is a process by which primary tumor or cancer spreads to distant organs
through the circulatory or lymphatic system and was found responsible for 90%
cancer-related deaths. This is a complex process that demands the cancer cells to
acquire diversity at precise times. The primary tumor sheds millions of circulating
tumor cells every day (CTC) in the bloodstream among which a very few success-
fully colonize in the distant organs and transform into a detectable lesion following
few sequential steps. These are a detachment of CTCs from the primary tumor body,
invasion through tissues surrounding the initial lesion, cell migration, survival
within the blood, migration through the lymphatic system, arrest at secondary and
primary sites, extravasation at distant organs like lungs, liver, brain, bones, engraft-
ment at distant sites, and colonization [7, 8]. During this complete process, these
circulating cancer cells (CTC) must employ some type of camouflage to avoid being
detected and eventually get destroyed by the natural defense system of the body.

2.2.1 Survival of CTCs in Blood Circulation

When CTCs enter the blood circulation system, they are presented with many
challenges, which eventually lead to their apoptotic death. So, in order to survive,
they need to rectify incorrect cellular or extracellular matrix binding and overcome
the resistance provided by NK cells, macrophages, oxidative stress, and shear force
[9, 10]. Only a few very selective CTCs adapt to conceal and evade the innate
immune system to transform into a successful distant metastasis [11]. CTCs migrate
successfully during stress by redesigning the expression profile of integrins and
activating the protein kinase B/akt signaling pathway by a distinct context-sensitive
mechanism [12]. CTCs escape phagocytic death by properly attaching with
macrophages through the upregulation of surface-associated proteins like CD47,
PDL1, and vascular cell adhesion molecule 1 (VCAM-1). To circumvent the oxida-
tive stress in the blood, CTCs reduce NADPH production by interfering with DHFR
enzyme in the folate metabolic pathway [13]. Recent reports suggest that the tissue
factor proteins (TF) present on the surface of CTCs have the propensity to attract and
attach with platelets, which, in turn, counter the oxidative stress by triggering the
reversible metabolic changes in CTCs and protect itself in the blood circulation by
forming microclots after binding with CD11b+macrophages [14].

2.2.2 Entry of CTCs in the Bloodstream

CTCs enter the bloodstream mainly by two known mechanisms—direct intrvasation
through the blood vessels and indirectly via lymphatic system. Active and passive
transport may be involved in both cases. The American Joint Committee on Cancer
(AJCC) have indicated to use the lymphatic node spread as a marker for the
diagnosis of most of the stage IV cancer in breast, colon, liver, and lungs. Though
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according to the AJCC, the status of the lymph node is one of the key determinants in
the metastatic spread, there is not much practical evidence, which proves that the
CTCs necessarily need to be carried out by the lymphatic system prior to developing
distant metastasis. Till date, it is not clear whether lymphatic spread truly contributes
to the development of a distant tumor or just a marker of invasive disease.

It is hard to develop an in vitro model of CTC entry into the blood vessel and to
access it in vivo. It may be possible that the direct intrvasation of CTCs into the
bloodstream takes place through the compromised blood vessel or hemorrhage into
the tumor. There is not much evidence of this passive shedding of CTCs into the
bloodstream and how often it occurs. In the active transport process, shaded CTCs
move from primary tumor surrounding stroma to the blood vessel due to the nutrient
and growth factor gradients and then penetrate the vessel wall. Tumor cell-intrinsic
factors like N-WASP protein regulate the development process of invadopodium,
which, in turn, helps the CTCs to rupture the endothelial basement membrane
surrounding the primary tumor and enter into the bloodstream. Recent studies on
rat and mouse breast cancer model show that the silencing of N-WASP by either a
dominant negative construct or shRNA prevents the formation of invadopodia and
stops the entry of CTCs into the bloodstream by this mechanism [15].

Tumor microenvironment and vasculature also plays an important role in the
development of CTCs. The blood vessels connected to the primary tumor becomes
fragile and prone to increased permeability, which helps in the easy access of CTCs
into the bloodstream. The reason behind this alteration in vascular function of the
tumor may be due to the unregulated angiogenic signal FGF and VEGF and
inflammatory signal endothelin B and PDL1. A recent study reveals that the decrease
in PHD2 expression, an oxygen-sensing molecule, which targets HIF transcription
factor responsible for the degradation of vasculature, and thus controls the entry into
bloodstream and develops CTCs [16]. It was observed that the injection of PHD2+/+
tumor cells into PHD2+/� heterozygous deficient mice leads to the development of
tumor of similar growth rate but with decreased metastatic potential. But the direct
introduction of same cells into the bloodstream resulted in an aggressive metastatic
lesion. This study essentially showed that vasculature plays an important role in the
penetration of the cells and generation of CTCs (Fig. 2.1).

Primary tumor sheds CTCs in the blood circulation as a single cell or as a cluster
of two or more cells. Single CTCs enter bloodstream actively by EMT process and
Clusters by breaking of as cell clump. CTCs flow through the blood and get arrested
eventually at the secondary distant site or stuck in the capillaries. Their fate at the
secondary site depends on many factors, for example, the microenvironment.
Extravasation from blood or intrvasation to the new location may be supported by
mesenchymal to epithelial transition. At the new location, CTCs remain in the state
of dormancy for even a decade and make necessary metabolic changes to adjust and
live in the new environment. These modified CTCs colonize and grow to a clinically
detectable metastasis.

Temporarily and spatially localized dynamic interactions in and between micro-
environment of CTCs and tumor-related macrophages play an essential role in the
migration of CTCs through the blood vessel [17]. Recent studies on TIE2-expressing
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macrophages localized in the perivascular region showed that they enter into the
blood circulation by producing VEGFA, which destroys vascular junction, reduces
vascular permeability, and promotes direct entry through the junction between tumor
cells, macrophages, and blood vessels [18].

2.2.3 CTC Single Cell Vs. CTC Clusters

Primary tumors release CTCs in the blood circulation as a single cell or as a cluster of
two or more cells (microemboli). CTC clusters show a significantly shorter half-life
of 6–10 min in the circulation, whereas for single cells it is 25–30 min. Recently,
these clusters have been identified and isolated from the single CTCs with the help of
multiple microfluidic devices without altering their conformation [19, 20]. Recently,
researchers have been trying to find out the importance of clusters in the metastatic
developments. The beginning of the formation of a metastatic lesion may be
facilitated by the crosstalk within the network of migrating clusters of homotypic
or heterotypic origin [21]. Two types of clusters are identified, homotypic clusters
and heterotypic clusters. Some important traits of cellular heterogeneity in
homotypic clusters like EMT vs epithelial and differentiated vs undifferentiated
probably play an important role in distant metastasis. Heterotypic clusters remain
undetected by the immune monitoring system by interacting with nontumor cells
like immune cells or stromal cells and colonize at distant sites. Recent findings point
toward the involvement of the immune cells in tumor-promoting or -arresting effect
[22]. So the identification of tumor-associated immune cells and their interaction
within the clusters will provide important information on their biological function
and clinical significance in distant metastatic development [22]. Newly developed
technologies like single-cell molecular profiling may be used to identify each
nontumor cell in the cluster and their specific activity in CTC clusters. Recently, it

Fig. 2.1 Steps involved in the progression of metastasis

2 Nanobiotechnology for Therapeutic Targeting of Circulating Tumor Cells in the. . . 31



was found that CTCs show an important trait, a state of nonproliferation or dor-
mancy, and remain completely inactive or undetected, evade the cytotoxic
treatments, and colonize in the distant sites [23, 24]. CTC clusters are detected in
the blood of some cancer survivors even after 22 years of primary treatment and
cure. We still don’t know anything about this nonproliferative state of CTC clusters
and their role in the relapse of cancer. Recently, it has been suggested that the
cancers with unexplained primary origin may be explained with the help of dormant
CTC clusters in the blood, which remain inactive for a long time and certainly
transformed into a metastatic lesion without any sign of development in the primary
tumor site [25]. So it is very important to know the role of dormant CTC clusters in
promotion of metastatic cancer growth as well as their interaction at the distant site to
initiate the metastatic cascade.

2.2.4 Epithelial Plasticity of CTCs

Today epithelial-mesenchymal plasticity is believed to be a key factor in the
metastatic cascade, which enables CTCs to adapt to different microenvironments
starting from the separation from the primary tumor to distant colony formation [26–
28]. CTCs survive the hurdles of the microenvironments probably due to the time-
specific dynamic interconversions between epithelial and mesenchymal states in the
metastatic cascade. Though it is confirmed that the signals from EMT are associated
with cancer cells spread, the exact contribution of EMT in metastases is very unclear
[29, 30]. Studies of CTCs revealed the presence of biphenotypic cells that expresses
the epithelial and mesenchymal cell lineage with distinct heterogeneity in their
marker expression [31]. As an example, the multiplexed RNA-ISH analysis of
CTCs of the metastatic breast cancer patient shows epithelial and mesenchymal
marker expression, which indicates the continuity of EMT [11]. A direct relation was
noted between mesenchymal marker expression, triple-negative/Her2-positive
breast cancer, and therapeutic resistance. The heterogeneity in epithelial and mesen-
chymal markers of CTCs was shown by some researchers in prostate cancer [32] and
pancreatic cancer [33] mouse models. The advancement of the disease and its
clinical outcomes were even correlated with the EMT markers in the CTCs of breast,
liver, lung, and colon cancers [11, 34].

2.2.5 CTC Response to Reactive Oxygen Species (ROS)

CTCs encounter a substantial biochemical and physical stress in the bloodstream,
which wipes out most of their population from the circulation. The level of ROS in
CTCs increased due to the loss of matrix adhesion property, increased oxygen
tension, and some other components of blood. The adaptive behavior of CTCs to
the oxidative stress was recently observed in one of the studies on melanoma, which
shows that CTCs undergo more oxidative stress in the bloodstream and distant
organs rather than in the subcutaneous tissue. The study also claimed that the cells
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in the metastatic cascade made some necessary modifications in the metabolism to
minimize the effect of oxidative stress [35]. A distant metastasis may be prevented
by raising the level of oxidative stress in melanoma cells by knocking down two
important enzymes involved in the folate pathway, MTHFD1 or ALDH1L2.

Another study reported that the CTCs tolerate oxidative stress by upregulation of
a gene called β-hemoglobin (HBB) [36]. The single-cell RNA-seq analysis of CTCs
from lung, breast, and prostate cancer patients shows the indication of HBB gene
expression. So the ectopic expression of HBB in the CTCs makes them more
sensitive toward ROS and revokes their ability to form distant metastatic colonies.
HBB-expressed CTCs resist the oxidative stress, survive in the blood circulation,
and begin the metastases process in the mouse model. In summary, it can be said that
the oxidative stress presents one of the biggest challenges against survival and
metastases of CTCs and CTCs in response try to take different protective measures
to evade the raised level of ROS.

2.2.6 CTC Interaction with Platelets

It is reported that the platelets are one of the key components in cancer metastases;
inhibition of platelet activation initiates CTC destruction in the bloodstream and
interferes with the metastatic cascade. In the bloodstream, CTCs experience major
resistance from the immune system and fluid shear stress. It is reported that the shear
stress in colon and prostate cancer cells begins the apoptosis pathway by activating
TNF-related apoptosis-inducing ligand TRAIL [37]. It is speculated that platelets
protect CTCs in the circulation by adhering on its surface, prevent them from being
recognized by the immune system, and reduce the shear stress [38].

TGF- β, a cytokine secreted by the platelets, directly interacts with CTCs at their
surface and enhances the probability of metastatic development. When platelets are
cultured together with the cell lines from colon /breast cancer, TGF- β pathway gets
activated and initiates EMT process by up- and downregulation of mesenchymal and
epithelial marker expression, respectively.

The interaction between platelets and CTCs also activates NF-κB and TGF-β/
Smad pathway and facilitates the beginning of EMT, which, in response, enhances
the chance of CTCs survival [39, 40]. Platelets may act indirectly by forming a duct,
which entraps the CTCs in the wall of the blood vessel. The selectins found on the
wall of the platelets may initiate this type of interactions and anticoagulants prevent
it [41]. Platelets release lysophosphatidic acid in bone metastasis, which helps in the
proliferation of CTCs and activates osteoclast activity in the metastatic site by
releasing the factors like IL-6 and IL-8 [42].

2.2.7 CTC Interactions with Immune Cells

Recent reports suggest that the immune cells have great impact on limiting or
promoting metastatic capabilities of CTCs. When CTCs enter the bloodstream,
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leaving behind the immune protection of the primary tumor, they undergo changes
that modify their phenotypes, which facilitates their crosstalk with the immune
system [11]. In the bloodstream, CTCs loses all the interactions with stromal cells
and extracellular matrix and exposed to various cells in the immune system. In this
situation, locally effective soluble factors like cytokines that are produced by the
immune system may not affect CTCs. NK cells of the immune system obstruct the
CTCs flow through the bloodstream, prevent their extravasation, and thus destroy
them. Study with human colon cancer in mice models reveals that NK cells kill the
CTCs in the blood directly by perforin-mediated pathway and indirectly by inducing
apoptosis-generating factors. It is evidenced from the PCR analysis that the direct
killing prevents the metastases more efficiently because the process slows down the
primary tumor growth significantly and thus cuts down CTC population in the blood
by 80%. CD8+ cytotoxic T lymphocytes (CTLs) and CD4+ T-helper (Th) cells
together with NK cell interaction with a primary tumor has shown a significant
reduction in metastases and relapse and improves the chance of disease-free survival
as well as overall survival [43, 44]. The macrophages residing in liver-like Kuepfer
cells can directly identify and block CTCs movement in the blood and make hepatic
parenchyma free of metastasis. The probable mechanism may be activating adjacent
T Cells against CTCs and directly killing them [45]. Tumor-associated macrophages
(TAMs), on the other hand, promote the passage of CTCs by releasing paracrine
factors, which, in turn, increases the motility of TAM and CTCs in the blood. The
whole process takes place like a loop-EGF, one of the activated paracrine factor
release colony-stimulating factors (CSF-1), which facilitates TAM movement
[46]. TAM may promote the entry of CTCs into the circulation by releasing some
other factors like oncogenic miR-22-containing exosomes, the chemokine CCL18,
and the chemokine CCL20 [47, 48]. EMT activation is also another way how TAM
helps in metastatic migration of CTCs. Studies on neutrophils favoring surveillance
against CTC movement through the blood are quite limited except one that states in
breast cancer mouse model neutrophils target the premetastatic lungs where they
produce hydrogen peroxide, suspend CTCs invasion and metastatic growth
[49]. Most of the other studies suggest that neutrophils work for safer passage of
CTCs. G-CSF-induced activation of γδ T cells helps in the polarization of
neutrophils toward immune suppression and increases CTC mobilization
[50]. G-CSF helps in the motility of CTCs and metastases in lung cancer mouse
model by guiding the movement of the lymphocytes Ly6G+ Ly6C+ to the metastatic
lung where they release Bv8 protein and begin the angiogenesis [51]. There is
enough evidence from the in vivo imaging studies that reveal that CTCs follow
neutrophils and collectively build up in the premetastatic network, which supports
that the neutrophils can coexist with CTCs and help in their metastatic colonization.
Primary tumors stimulate interleukin (IL)-10, transforming growth factor (TGF)-β,
and galectin 1 to release regulatory T-lymphocytes (Tregs), which blocks the
immune surveillance and clear the way for metastatic development [52].
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2.3 Advanced Nanobiotechnology for Therapeutic Targeting
of CTCs

2.3.1 Effect of Nanoparticle Morphology on Their Fate in Blood
Circulation

Based on the variation in their biodistribution, different factors like surface charge,
composition, particle size, and route of administration are tuned as desired in cancer
therapy and diagnosis [53]. Nanoparticles smaller than 10 nm in size can easily pass
through the renal filtration of the kidney, whereas the particles larger than 100 nm
can be easily washed off by the phagocytic uptake and hepatic filtration [54]. So the
therapeutic cargo-loaded adhesive nanoparticles, which are capable of adhering to
the blood vessels, may be used to target CTCs entering to the blood circulation
through the vessel wall [55].

For spherical particles smaller than 200 nm in size, larger particles exhibit better
margination than smaller particles in circulation, which improves their chances to
interact with the CTCs during intrvasation or extravasation and target them. Margin-
ation is a biological phenomenon, where semirigid cells and Nanoparticles in
circulation move away from the center of flows toward the vessel wall depending
upon the size of the particle [56].

NPs entering blood circulation encounter continuously active two counteracting
forces – adhesive interaction between NPs and cells and hemodynamic forces of
flowing blood. These two counteracting forces are the key determinants of their
specific targeting and adhering abilities [57] in the vasculature. The behavior of a
nanoparticle in blood circulation is strongly attributed to its shape because shape
plays a key role in counteracting hemodynamic forces. Nanoparticles formulated in
different shapes like rod, spherical, conical, cylindrical, and discoidal showed
differences in the flow pattern in the bloodstream [58].

Spherical particles like leukocytes in the bloodstream approach toward the
endothelium and interact with them by exhibiting rotational motion [59]. Particles
of other shapes may demonstrate tumbling motion and flows by different transport
mechanism. For example, biconcave disc or dumbbell-shaped red blood cells
(RBCs) of 6–8 μm size flow through the reticular meshwork filtering system of the
sinusoidal spleen with an opening size between 200–500 nm, whereas spherical
nanoparticles must be smaller than 200 nm to do the same job [58]. The advantages
of the biconcave shapes are not only their flexibility to transform into Slipper, cup, or
spherical shapes depending upon the changes in flow velocity and shear stress, but
also they return to their original discoidal form at reduced blood flow [60]. These
unique properties of RBC allow them to cross narrow blood vessels even smaller
than 2–3 μm and make them an excellent carrier for the therapeutic cargo to target
CTCs. Platelets, another essential component of blood, are generally oblate spheroid
in shape, but when exposed in vitro to the adhesive surfaces for a long time they
transformed into different shapes. So with the changes in shapes, various factors also
change like platelet interaction time, frequency, and area with other platelets, cells,
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and vessel wall as well as the magnitude of shear stress and other forces acting on the
cells [61].

Based upon the knowledge of how the shape of biological molecules affects their
interaction, transport, and fate in the blood, various synthetic particles were designed
recently with loaded therapeutic cargo and evaluated as drug delivery system.

In a recent study, scientists tried to understand the relations between shapes, size,
and biodistribution of intravascularly injected particles in mouse model [62]. They
injected uncoated spherical beads and nonspherical silicon-based particles, with
quasihemispherical, cylindrical, and discoidal shapes into tumor-bearing mice and
analyzed the distribution of silicon in all major organs and in the tumor. They
reported that the particles with discoidal shapes accumulated more in most of the
organs in comparison to other shapes except liver where cylindrical particles
distributed more and the distribution efficiency of spherical particles was largely
dependent on their size. In another study, filomicelles (polymer micelle assemblies)
were compared with spherical particles of similar chemistry for the transport of
flexible filaments. They reported that the larger filomicelles retained in the blood
flow even after 1 week, a stay ten times longer than the spherical particles. Larger
filomicelles efficiently entrapped anticancer drug paclitaxel and showed shrinkage of
rodent tumors. Spherical particle and smaller filomicelles are easily taken up by the
cells in the blood flow and removed from the system [63]. A filament-shaped
bacteriophage was modified to a nanowire to deliver anticancer peptides and photo-
sensitive agents [64]. Biodistribution and pharmacokinetics of tobacco mosaic virus,
available as spherical or rod due to the unique protein scaffold, was reported in mice
model. Though macrophages residing in the liver and spleen eliminated tobacco
mosaic virus from the body, rod-shaped particles stayed longer and distributed better
than the spherical particles in the circulation [65].

These bioinspired nonspherical particles with various shapes may be designed
and use for targeting CTCs in blood circulation. Rod, cylindrical, or filamentous
particles show better pharmacokinetic, distribution, and elimination profile than the
spherical particles due to their higher flexibility, deformability, and better perme-
ability. Nonspherical particles always exhibit better margination in the circulation,
which improve their chances to attack CTCs during their intrvasation. Again, the
extended elimination half-life of these particles helps them to have better interaction
with CTCs. Though the unique properties of nonspherical nanoparticles make them
superior as a carrier for the delivery of therapeutic cargo, still it needs lots of
extensive evaluation of its mechanical properties, stability, and polydispersity. A
bioinspired nanoparticle with properly tuned shape, size, and mass mimics a bio-
molecule and interacts with vessel wall and CTCs with higher potential [66].

2.3.2 RBC-Based Nanoplatform for CTC Targeting

In a recent study, Red blood cells were engineered for identifying and isolating
circulating tumor cells with high performance [67]. Folic acid and magnetic
nanoparticles were coated on the surface of RBC by hydrophobic interaction and
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chemical conjugation, respectively. Folic acid acted as a CTC surface receptor
targeting entity and magnetic force was applied to isolate the CTCs from the
blood. In a short duration of 3 h, almost 90% of the CTCs of more than 75% purity
were detected. Conjugated RBC was treated with the lysis buffer, centrifuged, and
CTCs were captured. These CTCs were successfully cultured and grown again
in vitro. In another study, lipophilic antibody-modified erythrocytes were developed
to target and kill the CTCs [68]. Lipophilic ligand painting was employed to modify
the RBC in one step into a targeted molecule, which binds with various cells in vitro
and in vivo. A characteristic rosette formation occurred when lipophilic anti-
EpCAM or anti-CD45 antibodies painted RBC were bound CTCs in vitro. Anti-
CD20 (Rituximab)-painted RBCs efficiently (over 90%) depleted CD19 +/CD20 +/
CD45 + human lymphoma cells in mantle cell lymphoma (MCL) JeKo-1 model,
while the same amount of rituximab-lipid (2 μg/mouse) was much less efficient in
lymphoma cell depletion.

2.3.3 Neutrophil-Based Nanoplatform for CTC Targeting

Neutrophils are the important components of the premetastatic niche of metastatic
cascade where they reside as bulk. Their movement toward the niche is guided by
granulocyte colony-stimulating factor present in the inflammatory microenviron-
ment of the niche. These activated neutrophils target and interact with the CTCs in
the blood through the expression of a proinflammatory phenotype and helps in the
extravasation process of tumor by forming neutrophil extracellular traps. CTCs and
premetastatic niche targeting the movement of neutrophils are mainly controlled by
their surface-associated adhesion molecules, which induces the inflammatory pro-
cess to facilitate the seeding of CTCs in the niche. So neutrophils as delivery cargo
may be a good option to target CTCs in blood, but their direct application is
prevented due to their short life span of only 7 h. In a recent study, neutrophil-
mimicking nanoparticles were designed by concealing the surface of PLGA-based
nanoparticles with the inflammatory membrane derived from the neutrophils
[69]. The cocktails of many adhesive protein molecules grafted on the surface of
these nanoparticles help them behave like a superneutrophil and tirelessly target
CTCs in the bloodstream. The researchers confirmed the targeting potential of the
NPs and accumulation in the premetastatic niche by flow cytometry and confocal
imaging. These nanodevices were loaded with carfilzomib, a proteasome inhibitor,
and studied in 4T1 metastatic models labeled both with GFP and luciferase. The
nanoparticles selectively targeted CTCs and induced apoptosis in blood.

2.3.4 Targeting CTCs with Platelet Membrane-Functionalized
Particles

Based on the knowledge that platelets adhere on the surface of CTCs and provide
perfect camouflage from immune system has encouraged the designing of many
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platelet-based drug delivery system, including natural or genetically engineered
platelet membrane-based drug delivery systems and platelet membrane-coated
drug delivery systems.

Nanoparticles coated with natural or genetically engineered platelet membranes
mimic all the features of natural platelets and targets CTCs in the blood.

In a recent study, engineered monoclonal antibodies against programmed-death
ligand 1 (anti-PD-L1) conjugated platelet drug delivery was designed to target CTCs
and eliminate them from the blood in an effort to prevent postsurgical recurrence and
metastatic spread [70]. Programmed death-ligand 1 (PD-L1), which are
overexpressed on the tumor cells, binds to PD-1 receptors on the activated T cells
and switched off their cytotoxic activity. This allows tumor cells to pass through the
immune surveillance in the blood. Monoclonal antibodies against PD-L1 were
designed to inactivate PD1/PD-L1 pathway and allow the activated T cells to attack
tumor cells and kill them. Conjugation of platelets with anti PD-L1 resulted in the
increase of the half-life of these monoclonal antibodies from 5 to 35 days. Platelets
activated by external or internal sources release Platelet-derived microparticles
(PMPs) from the plasma membrane, which facilitate the release of attached anti-
PD-L1 into the blood circulation. In vivo imaging study confirmed a ten-fold higher
accumulation of anti-PD-L1 from the engineered platelets in comparison to free anti-
PD-L1. Two highly metastatic mice models, melanoma (B16-F10) and triple-
negative breast carcinoma (4 T1), were developed to study tumor recurrence and
metastatic spread in response to the treatment. A T-cell-inflamed tumor microenvi-
ronment was created by the platelets on activation, leading to increased PDL1
expression at the tumor site. On activation of these intravenously administered
engineered platelets, they release Anti-PD-L1, inactivate PD1/PD-L1 pathway, and
activate T cells, and kill CTCs in the blood and tumor microenvironment.

Two counteractive forces play an essential role in the survival of CTCs in the
bloodstream. Natural killer cells, neutrophils, macrophages, and cytotoxic T cells are
always active to eliminate them. On the other hand, activated platelets conceal them
from the immune surveillance and assure their survival. Inspired by the fact that the
platelets adhere with the CTCs on their surface and get activated, biocompatible
silica (Si) particles were functionalized with membrane-derived vesicles from
activated platelets [71]. This biomimetic coating allows for targeting of synthetic
particles to CTCs. These platelet membrane-coated silica particles were conjugated
with TRAIL, a tumor necrosis factor-related apoptosis-inducing ligand, which is
upregulated on the surface of most of the cancer-killing cells like natural killer cells,
activated neutrophils, and cytotoxic T cells. So the complete system works by
adhering with CTCs due to activated platelet membrane and binding with the cancer
killer cells through overexpressed TRAIL ligands. These allow cancer killer cells to
come in a reacting distance with CTCs and kill them. The device was administered
intravenously in lung vasculature of a mouse breast cancer metastasis model. In vivo
imaging study confirmed eight-fold reduction in tumor metastasis after 4 weeks
following conjugated TRAIL treatment in comparison to free TRAIL solution.

We know that the activated platelets protect CTCs from the immune attack by
binding through integrin receptors and providing a camouflage. So preventing their
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interaction may be a good option to allow the immune cells to attack and eliminate
CTCs from the blood to prevent metastatic development. Fibronectin, a glycoprotein
of the extracellular matrix (ECM), is overexpressed in different types of malignant
tumors. Alteration in their disposition and upregulation by transforming growth
factor-beta (TGF-β) during epithelial-to-mesenchymal transition facilitates
premetastatic niche formation. Fibronectin formed a complex with other matrix
proteins such as fibrin and allows tumor proliferation and metastasis.

Platelets interact with tumor cells through integrin receptors mainly β1 and β3,
which are expressed on their surface. So it was a good idea to target Fibrin-
fibronectin complex as well as the integrin receptors to prevent the interactions
between platelets and tumor cells. A small linear tumor-homing pentapeptide,
CREKA (Cysteine–Arginine–Glutamic acid–Lysine–Alanine), was synthesized to
attack fibrin-fibronectin complexes on vessel walls and conjugated with Ticagrelor, a
reversible antagonist of the P2Y12 receptor on platelets [72]. In vitro study with
CREKA-Ticagrelor confirmed that it prevents platelet-induced migration of tumor
cells and tumor-platelet interaction. The in vivo study was performed in a 4T1 breast
cancer tumor mouse models. After 16 days, it was found that the weight of the lung
was reduced by 120 mg and 36 mg for CREKA-Ticagrelor- and Ticagrelor-treated
groups, respectively, in comparison to control group. So the system worked perfectly
in arresting tumor metastasis.

2.3.5 Liposomes

TNF-related apoptosis-inducing ligand (TRAIL) is a type II transmembrane protein
molecule, which induces apoptosis to the cancer cells, with no toxic side effects to
most normal cells [73]. Scientists developed liposome-based TRAIL therapy to
target CTCs in the blood and eliminate those [74]. Adhesion receptor E-selectin
(ES) is known for its recognizing and binding with most of the tumor cells and
leukocytes in the blood. E-selectin and TRAIL were conjugated on the surface of
liposomes and administered directly into the blood using the intravenous route.
Liposomes immediately adhered with the CTCs and leukocytes through the
E-selectin receptors on their surface. This allows the TRAIL molecule to come
close enough to react with the death receptors present on the surface of CTCs and
send the signal to initiate the process of apoptosis.

Results showed that the ES/TRAIL therapy eliminated more than 95% of the
CTCs within 2 h of administration of the liposomes. ES/TRAIL liposomes exhibited
enhanced therapeutic efficacy in vivo in the blood in comparison to in vitro in
buffered media. This is exceptional because normally the efficacy of other synthetic
reagents reduced in vivo in the blood due to cellular internalization and nonspecific
binding of plasma proteins. They found that ES/TRAIL therapy increased the
hematocrit value of blood, which acted as an apoptosis-inducing factor and
decreased the number of viable cancer cells. They assumed that the cancer cells
and leukocytes encounter constantly acting compressive force in the blood flow,
which wipes out the glycocalyx protective layer surrounding the CTCs and exposes
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them to bind with the ES/TRAIL liposomes through the ES receptors and allows
TRAIL molecules to come in contact with the death receptors to initiate cell
apoptosis.

In another work, the researchers tested the same ES/TRAIL liposomes in mouse
prostate cancer xenograft model [75]. Half-life of the formulation was indicated by
the human TRAIL characteristics in the leukocytes of the mouse and it was almost
30 h. After 6 weeks of treatment with specific dosing schedule, they did not find any
metastatic development and more interestingly the volume of the primary tumor also
decreased in the treatment group, whereas control group developed a secondary
tumor in abdominal cavity, liver, kidney, and spleen. There was 94% variation in the
CTC count between the treated and the control groups at the end of the experiment.
The formulation was found absolutely safe for the normal cells.

The same research group developed another type of TRAIL-based liposome
formulation to target and eliminate lymph node CTCs in an effort to prevent
metastatic development [76]. It is very interesting to find that the lymph node is
the primary organ for the metastatic spread for most of the cancers though many
immune cells reside here. The reason may be that most cancer cells can move past
the poor immune surveillance of cancer patients. During the process of metastatic
spread, the cells from the primary tumors need to cross the Sentinel lymph nodes
(SLN) and the first line of defense, which becomes weaker or inefficient due to
alteration in its morphology in cancer. So the researchers tried to prevent the immune
suppression of SLN by reviving the immune function of the body by developing
TRIL liposome with natural killer cells (NK), which will target CTCs in the Lymph
node and eliminate them. NK Cells are the cytotoxic lymphocytes, which continu-
ously bombard toxins to the tumor cells, activate the apoptotic pathways, and kill
them. In cancer patients, NK cells show abnormalities like reduced cytotoxicity and
lose their tumor cell-infiltrating capacity due to chemotherapy-induced immune
suppression.

TRAIL liposomes were thiolated and conjugated with anti-CD57 (an antibody to
CD-57), which helped in adhesion of liposomes to NK cells. In vitro studies with
MDA-MB- 231, COLO 205, and LNCaP cancer cell lines confirmed no metastatic
growth in lymph nodes. The study was continued in vivo using subcutaneous mouse
xenograft tumor model. In this model, anti-NK1.1 antibody was used in liposomes
instead of anti-CD57 to target NK cells in mice. The liposomes were very specific to
target only NK cells and remains 28% bound with NK cells even after 72 h
posttreatment. After 2 weeks of implanting primary tumor anti-NK1.1-TRAIL-
based liposomes were administered subcutaneously. NK cells directed the liposomes
toward the inguinal lymph nodes and arrested the lymphatic spread of a subcutane-
ous tumor in the mice. Moreover, NK cells were found absolutely healthy without
loss of cellular activity and cytotoxicity.
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2.3.6 DNA-Based Nanodevices

Recently, DNA was used as a core material to design various nanostructures
applying the fact that it forms complementary base pairs at base pairs GC/AT. As
an ideal nanostructuring material, easy manipulation in its conformation from a
double-stranded structure to a 3-dimensional origami provides the advantages like
good biocompatibility, easy structural modifications, and programmability. [77].

In an effort to kill CTCs, locally Wang and group proposed an aptamer, which
gets activated in a switching mechanism and releases photosensitizer (PS) in pres-
ence of CTCs [78]. The strategy was simply to develop a PS-labeled hairpin switch
aptamer (HAS) immobilized on the PDMS-glass supporter and to install in the deep
tissue near the primary tumor surgically. When CTCs come within the interacting
range of the device, aptamer structure is modified to a hairpin conformation and it
gets detached from the supporter. During its movement through the superficial blood
vessels, if it is supplied with external light energy, PS get activated and switch on the
aptamer to release oxygen (O2), which eliminate CTCs from the blood. The device
was designed in such a way that it works in two-step mechanism. The first step
involves the separation of PS-labeled aptamer and the supporter in the presence of
CTCs, which is achieved by utilizing magnetic beads. To achieve the second goal, to
kill CTCs selectively, a vessel simulating microfluidic device and anticancer PS was
labeled on the aptamer. When the aptamer probes enter into the CTCs and get
activated by external light, it releases CTCs killer O2. The device was composed
of a FAM-labeled hairpin aptamer for targeting, biotin, and a quencher labeled
C-DNA for hairpin aptamer hybridization, HAS probe made of aptamer and cDNA.

In an effort to make this device more effective to eliminate CTCs, doxorubicin
was encapsulated in the DNA structure. This way the system combines chemother-
apy and photodynamic therapy and launches dual attack selectively on CTCs
without harming normal cells.

2.3.7 Dendrimers

Dendrimers are highly branched polymers with easy surface manipulations. These
kinds of structural conformations make them a good candidate for functionalization
and conjugation with other molecular entities.

From our discussion on the biology of CTCs, we now know that the various
sequential events like local invasion, intravasation, survival in the circulation,
heteroadhesion to vascular endothelial bed of secondary organs, extravasation,
micrometastasis formation, and metastatic colonization are always active in the
metastatic cascade. EpCAM and SleX are adhesion molecules, which help in
epithelial adhesion of CTCs directly by Ca2+-independent homotypic pathway and
indirectly by Slex/E-selection interaction, respectively. So the antibodies of these
molecules block an important step in metastatic process, adhesion to vascular
endothelial bed.
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Xie and group developed a nanoplatform composed of a polyamidoamine
dendrimer (PAMAM) in its core, which is conjugated with two antibodies (anti-
EpCAM) and (anti-SLeX) to access the antiadhesion and termination of CTCs in an
effort to arrest metastasis [79–81]. The result showed that the conjugate selectively
adhered with SW620 cells responsible for colon cancer and captures them. The
attachment of these SW620 cells to the Human umbilical vein endothelial cells
(HUVECs) or fibronectin substrate was markedly reduced in the presence of the
conjugate in a concentration-dependent mechanism. It was reported that almost
60–70% cell adhesion inhibition from SW620 cells, which was much higher than
other two cell lines involved in the study, SW480 and LoVo, and may be due to more
EpCAM and Slex receptors on SW620 cell surface.

EpCAM and Slex antibody-conjugated dendrimers were injected along with the
human carcinoma cells HT29 in a sequential manner to nude mice to understand the
CTC capturing and elimination potential and compared with its single antibody-
conjugated counterparts. On injecting red fluorescence protein labeled- HT29 cells,
dual antibody-coated dendrimers exhibited higher capacity to detect and isolate
CTCs from the leukocytes (RBC) as well as from the blood of mice and human as
comparison to its single antibody-coated counterpart. Flow cytometry analysis
showed that the conjugates blocked the adhesion of CTCs to the epithelial membrane
at the S phase, made them dormant, and arrest the metastatic spread.

In another study, CTC biomarker targeting dual aptamer ring were conjugated
with dendrimers to eliminate CTCs. The results showed that the dual aptamer
conjugation increased the selectivity to capture and isolate CTCs from even 108

cells or blood of human and mice. The aptamer conjugation reduced endogenous
nucleases-induced biodegradation, improves the stability, and arrests metastasis
in vivo.

The present studies constructed the novel dual aptamer ring conjugates to simul-
taneously recognize and seize two surface biomarkers on one type of CTC. Such
unique molecular architecture can significantly withstand degradation by nucleases
and precisely capture the target CTCs in the presence of millions of interfering
normal cells and in patient and animal blood. The conjugate with its enhanced
functionality and biostability provides a more easily scalable and low-cost clinical
approach to restraining CTCs and preventing CTCs-based cancer metastasis. The
biomarkers, EpCAM and Her2, block two arms of the aptamer conjugates and
prevent the endothelial attachments of the cells and promote apoptosis [82].

In an effort to recognize and isolate the variety of CTCs, Zheng et al. proposed the
design of barcode particles, which are composed of spherical crystal clusters of
colloids and are adorned with dendrimer-amplified aptamer probes [83]. The
microfluidic droplet templates were employed to tune the size of these spherical
crystals in accordance with the dimensions of the cells. The characteristic reflection
peaks arising from these particles due to the photonic bandgap in their structure help
in encoding the information and enhance the stability. A particular aptamer in the
device identifies and captures a specific type of CTCs in blood, whereas dendrimer
works as an amplifier and improves the sensitivity of detection.
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2.3.8 Mesoporous Silica Nanoparticles (MSN)

Some unique features of MSN have made it an excellent candidate in the biomedical
field like highly ordered pore structures, tunable pore size, large pore volume and
surface area, high loading, controlled release of drug molecules, cell specificity and
biocompatibility, etc. Jia and group developed an MSN-based nanostructure, which
is conjugated with EpCAM antibody and loaded with abortifacient mifepristone
(MIF) to serve as a dual target for eliminating the CTCs from the blood and stop the
process of metastasis [84]. The flow cytometry assay showed quantitatively that
these nanodevices selectively captured the colorectal cancer cells in the cell medium
or in the blood through EpCAM-binding sites. The EpCAM-led selective binding
downregulates the captured cells and moves them to G0/G1 phase to eliminate them.
In the absence of adhesion protein molecule EpCAM, the cancer cells could not
adhere to the endothelial cells to be able to form a premetastatic niche. MIF works by
interfering with E-selectin pathways. The functionalization helped the MSNs to stay
long enough in the blood circulation so that it could efficiently release its MIF load
and prevents lung metastasis.

In another study, Jia et al. developed doxorubicin-loaded MSNs and covalently
conjugated with two aptamers to selectively target EpCAM and CD44, the common
surface biomarkers for colorectal cancer [85]. This nanodevice sensed CTCs in the
blood, followed it like a guided missile, and captured it with aptamer probes, and
bombarded with doxorubicin to kill it by DOX-dependent pathway. On the other
hand, aptamers prevent the CTCs from adhering with the epithelial cells, an impor-
tant step in the metastatic cascade. When injected in the mice colorectal cancer
model, dual aptamer-conjugated DOX-MSNs were found in blood circulation even
after 8 h, which was much higher than its single aptamer-conjugated counterpart or
DOX-MSNs and efficient enough to chase away and kill the CTCs to prevent lung
metastasis.

2.3.9 Polymeric Micelles

Polymeric micelles are nanosized core-shell structured materials, which are formed
by the self-assembly of amphiphilic block copolymers in water. Hydrophobic core to
minimize aqueous exposure and a hydrophilic shell stabilize the core in the aqueous
environment. Some interesting features of polymeric micelles like biocompatibility,
low toxicity, tunable core-shell conformation, micellar assembly, nanosize range,
and good stability make them an ideal candidate for using as a delivery cargo. The
typical core-shell conformation of the micelles ensures better loading of hydropho-
bic drugs in the core and adds steric protection to the shell. Moreover, electrostatic
attraction or chemical conjugations may be employed to load large molecules like
nucleic acid and hydrophilic drugs efficiently. Recently, it has been found that the
tuning of structural conformation of polymeric micelles allows them to control the
release of macromolecules according to the needs of the therapy.
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Deng and group developed DOX-loaded Monomethyl poly(ethylene glycol)-poly
(ε-caprolactone) (MPEG-PCL) diblock copolymer polymeric micelle with the intent
to kill CTCs in the blood [86]. They employed pH-induced self-assembly method to
obtain small micelles with narrow size distribution and high entrapment efficiency.
In vitro studies with 4T1 cells confirmed that DOX micelles were superior to free
DOX because they exhibited better cytotoxic profile, improved cellular uptake, and
sustained release behavior. In transgenic Zebrafish model, the formulation showed a
longer stay in circulation, lower extravasation to the surrounding organs and
prevented CTCs from the development of metastatic niche, and increased the life
span of tumor-bearing zebrafish. In vivo imaging in 4T1 tumor-bearing mouse
model supported the results found with transgenic Zebrafish, like the formulation
induced more apoptosis to the CTCs than the free drugs with minimum toxic effect
to the normal cells.

Yao and group [87] developed K237 peptide and Ep23 aptamer-conjugated
biodegradable PEG-PLA polymeric micelles with a model drug paclitaxel with the
intent to target the primary tumor and eliminate CTCs from the blood simultaneously
to obtain a synergistic antitumor therapeutic effect. K237 peptide acts as an ideal
ligand for tumor vessel targeting because it interacts with KDR/Flk-1 tyrosine kinase
pathway and destroys vasculogenic mimicry channels. Ep23 aptamer interacts with
the EpCAM and prevents the CTC attachment with endothelial cells, an important
step in metastasis, and stops secondary tumor development. In vitro studies with
HUVEC and 4T1 cells confirmed improved cellular uptake, better cytotoxicity
profile and apoptosis induction from peptide and aptamer dual-conjugated micelles
than their single-conjugated counterparts. Flow cytometry, intravital imaging, and
confocal microscopy showed that the dual targeting micelles target and eliminate
CTCs effectively from the blood and 4T1-GFP cell-derived lung metastasis mice
model.

2.4 Conclusion

Recent cancer research and findings have drawn special interest for circulating tumor
cells (CTCs) due to their definite connection with tumor metastasis. The study of the
biology of CTCs provides us clinically relevant important insights regarding the
metastatic progression and cancer-related mortality. As such, CTCs are investigated
as predictive biomarkers and targeting CTCs may be a good therapeutic approach to
improve survival outcomes. However, typical characteristics of CTCs like rarity and
heterogeneity in morphology and phenotype make them extremely difficult to
identify and isolate. Recent developments in the field of nanoscale-material science
and nanobiotechnology allow the researchers to continuously explore new
nanoplatforms for capture, detection, and elimination of CTCs. CTCs targeting
engineered nanomedicines play an important role in early diagnosis, reducing distal
recurrence and preventing metastasis before it occurs. So as our understanding
regarding CTCs and nanotechnology will grow, we will be identifying new
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vulnerabilities to target the lethality of cancer metastasis in more efficient and cost-
effective ways in the coming days.
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Application of Nanobiotechnology
in Clinical Diagnosis 3
Jayanta Barman

Abstract

Nanotechnology is the ability to manipulate materials to establish the
nanostructures at the desired level. In the present scenario, the field is quickly
elaborating, and numbers of work have been done by synthesizing and
characterizing the nanomaterial with a suitable design, for application of devices
in various fields. In the last few decades, more stress is given on the use of
nanofabrication-based medicinal diagnoses as per theory and experiments
concerned. In this chapter, the focus has been given on the stress of various
nanostructures and nanodevices’ fabrication in clinical diagnostics. The chapter
starts with introducing some basic properties and prospects, benefits and
limitations as well as biodetection in medical diagnostics.

Keywords

Nanobiotechnology · Diagnosis · Cancer · Device

3.1 Introduction

Nanocrystal and quantum dots of various materials have been applied not only in
nanoelectronics but has application in different technological areas, including
biological labelling, processing and diagnostics, photonic devices, optical wave-
guide and non-linear optics, catalysis, ceramics, magnetic storage devices, etc. In
addition, the applicability of the words like nanograph, nanoscopy and nanosurgery
will be the issues of nanoscience and nanotechonology, which are not far reaching as
far as theory and experiment are concerned [1–7]. Nanostructures have special
relevance to biomedical applications due to their ultra-small size with cell
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(5–50 μm), viruses (10–500 nm), proteins (10–50 nm) and gene (10–100 nm).
Nanostructure material has a special capacity that it can act inside the human body
without affecting the normal behaviour. Nanostructure material study allows this
critical process on a single cell level. Semiconductor and magnetic biomaterials have
different challenges for application in biological point of view. Nanostructure-based
device application requires strict biocompatibility. The present nanostructure
research is largely biased due to the diagnostic and therapeutic from a medicinal
point of view. Nowadays, for diagnosis, the highly used technique is magnetic
resonance, and in the detection of biomolecules, nanostructure is used as a fluores-
cent material. For targeted delivery of drugs, nanostructures are highly applied for
destroying the cancer cell and repairing the cell [6, 7]. From the application point of
view, nanostructures have important value in clinical purpose and drugs delivery
technique [8–11].

3.1.1 Classification of Nanoparticles

Since the beginning of the 1980s, the door has opened for research in nanostructures,
especially in materials science, and further it extended in nanobiotechnology to
every field. The important properties of this material are that they show unique
behaviour when they shrunk to nanodimension. When the material is under a
confined system in the range of 100 nm, the physical, chemical, hardness and all
properties change. In this state, the nanomaterial surface creates some defects and the
defect states create traps which show special properties in biological substance and
affinity for device application.

The decrease in particle size from metal to semiconductor has shrinking effect
and yields high chemical reactivity and good physical properties. When the confined
dimension is less than de Broglie wavelength, quantum confinement occurs and
shows unique optical properties that have opened the door for device application,
especially in diagnostic purpose, as most of the instruments are based on the optical
system. Once confinement happens, the energy levels are quantized within the
valance band and conduction band mass of the electron changes and further
known as effective mass [11–14]. Depending upon the confinement of nanoparticles,
three categories are shown in Fig. 3.1.

Confinement in

1. one-dimension have the shape in thin films,
2. two dimensions have the shape in tube or wires and,
3. three dimensions have the shape particles called quantum dots.

Figure 3.1 shows the three different confinement systems where thin film,
quantum dot as well as quantum wire concepts are developed.

The confined dimensions of nanostructure are governed by the density of states
(DOS). The DOS is different for different shapes and structures and it varies from
quantum film to quantum dot. DOS is a continuum for bulk material and stepwise in
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wire and discrete in quantum dots. The three types of DOS are shown in
Fig. 3.2 [15].

Ekimov in 1980 reported the quantum size effect in semiconductor nanoparticles
and later the size effect also found in all materials [15].

3.1.2 Properties of Quantum Dots

Quantum dots possess some unique properties by which they differ from bulk
material. These are:

Fig. 3.1 Carrier confinement in low-dimensional systems of nanomaterial [5]

Fig. 3.2 Density of states in the reduced dimensional system of nanomaterial [5]
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3.1.2.1 Enhancement of Band Gap
Due to the quantum confinement, the continuous DOS in conduction and valance
bands are split into some discrete states compared to bulk.

3.1.2.2 Blue Shift
As the band gap of quantum dot increases, the strong absorption of the optical pulse
occurs in the UV region, that is absorption edge shifts towards UV. For that reason, it
is said that quantum dots possess blue shift in optical absorption spectra.

3.1.2.3 Large Surface to Volume Ratio
Most important property associated with quantum dot is the existence of large
surface to volume ratio. Due to this, within the band gap some discrete electronic
states are created and that process is the generation of ‘Traps’.

3.1.2.4 Intense Photoluminescence
Due to the formation of traps in nanostructure, the trapping as well as detrapping rate
of electrons is very fast. That is why they show intense photoluminescence spectra.
Quantum dots (QDs) are also a group of NPs which are highly useful for clinical
purpose. QDs have the ability to create fluorescence in different levels of spectral
range and even in infrared range also [16], which makes them a suitable candidate
for identifying and imaging cells with cell structures and pathogenic agents [16–18],
which has made quantum dots suitable for diagnostic applications [10, 18, 19].

Half metal, super paramagnet, has lots of application in diagnostic devices like
magnetic resonance tomography (MRT) and these materials are used to contrast the
imaging biological tissues [20]. Again, carbon nanotube shows unique properties
and it is highly used to designing biosensors [21, 22], detecting specific
biomolecules [23] and identifying structural change of cells [24–26].

However, NPs have a large number of disadvantages towards the application in
medicinal point of view. One such is toxicity, and it may rise due to the unique
behaviour of nanostructural properties. Further advanced research is streaming to
studying the causes and mechanisms of NPs to control the toxic effect.

3.1.3 Nanobiosensors

Nanobiosensor is the instrument where identification of different biological phe-
nomena can be detected. Diagnosis practice is mainly associated with this biosensor
where first biological behaviour is converted to an optical signal, and further the
optical signal is converted to different forms such as voltage, current, phase shift,
etc., and from these data, other measuring parameters can be correlated and captured.
Nanobiosensors are an integral part of the clinical diagnosis of biological samples. A
transducer is acting as an instrumental part for accessing the signal from active cell to
diagnostic purpose [27–29]. The present available diagnostic technology has a
limitation that it creates tumour in blood vessels and to overcome the restriction,
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nanobiosensor is used which act in smart way and become functional even in the
repeating process.

3.1.3.1 Bimolecular Transduction
Biomolecule transductions are classified into two classes and they are label-based
and label-free detection.

3.1.3.2 Label-Based Detection
Immunoassays are the basis of most label-based detection technologies and they are
based on the interaction of antigen–antibody. The resent label-based detection is
based on biomolecule transduction and can perform the amount of protein existing in
the blood. Till now, the immunoassay has been regarded as the standard
diagnostic tool.

3.1.3.3 Label-Free Detection Methods
With the help of nanotechnology, lots of label-free detection methods have been
developed and they have high efficiency in accuracy and within a short period,
millions of data can be analysed. The label-free biosensors are based on the follow-
ing principles.

Electrical Detection
Electrochemical and electrical detection biosensors are primarily based on the
principle of change in currents and voltages with input biomolecules. The result is
synthesis with specific input parameters, which is monitored with specific software.

Optical Detection
Another important procedure for biological sample analysis is optoelectronic tech-
nique. In this process, light energy is converted to electrical energy with the help of a
transducer. Most of the biological samples have optical activity where energy is
transformed into an electronic signal and analysis is performed with synthesis
compound. During the interaction of active cells with a chemical process, some
energy is released in the form of light and which is converted to desired electromag-
netic signal. Some metal nanoparticles have a good response in thin film form for
optical sensitivity with biomolecules [29–33]. The sensing element which has a
biological response is measured with the help of a transducer and the collected signal
can be recorded for data analysis. The main advantage of the nanomaterial sensor is
that it can be manipulated in desirable properties [34–43].

3.2 Medical Applications of Nanostructures

Presently, the term nanodiagnostics is specially used in diagnosis purpose in the field
of nanotechnology [44–48]. Though various types of diagnoses are available, yet
nanodiagnostics is popular because of the early and rapid process associated with
nanotechnology. Due to the unique characteristics and capability to analyse in the
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desired area, it has potential application in clinical purpose [49, 50]. For the
diagnostic purpose, the nanostructures are as follows.

3.2.1 Nanostructured Surfaces

Nanostructured surfaces show many interesting and unique properties. These
nanostructure surfaces have shown adsorption of cells and change in cell structure
[51]. The absorption of bacteria and protein absorbed by the nanostructure surface
was detected by the lithography technique and shows enhanced properties. The
modified adhesion was explained from the principle of expansion of the surface
area to the existence of functional groups ratio [52]. With the help of Dip pen
nanolithography (DPN) technique, structured surfaces can manipulate directly in
modified buffer of silicon chips [53]. In this field of nanolithography, lots of work
has been reported. With the help of Atomic force microscope (AFM), the surface can
be enhanced up to a single molecule level which makes possible to establish the
DNA pattern [54–56].

3.2.2 Nanoscale for Molecular Identification

Detection of single cells and few molecules is possible due to the development of
nanotechnology. The present nanostructure-based sensor has high resolution to
detect the cancer cell to the range of a single cell.

Conventional methods have some limitation that it can’t establish the relation
protein to DNA level. Therefore, mass spectrometry method is used in two
dimensions by connecting electric field with biomolecules [57–59].

3.2.3 Gold Nanoparticles for Diagnostics

Gold nanoparticles are highly used for cancer diagnostics in the last decade. The
gold nanoparticle whose diameter is less than 10 nm can be attached to small pieces
of DNA. The gold nanoparticles are kept in a sensor surface which has high affinity
for target element and this technique can detect different DNA multiplexing [60, 61].

3.2.4 Quantum Dot towards Application in Cancer Cell

QDs are inorganic as well as semiconducting material which have significant
advantages over conventionally used materials. Due to the high sensitivity, large
excitation spectra and stable fluorescence, therefore it is now the option instead of
common laser application. QD-based laser has overcome the restriction and ability to
heat the targeted particular effected cells [62]. Another important technique of QDs
of different sizes embedded in tiny polymer porous provide the detecting of the
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specimens. Different sizes of QDs have different properties which have significant
application in clinical diagnosis [63, 64].

3.2.5 Nanotechnology-Based Biochips

The size of the cell is generally in the range of nanometre, and nanostructure has the
same dimension with respect to cell dimension which is now regarded as ‘Nano-
technology on a chip’ [62]. The chips can be designed to interact with cellular
constituents. This chip has the ability to detect cancer cells. Photolithographic is one
of the technique through which silicon nanowire can be developed on a substrate.
Using this process, the investigators can create nanotubes with diameters less than
10 nm. In this range, it is possible to trap DNA molecules with the device channels
[57, 65–67]. In the nanotube, electrodes are used to accelerate the DNA molecules
through the tube.

3.2.6 Infectious Diseases with Nanodiagnostics

The rapid and accurate detection of pathogenic bacteria has an utmost important
factor. The conventional diagnostic methods have poor sensitivity due to instrumen-
tal limitations. QD hybridization-detection technique has been achieved by
nanoprobes of single-molecule hybridization using multicolour oligonucleotide-
functionalized nanoprobes.

With the help of silver nanoparticles, high degree accuracy can be achieved in
spectroscopic method because spectroscopic analysis has lots of advantages with
virus multiplexing. In the detection process, the principle spectroscopic method is
the change of frequency with scattered infected DNA or RNA. The change in
frequency can be monitored and analysed with proper parameter and can be consid-
ered as a fingerprint in the diagnosis process [68, 69].

3.2.7 Nanoparticle Hyperthermia as Clinical Cancer Therapy

Early discovered cancer has more cure rate. Therefore, early detection and timely
diagnosis of cancer is essential to reduce the mortality rate of patients. Tumour
imaging technology has an important role in cancer diagnosis and the choice of late
clinical treatment options. The conventional methods do not thermally discriminate
between target and surrounding normal tissue and heating of non-selective tissue
leads to major unwanted effect. Menopausal Hormone Therapy (MHT) has attracted
a lot of interest in recent years due to its proper use in clinical purpose. Magnetic
nanoparticles are able to convert electromagnetic energy into heat. Therefore, the
most popular application for MNPs is most likely the destruction of tumour cells by
heating them to their appropriate target.
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The magnetic nanostructures applied by an alternating magnetic field is presently
explored as as technique for targeted cancer cells. In this process, the hysteresis loss
is also an important factor, as increasing the hysteresis loss improves the heating
efficiency. The conventional method like chemotherapy has lots of side effects and
magnetic hyperthermia can be considered as an alternative process for better treat-
ment [70–72].

3.3 The Next Prospects

In the coming decade, it will be possible that all diagnosis measurements related with
nano-based techniques can play a vital role with better accuracy in a rapid manner.
From the clinical point of view, it is less toxic than the conventional method and
from the therapeutic point of view, the target element is a point-to-point heating
effect which reduces the burning of other normal cells. Due to the multiple prospects,
QD nano laser-based technique helps in surgery with high efficiency [73–76]. From
the present issue, it is clear that nanostructure is not only applicable in diagnosis but
also fruitful in therapeutic medicine as well as in surgery. The next healthcare system
will be totally based on nanobiotechnology as theory and practice concern
[77, 78]. The most striking area of nanobiotechnology is cancer diagnostics. From
the nanostructure-based diagnosis, early detection of cancer cell possibility increases
which help to cure in nanotherapeutic application rather the present available time-
consuming methods.

3.4 Challenges with the Use of Nanostructures

Lots of effort has been given for synthesized nanostructures with all possible
dimensions. This nanostructure has a large surface to volume ratio compared to
bulk material and has the ability to attract physicochemical properties. Due to high
reactivity and small size, they allowed them to cross many boundaries across cell
membranes and bind to molecules such as DNA, RNA, virus and protein [16, 20, 39,
42, 51, 57, 63, 77–79].

Although lots of development has taken place, yet toxicological effects of
nanoparticles and nanostructures are yet to be perfectly known. They may react
with other internal parts of living animal [78].

Studies have shown that carbon nanotubes to be toxic and toxicity will act up to a
long period. They can enter the lungs and create granules of laboratory animals
[77]. Nanoparticles and quantum dots made of metals, insulator and semiconductor
have shown the toxic effects on cells [78].

From in vitro study, it is clear that a metal nanoparticle has the ability to damage
cell membranes, linking with C18-4 and stem cells. Again, magnetic nanoparticles
can pass the blood-testis barrier causing aggregation in blood cells.

The above discussion indicates that nanostructures have an important impact on
animal health by producing phenotypic damage to the cells [80].
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To understand the nanostructures’ properties relating to human health, detailed
interaction and toxicity must be known. The different type of synthesis procedure
created different structure, size and morphology and in terms of the clinical context,
improvement should be done with quality, control and safety issues.

3.5 Conclusion

The present chapter discusses different types of nanostructures and their dimension
related with biological interest. The nanobase technique has an interesting appeal
towards the application in medical diagnostics. Due to the smaller size and large
surface to volume ratio as well as rapid interaction with cell, it becomes a candidate
for future diagnostics issue. Some important challenges have to be implemented to
overcome the present situation related to toxicity. The physical characteristics of
nanostructures determine the clinical approach towards the diagnosis. More study
and research are necessary to overcome the present issues.

Conflict of Interest None. All the figures are original and self-made.
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Anti-diabetic Nano-formulation from
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Abstract

Diabetes is one amongst the chronic metabolic diseases affecting millions of
people across the world. Apart from proper selection of drugs and doses, conven-
tional drugs pose unwanted side effects to the diabetics. Due to the limited side
effects, cost and easy accessibility, there is a rising interest in the field of research
incorporating compounds from natural backgrounds. However, most of the
biologically active constituents have low absorption capability despite their
property of high solubility in water. Due to their low absorption capability,
most of them are unable to cross the lipid bilayers of the cell owing to their
large molecular sizes that produce failure in achieving bioavailability followed by
the loss of efficacy. In recent years, nanotechnology-based formulations have
given new lease of life to such problems with their myriad of formulations that
include nanospheres, nanocapsules, liposomes, proliposomes, solid lipid
nanoparticles [SLNs] and nano-emulsion. Combining herbal drugs with nano-
technology may potentiate the action of the plant extracts or active constituent by
increasing their solubility, bioavailability and efficacy as well as by reducing the
required dose and side effects. Therefore, the objective behind presenting this
chapter is to outline works on the nanotechnology-based anti-diabetic herbal
formulations reported till date.
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4.1 Introduction

Diabetes mellitus is a group of metabolic diseases characterized by an increase in
blood glucose level associated with atypical metabolism of basic foods like
carbohydrates, proteins and fats due to inadequate or lack of insulin secretion by
beta cells of islets of Langerhans of the pancreas and peripheral tissues like adipose,
skeletal muscle and liver tissue. It is also associated with hyperaminoacidaemia and
hyperlipidaemia [1, 2]. Long-term suffering from diabetes mellitus may lead to
critical complications like retinopathy leading to blindness, neuropathy, including
dysfunctions of endocrine organs and nephropathy, which may cause renal failure.
Patients suffering from diabetes mellitus are also at high risk of vascular, cardiovas-
cular, peripheral and cerebrovascular diseases [3].

The world prevalence rate of diabetes mellitus may increase from 8.3% (366 mil-
lion) in 2011 to 9.9% (522 million) approaching the year 2030 as estimated from
recent studies and surveys. The highest increase may occur in developing countries
like India and China. The United States of America also has a huge number of
patients suffering from diabetes mellitus. Newly developed drugs are frequently
tested for the prevention and treatment of diabetes and its complications. New
approaches of current therapies for the treatment of diabetes mainly include
maintaining diet, exercise and use of carbohydrate digestive enzyme inhibitors,
which is responsible for inhibition of glucose absorption in intestine and reduction
of cellular glucose uptake. Diabetes mellitus can be treated with allopathic oral
hypoglycaemic agents, which are associated with mild-to-severe side effects related
to hypoglycaemia, skin reactions, gastrointestinal problems, nausea and
haematological disorders [4].

Treatment and mitigation of diabetes mellitus without any adverse effect is still a
challenge to the healthcare profession. In the present era, a huge number of people
are using herbs/natural products for the treatment of diabetes. Since ancient times,
plants are being used by people to recover from their disease [2]. The active
principles of plants are important sources of vitamins, minerals and natural
antioxidants. The therapeutic efficacy of the plant extracts is more when consumed
in crude form. The major disadvantage for using crude extract is that the quantity of
herbal extract required for treatment is higher due to the degradation of plant
metabolites such as flavonoids, terpenes, alkaloids, amides, phenols, steroids, etc.
in the gastrointestinal tract as they are very sensitive to the acidic pH of the stomach.
Acidic pH promotes the destruction of plant metabolites and loss of the pharmaco-
logical activity. In recent times, several scientific studies focused on encapsulation of
the herbal extracts to provide sustained release of active compounds in the beta cells
of islets of Langerhans in intestine ensuring maximum absorption for treatment of
diabetes mellitus. In the present time, nanotechnological approaches involving
medicinal plants have contributed to cutting-edge drug delivery systems. The
nanotechnological approaches provide controlled drug delivery of the active
compounds to the site of action by developing into nanoparticles. Research studies
have justified that nano-formulation improves the solubility, therapeutic efficacy,
bioavailability, minimizes the toxicity and improves the pharmacological activity. It
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is anticipated that herbal remedies being incorporated with nanocarriers can signifi-
cantly enhance the efficiency of new-age drug delivery systems. Nanoformulation
provides a feasible way to overcome the solubility problem of herbal medicines,
facilitating their administration. Furthermore, the lack of specificity in the drug
delivery to the target site often leads to undesirable side effects. Herbal Nano-
formulation enhances the target selective activity of the loading drug in vivo,
hence making it a promising delivery system for herbal medicine. Inclusion of
nanotechnology on bioactive compounds of medicinal plants to tailoring for their
exclusive benefits has been proved an imperative circumstance in the current era
[5]. Extensive exploration of nanotechnological approach will give new insight into
the regimen of treatment of diabetic mellitus. This could be an important approach
towards building a new arena for the development of novel clinically tested drugs
from place sources by using an advanced procedure and drug designing.

4.2 Anti-diabetic Drugs from Herbal Sources

Since ancient times, natural products have been an integral part of history and culture
and have been the backbone of all traditional systems of healing throughout the
globe. Natural sources are being utilized intensely to treat diabetes mellitus; this
effort has resulted in producing more than 700 herbal formulas containing more than
400 plants used for their anti-diabetic activity [6, 7]. As per the review published by
Newman and Cragg, in the last 25 years, almost 32 New Chemical Entities have
been filed with FDA for treatment of both type I and II Diabetes. These drugs include
a significant number of biologics based upon varying modifications of insulin
produced in general by biotechnological means.

4.2.1 Anti-diabetic Herbal Sources Indigenous to India and Special
Emphasis on Northeast India

In nearly all the cultures, medicinal plants have been used as essential sources of
medicine [8]. Ayurveda and other literature have mentioned the usage of plants in
the treatment of various human ailments. The Indian subcontinent houses more than
45,000 plant species with several thousands of them claiming to possess medicinal
properties. Of late, exponential growth has been noticed in the field of herbal
medicine with many people in developing and developed countries leaning more
towards natural drugs because of their origin and lesser side effects [9]. Various
ethnomedicinal plants have so far been studied for their beneficial role in treating
different forms of diabetes and its complications. A substantial number of bioactive
medicinal plants were subjected to clinical trials and were found effective. Over the
past few years, a steady trend of anti-diabetic phytochemicals showing higher
potential than most synthetic drugs has been observed. This has resulted in a
considerable shift of scientific attention towards classification/identification of
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traditional medicinal plants with antihyperglycaemic activity that may be used for
daily consumption along with the food.

India happens to be one of the mega biodiversity hotspots in the world, the
northeast India comprising eight states, namely Assam, Arunachal Pradesh,
Meghalaya, Manipur, Mizoram, Nagaland, Sikkim and Tripura, has a total geo-
graphical area of 262,180 km2, which comprises about 8% of the country’s total
area. Over 1748 (23.4% of India) plant species of known medicinal value are
supported in the Eastern Himalayan hotspot. Of these, considerable representation
of medicinal plants is from the North East region [10].

North East India boasts of numerous plants used to treat diabetes traditionally;
these include mostly the tribal and folk medicines in practice across various ethnic
groups in remote villages and tribal pockets of the region. Varying levels of scientific
studies have been done on less than half of these plants. Out of these plants studied,
most of them exhibited anti-diabetic and/or hypoglycaemic activities in in vitro
and/or in vivo pharmacological investigations. A list of such medicinal plants with
anti-diabetic effect found in North East India is given in Table 4.1.

4.2.2 Anti-diabetic Herbal Sources from Rest of the World

A study on the global distribution of anti-diabetic plants has found a wide dispersion
across all six continents, and along some particular regions, viz. Mediterranean,
Caribbean and across the Middle East. The worldwide distribution of anti-diabetic
plants is depicted in Fig. 4.1.

The figure indicates that Asia (56%) & Africa (17%) dominate the global
concentration of the majority of the anti-diabetic herbs. This can be attributed to
the fact that both Asia and Africa are situated in the tropic and sub-tropic regions,
and are endowed with large rain forests. In addition, these two regions own certain
pre-established traditional healthcare systems that rely heavily on locally available
herbal sources.

India and China are the leading countries in herbal plant research. Most of the
research studies conducted here draw inspiration from the ethno-medicinal systems
of Chinese Herbology and Indian Ayurveda. These two traditional healthcare
systems form the cornerstones of the herbal plant medicinal research in the
irrespective regions. Some common medicinal plants used in the treatment of
diabetes mellitus are Allium sativum, Artemisia herba-alba, Artemisia dracunculus,
Azadirachta indica, Asphodelaceae, Andrographis paniculata L, Caesalpinioideae,
Carthamus tinctorius, Swertia, Coccinia grandis, Bauhinia, Gymnema sylvestre,
Ferula assafoetida, Sarcopoterium, Salvia officinalis, Caesalpinia bonducella,
Combretum, Syzygium cumini, Mangifera indica, Momordica charantia,
Ocimum tenuiflorum, Pterocarpus, Trigonellafoenum-graecum, Tinospora cordifoli,
Liriope, Panax, Cinnamomum verum, Abelmoschus moschatus, Vachellia nilotica,
Achyranthes, Fabaceae, Mentha, Pachira aquatic, Gongronema latifolium, Nigella
sativa, Tinospora cordifolia (guduchi), Symplocos, Zingiber zerumbet, Symphytum,
Cactaceae, Chrysanthemum morifolium, Perilla frutescens, Terminalia chebula and
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Aloe vera. The anti-diabetic activity of these medicinal plants can be credited to the
presence of terpenoids, polyphenols, coumarins, flavonoids and other constituents,
which can lower the blood glucose levels [18, 19].

4.3 Some Prominent Isolated Compounds Extracted from
Herbal Sources with Their Pharmacological Targets
for Mitigating Diabetes

As the mechanism of action of drugs from herbal sources is very diverse, appropriate
utilization of herbal drugs depends upon the stage of diabetes mellitus at which it
should be used. Diabetes mellitus is having a myriad of pathophysiologies at
different stages ranging from dysfunctional pancreatic β-cells to destroyed β-cells,
peripheral insulin resistance to reduced insulin secretion, and inactivation of prolac-
tin receptor (PRLR) and MafB in islet β-ells to diabetes mellitus-specific defective
gene. Oxidative stress worsens the condition of diabetes mellitus and may produce
complications and comorbidities such as diabetic nephropathy. Candidates from
natural sources when taken as a therapeutic agent or as supplement reduce the injury
caused by oxidative stress in diabetes mellitus. Pharmacology of some herbal drugs
source at different stages of diabetes mellitus is discussed now.

4.3.1 Regulation of Insulin Secretion By Herbal Drugs

Development of T2DM is mainly due to a defect in the secretion of insulin. β-cell
gets damaged due to overstimulation of pancreatic islets owing to long-term use of a
conventional synthetic secretagogue, glibenclamide [20, 21]. So, the last decade has
witnessed a huge interest in studying drugs from herbal sources and their bio-active
components.

4.3.1.1 Dandelion (Taraxacum officinale)
Dandelion (Taraxacum officinale) is one such herbal drug that has given excellent
results in mitigating diabetes mellitus both in the form of extracts and bio-active

Fig. 4.1 Worldwide distribution of plants with anti-diabetic potential
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compounds present in it [22]. Dandelion dose dependently improves the insulin
secretion capacity of β-cells, thereby rejuvenating the β-cells as well as decreases
plasma glucose concentration in a rat model of diabetes [23]. The most abundant
component of dandelionarechicoric acid (CRA) and chlorogenic acid (CGA), which
are reported to stimulate insulin secretion by acting on sulphonylurea-binding site
1 (SUR1) [24].

4.3.1.2 Vitis vinifera L
Grape by-products (Vitis vinifera L) such as stems, seed and skin of PusaNavarang
and Merlot showed promising result in augmenting insulin secretion. Grape
by-products, rich in polyphenolics, acted as antioxidants, which increases the secre-
tion of insulin 2–eightfold [25].

4.3.1.3 Cuminaldehyde, Cuminol and Cuminol
Cuminum cyminum is also reported to regulate insulin secretion and at the same time
having a protective effect on the β-cells. Cuminaldehyde, cuminol and cuminol
isolated from Cuminum cyminum are reported to demonstrate an insulinotropic effect
in streptozotocin-induced diabetic rat and β-cells protective as seen from comet
assay [26].

4.3.1.4 Resveratrol
Resveratrol (3,5,4-trihydroxylstilbene) is a naturally occurring stilbenoid, a poly-
phenol mainly found in grapes and nuts. It possesses a diverse range of pharmaco-
logical activities, including analgesic, neuroprotective, anti-inflammatory,
antioxidant and antiplatelet activities. It also corrects glucose metabolism.
Nanoliposomes loaded with Resveratrol were prepared and tested for their anti-
diabetic activity in Streptozotocin-induced diabetic animals. The nanoformulation
loaded with resveratrol could be a beneficial formulation for the treatment and
mitigation of diabetes mellitus. Use of resveratrol and its analogue combined with
nanotechnology could be a potential treatment and prevention of diabetes mellitus in
future [27]. It improves the structure of pancreatic islet and decreases the insulin
resistance in diabetic animals [28]. Resveratrol is reported to regulate insulin secre-
tion as well as protect β-cells. A study reported the protective action of resveratrol in
high-fat diet in C57BL/6 J mice. The report states that resveratrol ameliorated the
abnormal insulin secretion by promoting SIRT1 and inhibiting uncoupling protein
2 (UCP2) in isolated islets that was caused due to HFD-induced morphological
changes in the pancreas [29, 30].

4.3.1.5 Berberine
Berberine is a very important benzylisoquinoline alkaloid isolated from the plant
Coptis chinensis. It is widely used for the treatment of inflammations, intestinal
infections, congestive heart failure, hypertension, cardiac arrhythmia, cancer,
hyperlipidaemia, skin diseases and diabetes. Nanoformulation of berberine had
shown better bioavailability with high therapeutic efficacy. Berberine promotes
insulin secretion from beta cells of the pancreas in a dose-dependent manner in
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adult Wistar rats. Research studies suggested that berberine can be used as an
effective insulin-sensitizing and insulinotropic agent. It improves glucose
metabolism, increases secretion of insulin, stimulates glycolysis by suppressing
adipogenesis, inhibits mitochondrial function, activates the 50 adenosine
monophosphate-activated protein kinase (AMPK) pathway and increases glucokinase
activity [31].

4.3.1.6 Gymnemic Acid
Gymnemic acid is a triterpenoid compound isolated from the plant
Gymnema sylvestre. It produces a strong anti-diabetic activity by increasing the
insulin secretion from pancreas. Gymnemic acid possesses a wide range of pharma-
cological activities such as taste sensitivity suppression, inhibiting intestinal absorp-
tion of glucose and reducing the level of glucose in diabetic patients. The major
drawback of this compound is its poor water solubility, which decreases its pharma-
cological effects. A novel approach is essential to enhance the bioavailability and
solubility of gymnemic acid. The nanoformulation of this compound demonstrated
better antihyperglycaemic activity and exerted hypoglycaemia. The mechanism of
action of Gymnemic acid is through stimulation of insulin secretion from the
pancreas. It also improves the impaired pancreatic islet cells to enhance enzyme-
mediated uptake of glucose [32].

4.3.2 Antioxidant Perspectives of Herbal Drugs in Oxidative Stress

Chronic insulin resistance in Type-2 diabetes mellitus accompanied by obesity
results in persistent hyperglycaemia leading to the formation of free radicals due to
glucose auto-oxidation. When the generation of free radicals exceeds the scavenging
ability of the endogenous antioxidant property, it results in vascular snags and high
serum concentration of inflammatory markers [33]. Dietary antioxidants or
supplements from natural sources aid as an antioxidant during oxidative stress in
diabetes mellitus.Nrf2 (NF-E2-related factor 2), a sensor for oxidative stress, are
reported to upregulate the concentration of some anti-oxidant enzymes and Keap1
(Kelch-like ECH-associated protein 1). Keap1 ensures degradation of Nrf2 through
the ubiquitin–proteasome pathway under unstressed condition; however, under
oxidative condition, it loses its ability to ubiquitinate Nrf2 and thus the latter exerts
its power in mitigating oxidative stress [34].

4.3.2.1 Swertiamarin
Swertiamarin, from Enicostemma littorale blume leaves, is reported to regulate
protein carbonyls, total lipid peroxides and hydroperoxides - all oxidative stress
markers in high-fat diet fed streptozotocin-induced T2DM rats. Swertiamarin
displayed promising antioxidant properties in the form of superoxide dismutase
(SOD), catalase, glutathione peroxidase (GPx) and glutathione s-transferases
(GST) as well as demonstrated potent anti-diabetic properties in diabetic rats [35].

4 Anti-diabetic Nano-formulation from Herbal Source 71



4.3.2.2 Corn Silk (Zea mays L.)
Corn silk (Zea mays L.), a waste by-product in corn cultivation, is traditionally used
as anti-obesity, anti-oxidant and anti-diabetic [36]. In a recent study, ethyl acetate
fraction (ECS) and n-butanol fraction (BCS) of corn silk demonstrated potent
scavenging activity, total antioxidant potential and strong reducing power against
1-picrylhydrazyl 2,2-diphenyl (DPPH) and hydroxy radicals [37].

4.3.2.3 Silybin
Silybin is the major bioactive ingredient of silymarin. This bioactive compound
possesses beneficial pharmacological effects like anti-oxidant, hepatoprotective,
anti-inflammatory, and anticarcinogenic effects with less toxic effect. Silybin has
been studied in obesity-induced insulin resistance model related to inflammatory
biomarkers. Nanoformulation of PLGA loaded with Silybin were prepared and
studied for their efficacy on streptozotocin-induced diabetic rats. The loading effi-
ciency of silybin was found to be more than 92.11%. The results confirmed that
nanoformulation of Silybin improves diabetic complications and reduced
hyperglycaemia. Silybin also has regenerative impacts on beta cells and is responsi-
ble for increasing membrane permeability. This nano-formulation provides a new
approach for the treatment and mitigation of diabetes mellitus [38].

4.3.3 Herbal Drugs-Assisted Alleviation of Peripheral Insulin
Resistance

Insulin resistance is the impaired sensitivity of insulin to peripheral tissues such as
liver, skeletal muscle and adipose tissue. It occurs when the normal energy utiliza-
tion is exposed to chronic surplus of energy due to decreased peripheral glucose
disposal and increase in hepatic glucose and lipoprotein [39, 40]. All these results in
high serum glucose during fasting and postprandial that lead to the development of
Type-2 diabetes mellitus. Insulin sensitivity may be increased in the peripheral tissue
utilizing natural products and their active principles.

4.3.3.1 Botanical Mixture of American Ginseng, Fenugreek Seed,
Mulberry Leaf Extracts

All these three extracts individually reported to improve glucose uptake and insulin
sensitivity in human adipose tissue when examined using radiolabelled
2-deoxyglucose and decreased insulin resistance in a rat model of insulin
[41]. With the increasing demand for non-drug interventions targeting insulin
resistance and regulation of blood glucose level, dietary supplements from natural
sources may substitute the conventional drug that are loaded with adverse effects and
complications.

4.3.3.2 Emodin
Emodin is basically an anthra-quinone derivative mainly found in Radix et rhizoma.
It imparts a diverse range of pharmacological activities like anti-oxidant anti-
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inflammatory, anti-diabetic, anti-nociceptive and anti-cancer activities. Emodin
enhanced the binding affinity in differentiated 3 T3-L1 adipocytes via induction of
increased glucose uptake and increased GLUT1 and GLUT4 mRNA expression
[42]. Nano-encapsulation of emodin was found to be beneficial for the treatment of
diabetic neuropathy. Emodin exerts its anti-diabetic activity by suppressing the
elevated glucose level, which occurs due to glucose disposal into peripheral
tissues [43].

4.3.4 Inhibition of Glucose Absorption By Herbal Drugs

Glucose is absorbed from the small intestine to the systemic circulation, which aids
in high serum concentration of glucose in absence of adequate supply of insulin and
thus leads to the development of Type-1 and Type-2 diabetes mellitus. Interestingly,
too rapid or increased glucose absorption is not a cause for hyperglycaemia in
gestational diabetes mellitus as reported by a study done on human subjects
[44]. Because of the low cost and significantly high safety profile, herbal drugs
and their active principles have garnered a lot of attention worldwide for their diverse
pharmacological effects. α-glucosidase is a class of enzyme that facilitates the
absorption of intestinal glucose to the systemic circulation and thus exacerbates
hyperglycaemia. GLUT2 is a glucose transporter that gets activated on sensing high
glucose levels in the lumen and facilitates the uptake of glucose [45]. Conventional
α-glucosidase inhibitors like voglibose, miglitol and acarbose are quite potent oral
hypoglycaemic drugs, but they come with adverse effects of gastro-intestinal origin
and are dose dependent [46].

4.3.4.1 Nigella Sativa
Nigella sativa is reported to exert potent anti-diabetic effect and its crude aqueous
extracts of its seed are reported to inhibit intestinal glucose absorption by using the
in vitro technique of short circuit current. Nigella sativa dose-dependently inhibited
the sodium-dependent transport of glucose across an isolated rat jejunum, thereby
carrying out an inhibition rate of more than 80% with IC50 of 10 pg/ml [47].

4.3.4.2 Feruloylated Arabinoxylan Mono- and Oligosaccharides
(FAXmo)

Phenolic compound FAXmo is obtained from corn bran and wheat aleurone is
reported to exert its anti-diabetic efficacy by inhibiting the absorption of glucose
in human caco-2 cells. FAXmo significantly inhibited the maltase and sucrase
function of the α-glucosidase, thereby reducing the glucose uptake in Caco-2 cells
by 40% and completely inhibiting the GLUT2 activity in Xenopus laevis oocytes and
thus demonstrated its ability as a potent α-glucosidase inhibitor [48].

4.3.4.3 Tomatoside A
Tomatoside A, an active steroidal saponin isolated from tomato seed, is reported to
inhibit the glucose transport in caco-2 cells by suppressing the expression of GLUT2
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transporter. 10μM of tomatoside A in Caco-2 cell for 3 h reduced the glucose
transport by 46.0% by suppressing the expression of GLUT2 [49].

4.3.4.4 Stevioside
Stevioside is a glycoside-derived compound isolated from the leaves of the plant
Stevia rebaudiana. This compound is well known for its potent anti-diabetic activity.
Several research works explained that stevioside exhibits a very strong impact on
renal function and glucose metabolism. It also possesses the ability to regulate the
glucose level in blood by stimulating insulin utilization and secretion in diabetic rats.
Though stevioside is a potent anti-diabetic agent, it has less therapeutic efficacy due
to its poor intestinal absorption and poor bioavailability. Nano-bioconjugation of this
compound on biodegradable copolymer Pluronic-F-68-based Polylactic acid (PLA)
nanoparticles prepared by the method of nanoprecipitation (spherical, size range:
110-130 nm) was found to be beneficial to overcome the poor intestinal absorption
and to improve the bioavailability. The drug loading efficiency was found as
16.32 � 4% (w/w). The in vitro drug release study demonstrated the initial burst
followed by the sustained release. The half release and complete release were
obtained on 25 � 4 h and 200 � 10 h, respectively. This novel formulation
Nanostevioside showed very high anti-diabetic efficacy in streptozotocin-induced
rats [50].

4.3.4.5 Quercetin
Quercetin is a widely used flavonoid mainly found in vegetables and citrus fruits. It
possesses a diverse range of pharmacological activities like anti-diabetic, anti-
cancer, antioxidant and anti-inflammatory activities. Quercetin has been
demonstrated to improve the metabolic abnormalities of diabetes, including lipid
profile, liver enzyme levels, postprandial blood glucose and waist circumference.
Nano-formulations of Quercetin possess higher bioavailability with high anti-
diabetic activity [51]. Quercetin reacts with several molecular targets in small
intestine, pancreas, skeletal muscle, liver and adipose tissue to control the glucose
homeostasis of the entire body. The anti-diabetic mechanism of Quercetin is pleio-
tropic. It inhibits the intestinal glucose absorption, stimulates insulin secretion and
produces insulin-sensitizing effect as well as improves glucose utilization in periph-
eral tissues.

4.3.4.6 Myricitrin
Myricitrin is a flavonol glycoside isolated from the medicinal plants like
Pouteriagender, Myrica rubra, Manilkara zapota and Eugenia uniflora. Myricitrin
possesses very potent anti-diabetic, anti-nociceptive, antioxidant, anxiolytic and
anti-inflammatory activity. The metabolism and bioavailability of flavonoids are
the key factors considered for the nano-formulations of myricitrin. Due to its high
polar nature, it cannot cross biological membranes. Solid lipid nanoparticles (SLN)
of Myricitrin demonstrated a protective effect against cytotoxicity induced by
streptozotocin (STZ) in β-cells of islets of Langerhans. This research study was
conducted to evaluate the anti-diabetic activity of Myricitrin-loaded solid lipid
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nanoparticles (SLN) on streptozotocin-nicotinamide- (STZ-NA) induced type-2-
diabetes in mouse. The plasma samples, pancreas and muscle tissues, and myotubes
were taken for experimental assessments after the last treatment with Myricitrin-
loaded nanoparticle. Diabetes induced increased lipid peroxidation and reduced
antioxidant defence along with the hyperglycaemia, insulin resistance and pancreas
apoptosis was seen in Diabetic mouse. Myricitrin-loaded solid lipid nanoparticles
(SLN) improved hyperglycaemia complications in the in vivo and in vitro studies.
Solid lipid nanoparticles (SLN) of Myricitrin also exhibit antioxidant, anti-diabetic
and anti-apoptotic effects in mouse and myotube cells. It initiates the stimulation of
glucose uptake and inhibition of α-glucosidase enzyme, which is responsible for its
anti-diabetic activity [52].

4.3.5 Diverse Pharmacological Role of Herbal Drugs in Alleviating
Diabetes Mellitus

Pancreatic β-cells are reported to be destroyed by CD8+ T and CD4+ cells that follow
the infiltration of macrophages to the islets. Maturity-onset diabetes of the young
(MODY) or monogenic diabetes are caused by several defective genes and may be
managed by modification of personalized dietary intake depending upon the genetic
makeup of an individual. Although personalized diet is the need of the hour for a
diverse population of a diabetic patient, nutrigenetics is still in the nascent stage. A
Thorough study of the genetic makeup and their interaction with nutrients from
herbal source is needed for a successful implementation of the technology.

4.3.5.1 Compound K
Pancreatic β-cells are reported to be destroyed by CD8+and CD4+ T cells that follow
the infiltration of macrophages to the islets. Compound K, a ginseng metabolite,
reportedly reduced the rate of CD8+ and CD4+ cells and in spleen and lymph nodes,
and thus prolonged the survival of islet allograft and inhibited inflammatory cell
infiltration other prominent inflammatory markers to the islet allograft [53].

4.3.5.2 Mediterranean Diet
Most recently, gene-based dietary advice has gathered momentum where genetic
makeup of an individual and their response to a particular nutrient were studied and
thus evolved the term ‘nutrigenetics’ [54]. In a recent study covering 7000 Type-
2 diabetes mellitus cases that reported on the gene Mediterranean diet interaction, it
was found that subjects adhering to the Mediterranean diet, the risk of T2DM was
low. But it was 20% higher among MC4R rs17782313 and FTO rs9939609 variant
allele carriers without the Mediterranean diet [55].

4.3.5.3 Vitamin D
A study was conducted to know the variation of response to vitamin D intake in
subjects suffering from diabetes mellitus. Interestingly, the study revealed that
subjects with VDR Fok-I ff genotype are low responders to vitamin D supplement
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in terms of circulating 25(OH)D and some inflammatory biomarkers. The study
concluded with a demand of nutrigenetics approach for diabetic subjects to protect
them from vitamin D deficiency [56].

4.3.5.4 Curcumin
Curcumin is a potent bioactive compound obtained from the plant Curcuma longa. It
comes under the curcuminoid subgroup of polyphenols with a diverse range of
pharmacological activities like antioxidant, antitumour, hypolipidaemic, anti-
diabetic and antiulcer activities. Several research works have demonstrated that
Curcumin possesses a very potent anti-diabetic activity along with hypolipidaemic
effect. It also improves obesity-related metabolic dysfunctions such as
hyperglycaemia, hyperlipidaemia and insulin resistance. Clinical trials conducted
on Curcumin support its anti-diabetic activity as an adjuvant therapy for type
2 diabetes. The major drawback of Curcumin is poor water solubility, which can
be overcome by nano-structured drug delivery system. Various methods have been
incorporated and designed to overcome this problem along with formulating this
bioactive compound in a nanosized structure [57]. Encapsulation of curcumin in
multipolymer poly (gamma-benzyl l-glutamate)-poly (ethylene glycol)-poly
(gammabenzyl l-glutamate) nano-particles (NPs) is an effective method to improve
its therapeutic efficacy and water solubility. This type of nano-formulation possesses
a potent activity on recovering diabetic cardiomyopathy (DCM). The underlying
mechanisms of action of Curcumin are diverse and mainly involve the regulation of
various molecular targets, including transcription factors, growth factors, inflamma-
tory cytokines, protein kinases and other enzymes such as cyclooxygenase 2 and
5 lipoxygenase [58].

4.3.5.5 Capsicum Oleoresin
Capsicum oleoresin has been isolated from dried, ripe fruit of the Capsicum plant. It
is widely used as an additive in the food industry for taste improvement and
preservation of food. The crude ethanolic extract of capsicum exhibits diverse
pharmacological activities, including antioxidant, anti-diabetic, anti-inflammatory
and anticancer effects. It has been demonstrated that administration of a
Nanoemulsion loaded with Capsicum oleoresin in obese rats decreases the glucose
level and increases the metabolism of carbohydrate, which is a key factor in the
treatment of type �2 diabetes. It decreases the increased body weight and reduced
the level of adipose tissue mass in the obese rats. Capsicum oleoresin decreases the
adipogenic gene expression and increased the expression of PPAR-α, UCP2, and
CPT-1α and helps in regulating hyperglycaemia along with its complications [59].

4.3.5.6 Naringenin
Naringenin is a very effective bioactive compound mainly present in vegetables and
citrus fruits like grapefruit and oranges. It belongs to the class of flavonoids called
flavanone. It shows diverse pharmacological activities like antimutagenic, anti-
inflammatory, anti-diabetic, antihyperglycaemic and antioxidant activities. It lowers
the levels of lipids and diabetic complications. A drastic increase in the
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immunological and haematological parameters of blood along with 100% survival
was seen in Naringenin-treated diabetic mice. The main disadvantage of naringenin
is its poor water solubility and poor absorption in the intestine after oral administra-
tion. Nanostructured delivery of this flavonoid can be considered as an effective
remedy for the treatment of diabetes and related complications. Naringenin exhibits
its anti-diabetic activity by inhibiting gluconeogenesis through upregulations of
AMPK. It also possesses hypoglycaemic effects like metformin that mitigate inflam-
matory conditions and cell proliferation [60].

4.3.5.7 Baicalin
Baicalin is an essential flavonoid isolated from the plant Scutellaria radix. Baicalin
also possesses anti-inflammatory activity by a radical scavenging effect. It has low
water solubility and poor absorption after oral administration because of its
glycosylic group. The nano-formulation loaded with Baicalin was established by
loading with lipid nanocarriers and evaluated for its anti-diabetic effect in
streptozotocin-induced diabetic rats [61]. Baicalin exerts its anti-diabetic activity
by decreasing glycogen breakdown, plasma glucose levels, glycosylated
haemoglobin, mRNA and protein expression levels of gluconeogenic genes like
phosphoenol pyruvate carboxykinase.

4.3.5.8 Scutellarin
Scutellarin is one of the important active principles of the traditional Chinese herb
Erigeron breviscapus (Vant.) Hand. Mazz. It comes under the flavone group of
flavonoids. It has been reported for use against vascular endothelial cell dysfunction.
A novel intestinal target-specific nanoformulation of Scutellarin loaded with amphi-
philic chitosan derivatives increased its bioavailability and efficacy for treatment of
diabetic retinopathy. Results concluded that administration of Scutellarin minimized
retinopathy in diabetic rats. Treatment with the nano-formulation loaded with
Scutellin was more efficient than Scutellinalone. Scutellarin promoted glucose
disposal in mice and adipocytes. It selectively enhanced Akt phosphorylation [62].

4.4 Application of Nanotechnology for Anti-diabetic Herbal
Formulation

In recent years, a budding interest has been generated in nanopharmaceuticals due to
increased number of advancements with an aim to focus on engineering novel
applications. The active phytoconstituents and standardized extracts are the main
sources from which nanophytomedicines are prepared. By lowering the side effects
and toxicity associated with the drugs, the herbal treatment not only helps to increase
the bioavailability but also increases the therapeutic value at the same time [63]. In
this regard, nanotechnology has a vital role to play in herbal medicines. Further, drug
delivery systems incorporating nanotechnology is all set to spread extensively. The
problems associated with synthetic drugs can be overcome by nanotechnology-
based herbal drug delivery systems and subsequently enhancing the potency of

4 Anti-diabetic Nano-formulation from Herbal Source 77



medicinal plants in the near future [64]. Due to the insufficient processing difficulties
and logistic justification since long time, herbal medicines were not taken into
consideration so as to develop and design novel formulations. However, these
shortcomings have been resolved as scientific needs (such as pharmacological
mechanistic pathway, pharmacokinetics determination, accurate dose calculation,
site of action, etc.) of herbal drugs are solved by modern phytopharmaceutical
research such that it can be incorporated in novel drug delivery systems such as
solid dispersions, nanoparticles, matrix systems, microemulsions, solid lipid
nanoparticles and liposomes. Thus, herbal drug incorporated modern dosage forms
with enhanced efficacy and potency can be utilized in a way better for designing and
developing novel drug delivery systems [63].

4.4.1 Material-Based Nanoformulation

4.4.1.1 Nano-carriers
Herbal drugs entrapped in nanocarriers bypass all the systemic barriers, including
acidic pH of the stomach, liver metabolism that can hinder the ease of drug release at
the desired site of action. Further, an optimum quantity of drug is carried to the site
where desired pharmacological action is to be produced enhancing circulation of
drug in the bloodstream because of their small size [65]. Some of the nanocarriers
that are commonly incorporated in nanotechnology-based drug delivery systems
include polymer nanoparticles, liposomes, carbon-based conjugates, polymer
conjugates, lipid-based carriers, micelles, dendrimers, polymeric nanoparticles,
nanotubes of carbon, gold nanocarriers. When nanocarriers are incorporated with
different nanomaterials, they allow the delivery of both hydrophobic and hydrophilic
drugs throughout the body [66]. Protein-based nanocarriers have emerged as a
promising gene and drug delivery system that demonstrates less cytotoxicity than
synthetic molecules [67].

4.4.1.2 Polymeric Nanoparticles
Polymeric nanoparticles are the therapeutic carriers obtained from biocompatible
and biodegradable polymers [68]. Polymeric nanoparticles encapsulate small drug
molecules, hydrophilic and/or hydrophobic molecules, nucleic acid macromolecules
and protein molecules [69]. They permit controlled and slow release of drug at the
target site. Also, polymeric nanoparticles have a unique property of being tailored
prior to particle assembly. Natural and synthetic elements like amino acids,
nucleotides and sugars are used for the preparation of another type of polymeric
nanoparticles that are branched unit of macromolecules and are called dendrimers
[70]. From the experimental studies, it was observed that curcumin-loaded PLGA-
PVA polymeric nanoparticles were used for the treatment of diabetic cataract in
STZ-induced diabetic rat models. Berberine-loaded PLGA-PEG-PLGA block
copolymers were found effective in modulating PCSK-9 mRNA for treating high
LDL cholesterol. Quercetin-loaded chitosan-alginate core shells and quercetin-
loaded PLGA nanoparticles were used for controlling diabetes in rat models induced
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with STZ and epithelial cell line HT29 of the human colon. Naringenin-loaded
alginate-coated chitosan core shells were also used for controlling diabetes in
STZ-diabetic rat models. Emodin-loaded PEGMA-DMAEA-MAMMAM
nanomacroemulsions on the other hand were utilized against the treatment of
neuropathic pain in diabetic rat models induced with STZ. Systemic hyperglycaemia
of diabetic rat models induced by STZ was treated by silybin-loaded PLGA poly-
meric nanoparticles. Elevation in the degree of bioavailability and intestinal absorp-
tion along with better rate of drug release and absorption in the intestine were
prominently found in stevioside-loaded nanoparticles compared to free stevioside.
Scutellarin-loaded amphiphilic chitosan derivatives were used for the treatment of
retinopathy in STZ-diabetic rat models and Caco-2 cell lines [71].

4.4.1.3 Solid Lipid Nanoparticles
Solid lipid Nanoparticles (SLNs) offer higher physicochemical stability and protec-
tion against labile drug degradation. They are colloidal particles that contain purified
triglycerides and lipids stabilized by surfactants. Solid lipid nanoparticles are used in
the field of pharmacy against various routes of administration, including parenteral,
oral and topical [72]. Studies have shown that solid lipid nanoparticles containing
berberine improved triglyceride level, body weight and insulin sensitivity in insulin-
resistant animals. However, solid lipid nanoparticles containing berberine showed
higher bioavailability in comparison to berberine alone [71].

4.4.1.4 Liposomes
Liposomes constituting lipid bilayers are prepared using amphiphilic molecules that
have similarities with biological membranes with improved efficacy and safety. If
the active compound is water soluble it is located in the aqueous space and if it is
lipid soluble then it is located in lipid membrane. In recent years, stealth liposomes
have been developed, which is a new generation of liposomes that have longer half-
life as compared to normal liposomes [73]. Resveratrol-loaded nanoliposomes were
PEGylated covalently that not only increased the half-life but also the retention time
of the nanoliposome. Further, an extended release of resveratrol along with the
enhancement in the expression of ROS-inactivating enzymes such as SOD and
GSH-Px were observed in diabetic pancreatic β cells [71].

4.4.1.5 Microemulsion and Nanoemulsion
Microemulsion is basically a liquid solution that is thermodynamically stable,
optically isotropic and is composed of oil, water and amphiphile. It acts as a perfect
replacement amongst other drug delivery systems for oral delivery of compounds
that have poor water solubility. They exhibit numerous advantages like ease of
preparation, enhanced dissolution of lipophilic drugs, slow viscosity, thermody-
namic stability and bioavailability improvement. Microemulsion can also be
administered by various routes like ocular, pulmonary, parenteral and transdermal
[74]. Curcumin-loaded nanoemulsions inhibited enzyme 3-hydroxy-3-methyl-
glutaryl-CoA reductase (HMGR) controlling cholesterol biosynthesis in
STZ-diabetic rat models [71].
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4.5 Challenges in Developing Herbal-Based Nanoformulation

Different kinds of herbal medicines have come to the market worldwide as a result of
globalization of trade. Herbal medications or related products are extracted from
Indian herbs, Chinese herbs, Arabic herbs and Western herbs. Integrated research,
including conventional ‘Herbal medicines’ and ‘Nanotechnology’, has established
therapies that are attractive to the field of pharmacy enhancing the health benefits of
the people. It is thereby considered that when natural products are applied along with
nanocarrier the significance of existing drug delivery system is enhanced. However,
there exist significant challenges in implementing clinical therapies and methods to
control the interactions of biological systems with nanomaterials [75]. Some of the
issues associated with herbal drugs include pharmacological, toxicological, clinical
documentation, pharmacovigilance, standardization, evaluating drug interactions,
constraints with clinical trial, safety and efficacy assessment. Adulteration is also
an important issue associated with herbal drugs and may occur in two possible ways,
namely direct adulteration, which is also known as intentional adulteration and other
one being indirect adulteration, which is also known unintentional adulteration [76].

Some additional obstacles have also been encountered in the design and devel-
opment of herbal-based nanotechnology-incorporated drug delivery systems. Deter-
mining the usefulness of scale-up processes that can feature creative methods and
quickly bring up therapeutic techniques to the market so as to fulfil several biological
and therapeutic requirements, examining the efficiency of nanoparticles towards the
target, and assuring international standards of nanoparticles against their biocompat-
ibility and toxicity are some of the new obstacles [75]. To overcome these obstacles,
science-based information on herbal medicine, dosage, efficacy, potency and con-
traindication should be given to the consumer. However, it is the prime duty of both
the herbal manufacturers and prescribers to bring a revolution in herbal drug delivery
systems and reshaping herbal medicines by utilizing our own resources so as to
challenge the hindrances of twenty-first century [77].

4.6 Conclusion

Natural compounds and their derivatives have numerous therapeutic applications.
However, they have a significant role to play in diabetes and complications
associated with such metabolic disorder. The last decade has witnessed the rise of
nanotechnology in almost all fields of healthcare sector. Nowadays, the application
of nano-based formulation incorporating herbal drugs that targets specific sites in the
human body in an aim to enhance their bio-availability is a top priority area in the
field of bio-medical sciences. Although nano-based herbal formulation has show-
cased excellent efficacy and bio-compatibility in the pre-clinical setup, it has come
with various challenges, too. Assessment of the biocompatibility, target-based
capability of the loaded nanoformulation as well as compliance with the interna-
tional regulatory toxicology guidelines and phase-wise clinical trials are some of the
biggest challenges that are needed to be coped up before releasing them
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commercially in the market. Herbal nanoformulations may be uptaken as practical
methods to enhance the functionality and bioactivity of these natural products.
Utilising this area and integrating the herbal technology with nanotechnology will
not only provide a new insight in the treatment of metabolic disorder like diabetes,
but it will also provide a platform to the researchers for exploring this area so as to
design and develop scientifically potent herbal drug delivery systems. Even though
there are some additional obstacles encountered in the design and development of
herbal nanoformulation, research is to be carried out such that bioavailability of the
drug is enhanced at the target site utilizing various aspects of nanotechnology.
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Nanomaterials for Alternative Antibiotic
Therapy 5
Bapan Banik and Malay K. Das

Abstract

Advancement of multidrug resistance amid microorganisms has turned into a
global crisis for chemotherapy of microbial diseases. The progressive broadening
of resistant organisms makes people worry regarding antimicrobial resistance.
The development of alternative antimicrobials using modern technology by
replacing the traditional antimicrobials is times demand. Nanotechnology-driven
innovations offer expectations for healthcare professionals and peoples in
prevailing over the dilemma of drug resistance. The nanotechnology has deliv-
ered many nanoparticles and that created new antimicrobial options. The small-
sized nanoparticles are more advantageous for hauling out antimicrobial
functions. The metals like zinc, silver, copper, and iron in their nanoparticle
form possess significant bactericidal and fungicidal actions. Thus, metal
nanoparticles are considered as competent antibiotic agents in wound healing
and other healthcare problems. These nanomaterials exhibit efficient antimicro-
bial activity against several pathogenic viral and bacterial species. Nanoparticles
today are a promising podium for substitute instrument to control pathogenic
diseases as they proffer prolonged antimicrobial activity with negligible adverse
effects compared with small molecular antimicrobial agents that show short-term
action with ecological toxicity. Nanoparticles could also deliver a promising
solution to multidrug resistance shown by microorganisms and may also act as
a carrier for antibiotics and natural antimicrobials.

B. Banik (*)
Department of Herbal Science and Technology, ADP College, Nagaon, Assam, India

M. K. Das
Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India

# Springer Nature Singapore Pte Ltd. 2020
M. K. Das, Y. V Pathak (eds.), Nano Medicine and Nano Safety,
https://doi.org/10.1007/978-981-15-6255-6_5

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6255-6_5&domain=pdf
https://doi.org/10.1007/978-981-15-6255-6_5#DOI


Keywords

Multidrug resistance · Nanomaterials · Antibiotics · Antimicrobial resistance ·
Metal nanoparticles

5.1 Introduction

When we mention nanoscience, small objects strike our mind. The branch of science
deals with the substances that have a size range of 1–100 nm, is spoken as
nanoscience. The International Organisation for Standardisation (ISO) has outlined
that materials with any external dimension within the nanoscale or having an internal
structure or surface structure within the nanoscale are coined nanomaterials.

Among the principal causes of morbidity and mortality worldwide, infectious
diseases are a number of prime factors. The United Nations agency has articulated
sober anxiety regarding the unrelenting rise in the expansion of drug resistance by
microorganisms. Hence, the incident of antibiotic resistance is one of the very
significant issues in today’s world healthcare system. Due to the lack of optimized
recent antimicrobials, the cases of antibiotic resistance are increasing. This has
generated alarm among the world community to discover fresh and supplementary
practical antimicrobial compounds moreover on developing novel deliverance and
marking ways. A bacterium has developed in some ways by that they become proof
against antimicrobials.

Multidrug antibacterium resistance is a big challenge in public health care around
the globe. The quantity of infections made by bacterial-resistant strains is increasing
globally. This noninheritable resistance of pathogens indicates a key challenge for a
number of antimicrobial medications. Recent progress in engineering science
provides new forecasts to develop formulations supporting distinct sorts of
nanoparticles (NPs) with totally different sizes, shapes, and versatile antimicrobial
activities. NPs could deliver a promising answer as they will not solely combat
bacterium themselves, however, they may act as carriers for antibiotics and natural
antimicrobial compounds [1]. Varied materials are explored from liposomal to
chemical compounds primarily based on nano-drug carriers, bronze vectors,
like gold.

The inert and nontoxic nature of NPs makes them core materials in the fight
against antibiotic resistance [2]. Arguably the foremost enticing facet of dosage
forms incorporating nanoparticles is to introduce a good variety of medical specialty,
either sure to their massive expanse or contained at intervals to the positioning of
infection successfully and safely by having a controlled rate of targeted delivery
[3]. By improving the pharmacokinetic and pharmacodynamic profile along with the
therapeutic index of entrapped medication compared to free treatment equivalents,
the dosage needed to attain clinical effects are often considerably small. This
successively cut the adverse effects related to elevated common drug concentrations
and repeated dosage [4]. The increasing apprehension of concerning multidrug-
resistant microorganism and biofilm-associated contamination demands the event
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of further germicidal resources. Therefore, concentration is particularly dedicated to
the latest and intensifying nanoparticle-based materials within the area of antimicro-
bial remedy. The utilization of engineering science in varied sectors of medical
specialty has revolutionized the sphere of medication wherever nanoparticles of
dimensions traveling between 1 and 100 nm are intended and applied in nosology,
medical specialty, and medical specialty tools for analysis [5]. Usually used metals
in nanoscience include silver, gold, copper, nickel, zinc, aluminum, silicon, titanium,
magnesium, iron, and calcium [6]. The passion of using nanoparticles is in high
priority at this stage each in the knowledge domain and in industrial applications.
Engineering science is being applied broadly to supply embattled medical aid,
nosology, tissue regeneration, biosensors, and alternative kit within the area of life
sciences. Varied engineering science podiums in regard to nanotechnology like
nanotubes, nanopores, fullerenes, quantum dots, mesmeric nanopores, dendrimers,
and radio-controlled nanomaterials are being made advanced [7].

Nanoparticles could also be tactically beneficial like dynamic medicine since their
expanse is extremely massive virtual to mass. Nanosized particles could give high
activity though solely a little dosage of the nanoparticles is incorporated. Conse-
quently, nanomaterials may act as another to antibiotics to normalize microorganism
infections [8].

5.2 Nanoparticles as Antimicrobials

5.2.1 Inorganic Nanoparticles

Metals and metal oxides are widely studied to find out antimicrobial properties
[9]. Some metal nanoparticles are well recognized for their extremely powerful
antibacterial result, embody iron oxide (Fe3O4), zinc oxide (ZnO), titanium oxide
(TiO2), copper oxide (CuO), and silver (Ag). One in each of the prime uses of NPs in
the pharmaceutical sector is their remedial relevance with antibacterial action. It is
already acknowledging that certain nanoparticles like silver, iron, copper, zinc oxide,
etc., bear vital antimicrobial action as they unleash metal ions after generating ROS
(reactive oxygen species). Presently, there are a number of NPs which show effective
response against multi-drug resistant (MDR) bacteria but resistance may be devel-
oped to these NPs as a result of their recurrent exposure [10].

5.2.2 Organic Nanoparticles

In earlier years, antimicrobial medications epitomized in Organic NP frameworks
have showed up as promising alternatives that have not solely exaggerated pharma-
cological actions and moreover reduced adverse effects of the drug [11, 12]. Cur-
rently, the liposome is one in every of the prime unremarkably utilized antimicrobial
medication as a result of it which copy the microbial plasma film and just wire with
the infective bug [13]. Owing to the unrestricted combination of microorganism
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plasma film and liposome, cargos (drugs) just get discharged inside the microorgan-
ism cell and finally end in its fatality [11, 14].

5.2.3 Antibacterial Properties and Mechanism of Action
of Nanoparticles

Now a day’s Nanomaterials are used as antimicrobial agents because of their
promising results. Thus it can be assumed that these nanomaterials may fulfill the
present demand of newer antimicrobial agents. This includes combating multidrug-
resistant mutants and biofilm [15, 16].

A variety of nanomaterials were investigated for their antibacterial properties and
found to be effective. In accepting the antibacterial activity of those nanomaterials, it
is necessary to acknowledge that a few metals like silver, copper, and zinc show
bactericidal mechanisms in their bulk type whereas metal like iron oxide is not
bactericidal in their bulk type, however, their nanoparticles might show antibacterial
properties [17]. The mode of action of these nanomaterials as antibacterial agents
varies from nanoparticle to nanoparticle. In some cases, it was also noticed that the
NMs show delayed toxicity, thus the ratio of NMs and bacteria is very important
[18]. Additionally, several environmental factors play a task and have an effect on
the deadliness of NM to microorganism together with aeration, pH, and temperature.
The physicochemical properties of the particles play a crucial role in their
antibacterial activity. Thus, the size, shape, chemical alteration and coating, and
mixing ratio of different nanoparticles and solvent used all have an effect on
antibacterial activity of nanoparticles [19]. The particular area of a dose of
nanoparticles will increase because the particle size decreases, providing bigger
material interaction with the encircling atmosphere. Thus, the antibacterial materials
like zinc and silver enhance the antibacterial property by increasing the surface to
volume proportion. A nanoparticle with inherently antibacterial components might
work following different mechanisms to show antibacterial activity. In general, NM
act on two key fatal pathways that are associated with one another and in several
cases take place concurrently: [1] disruption of membrane potential and integrity and
[2] production of reactive oxygen species (ROS) [18, 20].

Nanoparticles possess distinctive physical, chemical, electronic, electrical,
mechanical, magnetic, thermal, dielectric, optical, and biological properties. Metal
nanoparticles are of nice interest to be used as potential antimicrobial agents, thanks
to their distinctive optical, electronic, and magnetic properties. The static interaction
of nanoparticles with charged microorganism surfaces attracts the particles to the
microorganism and promotes their diffusion into the membrane. There are several
factors that affect NP-cell membrane interactions. Amid the potential factors, physi-
cochemical properties of the NPs like size, shape, charge, hydrophobicity/hydrophi-
licity, surface chemistry, and others can greatly manipulate the NP-cell membrane
interactions. Powerfully positive zeta potential of a nanoparticle encourages nano-
particle interactions with cell membranes ensuing in membrane disruption, microor-
ganism activity, and a diminution in viability. The generation of reactive oxygen
species is additionally a mechanism of nanoparticle antimicrobial activity
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[21]. Auxiliary mechanisms of action of nanoparticles as antimicrobial agents
consist of disrupting DNA throughout the replication and biological process of
microorganisms, compromising the microorganism membrane integrity via physical
interactions with the microbial cell, and releasing toxic metal ions and possessing
abrasive properties that induce cell lysis [22].

The adsorption followed by penetration of nanoparticles into the cell may result in
membrane damage [23, 24]. Several studies confirmed that the primary mechanism
of toxicity is the adsorption on the cell wall following disintegration [23–25]. Surface
assimilation of NPs results in semipermeable membrane change that changes the
electric charge of the cell wall to turn into more porous. Studies reported the
formation of a “hole” or “pore” within the living cell membranes by NPs as an
attainable mechanistic assumption [26]. A factual hole inside the bilayer membrane
of the cell wall indicates a whole loss of cell [27].

Several studies justify that the electric charge of nanoparticles is vital for antimi-
crobial action as microorganism’s cell membrane is negatively charged. Though the
scientific mechanism remains underneath discussion, it has been steered that ions
like silver have an effect on membrane-bound respiratory enzymes that may lead to
cell death [28]. In general, once nanoparticles come in contact with the microorgan-
ism, it will begin with doable oxidation of metastasis enzymes, thus assisting the
assembly of Reactive Oxygen Species and radical species that may finally have an
effect on cell structure and promote deoxyribonucleic acid degradation [29].

5.2.4 Recent Studies on Nanoparticles Against Microorganism

Newly evolved multidrug-resistant (MDR) microorganisms include vancomycin-
resistant Staphylococcus aureus and Enterococcus sp. like E. faecalis and E. faecium
[30], penicillin-resistant Streptococcus pneumonia, multidrug-resistant Mycobacte-
rium tuberculosis, Salmonella enterica, Pseudomonas aeruginosa, Vibrio cholera,
Acinetobacter baumannii, and carbapenem-resistant Enterobacteriaceae [31]. The
long-term stability and biocompatibility are the two characteristics of biogenic
nanoparticles which make nanoparticles a better choice as antimicrobial
applications [32].

Recent scientific reports have claimed that nanoparticles have special biocidal
activities to cleanse Salmonella Typhi and might destroy cancer-promoting
Cyanobacteria and algae (Microcystis aeruginosa) from the surroundings
[33, 34]. In the era of the origination and unfolding of microbes which are multidrug
defiant, the potential antimicrobial action of gold and silver nano molecules ought to
be thought about as a positive sign of the usefulness of nanoparticles as antimicrobial
agents [35]. Different studies experimented green metallic nanoparticles for
evaluating antimicrobial applications against several morbific microbes and found
a good response. For example, biogenic AgNPs obtained from Brevibacterium
frigoritolerans DC2 [36], Sporosarcina koreensis DC4 [37], and Bhargavaea indica
DC1 [38] showed antimicrobial activity against Vibrio parahaemolyticus, Salmo-
nella enterica, Bacillus anthracis, Bacillus cereus, Escherichia coli, and Candida
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albicans. Copper nanoparticles (CuNPs) obtained from Sidaacuta showed antimi-
crobial activity against Escherichia coli, Proteus vulgaris, and Staphylococcus
aureus [39].

Metal oxide nanoparticles of zinc (ZnO), copper (CuO), and iron (Fe2O3) were
screened for their antimicrobial activity against both Gram-positive bacteria (Staph-
ylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Pseudomonas
aeruginosa and Escherichia coli). The screening of antimicrobial activity has
revealed that the ZnO nanoparticles have utmost antimicrobial activity against
most types of bacteria; on the contrary, iron oxide nanoparticles have least antimi-
crobial action [40]. Recently, Chitra et al. 2013 reported the antibacterial and
antifungal activities of ZnO nanoparticles [41]; they claimed that ZnO was highly
active against food pathogens (E. coli and P. aeruginosa) (100 μL) and Aspergillus
niger (400 μL) at mottled concentrations. Using of nanoparticles in the food industry
has started back and this study also put emphasis on the usefulness of nanoparticles
in the food packaging industry. Nowadays, the production or synthesis of
nanoparticles from plant sources (green synthesis) has become an emerging podium
in nanoscience. An antibacterial study screening ZnO against Pseudomonas
aeruginosa, S. aureus, and Candida albicans showed minimum inhibitory concen-
tration (MIC) of 1917 μg/mL, 9 μg/mL, and 39 μg/mL, respectively [42, 43]. In this
study, it was noticed that ZnO showed a significant result against S. aureus at a lower
concentration as compared with P. aeruginosa. Recently, another study reported that
MK-AgNPs produce satisfactory activity against both Gram-positive and Gram-
negative MDR bacteria. The recent increasing interests toward the synthesis of silver
nanoparticles, principally for antibacterial use against human pathogens, brings new
hope in regard to antimicrobial drug innovation [44].

The nanoparticles primed from Allium species like ginger and garlic with AgNO3

showed antibacterial action against general bacterial pathogens like E. coli, Proteus
spp., Klebsiella spp., Staphylococcus spp., Eubacteria spp., and Pseudomonas spp
[45–48].

One latest report confirmed that selenium and silver nanoparticles produced by
microbes isolated from coal mines were discovered to possess antimicrobial action
against some bacteria like E. coli, Klebsiella spp., Pseudomonas spp., and S. aureus
[49, 50].

One more study that utilized a singular technique of infusing paper with
nanoparticles reported the MIC of copper nanoparticles as 140–280 μg/mL for
E. coli strain and 140 μg/mL for S. aureus strains [51].

In a different study, it was observed that iron oxide nanoparticles at different
doses reduce cell numbers of Staphylococcus epidermidis suspensions while optical
density readings were taken [52]. After 48 hours, iron oxide nanoparticles reduced
cell populations by about 65% at a concentration of 2 mg/mL and it reflected the
efficiency of iron oxide nanoparticles when compared to control groups with no
nanoparticles. As the concentration of nanoparticles was increased (100 μg/mL,
1 mg/mL, and 2 mg/mL), subsequently it amplified the quantity of dead cells
observed in a live/dead analysis.
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Silver nanoparticles fascinated nice attention within the medicine field attribute to
their remarkable and exceptional properties together with their very important
antimicrobial potency and harmless character. Among the various attainable uses
of AgNPs in this specific domain, spectacular interest and efforts are made in wound
dressing, tissue scaffold purposes [53, 54]. AgNP-based nanoparticles were assessed
as appropriate carriers of a range of remedial molecules, counting anti-inflammatory
[55, 56], anti-oxidant [57, 58], antimicrobial [59, 60], and anticancer [61, 62]
biomaterials.

Thus, AgNPs represent potent candidates for the nanotechnology-derived devel-
opment of novel and effective biocompatible nanostructured materials for the
unconventional antimicrobial application. A number of studies reported that
AgNPs directly interact with the cell membrane of bacteria and infiltrate the com-
plete cell, as a result, cell function gets interrupted as well as structural damage
occurs followed by cell death [63].

Since history, silver-based materials were used for the alternative and successful
management of typical contagions [64]. Nanosilver also provides a broad array of
proficient biocide actions against a remarkable variety of anaerobic, aerobic, gram-
negative, and gram-positive bacteria. AgNPs or silver ions applied in porous wound
dressings can interrelate with and destroy the bacteria found in exudates [65].

AgNPs play an essential role in the development of novel biomedicinal
approaches because of their distinctive physicochemical properties and
biofunctional options like as anti-inflammatory, anti-angiogenesis, antiviral, antifun-
gal, and bactericide activities [66]. Recently, AgNPs were also thoroughly
investigated to explore its anticancer property against diverse human cancer cell
lines [67, 68].

Nanotechnology offers site-specific and target-oriented delivery of drugs and thus
nanoparticles has gained priority in treating persistent human diseases. However,
inadequate information regarding toxicity or adverse effects of nanostructures arises
big question upon using of nanoparticles. More analytical research is a times demand
to enhance the effectuality with higher safety to modify the safer implementation of
those nanodrugs (Table 5.1).

5.3 Conclusion

In conclusion, microorganisms are universally capable to develop resistance against
antibiotics because of their diagnostics overdose and inability. The diseases caused
by MDR microorganisms are a rising concern for healthcare professionals world-
wide. Despite attainable limitations, nanotechnology stands for a novel approach to
develop and take a look at new drug formulation-supported metallic nanoparticles
with effective antimicrobial characteristics. Silver nanoparticles largely have numer-
ous probable uses in healthcare. At present, antibiotics are the only option to
eradicate microbial infections, but the cases of resistance against these antibiotics
are rapidly observing. The rational application of antimicrobial agents in healthcare
practices is unquestionably answerable for this crisis. Nowadays, NPs are considered
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as a possible substitute as antibiotics due to their biocidal and immune potentiating
properties. Even though nanoparticles have a few shortcomings, they provide hope
for the development of efficient antimicrobial drugs for the future.
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Abstract

Nanomedicine and nanodrug delivery systems have furnished a platform to
upgrade drug delivery using the new idea and carrier systems that conventional
formulations have failed to acquire. Drug delivery in relation to nanomedicines
should be observed as a science and technology of nanocomplex systems that
drive to a special mechanism related to diagnosing, treating and inhibiting
multiple diseases. As nanocomplex system comprises materials that are designed
at the molecular, atomic and macromolecular level, they are generally tiny
particles with distinct physicochemical properties. By manipulating their distinct
physicochemical properties, nanomedicines and nanodrug delivery systems can
control, monitor and repair the biological systems by aligning to address diseases.
These advanced technologies can offer significant advantages like higher drug
loading capacity, specificity, stability and are capable of delivering both hydro-
philic and lipophilic drug molecules. Recently, several nanomedicines have
already been marketed by various pharmaceutical and medical device manufac-
turer companies in the form of polymeric micelles, nanosuspensions,
nanocrystals, liposomes, SPIONs and protein-based nanoparticles that confirmed
their effectiveness over a longer period. However, the benefits of nanomedicines
in the healthcare sector are escorted by challenges in the regulation of such
products. Enough knowledge on their efficacy, quality, safety and toxicity must
be learned to support their smooth translational research towards clinical
applications. The present chapter highlights the recent trends and perspectives
of nanomedicines and nanodrug delivery systems with potential benefits to
targeted drug delivery.
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6.1 Introduction

In the past few centuries, there has been tremendous development and revolution in
the field of drug delivery systems to accommodate pharmaceutical agents to their
target sites for the treatment and diagnosis of various diseases [1, 2]. There are a
bunch of drug delivery systems that are successfully engaged in the current times;
however, challenges still remain that need to be addressed and advanced technology
needs to be drafted for the flourishing delivery of drug molecules to its target sites
[3, 4]. Nanotechnology is a quickly advancing field that is anticipated to have a
progressive impact on diverse areas, including medicine, physics, chemistry, biology
and engineering [5]. By consenting nanotechnology, a fundamental transformation
in healthcare sector, drug manufacture and drug delivery is expected to influence
almost half of the worldwide drug manufacture, which holds relatively US Dollar
196.02 billion in revenue [6]. There is growing positivism that nanotechnology
combining with medicine has directed to the interdisciplinary field of nanomedicine,
will import outstanding progress in the healthcare system by understanding the
complex latent pathophysiological feature of diseases and upgrade the quality of
patients’ life [7, 8]. Such combined technological approaches have vastly struck the
field of medicine following advancements in drug delivery and upgrading the
specificity or sensitivity of current strategies to develop and identify biomarkers as
well as establishing advanced nanodiagnostic machinery [9, 10]. The drug delivery
system based on nanotechnology aims to deliver the drug cargo to the appropriate
place at the appropriate time and indicates to bridge a barrier of physical or
biological sciences by utilizing nanostructures at several areas of science, especially
in nanomedicine and nanodrug delivery systems [11–13]. Nanomedicines and
nanodrug delivery systems are comparably new but quickly developing fields
where the materials in the nanosized range, i.e. size ranges between 1 and 100 nm,
are engaged to serve as diagnostics tools and drug delivery carriers [14]. Drug
delivery in relation to nanomedicines should be observed as a science and technol-
ogy of nanocomplex systems, comprising partially two constituents, one of which is
active pharmaceutical ingredients (APIs) and even though nanoformulations of the
drug are also feasible. The whole system drives to a unique function corresponding
to treating, diagnosing and preventing various diseases [15]. By manipulating their
exclusive physicochemical properties, nanomedicines and nanodrug delivery
systems can control, monitor and repair the biological systems by aligning to
respond diseases for which recently there are only available inappropriate therapeu-
tic and diagnostic tools [16, 17]. For that reason, multidisciplinary research is being
carried out with nanoformulations on diagnosis, and treatment of various diseases
has entrained several attempts to merge diagnosis and therapy within a single
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scaffold referred to as Nanotheranostics, which are developed to expedite various
important features of drug delivery research and are examined to be remarkably
beneficial for symbolizing nanomedicine-based therapeutic mediations [18].

The use of nanomedicines and nanodrug delivery systems as drug carriers has
provided a powerful sword against various complex diseases, i.e. cancers, diabetes,
malaria, neurological disorders, to the early recognition and diagnosis of pathologies
that could allow for excluding them before the emergence of any symptoms and
novel strategies for addressing unmet clinical challenges [19–21]. These nanosized
particles can easily interact with the biological cells in a very competent way due to
that they are present in smaller sizes than these biological materials [22, 23]. Such
close interaction of nanosized particles with biological cells is defined as Bio-nano
interactions and has been employed for acquiring important capabilities like proper
transportation of drugs to the diseased sites and also direct identification of exces-
sively low concentrations of crucial biomarkers that are exhibitive of pathological
phenomena, which exist in complex environments, i.e. blood, saliva, urine, etc. [24–
26]. The distinct properties and behaviour of nanoparticles in biological milieu also
facilitate integrative advances to investigate fundamental biological processes on the
cellular level like cell division, apoptosis and stem cell fate, etc. [27]. Since interest
in the biological action for nanoparticles is new, there is a reasoning for the more
appealing and innovative practice of nanoparticles in the area of biology and
medicine [28]. The sustained development of nanomedicines has the plausibility
of providing an alternative treatment approach that is more specific and targeted to a
bunch of diseases [29, 30]. During the treatment of diseases, nanomedicines create a
dose distinction between the diseased site and rest of the body, resulting in enhanc-
ing the therapeutic outcomes in the disease area, while lowering the adverse effects
on the remaining body parts [31, 32]. The potential of hindering the outgrowth of
various diseases without any indirect damage through nanoparticle-based drug
delivery system has constructed outstanding appeal and nanoparticles design the
field for bio-nanomaterials, which provide major steps in engineering drug delivery
systems based on multi-functionalized nanoparticles [33]. Thus, such nanodrug
delivery systems can be developed to have drug conjugated or absorbed onto the
surface of particles and entrapped inside the core of polymer/lipid or dispersed
within the mould of the nanoparticles [34–36]. As a result, drugs can be guarded
from a detracting environment and adverse biopharmaceutical properties can be
concealed and retrieved with the properties of nanoparticles [37].

Conventional drug delivery system associates the formulation of the drug into a
relevant form, like compressed tablets or capsules, suspension for oral administra-
tion, solutions for parenteral administration, topical liquid/solution eye drops for
ocular administration and ointment, cream, lotion or gels for topical application
purposes [38]. These dosage forms have been spotted to have severe limitations in
terms of the maximum dose required, less effectiveness, poor water solubility,
abandon therapeutic drug level, poor permeability, induction of drug resistance,
adverse side effects, etc. [39–42]. Moreover, conventional drug delivery systems
having minor control beyond their drug release and nearly no control beyond the
efficient concentration at the target disease sites may result in the immediate release
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of drug, dose dumping or fluctuation, unpredictable plasma concentration and faster
clearance of the drug from the bloodstream [43, 44]. Also poorly water-soluble and
metabolic/enzymatic unstable drugs, when taken in conventional dosage forms, may
cause bioavailability problems, leading to exhibit less therapeutic action [45]. To
conquer the limitations of conventional dosage form, nanoparticle-based drug deliv-
ery systems have been designed or developed to meet the demand of healthcare
systems [46].

Nanomedicine and nanodrug delivery systems have furnished a platform to
upgrade the drug delivery using the new idea and carrier systems that conventional
formulations have been not able to attain [47, 48]. These new technologies have
progressively been investigated to enhance the therapeutic efficacy and can offer
magnificent benefits over conventional dosage forms in terms of higher drug loading
capacity, higher specificity, higher stability, capability for sustained release and
controlled release, opportunity to use in the various routes of administration and
are able to deliver both hydrophilic or lipophilic drug molecules [49–51]. As
nanoparticles constructed materials are designed at the molecular, atomic and mac-
romolecular levels, they are generally small-sized particles with distinct physico-
chemical properties like size, surface properties, shape and molecular weight
composition [52, 53]. Being nanosized, these particles can easily penetrate the
tissues or cells, facilitate more uptake of the drug, directly interact with diseased
tissues or cells with improved efficiency and ensure better therapeutic action [54–
56]. Currently, nanomedicine has become highly admired because nanostructures
could be exploited as delivery vehicles for entrapped drugs and transporting them to
target cells more precisely [57, 58]. Moreover, nanomedicines stay in the systemic
circulation for an extended period of time and allowing the release of blended drugs
in a controlled manner and exhibit higher bioavailability because they serve regular
uptake mechanisms via absorptive endocytosis [59, 60]. The main potentiality of
these nanostructures is mainly correlated with their surface characteristics. Hence,
the modification of nanocarrier surface is often used to control their surface
characteristics in an appropriate fashion and allow them to concurrently perform
multiple functionalities, i.e. enhance bioimaging modalities, prevent aggregation and
severe interaction with healthy cells [61–63]. However, the benefits of
nanomedicines in the area of the healthcare sector are escorted by challenges in
the regulation of these nanoproducts [64]. Enough knowledge on their quality,
efficacy, safety and toxicity must be acquired as well as standardized methods
must be made available to support their regulatory agreement making and allowing
a refined translational development towards clinical applications [65, 66]. Thus,
appropriately designed nanodrug delivery systems can be major advances to figure
out the problems related to drug delivery and disease treatment. Considering the
above-mentioned facts, this chapter highlights the recent trends in nanomedicines
and nanodrug delivery systems with potential benefits to targeted drug delivery as
well as identification of future preferences to uphold the adaptation of
nanomedicines towards clinical applications.
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6.2 Types of Nanoparticles with Potential Benefit to Targeted
Drug Delivery

The ongoing research advances in nanotechnology have designed a wide variety of
nanoparticles with diverse composition, sizes, shapes and surface functionalities to
permit novel strategies in the field of medicine and biomedical research
[67, 68]. Based on their distinct physicochemical properties, nanoparticles are
broadly classified into various classes like polymer-based, lipid-based, metal-
based, carbon-based, inorganic and hybrid nanoparticles revealing entirely
promising therapeutic implications with better sensitivity, specificity, functionality
and efficiency [69]. The impressive features and benefits of such nanostructures are
discussed in Table 6.1 and Fig. 6.1.

6.3 Nanomedicines for Improvement of Drug Delivery

The development of nanotechnology-based drug delivery systems, specifically
nanomedicines, has been growing explosively due to their exclusive properties
compared with conventional drug formulations [94]. The prominence of
nanomedicine on drug delivery systems can be confined into the origination of the
field, encouraged by the 1908 Nobel Laureate Paul Ehrlich and his proposed idea
“Magic Bullet” approach, that drugs directly go to their expected cell structural
targets while persisting harmless in health or normal tissues [95]. Currently, there are
many promising nanocarriers used in nanomedicines and nanodrug delivery systems
like polymeric nanoparticles, lipid nanoparticles, magnetic nanoparticles, metallic
nanoparticles, carbon nanotubes, quantum dots, etc., that have imported progressive
changes in the field of drug delivery and total healthcare systems [96]. Although
nanocarriers are pledging drug delivery systems but their poor oral bioavailability,
circulation instability, incompetent tissue distribution, stability, opsonization by the
reticuloendothelial system, drug efflux pumps and toxicity are few deficiencies
to practical application that still unsolved [97, 98]. To overcome these hurdles and
to fulfil the safety, toxicity, regulatory and ethical considerations, researchers need to
design nanomedicines with improved properties, which can particularly target the
disease-generating pathogens or diseased cells [99, 100]. Due to the magnificent
interfacial interaction among the core and surface of the nanoparticles, surface
modification has an enormous deal of attention and plays an auspicious strategy to
achieve better drug targeting performance [101, 102]. As the nanoparticle surface
directly touched body fluids and organs, the surface of the nanoparticles is more
crucial than the core [103]. The surface of the nanomaterials is mainly modified by
several functional materials like small molecules ligands, polymers, surfactants,
biomolecules, etc. These functional materials guide the nanoparticles to the targeted
site and release the drug molecules in an appropriate manner [104–106]. In general,
nanoparticles functionalized or surface modified with positively charged ligands and
hydrophilic materials displayed higher internalization into cells and enhanced sys-
temic circulation time leading to easily evade from the recognition of macrophage
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Table 6.1 Structural Characteristics and Potential Benefits of Various Nanoparticles

Sl.
no. Nanoparticles Subtypes Structure Potential benefits Ref(s)

01. Polymer-based
NPs

Nanomicelles
(10–100 nm)

Nanomicelles are
core/shell
nanoscale
structures
developed by self-
assembled
amphiphilic block
copolymers

Enhanced
solubility and
bioavailability,
prevents drug
degradation

[70, 71]

Nanosponges
(100–500 nm)

Nanosponges are
hyper-crosslinked
polymer-based
colloidal structures
with a large porous
surface

High drug loading,
enhanced
solubility,
controlled drug
release

[72, 73]

Dendrimers
(1–10 nm)

Dendrimers are
highly branched,
three-dimensional
globular shape,
synthetic
macromolecules

Reducing drug
toxicity, facilitates
the targeted and
controlled release

[74, 75]

02. Lipid-based
NPs

Liposomes
(50–1000 nm)

Liposomes are
spherical-shaped
vesicles
composing of one
or more
phospholipid
bilayer membranes

Increased potency
and therapeutic
index of drug,
reduces toxicity

[76, 77]

SLNs
(50–1000 nm)

SLNs are sphere-
shaped colloidal
carriers composed
of lipid matrix that
are solid at
physiological or
body temperature

Improves
bioavailability,
loaded both
hydrophilic and
lipophilic drugs

[78, 79]

NLCs
(10-1000 nm)

NLCs are smarter
drug carrier
systems comprised
of both solid as
well as liquid
lipids as a core
matrix

Enhanced drug
loading capacity,
improved
bioavailability

[80, 81]

03. Metal-based
NPs

Silver NPs
(1–100 nm)

Silver NPs are
framework of
metal silver with
tuneable physical,
chemical and
morphological
properties

Potential cellular/
microbial
cytotoxicity,
photothermal
therapy

[82, 83]

(continued)
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system, which is the major barrier and main resistance mechanism for drug targeting
[97, 107–109]. Drug targeting to the diseased tissues is primarily mediated by two
main mechanisms, i.e. passive targeting and active targeting as shown in Fig. 6.2.
Passive targeting utilizes assets of the pathophysiological character of the diseased
cells or tissues, while active targeting initially takes the advantages of passive

Table 6.1 (continued)

Sl.
no. Nanoparticles Subtypes Structure Potential benefits Ref(s)

Gold NPs
(1–100 nm)

Gold NPs are
structure of novel
metal gold with
unique optical
electrical and
surface properties

Tumour therapy,
medical imaging,
early detection of
diseases

[84, 85]

Magnetic NPs
(1–100 nm)

Magnetic NPs are
configuration of
magnetic elements
like iron, cobalt,
nickel and their
oxides that can be
operated using
magnetic fields

Cancer therapy,
organ-specific
therapeutic and
diagnostic
modalities, tissue
engineering, MRI

[86, 87]

04. Carbon-based
NPs

Nanotubes
SWCNTs
(0.4–3 nm),
MWCNTs
(2–500 nm)

Carbon nanotubes
(CNTs) are
allotropes of
carbon with a
tubular or
cylindrical
nanostructure with
exceptional
physical, thermal,
electrical and
mechanical
properties

Increased drug
loading capacity,
potential cargos
for the cancer
therapy, reduces
toxic adverse
effects of drug

[88, 89]

05. Hybrid NPs Lipid-
polymer
hybrid NPs
(<1000 nm)

Lipid-polymer
hybrid NPs are
core shell-type
nanostructure
composed of
polymer core and
lipid shell

High loading
capacity, delivery
of multiple drugs,
improving the
therapeutic
efficacy

[90, 91]

06. Semiconductor
NPs

Quantum dots
(2–10 nm)

QDs are nanoscale
semiconductor
crystals with
distinct optical and
electronic
properties

Improves
bioavailability of
drugs, bioimaging,
good theranostics

[92, 93]

NPs Nanoparticles, SLNs Solid Lipid Nanoparticles, NLCsNanostructured Lipid Carriers, SWCNTs
Single-Walled Carbon Nanotubes, MWCNTs Multi-Walled Carbon Nanotubes
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targeting to assemble into the disease sites by advantage of the enhanced permeabil-
ity and retention (EPR) effect and consequently bind to the receptor overexpressed
by the target diseased cells employing targeting ligand which is functionalized onto
the nanoparticle surface that leads to receptor-mediated endocytosis of nanoparticles
into the cells offering better cellular uptake and consecutive internalization [110–
113]. Thus, achieving productive synergistic therapeutic effects and improving drug
delivery as a whole, multifunctional nanoparticles for drug delivery have become
enabling technology to potentiate multiple functionalities [114, 115].

6.3.1 Anticancer Nanomedicines

Cancer is one of the leading causes of death globally while lifelong speculation is
still discouraging and the prevalence of cancer is continuing to increase [116]. How-
ever, the current treatment approaches mainly depend on standard cytotoxic drugs,
radiotherapy and surgery that have more side effects and only limited effectivity
because the likeness of cancerous and normal healthy cells are almost the same
[117, 118]. Also, many anticancer drugs have poor pharmacokinetics properties that
are derived from poor solubility, metabolism, stability and show various challenges
including limited biodistribution, inefficacy and toxicity. Hence, it is crucial to
develop an effective therapeutic strategy that can warrant the above-mentioned
challenges [119, 120]. Nanomedicine has emerged as a promising substitutive
technology that exhibits many benefits over conventional therapies and implements
new strategies for early recognition, diagnosis and upgrades treatment strategies of
cancer [121]. The nanomedicines have selectively increased the cellular uptake and
drug localization within the cancerous tissues by preventing interaction with healthy

Fig. 6.1 Different types of nanoparticles

106 S. Das et al.



cells in the host body [122]. Current trends in the design of anticancer
nanomedicines are mainly focusing on the construction of smart multifunctional
delivery systems which ingrates the multiple collateral targeting strategies, espe-
cially passive, active and stimuli-responsive targeting [123]. The passive targeting
expedites the deposition of nanocarriers within the microenvironment of cancer
cells, due to their unique characteristics ingrained to the cancerous cells, not usually
present in normal healthy tissues [124]. Hence, nanomedicines allow the selective
accumulation or localization of consistently administered chemotherapeutic agents
in the cancer cells via enhanced permeability and retention (EPR) effect due to leaky
vasculature of cancer cells and compromised lymphatic drainage [125, 126]. The

Fig. 6.2 Drug targeting strategies of nanoparticles; (A) surface functionalization of nanoparticles,
(B) injecting functionalized nanoparticles to mice, (C) passive targeting via EPR effect, (D) active
targeting via receptor-mediated endocytosis, (E) destruction of diseased cells resulting in better
therapeutic outcomes
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EPR effect basically implies site-specific characteristics that merely occur in solid
tumours and inflammatory tissues but not allied with normal healthy tissues leading
to enhanced selective drug targeting [127]. Although in the active targeting, the
target ligand conjugated onto the nanoparticle surface which binds to the
corresponding receptors overexpressed by cancerous cell surfaces, resulting in
increased cellular uptake or localization by receptor-mediated endocytosis and thus
enhanced drug accumulation in cancerous cells [128, 129]. However, additional
obstacles towards enhancing the potency of nanoparticles are premature drug release
and poor penetration or cellular entry during circulation. Hence, the controlled
stimuli-responsive nanomedicine is highly desirable due to its on request drug
release by modulating the cancerous microenvironment-triggered transient
properties of nanoparticles for better cancer cell penetration, leading to improved
efficiency and hindering premature drug release [130, 131]. The idea of stimuli-
responsive drug delivery systems arises from the evidence that the cancer cells
maintain various unique features distinguished with the healthy cells [132]. Gener-
ally, stimuli-responsive nanomedicines allowing the precise release of drug in
response to endogenous stimulus like pH, enzyme, redox potential, ionic microen-
vironment as well as exogenous stimulus like temperature, ultrasound, light, mag-
netic field or even a combination of more than one stimuli are considered as ‘smart’
nanocarriers for the delivery or transport of anticancer drugs [133, 134]. Moreover,
nanomedicines enhance the therapeutic performance of anticancer drugs by waver-
ing their pharmacokinetics and distribution to the site of action and have also been
illustrated clinically [135]. Despite the range of nanoparticle-based drug delivery
systems currently under the preclinical stage or in clinical trials, it is unquestionable
that liposomes are superior on the market and liposomal doxorubicin (Doxil®) was
the first FDA-approved anticancer nanomedicines [136–138]. The many novel
nanomedicines that preclinically exhibited outstanding anticancer activity are yet
to be recited clinically, as a result, the development of the marketed nanomedicines
has usually been slow [139]. Although a number of nanomedicines that have reached
the clinic are considered to exhibit low patient benefit due to poor conception of the
biological barriers, misperception of drug delivery concepts, fabrication and scaling
up [140]. Thus, future investigations will continue focusing on the development of
safe and effective nanomedicines with enhanced cancer targeting or therapeutic
efficacy by delivering an extensive range of therapeutic agents.

6.3.2 Antiretroviral Nanomedicines

Human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome
(AIDS) is now a global pandemic that has become the dominating infectious
murderer of adults and markedly triggered social or economic loss all over the
world, especially Sub-Saharan Africa, massively affected [141, 142]. The current
treatment approach for HIV/AIDS is highly active antiretroviral therapy (HAART,
also known as combination antiretroviral therapy (cART), where two or three or
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more antiretroviral agents are simultaneously given to patients, resulting in consid-
erable success in upgrading the quality of patients’ life [143, 144]. Despite the
noticeable successes with the ongoing HAART treatment for HIV/AIDS, there are
still several obstacles existing like taking medication on daily basis for a lifetime,
drug-drug interaction, inadequate drug levels in the body, acute and sustainable
toxicity and rebound viral replication [145–148]. The lack of complete recovery by
current treatment highlights the immense need for sustained resolution in seeking
novel strategies for the treatment of HIV/AIDS. Recently, nanomedicine-based anti-
HIV therapeutics has also gained attention for the treatment and prevention of
HIV/AIDS and jointly representing a new route for managing the amount, dosing
frequency and proper delivery site of anti-HIV drugs, as well as to interrupt with
particular phases of the virus life cycle by directly targeting viral enzymes or
structures that are crucial for HIV revolution [149, 150]. The nanodrug delivery
systems holding the most promising possibility for targeted delivery of anti-HIV
drugs to CD4+ T cells and also macrophages which are the principal targets and
major cellular HIV-1 reservoirs responsible for the transmission or spreading of
HIV-1 to multiple sites and also delivery to the brain as well as other organs could
assure that drugs reach to the latent reservoirs of HIV [151–154]. Among the two
reservoirs, macrophages have been employed as cellular transporters for the distri-
bution of nanoformulated antiretroviral therapeutics (Nano-ART) and the effectivity
of antiretroviral (ARV) agents can be significantly upgraded by rewrapping them
into nanoparticles because macrophage drug delivery creates antiretroviral depots
[155–157]. The efficacy of Nano-ART is further enhanced due to better loading of
both hydrophobic or hydrophilic drugs, enhanced solubility, intracellular uptake in
nanocarriers with the increased distinct surface area that can be functionalized with
the numerous functional moieties to facilitate active targeted delivery and also
circumvent the blood-brain barrier (BBB) to improve CNS-assisted drug delivery
for the management of neurocognitive disorders, i.e. neuroHIV/AIDS
[158, 159]. Various forms of nanocarriers like polymeric nanoparticles,
nanomicelles, nanosuspensions, dendrimers, liposomes and solid lipid nanoparticles
are noted to improve the effective delivery of ARV drugs for the prevention of HIV.
Among them, liposome has been widely used for delivering anti-HIV drugs
[160, 161]. Moreover, nanomedicines have also directed the design of new targeting
strategies to HIV-1 infections, including gene therapy, immunotherapy, vaccine
delivery and preventive microbicides [162, 163]. Preclinical and clinical trials
illustrated that DermaVir is the first and most excellent nanomedicine for the
management of HIV/AIDS with promoting Phase II clinical validation, immunoge-
nicity and safety results [164]. Other nanotechnology-based treatment strategies for
HIV/AIDS include liposomes loaded with Stavudine, Zidovudine, Indinavir;
dendrimer loaded with Efavirenz, Lamivudine; solid lipid nanoparticles loaded
with Saquinavir and magnetic nanoparticle loaded with Tenofovir are still in pre-
clinical stages of development that need further investigations for safety, immuno-
genicity and tolerability [165]. Although there are beneficial impacts of applying
these systems to novel anti-HIV nanoformulations, there are some obstacles that
must be conquered in the near future to efficiently translate ongoing investigations
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into the clinical setting which include limited scalability, unknown toxicity. Hence,
future in vivo research studies and clinical trials have to be devoted to easily
producible nanoformulations with comprehensively illustrated biocompatibility
and treatment proficiency.

6.3.3 Antidiabetic Nanomedicines

Diabetes is the world’s fastest-growing heterogenous chronic disorder that affects
millions of people and is characterized by elevated blood glucose (BG), adaptation in
insulin secretion and metabolic interruptions [166, 167]. The predominance of
diabetes has arrived at epidemic proportions, the latest estimate showed a global
prevalence of 382 million people with diabetes in 2013 and the number is expecting
to lift to around 592 million by 2035 [168]. Current synthetic drugs for the manage-
ment and treatment of diabetes have been found not completely effective and may
cause adverse side effects when used for prolonged periods [169, 170]. On the other
hand, plant-based bioactive compounds including silymarin, rutin, glycyrrhizin,
thymoquinone, naringenin, curcumin and quercetin have been found potentially
effective against diabetes but possess severe problems like poor solubility, low
bioavailability and required higher amount dosage to facilitate the therapeutic
response. To reinforce the therapeutic potentiality and alleviate the adverse effects
of these bioactive compounds, the advanced drug delivery systems are highly
desirable [171–174]. In recent years, nanotechnology-based approaches in the
development of antidiabetic formulations have gained significant attention due to
the fact that such nanoformulations improved the therapeutic efficacy of the drugs
for successful combating of diabetes in a plausible pattern [175]. Indeed, advances of
nanomedicine in diabetes research have expedited the development of novel sensors
which are competent for more prevalent and accurate measurements of blood
glucose levels and has also enabled more powerful delivery systems for insulin
that can recognize the variation in blood glucose levels and spontaneously adjust the
rate of insulin release to maintain normoglycaemia, which holds the great promise to
upgrade the quality of life for diabetic patients [176]. Over the past few years, a huge
level of research has been conducted to develop a formulation of insulin that is active
orally. Various polymeric nanoparticles loaded with insulin have exhibited lowering
the levels of blood glucose in animals when administered orally, including those
comprising of biodegradable or biocompatible cyanoacrylate, polyacrylic,
polycaprolactone polymers and casein, and the polycationic polysaccharide and
chitosan are mucoadhesive in nature and extend the residence time in the gut wall
by binding or confining the nanoparticle to the mucosal surface [177, 178]. Although
nanoparticles consisting of insulin and chitosan have also been spotted to stick to the
surface of mucosal membranes and momentarily opens the tight junctions between
gut mucosal cells and improve paracellular absorption of insulin [179, 180]. More-
over, numerous magnetic nanoparticles that have been developed as a contrast or
imaging agent for β-cell imaging to early recognition of diabetes and disease
progression are the important hallmarks of disease management [181]. In particular,
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superparamagnetic iron oxide nanoparticles (SPIONs) are more fascinating as they
are biocompatible in nature and can easily degrade into iron or oxygen and have
terrific possibilities for countless biomedical applications, like quick detection of
diabetes and manipulation of cell organelles. Apart from these applications, recent
investigation has illustrated that surface-functionalized SPIONs have shown a mag-
nificent role in targeted as well as site-specific drug delivery [182, 183]. Preferen-
tially, iron oxide-based magnetic nanoparticles as a magnetic resonance imaging
(MRI) contrast agent conjugated to targeting ligand (Exendin-4) resulting in better
targeting of pancreatic β-cells by binding with the corresponding receptor and
accumulated in pancreatic β-cells via receptor-mediated endocytosis [184]. However,
the success of diabetes management is well acknowledged with the advanced control
strategies using insulin pumps and repeated glucose monitors in the outpatient
clinical studies, but there have been no FDA-approved nanocarriers for diabetes
till date due to its safety and scalability problems. Hence, the long-term safety of
nanocarriers is also under inquiry and must be properly analysed during the design of
therapeutics and diagnostics for diabetes.

6.3.4 Antimalarial Nanomedicines

Malaria is one of the ancient and most widespread infectious diseases in the world
that oppress humans and causes serious health problems in lower and middle-income
countries like Southeast Asia and sub-Saharan Africa [185, 186]. According to the
latest estimates from WHO, there were a predicted around 216 million cases of
malaria, where around five million more cases than in 2015 and the number of deaths
already hit 445,000 in 2016 [187]. The major contributing factor responsible for
malaria proliferation has been the evolution of drug-resistant parasite clones with
unrestrictedly unfolding sets of mutations that are prone to fluctuate at asexual
proliferation rate [188, 189]. The current conventional therapy has several
drawbacks like poor physicochemical properties and subsequently required a high
dose to gain effective therapeutic outcomes that may induce toxic reactions [190]. To
address these challenges, research has been executed in nanotechnology and
nanomedicine, for the development of novel biocompatible schemes that are able
to improve the therapeutic effect of current antimalarial drugs, controlling drug
release rate, resulting in diagnosis, treatment and control of malaria by targeted
delivery [191, 192]. Nanomedicine can conform to the goal of attaining the intake of
total amounts adequately low to be harmless for the patient, but domestically still
harmful for the parasites [193]. The most valuable feature of nanocarriers in relation
to malaria is the capability to stay in the bloodstream for a longer period to upgrade
the interplay with parasite membranes and infected red blood cells (RBCs)
[194, 195]. Recently, targeted nanomedicines are an expeditiously developing area
with clear pertinence for the treatment of infectious diseases and have been
recognized as a promising tool to fight against malaria [196]. There are the two
main approaches of nanoparticles for targeting antimalarial therapeutics to the
infected erythrocytes and periodically the hepatocytes are active and passive
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targeting [197]. These nanoparticles having the ability to carry a number of
molecules, such as antimalarial drugs, proteins and fluorescent tracers, make them
attractive multifunctional weapons for the targeting, destruction and eradication of
both parasites and their rosette [198]. Moreover, the conjugation of particular
antibodies on the surface of nanocarriers to retain outstanding antigen identification
of parasitized RBCs (pRBCs) and non-parasitized RBCs has also been examined as
targets for the transport of drug molecules to the infected erythrocytes resulting in
complete targeting of nanoparticles to early intra-erythrocytic stages of the malaria
parasite. The immunoliposomes covered with monoclonal antibodies (mAbs)
exhilarated triggering across the glycophorin A (erythrocyte surface protein) are
able to target 100% pRBCs and RBCs at the minimum concentration
[199, 200]. Although antibody conjugated liposomes loaded with chloroquine
against pRBC was assayed the first time for the treatment of Plasmodium berghei
infections and displayed a cure of 75% to 90% in infected mice [201]. More recently,
nanomedicine-based vaccination therapy, combinational therapy and small interfer-
ence RNA (siRNA) delivery are the most promising targeting strategies to minimize
or combat malarial infections. Although the fact that artemether and lumefantrine are
well recognized as a combinational therapy for the treatment of simple malaria but
having some limitations. Hence, nanostructured lipid carriers (NLCs) co-loaded with
Artemether and Lumefantrine resulted in enhanced bioavailability of both the drugs
and greater destruction of parasites in the infected mice and has proved a clear
potentiality in comparison to single drug-loaded NLCs against the survival period
and evolution of parasitemia [202, 203]. Additionally, urgency for a potent malaria
vaccine is well accepted for the treatment and targeting of the infection process. The
codon harmonized recombinant Pfs25 in E. coli (CHrPfs25) elicited highly effective
malaria transmission inhibiting antibodies conjugated with gold nanoparticles can be
designed as novel nanovaccines to improve the vaccine antigen immunogenicity by
the initiation of transmission-blocking immunity and serve as an ideal vehicle to
minimize the trouble of malaria [204]. Recently, the discovery of interference RNA
(RNAi) and its potential adaptation against mosquitoes is now donating as an
imperative weapon for interpreting the interaction of vector-parasites
[205]. Hence, the efficient delivery of RNAi via nanomedicines is the massive
interest in Plasmodium as it easily passes the erythrocyte membranes like parasite
cytoplasm, parasitophorous vacuolar and the parasite nuclear to arrive at the Plas-
modium nuclei resulting in diminished synthesis of particular proteins liable for
malaria transmission [206, 207]. Nanomedicine is decisively making a competent
appearance in the antimalarial field in the form of diagnostic devices,
nanobiosensors, targeted drug delivery, nanoimaging and nanovaccination strategies
to improve the function of the immune systems [208]. Although, it remains in the
inception stage and has yet to scrutinize up to its feasibility and scale-up levels.
Hence, the researchers must be kept in the mind about conditions such as production
cost, socio-economic consequence and receivability within the patients.
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6.3.5 Anti-Inflammatory Nanomedicines

Inflammation is the complex biological reaction of the immune systems that can be
generated by a range of factors, including lethal pathogens, injured cells and toxic
compounds or irradiation, that may lead to acute or chronic inflammatory responses
in the kidney, liver, heart, brain, lung, pancreas, intestinal tract and reproductive
system [209]. The process of inflammation is generally described by enhanced
permeability of capillaries, vascular dilation, increased blood flow, leukocyte recruit-
ment, inflammatory mediator release (e.g. histamine, serotonin, bradykinin,
prostaglandins, thromboxanes) that can lead to wholesale tissue destruction
[210, 211]. Currently, the most regularly prescribed classes of medication for the
management of inflammation or pain is the Non-steroidal anti-inflammatory drugs
(NSAIDs) [212]. However, their continuous use is affiliated with a well-identified
spectrum of toxicity or side effects such as gastrointestinal damage, platelet dys-
function, acute renal failure, metabolic acidosis and an escalation cardiovascular
liability to patients [213–215]. In terms of minimizing the systemic toxicity along
with improving the therapeutic efficacy, a magnificent effort has been committed for
the development of nanodrug delivery systems for NSAIDs
[216, 217]. Nanoencapsulation of anti-inflammatory agents is one approach to
achieve better bioavailability and targeting. The incorporation of NSAIDs into
nanodrug delivery systems changes the in vivo biodistribution of the entrapped
drug by averting its distribution to tissues that are liable to NSAID adverse effects
and also diminish their touching with the mucus layer ensuing oral administration,
leading to minimize their local detrimental effects on the epithelium [218]. Recent
progress in nanomedicine research has supported scientists in utilizing the patho-
physiological characters of inflammation, primarily leaky vasculature and
overexpression of biomarkers for the treatment of the various conditions of inflam-
matory diseases [219]. Indeed, nanodrug delivery systems maintaining the permissi-
ble composition and particle size have been initiated to be conversely accumulate in
inflammatory tissues, either by passive targeting through enhanced permeability and
retention (EPR) mechanism or active targeting utilizing cell-specific targeting
ligands, leading to boosting the therapeutic action of NSAIDs [220, 221]. To
enhance the therapeutic action of NSAIDs, macrophage/monocyte targeted
nanoparticles can be appointed as a cell-mediated drug delivery approach to
pharmacologically regulate the inflammation. Such ‘immunomodulatory
nanoplatforms’ can also be accepted for diagnosis and imaging modalities like
systematically visualizing the macrophage dynamics and local inflammatory abra-
sion [222]. Notably, various studies suggest that gold is often utilized for treating
rheumatoid arthritis. For that purpose, nanogold was engineered to investigate the
antiarthritic activity in collagen-induced arthritic (CIA) rat model and results
revealed that Nanogold is able to mitigate the generation of inflammatory mediators
like TNF-a, COX-2, NF-κB and IL-1b, leading to displayed anti-inflammatory
action [223]. Moreover, the inclusion of penetration-enhancing constituents in
nanodrug delivery systems that may enhance the transdermal delivery of NSAIDs
to the deeper skin layers with little systemic exposure [224]. Although to scrutinize
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the transdermal transportation properties and the mechanism of penetration enhance-
ment, triptolide loaded lipid nanoparticles was developed and results revealed that
nanoparticles could penetrate the deeper layers of skin in a time-dependent aspect
and exhibited an indicative anti-inflammatory response of triptolide [225]. Further-
more, a number of nanoformulations have been developed that are able to sustained/
controlled release of the entrapped NSAIDs as compared to the conventional
formulations and to improve the pharmacokinetics/pharmacodynamics of the
incorporated drugs in preclinical models of various inflammatory diseases
[226]. However, to improve the efficacy, prolong the duration of action and hinder
the adverse effects of analgesic drugs, more experimental and clinical studies should
be conducted to investigate the efficacy of nanotherapeutics to targeting, diagnosing
and treating inflammation.

6.3.6 Antimicrobial Nanomedicines

Infectious diseases are primarily caused by microorganisms and remain a dominant
cause of death, dysfunction, social and economic impairment for millions of people
worldwide [227]. The efficient strategies for regulating infectious microbial
diseases, antimicrobial agents also called antibiotics are the essential drugs acquired
from microorganisms to hinder and prevent microbial infections [228]. However,
rapid uses of antibiotics have constructed inadequacy to antibiotics and various
microbial diseases are very short responding to frequently used antimicrobial
drugs which have inflated multi-drug resistance and also inevitably resulted in the
evolution of ‘superbugs’ [229–231]. The rapid evolution of ‘superbugs’ that resists
most of the conventional antibiotics has demonstrated the urgency for the develop-
ment of novel strategies or new antibiotics against multidrug-resistant or microbial
infections [232]. The application of nanomedicines is quickly reverting the main
driving force behind the current changes of the antimicrobial therapy and has also
shown impressive defence against the multidrug-resistant infectious organisms
[233]. Owing to their distinct physicochemical characteristics, nanoparticles have
played a crucial role in the fast, precise and selective identification of microbial
diseases. Nanoparticles for the delivery of antimicrobial drugs also offer specific
advantages against drug resistance and generating limited side effects as compared
to conventional antibiotics [234]. Although nanoparticles based on metallic elements
that deliberate antimicrobial activity is among the widely studied. Some natural
antimicrobial materials including zinc, silver, iron and copper-based nanoparticles
possess higher antimicrobial properties in terms of particle size, physical structure
and it can easily interact with bacteria resulting in distinct bactericidal functions
[235–237]. The antimicrobial function of nanoparticles is poorly pretended, but the
recently recognized mechanisms like induction of oxidative stress, the release of the
metal ion and non-oxidative mechanisms are significantly inhibiting the microbial
gene mutations responsible for antimicrobial resistance [238, 239]. However, the
surface of the metallic nanoparticles is encircled by capping layers, which accom-
modate the active surface for interplay with the biological segments, expedited by
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free surface-active functional groups [240]. These groups are feasible for
functionalization by conjugating preferred ligands, antibodies and proteins that
have the specific binding ability to target cells, thus improving their targeted drug
delivery efficacy, therapeutic potency and also minimize the toxicity
[241, 242]. Notably, biogenic nanoparticles are essentially applied for antimicrobial
purposes owing to their biocompatibility and long-lasting stability [243]. Biogenic
silver nanoparticles developed from Sporosarcina koreensis DC4 and
Brevibacterium frigoritolerans DC2 exhibited antimicrobial effectivity against Sal-
monella enterica, Vibrio parahaemolyticus, Bacillus anthracis and Escherichia coli.
Further, these biogenic nanoparticles enhance the antimicrobial effectivity of con-
ventional antibiotics including rifampicin, lincomycin, vancomycin and penicillin G
when adapted in combined form. Thus, combining conventional antibiotics with the
biogenic metallic nanoparticles can be further beneficial for improving their antimi-
crobial potency [244, 245]. Recently, nanosized materials have acquired much
attention as a promising delivery carrier for vaccine antigens which can simulta-
neously stabilize the vaccine antigens and exploit as adjuvants [246]. Adopting
nanomaterials as delivery vehicles or vaccine adjuvants can stimulate more effective
innate and robust immune responses across microbial infections [247]. Researchers
have also engineered nanomaterial-based vaccine adjuvants to stimulate long-term
immune responses. For example, gold nanoparticles coated with West Nile Virus
(WNV) envelop protein which affects the in vitro and in vivo immunological
responses for the generation of antibodies against WNV responsible for causing
viral fever [248]. Generally, nanoparticles can conserve the antigens from the
biological milieu, improve their half-life, assist the delivery of immunostimulatory
or immunomodulatory substances to antigen representing cells, i.e. T cells and
induce desired host immunity against infectious diseases [249, 250]. The various
nanoformulations have already been marketed for the diagnosis of microbial
infections, like AmBisome (liposomal amphotericin B), Fungisome (liposomal
amphotericin B), Abelcet (Amphotericin B-lipid complex), etc. [251–253]. There-
fore, nanomedicines have exhibited dramatic potential in overcoming nearly all
forms of microbial infections by not only encountering bacteria tidily but can also
exploit as carriers for antibiotics and natural antimicrobial compounds.

6.3.7 Nanomedicines for Neurodegenerative Diseases

Neurodegeneration is a characteristic of many fatiguing, incurable disorders that are
continuously growing in prevalence and represent a major warning to public health.
Neurodegenerative diseases are designated by liberal loss of structure or functions of
neurons in diverse areas of the central nervous system (CNS), which leads to deficits
in specific brain functions [254, 255]. Among the various neurodegenerative
disorders, the lion’s share of consideration has been inclined to Parkinson’s disease
(PD), Alzheimer’s disease (AD), Huntington’s disease (HD), multiple sclerosis
(MS), amyotrophic lateral sclerosis (ALS), spinocerebellar ataxias (SA) and
frontotemporal dementia (FTD) [256, 257]. Early recognition of the inception of
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neurodegeneration is very crucial as it can give a chance for early treatment or
diagnosis that may be beneficial to hinder further evolution of the disease [258]. The
current treatment approaches of neurodegenerative disorders target only a small
group of the population and barely focus on symptomatic relaxation without
inhibiting disease evolution. The FDA has approved several drugs like Levodopa
+Carbidopa (Sinemet), Donepezil (Aricept), Pergolide (Permax), Rivastigmine
(Exelon) for palliative treatment, but they are not utilized in the long-term disease
treatment and also cause numerous side effects like cardiovascular and endocrino-
logical complications [259, 260]. The major hurdles for drug development are the
existence of a restrictive blood-brain barrier (BBB), a firmly packed layer of
endothelial cells that limit the entry of drug molecules into brains, resulting in
irreversible neuronal damages and unwanted neuroimmune activities
[261, 262]. Recent progress in nanotechnology has committed to the design of
novel platforms and efficient delivering strategies to advance the treatment of
neurodegenerative disorders while less irritating brain systems. The various
nanocarriers including polymeric nanoparticles, dendrimers, liposomes, metallic
and magnetic nanoparticles, enable the impressive delivery of drugs to the defective
brain tissues. Encapsulation of drugs by the nanoparticles can arrive at more depth
into targeting areas while protecting the loaded drugs from degradation [263]. With
the advances of nanotechnology, nanomedicines not only serve as a vector to deliver
the drug beyond the BBB, but also facilitated multiple functionalities for the
detection, treatment and monitoring of brain diseases [264]. The insertion of drugs
into the brain region via nanomedicines can be attained via different mechanisms
including passive diffusion, receptor-mediated transport, cell-mediated transport,
carrier-mediated transcytosis, adsorptive-mediated transcytosis, efflux transport,
etc. [265]. However, the most plausible mechanism may be over endocytosis by
endothelial cells that mark the brain capillaries. Once the nanoparticles are absorbed
by the endothelial cells, they are released inside the brain tissues probably via
transcytosis and also P-glycoprotein inhibition or tight junction modulation may
be the other mechanisms by which nanoparticles cross the BBB [266]. Several
nanoparticles have been administered to healthy animals intravenously, verifying
their effectivity in crossing the BBB, basically when their surface is functionalized
with surfactants or ligands that are specific to the brain tissues [267]. Apart from the
ligand conjugation, nanoparticles surface functionalized with polysorbate 80 are
described to cross the BBB by simulating the low-density lipoproteins (LDL),
allowing them to interact with LDL receptor, resulting in nanoparticles being
taken up efficiently by endothelial cells of the brain [268]. Surprisingly,
nanoparticles linked with stem cell therapy are being progressively used to repair
the neural circuit and hold significant promise for the diagnosis of neurodegenerative
disorders. The stem cell-based therapies could offer the benefit of targeting multiple
mechanisms, i.e. reducing cognitive impairment mostly occurring due to loss of
synaptic function. This convergence approach commonly called theranostics
provides the capability of nanoparticles to regulate the cellular response, replace-
ment of death neural cells and enhances the survival of stem cell transplantation
[269–271]. Recently, carbon nanotubes (CNTs) have emerged as a potential
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nanomaterial scaffold for the regeneration of impaired nerve tissues owing to their
distinct structural, mechanical, electrical properties and cell-penetrating capability
[272]. Despite the promises, challenges are still being faced by CNTs in the clinical
practice due to their inherent toxicity. Biofunctionalization of CNTs via biologically
compatible and potent molecules is also a favourable approach to contribute excel-
lent biocompatibility and selectivity for neural regeneration for the suppression of
CNS disorders [273]. Moreover, nanoparticle-based drug delivery systems may be
allowing a targeted, sustained release of old as well as new drugs, presenting a novel
approach to treat neurodegenerative disorders [274]. Rivastigmine is a specific
cholinesterase inhibitor with both acetylcholinesterase and butyrylcholinesterase
inhibitory activity but facing severe obstacles [275]. Hence, rivastigmine loaded in
chitosan nanoparticles not only improves the bioavailability and increases the uptake
of rivastigmine to the brain through intranasal delivery but also providing better
targeting efficiency and a promising approach for the treatment of Alzheimer’s
disease [276]. The application of nanomedicines exhibits an immense therapeutic
effectivity in the area of neurodegenerative disease therapy, but many features are
still matters of interest. Yet there is short data available from in vivo and clinical
studies for the usage of nanoparticles. Thus, future research is still affirmed to verify
the promising use of nanomedicines to treat neurodegenerative disorders.

6.3.8 Nanomedicines for Gene Therapy

Gene therapy is an empirical technique that describes the direct transport of genetic
materials inside the tissues or cells to replace an aberrant disease-causing genes for
the treatment of acquired disorders and inherited diseases [277, 278]. In gene
therapy, modified strategies are utilized for the transport of genetic materials,
i.e. directly inserting the genetic material into the epidermal tissues (in vivo) or
indirectly tissues are excised from the host, exposed to genetic manipulation, then
the transduced cells are restored into the host body (ex vivo) [279]. The therapeutic
gene delivery holds the great potential of serving lifelong therapies and also cures
many diseases (e.g. metabolic, neurodegenerative, immunological, haematological
and diverse types of cancer) that were previously untreatable [280, 281]. The prog-
ress of gene therapy has been generally driven by advancements in non-viral and
viral gene transfer vectors [282]. The efficacy of the viral vector for gene transfer is
outstanding as long as their high gene expression level and innate ability to accu-
rately infect cells. Several viruses are under observation for gene delivery including
adenoviruses (AV), adeno-associated viruses (AAV), retroviruses (RV), herpes
simplex viruses (HSV), alphaviruses (αV), poxviruses (PV) and Newcastle disease
virus (NDV) [283]. Although recently some studies revealed that extensive use of
these carriers presented severe limitations including virulent nature, toxin produc-
tion, degeneration of transduced tissue and induces acute immune response
[284]. Therefore, the non-viral approach was investigated with the intervention of
nanomedicine. In current times, nanotechnology has gained significant advances
both in terms of novel materials development with unique properties and therapeutic
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delivery [285]. As such, materials are designed at the nanoscale range and their
distinct physicochemical properties made them potential vector for gene delivery.
These nanosized particles can easily interact with biomolecules on the cell surface or
inside cells and efficiently deliver genetic materials such as DNA, RNA and siRNA
into target cells or tissues [286]. The various non-viral vector including polymeric
micelles, dendrimers, liposomes, solid lipid nanoparticles, nanostructured lipid
carriers, carbon nanotubes, metallic nanoparticles, hybrid nanoparticles, protein
and peptide-based nanoparticles having benefits over viral vector and provide
versatility in design, targeting ability to specific sites in a biological system with
low immune response and cytotoxicity as well as easily functionalized
[287, 288]. The surface functionalization of nanosystems via various ligands or
biomaterials improve their targeting ability, bioavailability, intracellular penetration
and also provide a range of scope for proper delivery of genes and diagnostic agents
to specific cells populations [289, 290]. Nanoparticles functionalized with dual
ligands (Transferrin and Mannan) can flourishingly augment the gene expression
in liver cancer cells and liver macrophages as well as magnificently improve the
transfection activity of the nanocarriers in target cells [291]. Although metallic
nanoparticles like gold or silver nanoparticles will continue to find use in different
biomedical applications, while toxicity associated with the usage of nanoparticles, in
general, and gold nanoparticles, in particular, is an interest. Hence, the surface of the
gold nanoparticles modified by chitosan and Arg-Gly-Asp-Ser (RGDS) peptide not
only reduced the toxic hazardous effects but also enhances the gene transfection
efficiency by binding with DNA resulting to deliver genes efficiently following
cellular uptake [292]. However, nanoparticles are basically carrying DNA or RNA
via two systematic approaches, i.e. an encapsulating system which is a reservoir
class of nanovector systems that could conserve DNA or RNA from distortion and
surface binding system which holds an ionic interaction among the cationic
polymers and the anionic nucleic acids [293]. Hence, the cationic lipid stationed
non-viral gene delivery system is designed by utilizing the amphipathic lipids,
carrying a positively charged head group that interacts with the negatively charged
phosphate group that exists in nucleic acids (DNA and RNA) via electrostatic
interaction to generate nanoparticles, called lipoplexes. Lipoplexes are generally
entering mammalian cells by endocytosis mechanism and are able to protect their
genetic cargo from degradation [294, 295]. Moreover, nanoparticle surface coating
with PEG, often known as “PEGylation”, is a promising strategy for upgrading the
gene or drug delivery to target tissues. PEG coating provides the shield on
nanoparticles surface and protecting the nanoparticles from aggregation,
opsonization as well as extending the systemic circulation time [296]. In parallel, a
novel cell-penetrating peptide (CPP) planted the non-viral vector that uses glycos-
aminoglycan (GAG)-binding enhanced transduction (GET) for extremely efficient
gene delivery. GET peptides conjugate properly with DNA via electrostatic
interactions to generate nanoparticles. For effective in vivo delivery, GET peptides
are functionalized with PEG that protected the positively charged surface of
nanoparticles, managed colloidal stability and sustained gene transfer process in
human bronchial epithelial cell lines [297]. The emerging of clustered regularly
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interspaced short palindromic repeats and CRISPR-associated 9 (CRISPR/Cas9)
system exhibits an outstanding platform for genome editing for the diagnosis of
genetic diseases [298]. However, its low transfection effectivity is a major obstacle
that restricts the function of the gene editing power of CRISPR/Cas9. To overcome
this hurdling, a novel PEG-phospholipid functionalized cationic lipid nanoparticle-
based delivery system was constructed to encapsulate a Cas9/single-guide RNA
(sgRNA) plasmid that could be used for the successful transfer of Cas9/sgRNA in
A375 cells resulting in deregulation of Polo-like kinase 1 and suppression of the
tumour growth [299]. Therefore, nanotechnology brings immense opportunities to
generate novel and multifunctional nanocarriers that could convince to be promising
carriers for gene delivery. Despite the substantial advances have been contrived,
future development of novel strategies is expected for gene therapy.

6.4 Recent Patents Issued in the Area of Nanomedicine
Research

Innovations at the convergence of biotechnology, medicine, engineering and infor-
mation technology are triggering new pathways in research and development (R&D)
sector and commercialization. The fate of nanomedicines is likely to advance in this
interdisciplinary aspect [300, 301]. The grant in nanotechnology is now constantly
given by governments, funding agencies, research centres and companies in both
emerging markets and developed countries owing to their stability, ability to antigen
recognition on particular cells in the human body, controlling drug release and
enhanced bioavailability [302]. Hence upgrading therapies and nanoparticles has
been the topic of research and patent application in the area of pharmaceutical
technology. The significance of nanomedicine for diagnosis and treatment is dis-
tinctly mirrored in the growing number of publications and issued patents annually
[303]. For the last decade, a flock of patent applications belonging to nanomedicines
has been landing at the Patent and Trademark Office (PTO) in the area of cancer
therapy, immunotherapy, antifungal therapy and drug delivery. The recent patents on
nanoparticle systems of various compositions like polymer-based, lipid-based,
metal-based, carbon-based, hybrid and semiconductor nanoparticles are outlined in
Table 6.2.

6.5 Clinical Evidence of Nanomedicines (Marketed
Nanoformulations)

Bringing new products to the market has always displayed a major obstacle,
particularly when it comes to extremely innovational products. Nanotechnology
and especially nanomedicine have been touted as the next advanced technology
for medical sciences and have received an immense deal of attention in the design
and development of nanoformulations for drug delivery, in vitro diagnostics and
in vivo imaging [330]. Even though huge signs of progress are being spotted in the
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Table 6.2 Summary of recent patented nanoparticle systems for therapeutic purpose

Sl.
no. Inventors Title Patent no.

Ref
(s)

Polymer-based nanoparticles

01. Caihua Ni and
co-inventor

A method for preparation of reducible
degradable hyperbranched polymeric
micelles

US20180360753
(A1)

[304]

02. Zhizun Lie and
co-inventor

Ceramide-rubusoside nanomicelles and
their use in cancer therapy

US20170216329
(A1)

[305]

03. Elazer
R. Edelman and
co-inventor

Dendrimer-drug conjugates, hydrogel
compositions, and methods

US20190142953
(A1)

[306]

04. Alice S. T.
Wong and
co-inventor

Amphiphilic dendrimers complexed
with siRNA for treatment of cancer

US20180265872
(A1)

[307]

05. Li X and
co-inventor

Licoflavone nanosponges and its
preparation process

CN108703944
(A)

[308]

Lipid-based nanoparticles

06. Rita Elena
Serda and
co-inventor

Cationic liposomes for cancer
immunotherapy

US20180243216
(A1)

[309]

07. Mahmoud Reza
Jaafari and
co-inventor

Peptide-conjugated liposome US20170027868
(A1)

[310]

08. Sun Min Park
and co-inventor

Solid lipid nanoparticles including
elastin-like polypeptides and use thereof

US20130197359
(A1)

[311]

09. Indu Pal Kaur
and co-inventor

Solid lipid nanoparticles entrapping
hydrophilic/amphiphilic drug and a
process for preparing the same

WO2013105101
(A1)

[312]

10. Christopher
B. Fox and
co-inventor

Nanostructured lipid carriers and stable
emulsions and uses thereof

WO2018232257
(A1)

[313]

11. Anja Träger
and co-inventor

Nanostructured active ingredient carrier
system

WO2018130247
(A1)

[314]

Metal-based nanoparticles

12. Yunjung Choi Anticancer and anticancer adjuvant
composition containing silver
nanoparticle

KR101902656
(B1)

[315]

13. Ilaria E. Palama
and co-inventor

Cancer therapy with silver nanoparticles US20160213711
(A1)

[316]

14. Rajesh
Kotcherlakota
and co-inventor

Gold nanoparticle based formulation for
use in cancer therapy

US20190240186
(A1)

[317]

15. Min Ju Kim Composition for preventing and treating
neurodegenerative diseases comprising
gold nanoparticles and anthocyanins
conjugates

KR101717352
(B1)

[318]

16. Markus Barthel
and co-inventor

Magnetic nanoparticles for use in the
treatment of tumours

WO2019215560
(A1)

[319]

(continued)
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preclinical stages of development, still there is a lack of effective nanomedicine in
the clinical setting for commercialization [331]. During the commercialization of
nanomedicines, it takes a long time to acquire regulatory approval, i.e. FDA
approval, passing the required clinical trials and after overcoming numerous entry
barriers, finally introducing to the market [332, 333]. However, when focusing on
the commercialization of this sector, the United States developed as having around
half of the global merchandise for nanomedicine-based products. In fact, US
industries manufacture about 45-50% of marketed nanomedicine-based products,
while European industries have a 35% share [334]. The global market for
nanomaterials was esteemed at US$7.3 billion in 2016 and the projection is that it
will enter US$16.8 billion by 2022 [335]. Medical devices and biopharmaceutical
companies are well attentive to the promising benefits of nanotechnology to the
healthcare segment, as illustrated by the progressively growing collaboration among
these industries and nanomedicine setup [336]. Currently, a range of
nanopharmaceuticals has successfully entered the market and even more are being

Table 6.2 (continued)

Sl.
no. Inventors Title Patent no.

Ref
(s)

17. Richard Ferrans
and co-inventor

Magnetic nanoparticle compositions
and methods of use thereof

US20130006092
(A1)

[320]

Carbon-based nanoparticles

18. Hongjuan Yao
and co-inventor

Drug delivery system comprising a
cancer stem cell-targeted carbon
nanotube, preparation and use thereof

US20170224840
(A1)

[321]

19. Kurt
W. Swogger
and co-inventor

Carbon nanotube nano-therapy
composites with paclitaxel

US20160095940
(A1)

[322]

20. Vijay Krishna
and co-inventor

Functionalized fullerenes as antifungal
agents

US20120015045
(A1)

[323]

Hybrid nanoparticles

21. Say Chye
Joachim Loo
and co-inventor

Lipid-polymer hybrid nanoparticles WO2019135715
(A1)

[324]

22. Zhongyi Cheng Polymer-lipid hybrid nanoparticles of
capecitabine utilizing micromixing and
capecitabine amphiphilic properties

US20190091162
(A1)

[325]

23. Seungpyo
Hong and
co-inventor

Dendrimer-exosome hybrid
nanoparticles as a delivery platform

US20180369410
(A1)

[326]

24. Shanta Dhar
and co-inventor

Immune-stimulating photoactive hybrid
nanoparticles

US20140220143
(A1)

[327]

Semiconductor nanoparticles

25. Imad Naasani 5-Aminolevulinic acid conjugated
quantum dot nanoparticle

US20170049891
(A1)

[328]

26. Nathalie Gresty Quantum dots for diagnostic imaging US20180117184
(A1)

[329]
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examined in clinical trials for a large variety of implications. These products come
from various companies all around the world and indicate the present as well as the
future success of nanomaterials as therapeutic agents [337]. Some of the marketed
nanopharmaceuticals are reviewed in Table 6.3 according to the type of
nanoformulations like polymer-based, lipid-based, metal-based, protein-based
nanomedicines and proved their safety and effectiveness over a long period.

6.6 Promises and Challenges of Nanomedicines for Drug
Delivery

Nanoparticles offer numerous advantages to improve drug delivery as well as
overcome many problems associated with the free drug and conventional therapy
like poor aqueous solubility, requires high doses and short half-life of the drug
in vivo [355]. In conventional therapeutic approaches, the drug is repeatedly
administered to stimulate a therapeutic effect due to premature release of the drug
prior to arriving at the targeted sites and nonspecific distribution in healthy cells or
tissues [356, 357]. Nanomedicines are able to deliver the drug to a given target
location in the body and has gained more popularity because it promises high
precision when it comes to administering therapeutic formulations
[358, 359]. Based on the preparation method, nanoparticles, nanocapsules and
nanospheres can be designed to exhibit diverse properties and release behaviours
for the encapsulation or delivery of the therapeutic fragments [360]. Nanoparticles
possess distinct physicochemical properties owing to their tiny size, wide surface
area, high reactivity, etc. [361]. Because of these unique and superior characteristics,
they are suitable for enhancing the solubility of poorly aqueous soluble drugs, reduce
toxicity towards normal healthy tissues and upgrade therapeutic efficacy
[362, 363]. Moreover, nanodrug delivery systems exploit the nature of diseased
tissues to specifically target their cargoes, either by active, passive or physical
targeting [364]. Despite the benefits tendered by nanoparticles, the challenges
involved should be addressed prior to developing any therapeutic nanoparticles are
described below:

• Nontargeted nanoparticles could be easily opsonized by the macrophage system,
present in liver, lung, kidney, bone marrow and spleen, which is a major barrier
for drug targeting [365].

• If nanoparticles directly interact with the body molecules or chemical components
or accumulate in the human body, they result in the induction of toxic biological
responses like oxidative stress, DNA damage and inflammation. The toxic
impacts of nanoparticles are fundamentally driven by their physicochemical
characteristics, like their tiny size, wide surface area, exclusive surface charge,
specific surface chemistry which prompt their ability to enter and settle in tissue
that might be impassable to larger counterparts. Hence, toxicity issues of
nanoparticles pose major challenges in assuring the safety profile of
nanoparticle-based medicines [366–368].
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• Surface lipophilicity of nanoparticles is a key point for ameliorated absorption of
blood components onto the surface of the nanoparticles and identified as foreign
materials, leading to the activation of integrated pathways and depletion of
nanoparticle immunogenicity [369].

• The complex essence of nanoparticle-based medicines can alter the physicochem-
ical properties of the cargo drugs, proteins or peptides, genes and altering the
solubility as well as pharmacokinetic pre-disposition upon delivery in comparison
with unmodified drugs which can impact the pharmacological effect of the active
agents [370].

• The uncommon size, physicochemical properties of nanoparticles exhibit
challenges to insight their pharmacokinetics as diverse components will have
diverse features that affect their distributions, clearance or catabolism [371, 372].

• Nanomedicines are mainly applied through a route of administration that needs
sterile products that will suffer certain challenges based on their compositions
since there are high risks for being damaged by sterilization especially when
biological materials are involved [373, 374].

• The high intricacy of nanomedicines with their multifarious structures doesn’t
allow a proper characterization of physicochemical quality, posing challenges for
regulatory assessment [375].

• Identifying the convenient analytical tests to entirely characterize the
nanomedicines, either biological, physical or chemical may be one of the extra
challenging outlooks for development of nanomedicine both from a technical,
large-scale preparation and regulatory perspective [376].

6.7 Conclusion and Future Perspectives

The progress of nanotechnology in the healthcare sector is directed by the probabil-
ity to design and formulation of nanomaterials which broaden the market for many
drugs and projecting the source of a highly money-making compartment within the
industry. The field of nanomedicine has formerly made significant success, due to
the bunch of nanoformulations and imaging delivery systems are clinically
approved. The advancement of nanomedicines has further expedited to develop
multifunctional therapeutic nanosystems that integrate various medications to rein-
force the synergistic effects or merge therapeutics for real-time tracking or diagnosis.
These smart nanoplatforms concede their targeting, drug release or degradation
behaviours that are controlled or guided by specific pathological alteration. Given
the attention for development and application of nanomedicines, their clinical
translation was still limited, hence indispensable steps are urgently needed to obtain
the clinical implications such as evaluation of the formulation nature, pharmacoki-
netic properties, safety/toxicity, scale-up and the approval process for
nanomedicines. From laboratory nanoparticles to therapeutic applications are essen-
tial suitable regulatory guidelines for assessment and monitoring of nanomedicines.
Therefore, significant efforts between researchers, clinicians, pharmaceutical
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industries and regulatory authorities are needed to achieve the goal of quick transla-
tion of nanomedicines and nanodrug delivery systems for the near future.
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Abstract

In recent days, nanotechnology in the form of nanopharmaceuticals and
nanostructured materials has found a significant niche in different spheres of
pharmaceutical science, for instance, diagnostic imaging, gene therapy, drug
delivery, immunotherapy, microsurgery and dentistry. The polymer-based
nanopharmaceuticals have relatively gained the interest of researchers lately, by
virtue of their tuneable characteristics to achieve the intended response in targeted
drug delivery. This chapter lays special prominence to the inclusion of synthetic
and natural biopolymers in nanomedicines. Synthetic biopolymers have been
found competent in delivering biologics besides several active pharmaceutical
ingredients (API) in multiple clinical complications. This chapter additionally
elucidates the employment of natural biopolymers in delivering API derived from
both synthetic and natural source. The currently available FDA-approved bio-
polymer-based nanomedicines and those under clinical trials have been also
enumerated.

Keywords
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Biocompatibility · Biodegradability · Biologics

7.1 Introduction

Nanotechnology has grown into an indispensable field in every walk of scientific
discipline, be it electronics, robotics, physics, chemistry, molecular biology, geno-
mics, medicine, etc. owing to its impeccable ability to downsize materials to the
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molecular and atomic level, particularly to the nanoscale level. Nanotechnology is
the science of extremely small structures. The prefix ‘nano’ is derived from a Greek
word meaning ‘dwarf’ [1]. National nanotechnology initiatives in the USA have
defined nanotechnology as ‘Science, engineering, and technology conducted at the
nanoscale, which is about 1–100 nanometres’ [2]. ‘Nanotechnology is the science
and technology that measures, manipulates, and manufactures at the atomic, molec-
ular, and supramolecular levels, aimed at creating materials, devices, and systems
with fundamentally new molecular organizations, properties, and functions’
[3]. Nanomaterials are substances having at least a dimension under 100 nm
[4]. They have inherent characteristics, essentially magnetism, electrical conduc-
tance, optical effects, chemical reactivity, and mechanical strength, which deem
them as suitable carriers of various agents for targeting diseases specifically
[1, 2]. The relevance of nanotechnology in the pharmaceutical field is enormous,
and it is fuelled with the booming development of various nanomaterials and
nanodevices, which have been employed for the diagnosis as well as treatment of
the diseases, or sometimes serving both the purposes simultaneously. This context
can be effectively understood with the term ‘Nanomedicine’, which the National
Institute of Health, USA, has defined as ‘highly specific medical intervention at the
molecular scale for diagnosis, prevention and treatment of disease’
[2]. Nanomedicine exploits a plenitude of nanotechnological concepts and
approaches, including numerous nanodevices, nanobiosensors and nanocarriers.
The nanomaterials, being of size analogous to many biological macromolecules,
and their significance in the domain of medicine are copious [5]. The significance of
nanomedicine extends to control of diseases, understanding of pathogenesis,
identifying the microscopic and decisive step in the drug delivery, and targeting
process of a disease [6]. The rapid growth of nanotechnology in the pharmaceutical
domain has led to the augmentation of numerous nanosystem-based
pharmaceuticals, being absolutely paramount in several intended purposes, namely
diagnosis, targeted drug delivery, gene therapy, immunotherapy, tissue repairing,
microsurgery, dentistry, etc. The various classes of nanopharmaceuticals are
presented in Fig. 7.1 [7–10].

The quest to achieve more specific, tailored, personalized treatment, and highly
sensitive early state diagnosis of disease has ushered the exploitation of nanodevices.
Nanodevices are devices with at least one overall dimension in the nanoscale, or
comprising one or more nanoscale components required for its operation
[11]. Nanodevices are nanoparticles developed such that they have the competency
to interact with cells and tissues to achieve very definite functions [12]. They are
extensively used as diagnostic imaging tools in ophthalmology, oncology, and are
also applicable while performing microsurgery. Few examples of nanodevices
include nanoporous silica chips, nanowire biosensors, nanocantilever arrays, molec-
ularly gated single-electron transistors, nanoparticle-based biobar codes, multiplex
dendrimers [13]. Diseases like cancer are associated with large degree of molecular
and pathogenesis complexity, which calls for accurate sensitive diagnosis and
targeted delivery of chemotherapeutics. Several nanoprecision tools are being
designed and researched by the researchers throughout the years. One such example
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is the construction of an enveloped nanodevice having multifunctional aspects
developed from mesoporous silica for codelivery of therapeutic peptide and drug
to tumour cells by Luo GF et al. Chemotherapeutic agent topotecan was loaded in
Mesoporous silica MCM-41 nanoparticle core [14]. A few DNA nanodevices having
broad-range sensor abilities have been designed in recent years. The sensitive
component is generally single-stranded DNA, which promotes the annealing of
complementary single-stranded biomolecules in DNA biosensors, hence achieving
hybridization. These devices possess remarkable qualities to sense and react to
different varieties of signals or stimuli. The DNA-based sensing devices have the
ability to sense the biomolecules, to name a few proteins, peptides, ions, and nucleic
acid sequences. Additionally, it can sense glucose levels, level of pH, etc. The
transducer molecules can be desegregated with DNA molecule via immobilization
by crosslinking, adsorption or covalent bond interaction [15].

Nanoparticles are defined as solid particles or particulate dispersions drug carrier
that may or may not be necessarily biodegradable. The active agent is usually
entrapped, dissolved, attached or encapsulated to a nanoparticle matrix
[16]. Nanoparticles are solid particles with colloidal nature of size range from
10 nm to <1000 nm; however, the preferred size for nanomedical application is of
that below 200 nm [17].

The methods of preparing nanoparticles are shown in Fig. 7.2 [16, 18].
Nanoparticles are evaluated for parameters like percentage yield, particle size and

shape, surface charge, drug loading, drug entrapment, polydispersity index, in vitro
drug release, stability and their morphological characteristics. The morphological
characteristics of the nanoparticles are evaluated with the aid of techniques like
Fourier-transform infrared spectroscopy, X-ray diffraction, Scanning electron
microscopy, Transmission electron microscopy [16, 19].

Fig. 7.1 Types of nanopharmaceuticals
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One of the major areas of practice of nanotechnology in pharmaceutical science
arena is nanoparticle-based drug delivery system. This is adscripted to the notion that
nanoparticles act as novel carriers for loading drugs or other biomolecules, by virtue
of their advantages. By means of manipulating certain parameters like surface
characteristics, size and material used, the nanoparticles can be formed into brilliant
systems, which can deliver drug to definite organs and tissues hence providing
targeted, controlled and sustained drug release and drug delivery, which improves
patient’s compliance by lessening the dosing frequency and drug-associated toxicity.

Few applications of several nanoformulations are listed in Table 7.1. However,
major attention is given to the natural and synthetic biopolymer-based nanoparticles
in this chapter.

The polymeric nanoparticles are prepared from biocompatible and biodegradable
polymers where the active pharmaceutical ingredient (API) is attached, dissolved,
encapsulated or entrapped to that nanosized matrix. Nanoparticles obtained can be
nanospheres or nanocapsules depending on the method of preparation [36]. The
polymers to be utilized for the fabrication of nanoparticles demand for certain
properties among which the biocompatibility and biodegradability of a polymer
are most crucial property for pharmaceutical applications. Biocompatibility is a
general term referring to the properties of a material, which does not have any
toxic or harmful consequences on biological systems. Non-biocompatible materials
have been found to induce tissue damage, tissue necrosis, permanent tissue carnage,
dystrophic calcification and fibrosis. However, it is notable that fine biocompatibility

Fig. 7.2 The preparation method of nanoparticles
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does not always ensure for positive biodegradability [37]. For a polymer to be used,
it must be approved and accepted by the Food and Drug Administration (FDA) for
therapeutic application [4].

The polymers widely used in clinical therapies are:

Synthetic Polymers Polylactides (PLA), Polyglycolides (PGA), Poly(lactide
co-glycolides), Polyorthoesters, Polycyanoacrylates, Polyacrylamide,
Polycaprolactone, Polyanhydrides, Polyglutamic acid, Poly(methyl methacrylate),
Poly(vinyl alcohol), Polymalic acid, Poly(methacrylic acid), Poly(acrylic acid), Poly
(N-vinyl pyrrolidone), Poly(ethylene glycol) [36].

Natural Polymers Starch, Hyaluronate, Human albumin, Gelatine, Alginic, Colla-
gen, Rosin, Zein, Chitosan, Guar gum [36–38].

Table 7.1 Applications of nanomedicines in drug delivery

Sl.
no.

Types of
nanoformulations Characteristics

Biomedical
application Reference

1. Polymeric NPs Increase stability of volatile
pharmaceuticals, tuneable
engineered specificity,
biodegradable, biocompatible

Cancer therapy,
gene delivery

[8, 20,
21]

2. Nanocrystals Electrical and thermodynamic
properties, improve dissolution
of drugs, safe for intravenous
administration

Photothermal
Cancer therapy

[22, 23]

3. Dendrimers Capable of surface
functionalization, stable,
monodispersity of size

Anti-cancer, ocular,
anti-bacterial drug
delivery

[8, 24]

4. Polymeric
micelles

Biocompatible, low toxicity,
high stability, core-shell
arrangement

Anti-cancer, anti-
influenza

[25]

5. Carbon nanotube Physical strength, electrical
and thermal conductivity,
functionalization can be done

Anti-cancer drug
delivery, antibiotic
delivery

[8, 26–
28]

6. Metallic NPs Can be conjugated with
antibodies, ligands, drugs

Anti-viral drug
delivery, anti-
bacterial, anti-
microbial activity

[29–32]

7. Liposomes Amphiphilic, biocompatible,
surface modification is
possible

Delivery of
peptides, DNA,
anti-cancer drugs

[8, 33–
35]
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7.2 Synthetic Biopolymer-Based Nanomedicines and Drug
Delivery

Synthetic polymers make a substantial contribution in the amelioration of pharma-
ceutical formulations not to mention the pharmaceutical devices for extended and
controlled drug delivery and epitomize the most frequently utilized ‘building blocks’
for constructing diverse nanomedicines, especially nanoparticles [39]. Hence, it can
be said that polymers are the essence of pharmaceutical drug delivery systems.
Because of its advanced polymeric chemistry, it has exceptional diversity and
conduct over the composition, configuration and purpose of the polymers, hence
enabling the building of nanomaterials with mouldable properties for numerous
biomedical applications [39]. Polymers have found their application in several
domains of medical sciences, for instance drug-delivering system, tissue engineer-
ing, medical device implantation, dentistry, prosthesis and ophthalmology [38]. Ease
in synthesis and characterization, being water soluble, non-immunogenic, biocom-
patible, biodegradable, inexpensive, non-toxic are the criteria of an ideal polymeric
carrier [40].

Natural polymers like proteins and polysaccharides are used to a lesser degree
despite being biodegradable in vivo because of the problems associated in their
preparation, antigenicity, the purity of the molecule, ambiguity of the source. Similar
shortcomings have been proclaimed for nanoparticles fabricated using polymeriza-
tion reactions because of the generated by-products, which may be
non-biocompatible and toxic as well. Therefore, synthetic-based polymers are rela-
tively safer and preferred in pharmaceutical systems [41].

Some of the U.S. Food and drug administration (FDA)-approved biodegradable
and biocompatible polymers suitable for human usage that are employed for making
polymer-based nanoparticles include poly(ethylene glycol), polyacrylates,
polymethacrylates, poly(DL-lactic acid), poly(lactic-coglycolic acid),
polycaprolactone, cellulose derivatives, polyoxamers, poly(vinyl alcohol)
[42]. The most persistently and broadly used synthetic biopolymers are discussed
briefly.

Poly (Lactic-Coglycolic Acid) (PLGA) PLGA is the most competent choice of
polymer used for fabricating drug delivery devices and in tissue engineering. PLGA
is biodegradable and biocompatible, and exhibits a vast spectrum of erosion time and
has adjustable mechanical properties [43]. It is the most investigated diblock copol-
ymer of PLA, i.e. Polylactic acid and Poly (glycolic acid) (PGA) for drug encapsu-
lation and has been employed to develop several available medicinal products in the
market [44]. The PLGA-based nanoparticles have been found to possess appreciable
mechanical stability and cramped size distribution, and additionally they prevent the
drug from enzymatic degradation [4].

Poly (Lactic Acid) (PLA) Also known as Polylactide is a biodegradable, biocom-
patible and thermoplastic biopolymer approved by FDA for food and pharmaceutical
applications [45–47]. PLA is the polymeric form of lactic acid produced from the
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fermentation of sugars in sugarcane and corn by microorganisms [47]. Furthermore,
different surface modification strategies (physical, chemical methods) can be applied
to tune this biopolymer in order to extract the desirable nanocarriers [46]. PLA and
its copolymers are an ideal choice of polymer and have been put to use in different
drug delivery devices, tissue engineering by virtue of their attributes like biocom-
patibility, biodegradability, non-toxic degradation products and excellent mechani-
cal properties. This biopolymer can also be spun to form fibres, thus designing
nanofibres, which in turn can be used as implants and medical devices [47].

Poly (Glutamic Acid) (PGA) PGA is a polymer of glutamic acid formed due to
fermentation by some Gram-positive bacteria [43, 48]. It is biocompatible with
tissues and cells and provides controlled release of therapeutics. Blessed with
properties like biodegradability, non-toxic, non-immunogenic, PGA is an attractive
biopolymer. PGA has two isoforms poly-α-glutamic acid and poly-γ-glutamic acid
[49]. The presence of end carboxylic group in poly-γ-glutamic acid allows them for
conjugation with several moieties like ligands and therapeutic agents [48].

Poly (Amidoamine) (PAMAM) PAMAM was introduced as a new category of
polymers by Donald A. Tomalia in 1985. It is named as ‘starburst polymers’.
PAMAM was the first synthesized dendrimer to be commercialized [50]. Its tree-
like branched architecture provides excellent assistance in encapsulation of thera-
peutic agents, diagnostic agents, genes [50, 51]. Furthermore, the PAMAM
dendrimers are water soluble, non-immunogenic and the surface functional groups
present allow conjugation of diverse ligands and targeting molecules [51].

Multiple biopolymer-based nanocarriers have been researched in the last few
years, namely polymeric nanoparticles, polymeric dendrimers, polymeric micelles,
drug-polymer conjugates, polymeric nanofibres. Various synthetic biopolymer-
based nanocarriers for delivering synthetic active pharmaceutical ingredients have
been researched upon; some examples are enlisted in Table 7.2.

The application of nanoparticles is not only limited in delivering the drugs, but
also has an indispensable role in delivering biologics, including genes, plasmid
DNA, RNA, and antigens. The necessity to develop nano-based gene therapy arises
owing to the pitfalls of both the viral and gene transfection methods, which are
associated with problems such as immunogenicity, difficulties in handling,
constrained gene carrying capacity, limited cell targeting and production at large
scale [82]. The polymers are an ideal vector for carrying gene since they have the
capability to interact with plasmid DNA and hence build complexes of nanoscale,
which can cross the biological cell membrane [83]. The nanocarriers of different
compositions are used in gene therapy, but in this section, the major focus has been
inclined toward the importance of synthetic biopolymer-based nanoparticles in
delivering biologics.

Herein, we summarize the role of few synthetic polymers and their combination-
based nanocarriers, which include polymeric nanoparticles and polymeric
dendrimers, in delivering the biological macromolecules in Table 7.3.
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7.3 Natural Biopolymer-Based Nanomedicine and Drug
Delivery

Since ages, humans have long established the practice of using medicinal products
derived from plant against plethora of diseases. Medicines in the current days are
principally obtained from plants based on the knowledge available from various
traditional disease treatment practices. Almost 25% of the significant medicinal
compounds and their derivatives accessible nowadays are retrieved from natural
resources [94]. Compounds obtained from nature comprising diverse molecular
backbones proposed an arena for exploration of new drugs. A current inclination
in the discovery of drugs on the basis of natural products has been the curiosity for
the design of synthetically liable lead molecules, which resemble their analogue
chemistry [95]. Products from natural origin display miraculous features, for
instance biological and chemical properties along with macromolecular specificity,
extraordinary chemical diversity and low toxicity. These properties make them

Table 7.3 Synthetic biopolymer-based nanovehicles along with their clinical application in
delivering Biologics

Sl.
no. Nanocarriers Polymers Biologics

Clinical
application Reference

1. Polymeric
NPs

Poly(ethylene
glycol)-co-poly
(β-amino ester)

DNA Lung cancer
gene therapy
(small cell)

[84]

2. Polymeric
NPs

Poly(lactic-co-
glycolic acid)

MicroRNAs
(miRNAs)

Hepatocellular
carcinoma

[85]

3. Polymeric
NPs

Calcium phosphate-
embedded PLGA

Plasmid DNA
(pDNA)

Gene
transfection

[86]

4. Polymeric
NPs

PLGA (surface
modified)

Hepatitis B
surface antigen
(HBsAg)

Mucosal
immunization

[87]

5. Polymeric
NPs

Polyethylenimine/
polyglutamic acid
(PEI/γ-PGA)

DNA/siRNA
co-delivery

Cancer therapy [88]

6. Polymeric
NPs

Conjugated
Polyethylenimine

pDNA Gene
transfection

[89]

7. Polymeric
NPs

PLGA Avian
influenza
antigens

Mucosal
vaccine
delivery

[90]

8. Polymeric
dendrimers

Poly(amidoamine)
(PAMAM)

DNA Gene
transfection

[91]

9. Polymeric
dendrimers

PAMAM-PEG-PLL siRNA siRNA delivery
and gene
silencing

[92]

10. Polymeric
dendrimers

PAMAM conjugated
with TAT peptide

pDNA
(pIRES-H5/
GFP)

Transdermal
DNA vaccine
delivery

[93]
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favourable leads in the exploration of new drugs [96]. The phytoconstituent present
and activity of innumerable natural compounds has been already studied and well
established. The flavonoids, alkaloids, terpenes, tannins, saponins, steroids, phenolic
compounds are the bioactive constituent found in plants. However, in maximum
instances, these compounds have low absorption capacity, inadequacy to cross the
lipid membranes as a consequence of their high molecular sizes, which result in
decreased bioavailability and efficacy of these compounds [97]. In addition,
although these molecules show extensive systemic clearance due to which a high
dose of drug was administered, it makes the drug less effective for therapeutic use
[98]. The advancement in formulations based on natural products can be
revolutionized by implementing the scientific development of nanotechnology.
The utilization of nanotechnology is able to solve the problems associated with a
natural compound that restricts the application of these compounds in large-scale
nanomedicine preparation [99]. Thus, the advancement in increasing the therapeutic
properties can be achieved by incorporation of natural products into a nanoparticle-
based drug delivery system. The biopolymers used as a carrier in nanomedicine are
found from both plants and animals sources. The polymers obtained from natural
sources are [100]:

1. Plant source: Cellulose and its derivatives, Starch, Inulin, Rosin, Pectin,
Glucomannan, Agar, Guar gum, Locust bean gum, Gum Acacia, Karaya, Gum
Tragacanth, Aloe Vera gel.

2. Animal source: Chitin, Alginates, Carageenans, Psylium, Xanthum gum, Dex-
tran, Hyaluronic acid.

Natural polymers have garnered attention being economical, easily available and
relatively low toxic materials. Furthermore, they can be chemically modified, are
biocompatible and biodegradable except for few. Biopolymers are derived in vast
quantities from both renewable and non-renewable resources [101]. Some of the
most commonly used biopolymers in nanotechnology are discussed here [102–105].

Cellulose Cellulose is the natural polysaccharide, which is used most abundantly. It
is an organic polysaccharide located within the fibre walls of plants. Cellulose can be
chemically modified to produce its different derivatives (cellulosics) such as methyl
cellulose, carboxymethyl cellulose, hydroxyethylcellulose, etc., which can be
customized for specific industrial applications.

Chitin and Chitosan Chitin is a polysaccharide analogous to cellulose and is the
second most bounteous polysaccharide. It is obtained in cell walls of some fungi and
is the main component in the shell of crustaceans and also in the exoskeletons of
insects. Chitosan is a deacetylase derivative of chitin. Chitosan acquires positive
ionic charges, due to which it binds with negatively charged lipids, fats, cholesterol,
metal ions, proteins and macromolecules. Chitosan gained an increasing commercial
interest because of its admirable properties, including biodegradability,
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biocompatibility, adsorption and film-forming ability. Chitosan is exploited as
wound-healing remedy due to its bacteriostatic and fungistatic properties.

Starch Starch, a form of carbohydrate, is a biopolymer, which carries many
properties. It can be derived from wheat, tapioca, maize and potatoes. Starch is
biodegradable in nature along with unique chemical properties; therefore, it has
enormous adaptability as a flexible renewable resource for applications in different
fields. Although the cellulose and carbohydrate are made up of glucose, they are
structurally very different. One vital characteristic is that carbohydrates are water
soluble and are readily digested by human beings, whereas cellulose is not digested
being water insoluble. A remarkable number of native starches show drawbacks like
susceptibility to retrogradation, high viscosity, limited digestibility and limited
solubility. Therefore, certain modifications are done like blending in a certain
proportion with a more hydrophobic polymer like cellulose to enhance water
resistance.

Inulin It is a naturally found polysaccharide, which belongs to a class of dietary
fibres known as fructans. Chicory, Dandelion, Burdock, Camas, Costus Elecampane
are some plants, which contain a high concentration of inulin. Chicory root is the
main source for commercial production of inulin.

Guar Gum Guar gum, a natural polysaccharide, is also referred to as Guaran,
Calcutta lucern, Clusterbean, Cyamopsis gum, Guarina, Gum cyamposis. Guar
gum in the powder form is derived from the endosperm of the seeds of Cyamopsis
tetragonolobus Linn (Leguminosae). This polysaccharide is chemically constituted
of galactose and mannose. Guar gum is principally profitable for colon delivery due
to its degradation that occurs by the specific enzymes present in this colonic
environment. The gum provides protection to the drug in the stomach and small
intestine environment and delivers the drug to the colon where it undergoes enzy-
matic degradation and release the drug.

Xanthan Gum Xanthan gum is basically a natural high-molecular-weight polysac-
charide produced by the process of fermentation of Xanthomonas campestris in
controlled condition. It is hydrophilic in nature. Xanthan gum is mainly composed of
D-glucose, D-mannose, and D-glucuronic acid. It has diverse industrial application.

Alginate Alginate is a water-soluble linear polysaccharide typically extracted from
brown algae (Phaeophyceae) and marine algae, namely Ascophyllum nodosum,
Macrocystis pyrifera and Laminaria hyperborea. It is constituted of the salts of
α-L-glucuronic and α-D-mannuronic acid. It is generally used in integration with
other polymers like chitosan.

Carageenans Carageenans are a family of high-molecular-weight linear sulphated
polysaccharides that are extracted from certain species of red seaweeds such as
Gigartina, Hypnea, Chondrus and Eucheuma. Carageenans have been utilized as a
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gelling agent and viscosity-enhancing agent for the controlled release of drug
delivery and prolonged retention of the drug due to their strong negative charge
and gelling property.

Dextran Dextran is a neutral polysaccharide produced by microorganism
Leuconostoc mesenteroides, and consists of α (1–6)-linked D-glucose chain with
varying proportions of linkages and branches. Researchers have exploited the
properties of dextran such as water solubility, hydrophilicity, colloidal nature and
inertness in a biological system for investigating the utilization of dextran as
polymer-based carriers in novel drug delivery systems like dextran hydrogels,
micelles, and also for specific targeted delivery of drugs.

Hyaluronic Acid Hyaluronic acid (HA) is an anionic natural polysaccharide com-
posed of D-glucuronic acid and N-acetyl glucosamine repeating unit. Its unique
multifunctional groups, biodegradability and biocompatibility properties help in
developing novel drug delivery system. It is generally present in various connective
tissues of human body matrix and hyaluronic acid-binding receptors like CD44 and
CD168 are expressed abundantly on the surface of different cancer cells. HA, being a
natural ligand, provides significance of hyaluronic acid-based drug delivery carrier
in active targeting of tumour cells for anticancer treatment.

The biopolymers from natural sources discussed here can be used in the formula-
tion of several polymeric nanocarriers, which are loaded with active therapeutics
having desired therapeutic activity against diseases. Some of the natural biopolymer-
based nanoparticles found in the literature are listed in Table 7.4.

7.4 Natural Product-Based Nanomedicine and Drug Delivery

Many natural compounds are being scrutinized and exploited for the treatment of
various ailments like cancers, diabetes, cardiovascular, microbial and inflammatory
diseases. Application of natural drugs in various fields is possible since they are
endowed with exceptional advantages, for instance, greater therapeutic potential,
low toxicity and side effects, and also low cost [159], Despite few drawbacks (low
bioavailability and solubility, low oral absorption, low stability and unpredictable
toxicity, issues with target-specific delivery) associated with herbal medicines limit-
ing their use. In order to counteract such problems, nanotechnology offers a signifi-
cant role in advanced medical treatment by giving targeted delivery platform and
controlled drug release and delivery with extensive success [160]. Some of the
phytoconstituents that have been studied till date for different ailments are shown
in Fig. 7.3.

In this section, the application of the biopolymers obtained from natural sources
in the delivery of therapeutics specifically obtained from natural sources is
discussed. Few examples are listed in Table 7.5.
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Table 7.4 Application of nanoparticles in drug delivery based on Natural polymers

Formulation Active ingredient Biological activity Reference

Chitosan-nanoparticles Mifepristone Anti-cancer [106]

Alphastatin Lung carcinoma [107]

Prothionamide Anti-tubercular [108]

Paromomycin Leishmaniasis [109]

Hexaconazole Anti-fungal [110]

Doxorubicin Breast cancer [111]

Risedronate Osteoporosis [112]

Carvedilol Anti-hypertensive [113]

Chlorpheniramine maleate Allergic rhinitis [114]

Insulin Anti-diabetic [115]

Paclitaxel Anti-tumour [116]

Ceftriaxone sodium Anti-bacterial [117]

Rivastigmine Alzheimer’s disease [118]

Chitosan and hyaluronic
acid

Ceftazidime Anti-bacterial [119]

Doxorubicin/Cisplatin Breast cancer [120]

Cyanine 3 (Cy3)-labelled
siRNA

Lung cancer [121]

MiR-34a and doxorubicin Breast cancer [122]

Risedronate and Teriparatide Osteoporosis [123]

Carboxymethyl chitosan Carbamazepine Anti-epilepsy [124]

5-fluorouracil Breast cancer [125]

Metformin Pancreatic cancer [126]

Alginate/chitosan Enoxaparin Anticoagulant [127]

Insulin Anti-diabetic [128]

5-Fluorouracil Ocular infection [129]

Methyl cellulose/cellulose
nanocrystal

Ketorolac tromethamine Skin infection [130]

Methylcellulose Docetaxel Anti-cancer [131]

Carboxymethyl cellulose Cabazitaxel Prostate cancer [132]

Docetaxel Prostate Cancer [133]

Docetaxel Breast cancer [134]

Docetaxel Anti-tumour [135]

Ethyl cellulose Picroxicam Anti-ulcer [136]

Hydroxypropylmethyl
cellulose

Doxorubicin Anti-cancer [137]

Cellulose nanocrystal Hydroquinone Hyperpigmentary
disorders

[138]

κ-Carrageenan Astaxanthin and
α-tocopherol

Diabetic wound
healing

[139]

Carrageenan Melanin Antibacterial and
anti-oxidant

[140]

Starch NPs CG-1521 (histone
deacetylase inhibitors)

Breast cancer [141]

Corn starch NPs Ciprofloxacin Anti-bacterial [142]

(continued)
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Table 7.4 (continued)

Formulation Active ingredient Biological activity Reference

Maize starch NPs Diclofenac sodium Anti-inflammatory [143]

CornStarch NPs Ibuprofen Anti-inflammatory [144]

Starch NPs Minocycline hydrochloride Anti-microbial [145]

Starch NPs Neutrophil elastase inhibitor
(ER143)

Psoriasis [146]

Dextran NPs Doxorubicin Anti-lymphoma [147]

Dextran Nanomicelles Doxorubicin Ovarian cancer [148]

Dextran NPs Doxorubicin Breast cancer [149]

Chitosan/carboxymethyl
dextran NPs

hSET1 antisense Colon cancer [150]

Dextran NPs Methotrexate Rheumatoid arthritis [151]

Guar gum/chitosan Isoniazide/rifampicin Tuberculosis [152]

Guar gum/xanthan gum 5-fluorouracil Colon cancer [153]

Guar gum NPs Ag85A antigen Tuberculosis [154]

Isoniazide/rifampicin Tuberculosis [155]

Methotrexate Colon cancer [156]

Tamoxifen citrate Breast cancer [157]

Tinidazole/Norfloxacin Amoebiasis [158]

Fig. 7.3 Natural constituents obtained from plants used in nanomedicine
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Table 7.5 Natural biopolymer-based nanoparticles carrying API from natural sources

Formulation Polymers Active ingredient Biological activity Reference

Polymeric
NPs

Chitosan Chlorogenic acid Renal
adenocarcinoma

[161]

Polymeric
NPs

Chitosan Epigallocatechin-
3-gallate (EGCG)

Hepatic fibrosis [162]

Polymeric
NPs

Chitosan Epigallocatechin-
3-gallate

Prostate cancer [163]

Polymeric
NPs

Chitosan Epigallocatechin-
3-gallate

Psoriasis [164]

Polymeric
NPs

Chitosan Apocynin Anti-ulcer [165]

Polymeric
NPs

Chitosan/hyaluronic
acid

Grape seed extract Anti-oxidant [166]

Polymeric
NPs

Chitosan Ocimum sanctum Antibacterial [167]

Polymeric
NPs

Starch Curcumin Anti-inflammatory [168]

Polymeric
hydrogel

Chitosan-alginate Curcumin Ulcerative colitis [169]

Polymeric
NPs

Chitosan Curcumin Breast cancer [170]

Polymeric
NPs

Chitosan Curcumin Anti-malaria [171]

Polymeric
NPs

Carboxymethyl
chitosan

Curcumin Anti-cancer [172]

Polymeric
NPs

Chitosan Curcumin Colon cancer [173]

Polymeric
NPs

Chitosan Curcumin/
Coumarin

Anti-cancer &anti-
microbial

[174]

Polymeric
NPs

Dextran Curcumin Liver cancer [175]

Polymeric
film

Methyl cellulose α-Tocopherol Anti-oxidant [176]

Polymeric
NPs

Alginate Silk sericin Anti-inflammatory [177]

Polymeric
NPs

Chitosan Quercetin Colon cancer [178]

Polymeric
NPs

Carboxymethyl
chitosan

Quercetin Pancreatic cancer [179]

Polymeric
NPs

Chitosan Quercetin Skin damage by
UVB radiation

[180]

Polymeric
NPs

Chitosan/alginate Quercetin Hepato-protective
and anti-oxidant

[181]

Polymeric
NPs

Ethylcellulose Quercetin Skin cancer [182]

Polymeric
NPs

Chitosan Quercetin Breast cancer [183]

(continued)
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7.5 Clinical Application of Nanomedicines

A bulk of nano-based medicines that are validated or presently undergoing clinical
trial are Nanoformulations of already-approved drugs. Currently, the Food and Drug
Administration (FDA) in the USA is the decision maker in regulating the approval
process for Nanomedicine in humans and is essentially identical to that of any other
regulated drugs, device or biologic. The invention/discovery of new pharmaceutical
material is followed by the non-clinical study, which usually involves testing on
animals to manifest safety, toxicity, and efficacy and to establish appropriate dose
ranges. It has become extremely significant for the nano-based medicines to have an
extensive perception of the physicochemical specifications of the material, and the
reproducibility and scalability of the process of manufacturing [199]. In the last

Table 7.5 (continued)

Formulation Polymers Active ingredient Biological activity Reference

Polymeric
NPs

Chitosan Catechin/
Quercetin

Antioxidant and
anti-bacterial

[184]

Polymeric
NPs

Starch Quercetin Anti-oxidant [185]

Polymeric
NPs

Chitosan/alginate Quercetin Anti-oxidant [186]

Polymeric
NPs

Chitosan Resveratrol Hepatic carcinoma [187]

Polymeric
NPs

Gelatine Resveratrol Lung cancer [188]

Polymeric
NPs

Carboxymethyl
chitosan

Resveratrol Anti-oxidant [189]

Polymeric
NPs

Alginate Resveratrol/
Curcumin

Prostate cancer [190]

Polymeric
NPs

Albumin Capsaicin Anti-oxidant [191]

Polymeric
NPs

Microcrystalline
cellulose, HPMC

Capsaicin Gastric ulcer [192]

Polymeric
NPs

Carboxymethyl
chitosan/hyaluronic
acid

Berberine Anti-apoptotic [193]

Polymeric
NPs

Chitosan Berberine
hydrochloride

Nasopharyngeal
carcinoma

[194]

Polymeric
NPs

Chitosan Berberine chloride Osteoarthritis [195]

Polymeric
NPs

Chitosan Silibinin Prostate cancer [196]

Polymeric
NPs

Chitosan Kaempferol Anti-microbial [197]

Polymeric
NPs

Ethyl cellulose Garcinia
mangostana Linn

Anti-cancer [198]
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Table 7.6 FDA-approved biopolymer-based nanoparticles [22, 199–206]

Brand Name Nature of material

Advantages
offered by
nanoparticles Clinical Purpose

Year
approved

Adagen® Adenosine
deaminase enzyme
(PEGylated)

Enhanced
circulation time
and reduced
immunogenicity

Severe combined
immunodeficiency
disease

1990

Cimzia® PEGylated
antibody fragment

Improved stability
in vivo and
circulation time

Crohn’s disease 2008

Rheumatoid
arthritis

2009

Psoriatic arthritis 2013

Ankylosing
spondylitis

2013

Copaxone® Copolymers of
L-alanine, L-lysine
L-glutamate,
L-lysine and
L-tyrosine

Controlled and
improved
clearance
characteristics

Multiple sclerosis 1996

Eligard® Polymer (PLGH
(poly (DL-Lactide
coglycolide) and
Leuprolide acetate

Delivery of
payload in
controlled manner
with higher
circulation time

Prostate Cancer 2002

Macugen® Anti-VEGF
(vascular
endothelial growth
factor) aptamers
(PEGylated)

PEGylation offers
greater stability of
the aptamer

Age-related
neovascular,
macular
degeneration

2004

Mircera® Chemically
synthesized
erythropoiesis-
stimulating agent

PEGylation-
induced enhanced
stability of
aptamer

Chronic kidney
disease associated
amnesia

2007

Neulasta® GCSF protein
(PEGylated)

PEGylation-
induced enhanced
stability of protein

Neutropenia 2002

Pegasys® IFN alpha-2a
protein
(PEGylated)

PEGylation-
induced enhanced
stability of protein

Hepatitis B,
hepatitis C

2002

PegIntron® IFN alpha-2b
protein
(PEGylated)

PEGylation-
induced enhanced
stability of protein

Hepatitis C 2001

Renagel® Poly(allylamine
hydrochloride)

Better circulation
and therapeutic
delivery

Chronic kidney
disease

2000

Somavert® HGH receptor
Antagonist
(PEGylated)

PEGylation-
induced enhanced
stability of protein

Acromegaly 2003

(continued)
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several years, the nanomaterial characterization issue became the core of various
FDA guidance documents; therefore, it is a particularly vital aspect of research and
development. The physicochemical properties, efficacy and toxicity can then be
assembled into an Investigational New Drug (IND) application for FDA consider-
ation. After approval of the IND, human trials can be inducted to actuate the safety
and efficacy of the new nanomedicine [200]. Few numbers of FDA-approved
biopolymer-based nanoparticles are listed in Table 7.6 to exemplify. Table 7.7
enlists those biopolymer-based nanoparticles undergoing clinical trials.

Table 7.6 (continued)

Brand Name Nature of material

Advantages
offered by
nanoparticles Clinical Purpose

Year
approved

Oncaspar® PEGylated
L-asparaginase

PEGylation-
induced enhanced
stability of protein

Acute
lymphoblastic
Leukaemia

1994

Krystexxa® Polymer-protein
conjugate
(PEGylated)

PEGylation-
induced enhanced
stability of protein

Chronic gout 2010

Plegridy® PEGylated IFN
beta-1a (polymer-
protein conjugate)

PEGylation-
induced enhanced
stability of protein

Multiple sclerosis 2014

ADYNOVATE PEGylated factor
VIII (polymer-
protein conjugate)

PEGylation-
induced enhanced
stability of protein

Haemophilia 2015

Estrasorb™ Estradiol micelle
formulation

Controlled
delivery of drug

Menopause 2003

Abraxane® Albumin-bound
paclitaxel
nanoparticles

Improved
solubility and
hence delivery to
tumour site

Breast cancer,
pancreatic cancer

2005
2012
2013

Zilretta® Triamcinolone
acetonide PLGA
hydrogel

Extended release
of therapeutics

Osteoarthritis
(knee)

2017

Rebinyn® Glycopegylated
coagulation factor
IX

Extended half-life Haemophilia B 2017

Genexol® Block copolymer
poly(ethylene
glycol)-poly(D,
L-lactide)

EPR effect-
mediated passive
targeting

Metastatic breast
cancer, pancreatic
cancer stage IV

2007

Opaxio® Paclitaxel
polyglutamate
nanoparticles

EPR effect-
mediated passive
targeting

Glioblastoma 2012
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7.6 Conclusion and Future Perspectives

Nanotechnology is a springing discipline that opens opportunities for novel
advances and innovations in health and medical precinct, especially with the advent
of nanoparticles that serves as a plausible carrier for numerous therapeutic agents.
The merging of biopolymers and nanotechnology has ushered the amelioration of
several polymer-based nanomedicines providing unique properties, which satisfies
the demands of novel targeted drug delivery system. Contribution of biocompatible
and biodegradable synthetic and natural polymers has shown blistering advancement
in the domain of diagnostic imaging, drugs and biologics delivery, and targeting of
serious ailments like cancer, cardiovascular diseases, neurodegenerative diseases,
infectious diseases, metabolic disorders. In this chapter, we have compiled few
biopolymer-based nanomedicines that are FDA approved and those under different
phases of a clinical trial. Taking the advantage of principally polymeric NPs, the
prospect of Nanomedicine can be improved and therefore facilitate the conventional
therapies to assist humans on both individual and worldwide levels. The uninter-
rupted research on polymeric nanoparticles in both non-clinical and clinical studies
will essentially turn around and improve the diagnosis, treatment and prevention of
ailments.
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Abstract

The emergence of new technologies provides unique opportunities to exploit
novel approaches in drug delivery. Transdermal drug delivery systems (TDDS)
are one of the imperative technologies of increasing interest with the benefits of
sustained/controlled drug delivery leading to patient convenience and compli-
ance. By definition, TDDS are topically administered medications, for example,
patches or semisolids, which permeate the active ingredient through the intact
skin for systemic effects in a sustained manner. Transdermal drug deliveries,
therefore, are the noninvasive administration of active ingredients from the skin
surface across its layers, to the systemic circulation. Nanomedicinal approaches
through TDDS can be utilized for site-specific delivery of drugs which can lead to
the reduction of dose, too. We have reported here TDDS providing
nanomedicinal strategies to deliver drug(s) to the target tissues.

Keywords
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8.1 Introduction

Skin, being the largest organ of our body, protects us as a physiological barrier from
different infections, environmental stress, such as heat or cold, and permeates the
sensation with the help of nerve endings residing beneath the skin. Certain active
ingredients having the potency to cross this physiological barrier can even reach the
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systemic circulation. Transdermal drug delivery systems (TDDS) are topically
administered medications intended for systemic use with the benefits of sustained/
controlled delivery leading to patient convenience and compliance [1, 2]. The pri-
mary goal of the transdermal route is to deliver drugs into systemic circulation at a
predetermined rate across the primary barrier of drug delivery, i.e., the stratum
corneum (SC) [3]. Lipophilic polymeric nanocarriers have been exploited to enhance
skin penetration of larger, hydrophilic/hydrophobic drugs for various diseases.

Nanomedicine could be defined as a branch of medicine which applies the
technique, knowledge, and specific tools of nanotechnology to diagnose/prevent/
treat the diseases. Nanomedicine is more advantageous over conventional
formulations since it enables more effective and less toxic diagnostic and therapeutic
interventions. Over the last few decades, several nanosize drug/drug carrier-based
approaches have been reported for the effective transport of active drug molecules
through the skin. Targeted drug delivery system offers several advantages such as
prolonged, localized, sustained release and site-specific drug carriers which can
protect the drug from its hydrolytic/destructive/pH sensitive microenvironment and
transdermal route could also be utilized for such purposes of various disease
conditions using nanoformulations. Thus, the technology of nanomedicine has
emerged as a novel platform for transdermal delivery of various potent drugs and
other bioactive molecules. The transdermal nanocarriers have been reported to
incorporate both hydrophilic and lipophilic drugs for the treatment of diabetes,
cancer, viral diseases, and various dermatological disorders. A plethora of novel
nano-based transdermal formulations have been developed and characterized to
improve skin permeation of drugs for better pharmacodynamic profiles. In this
chapter, we discuss different aspects of transdermal nanomedicines developed for
targeted drug delivery with their benefits for various diseases.

8.1.1 Transdermal Drug Delivery

The concept of transdermal delivery of drugs can be traced back to the sixteenth
century B.C when Ebers Papyrus suggested the use of the husk of castor oil crushed
in water to be placed on an aching head and it cured headache soon [4]. Another
instance of the prevalence of this type of drug delivery system was the use of
medicated plasters in ancient china and two of them are available in medical practice
in China [5]. One of the medicated plasters is used to stimulate circulation and the
other is used in the treatment of neuralgia and soreness of bones. These include
several herbal drugs and are intended for localized action in the tissue underlying the
site of action. During the Second World War, munition workers working with
nitroglycerine in an ammunition factory experienced less angina attacks. Later
investigation showed that it happend due to nitroglycerine. The first medication
delivered through the skin was dimethylsulfoxide and nitroglycerine ointment that
was introduced in 1954 for the treatment of angina [6]. However, interest in
transdermal drug delivery did not take place until late 1960s and early 1970s. In
the 1970s, the development of female syndromes in male workers in manufacturing
area for estrogen-containing pharmaceutical dosage form doubted the hypothesis of
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skin’s impermeable barrier. The first TDDS, Transderm-Scop, developed and
approved by FDA in 1979 [7, 8], utilized scopolamine for the handling of motion
sickness. Growth in the transdermal market ramped up in the mid-1980 with the
introduction of anti-smoking patches designed for the cessation of mass smoking.

Some of the main advantages of TDDS are well-documented [9, 10].

• Escaping the risks and difficulties of intravenous route.
• Keeping steady and sustained drug level.
• Reduction of frequency of dosing and easy application resulting in patient

compliance.
• Easy withdrawal of medication as per the need.
• Best suited for drugs with short biological half-life.
• Minimization of inter and intrapatient variability.
• Ability to bypass the hepatic first-pass effect.
• Avoidance of gastrointestinal tract discomforts during absorption caused by drug

interactions with food, enzymes, etc.
• Suitability in occasions such as vomiting/diarrhea where oral route is not

advantageous.
• Easy and economical manufacturing.
• Less chance of overdosing and underdosing as a result of predetermined drug

delivery at a requisite therapeutic dosing interval.
• Lower total regular dose of drug by uninterrupted drug supply.
• Possibility of self-administration.
• Provides ease of quick administration of medication in emergencies for uncon-

scious patients.

Like any other formulations, TDDS also have some limitations [11, 12].

• TDDS could be unsuitable for drugs, excipients, and permeation enhancers that
cause skin irritation.

• The natural restrictions of drug access due to the skin’s permeability indicate that
comparatively potent drugs are appropriate only for transdermal route.

• Under various environmental conditions, adhesions of the formulations to various
skin types sometimes become challenging.

• Under several environmental circumstances, drug release from transdermal
patches may also change.

• The barrier function of the skin differs depending on the regions of the body of the
person, from individual to individual and with age.

• Drugs with high acidic and high basic pH are difficult to deliver by TDDS.
• Drugs with large dose cannot be administered.
• Highly hydrophilic/highly lipophilic drugs are not suitable.
• High molecular weights drugs are also not suitable to formulate.

Over the past few years, commercial TDDS were developed for the treatment of
hypertension, angina pectoris, pain management, osteoporosis, hormone replace-
ment, smoking addiction, and many more. There are various types of patches with
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different medications available to treat different disorders for which conventional
routes are not apt for safety and patient compliance. Simplicity, effectiveness, and
superior patient compliance have driven innovators toward this remarkable delivery
platform in the twentyfirst century. Transdermal drug medication will modernize the
perception of “dose” of drug to be delivered. Physician will prescribe a certain “rate”
of drug, rather than at a certain “dose”. Systems will be planned to give variable rates
depending on the areas of administration [13].

8.1.2 Skin Physiology

The skin is the primary site of application for TDDS and also the main barrier of drug
permeation. Hence, understanding of skin physiology is very significant for the
realization of skin permeation of drugs. The skin of an average adult body measures
around 2 m2 of surface area and gets approximately one-third of the total blood
circulating through the body [14]. It is one of the most vast and easily reachable
organs on the human body. With a depth of only a fraction of millimeter, the skin
plays several functions as mentioned underneath:

• It provides protection to the underlying blood circulation from the external
environment.

• It acts as a barricade against physical, chemical, and microbial threats.
• It maintains body temperature.
• It regulates blood pressure.
• It defends the penetration of ultraviolet rays.
• It synthesizes Vitamin-D in response to sun exposure.
• It plays a role in wound healing and many more.

To understand the transportation of a drug candidate through this vast organ, one
has to study in detail the anatomical features of skin that influence the absorption of
the drug through its various layers. The comparative impermeability of skin is well-
documented [15]. However, illumination of the factors that are responsible for skin
impermeability has been investigated to use the skin as a route of drug
administration.

8.1.2.1 Structure of the Skin
The skin is a multifaceted organ composed of many histological divisions but in
general, it is described in terms of three major tissue layers (Fig. 8.1).

• The epidermis
• The dermis
• The hypodermis
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8.1.2.2 Epidermis
It is the superficial layer of the skin and it comprises of five microscopic layers:

• Stratum corneum—This is the outermost layer of the skin and the most impervi-
ous biological membrane and the composition of this layer influences the percu-
taneous absorption of drugs [16]. The thickness of the stratum corneum (SC) is
approximately 10–50 μ and this varies with the location in the body [17]. It
consists of compacted, flattened, dehydrated and keratinized cells, protein-rich
cells, and intercellular lipid layers. This layer is predominantly lipophilic barrier
that is particularly impermeable in a passive sense to hydrophilic drugs or charged
species [18, 19]. As the process of keratinization advances, the fatty acid in the
skin decreases in phospholipid content and there is a consequent increase in
triglycerides and sterol esters [20]. The intercellular lipids are rich in ceramides
(50%), fatty acids (25%), and cholesterol (25%), which provides the main barrier
function to the skin. Similarly, the water content of the SC is only 20% compared
to 70% in the physiologically active stratum germinativum and hydration of this
layer increases the permeability of drugs [21]. These cells are physiologically
latent and are continuously covered with the continuous replacement from the
underneath viable epidermal tissue.

• Stratum lucidum—these cells have highly acidophilic granules. The cells of this
layer are non-nuclear and help in keratin formation.

• Stratum granulosum (granular layer)—Here, each keratinocyte possesses baso-
philic keratohyalin granules and the protein filaggrin is a foremost constituent of
these granules. This protein is thought to attach to the keratin filaments to form
keratin complex. The cells synthesize lipids which are believed to act as intercel-
lular cement. Desmosomes and tonofilaments are also sometimes found in this
layer.

• Stratum spinosum/prickle cell layer—This layer has prickly manifestation at high
resolution due to fine cells which process desmosomes connecting one

Fig. 8.1 Schematic representation of skin
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polyhedral-shaped cell to another. They have numerous evenly spaced intercellu-
lar bridges called tonofilaments that are precursors of keratin.

• Stratum germinativum/stratum basale—It consists of a single layer of cuboidal
cells connected by hemidesmosomes to a thin basement membrane, which
detaches it from the underlying dermis. The cells of this layer undergo mitotic
cell division to form the next layer dermis.

8.1.2.3 Dermis
Below the epidermis exists the dermis that is a tough and resilient tissue. The dermis
provides nutriment to the epidermis and cutaneous appendages, namely sweat ducts,
sebaceous glands, and hair follicles. The thickness of the dermis is 500–3000 μ but it
does not provide a barrier to the absorption of drugs. The dermis layer is highly
vascular (blood flows at a rate of 0.5–1.5 cm3/h-cm2) and once the drug is able to
cross the SC, it easily passes through the dermal layer and is removed by the
cutaneous blood vessels [22].

8.1.2.4 Hypodermis
It consists of adipose tissue and acts to connect the dermis to the underlying tissues.
On average, the human skin surface has 40–70 hair follicles and 200–250 sweat
ducts per cm2 and these skin appendages have an important role in the permeation of
drug at an early and steady state. Such appendages cover only 0.1% of the total
human skin surface.

8.1.2.5 Reservoir Capacity of Skin
A number of researchers has reported the reservoir capacity of stratum corneum
[23, 24]. Both hydrophilic and lipophilic drugs may get entrapped in the matrix
structure of stratum corneum and diffuse out slowly due to low diffusivity and/or
strong binding [25]. This reservoir capacity of stratum corneum should be examined
before developing a transdermal therapeutic system as it affects the dynamics of
transdermal delivery. Consequences of drug binding often result in an increased
steady-state permeation [26].

8.1.2.6 Metabolic Activity of Skin
Epidermis is a viable, metabolizing membrane, which can be a significant metabolic
barrier for drug action. This concept has long been overlooked by highlighting the
barrier properties of the stratum corneum layer. However, topical bioavailability of a
drug depends on both skin permeation and cutaneous metabolism [27]. Beneath the
major passive barrier (i.e., stratum corneum) lies the viable epidermis and dermis and
of these two layers, the viable epidermis is metabolically more active [27]. For
instance, oxygen consumption was found to be 4–5 times greater in the epidermis
than the dermis in mouse [28] and in humans, the activity of catechol-o-methyl
transferase was 8.3 times greater in the epidermis [29]. The metabolic activity of the
skin is 10% as compared to the liver [30] but its significance to the systemic uptake
of some drugs cannot be ignored [31, 32]. Smith et al. [33] have demonstrated an
interaction between therapeutic agents and the skin and proposed a functional role
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for CYP2S1 in the metabolism of topical drugs and in intervening the response to
photochemotherapy in psoriasis. The distributions of hydrolytic enzymes which
metabolize prednisone 21-acetate (PNA) to prednisolone (PN) in human skin
imply that the allocation of hydrolytic activity in human skin may avert certain
substances from entering the systemic circulation in their unhydrolyzed form
[34]. Some enzymes involved in the metabolism of some compounds in the skin
of different species are listed in [35] Table 8.1.

8.2 Mechanism of Skin Permeation

The permeation of a drug through the skin involves the following steps:

• Adsorption of drug molecules on the surface of stratum corneum
• Penetration of drug molecules through the viable epidermis
• Uptake of the drug molecule by the capillary network in the dermal layer

Routes of penetration are shown in Fig. 8.2. Diffusion through the stratum
corneum is the rate-limiting step in the transdermal permeation of a drug though
the viable tissue layers and the capillaries are relatively permeable [36]. The stratum
corneum mainly consists of stratified flat corneocytes and the intercellular space
between the corneocytes is filled by lamella of lipid bilayers [37] and the intracellular
matrix is a mosaic of keratin filaments and interstitial lipids. The role of the
intercellular stratum corneum lipids in the barrier properties of the skin has been
demonstrated [38] and the permeability of a drug is explained in terms of diffusion
and uptake in the lipid and proteinaceous phases of the skin. The presence of the
lipid pathway and the proteinaceous pathway was assured by several techniques
using electron microscopy and laser scanning confocal microscopy [39]. The mech-
anism of permeation can involve:

• Transepidermal absorption: Way through epidermis itself
• Transfollicular or shunt pathway absorption: Diffusion through shunts, mainly

those offered by the relatively extensively distributed hair follicles and eccrine
glands [40].

Table 8.1 Predominant drug metabolizing enzymes present in the skin of different species

Species Organs Enzymes

Human Skin Hydroxylase

Hairless mouse Skin Ethoxyresrufin dealkylase

Neonatal rat Skin and liver Glutathione-s-transferase

Rat, neonatal rat, mouse, guinea-pig, human Skin and liver Arylhydrocarbon hydroxylase

Neonatal rat, hairless mouse Skin Ethoxycoumarin dealkylase
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In order to appreciate how the physicochemical properties of the diffusing active
ingredient and vehicle affect permeation across stratum corneum and thereby maxi-
mize delivery, it is crucial to determine the major route of drug permeation within the
stratum corneum. Conventionally, it was considered that hydrophilic chemicals
diffuse within the aqueous portions near the outer surface of intracellular keratin
filaments (intracellular or transcellular path) while lipophilic chemicals diffuse
through the lipid matrix between the filaments (intercellular route) [41].

8.2.1 Skin Pharmacokinetics

The drug applied mainly permeates by passive diffusion through the stratum
corneum, which is a rate-limiting step. Basically, molecular structure and molecular
arrangement of lipids of stratum corneum are two important regulators of barrier
function [42, 43]. Transfollicular or shunt pathway absorption also contributes to
permeation. So we can say that the migration of molecules from outside the body
toward the bloodstream is approximately governed by diffusion laws [41, 44]. Apply-
ing Fick’s first law, the skin can be considered as complex membrane and the

Fig. 8.2 Representation of routes of skin penetration: 1. directly across the stratum corneum; 2. via
the hair follicles; 3. through the sweat ducts
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quantity of drug ‘J’ diffusing per second per cm2 area in the direction ‘X’ equals the
diffusion coefficient ‘D’ times the concentration gradient (Eq. (8.1)) [45].

J ¼ �D dc=dx ð8:1Þ
During the diffusion of a substance in stratum corneum, the concentration

gradient in the diffusion area is decreased. This distribution gradient is defined by
Fick’s second law (Eq. (8.2)).

dc=dt ¼ D d2c=dx2 ð8:2Þ
Nevertheless, with very short distance, diffusion (and diffusion coefficient) can

be considered as constant. In addition, the relationship between drug concentration
in formulation and at the surface of the skin is a function of Km, the coefficient of
distribution between the vehicles and the membrane [46].

J ¼ Km DC=d ¼ KpΔC ð8:3Þ
Kp ¼ Km D=d ð8:4Þ

ΔC¼ difference in the concentration at the top and bottom of the membrane; d¼
thickness of the membrane; Kp ¼ permeability coefficient.

8.2.1.1 Mechanism of Rate-Controlled Transdermal Drug Delivery
A systematically active drug that will reach a target tissue far from the site of drug
administration on the skin surface must possess some physicochemical properties
that are capable of facilitating the sorption of drug by stratum corneum, the penetra-
tion of drug through the viable epidermis and also uptake by the capillary network in
the dermal papillary layer [41, 47]. The rate of permeation, dQ/dt, across the skin
tissues can be expressed mathematically by the following relationship [46]:

dQ=dt ¼ Ps Cd � Crð Þ ð8:5Þ
and

Ps ¼ Ks Dss=hs ð8:6Þ
Cd ¼ drug concentration on the stratum corneum, i.e., donor phase; Cr ¼ drug

concentration in the receptor phase, e.g., systemic circulation; Ks ¼ partition coeffi-
cient between the transdermal therapeutic system and skin tissue; Dss ¼ apparent
diffusivity for the steady-state diffusion of the penetrant molecule through the skin
tissues; hs ¼ overall thickness of the skin tissues.

Thus, permeability coefficient (Ps) is a constant if Ks, Dss, and hs are constant
under a given set of conditions. Therefore, to maintain a constant rate of drug
delivery, the drug concentration on the surface of stratum corneum (Cd) should
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always be greater than the drug concentration in the body (Cr), i.e., Cd > Cr, so
Eq. (8.5) reduces to

dQ=dt ¼ Ps Cs ð8:7Þ
In order to maintain Cd at a constant value, it is necessary to make the drug release

at a rate (Rr) that is either constant or much greater than the rate of skin uptake (Ra),
i.e., Rr>>Ra. By making Rr>>Ra, the drug concentration on the skin surface (Cd) is
maintained at a level equal to or greater than the equilibrium solubility of drug in
stratum corneum (Ce

s), i.e., Cd > Ce
s and the maximum rate of skin permeation

(dQ/dt) can be expressed as

dQ=dtð Þm ¼ Ps C
e
s ð8:8Þ

It can be concluded that the rate of skin permeation depends on two factors
primarily. One is the permeability coefficient and the other is the solubility of the
drug in stratum corneum. Thus, stratum corneum is the well-known rate-limiting
factor in skin permeation [48–50].

8.2.2 Dose Reduction Through TDDS

TDDS results in patient compliances through reducing unwanted harmful effects of a
drug due to reduction of frequent application and dose requirement [51]. The report
suggests that the dose requisite and manufacturing cost to vaccinate via skin is much
lower than the conventional way [52]. TDDS has also been exploited to use opioids
in decreased dose [53]. Manasadeepa et al. [54] studied the effect of pressure-
sensitive polymeric patches to combat periodontal diseases locally by decreased
dose compared to the conventional therapy. Damodharan and coworkers [55]
showed skin permeation of rosiglitazone from patch-based formulation could be
an alternative for reducing drug-related toxicities. Due to the sustained delivery of
drug and avoidance of initial hepatic first-pass effect, which is common to oral
delivery of drug, dose reduction is observed in TDDS [56].

8.3 Nanomedicine

Nanomedicine involves the intensive use of materials at nanoscale range; examples
of such materials are metals, polymers, etc. [57]. The aim of nanomedicine mainly
focuses on improving the quality of life of the patients as its (nanomedicine) less
toxic diagnostic and therapeutic interventions have made it more effective. A
constant emphasis has been laid on combining the diagnosis and therapy within a
single platform of nanomedicine and it is referred to as ‘nanotheranostics’ [58]. It is
framed to promote the crucial aspects of therapeutic drug delivery, such as evalua-
tion of pharmacokinetics and biodistribution of the drugs and also on the targeted
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accumulation of drugs to specific sites, as well as on detecting and diagnosing the
disease at an early stage for optimal treatment.

8.3.1 Therapeutic Purpose of Nanomedicine

Nanomedicine for therapeutic purposes is more beneficial than the standard drugs,
for several reasons such as (a) it minimizes the rapid degradation and elimination of
the drugs from systemic circulation, and also prolongs its retention in the blood-
stream; (b) it facilitates site-specific drug targeting to the desired organs and tissues;
(c) it reduces the dose-related adverse effects to nonspecific regions of the body; and
(d) it improves patient compliance by reducing the frequent administration of drugs,
which ultimately leads to the reduction of dose [59, 60]. Moreover, the nanocarriers
aids in overcoming the different barriers to the pathological sites for significant drug
delivery.

8.4 Nanomedicine in TDDS

Nanomedicine is an application of nanotechnology which is used to prevent and treat
diseases in the human body. It provides the use of sub-micrometer size particles for
proper diagnosis, prevention, and treatment of diseases and helps in the betterment
of human lives. In the last few years, numerous efforts and processes have been
carried out in the field of nanomedicine and various formulations have been done
which hold a considerable potential and enable more effective and less toxic
diagnostic and therapeutic interventions.

Various interdisciplinary researches have been carried out on nanomedicine
formulations which enlighten the efforts to combine diagnosis and therapy with a
single nanomedicine formulation.

In the past few decades, a novel drug delivery system came into light, which is the
transdermal drug delivery system. Drug delivery enhances the efficacy of drugs
through controlled release, by considering several factors like carrier system, route
of administration, and target of drug action. Transdermal drug delivery system is
undoubtedly one of the attractive routes, but the transport of drug through the skin
has been a challenge. To overcome this challenge, nanoparticulate or nanovesicular
system has been adopted for better skin permeation. Vesicular system such as
aspasomes, transethosomes, and nanoethosomes are used for delivering drug into
the deeper layers of the skin while liposomes showed inefficiency to cross the deeper
layers of skin.

8.4.1 Transethosomes

Ethosomes and transferosomes together comprise transethosomes. Since the
liposomes are incapable of crossing the deeper layers of the skin, they tend to get
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accumulated on the superior layer of stratum corneum. To improve skin permeation,
liposomes are added with edge activators, namely Span 80, Tween 80, Span 25, and
sodium cholate, which are named as transferosomes. Ethosomes are another vesicu-
lar system which is composed of phospholipid, ethanol, and water [61].

8.4.2 Nanoethosomes

As we have discussed, ethosomes are noninvasive carriers that help the bioactive
agents to penetrate into the deeper layers of the skin as well to reach the bloodstream.
Ethosomes are composed of phospholipid, ethanol, and water and comprise various
sizes. Ethosomes of nanometer size are called nanoethosomes. A high content of
ethanol when present provides a negative charge on the surface of vesicles which in
turn promotes the reduction of its size [61].

8.4.3 Aspasomes

Aspasomes are multilayered vesicles formed by amphiphiles molecules, Ascorbyl
palmitate in combination with cholesterol and a negatively charged lipid, dicetyl
phosphate, for drug encapsulation [62, 63].

Physicochemical properties of nanocarrier systems determine the interaction with
biological systems and nanocarrier internalization of the cells. The main physico-
chemical properties that affect the cellular uptake are size, shape, and charge in the
surface and rigidity. There are various advantages and disadvantages of the trans-
dermal nanocarriers.

1. Nanoemulsions:-

Advantages:

• Nanoemulsions can be formulated as foams, liquids, creams, and sprays.
• They can be easily applied to the skin and are nontoxic, nonirritant.

Disadvantages:

• Surface charge has a marked effect on the stability.
• They are susceptible to Oswald ripening.

2. Nanoparticles:-

Advantages:

• They can be made through biodegradable materials.
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• They can include antibodies on their surface to reach out to the target organs.
• Both hydrophilic and hydrophobic drugs can be loaded in a nanoparticle.
• Because of their size, they are able to avoid the immune system.

Disadvantages:

• It is difficult to develop an analytical method for drug delivery.
• Not enough toxicological assessment has been done.

3. Liposomes:-

Advantages:

• Easy to manufacture and high biocompatibility.
• Liposomes increase the stability of protein.
• Controlled release based on natural lipids.

Disadvantages:

• When high-pressure homogenization is used, there is a decreased stability of high
molecular weight molecules.

• They are susceptible to physical instability.

4. Dendrimers:-

Advantages:

• They increase the stability of therapeutic agents.
• They are easily prepared and show increased bioavailability of drug.
• Dendrimers act as solubility enhancers and increase the permeation of lipophilic

drugs.

Disadvantages

• They have shown cellular toxicity.
• They are not good carriers for hydrophilic drugs.
• Cost of their synthesis is higher than other nanocarriers.

5. Transferosomes, Ethosomes:-

Advantages:-

• Biodegradable and low toxicity and easy to prepare.
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• They can encapsulate both hydrophilic and lipophilic moieties.
• They possess the ability to target organs for drug delivery.

Disadvantages:

• Formulations may be expensive.

6. Aspasomes:

Advantages:

• High skin retention of the drug.
• Less toxic.

Disadvantages:

• Formulations may be expensive.

There are many dermal and transdermal drug delivery systems (Table 8.2) which
have been licensed for the manufacture after passing through the regulatory approval
and trials. Currently available medications for transdermal delivery in the market
are well-documented in the literature [64].

In the field of novel drug delivery, vesicular carrier has become a highly interest-
ing topic which provides a bright application in the field of drug delivery. It provides
an ability to improve factors such as solubility, penetration, uptake as well as a better
carrier facility to ensure the stability of various kinds of drugs and proteins.

8.5 Different Formulations of Transdermal Drug Delivery

Skin being the largest organ of our body, it protects us as a physiological barrier from
different infections, environmental stress, like heat or cold, and permeates the
sensation with the help of nerve endings residing beneath the skin. If we go in detail
with the skin physiology, it may easily be speculated that just after the superficial
stratum corneum and epidermis layer, the blood vessels appear with their capillaries
in the dermis layer. The molecule having the potency to cross this physiological
barrier can even go to the systemic circulation easily. This basic thought inclined the
scientists to invent a new path of drug delivery into the system, as the conventional
oral administration has significant setback with poor bioavailability of the drug
molecule in the targeted tissue due to the hepatic first-pass metabolism process.
Aiming this target, the TDDS was emerged to improve the therapeutic efficacy,
homogeneous distribution, and reduce the amount and number of doses of drug.
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Table 8.2 Various Transdermal patches with their indications

Drug Trade name Specific use

Type of
transdermal
patch

Fentanyl Duragesic Used in case of moderate/severe pain Reservoir

Nitroglycerine Deponit Angina pectoris Drug in
adhesive

Minitran Prevents angina attacks (chest pain). Drug in
adhesive

Nitrodisc Prevents angina attacks (chest pain). Micro
reservoir

Transderm
nitro

Used to prevent chest pain in people having
coronary artery disease

Reservoir

Nitrodur Used to prevent attacks of chest pain but will
not treat an angina attack that has already
begun

Matrix

Diafusor Used to prevent chest pain in people with
coronary artery disease

Matrix

Nitroderm
TTS

Helps to prevent/reduce the frequency of
angina attacks

Micro
reservoir

Transdermal-
NTG

Used to prevent episodes of angina in people
having coronary artery disease

Reservoir

Nitro patch Used to prevent episodes of angina in people
having coronary artery disease

Reservoir

NTS patch Helps to quit smoking by replacing the
nicotine

Reservoir

Nitrocine Prevents angina attack in people having
coronary artery disease

Reservoir

Isosorbide
dinitrate

Frabdol tape Used for angina pectoris, myocardial
infarction

Matrix

Testosterone Testoderm
TTS

Hypogonadism in males Reservoir

Androderm Used for hormone replacement in men who
are incapable of producing enough
testosterone

Reservoir

Nicotine Nicotrol Smoking cessation Drug in
adhesive

Prostep Helps to quit smoking by replacing nicotines Reservoir

Nikofrenon Helps to quit smoking by replacing nicotines Matrix

Nicotinell Helps to quit smoking and also relieves
many withdrawal symptoms

Matrix

Habitraol Helps to quit smoking Drug in
adhesive

Clonidine Catapres-
TTS

Used in hypertension Membrane
matrix hybrid
type

Lidocaine Lidoderm Anesthetic Drug in
adhesive

(continued)
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Since the concept of TDDS emerges, the formulation to prepare the patch gets the
priority for the successful delivery of respective drugs.

8.5.1 Advancement of TDDS

The first-generation delivery systems have no patch at all, but apply a liquid spray,
gel, or other formulations on the skin surface. After application, it gets evaporated or
absorbed which delivers the small lipophilic drugs into the stratum corneum and
viable epidermis [65].

The second generation of TDDS was developed with the use of chemical
enhancers in the formulation of transdermal patches. The field of second-generation
TDDS has different technological approaches, like chemical enhancers, iontophore-
sis, and non-cavitational ultrasound. These kinds of delivery techniques have
advanced small molecule delivery for localized, dermatological, cosmetic, and
some systemic applications to improve in the field of clinical practice, but didn’t
impact optimum on the delivery of macromolecules [66–69].

The third or most advanced or modern generation of transdermal delivery system
is focused and successful to target the stratum corneum more efficiently than the
other generation systems to make a significant impact on TDDS. These systems have

Table 8.2 (continued)

Drug Trade name Specific use

Type of
transdermal
patch

Scopolamine Transderm-
Scop

Used in motion sickness Membrane
matrix hybrid
type

Hyoscine Transderm-
Scop

Used to prevent nausea and vomiting during
motion sickness or from anesthesia given
during surgery

Matrix

Acyclovir Supravir
cream

Used in case of herpes infection Matrix

Estradiol Vivelle Used in case of post menstrual syndrome Drug in
adhesive

Estraderm Used for short-term relief of symptoms of
menopause

Reservoir

Climara Used in treating certain symptoms of
menopause

Drug in
adhesive

Esclim Used to treat hot flashes and other symptoms
of menopause

Drug in
adhesive

Minoxidil 4% Nanominox Helps in hair growth promotion Matrix

Ethinyl
estradiol

Ortho Evra Used in post menstrual syndrome Drug in
adhesive

Many
ingredients

Cellutight
EF

Used as topical cellulite Matrix
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shown their capability of stronger disruption of the stratum corneum, protecting the
deeper tissues. The third-generation TDDS includes novel chemical enhancers,
electroporation, cavitational ultrasound, microneedles, thermal ablation, and
microdermabrasion. These modern techniques have shown to deliver
macromolecules including therapeutic proteins and vaccines.

8.5.2 Passive Delivery of Protein Drugs

The average molecular weight of protein drug is 53 kDa and hydrophilic in nature,
thereby antagonizing the Lipinski rules for efficient transdermal drug delivery
[70]. So, the minimum diffusion of protein drugs occurs through skin. Except the
chemical enhancer, all other approaches are mechanical approaches requiring force
to mediate penetration of proteins by crossing the stratum corneum to the viable
dermis layer of skin.

8.5.3 Iontophoresis

Iontophoresis is the medium to cross the physiological barrier, skin, especially the
stratum corneum, by involving the transfer of ions using an electric current. The
electric potential helps to increase the ionic movement across the skin [71]. Mecha-
nistically, the dislodge of the total amount of drug and its transportation occurs
depending on the concentration of the drug, ionic charges, intensity of applied
voltage, and the surface area of the skin contacted with the device [72]. In this
regard, it may be mentioned that when the current applies through the biological
membrane, the system is known as transdermal iontophoresis. It consists of two
opposite charge electrodes. These are applied on the skin surface that drives the drug
molecule carrying a similar charge as an active electrode by repulsion across the
skin. The amount of drug delivered by this method across the skin is directly
proportional to the applied electric charge and duration of application [71]. Recently,
the new technique of reverse electrodialysis (RED) with iontophoresis has emerged.
This technique produces energy from the mixture salinity gradient of different
sources of water (river or sea) through an ion exchange membrane [73, 74]. Recently,
a cheaper, ecofriendly, disposable RED-iontophoretic chip has been prepared by Lee
et al. [75].

8.5.4 Electroporation

In this method, short- and high-voltage pulses are used temporarily and reversibly
after the outer membrane protein–lipid bilayer texture of the skin [76, 77]. This
electrophoretic driving force forms electropores to increase the transdermal transport
for peptides, large proteins, DNA, and even peptide vaccine through the intact
skin [78].
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8.5.5 Cavitational Ultrasound

The generation of cavitation in the stratum corneum layer by the application of
ultrasound is known as cavitational ultrasound. The cavitational bubbles formed by
the ultrasound, concentrate the energy of ultrasound and thereby enabled effects at
the site of bubble activity [79, 80]. These bubbles oscillate and collapse at the skin
surface, generating localized shock waves. This allows liquid microjets directed at
the stratum corneum [81]. This is enough to alter the stratum corneum lipid texture to
increase the permeability without damaging the deep tissue. This may last for many
hours. The TDDS of lidocaine has been already approved [82]. A number of
experiments has been performed regarding TDDS of insulin, heparin, and even
tetanus toxoid vaccine [80].

8.5.6 Microneedles

This is another significant approach in TDDS. The very short needles called
microneedles are generally used to pierce the stratum corneum selectively to increase
the skin permeability of different small molecules, proteins, and medicines loaded in
nanoparticles. The hollow microneedles have also been used to deliver insulin and
vaccines in recent time. Few years back, an innovative approach has been evolved by
inventing the water-soluble polymer that made microneedles, encapsulating various
compounds within the needle matrix which gets dissolved within the skin within a
few minutes/without leaving any medical waste [83]. Pretreatment with
microneedles also makes faster diffusion of drug from patch into the systemic
circulation [84]. Many animal studies have been done on the use of solid and hollow
microneedles to deliver DNA vaccines against influenza, hepatitis B, Japanese
encephalitis, and anthrax [85]. Recently, the 3D printing or solid free-form fabrica-
tion by employing a virtual computer-aided design model has shown its advance-
ment in TDDS [86], but its use in clinical practice has not yet well been accepted and
recognized.

8.5.7 Thermal Ablation

In thermal ablation technique, the portion of the skin is exposed to high heat for a
fraction of a second to enhance the permeability of the stratum corneum. It selec-
tively heats locally the skin surface to about 100 �C for micro- to milliseconds to
generate the microscale perforations. In spite of the application of such heating, it
does not produce any damage in skin or generate pain. Recent studies provide
evidence of delivery of human growth hormone, interferon, and insulin by the
thermal ablation TDD techniques [87–90].
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8.5.8 Carrier Supportive Adjuvants

The use of carriers to deliver drugs transdermally has emerged as new therapeutic
tools in TDDS. The nanostructural carriers are being used in these techniques to
enhance the skin penetration capacity and deliver the drugs as nanomedicine. This
emerges as an attractive nanomedicinal approach in TDDS.

8.5.9 Peptide Chain-Mediated Delivery

Interestingly, the use of peptides as a carrier of drug delivery has been shown to
enhance the penetration properties via transdermal route. The peptides have the
advantages of diversity, capability of targeting specific tissue or cells, and feasibility
of conjugation with drug molecules [91]. There are two types of peptides, known as
cell-penetrating peptides and skin-penetrating peptides.

8.5.9.1 Cell-Penetrating Peptides
The cell-penetrating peptides are amphiphilic in nature consisting up to 30 amino
acids. Cohen-Avrahami et al. [92] have shown increased permeability about many
folds of diclofenac sodium and celecoxib when conjugated with HIV-TAT (human
immunodeficiency virus-trans activator of transcription) and catalase (TAT-CAT) at
its nine arginine residue (9Arg-CAT) and sprayed on the skin surface. They
penetrated with a potential therapeutic efficacy to the dermis layer [93]. Recently,
a novel approach toward the development of transdermal peptide-based cancer
vaccine has been initiated with OVA25-264 antigen with Antennapedia [94]. In
nonmelanoma cancer and skin infection treatment, a cationic antibacterial protein,
Melittin, was used for the abdominal stratum corneum for successful penetration into
the dermis [95]. Gennari et al. [96] interestingly have shown an initial failure of
coadministration of DRTTLTN (a synthesized heptapeptide) and unfractioned hep-
arin (UFH) on human skin to enhance the skin penetration. These occur due to the
high affinity of UFH for keratins. Further, when DRTTLTN was conjugated with
N-3-(dimethylamino propyl)-N’-ethylcarbodiimide hydrochloride and sodium
N-hydroxysulfosuccinimide, the penetration significantly increased many folds. In
addition, the transdermal formulation using cyclosporine A-conjugated with octa-
arginine to treat psoriasis has entered the clinical trial phase II and is a good example
of cell-penetrating peptide-based delivery [97]. These observations document the
capability of cell-penetrating peptides as a successful component of effective trans-
dermal formulation in TDDS.

8.5.9.2 Skin-Penetrating Peptides
The skin-penetrating peptides have usual size range 1000–1500 Da. They are
considered as safe and attractive nano-therapeutic alternatives as a carrier for both
small and large drug molecules to transport across the stratum corneum layer
[98]. They act as an adjuvant for enhanced drug delivery. The skin-permeating
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peptides are to some extent ironic in passive transport of protein and peptide drugs
[99–101].

8.5.10 Antimicrobial Peptide Magainin

Magainin is also known as pore (approx. 1 nm diameter)-forming peptide (23 amino
acid-long) of lipid bilayers of the skin. It is an antimicrobial peptide isolated from the
skin of Xenopus laevis (an African frog). It can electrostatically interact and has a net
charge of +4 which helps it to bind to negatively charged phospholipid membranes
[102]. Interestingly, this peptide cannot enhance skin penetration without a surfac-
tant for providing its optimum effect [102, 103]

8.5.11 Different Formulations in Transdermal Nanomedicine

The use of transdermal route for the administration of drug is always a challenging
task, for stratum corneum which acts as a natural skin barrier. Over the last few
decades, several nanoformulation-based approaches have been reported for the
effective transport of active drug molecules through the skin [104]. Among them,
lipophilic carriers (<600 Da) such as nanoliposomes, solid lipid nanoparticles
(SLN), nanostructured lipid carriers (NLC), aspasomes, and nanogel show ample
opportunity to easily penetrate through the stratum corneum into the deeper skin
layers [105]. These nanosize vehicles usually are capable to penetrate more easily
through the stratum corneum to form active depot locally, act as a locally active
depot, as a solubilization matrix or a rate-limiting membrane barrier for regulating
the systemic bioavailability of drugs.

Sinico et al. [106] investigated both unilamellar and multilamellar nanoliposomes
for the effective transdermal delivery of tretinoin. Accumulation of drug in various
skin layers was detected. However, no evidence was noted for the intact penetration
of liposomes through skin. The incorporation of ethanol in liposomal preparations
(ethosomes) has been reported to act as an efficient permeation enhancer for the
penetration of both hydrophilic and lipophilic compounds into the deeper epidermal
and dermal layers of the skin. In this context, L´opez-Pinto et al. [107] compared the
liposomal and ethosomal formulations for the dermal delivery of minoxidil. The
permeation pattern from both the formulations was studied by implementing
β-carotene as a probe. It was observed that the ethosomal formulations delivered
the fluorescent probe into the skin much more efficiently than the conventional
liposomes. The in vivo studies on the transdermal delivery of ethosomes also yielded
promising results in contrast with that of the liposomal formulations [108]. The same
group of authors also prepared ethosomes for the transdermal delivery of protease
inhibitor, indinavir. The incorporation of ethanol into the liposomal formulation
played a crucial role in reducing the particle size of the vesicles, thereby facilitating
its penetration into the skin to a greater extent [109].
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Solid lipid nanoparticles (SLNs) are another potential lipid-based nanocarriers for
actively transporting the drug molecules through the stratum corneum into the
deeper dermal layer. Kim et al. [110] developed cyclosporin A (CsA)-loaded solid
lipid nanoparticles for enhanced skin permeation. The skin penetration ability of the
SLN formulation was twofold greater than that of CsA-oil mixture. However, SLNs
possess some drawbacks such as limited drug payload. To overcome the hindrance,
nanostructured lipid carriers (NLCs) were designed for significant delivery via
transdermal route [111, 112]. The potential of NLCs was also evaluated for combi-
natorial treatment with two drugs for the treatment of psoriasis. A hydrophilic drug
(methotrexate) and a lipophilic drug (calcipotriol) were incorporated into the carrier
system. The amount of permeation of methotrexate through skin was 2.4–4.4 times
greater as compared to the control treatment. Moreover, very limited skin irritation
was noted by administering NLCs by a topical route, thereby indicating its suitability
for transdermal drug delivery [112].

Apart from the lipid-based nanodrug carriers, the other nanoformulations were
also reported by various researchers suggesting the capability for successful trans-
dermal delivery of active therapeutic compounds. The novel CaCO3 nanoparticles
were fabricated for the transdermal delivery of insulin. The prepared nanoparticles
provided sustained drug delivery for a prolonged duration, thereby restricting fre-
quent drug administration by painful injectable means [113]. The nanoparticulate
formulations are also effective in reducing the dose-related adverse effects of several
potent drugs. For instance, the topical administration of glucocorticoid drugs is
accompanied by several adverse effects such as skin atrophy, cutaneous reactivity,
and suppression of the hypothalamic–pituitary–adrenal axis. By incorporating the
drugs within the nanocapsules, their harmful effects were reduced to a greater extent.
Marchiori et al. [114] developed dexamethasone-loaded polymeric nanocapsules
and incorporated them within the hydrogel system in order to improve the therapeu-
tic efficacy of glucocorticoid in skin disorders such as psoriasis. Similarly, the
nanocapsules for topical delivery are also found to be effective in improving
solubility, chemical stability, and photostability of retinoids (e.g., tretinoin)
[115]. The nanoparticles composed of amphiphilic block copolymers are also
shown to penetrate the skin to a much greater extent than the conventional
formulations. The D,L-tetrahydropalmatine (THP)-loaded amphiphilic poly{[-
α-maleic anhydride-ω-methoxy-poly(ethylene glycol)]-co-(ethyl cyanoacrylate)}
(PEGECA) graft copolymer-based nanoparticles were delivered via transdermal
route by both appendages as well as epidermal routes [116]. The stimuli-responsive
nanogels are another beneficial approach for smart delivery of drugs by transdermal
route [117, 118]. The methotrexate-loaded nanogel constituted with co-polymerized
N-isopropylacrylamide and butylacrylate was synthesized and characterized. An
alteration in the temperature of nanogel during its penetration through skin promoted
its de-swelling and expulsion of the drug in situ. Further, the addition of Na2CO3

enhanced the solubilization and release of the drug, thereby enhancing the concen-
tration gradient, flux, and minimizing the production of prostaglandin PGE2 [118].

Self-assembled aspasomes are another promising drug delivery carrier for trans-
dermal delivery. Ghosh et al. [62] developed methotrexate aspasomes and loaded
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into hydrogel for the management of rheumatoid arthritis. When methotrexate-
loaded aspasome hydrogel was transdermally applied for 12 days, significant
reductions in rat paw diameter, SGOT, SGPT, TNFα, IL β, cartilage damage,
inflammation, panus formation, and bone resorption as compared to arthritic control
rats were observed. On the other hand, Sengupta et al. [119] developed nanosize
particles of diclofenac diethylamine (~10 nm) in situ during the preparation of
hydrogel for transdermal delivery. An improved skin permeation of drug was
observed from the hydrogel (composed of PVA and carbopol 71G) in comparison
to the hydrogel containing microsized drug particles (Table 8.3). Moreover, in vivo
studies revealed that the systemic drug concentration in case of experimental hydro-
gel was much improved over the commercial hydrogel formulation.

8.6 Drug Targeting and its Importance

Targeted drug delivery is to deliver medication to a patient to provide enhanced drug
concentration in the targeted parts of the body compared to the other parts
[139]. Targeted drug delivery system offers several advantages such as prolonged
and more localized drug action to the targeted site. The conventional drug delivery
system dictates the absorption of the drug and its distribution in a nonspecific way
nearly to all organs or tissues across, whereas the targeted drug release system
releases the drug at a specific site. The targeted release system is distinctively
advantageous as it provides in decreased frequency of the dosages taken by the
patient, a more uniform effect of the drug, lessening of drug side effects, and reduced
fluctuation in circulating drug levels. Nanocarriers used through TDDS have been
used in different diseases (Table 8.4).

Drug targeting may be categorized into two common methods: active and passive
targeting [140–142]. Active targeting dictates the delivery of drugs to a target cell
type using specific interactions with some cell surface proteins or other specific
molecules at the target site(s). Such types of interactions include antigen-antibody
and ligand-receptor binding. On the other hand, some physical parameters such as
magnetic fields, pH of the microenvironment of the tissue, and temperatures may be
utilized for active targeting of drugs. Several vehicles that are useful for this
methodology include antibodies, liposomes, transferrin, ferrite-containing, and
thermo-responsive carriers.

Table 8.3 Different types of transdermal drug nanocarriers

Type of nanocarriers Drugs used References

Liposomes Butyl paraben [120, 121]

Transferosomes
(ultradeformable
liposomes)

Eprosartan mesylate, clindamycin, asenapine malate,
diclofenac, cyclosporin A, levonorgestrel, insulin

[122–127]

Nanoparticles HRP and β-gal with gold nanoparticles, ovalbumin
antigen with silver nanoparticle

[128, 129]

HRP horseradish peroxidase
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In the case of passive targeting, the physical and chemical properties of carrier or
vehicle systems boost the target/nontarget ratio of the amount of drug delivered by
adjusting these properties to the physiological and the histological characteristics of
the target and nontarget tissues, organs, and cells. For this type of drug delivery
technique, several vehicles are used and they include synthetic polymers, some
natural polymers (such as albumin), liposome, nanoparticles, microparticles, and
polymeric micelles.

8.7 Nanoformulation-Mediated Site-Specific Delivery of Drug
Through Transdermal Drug Delivery

Successful skin penetration of a drug or a gene to its site of action has to face
different challenges such as lack of proper drug delivery system,
non-biocompatibility, immune system-mediated rejection, and unstable pharmaco-
kinetic profile. To overcome these challenges, various physical and nonphysical
techniques are used for delivering the therapeutics at the target site during transder-
mal drug delivery system.

8.7.1 Physical Techniques

Physical methods are mostly based on ablation of the stratum corneum layer or
application of an external force to facilitate drug penetration. Some successful
attempts have been made with the application of physical methods such as ultra-
sound, laser, electroporation, iontophoresis, microneedles, etc. [143].

Table 8.4 Transdermal nanocarriers in different diseases

Disease Drugs Nanocarriers References

Psoriasis and atopic
dermatitis

Methotrexate,
cyclosporin A

Ethosomes [108]

Psoriasis and acne 5-Aminolevulinic
acid, psoralen,
tretinoin

Ethosomes, liposomes [130–132]

Anti-inflammatory,
anti-apoptotic,
antioxidant

Curcumin Propylene glycol-containing
liposomes, ethosomes,
liposomes

[133, 134]

Skin cancer Paclitaxel Ethosomes [135]

Rheumatoid arthritis Meloxicam Transferosomes, liposomes,
methosomes

[136, 137]

Diabetes mellitus Insulin Transferosomes [138]

Parkinson’s disease Trihexyphenidyl-
HCl

Ethosomes [137]
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8.8 Nonphysical Techniques

Currently, nanocarriers have been tried and tested to overcome the skin barrier to
achieve optimum transdermal permeability and site-specific delivery of their thera-
peutic cargo. Nanocarriers have the potential to encapsulate different types of drug
targeting for their tiny size and superior surface chemistry property. Moreover, with
their tunable surface layer property, a controlled drug release pattern can be
maintained. Thus, they are being investigated to enhance drug penetration across
the skin to deliver drugs at the specific desired part of the body.

8.8.1 Site-Specific Delivery of Drug for Cutaneous Disorder

8.8.1.1 Melanoma
Melanoma is a kind of skin cancer that originates in melanocytes and categorized
with the development of malignant cells in the skin tissue. Existing topical therapy
with semi-solid formulation of 5-fluorouracil (5-Fu), diclofenac, imiquimod, and
photodynamic therapy (PDT) [144] comprise poor penetration pooled with unsatis-
factory drug concentration of 5-Fu at the target sites. Misak et al. [145] developed
target-specific magnetic NP composed of albumin, PLGA, and 5-Fu, which showed
superiority in treating skin cancer over the previous one. A recent study also
demonstrates that the cationic liposomal formulation of curcumin and STAT3
siRNA with iontophoresis application significantly ( p < 0.05) inhibited cancer
cell growth and death in contrast to free drug molecules [146]. Niu et al. [147]
studied the delivery of plasmid DNA (pDNA) intended for melanoma treatment by
means of a peptide and cationic poly-(ethyleneimine) attached with gold NP (AuPT),
which packed down pDNAs into cationic complexes [147]. These AuPT/
pDNAMi221 particles were seen to be efficient carriers of pDNAs and can be
utilized as a prospective novel drug delivery system to specifically deliver the
therapeutics to melanoma cells overturned not only progression of melanoma but
also metastasis-related advanced melanoma [147].

8.8.1.2 Psoriasis
Psoriasis is characterized by lofty itchy plaques along with silvery scales and red
lesions on skin surfaces. Although the exact pathology following psoriasis is still not
very clear, but the known part is that a wide range of inflammatory cells such as
T-cells and dendritic cells are responsible for hyperproliferation of keratinocytes.
Thus, demarcation of keratinocytes and skin barrier deformities occur in psoriasis
[148]. Nanoparticles conjugated with cell targeting moieties in TDDS have been
investigated comprehensively to treat psoriasis. Boakye et al. [149] recently
formulated a pyrrolidinium conjugated lipid nanocarrier (CYnLIP) drug delivery
system. Pyrrolidinium is used to interrupt skin barrier function, where permeation
enhancing lipid nanocarriers are designed successfully to encapsulate erlotinib and
IL36α siRNA to overcome its delivery constraint posed by aqueous siRNA and
erlotinib. The designed nanoformulation exhibited around 40-fold superior skin
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retention than the conventional delivery system [150]. This novel nanocarrier is
offering a smart dual drug delivery approach for psoriatic plaques in mice for better
therapeutic response compared to available conventional formulations consisting of
individual agents by reducing dermal cytokine infiltration [149]. Another recent
study showed that encapsulated lipophilic curcumin into PLGA NP to deliver the
(Cur-NP) and had a superior penetration property than curcumin gel [151]. In vivo
studies revealed that the Cur-NP delivery system reduced the symptoms of psoriasis,
as well as the development of plaque psoriasis, erythema, and skin thickening [151]
due to their preferential delivery of the therapeutics to its target sites.

8.8.1.3 Alopecia
Androgenic alopecia (AGA) is a general form of hair loss that happens when a
certain malfunction in immune system attacks hair follicle or it may be brought on by
severe stress. Potential of nanoparticles through targeting hair follicles for the
therapy of alopecia was explored. Among the two types of 5α-reductase, Type
2 5α-reductase activity has been observed in the hair follicle of AGA patients.
Type 2 5α-reductase inhibitor finasteride and hydrophilic compound minoxidil are
responsible for the proliferation of dermal papilla cells (DPC) by facilitating a
vasodilatory effect in the hair follicles for treating alopecia [152]. Research on
delivery of FNS by TDDS is very much encouraged since the oral administration
of FNS has a variety of side effects like impotence and erectile dysfunction, etc. A
study was carried out by Roque et al. for developing FNS-loaded PLGA NP and
incorporation of these NP in different types of topical formulation (shampoo, lotion,
and solution) [153]. No toxic effects were observed in the S. cerevisiae model. In
another study, Gomes and his associates formulated a nanostructured lipid carriers
(NLCs) consisting of both minoxidil and FNS with a mean size of 200 nm by means
of ultrasonication method [154]. A zeta potential value of approx. �30 mV was
observed and a storage period over 28 days showed no significant deformation in the
nanoformulation. Although the nanoparticles had desirable physical characteristics,
an inadequate quantity of NP was available at the target tissue. For this reason,
Hamishehkar and his associates performed another study where flutamide-loaded
SLN was examined in exercised rat skin and male hamsters in vitro and in vivo,
respectively [155]. It was concluded that with the SLN formulation, drug is localized
more in the skin with lesser quantity into the receptor compartment in vitro as
compared to the hydroalcoholic solution [155]. In vivo results after 45 days showed
that the flutamide-loaded SLNs augmented the number of hair follicles in contrast
with hydroalcoholic solution in hamster, demonstrating that flutamide-loaded SLN
has potential for the treatment of androgenic alopecia due to its preferential delivery
at the target site with a desirable concentration [155].

8.8.1.4 Wound Healing
The complex process of cutaneous wound healing is regulated by following four
major phases: inflammation, cellular proliferation, hemostasis, and remodeling
[156]. Deregulation to any of these phases ultimately results in chronic wounds
with the consequence of delayed wound healing, which are commonly associated
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with diabetes, obesity, and vascular diseases. MicroRNAs (miRNAs) are noncoding
RNAs accountable for post-transcriptional regulation of gene expression and have a
role in wound healing [157]. In a study, Ghatak et al. [158] developed
antihypoxamiR functionalized gramicidin lipid nanoparticles (AFGLN) which
showed to model decrease miR-210 levels in murine and provide augmented
ischemic wound healing [158]. In another recent study, Xiao et al. [159], have
formulated folic acid-modified copper-based metalorganic framework nanoparticles
(F-HKUST-1) and examined their cytotoxicity, in vitro cell migration and dermal
wound healing rates in diabetic mice. The cytotoxicity was found to decrease due to
the insertion of folic acid into the NP, which also offered the slower release of copper
ion. Thus, it encouraged the rejuvenation of dermal tissue [159]. FHKUST-1 NPs
showed much accelerated wound healing process by promoting epithelial tissue
revival as well as renewal. Krausz et al. [160] encapsulated curcumin in the course
of a sol–gel-based polymerization technique, which is a wet-chemical method
providing hydrolysis and consequent polycondensation to make a gel-like substance
on skin and offered superior wound closure. Thus, site-specific delivery of drug
using transdermal route could also be useful in the wound healing process.

8.8.2 Treatment of Non-Cutaneous Disorders

A myriad of research works is being published mentioning of the encapsulation of
drug or gene into phospholipid-based vesicles through transdermal route for the
treatment of systemic diseases. The following examples are not exhaustive.

8.8.2.1 Rheumatoid Arthritis
Non-steroidal anti-inflammatory drugs (NSAID) are the most popularly prescribed
drug in pain management as the first-line therapy. But their numerous side effects
associated with systemic administration pushed researchers to develop formulations
for transdermal delivery systems to be applied directly on the skin. Accordingly,
numerous approaches are being investigated on NSAID skin delivery, such as
transfersomes (TFS), liposomes, and menthosomes (MTS). These different
approaches were studied and compared by Duangjit and his coworkers as carriers
for meloxicam (MX) [136]. The study suggested that ultra-deformable and deform-
able liposomes (MTS and TFS) had a potentiality as transdermal drug delivery
carriers for MX. Glycerosomes, glycerol-containing liposomes, were published in
the literature as a competent delivery system for dermal and transdermal delivery of
diclofenac [161].

8.8.2.2 Parkinson
Trihexyphenidyl HCl (THP)-loaded ethosomes were formulated as a novel approach
for the treatment of Parkinson’s disease [137]. THP poses a short half-life and
therefore, it requires a frequent dosing that causes severe side effects. THP is an
ionizable molecule with partial skin permeation. In this circumstance, Dayan and
Touitou tested ethosomal formulation of THP and showed a percutaneous flux
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87 and it was 4.5 times higher than those of liposomes and hydroethanolic solution,
respectively. Skin retention of THP upon 18 h exposure also increased compared to
hydroethanolic solution [137].

8.8.2.3 Diabetes Mellitus
Insulin-loaded transfersomes were shown to deliver the therapeutic protein through
the intact skin with a reproducible drug outcome which was very much similar to that
of subcutaneous insulin [138]. Thus, transfersomes stand for promising noninvasive
systems for insulin delivery improving patient compliances. A glucose-mediated
insulin delivery system was found to be extremely suitable for diabetes diagnosis
dependent on the concentration of blood glucose in the body. Zhang et al. [162]
formulated a novel microneedle (MN) delivery device incorporated with insulin and
H2O2-responsive mesoporous silica nanoparticles (MSNs) to attain fast and painless
administration through skin.

A number of transdermal nanoformulations are commercially available in the
market or are under clinical development. Moreover, various patents are also
available in this field. The different transdermal nanomedicine in this regard is
tabulated in Table 8.5.

8.8.3 Advanced Cell Targeting by CPPs (Cell Penetrating Peptides)

The discovery of CPPs was studied with TAT, a trans-activating factor belonging to
HIV virus and such peptides have been insighted for transdermal delivery. Assorted
types of CPPs have been attached to different types of (oligo) nucleotide or gene
carriers to boost their competence to internalize into the cells. Although CPPs have
been studied widely, molecular action pathway is not fully understood yet.
Boisguérin et al. [173] discussed the application of CPPs in gene delivery in detail.
CPPs have been applied also in amalgamation with the newly revealed gene delivery
systems such as Transcription activator-like effectors nucleases (TALENs) [174]
and CRISPR/Cas9 system for the idea of genome editing [175]. It has been
demonstrated that liposomes conjugated to an arginine-rich CPP have improved
permeability and afterward proved drug delivery superiority in a transdermal drug
delivery experiment [173]. This type of CPP can even boost the skin permeation of
naked drugs. In a recent study, a novel type of CPPs (IMT-P8) was attached to KLA
(a pro-apoptotic peptide). The KLA peptide conjugated with CPP had appreciably
higher skin permeation [176]. CPPs can raise the transdermal permeation rate of
oligonucleotides. For example, TAT was conjugated to gold/PEI particles to increase
the transdermal gene delivery for a topical application [147]. Nowadays, another
group of peptides (SPACE peptides) has been investigated through phage display,
which is getting enormous attention due to its skin penetration competence. SPACE
peptides have effectively been applied for transdermal drug delivery along with the
transdermal oligonucleotide delivery [177, 178].
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Table 8.5 Various patented products/products in clinical trials/commercial products on transder-
mal nanomedicine

Drug/active
ingredients Delivery system

Status (patents/
clinical trials /
commercially
available)

Outcome/
indication References

EstrasorbR;
(Novavax, Inc.,
Malvern,
Pennsylvania;
Esprit Pharma,
East Brunswick,
New Jersey;
Graceway
Pharmaceuticals,
Bristol,
Tennessee)

Micellar
nanoparticle
estradiol
emulsion
(MNPEE)

FDA approved An alternative to
current estradiol
transdermal
formulations with
an improved
profile of local
unwanted effects
(i.e., skin
irritation,
dryness).

[163]

Insulin delivery Using the MN
system was
conducted and
completed in
2013

A phase III
clinical trial

The primary
endpoint was
determination of
Tmax of insulin

[164]

ADAM
zolmitriptan

Microneedles A phase III
Clinical trial

Migraine [165]

Triamcinolone
acetonide

Suprachoroidally
administered
microneedles

A phase III
Clinical trial

Macular edema
associated with
non-infectious
uveitis.

[166]

Chinese medicine Ethosome gel
patch

CN103536700
A (patent)

Strong analgesic
action

[167]

Nano repair Q10
cream and nano
repair Q10 serum
(Dr. Kurt Richter
Laboratorien
GmbH, Berlin,
Germany)

Lipid
nanoparticles

Commercially
available
cosmetics

Antiageing [168]

Photoactive drug
component

Targeted delivery
of nanoparticles
to skin surface

WO
2015031189
A1, 2015
(patent)

Improved drug
transport through
skin in atopic
dermatitis

[169]

Antioxidants and
anti-inflammatory
agents

Chitosan
nanoparticle for
skin targeted drug
delivery

WO
2015072846
A1, 2015
(Patent)

Treating atopic
dermatitis

[170]

Paclitaxel Ethosome gel CN102579323,
2012 A (Patent)

Improved
percutaneous
permeation

[171]

Acyclovir Ethosome CN102133183,
2011 A (Patent)

High stability and
narrow particle
size distribution

[172]
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8.9 Conclusion and Future Perspectives

The technology of nanomedicine has emerged as a novel platform which can be
explored for the transdermal delivery of various potent drugs and other bioactive
molecules. The advancement in the development of drug nanocarriers with more
effective therapeutic potential and less side effects, and significant implication of
nanomedicine in drug delivery can be utilized for transdermal delivery as it could
help in overcoming the skin barrier and penetration of drug carrier into the deeper
layers of skin and facilitate the drug into the systemic circulation for targeted and
prolonged action. It is well known that the transdermal route is not suitable for
administration of all class of drugs, yet the current research in nanomedicine
promises an incredible hope and future of therapeutics via transdermal route. The
transdermal nanocarriers have been reported to incorporate hydrophilic as well as
lipophilic drugs for the treatment of many chronic diseases such as diabetes, cancer,
neurological diseases, various dermatological disorders, and many more. For
diseases located in the deeper tissues such as the brain, or in case of carcinoma, a
specific targeting moiety coupled with the nanocarriers needs to be explored. The
noninvasive transdermal nanoformulations are more advantageous to conventional
means since they provide better patient-compliance and also reduce the frequent
dosing of drugs. Currently, a number of these carriers is under extensive exploration
for elucidating their transport path and mechanism underlying their fate in the human
body. In the near future, much more investigations are warranted for the develop-
ment of more efficacious transdermal nanoformulations for clinical use. Moreover,
the safety profile of transdermal nanomedicine needs to be carefully investigated
before their transition from laboratory scale to patients.
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Abstract

Mesoporous silica nanoparticles (MSNs) are outstanding nanocarriers for drug
delivery, imaging, and other biomedical applications. MSN features a well-
defined mesoporous structure with tunable pore size, pore volume, high surface
area, and high drug loading capacity and offers external and interior surfaces for
functionalization over conventional materials. Functionalized MSNs respond
upon stimuli, such as pH, redox, light, ultrasound, magnetic, enzyme, or their
combinations, which have transformed their applications in biomedical engineer-
ing. Their unique mesoporous structure is capable of delivering an assortment of
therapeutic regimens to alleviate the progress of diseases including cancer and
inflammatory responses. In this chapter, we highlight recent advances in biomed-
ical applications of multifunctional MSN including (1) MSN-based therapeutic
delivery; (2) MSN-based bioimaging applications; (3) MSN-based materials for
tissue regeneration; and (4) MSN-based antimicrobial against infections.
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9.1 Introduction

Mesoporous silica nanoparticles (MSNs) have been established as innovative inor-
ganic nanoplatforms with substantial attention in biomedical applications [1–
3]. Advances in the control of architecture and surface functionalization of inorganic
mesoporous silica-based nanomaterials have opened innovative potential to biotech-
nological and biomedical applications. Although a plethora of nanomaterials offer
optimum physio-chemical properties, MSNs stand out owing to their exemplary
physio-chemical properties that include controllable size, morphology, composition,
tailorable pore size, pore structure, large surface area with dual functional surfaces
(internal cylindrical pore surface and exterior particle surface), dispersibility, surface
chemistry, etc. [4, 5]. In addition to physio-chemical properties, their applicability
either in drug delivery or in diagnostic application largely depends on the porosity
that accounts for the delivery of cargo without leakage to the target biological site
than other nanoparticles such as polymeric or liposomal nanoparticles. The tunable
pore size can even accommodate large molecules, DNA, or proteins. Their attention
to biomedical application relies on properties including excellent in vitro and in vivo
biocompatibility, controllable degradability under biological surroundings, and
rapid clearance and excretion [6–8]. MSNs are versatile with respect to self-
transformation to core shell MSNs when other nanomaterials, such as gold, silver,
semiconductor quantum dots (QDs), upconversion nanoparticles (UCNPs), and
magnetic nanoparticles (MNPs), are sheltered and upgrade themselves to hybrid
MSNs offering multifunctional properties (Fig. 9.1).

Fig. 9.1 Multifunctional
MSNs
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9.2 Potential Biomedical Application of MSNs

9.2.1 Multifunctional MSN for Delivery of Therapeutic Agents

MSNs present several advantages to function as perfect nano-based drug carriers
owing to their exceptional properties including tunable pore size, superior loading
capacity, chemical stability, large surface area, surface functionality for specific cell
targeting, biocompatibility, and controlled release of cargo with or without stimuli.
The large surface area and controllable porosity of MSNs have been exploited
extensively to encapsulate wide-ranging bioactive molecules including chemothera-
peutic drugs, peptides, enzymes, siRNA, DNA, and growth factor for different
biomedical applications. MSNs offer researchers the flexibility to design them for
drug encapsulation/release/delivery applications with the prospect to functionalize
the surface with targeting moieties for recognition of the target site where the
encapsulated drug exerts its action without being released elsewhere, capping
ligands to avoid the early diffusion of loaded drugs and with stimuli-responsive
groups that can be used to trigger to control the release of loaded bioactive
components.

The cargo (therapeutics) loading approaches in MSN depend on the pore size,
surface area, pore structure (engineering framework of MSNs), and response to
signals either internal (pH, redox, and enzymatic stimuli) or external (light, heat,
magnetic, and ultrasound stimuli). MSNs can accommodate drugs (hydrophobic or
hydrophilic drugs) through noncovalent bonding and without the involvement of
pore capping [9, 10]. However, leakage of drug limited their application and
approaches to overcome drug leakage strategies were adopted. The porous outer
surface was engineered for controlled release of cargo via functionalization with
molecular or supramolecular nanovalves/nanomachines, nanoparticles, or coating
with protein, polymer, or lipid. The reported nanomachines that blocked the diffu-
sion of cargo include rotaxane, pseudorotaxane, molecular nanovalves, and cleav-
able molecular bridges and triggered the release of cargo upon either external or
internal stimuli [11–14]. Nanoparticles (gold nanoparticles, QDs, and MNPs) with
the diameter ranging from 2 to 10 nm were grafted via chemical bonds onto porous
MSNs and controlled cargo release from MSNs [15–17]. The exterior surface of
mesoporous MSNs was functionalized with proteins/polymers or lipid coatings, and
the release was based on stimuli. Bovine serum albumin was coated over MSNs, and
the change in pH destabilized the electrostatic interaction that triggered the release of
cargo [18]. Similarly, when insulin was used as coating onto MSNs, glucose
concentration determined the release of cargo from MSNs [19]. Polymer-coated
MSNs performed the release of cargo by the change in confirmation of structure or
degradation of the polymer upon trigger (heat, light, pH, etc.) [20–23]. Lipid-coated
MSNs released cargo upon endocytosis that supported the disruption of lipid coating
from MSN [24].

pH-responsive controlled drug delivery systems have been widely studied as
human body reveals differences in pH. In tumor cells owing to the high glycolysis
rate, the pH is acidic than normal tissue. The pH value of cellular compartments in
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cancer cells is further lower in endosomes ranging from 5.5 to 6 and in lysosomes
from pH �4.5 to 5. The pH variation is beneficial for the development of
pH-responsive MSN-based nanosystems [25, 26]. In most of the studies,
pH-sensitive linkers such as acetal, hydrazine, ester, or boronate ester bonds are
cleaved under low pH for developing pH-responsive MSNs [27–34]. pH-sensitive
polymer shells are also studied, which undergo conformational transformation with
the variation of external pH owing to the change in charge, solubility, etc. [35–38]
(Table 9.1).

Redox potential existing between cellular microenvironments (extracellular and
intracellular) and between healthy and tumor tissues has been recognized as internal
stimuli for drug release. Glutathione (GSH) protects cells from the damage of
reactive oxygen species (ROS), and the intracellular concentration of GSH is 103

times than the extracellular matrix. However, in cancer cells, GSH concentration is
nearly four times than healthy cells and, therefore, in cancer cells, GSH serves as an
internal trigger for drug release. The disulfide bond-based surface modifications with
bulk gatekeepers are generally used in redox-responsive drug release. As disulfide
bonds are sensitive to GSH, design of nanoconjugates with disulfide linkages can
display redox sensitive drug release. GSH-sensitive linkers are often used to attach
nanomaterials or other molecules (QDs, Au, magnetic nanoparticles, peptides,
cyclodextrin, cytochrome c, etc.) onto the surface of MSN [16, 39–46]
(Table 9.1). At the target site, the higher concentration of GSH results in the cleavage
of disulfide bonds and opens the pores, resulting in the release of drugs. Redox-
responsive MSNs for delivery of chemotherapeutic drug are a promising strategy in
cancer therapy for the distribution of local concentration of drugs without leakage.

The progression of cancer is often associated with overexpression and
dysregulation of many enzymes, including esterases, matrix metalloproteinases
(MMPs), and others [2]. Also, several enzymes are being expressed at a high level
in tumor tissues than in normal cells. Therefore, endogenous enzymes expressed in

Table 9.1 Stimuli responsive for drug delivery using MSNs

Type Mechanism Reference

pH responsive Acidic pH in the endosome and lysosome [25, 26]

Acid cleavable linker/bond (acetal bond and acetal linker) [27–34]

Polymer gatekeepers [35–37]

pH responsive self-destructive polymers [38]

Redox responsive Cleavage of disulfide bond [39–46]

Enzyme
responsive

Peptide sequence cleavage
Enzyme degradable polymer

[47, 48]
[49–52]

Magnetic
responsive

Temperature increase upon alternating magnetic field [53, 54]

Light UV-vis (photoresponsive polymer gatekeeper and
photoresponsive linkers)
NIR absorbing materials, and NIR to thermal conversion

[55–58]
[59–66]

Ultrasound
responsive

Ultrasound-sensitive material and cavitation [67–69]
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tumor cells are being exploited as an internal trigger for drug release. Owing to their
selectivity and specificity, enzyme-responsive MSNs have been designed. Coating
of MSNs with gatekeepers comprising protease-sensitive sequences or enzyme-
sensitive linkers is often employed to achieve enzyme-responsive release [47–52]
(Table 9.1). In most studies, the pores of MSNs are caped with peptides or lipids that
are removed in the presence of enzymes. MMP2-sensitive linkers are used as triggers
for drug release owing to the enzymatic hydrolysis efficiency [50].

Extrinsic stimuli (magnetic field, light, or ultrasound) are employed to activate the
discharge of drugs upon demand from MSNs. The major advantage of external-
triggered drug release systems is the potential to turn on and off based on demand
and simultaneous diagnostic applications facilitating multifunctional properties to
MSN-based nanocarriers. Magnetic-responsive MSNs are extensively studied owing
to their intrinsic magnetic behavior to support magnetic resonance imaging (MRI)
and magnetic hyperthermia (heat generation) in the presence of alternating magnetic
fields (AMFs) for the controlled release of loaded drugs. The magnetic particles have
the potential to transform their magnetic energy into thermal energy owing to Neel
and Brownian effects. The heat generated by MNPs in the presence of AMF also
serves as a trigger for on-demand drug release. Among the magnetic nanoparticles,
superparamagnetic iron oxide nanoparticles (SPIONs) are widely studied magnetic
nanoparticles. In most of the studies, superparamagnetic Fe3O4@SiO2 functions as a
core that is surrounded by mesoporous silica shell, which in turn loaded with drugs
[53, 54]. Other possible combinations of MSN and MNPs are the hollow structure
comprising MNPs as core and thin mesoporous silica layer as shell, which exhibits a
higher saturation magnetization value than with the intact middle silica layer; MNPs
embedded in mesoporous silica nanospheres; and MNP-capped mesoporous silica
through either chemical linkers or polymers [70–74]. The accumulation of magnetic
MSNs and release of drug from MSNs in the target site (tumor) enhance upon
alternative magnetic field. The parameters, including intensity of magnetic field,
concentration of MNPs, and distance of magnetic field from the cells, can affect the
buildup of nanoparticles and release of chemotherapeutic drugs that were loaded in a
controlled manner without being affected by the normal healthy cells. Apart from
SPIONs, MSNs combined with zinc-doped iron oxide nanoparticles, manganese
ferrite nanoparticles, have also been studied as alternative magnetic-responsive drug
delivery nanosystems [75–77].

Light as a trigger for the release of drug cargo has been widely studied owing to
its simplicity of operation, minimum invasiveness, and remote spatiotemporal con-
trol. Light-triggered on-demand drug release can be achieved by choosing a definite
wavelength from ultraviolet, visible, or near-infrared (NIR) regions. UV-vis and NIR
are commonly employed for drug release from MSNs. UV has been employed for
releasing cargo owing to its potential to break bonds and for triggering chemical
modifications in the drug molecules or polymers [78–81]. Although UV trigger is
widely studied, the low penetration property and damage to the tissues associated
with UV limit the in vivo application. A possible alternate is the visible light that can
release the cargo owing to its safety and high tissue penetration than UV light
[55]. Photosensitizers, such as porphyrin-capped MSNs and chlorin e6-doped
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MSN nanorods, have been studied for the release of drugs and singlet oxygen from
MSNs upon light activation [56–58] (Table 9.1). NIR is the ideal wavelength for
drug release and for deep tissue imaging owing to its minimum autofluorescence,
tissue scattering, and deep penetration. NIR-absorbing nanomaterials, such as single-
walled carbon nanotubes (SWNTs), gold nanoparticles, QDs, and UCNPs, convert
adsorbed light energy into thermal energy for release of therapeutic payload from
NIR-triggered drug delivery nanosystems [59–66] (Table 9.1).

Ultrasound (US) is yet another potential external trigger for stimuli-responsive
drug release owing to its advantageous properties including noninvasiveness, non-
ionizing profile, safety, portability, spatiotemporal control, real-time monitoring,
deep tissue penetration, and cost-effectiveness. Tissue penetration depth can be
controlled by effectively tuning the parameters such as cycles, frequency, exposure
time, etc. High intensity focused ultrasound (HIFU) can deeply penetrate into the
body that permits local therapy in the affected site, thus eluding side effects to
healthy normal tissues. Upon US trigger, physical effects, such as cavitation, heat,
pressure difference, and fluid streaming, may occur [82]. These thermal, mechanical,
and chemical effects from the US have been studied as a trigger for designing
various types of US responsive nanocarriers. Microbubble (MB)-encapsulated
MSNs were studied for delivering drug-loaded MBs upon US image monitoring
[67]. US-trigger damage of MBs permits the drug to accumulate at the target site
through the vascular endothelial barrier by cavitation process, thus augmenting the
drug delivery efficiency [68, 69].

The major challenges in nanotechnology-based cancer therapy are the high
specificity, effective cellular uptake, and intracellular release of chemotherapeutics
and the differentiation of healthy normal and diseased cancer cells. MSNs have been
widely emphasized in nanomedicine owing to their large surface area and rich
multifunctional surface chemistry with mesoporous channels for loading
chemotherapeutics. The MSN nanostructure offers the platform for efficiently
targeting them with targeting ligands such as antibodies, peptides, proteins,
polysaccharides, aptamers, and small molecules [83]. MSNs functioned as an excel-
lent nanoplatform for the loading and controlled release of various
chemotherapeutics including doxorubicin [84–90], methotrexate [91, 92], 5-Fu
[93–95], camptothecin [13, 96, 97], and other anticancer therapeutics RNA
molecules [98–102].

However, in cancer therapy, another major challenge is the capability of tumor
cells to acquire resistance. Novel therapeutic options are being explored with MSNs
to overcome drug resistance by developing MSN capacity for combination ther-
apy—a therapeutic cocktail of chemotherapeutics such as multiple drugs or with
chemotherapeutics and siRNA. Combination therapy involves the application of two
or more bioactive chemotherapeutic drugs with different solubility, hydrophobicity,
and pharmacological actions that can synergistically reduce cell viability in cancer
cells. Co-delivery of multiple drugs generating synergistic therapeutic effects was
also performed by various research groups. However, parameters such as the ratio of
drugs in combination and delivery kinetics can generate synergistic outcome
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(resulting in augmented cytotoxicity) or an antagonistic effect (reduced
cytotoxicity) [103].

The approach with drug/siRNA cocktail recipe depends on the destruction of
cancerous cells and silencing the over-expression of drug efflux transporters for
multidrug resistant cancer cells [104, 105]. MSNS are designed by loading antican-
cer drugs inside the mesopores and siRNA on the external surface. Nel and Zink
demonstrated the knockdown of P-glycoprotein (Pgp) gene involved in multiple
drug resistance protein 1 (MDR-1). MSNs were modified with polyethylenimine
(PEI), and siRNAs were electrostatically bound to PEI polymers. The co-delivery of
siRNA and doxorubicin resulted in the downregulation of Pgp and reduced IC50 by
a factor of 2.5 compared to free DOX or Dox-loaded MSN [105].

9.2.2 Biomedical Imaging with Multifunctional MSNs

MSNs have garnered substantial attention in biomedical research owing to their
distinctive features including tunable mesoporous structure, large surface area,
tunable pore size, and large pore volume. These exclusive properties make MSNs
to be designed as theranostic agents for simultaneous diagnosis and therapy by
encapsulating and loading therapeutic and diagnostic agents, deliver them to the
preferred site, enable the release of therapeutics in a controlled manner, and monitor
them. Owing to the exceptional characteristics of MSNs, imaging moiety integrated
with MSNs functions as a reliable diagnostic system for bioimaging with superior
stability and supporting several imaging modalities. MSNs can support single-mode
imaging such as optical imaging, positron emission tomography (PET), computed
tomography (CT), magnetic resonance imaging (MRI), ultrasound imaging, and
multimodal imaging for prompt diagnosis of various disorders including cancer.

9.2.2.1 Optical Imaging with MSNs
Optical imaging is one of the effective imaging modalities among several other
imaging techniques owing to the high resolution and sensitivity of fluorescence
compared to other imaging modalities. Optical imaging spans the spectrum ranging
from visible to NIR utilizing both fluorescent organic dyes and fluorescent inorganic
nanoparticles. Fluorescent dyes (including conventional fluorescent and NIR dye)
and nanomaterials (QDs, UCNPs, etc.) have been developed for labeling cells [106–
110].

Although fluorescent dyes are excellent imaging agents, their photobleaching,
limited tissue penetration, and autofluorescence are a few major disadvantages that
hinder their applications as diagnostic agents [111, 112]. In the case of fluorescent
nanoparticles, most of them are designed to exhibit high quantum yield and resis-
tance to photobleaching; however, their inherent toxicity arising from synthetic
parameters owing to the use of hydrophobic organic solvents and ligands and their
poor solubility limit their in vivo application. MSNs function as excellent hosts for
these fluorescent dyes and nanoparticles owing to their tunable porous structure and
overcome the potential limitations associated with them.

9 Multifunctional Mesoporous Silica Nanoparticles for Biomedical Applications 219



Physical adsorption and covalent conjugation are the most commonly studied
strategy for the conjugation of dyes to MSN. Squaraine dye was adsorbed into the
mesopores and graphene was used as wraps to protect dyes, which prevented the
leaching of dye and attack of nucleophile on the dye [113]. Covalent conjugation, on
the other hand, is the facile and robust approach for conjugation of dyes to MSNs.
Owing to the versatility of MSNs, dyes can be conjugated either on the silica matrix
or on the surface of MSNs [8, 114–120]. As mentioned previously, nanomaterials
offer excellent brightness, high absorption coefficients, quantum yield,
photostability, and resistance to photobleaching. Encapsulation of them in
mesoporous nanostructures decreases their inherent toxicity, which enables them
to be used for imaging applications. MSN-embedded hydrophobic inorganic
nanoparticles were demonstrated by Kim and coworkers [121]. Ligand-stabilized
QDs were transferred to the aqueous phase via the microemulsion technique, and
stabilized nanoparticles were subjected to sol-gel reaction for coating MSNs to
develop core/shell MSNs [122]. Dispersity in aqueous medium of core/shell
MSNs was further enhanced by PEGylation [123]. A similar approach was adopted
for the synthesis of core/shell-type UCNP/MSNs [124–128]. Dual-model imaging
using NIR and MRI with NaYF4:Tm/Yb/Gd UCNPs as core and MSN as shell
(NaYF4:Tm/Yb/Gd@MSNs) was reported by Liu and coworkers [126]. Administra-
tion of NaYF4:Tm/Yb/Gd@MSNs at the tumor site in mice demonstrated a signifi-
cant upconversion luminescence signal.

9.2.2.2 Positron Emission Tomography (PET)
PET bioimaging offers superior sensitivity with molecular-level details of a living
system with positron-emitting radioisotopes [129]. Owing to noninvasive nature and
reduced background interference, superior sensitivity PET is utilized for assessment
biodistribution and pharmacokinetics in tumors. Frequently used radioisotopes for
PET imaging include 11C, 18F, 15O, 64Cu, 68Ga, 99mTc, and 111In and are often
labeled with chemotherapeutics, targeting ligands, and functional components.
Despite their advantages with regard to sensitivity and enhanced tissue penetration,
their long-term stability raises concern for their in vivo applications. The general
strategy for the integration of PET isotopes into nanocarriers is to attach the isotope
through metal chelators. Most commonly employed chelators for PET are 1,4,7,10-
tetraazacyclododecane tetraacetic acid (DOTA) and 1,4,7-triazacyclononane-N,N0,
N00-triacetic acid (NOTA). 18F (18F-labeled fluorodeoxyglucose) is one of the widely
used clinical PET-active isotopes to track high glucose-consuming brain cells,
kidney cells, and cancer cells. However, its shortened half-life (109.8 min) and the
necessity of extended circulation time for their target cell or organ uptake limit
in vivo PET study [129, 130].

Kim and coworkers developed 18F-labeled MSN based on strain-promoted
alkyne azide cycloaddition (SPAAC) conjugation of aza-dibenzocyclooctyne
(DBCO) and demonstrated pre-targeted PET imaging by bioorthogonal covalent
18F-labeling [131]. The researchers synthesized DBCO-based PEGylated MSNs
(DBCO-PEG-MSNs) and conjugated these with 18F fluoropentaethylene glycolic
azide to yield 18F-labeled azadibenzocyclooctatriazolic PEG-MSNs (18FDBCOT-
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PEG-MSNs). DBCO-PEG-MSN was intravenously injected to tumor-bearing mice,
and after 24 h, radiotracer was administrated and PET images were acquired. An
alternative group of mice was administered with the radiotracer, and after 2 h, their
PET images were acquired. The pre-targeted murine model displayed superior
uptake in tumor than nonpre-targeted mice owing to the generation of radiolabeled
conjugate through SPAAC conjugation reaction. This approach can be possibly
tailored for PET isotopes with short half-life along with other nanomaterials that
need a long circulation time in bloodstream.

Several research groups have studied the integration of radionuclides with long
half-life such as 64Cu or 89Zr in MSNs [132–135]. In vivo vascular imaging with
MSNs integrated with multimodal imaging properties of 64 Cu (t1/2 ¼ 12.7 h) and
800CW (an NIRF dye) was demonstrated by Chen et al. [134]. TRC105 (a human/
murine chimeric IgG1 monoclonal antibody) was attached to MSN along with
PET/NIRF imaging moieties for tumor angiogenesis. PET imaging demonstrated
�two-fold enhancement of tumor accumulation with antibody labeled
nanoconjugate in 4 T1 tumor, while the uptake of nontargeted nanoparticles was
less, indicating the efficiency of targeting ligand (TRC105 (Fab)) for enhanced
tumor accumulation. Miller and coworkers developed 89Zr isotope (half-life
�78.4 h)-integrated MSNs with large pore size via covalent conjugation of p-
isothiocyanatobenzyl-desferrioxamine (DFO-NCS). There was no evidence of leak-
age of radionuclides from the mesoporous nanoprobe, signifying the safety profile
for bioimaging applications [135]. Biodistribution in mouse with prostate cancer
demonstrated strong PET signal in liver, spleen, and lungs. Although no obvious
buildup of 89Zr-DFO-MSNs in tumor is observed, MSNs could be further optimized
for enhanced tumor uptake by improved surface functionalization.

9.2.2.3 Magnetic Resonance Imaging (MRI)
Owing to excellent spatial resolution, good penetration, and strong soft tissue
contrast, MRI is extensively employed as noninvasive diagnostic modality. The
progress in MRI applications integrating nanotechnology resulted in improvement
with nanoparticle-centered MRI imaging [136, 137]. Upon applying magnetic field
and radio frequencies, MRI signals are generated from proton relaxation of
components including water, lipid, and protein to produce pictures with high
resolution and contrast. Based on relaxation pathways, MR images are categorized
as T1-weighted images (longitudinal relaxation time and positive contrast with bright
signal) or T2-weighted images (transverse relaxation time and negative contrast with
dark signal) [138]. Owing to the developments in nanotechnology, nanomaterials
have been studied as contrast agents that can enhance further the sensitivity. T1-
weighted images are often created by gadolinium (Gd)- and manganese (Mn)-based
contrast agents for investigation of structural details, and T2-weighted images are
generally generated by iron-based contrast agents and mostly studied for acquisition
details during inflammatory conditions and also during edema [139–141]. Among
different types of nanoparticles, MSN shell over contrast agent functions as a model
platform for the advancement of MR-based nanomaterials.
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MSNs integrated with superparamagnetic iron oxide nanoparticles (SPIONs) and
ferrite-based nanoparticles have been used for generating T2 contrast and also as
drug delivery vectors [72, 142–147]. Loaded therapeutics is released in the acidic
environment of tumor and magnetic centers in MSNs are accessible for H2O
molecules, thus enhancing MR signal. The MNPs are either conjugated on the
outer surface of MSN or designed as core component, which are in turn coated
with MSNs. Lee and coworkers synthesized MSNs immobilized with several mag-
netite (Fe3O4) nanocrystals on the surface of MSNs, resulting in the formation of
raspberry-like with enhanced T2 MR signal [148]. Kim and coworkers synthesized
distinct core shell-magnetic core/MSN shell-based nanoparticle with multifunctional
properties. Incorporation of fluorescent dye in the MSN framework permitted optical
imaging, MRI, and simultaneous drug delivery function [142].

Gd-based nanoparticles are studied for MRI owing to large magnetic moment as a
result of unpaired electrons (seven) and prolonged electron spin-relaxation time
(10�9 s) under magnetic field [139]. Gd chelator-Gd-diethylenetriaminepentaacetic
acid (Gd-DTPA) is commonly used to lessen the toxicity associated with free Gd
ions. Gd chelates grafted on MSN surface are often used for developing MR contrast
agents owing to their capacity to cart huge cargo of Gd centers and better water
availability of the Gd chelates [149–152]. A core-shell multifunctional theranostic
MSN functionalized with photosensitizer Chlorin e6 (Ce6), carbon dots (CDs), and
Gd (III) ions for simultaneous MRI and CT has been developed by Yang and
coworkers. Thermoresponsive poly[(N-isopropylacrylamide)-co-(methacrylic
acid)] (P(NIPAm-co-MAA)) polymer encapsulated the pores of core-shell MSNs
[141]. Dox was loaded as chemotherapeutic drug. Theranostic nanoconjugate
presented enhancement in the contrast, which was concentration dependent and
was assigned to Gd3+ concentration in the MSN shell. T1-weighted MRI at the
tumor site in mice with tumor confirmed superior MR contrast.

Though Gd-based contrast agents are widely studied, health threat associated
with nephrogenic systemic fibrosis induced by Gd confines its in vivo use. A safer
reported substitute to Gd-based contrast agents is Mn2+-based contrast agents owing
to their low cytotoxicity and prolonged electronic relaxation time associated with
five unpaired electrons [153, 154]. Mn-based core�shell mesoporous silica spheres
were reported for simultaneous T1- and T2-weighted MRI [154]. MR imaging studies
of Mn-based MSN exhibited better contrast effects of both T1- and T2-weighted MR
imaging. The large r1 value of Mn-based MSN was attributed to reduced KMnO4

concentration for oxidizing CTAB molecules, formation of excess Mn2+ ions that
might have probably enhanced T1-weighted MR imaging, and mesoporous configu-
ration of nanocarrier that improved the diffusion of H2O molecules, thereby
augmenting r1 relaxivity. The high r2 value and superior T2-weighted contrast
might have originated from MnO2 nanoclusters (<2 nm) in MSN. Mn-based
MSNs may possibly be an exceptional dual-modal MR contrast for diagnosis of
cancer in the future.
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9.2.3 Tissue Regeneration and Wound Healing

Another prospective application of MSN-based nanocarriers is in tissue regeneration
and wound healing. Topical application of nanoformulation offers comparable
efficacy and less toxicity and overcomes the limitations of conventional routes of
drug administration including systemic side effects and pain from injections
[155, 156]. The physicochemical parameters of nanoparticles including size,
shape, zeta potential, surface charge, etc. largely influence the interaction with skin
and MSN with size less than 25 nm have demonstrated penetration and not perme-
ation in the skin. The larger nanoparticles (55 � 6 nm) did not cross the normal or
disrupted murine skin upon topical application for 5 days [157]. Therapeutics
including antibiotics, antifungal, antiviral, antiseptics, anticancer, antiinflammatory,
and antioxidants corticosteroids have been delivered through MSNs [95, 158–166]
(Table 9.2).

Recently, novel and versatile ROS-scavenging tissue adhesive nanocomposite
was developed by immobilization of ultrasmall ceria nanocrystals on the surface of
MSN. The ceria nanocrystal-decorated MSN (Ceria-MSN) exhibited excellent tissue
adhesion strength and ROS-scavenging effect by decreasing oxidative stress in
wound microenvironment. The nanocomposite accelerated wound healing process
and promoted tissue regeneration with limited scar formation. The nanocomposite
exhibited a “nano-bridging” effect that promoted quick closure of wound owing to
interactions between surface of nanocomposite and the tissue matrix. The in vivo
studies in mice also confirmed the therapeutic effect by Ceria-MSN in wound
healing [158]. The “nanobridging effect” on wound closure and healing was also

Table 9.2 Therapeutic-loaded MSN for wound healing and infection control

Cargo/modification Features Application Reference

Ceria nanocrystal-
decorated MSNs

Tissue adhesion property and in vivo
ROS-scavenging potential

Biomedical [158]

Quercetin Loading of flavonoid derivatives,
antioxidant, and active ingredients of
cosmetic interest

Biomedical
and
cosmetics

[159, 160]

Octyl
methoxycinnamates

Sunscreen UV filters Cosmetic [161]

Doxorubicin
hydrochloride and
indocyanine green

Treatment of superficial tumors by
chemotherapy and photothermal therapy

Cancer [162]

5-Aminolevulinic acid Photodynamic therapy in skin cancer Cancer [163]

5-fluorouracil Transdermal delivery of
chemotherapeutic drugs

Cancer [95]

Ginsenoside
compound K and Rh2

Anti-cancer and anti-inflammatory
efficacy

Cancer [164]

Bismuth titanate
(BixTiyOz) NPs

Sunscreen UV filters Cosmetic [165]

Polymyxin B Therapeutic properties with antibacterial
activity

Antibacterial [166]
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investigated by Lu and coworkers with nanosilver-decorated mesoporous silica
nanoparticles (Ag-MSNs) [167]. The researchers demonstrated properties including
tissue adhesion, biodegradation, and enhanced biocompatibility of Ag-MSNs and
antibacterial effect in animal model without any infections or side effects.

Colloidal mesoporous silica (CMS) and its adhesion property with
polydimethylacrylamide (PDMA) hydrogel were evaluated for in vivo wound clo-
sure and healing in mouse and compared with conventional suture and treatment
with nonporous silica nanoparticles [168]. Owing to pores and rough surface than in
nonporous silica nanoparticles, the total outer surface area determined the adhesion
energy in CMS. CMS nanoparticles demonstrated better wound healing compared to
the conventional suturing and degradation rate, enhancing their application in the
future regenerative tissue engineering.

9.2.4 Antimicrobial Applications

The acquired resistance to antibiotics and the formation of biofilms have decreased
the sensitivity to antibiotics and effectiveness of treatment on microbial infections.
Dose increase and frequency of antibiotics for treatment further favor the antibiotic
resistance in microbes. Hence, alternate approaches for the delivery of antibiotics
against microbial infections have been explored. The use of bacteriophages, toxins
such as bacteriocins, probiotics, and prebiotics, has demonstrated antimicrobial
effect, however, not effective as antibiotics [169–171]. Implementation of
nanotechnology-based nanocarriers for antibacterial treatments is a promising
approach to overcome existing challenges with bacterial infections including recur-
rent treatment failures associated with multiantimicrobial resistance and the insistent
biofilms.

Nanomaterials have proven to be an attractive alternative approach for delivering
antimicrobial agents for the treatment of infection [172, 173]. Among different
nanomaterials, MSNs are the most common nanocarriers owing to their high surface
area, tunable pore size, high drug loading capacity, and slow and sustained release of
cargo. MSN-based antibacterial nanomaterials can be designed either by
incorporating antimicrobial nanomaterials or by loading antimicrobial compounds.
The MSN matrix can be tuned or tailored to incorporate ultrasmall antimicrobial
nanoparticles or metal ions or encapsulate antimicrobial metal or metal oxide
nanoparticles to mesoporous silica shell. Metal, metal ions, or metal oxide offers
their antimicrobial action by inducing oxidative stress, release of metal ions, or
nonoxidative mechanisms. In addition, the increased surface area of porous silica
shell offers room for loading antimicrobial therapeutics that offer the synergetic
effects in the treatment of infections. MSNs hosting nanomaterials, such as silver,
copper, zinc, and nickel, have demonstrated superior antimicrobial properties
[174, 175]. Although ultrasmall silver nanoclusters (Ag NCs) are excellent antimi-
crobial agents, the oxidation and aggregation of silver in the biological environment
limit their application. Ag NC-decorated MSNs were developed for the long-term
release of Ag+ ions, and the nanoparticles demonstrated excellent antibacterial
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activity against both Gram-positive and Gram-negative pathogens and minimum
toxicity on mammalian cells. The uniform distribution of Ag NCs in the mesoporous
MSN matrix was critical for the controlled release of Ag+ ions, which leads to the
broad-spectrum antimicrobial activity [176].

The tunable MSN surface permits the adsorption, loading drugs into the pores of
MSNs, incorporating onto the matrix, or conjugation of drugs to the surface of
MSNs [177, 178]. In this setting, the properties of MSNs, including large surface
areas, tunable pore size, and volume, affect surface functionalization, drug release,
and penetration capability through biological barriers, which make them superior to
drug-delivery systems. The versatility of MSNs for surface modification allows the
incorporation of different antibiotics and improves the effectiveness of the same. For
example, Polymyxin B, although a potential antibiotic against Gram-negative bacte-
ria, the inherent toxicity of the same limits its application in mammalian cells. The
antibiotic was incorporated into MSNs, and researchers demonstrated enhanced
antibacterial effect and biocompatibility in mammalian cells [166]. The physico-
chemical properties facilitate the MSNs to be tailored for loading therapeutics. In a
study, lysozyme-coated MSNs improved the interaction with Escherichia coli and
enhanced the concentration of lysozyme in the bacteria, whereas in another study,
lysozyme was loaded inside the large pores of MSNs and demonstrated the hydroly-
sis of peptidoglycan in the bacterial cell wall [179, 180].

Another challenge in microbial infection is poly-microbial infections. The treat-
ment of poly-microbial infections involves mainly the combinatorial therapy with
antimicrobial drugs with different functions and work in synergistic mode. However,
the dose of drug, pharmacokinetic behavior, and possible side effects are factors to
be refined. Encapsulations of multiple drugs in nanoparticles can tremendously
improve the efficacy, resulting in reduced side effects. Gounani et al. demonstrated
the loading of dual antibiotics, polymyxin B, and vancomycin in surface-modified
MSNs and studied the effectiveness against Gram-positive and Gram-negative
pathogenic bacteria [166]. The effectiveness of nanocarrier with both drugs was
superior to the activity of free antibiotics. The enhanced antibacterial efficiency was
ascribed to the improved local concentration of antibiotics in particles on the
bacterial surface, supporting the delivery of dual drugs to their target. The study
proves that the effect of combination therapy with MSN-based drug delivery can
improve the safety profile of existing antibiotics.

Eradication of bacterial biofilms that are commonly adhered on the surface of
implanted medical devices or human tissue is yet another challenge in the clinical
field as pathogens can survive in high dose of antibiotics, developing multiantibiotic
resistance and low patient compliance [181, 182]. Antimicrobial (antibiotics, anti-
microbial peptides, and proteins)-loaded nanoparticles have demonstrated the
enhancement of the efficacy of treatment and superior biocompatibility. However,
for the treatment of biofilms, the nanosystems are being designed to enable the
penetration of therapeutic drugs into biofilms. Xu et al. recently developed novel
rod-shaped hollow MSNs with large cone-shaped pores for the delivery of lysozyme
into biofilms [183]. The cone-shaped pores and inner hollow cavity facilitated high
loading capacity of lysozyme and sustained release of the same. The authors also
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demonstrated superior antimicrobial activity toward the E. coli biofilm with
MSN-based nanodelivery system.

Nanoparticle-based theranostic system is being developed for the simultaneous
diagnosis and treatment of bacterial infections [184]. The ability of MSNs for
accommodating and transporting multiple therapeutic and diagnostic components
can be employed for the prevention and tracking of biofilms, which is one of the
major challenges associated the treatment of polymicrobial biofilms. Multiple
antibiotics with distinct mode of action are necessary for the treatment and destruc-
tion of biofilms, and multiple antibiotics and along with other antimicrobial
component-loaded MSNs would be an efficient candidate for destroying biofilms.

9.3 Conclusion and Future Prospects

A plethora of engineered MSN-based nanomaterials have been developed in the past
few years, which are promising nanomaterials for biomedical applications. The
unique mesoporous matrix of MSNs bestows the nanoparticle capability of loading
and retaining drugs and contrast agents for the development of multifunctional
MSNs. Although there has been progress in the synthesis parameters and rendering
biocompatibility, the MSN nanoplatform demands substantial perfection to be
employed for clinical application. A comprehensive investigation of the interaction
of nanomaterials in in vivo setting with other cellular components has to be explored
and would deliver details for future, refining the biocompatibility of MSNs. A
complete assessment of acute and chronic toxicity, including immuno-toxicity and
genotoxicity of these nanomaterials, has to be extensively addressed. The pharma-
cokinetics and biodistribution are yet another significant area to be evaluated. The
advancement in the treatment of cancer with multiple therapeutic modalities with
MSN can be aimed to target challenges including the multidrug resistances (MDRs)
associated with cancer. Therefore, much investigation is further required on multi-
functional MSNs for their effective clinical translation for a profound effect on
human health.
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lung injury, lung cancer, etc. are nowadays continuously increasing worldwide in
all age group population, and their treatment has been proved to be a challenging
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properties, reducing drug toxicity, and enhancing the half-life of the drugs. We
focus on nanomedicines like Nanoparticles, Dendrimers, Liposomes, Lipid-based
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10.1 Introduction to Nanomedicine

This is the era of nanotechnology, and medicine has immensely benefited from
advances in nanometric drug delivery systems. Nanomedicine is the contemporary
term used to encompass a vast variety of systems and has become possible due to
involvement and contribution from diverse scientific fields including medicine,
nanoscience, and pharmaceutical technology. The major focus of researchers and
industry in the field of nanomedicine is in cancer chemotherapy and theragnostics,
followed by inflammation or pain relief or safety enhancement of drugs, infection
control, and ophthalmic and topical therapy of diseases. Primary rationale for such
systems is to optimize the pharmacokinetic profile of the drugs (often due to better
targeting) and improve their safety factor or therapeutic index. Regulatory approval
for nanomedicines was phenomenal in the first half of the last decade, thereafter
declined presumably due to the worldwide economic recession of 2008.
Nanomedicines are also being investigated as carriers for contrasting agents and
theragnostics [1].

Nowadays, various nanomedicines have witnessed increasing attention for diag-
nosis and therapies through using the three interrelated themes—nanodiagnostics
and molecular imaging, targeted drug delivery and controlled release and regenera-
tive medicine. Nanomedicines

1. provide efficient transport capacity by fine capillary blood vessels and lymphatic
endothelium and controlled release of API in the harsh environment of diseased
tissue,

2. enhance the circulation period and plasma concentration,
3. increase the binding capacity to biomolecules and accumulation in the target

tissue, and
4. decrease the inflammatory or immune response and oxidative stress in tissues.

compared to conventional medicines depending on physicochemical properties such
as particle size, surface, and chemical composition of the nanoformulations [2, 3].

Vast varieties of nanomedicines, such as Nanoparticles, Dendrimers,
Microemulsion, Liposomes, Polymeric nanoparticles, Lipid-based nanoparticles,
Lipid–polymer hybrid nanoparticles, Nanostructured lipid carriers, Nanospheres,
etc., were studied to concentrate drugs in selected target tissues for minimizing
systemic side effects and toxicity. But still, safety assessment is a very challenging
task [4–6]. Primarily, clinically available nanomedicines are administered via IV
route followed by oral or sometimes transdermal pathways.

Pulmonary nanomedicines have attracted attention only lately, and we come
across only a handful of clinically available or pipeline products such as Arikayce®

(Insmed Inc.), Curosurf® (Chiesi Farmaceutici) [1, 7], Lipoquin and Pulmaquin
(Aradigm Inc.), and Nanosilver Inhalation (nAG) [8]. In spite of several potential
advantages of the pulmonary route, successful products are hard to come by.

Literature documents that nanomedicines can be given through pulmonary route
for treating various respiratory diseases and are found to be very effective with
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improved pharmacologic and therapeutic potency [4–6, 9–28]. It has been found that
the extent of pulmonary nanomedicine uptake depends not only on the physical and
chemical features of nanomedicines themselves but also the health position of the
organism. Within this context, the present chapter discusses the advancement of
pulmonary nanomedicines for respiratory diseases and highlights the recent clini-
cally approved nanomedicines and their limitations.

10.2 Respiratory Diseases and Infections

Respiratory disease is termed as disorders related to different parts of the pulmonary
system such as upper respiratory tract, trachea, bronchi, bronchioles, alveoli, pleura,
pleural cavity, and the nerves and muscles required for breathing. Common respira-
tory diseases include common cold, chronic obstructive pulmonary diseases
(COPDs), chronic bronchitis, emphysema, fibrosis, lung cancer, and restrictive
lung diseases. Infections or inflammation in the upper or lower respiratory tract is
chiefly caused by the virus such as rhinovirus, parainfluenza virus, etc. or bacteria
such as Streptococcal pharyngitis, Haemophilus influenza, and Streptococcus pneu-
monia infections [10, 24]. Due to high prevalence of such diseases among all age
groups and also because they are on the rise as a result of increasing air pollution,
clinical management beyond the conventional systemic or inhalation therapies needs
urgent attention. This is where the pulmonary nanomedicine may play a pivotal role
in providing safe and effective newer therapy options to the clinicians.

10.3 Pulmonary Delivery Systems

The lungs as a route of drug delivery have been in vogue for thousands of years from
China to Egypt (Ebers papyrus) to Assyria. From Hippocrates (Greece), Rhazes
(Arabi) to Maimonides (Spanish physician to King Saladin of Arabia), all have left
in their treatise, various forms of pulmonary medication practices. The story began
as long back as 2600 BC. Starting with the practices of inhaling fume from burning
medicinal herbs to the individual attempts to design inhalation devices to the
systematic industrial design of various kinds of liquid and powder inhalers and
nebulizers, the pulmonary drug delivery system has evolved into a complex technol-
ogy intensive system with many potential [29]. What began as smoking medicinal
plants has now ushered into delivery platforms for biotechnological products involv-
ing complicated formulation development exercises even at the nanometric scales.
With the advent of nanotechnology, the promising potential of this route of drug
delivery is taking new shapes to be enlightened in the future.

The major advantages of pulmonary delivery systems are effective targeted drug
delivery with maximum local drug action using very low doses to treat various
respiratory diseases particularly for chronic lung diseases through direct delivery of
active ingredients to the diseased organs and cells as outlined in Fig. 10.1 [13, 30].
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As lungs provide a large surface area accessible for drug absorption and a thin and
permeable epithelial barrier, pulmonary drug delivery offers several advantages
compared to other administration routes such as the rapid onset of action, avoidance
of first-pass metabolism, decreasing the required dose with improved bioavailability
of the delivered agent(s), and reducing adverse effects. In spite of these advantages,
some factors such as lung toxicity of drugs, drug-induced lung disease, occupational
exposure, lung defense mechanism, and drug stability can potentially limit the
practical application of pulmonary delivery system in the clinic [13, 30].

In order to overcome the drawbacks of the conventional pulmonary drug delivery
system, nanostructured formulations have found increasing attention for diagnosis,
treatment, and prevention of respiratory diseases as they provide sustained drug
release kinetics, shortening of the treatment course, reduction of required therapeutic
dose, prevention of side effects, improved patient compliance, good drug encapsu-
lation efficiencies, and protection of the active ingredient against decomposition and
can be transferred into an aerosol without being adversely affected by the process of
nebulization [10, 13, 24, 30].

10.3.1 Inhalation Therapy

10.3.1.1 Macro- and Microstructure of Lungs and Mechanism
of Deposition from Inhalation

The anatomy and physiology of lungs play a critical role in the dynamics of drug
delivery through inhalation. The macrostructure of lungs comprises two distinct
zones of airways—the conducting airways and the respiratory airways.

Fig. 10.1 Potential advantage of local inhalation delivery from a pharmacokinetic point of view.
All other routes deliver the drug to the systemic circulation first, while local inhalation delivery
delivers drug to the pulmonary region first
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The upper portions of the airways starting from nose or mouth followed by
trachea, bronchi, bronchioles, and terminal bronchioles comprise the conducting
airways. In this region, no exchange of gases takes place; rather, it transports the gas
into the respiratory zones. The conducting airways bifurcate around 17 times. The
surface area of conducting airways is approximately 2–3 m2. The thickness of the
cell wall is approximately 60 μm [31]. The presence of epithelial cell, goblet cell, and
secretory glands keeps the airway humidified to ensure proper function of the
airways as well as mucociliary clearance [32].

The respiratory airways consist of respiratory bronchioles, alveolar duct, and
alveolar sacs. The presence of a thin squamous cell (Type I pneumocytes) and a large
cuboidal cell (Type II pneumocytes) on the surface of the alveoli is responsible for
gaseous exchange and production and secretion of surfactant in the alveoli, respec-
tively. The alveolar surface is lined with a lipoprotein complex consisting of 10%
protein and 90% phospholipids, termed as lung surfactant. It helps in reducing the
surface tension of pulmonary fluids and contributes to the elastic properties of the
lungs. The macrophages, near the pneumocytes, are responsible for removing
particles or microorganisms from the respiratory surface by the process of Phagocy-
tosis. The presence of lymphatic circulation in this part is responsible for fluid
homeostasis and host defense mechanism in addition to gaseous exchange
[33]. This area is suitable for gas exchange because of its inherent physical
characteristics. The surface area is approximately 50 times greater, and the thickness
of the cell layer progressively reduced from 60 μm to 0.1–0.5 μm compared to the
conducting airways. Therefore, the fluid layer at the cell surface decreases substan-
tially with the decrease in cell thickness [34]. Gaseous exchange is further promoted
in this region due to the pressure gradient existing between lower partial pressure of
oxygen within the alveoli compared to CO2 rich blood in pulmonary circulation.

Therefore, the mechanism and rate of absorption of the inhaled drug can be either
a paracellular or transcellular transport process [35].

The paracellular process occurs in the distal bronchioles and is suitable for
hydrophilic small molecules. An electric resistance exists between apical and basal
transepithelial cells, which gradually decreases from the tracheal region to the distal
airways and again increases in the alveolar region [36]. The rate-limiting step is the
permeation through the tight junction of adjacent epithelial cell.

Transcellular transport involves primary and secondary active transport in con-
junction with passive transport. The two main influx transporters present in the lungs
are a solute carrier (SLC and SLCO) and ATP binding cassette (ABC) transporters.
The efflux transporters present in the lungs are P-glycoprotein (P-gp), Breast cancer
resistance protein (BCRP), and Multidrug resistance protein (MRP1) [37].

10.3.1.2 Mechanism of Particle Deposition
The aerodynamic property of the particle estimates deposition and optimizes
targeting in all regions of the respiratory tract. The tidal air throughout the respira-
tory system carries the inhaled Particles. Particle deposition occurs through the
mechanisms of impaction, sedimentation, interception, and diffusion. The deposi-
tion of particles is influenced by their size, shape, and velocity [38]. Breathing
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pattern, lungs volume, viscosity of the fluid in the pathway, branching angle of the
trachea, and the patients’ health condition determine the travel mechanisms of the
inhaled particles. Spherical particles are prone to deposit by the process of impac-
tion, sedimentation, and diffusion depending on their diameter, whereas acicular-
shaped particles are deposited on the wall of the respiratory tract in the direction of
the air stream by the process of interception. Particles of diameter>10 μm deposit in
the upper respiratory airways and are mostly removed by the mucociliary escalator
through nose and mouth. For a pharmaceutical aerosol system, the particle size can
range from 0.01 to 100 μm [39], but a monodisperse system is always preferred for
optimal deposition and specific targeting in the region of lungs [40].

Diffusional transport of particle increases with decrease in particle size and
respiratory rate. Targeting a particular region in lungs requires particle engineering,
evaluation of breathing pattern, mode of inhalation, and composition of the inhaled
medication (Table 10.1).

10.3.1.3 Pulmonary Clearance
The inhaled particles undergo various events prior to target interaction. Once the
particles are deposited, they are taken up by mucociliary transport followed by
biotransformation, receptor interaction, and nonspecific retention prior to systemic
absorption. Therefore, the possible route of elimination of inhaled drugs can be by
mucociliary clearance, mechanical clearance, absorption into the capillary network,
enzymatic degradation, and alveolar clearance via macrophage phagocytosis. The
entire mechanism acts in parallel (Fig. 10.2) and is responsible for rapid onset of
action, localized high concentration of the drug, and targeted delivery of the drugs
with poor oral bioavailability [41].

• Mucociliary clearance: The submucosal glands and the goblet cells of epithelium
produce mucous. It flows in the proximal direction with the rapid stokes of cilia
[42]. A healthy human produces mucous 10–20 ml/day, and in chronic bronchitis,
its production increases 10 times. A majority of insoluble particles of more than
6 μm diameter are eliminated by mucociliary clearance. The large particles either
penetrate the mucous or dissolve, then flow in the direction of mucous, and

Table 10.1 Parameters influencing particle deposition in various pulmonary regions

Mechanism of
deposition of particles

Particle
size Area of deposition Expressed with

Inertial impaction 2–5 μm Oropharyngeal and
tracheobronchial region

Stokes number
Deposition probability of
impaction

Sedimentation >0.5 μm
3–5 μm
<3 μm

Tracheobronchial region
Alveolar region

Deposition probability of
sedimentation
Terminal velocity of
sedimentation

Diffusion <0.5 μm Acinar region of the lungs Deposition probability of
diffusion
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eventually swallowed. Mucociliary clearance is predominant in the trachea bron-
chial region of the upper respiratory tract.

• Mechanical clearance: Inhaled particles of more than 10 μm diameter provoke
coughing and are cleared from the upper airways. Sneezing and swallowing of
particles are also seen with inhalation of large particles. The rate of mucociliary
clearance decreases with age and in the presence of respiratory diseases like
asthma, pneumonia, bronchitis, etc. The impaired mucociliary clearance results
in coughing and removes larger particles from the upper airways.

• Enzymatic degradation: The drug-metabolizing capacity of lungs is substantially
lower than that of the liver and does not impart major contribution to systemic
clearance. Many small molecules have got better bioavailability via lung absorp-
tion compared to other routes of administration [43]. Drugs like theophylline,
fluticasone propionate, budesonide, and salmeterol are substrates to enzymes
present in lungs. The inhaled drugs are substrates for Cytochrome P450 enzymes
(CYP1B1, CYP2B6, CYP2E1, CYP2J2, CYP3A5, and CYP1A1). Other bio-
transformation phase II enzymes present in the lungs are sulfotransferases, UDP
glucuronosyltransferases, glutathione S-transferases, flavin monooxygenases,
peptidases, cyclooxygenase, etc.

• Alveolar clearance: The poorly soluble drugs and the inhaled particles that
remain in the alveoli are taken up by the macrophages by the process of phago-
cytosis. Slowly dissolving particles of 1.5–3 μm are taken up by this process.
Phagocytosis remains the main obstacle in achieving controlled release of drug in
the alveolar region.

Fig. 10.2 Biodisposition of particles in inhalation therapy
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10.3.2 General Consideration for Effective Inhalation Therapy

1. Pharmaceutical factors related to particle size:

• Particle size distribution:
The distribution of inhalable particle/droplet size from a powder inhaler or aerosol
can be expressed in terms of the mass median aerodynamic diameter (MMAD)
and the fraction of fine particles, which is less than 5 μm.

Therefore, in designing an inhalation product, the particle size variation is an
inherent characteristic [44]. So, a mathematical representation of size distribution
will be useful. The log-normal distribution fits the particle size data in terms of
geometric mean diameter, standard deviation, and geometric standard deviation.

Log Normal distribution F ¼ 1= √2πD ln σg
� �� �

exp: � ln D� ln Dg

� �2
=2 ln σg

� �2
,

�

where Dg ¼ geometric mean diameter, D ¼ a given particle diameter, and σg ¼ geo-
metric standard deviation.

Considering from the log-normal distribution, cumulative frequency distribution
function can be determined. Dg and σg can be estimated from cumulative frequency
distribution vs diameter curve on a log probability graph paper. Using Hatch and
Choate equations, volume mean diameter and surface mean diameter for a particle
population can be measured.

These measures are used for the in vitro performance of different inhaler devices
[45]. In general, the higher the fine particle fraction, the higher the proportion of the
emitted dose that is likely to reach the lungs.

• Particle Density.
Particle density influences the settling behavior of the particles. Two spherical
particles with the same geometric diameter of 1 μm varies in a wide range if their
density differs. The motion of particles in air with high density and low geometric
diameter can have more Brownian bombardment [46]. Most aerosol particles
have apparently low density than the corresponding bulk material due to porosity
and the presence of voids in the particles.

• Electrical charge
The presence of electrical charges on particles influences the deposition on the
surfaces and rate of coagulation from an aerosol delivery device. Electrical
charges can be generated by various reasons [47]. The triboelectric effect
generated due to friction from an aerosol pump can lead to the acquisition of
electric charge.

• Disruption of ion-containing liquid in an aerosol system leads to the generation of
random motion of free ions of symmetrical or unsymmetrical distribution.
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• Hygroscopicity.
Hygroscopic substances absorb water within the warm and humid environment of
the respiratory tract. The quality of hygroscopic particle determines the physico-
chemical property of an aerosol as particle size, composition, and residence time
change with an increase in temperature and humidity. It affects the adhesive and
cohesive properties, leading to irreversible aggregation in a dry powder inhaler
system. It can affect the chemical and physical stability of the system.

The change in particle size is the measure of hygroscopic growth. The most
common parameter used to characterize the particle is the mass median aerody-
namic diameter. Hygroscopic growth ratio is the ratio of diameter at a high
relative humidity as in the lungs with the low relative humidity in an ambient
condition [48].

• Surface area.
The particle surface area in inhalation technology plays a critical role in deter-
mining airborne specific surface area, deposition in the lungs, rate of dissolution,
and inhalation toxicology [49]. For a perfect sphere, the specific surface area
(SSA) is calculated using the formula

SSA ¼ Surface area
mass

¼ 4πr2
4
3 πr

3ρ
¼ 3

rρ
¼ 6

Dρ
,

where r ¼ radius of the particle, D ¼ diameter of the particle, and ρ ¼ density.
Asymmetric particles with rough surfaces, pores, cracks, or voids have a larger

specific surface area compared to spherical particles.
As per BET theory, the gas molecules physically adsorb on specific sites of the

sample surface and the desorption is a kinetically limited process. Therefore, the
specific surface or surface area per unit weight determines the ability of adsorption of
aerosol gases and thus the potential of the particles to be carried deep into lungs. It
also determines the tendency of the particle surface to initiate the chemical reaction
and the dissolution of the deposited particles from the lungs.

• Crystallinity and polymorphism.
Many drugs exhibit polymorphism. Polymorphic forms differ in density, melting
point, solubility, and hygroscopicity. Crystal habit is important as the change in
the shape of the particles affects aerodynamic diameter and thereby lung deposi-
tion. Therefore, controlling crystallization is at the main part of particle engineer-
ing in the development of inhaler devices [50].

2. Excipients for different inhalation devices.
The commonly used excipients for inhalation devices vary with their type,
performance, and mode of action. The various excipients used are listed in
Table 10.2.
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Table 10.2 Common excipients used in inhalation formulations

Inhaler device
Excipients
used Function Example

Nebulizer [51] Isotonic
solution

To prevent irritation
To convert pro
liposomes into isotonic
liposomes

Sodium chloride and
dextrose

pH adjustment
system

To prevent irritation Sodium hydroxide, citric
acid, and phosphate salts

Surfactants To aid dispersion Polysorbates

Preservatives Preservation Parabens

Purging To reduce oxidation Nitrogen

Chelating
agents

To increase stability Disodium EDTA

Cosolvents To improve solubility Alcohol and propylene
glycol

Humectant To balance moisture Glycerin

Dry powder inhaler
(DPI) [52, 53]

Carriers To improve flow
To increase the bulk
for a potent drug
To improve the taste

Lactose monohydrate
Mannitol, and glucose

Shell formers Reduce attractive
forces and to improve
targeting

DSPC, DPPC, Leucine,
isoleucine, and trileucine

Hydrophobic
additives

To protect drug from
moisture

Magnesium stearate

Surfactants To make porous
particles

Poloxamers and bile salts

Biodegradable
polymers

For sustained release PLGA and chitosan

The pressurized
metered-dose inhaler
(pMDI)

Propellants Energy source for
production of aerosol
plume

HFA and CFC

Cosolvents Formulation aid in
HFA system

Ethanol and PEG 1000

Surfactant Solubility
enhancement and
wetting agent

Sorbitan trioleate (SPAN
85), oleic acid, and soy
lecithin

Organoleptics
and stabilizers

Patient compliance
and formulation
stability

Flavors, sweeteners,
antioxidants, and chelating
agents
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10.3.3 Nanomedicines for Targeted Therapy to Lung Cancer

Lung cancer is the leading malignancy for the cancer-related death among men and
women. The conventional chemotherapy is the most widely used treatment strategy
for lung cancer. The conventional therapy suffers from undesirable pharmacokinet-
ics and pharmacodynamics, non-specific biodistribution, and improper specificity
with chemical resistance [54]. The development of targeted therapy and novel
nanoscaled delivery of drug have opened the discovery and identifications of new
targets and novel therapeutic modalities for more effective treatment of lungs cancer.
The theragnostics of nanomedicine are found to be largely effective due to its small
size, enhanced permeability, retention effect, high drug loading, and good
biocompatibility.

• Antibody-mediated targeted therapy.
Nanoscaled drug delivery system decorated with antibody fragments can be used
to treat various tumor conditions. Lin et al. investigated the utility of anticarbonic
anhydrase IX antibody conjugated to the surface of triptolide-loaded liposomes in
the treatment of lung cancer via pulmonary administration [55]. In another study,
paclitaxel palmitate nanoparticles conjugated with cetuximab were engineered to
achieve high efficiency and improved cellular internalization in lung cancer cells.
([56] In a recent report, Mukherjee et al. synthesized 19 bp synthetic CDC20
siRNA encapsulated guanidinylated cationic amphiphile with stearyl tails. The
intravenous administration of the liposomal formulation inhibited B16F10 mela-
noma growth on lungs in a syngeneic C57BL/6 J mouse tumor model
[57]. Nonsmall cell lung carcinoma (NSCLC) is any type of epithelial lung
cancer, which accounts for about 85% of all lung cancers. Clinical trials proved
the safety and usefulness of bevacizumab and cetuximab in combination with
chemotherapy and radiotherapy in the treatment of NSCLC patients. The combi-
nation of mAb prolongs the plasma t1/2 of about 20 days with high tolerability and
very low toxicity [58].

10.4 Potential Limitations of Pulmonary Delivery

Conventional Pulmonary delivery has not stood up to its potential, particularly, for
systemic actions [13]. Due to the thin epithelial barrier, even if the drug payload
crosses into the systemic circulation, they are often degraded by the liver and blood
enzymes, thereby limiting the duration of action. Hence, even though the onset may
be hastened, the short biological half-life rendered via enzymatic degradation leads
to the need of multiple dosing. This often leads to sub-optimal treatment efficacy.
The drug is not retained for sustained action in the lungs, and depot does not form.
This leads to the need of multiple dosing, thereby reducing patient compliance,
though in emergency, inhaled systems are excellent performers. Further, in spite of
being a nonoral route of administration, the drug reaches several organs and tissues
where it exhibits unwanted pharmacological responses leading to possible adverse
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effects. Particularly, the enzymatic barrier in pulmonary delivery prevents conven-
tional delivery of several drugs including nucleic acids and proteins/peptides. The
development cost and safety concerns are also vital when the pulmonary route is
selected as an alternate established route for an existing drug. The glaring example of
these issues is the quick withdrawal of Exubera (Pfizer)—the first inhalable insulin
therapy—from the market, citing cost and safety concerns [59, 60]. Potentially,
nanotechnological interventions in such contexts may rejuvenate hope for at least
some of the missed opportunities for utilizing pulmonary delivery as an alternative
port of entry into the human body.

10.5 Nanomedicines Used Diagnosis, Treatment,
and Prevention of Respiratory Diseases

Although a plethora of literature and patent report various attempts to develop
pulmonary nanoformulations with several drugs of different therapeutic categories
for both local and systemic delivery; yet, very few have progressed to the clinical
stage and ultimately to the market. In the following few paragraphs, we survey some
of the marketed pulmonary nanomedicines and provide a glimpse of the various
nonclinical attempts to paint the picture of progress in this field. The advances and
the clinical evidence are categorized according to the different subtypes of
nanometric dosage forms.

10.5.1 Nanoparticles

Nanoparticles are a large class of nanometric particulate systems lying within the
size range below 1000 nm, although considerable debate exists in defining this range
and no universally accepted range has yet emerged. A plethora of pharmaceutical
dosage forms such as nanospheres, nanocapsules, nanosponges, nanocrystals,
liposomes, nanoglobular systems, various “niosomes,” etc. are often categorized
under the term “Nanoparticles”. However, classically rigid capsular or matrix
systems made up of polymers and/or lipids with or without other excipients are
expressed as nanoparticles in a pharmaceutical sense. Most commonly, these nano-
scale constructs afford modulation of drug pharmacokinetics, especially residence
time in biological milieu, and have the potential to target (both active and passive)
specific biological tissues.

By virtue of their extreme fineness, nanoparticles have unique properties, often
exploited pharmaceutically to overcome physicochemical and biopharmaceutical
challenges of drugs in conventional dosage forms. The shape, size distribution,
topological characteristics, charge, and material properties of nanoparticles play a
significant role in altering the pharmacokinetics of drug payload. Further, ligand
tagging, PEGylation, and surface decoration add functional properties, which are all
useful in achieving the goals of nanoparticulate formulations.
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Broadly, the nanoparticles have been used for treatment and diagnostic purposes,
and now, theragnostic applications are catching up. As carriers of drugs and contrast
agents for efficient delivery, targeting of biological constructs, and imaging purpose
in diagnosis, nanoparticles have been widely acclaimed. The potential of many drugs
would not have been realized if the nanoparticles were not available [61]. However,
for nanomedicine, the rate of translation from laboratory to clinics is not very
encouraging due to various reasons—both technical and regulatory. A customary
search using operators “nanoparticles” AND (“drug delivery” OR “drug targeting”
OR imaging) yields more than 60,000 literature reports. Nevertheless, the actual
number of clinically available nanoparticle formulations is limited (Table 10.3).

Of late, renewed interest is being shown in exploiting nanoparticulate systems for
lung-specific and lung-mediated systemic delivery of pharmaceuticals. Advances in
materials, particle engineering, and inhalation devices have enabled many drugs to
be delivered to lungs directly. There are scopes in brain targeting, better management
of tuberculosis and lung cancers, anti-infective and anti-inflammatory treatment, and
vaccine administration [63]. It is now being recognized that the Mass Mean Aero-
dynamic Diameter (MMAD) of about 5 μ is not the only factor, but the fine fraction
of particles in inhalation or nebulization plays pivotal roles in ensuring deep lung
deposition of particles. Consequently, nanoparticulate systems appear to be full of
potential for efficient drug delivery to the lungs.

Several drugs have been formulated into nanoparticles for pulmonary delivery
such as salbutamol, fluticasone, doxorubicin, ofloxacin, moxifloxacin, azithromycin,
Amikacin, rifampicin, isoniazid, pyrazinamide, ethambutol, tobramycin, ciprofloxa-
cin, budesonide, tacrolimus, vancomycin, clarithromycin, cyclosporin A, tranilast,
paclitaxel, Cisplatin, Silibinin, Methotrexate, Voriconazole, Itraconazole, Heparin,
Exendin-4, IgG1, Sildenafil, Carvedilol, calcitonin, Pirfenidone, Indomethacin,
Curcumin, other antioxidants, etc. Vaccines for norovirus, anthrax, and influenza
using mucoadhesive nanoparticles have been evaluated for pulmonary delivery.
Most of these nanoformulations are delivered via DPI and pMDI, which are ambu-
latory, and in clinical setup, the nebulizers are devices of choice [63, 64]. The recent
approval by USFDA of Afrezza® for a recombinant Insulin inhalation system would

Table 10.3 Some Clinically available Nanoparticulate formulations [62]

Paclitaxel (albumin
nanoparticles)

Gold nanoparticles
(colloidal gold and silica
nanoshells)

Docetaxel
(polymeric
nanoparticles)

Leuprorelina
(PEGylated
polymeric
nanoparticles)

Aprepitant (nanocrystals) Paliperidone
(nanocrystals)

Insulin
(polymeric
nanoparticles)

Megestrol
(nanocrystals)

Pegaspargase (polymer-
protein conjugated
nanoparticles)

Denileukin (protein
nanoparticles)

Rapamycin
(nanocrystals)

Fenofibrate
(nanocrystals)

siRNA (lipoidal
nanoparticles)
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boost the research in the field of peptide delivery via lungs. However, several
challenges need to be overcome before human trials become successful. The
nonrespirable carrier particles often separate from drug bearing nanoparticles, parti-
cle aggregation leads to alteration of the intended lung deposition and pharmacoki-
netic profile, regulatory requirements are stringent, and formulation may fail at an
advanced stage of development. Some of these technical limitations may be over-
come by newer technologies such as effervescent nanoparticles, particle engineering,
and supercritical fluid technology [63]. A particularly attractive option appears to be
nanocrystals of drugs delivered via nebulizers (as nanosuspensions) or DPI. How-
ever, the safety of polymeric systems used in the production of the particles is a
concern and only a handful of materials, such as PLGA and lecithin and its
derivatives, are USFDA approved for such application. Certain proprietary
technologies such as PulmoSphere® (Novartis) and AIR® (Alkermes Inc.) have
shown great potential in developing successful pulmonary nanosystems and have
since progressed into clinical trials [65].

Nanoparticles for pulmonary delivery have been fabricated from several different
materials, headed by polymers, lipids, and proteins. The most common polymer
reported for pulmonary nanoparticles is of course the FDA-approved biodegradable
polylactic-co-glycolic acid (PLGA), having an excellent time-tested safety profile.
Other polymers appearing in literature for the purpose include natural polymers such
as mucoadhesive chitosan, dextran, and polyesters and synthetic polymers such as
polyethylene glycols and their derivatives. They offer certain specific advantages
over other materials available. Protein-based nanoparticles utilize gelatin that is a
nonimmunogenic biodegradable polymer. Lipids are extensively studied as
nanoparticulate systems as they are nonimmunogenic and their degradation products
are often biocompatible. Apart from phospholipids and cholesterol, several others
saturated as well as unsaturated lipid molecules are reported in the literature as
pulmonary nanoparticles [66]. It has been found that stearic acid, palmitic acid, and
Compritol-based SLNs and lipid-drug conjugates converted into nanoparticles bear-
ing isoniazid, pyrazinamide, and rifampicin have an excellent safety profile [67].

10.5.2 Dendrimers

Dendrimers (Fig. 10.3) are homogeneous polymeric 3-D nanostructures with
repeated molecular branches. They have multiple functional groups available on
their surface. This results in their functional versatility and biocompatibility. By
virtue of their structure, both hydrophilic and hydrophobic drugs can be loaded or
conjugated to these structures.

Due to their unique structure, they have been exploited in several pharmaceutical
formulations [68]. Naturally, Dendrimers have found pulmonary applications as well
and Table 10.4 depicts some instances of success with dendrimer-based pulmonary
drug delivery.

Dendrimers, particularly belonging to fourth generation based on
polyamidoamine (PAMAM), have been found to be suitable in most advanced
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studies. PEGylated PAMAM dendrimers have shown promise. The pulmonary
biodisposition has been encouraging in both in vitro and in vivo results. By virtue
of their size and chemical characteristics, dendrimers have been found to be compat-
ible with both formulation excipients and biological milieu, affording better inter-
nalization, transport, and drug delivery. A few dendrimer-based formulations are in
various phases of clinical trials (Table 10.4). Though not pulmonary dosage forms,
their success would definitely widen the path for translation of pulmonary
formulations from lab to bedside. However, cationic dendrimers have potential of
membrane destabilization as the biomembranes are negatively charged and need
long-term safety studies within the current regulatory framework before clinical
acceptance [69].

10.5.3 Liposomes

Liposomes were the first clinically used novel nanometric systems in the form of
Amphotericin B (AmBisome)- and Doxorubicin-loaded formulations (Doxil)
[62]. Although the initial formulations and most of the currently marketed liposomal
formulations are injectables, progress in pulmonary liposomes has also been signifi-
cant. The most prominent case of pulmonary liposome in clinics is Arikayce by

Fig. 10.3 Typical synthetic route and structure of a dendrimer

Table 10.4 Applications of Dendrimers in Pulmonary drug delivery [68, 69]

Drug/brand Indication Remarks

siRNA Gene silencing, alveolar targeting, improved stability,
and better efficacy

pMDI

Beclomethasone Extended release Nebulization

Doxorubicin Increased pulmonary retention, pH-dependent drug
release, better particle size control, and lower cardiac
toxicity

pMDI, DPI, and
nebulization

Methotrexate PEGylated system, lower tmax, and increase in
bioavailability

DPI

Rifampicin Extended release and improved plasma profile than IV
route

DPI

Enoxaparin Low MW heparin and improved bioavailability Rodent model
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Insmed Inc., a formulation containing the antibiotic Amikacin for treatment of
persistent pulmonary infections. It is an extended release inhalation formulation
indicated for various threatening lung infections such as Pseudomonas aeruginosa
(in Cystic Fibrosis and nonCF bronchiectasis patients) and in nontubercular Myco-
bacterium infections. The product has witnessed good therapeutic response and
patient acceptance due to its considerable safety profile available so far [70]. A
number of reports suggest that liposomes are attractive tools for local antimicrobial
treatments with various drug classes such as fluoroquinolones [71] and
aminoglycosides as well as for antineoplastic agents [72]. There are other liposomal
formulations in various stages of development (both clinical and nonclinical);
however, most are administered via i.v. route and utilize the lungs’ ability to filter
particles based on size to localize the liposomes to the pulmonary region; direct
pulmonary delivery seems to have very few takers, probably due to the anatomical,
pathological, and immunological barriers associated with pulmonary route [73].

Table 10.5 lists some of the recent liposomal formulations attempted for pulmo-
nary delivery and which are at various stages of development.

Table 10.5 Pulmonary liposomes reported in literature [73]

Drug/brand Indication Remarks

Amphotericin
(Abelcet)

Fungal infections postlung transplantation Human trial

Lung phospholipids
(Survanta)

Respiratory distress syndrome (neonates) Commercialized

Amikacin
(Arikayce)

Antipseudomonal inhalation Commercialized

Beclomethasone Anti-inflammatory in asthma Human study

Ciclosporin A Immunosuppressant Human study

Interleukin-2 (IL-2) Anticancer, safety, and efficacy study Dogs and humans (phase
I)

9-
nitrocamptothecin
(9-NC)

Anticancer, safety, and efficacy study Phase II clinical trial and
animal studies

Insulin Safety and efficacy study Animals

All-trans-retinoic
acid

Safety Mice

Nonviral gene
delivery

Efficacy, stability, and safety (oncological
and infection indications)

AERx® (Aradigm Corp.,
Novo Nordisk)

Budesonide Experimental asthma Animal model

Ciprofloxacin
(Pulmaquin®)

Lung infections Clinical trials

Cisplatin Lung cancer, toxicity reduction, and
improved bioavailability

Clinical trials

Paclitaxel Anticancer, safety, and efficacy study Mice

Camptothecin Anticancer and efficacy study Mice

Doxorubicin Anticancer, safety, and efficacy study Mice
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In most cases of reported liposomal pulmonary formulations, the efficacy and
bioavailability of the hydrophobic drugs have improved, often, significantly and
reduction in side effects or adverse effects. In spite of potential general limitations of
liposomes, particularly, in view of their stability and storage issues, liposomes have
been given most attention in exploiting nanomedicine through pulmonary route. It
should be kept in mind while developing such dosage form, the role of the delivery
device and its relation to physicochemical properties of the formulations, which have
a direct bearing on the efficacy of the product. This makes pulmonary liposomal
formulation exercises complicated. Unless a sizeable number of clinically available
such formulations come to the market and remain there for a sufficient time, the
apparent huge potential of these products cannot be ascertained.

10.5.4 Lipid-Based Nanoparticles

In the 1960s, parenteral fat emulsion was found to be the first dosage form where
lipophilic drug was incorporated in lipid droplet, which is nowadays used for poorly
water-soluble drugs [74]. Various research groups such as Muller’s group, Gasco’s
group, and Westesen’s group developed the Solid Lipid Nanoparticles (SLNs) that
are considered as the first generation of lipid nanoparticles [75–80]. Lipid matrix of
SLN was converted to solid by replacing the oil of the fat emulsion by a solid lipid or
a blend of it where lipid (0.1–30% w/w) dispersed in aqueous solution of surfactant
(0.5–5% w/w) as stabilizing agent at room temperature or body temperature
[81]. The mean diameter of SLN was found to be in a range of approx.
40–1000 nm [82]. If biodegradable lipids are chosen, then SLN can be well tolerated
in the airways. Due to the smaller particle size, nanoparticles can easily be entrapped
or aerosolized into droplets with aerodynamic preferable properties, which ensures
that the active compound is deposited sufficiently in lungs. Moreover, nanoparticles
can adhere to the mucosal surface of the lungs for a longer period of time
[83, 84]. Due to the property of particle adhesion and accumulation and retention
results in longer dosing interval, thus, they can be used for the treatment of chronic
diseases and help to achieve better patient compliance [85]. Regardless of their
advantages, Lipid Nanoparticles have to meet desirable properties (biocompatibility,
sterility, isotonicity, and neutral pH value of 3–8.5 as lungs have limited buffering
capacity) for their applications [53]. The sterilization procedure is carried out by
different methods like autoclaving, gamma ray irradiation, and sterile filtration. Due
to physical stability issues (like increase in particle size due to the melting of lipid
matrix and recrystallization during cooling leads to a change in the structural matrix,
aggregation, or gelation), autoclaving is not an appreciable technique for steriliza-
tion. Gamma ray irradiation also leads to the formation of free radicals, which
ultimately results in the chemical modifications of the active moiety loaded to the
carrier system [86]. Nonionic isotonization agents preferably glycerol or
carbohydrates and ionic isotonization agents like NaCl or other salts can be used
to isotonize a lipid nanoparticle formulation. The electrolyte addition reduces the
electrostatic stabilities due to reduction in zeta potential. Lipid nanoparticles can be
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given as suspension or in a dry powder form for inhalation. In both cases, they
should have to show good aerodynamic properties in the desired airway regions for
deposition. Aerodynamic behavior cannot be explained only by the geometric
diameter of a particle, and it comprises geometric diameter along with density and
shape of a particle as, for instance, big particle with a small density can move with
the same velocity as a small particle with a high density. Deposition of particle
basically depends upon the optimal aerodynamic size (range of 0.5–10 μm), and the
mechanisms it follows are impaction, sedimentation, and diffusion [87]. Impaction
leads to the deposition of particles on bifurcations and narrowing as it basically
occurs when a heavier particle cannot follow the rapid changes that occur in the air
stream of upper airway due to the inertial forces. It is more likely to happen with an
increase in air velocity, density, and size of particles and rate of breathing. Particles
of nanometer range are more likely to deposit in the alveoli and bronchiole due to the
gravitational forces, termed as deposition by sedimentation. Decrease in breathing
rate and longer residence time lead to an increase in deposition of particle by
sedimentation. Deposition by diffusion occurs when the smaller and lighter particles
(submicron-range) deposit in the small airways and alveoli during the movement of
particles in the surrounding gas molecules by Brownian motion as the air velocity is
too low [88]. Particles are generally exhaled out because they do not deposit in one
breathing cycle. Currently available devices for inhalation that use nanoparticulate
formulations follow the mechanism of impaction and sedimentation rather than
diffusion as particles will not be inhaled as aggregates or droplets in the range of
micrometer or upper submicrometer rather than nanometer range. Clearance of
particles mainly depends upon many factors like their size, site of deposition (barrier
thickness increases from lower to upper airways), their solubility in airway fluid,
surface morphology, and physiological conditions of individuals. Insoluble particles
eliminate out by mucociliary clearance within 24–48 hrs, which are deposited in the
conducting airways as it is the main mechanism for clearance in the conductive zone;
particles that are able to cross mucus layer can only escape mucocilliary clearance.
Expectoration and swallowing help to remove the mucus carrying particles that is
being transported toward glottis through cilia [89]. If the interaction of particles with
the airway generation number and interaction with inner lung surface increase due to
the increase of pathway length, then the retention time of inhaled particles increases.
Clearance from alveolar region is bit complex and usually slower. In general, two
types of clearances are there: absorptive and nonabsorptive. Particles, which are
soluble in respiratory fluid, can easily penetrate the epithelium and are rapidly taken
up into the lymph or blood within minutes, and in the case of removal by dissolution
for poorly soluble particle, it may take months or years. Insoluble particles, which
are deposited in the alveolar regions, follow the macrophage phagocytosis mecha-
nism for clearance. After the deposition, if macrophages internalize the particles,
then they are disintegrated by lysosomal enzymes or are taken up into lymph or are
removed by mucocilliary clearance [89]. If clearance does not occur from the lung
surface, then the retention in the lungs will be prolonged, which contributes to
accumulation of the inhaled particles in the airway tissues, which ultimately results
in systemic uptake. Smaller particles can generally penetrate epithelial cells as well
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as interstitium by migration via lymphatics to hilar, pleural, and more distant lymph
nodes or by absorption into the blood capillaries, and the particles of range
0.5–10 μm remain on the alveoli as well as epithelial surface [90]. As beta-2 receptors
are located on smooth muscles (trachea down to conductive airways), beta
2-agonists for the treatment of asthma have to be deposited in these regions. For
the treatment of COPD (Chronic Obstructive Pulmonary Disease), anticholinergics
have to reach the central airways as the receptors are located there with decreasing
number from smooth muscle of large airways down to the smaller bronchial airways.
On the other hand, steroid receptors are found throughout the respiratory system
(including small peripheral airways). However, the release profile of carrier system
defines the site of deposition. Prolonged release features are limited after bronchial
deposition as the clearance is more efficient and faster in bronchiole than in alveoli.
Due to unintended adverse effects and low availability at the site of action, the
absorption of a locally administered drug is not desirable. Drugs of low lipophilicity
and high molecular weight have low absorption rates. Combination of lymphatic
uptake and local effect of a pulmonary applied anticancer agent could be an area of
interest. Lung cancer cells generally spread to mediastinal lymph nodes and
intraparenchymal pulmonary. Therefore, the lymphatic uptake of an anticancer
drug might inhibit metastatic progression to the lymph nodes. Moreover, the cases
related to tuberculosis remain enormous. According to survey, it has been found that
1.4 million people died from among 8.7 million new cases of tuberculosis (TB) in
2011 [91]. With the local effect of antituberculosis drug as well as systemic uptake,
the systemic effect of the drug can be a promising therapy approach [92].

10.5.5 Lipid-Polymer Hybrid Nanoparticles

Polymers can be used as an alternative to lipid nanoparticles and lipid-based
nanocarriers by forming lipid-polymer hybrid (Fig. 10.4) nanoparticles
[93]. Polymers are enormously gaining interest for pulmonary drug delivery. Numer-
ous advantages are associated with them, such as high encapsulation of drug,
modified surface properties, protection from degradation of drug, long shelf life,
and prolonged drug delivery.

Fig. 10.4 Antibiotic-loaded
lipid-polymer hybrid
nanoparticle
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Several polymers are used for therapeutic actions, but some are tested for inhala-
tion delivery, which include Poly(lactic-co-glycolic acid), poly(lactic acid), poly
(ε-caprolactone) (PCL), gelatin, alginate, and chitosan base. They are basically
chemically modified in order to make them biodegradable. A lipid-hybrid nanopar-
ticle can be prepared by enveloping poly(lactic-co-glycolic acid) with
PC-stearylamine or Phosphatidylcholine (PC) layers for inhalation delivery. The
shape of the resulting nanoparticle was spherical, and the particles were adsorbed on
the carrier (like chitosan particles). It was suggested that the aerodynamic diameter
of particles should be in a range of 1–5 μm as if the diameter is below 1 μm, then
there is a probability of particles to be exhaled back and if it is larger than 5 μm, then
there could be a chance of deposition of particles in the throat and mouth regions
instead of lungs. According to a literature report, Beck-Broichsitter et al. [94] have
performed a study to see the influence of polymer-based nanoparticles on pulmonary
surfactant and its surface characteristics and also compared the effect of biodegrad-
able and synthetic polymeric nanoparticles. They observed dose-dependent changes
in surface tension of pulmonary surfactant [94]. Apart from this study, there are
numerous studies performed on polymeric-nanoparticles. As an instance, Paclitaxel
(an anticancer drug)-loaded polymeric nanoparticles were prepared by combining a
polymer poly(ethylene oxide)-block-distearoyl phosphatidylethanolamine (DSPE)
and Polyethylene glycol (PEG5000) where it was observed that the drug shows a
better absorption in intratracheal instillation route as compared to IV administration
[95]. According to few studies, it can be stated that encapsulation efficiency of a drug
can be improved by polymeric nanoparticles along with an increased uptake by the
modification of particle surfaces. For instance, PEGylation of particles can improve
the encapsulation efficacy, improve uptake, and prolong the release of the drug as
PEGylation evades the macrophages and, therefore, avoids engulfing by phagocyto-
sis [96]. Apart from anticancer drugs, multiple studies were performed on
antioxidants and anti-inflammatory agents incorporated into polymeric-based
nanoparticles. As an example, an anti-inflammatory agent, HydroxyBenzyl Alcohol
(HBA)-incorporated Polyoxalate (HPOX) nanoparticles (formulated using PLGA-
polymeric-based nanoparticle), was administered through intratracheal route in a
group of ovalbumin-induced asthma mice models, and they found attenuation in
inflammatory responses in the group due to a decrease in the level of
pro-inflammatory cytokines. Therefore, polymeric nanoparticles might have suffi-
cient potential for treating asthma and airway inflammation [97].

10.5.6 Micelles

A promising drug carrier system comprises efficient drug loading capacity, release
properties, low toxicity, and long shelf life. Colloidal systems (like vesicles, liquid
crystal dispersions, micellar solution, and nanoparticle dispersions) proved to be a
good carrier in pulmonary delivery. In micelle, drugs are trapped in the core and
transported at a concentration even more than their intrinsic water solubility. Micelle
is surrounded by a hydrophilic shell that protects the contents, and meanwhile, the
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chemistry of the shell prevents the recognition by reticuloendothelial system, which
further avoids early elimination from the bloodstream. Stability and spatial and
temporal control of the micelles can be improved by using cross linking molecules
through chemical techniques. Hydrophobic drugs, proteins, and DNA can be
encapsulated into polymeric micelles (formed by an amphiphile macromolecule
self-assembling to nanoscopic core in the aqueous environment) to deliver the
drug to show their efficacy to their target site. These polymeric micelles resemble
the functional and structural characteristics with natural transport system (like
lipoprotein and virus). Multifaceted chemistry of polymeric micelles provides
opportunities to formulate appropriate polymeric carriers of nanometric range for
individual delivery requirements. Formulating nanoengineered polymeric micelles
can be used against drug resistance problem by modifying their chemistry to
manipulate encapsulation, to modulate release pattern, and for biodistribution and
cellular interaction of P-glycoprotein substrate to resistant tumors. Asthma and
chronic pulmonary obstructive disease can be treated by polymeric micelles as
they have an ability to evade mononuclear phagocytic system because of their
heavy hydrophilic outer shell and can also prolong the drug release [98]. For treating
chronic pulmonary obstructive disease, hydrophobic corticosteroids (like
beclomethasone dipropionate), which are unable to pass through mucus layer, can
also be delivered by polymeric micelles as micelles of nanometric size range can
easily penetrate via the mucus layer associated with bronchial inflammatory diseases
directly to reach the receptors present in the epithelial cells, and supporting to this
context, an additional report was found where it was stated that a mammalian-
secreted Phospholipase A2 has an ability to degrade pegylated phosphatidylethanol-
amine [99, 100]. To this context, Gaber et al. [101] studied the efficiency of using
poly-(ethylene oxide)-block-distearoyl phosphatidylethanolamine (mPEG-DSPE)
polymer to formulate beclomethasone dipropionate-loaded micelles with high
entrapment efficiency and less than 5 μm mass median aerodynamic diameter and
also elaborated their prolonged release properties. The physicochemical properties,
entrapment efficiency, outcomes of drug-polymer molar ratio on particle size,
in vitro inhalation pattern, and release profile of polymeric micelles were also
evaluated and allowed them to conclude the pharmacological interest of this kind
of nanocarrier [101].

10.5.7 Magnetic Core-Shell Nanoparticles

Aerosolized techniques in the treatment of different respiratory diseases such as
asthma, respiratory infection, lung cancer, and chronic obstructive pulmonary dis-
ease were tried by many researchers [102–105]. Verma et al. [106] also investigated
potential of magnetic nanoparticles (MNPs) for delivery of quercetin in the treatment
of lung cancer through nebulization technique. Quercetin, a flavonoid compound,
which can inhibit the growth of cancer cell including lung cancer, was loaded inside
the magnetic core of nanoparticles, and outer shell was fabricated from the biocom-
patible polymer, poly(DL-lactic-co-glycolic acid) (PLGA). Coating of polymer not
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only improved biocompatibility of magnetic nanoparticles but also concealed iron
oxide or magnetite from oxidation. Due to coating, size of MNPs increased from 9.6
to 53.2 nm, whereas the hydrodynamic diameter of MNPs increased from 54.3 to
293.4 nm. Images had been analyzed by transmission electron microscopy and
dynamic light scattering, respectively. Human A549 lung epithelial cells were
treated with magnetic core-shell NPs to check their cytocompatibility and
intracellularization ability. Cell-based automated microscopy revealed no
abnormalities found in morphology and in structure of cytoskeletal protein actin of
treated cells. Intracellularization of MNPs was time-dependent process. However,
MNPs at a concentration of 250 μg/ml was found to be toxic with reducing number
of viable cells up to 25%. In vivo biocompatibility study was performed on mouse
model for both coated and uncoated MNPs. Glutathione level of homogenized lung
samples enhanced dramatically after 1-day exposure to this new drug delivery
system probably due to nature of invasiveness through intratracheal pipe. Whether
drug delivery through nebulization method has affected the particles has been
investigated by Verma et al. [106]. It has been found that particles remained intact
as prepared, which was confirmed by photoluminescence spectra at 380 nm before
and after nebulization. Therapeutic efficacy of these drug delivery systems was
carried out on human A549 lung carcinoma cells, and significant reduction of lung
carcinoma cells was detected. So, it was confirmed by the researchers that necessary
surface engineering on MNPs can deliver the drug even through narrow intratracheal
path via aerosol therapy and maintains their biocompatibility and therapeutic effi-
cacy. This kind of system can be used to treat different respiratory diseases where a
systemic approach may not be feasible.

10.5.8 Mesoporous Silica Nanoparticle

Recently, silica nanoparticles have been not only gaining importance to be used
through the intravenous route but also recognized as a useful drug delivery carrier for
use through pulmonary route to treat respiratory diseases [107]. Bioerodibility,
biocompatibility, controllable particle size, large surface area, and different surface
functional ability make them suitable for use through pulmonary route. Due to
hydrophilic property, dispersion of these particles is possible in aqueous media,
and also, surface functionalization property enhances this property, which is essen-
tial for in vivo application. The large surface area of these porous nanoparticles
enables them to load a high amount of drug in this carrier [108]. Gulin-Sarfraz’s
group in the year of 2019 worked on mesoporous silica nanoparticles (MSPs) to
deliver dexamethasone through pulmonary route to treat airway inflammation. The
experiment was performed using mouse model [109]. At first, both large MSPs and
small MSPs were synthesized to load maximum drug even up to 1:1 ratio of drug and
carrier. Then, this core of drug and MSP was coated with polyethylene glycol–
polyethylene imine (PEG–PEI) copolymer. The coating was done with the aim of
enhancing the biocompatibility and aqueous dispersibility of this system. Enhanced
biocompatibility will preclude any kind of unwanted interaction of these drug
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delivery systems with pulmonary route, and enhanced dispersibility helped in the
nebulization process. A similar approach of coating the core with similar co-polymer
(PEG-PEI) was taken by another research group [110]. In Gulin-Sarfraz’s [109]
study, melphalan (MEL)-induced airway inflammation mouse model and
lipopolysaccharide (LPS)-induced airway inflammation mouse model were exposed
to this nanoparticle-based drug delivery system in order to know its therapeutic
potential. Through Aeroneb™PRO, SCIREQ® nebulizer, drugs with its carrier were
aerosolized. As a control group, mouse was exposed only to free drug without MSP
nanoparticles. Electron microscopy images revealed that synthesized particles were
monodispersed and spherical with sizes of 1 μm and 200 nm for large MSPs and
small MSPs, respectively. In vitro release kinetic study showed enhancement of
dexamethasone solubility due to molecular dispersion of drug particles on the silica
matrix. This similar consequence was observed by another group, Martin et al. [111]
working on silica nanoparticle with entrapped prednisolone. Cellular inflammation
and neutrophil counts of both mouse models were reduced due to administration of
dexamethasone-loaded silica nanoparticles, and the response was the same as free
drug. Though only half the amount of the drug was delivered through this delivery
system, the effect was similar to the mouse model treated with free drug. This study
has shown the immense possibility of this nanocarrier to exploit in the treatment of
respiratory diseases through the pulmonary route.

10.6 Limitation/Potential Risk of Nano-Based Formulations

Nanotechnology involves the concept of design and exploitation of materials at
nanoscale levels to form products that exhibit novel properties [112]. Without
enough categorization and characterization, it is truly challenging to analyze any
individual study results by several researchers. It is nearly impracticable to compare
the results from different studies, even in cases where the identical nanoparticle has
been explored. Hence, the aptitude to categorize significant parameters that might
manipulate pulmonary toxicity is being difficult. Even though there is no universally
recognized standard set of parameters that is deemed compulsory for nanoparticle
estimation, its method of synthesis, shape, size and its size distribution, crystal
structure, composition, purity, aggregation and agglomeration status, dissolution,
surface area, and other surface characteristics play a vital role. Unfortunately,
including all these parameters in publications relating nanoparticle pulmonary tox-
icity studies appears to be rare.

In general, phospholipid-based pulmonary formulations (particularly liposomal
systems) have been found to be physiologically acceptable in numerous studies,
primarily due to the similarity of the phospholipids used with pulmonary surfactants.
This is a good sign for supporting the future development of pulmonary
formulations.

Occupational or nonoccupational exposure to nontherapeutic nanoparticles is
rising with time. Our existing domain of knowledge regarding the potential health
effects of nanoparticles may be limited, but is sufficient to suggest that they may
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bring to bear adverse effects at their portal of entry, marking lungs at high risk.
Airborne nanoparticles are known to have genotoxic or carcinogenic effects because
of the certain metals, carbons, etc used to make them. Some metal particles can lead
to reactive oxygen species (ROS) generation that causes oxidative stress and DNA
damage in the body [113–115].

When inhaled, the therapeutic nanoparticles are found to be distributed to the
lungs, heart, spleen, liver, and even in the brain [116]. It is the basic body physio-
logical system to clear any such inhaled nanoparticles present in the alveolar region
via phagocytosis by macrophages due to chemotactic attraction of the alveolar
macrophages to the deposition site [117, 118]. The average half-life (t1/2) for
nanoparticles in the respiratory tract is �700 days in humans, making it a site of
accumulation depending on their size and shape [119]. Once inhaled, nanoparticles
slowly show lung toxicity, like generation of oxidative stress, cytotoxicity, DNA
damage, and inflammation leading to fibrosis and pneumoconiosis. A major change
of systemic toxicity arises due to passive targeted drug delivery of therapeutic
nanoparticle by pulmonary route of administration. This is because nanoparticle
by virtue of its small size can penetrate the physiological barriers and even the
blood–brain barrier (BBB).

Prudence dictates that nanomedicines might have different toxicity profiles from
their macromolecular counterparts. Nanomaterials, by virtue of their extreme fine-
ness, often exhibit novel properties, and therefore, it may be extrapolated to their
toxicity potential. Limited prediction capability may exist today in delineating
nanotoxicity, but risk evaluation and management will be the most important agenda
in the short-term canvas of goals in the development of nanomedicine. Therefore,
long-term studies on existing and future nanomedicines are a necessity to clearly
assess their risks and benefits.

10.7 Summary and Future Prospects

In the present chapter, we have described and focused on several types and aspects of
pulmonary nanomedicines and shown how they may be useful in modifying the
outcome of pulmonary diseases. Despite having potential upsides in using medicines
through pulmonary route, the industry seems to be reluctant to take the risk of
development of clinical nanoscale products for pulmonary delivery. This is perhaps
due to the lack of success in several clinical trials and poor response of a few
marketed products. The most successful pulmonary nanomedicine appears to be
those utilizing antimicrobial drug payload for local inhalation delivery. However, a
lot needs to be done, particularly, in the field of oncological products for pulmonary
delivery and for utilizing the route for systemic delivery of therapeutic agents. The
regulatory framework is also quite incoherent, and only recently, FDA and other
regulatory bodies have been waking up to the need for proper guidelines in the field
of nanomedicine. In our opinion, a sleeping giant in the form of nanoscalar pulmo-
nary delivery platforms is awaiting exploration and exploitation. It is hoped that
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future researchers, in both academia and industry, would take advantage of the
pulmonary route for translational research in this nascent field.
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Abstract

Herbal extracts from selected medicinal plants are frequently used to treat
specialized health conditions and are preferred over synthetic medicines because
of their increased therapeutic efficacy and fewer adverse effects. Nanoemulsions
are presently gaining popularity as convenient carriers for the delivery of herbal
lipophilic bioactives as they have the capability to dissolve huge quantities of
poorly soluble drugs, provide extended release of the encapsulated drugs, and can
deliver these drugs through different routes like oral, transdermal, topically on
skin and mucous membranes, etc. Studies conducted previously found varied
applications of herbal nanoemulsions in passive and active tumor targeting;
transdermal, oral, ocular and nose-to-brain drug delivery, management of
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vector-borne diseases, and in areas of food technology, etc. Safety considerations
during production and quality control phases of herbal nanoemulsions particu-
larly, and all nano-based formulations, in general, are an issue that needs urgent
attention. Thus, looking into the prospects of nanoemulsion-based delivery of
herbal drugs; it might absolutely have a probable future in enhancing the activity
as well as surmounting the difficulties correlated with plant-extracted medicines.
The present review focuses on the significance of nanoemulsions in the delivery
of herbal bioactives and emphasizes on the various aspects of their formulation
development, applications in drug-delivery systems, advantages and challenges,
safety and regulatory issues associated with it, and future prospects of
nanoemulsion-based herbal drug delivery.

Keywords

Nanoemulsion · Herbal · Drug delivery · Solubility · Bioavailability

11.1 Nanoemulsion Systems for Drug Delivery

Nanotechnology-devised formulations presently seem to be an attractive area for
researchers as a hopeful alternative for the treatment of different diseases
[1]. Nanoemulsions, among other nanoformulations, are thermodynamically more
stable liquid dispersions of oil, water, surfactant, and co-surfactant with a droplet
size of 20–200 nm and an appearance of a translucent or transparent liquid
[2, 3]. Nanoemulsions were first formulated in the 1940s and are classified as
water-in-oil (w/o), oil-in-water (o/w), and bicontinuous nanoemulsions. In w/o
nanoemulsions, water droplets are distributed within the oil phase whereas o/w
nanoemulsions have oil droplets distributed within the aqueous phase and
bicontinuous nanoemulsions consist of oil droplets and water interdispersed within
the system (Fig. 11.1) [4]. Pertaining to their smaller particle size, enhanced bio-
availability, ease of preparation, bioefficacy, and kinetic stability, nanoemulsions are
currently attaining popularity as suitable carriers for the delivery of lipophilic
materials [5–7]. The water in nanoemulsions being bound in the structure itself,

Fig. 11.1 Types of nanoemulsions
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there is no water available for microbial growth, and hence, they are considered self-
preserving antimicrobials [8]. They can deliver drugs through various routes like
oral, transdermal, topically on mucous membranes, etc. They serve as excellent
vectors for drug delivery as they have the capacity to dissolve huge quantities of
poorly soluble drugs and also an ability to mutually shield and secure drugs from
hydrolysis and enzymatic degradation. Nanosized emulsions have applications in
food and cosmetic technology, vaccine delivery, cancer therapy, cell culture tech-
nology, as prophylactics in disinfectant cleaner, bio-terrorism attack, for improved
oral delivery of formulations containing poorly soluble drugs, ocular, otic, intrana-
sal, parenteral, and pulmonary delivery of drugs [9, 10]. Herbal medicines have
enjoyed immense popularity throughout the globe since ancient times [11]. Herbal
bioactives have innumerable health benefits but restricted therapeutic potential due
to their short half-life and little bioavailability profile. These plant-derived bioactives
are either hydrophilic or lipophilic by nature. Hydrophilic molecules have little
absorption via lipid membranes, which reduces their biological potency and phar-
macokinetics. A large molecular size and little membrane permeability are the main
factors that limit their therapeutic utilities. Since last decade, nanotechnology has
started playing a pivotal role in producing specific nanocarriers to intensify the
therapeutic effect of herbal drugs. It offers several advantages over conventional
drug-delivery platforms [12]. Nanoemulsions, are an ingenious platform, among
other novel nano approaches, as they can be fabricated with an extensive range of
liquid lipids and surfactants [13]. Nanoemulsions direct herbal bioactives to a
specific target site and enable blood-plasma concentration for longer periods, some-
thing that conventional drug-delivery systems have failed to achieve. They preserve
the bioactives from gastric degradation and increase their stability by enclosing them
within water in oil (w/o) or oil in water (o/w) nanodroplets. They extend the
bioavailability and permeability of less-bioavailable phytopharmaceuticals across
the dermal and gastro-intestinal membranes [14, 15]. The limited solubility of
hydrophobic herbal molecules in aqueous media is another crucial challenge while
developing an appropriate formulation. In such cases, nanosized droplets of
nanoemulsions provide an advantageous environment for the uptake of lipophilic
herbal bioactive molecules [16, 17]. Thus, nanoemulsions are better options in the
evolution of innovative drug-delivery systems with increased relevance. These lipid-
surfactant-based formulations, by virtue of their composition and functionality, are
capable of communicating across the body’s natural barriers thereby enabling
maximum drug absorption [18]. The aim of this chapter is to present a brief
perspective of the delivery of herbal drugs with nanoemulsion as the carrier system
and the challenges and prospects associated with such applications.

11.2 Herbal-Based Nanoemulsion System

Since the beginning of history, herbal preparations like medicinal plants and their
essential oils have held burgeoning interest for researchers. Herbal preparations from
selected medicinal plant parts are generally used to treat specific health conditions
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[19, 20]. Examples of some major plant-derived drugs include quinidine and quinine
from Cinchona spp., digoxin from Digitalis spp., atropine from Atropa belladonna,
codeine and morphine from Papaver somniferum, vinblastine and vincristrine from
Catharanthus roseus, etc. Around 60% of anti-infectious and anti-tumor drugs
currently in the market or under clinical trials are estimated to be of natural origin
[21]. In addition, drugs such as cannabinoids, physostigmine, muscarine, yohimbine,
colchicines, forskolin, etc. all obtained from plants are principal tools used in
physiological, pharmacological, and biochemical studies [22].

Pharmacology of medicinal plants has been extensively reported in reviews and
there has been a growing enthusiasm on the advancement of novel drug-delivery
systems for herbal drugs [20, 23]. Herbal medicines are used more because of their
increased therapeutic effects and fewer adverse effects when compared with modern
synthetic medicines [24]. Multifunctional properties like antiaging, moisturization,
photoprotection, astringent, antioxidant, antimicrobial, anti-irritant activities, etc. are
correlated with each other and occur naturally in certain botanical extracts.
Antiaging properties are commonly obtained from centella, pycnogenol, boswelia,
tetrahydrocurcuminoids, and oleanolic acid extracts [25–27]; moisturization from
retinoids, alpha hydroxy fruit acids, soy, black cohosh, aloe vera, and calendula
extracts [28–30]; antioxidant and photoprotection from vitamins C and E, tea,
polyphenols, curcumin, silymarin, resveratrol, ginkgo, genistein, and pomegranate
fruit extracts [31–34]; astringent properties from arnica, cucumber [29]; and anti-
irritant and anti-inflammatory properties from coriander seed oil and bisabolol
[34]. Thanks to these characteristics, a herbal drug can now be formulated both as
an aqueous solution or as a nonaqueous extract diluted with water sufficiently before
administration, or even administered as such. An innovation always improves both
the aesthetics and accomplishment of any pharmaceutical product [35]. Poor absorp-
tion, solubility, bioavailability, stability, and high metabolism cause many herbal
drugs and extracts to have a low in vivo activity.

Formulation of herbal drugs by nanodelivery systems represents enhanced bio-
availability, and hence, is a favorable and acceptable tool. Novel nano-based herbal
formulations have impressive advantages over traditional formulations, which
include increased solubility, bioavailability, stability, enhancement of intracellular
uptake, modification of pharmacokinetics and bio-distribution, sustained delivery,
etc. Herbal nanoemulsions are stable, transparent, highly dispersed, and easy to
prepare. The stability of herbal oils when formulated as nanoemulsions is enhanced
when exposed to high temperatures, by oxidation by atmospheric oxygen, and
electromagnetic radiation, thereby decreasing losses due to decomposition and
evaporation of the active constituents. Furthermore, they are better absorbed by
cell membranes because of their nanoscopic dimensions [24, 36–40]. Therefore, the
inclusion of herbal extracts into lipophilic bioactive nanoemulsion systems is
thought to have comprehensive value in pharmaceutical, agricultural, cosmetic,
food, and beverage products. Designing herbal nanoemulsions with formulation
potency has significance both in terms of industrial and academic research
[23, 41]. Apart from its intended sustained release, formulating the herbal drug
into a nanoemulsion will also improve skin and mucous membrane penetrability
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of drugs, increase the stability of hydrolyzed matter, and reduce the tissues’ stimulus
to the drugs [23].

11.2.1 Previous Research Studies on Herbal Nanoemulsions

Nanoemulsion formulations containing phytoactives such as Camptothecin,
Coixenolide oil, Brucea javanica oil, and zedoary oil have been previously reported
[23]. Shen et al. [42] demonstrated enhanced in vivo absorption of Colchicine
nanoemulsion on the human intestinal milieu. Silva et al. [43] have tried
incorporating Genistein, possessing anticancer properties, into topical nanoemulsion
formulations composed of water, egg lecithin, and triglycerides with spontaneous
emulsification and improved pharmacological activity. Wang et al. [44] have
demonstrated increased anti-inflammatory activity of Curcumin formulated as an
oil-in-water nanoemulsion. Zulli et al. [45] showed nanoemulsion enhances encap-
sulation of Coenzyme Q10 or Ubiquinone concentration in the dermis as compared
to traditional emulsion formulations. Several other bioactive- and plant extract-based
nanoemulsions of berberine, capsicum oleoresin, citronella oil, eucalyptus oil, neem
oil, triptolide, etc. have previously been reported [3, 46, 47]. Some additional herbal
nanoemulsion formulations are depicted in Table 11.1.

11.3 Challenges and Advantages of Herbal Nanoemulsion
Products

Herb-derived medicines have now become a core field of research for inventors and
scientists all over the world due to their superior therapeutic value and lesser adverse
effects as compared to contemporary medicines. Though herbal bioactive molecules
have tremendous advantages over synthetic drugs, there have been common
limitations due to their low solubility, low permeability, low bioavailability profile,
and shorter half-life, which ultimately lead to lesser therapeutic potential [14]. Plant-
derived molecules are either hydrophilic or lipophilic in nature. Due to weak
absorption via lipid membranes, hydrophilic plant bioactives show decreased bio-
availability and a pharmacokinetic profile. On the other hand, larger-sized bioactive
molecules have limited bioavailability due to their low membrane permeability. This
is a major barrier for the effective use of such herbal bioactive compounds against
several health complications and conventional drug-delivery schemes have failed to
attain these particular requirements for herbal products [24]. There is a possibility
that these challenges might be overcome by utilizing the nanoencapsulation process
of nanoemulsions that entraps the active herbal drug inside the lipid core. Gastric
degradation of a herbal drug is another major disadvantage to the conventional oral
delivery of such drugs. In such cases, nanoemulsions might be a good choice for
formulation experts to protect plant bioactives and enhance their membrane diffu-
sion to get an extended release of the encapsulated product. Nanoencapsulation of
herbal drugs provides a large surface to volume ratio, which improves drug-tissue
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distribution and enhancement in the reticuloendothelial system (RES) uptake as well
as enhancement in the permeability and retention (EPR) effect. As compared to the
micro and conventional emulsions, nanoemulsions bear further viscous or gel-like
texture with very low fat and droplet concentrations [5].

Nanoemulsion as a herbal drug-delivery carrier affords advantages in improve-
ment of drug solubility and the absorption profile, increase in drug loading, con-
trolled drug release with the ability to protect the drugs from hydrolysis and
enzymatic degradation, reduced patient variability, and makes them ideal

Table 11.1 Some herbal nanoemulsions and their properties

Sl.
no.

Herbal
nanoemulsion
formulation

Biological
activity

Method of
preparation

Route of
administration Reference

1 Phyto
nanoemulsion
containing
black seed and
wheat germ oil

Antioxidant
capacity, wound
healing, and
radioprotective
activity

Homogenization
and
emulsification

Dermal and
oral

[20]

2 Neem oil
nanoemulsion

Used in
medicine, soil
agriculture field,
aquaculture, etc.

Emulsification,
homogenization,
and sonication

– [3]

3 Rosemary,
laurel, thyme
and sage oil
incorporated
nanoemulsion

Antimicrobial,
antioxidant, and
preservative for
fish fillets

Emulsification,
homogenization,
and sonication

– [7]

4 Vitex agnus-
castus extract-
based
nanoemulsion

Mastodynia or
mastalgia and
menstrual cycle
disorders

Emulsification Oral [24]

5 Silymarin
nanoemulsion

Hepatoprotective High-pressure
homogenization

Oral [48]

6 Piplartine
nanoemulsion
formulation

Anticancer Emulsification
and
homogenization-
sonication

Oral [49]

7 Rutin
nanoemulsion

Anticancer Aqueous titration Oral [50]

8 Opuntia
nanoemulsion

Herbal cosmetic Emulsification Dermal [51]

9 Tarragon
nanoemulsion

Larvicidal Emulsification – [52]

10 Neem oil
nanoemulsion

Larvicidal Emulsification – [53]

11 Foeniculum
vulgare
nanoemulsion

Antidiabetic Emulsification Transdermal [54]
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drug-delivery carrier through encapsulation [10, 55]. Nanoemulsion enhances the
adequacy of herbal drugs to that specific target site and manages the blood-plasma
level concentration for a longer period with a minimized frequency of dose and side
effects [56]. Development of multidrug resistance (MDR) against conventional and
novel cancer chemotherapeutic agents is a primary challenge in the current medicinal
scenario [57, 58]. Nanoemulsion of curcumin-paclitaxel encapsulated in flaxseed oil
(Linum usitatissimum L.) enhanced apoptosis and led to downregulation of the MDR
protein, P-gp, and inhibited the nuclear factor kappa B (NFκB) pathway, against the
drug-resistant (SKOV3TR) human ovarian adenocarcinoma cells [59, 60].

11.4 Applications of Herbal Nanoemulsions

11.4.1 In Drug Delivery

11.4.1.1 Passive and Active Tumor Targeting
Nanoemulsion is a substantial tool in the nano-technological field, outlined for
clinical and therapeutic operation. Among other nanocarriers, nanoemulsions are
now broadly anticipated as effective delivery systems for the targeted delivery of
lipophilic neoplastic drugs. Advantages of such nanoemulsion systems include
biocompatibility, drug encapsulation and controlled release, biodegradability, ther-
modynamic stability, etc. [61, 62]. With the droplet size ranging within submicron
dimensions, colloidal nanoemulsions can surmount the anatomical and physiologi-
cal obstacles during drug delivery in severe complications such as cancer
[63]. Herbal chemotherapeutic drugs, through active targeting, improve the selec-
tiveness of cellular uptake and cytotoxicity via receptor-mediated endocytosis. The
nanometric size of the nanocarriers first allows passive targeting to the inflamed
tissues and consequently to tumors by extravasation, which is called the EPR effect
[64]. Enhancement of drug selectivity to cancer cells so as to avoid side effects in
normal cells, enhancement of drug accumulation and drug efficiency, and control of
drug release are the major advantages of nanoemulsions while formulating conven-
tional chemotherapeutic drugs when compared to a nontargeted nanoparticle plat-
form [65]. Li et al. [66] developed an oil-in-water nanoemulsion incorporating
berberine hydrochloride, which significantly improved the absorption and oral
bioavailability of the drug berberine in a rat model. The nanoemulsion helped to
increase the transport and decrease the efflux on Caco-2 cell monolayers under
permeability study. The absorption mechanism of nanoemulsion in rat intestines
may be passive transport [66]. However, the limitation in active targeting is that it
acts only on certain types of cancerous cells that express specific receptors on its
surface. Hence, selection of nanoparticles to the target site depends on the types of
target proteins or receptors available on the cancer cell surfaces [67].

11.4.1.2 Topical/Transdermal Delivery
Due to abundant skin surface for absorption as well as the limited first-pass effect,
transdermal delivery remains a highly enviable route of administration [68]. Stratum
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corneum is the principal barrier for delivery of transdermal drugs. In topical/trans-
dermal drug delivery, nanoemulsions offer extended release of herbal drugs and
boost viscoelasticity and hydration and of the skin [69, 70]. Rice bran oil (Oriza
Sativa) containing high levels of antioxidants is a widely used component of anti-
ageing and sunscreen creams and also in nanoemulsions by virtue of its anti-irritant
effect [71]. Rice bran oil nanoemulsions possess great hydration and moisturising
properties and help in maintaining the normal skin pH in the patients suffering from
psoriasis and dermatitis [72]. Sharma et al. [73] successively prepared a
nanoemulsion gel system, incorporating resveratrol, a type of natural phenol, to
enhance the permeability and antioxidant activity to the ultraviolet (UV)-induced
oxidative skin damage. Nanoemulsion of Paclitaxel with 5-Aminolevulinic acid
showed promising antipsoriatic effects and improved transdermal permeation
in vivo, in vitro over topical formulations such as ethosomes and liposomes [74]. Per-
meation enhancers like anethole, menthone, and eugenol are reported as highly
effective, safe, and proven to rupture the skin barrier for nanoemulsion-based topical
delivery of the drug, Valsartan. This nanoemulsion has potential application as a new
transdermal therapeutic system for the management of hypertension [75]. Nastiti
et al. [76] investigated the follicular delivery of caffeine with eucalyptol, a penetra-
tion enhancer in the form of nanoemulsion. This eucalyptol-based nanoemulsion
increased the penetration of caffeine 43 folds as compared to control [76]. Numerous
examples depicting transdermal/topical use of herbal nanoemulsions come from the
cosmetic industry. Nanoemulsion systems have constituted hydrating creams, hair
coloring products, etc. L’Oreal, a highly popular cosmetic company, already has
dozens of proprietary technologies based on nanoemulsions alone [77]. A table
(Table 11.2) in this regard has been given below:

11.4.1.3 Oral Delivery
Oral delivery is considered to be the biggest challenge for herbal drugs due to their
degradation in the gastric pH, poor permeability, and water solubility and rapid
metabolism [42, 86, 87]. Andrographolide is a herbal drug well known for its anti-
inflammatory property. Its low water solubility and low oral bioavailability are a
major hindrance to its therapeutic potential. When incorporated in nanoemulsion,
andrographolide is effective for improving the oral bioavailability and thus exhibits
greater potential in the management of inflammatory bowel disease [88]. Another
example of improved oral bioavailability upon nanoemulsion-based encapsulation
includes the drug Silymarin, a mixture of flavolignans having hepatoprotactant
activity, whose oral bioavailability in rats increased by six and four folds as
compared to silymarin nanosuspension and other commercial silymarin products
[89]. Oral bioavailability can be achieved by preventing the nanoencapsulated drug
with an efflux transporter such as P-glycoprotein [90, 91]. Curcumin-loaded
nanoemulsions led to interesting therapeutic potentialities in Alzheimer’s disease
by inhibition of the Amyloid beta peptide oligomerization [92, 93]. Eugenol, being
rich in terpinoids, inhibits the P-glycoprotein mediated transport. Hence, eugenol-
loaded nanoemulsion has been proposed for enhanced oral delivery of colchicines, a
P-glycoprotein substrate [42, 77].
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11.4.1.4 Ocular Delivery
In the case of ocular drug delivery, maintaining drug concentration at the site of
administration remains challenging. Drug delivery into the ocular mucosa is an
efficient strategy to extend ocular residence time with limited drainage, and to
increase the bioavailability at the site of action [77]. Characteristics like drug
penetration through corneal, precorneal, and blood-ocular barriers, frequent drug
washout, frequency of dosing are the primary concerns associated with ophthalmic
drug delivery in achieving therapeutic efficacy and patient compliance. Side effects
such as miosis (cataractogenic) are associated with multiple dosing. In such cases,
nanoemulsion-based drug-delivery systems might offer an improved interaction with
the ocular mucosa and might also effectively penetrate the corneal and conjunctival
epithelia [94]. A pilocarpine nanoemulsion formulation was developed by Naveh
et al. [95] for the diagnosis of glaucoma. This nanoemulsion has been reported to
prolong hypotensive action in normotensive rabbits for 11 hours (h) initially post
instillation, which was further increased up to 29 h later [95].

Table 11.2 Proprietary nanoemulsion-based technologies by L’Oreal, a French personal care and
cosmetic company

Sl
no. Technology US Patent no. Reference

1 Nanoemulsion based on phosphoric acid fatty acid
esters and its uses in the cosmetics, dermatological,
pharmaceutical, and/or ophthalmological fields

US 6,274,150 B1 [78]

2 Nanoemulsion based on ethylene oxide and propylene
oxide block copolymers and its uses in the cosmetics,
dermatological, and/or ophthalmological fields

US 6,464,990 B1 [79]

3 Nanoemulsion based on oxyethylenated or
nonoxyethylenated sorbitan fatty esters, and its uses in
the cosmetics, dermatological, and/or ophthalmological
fields

US 6,335,022 B1 [80]

4 Nanoemulsion based on glycerol fatty esters, and its
uses in the cosmetics, dermatological, and/or
ophthalmological fields

US 6,541,018 B1 [81]

5 Nanoemulsion based on sugar fatty esters or on sugar
fatty ethers and its uses in the cosmetics,
dermatological, and/or ophthalmological fields

US 6,689,371 B1 [82]

6 Transparent nanoemulsion less than 100 nm based on
fluid nonionic

US 5,753,241 A [83]

7 Translucent nanoemulsion, production method, and
uses thereof in the cosmetic, dermatological, and/or
ophthalmological fields

US 6,902,737 B2 [84]

8 Aqueous photoprotective compositions comprising
hydrophilic metal oxide nanopigments and vinyl
pyrrolidone homopolymers

US
2010O254920A1

[85]
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11.4.1.5 Nose-to-Brain Delivery
Nanoemulsions have been thought to enhance the nose-to-brain delivery of drugs by
virtue of their smaller particle size, easy preparation rate, better solubilization
capability, and thermodynamic stability as compared to the other nanocarriers
[96]. Excipients contained in nanoemulsions should have to facilitate permeation
across the nasal epithelia to the brain. Chitosan is known to increase the permeability
of nanoemulsions based on its transitory opening of the tight junctions in the brain. It
has been reported that chitosan-coated nanoemulsion extends the nasal residence
time of a drug, which facilitates high drug influx from nose to brain [50]. Kaempferol
is a natural flavonol with anti-inflammatory, anti-oxidant, anti-tumor, and
neuroprotective properties that might be beneficial for curing brain tumors such as
gliomas. Kaempferol-loaded nanoemulsions have been reported for nose-to-brain
targeting recently [97]. Thymoquinone, a volatile oil obtained from the Nigella
sativa seeds, is well known for its antioxidant properties and is widely used in the
treatment of cerebral ischemia. Recently, thymoquinone nanoemulsion was reported
to have increased bioavailability and water solubility in the brain after nasal admin-
istration, as compared to intravenous application in Wistar rats with focal cerebral
ischemia [98, 99].

11.4.2 Management of Vector-Borne Disease

Synthetic insect repellents or insecticides seem to produce persistent toxicity along
with insect resistance, which has led to this immense shift of support from synthetic
to green pesticides. Herbal repellents like eucalyptus, citronella, and cymbopogon
have a great future in drug-delivery formulations because of their efficacy, safety,
environmental sustainability, and pleasant aesthetics [100]. Nanoemulsions protect
the plant essential oils from oxidation and increase their longevity. Leishmaniasis is
an endemic infectious disease spread by the female phlebotomine sandfly. Conven-
tional therapy with glucantime, pentostam, and pentamidine seemed to be ineffective
in managing this disease [101]. Nanoemulsion-encapsulated Copaene, an
antileishmanial agent has been recently reported as a new insight [1]. Most dengue
control approaches include larvicidal drugs suspended or diluted in water. Hence,
preparation of an active lipophilic natural product almost contemplated a technical
challenge. In such circumstances, nanoemulsions appear to be feasible alternatives in
solving this major problem. Development of Sucupira oil (Pterodon emarginatus)-
based nanoemulsion is an alternative integrative practice for dengue control as
reported by Oliveira et al. [102]. The nanoemulsion formulation of castor oil ensures
higher efficacy as a larvicidal agent against Anopheles culicifacies when compared
to conventional emulsion [103].
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11.4.3 In the Food Industry

Currently, the food sector is bursting with several applications of herbal nanotech-
nology since it advocates newer insights to generate safer and healthier foodstuffs. In
food technology, nanoemulsions provide enhanced physical stability, functionality,
and optical transparency, which makes them very attractive to formulate lipophilic-
active food ingredients [104]. Herbal essential oils, incorporated in nanoemulsions,
penetrate swiftly into microbial membranes by virtue of their increased area per
weight unit and are thus, becoming more popular over conventional emulsions due
to the consumers’ insistence of food free from synthetic supplements [105, 106]. For
example, eugenol nanoemulsion masks the smell and increases the stability of food
systems and could be an efficient antibacterial agent against food-borne pathogens
[107]. However, the fact that methods of processing herbal essential oil
nanoemulsions will also determine their final antimicrobial activity is to be
commemorated during formulation preparation. The food industry has lipophilic
bioactive compounds such as carotenoids, omega-3 fatty acids, polyphenols,
flavonoids, phytosterols, tocopherols, etc., which have health-promoting and
fortifying properties and might benefit (in terms of stability) from such
nanoemulsion-based incorporation into foods.

11.5 Safety and Regulatory Issues of Herbal Nanoemulsions

11.5.1 Bioassays and Standardization of Herbal Drugs

The biological models, health claim, chemical analysis, and bioassay of many
popular herbs are limited, as the active ingredient responsible for the plant’s activity
has not been identified. In addition, if the active ingredient of a herb was known, it
would remain ambiguous whether the crude herb would be preferable to its purified
active principle or not. Unfortunately, standardization techniques such as those
defined for the herb, Digitalis, are not applicable for many herbs. In this regard,
the absence of definitive information for traditional herbal preparations as digitalis
leaf and opium has led to their replacement by drugs like digoxin and codeine,
respectively. How can a herb be standardized when its active ingredients are
unknown and there is no appropriate bioassay [108]?

11.5.2 Safety Consideration

Nanoemulsions are composed of generally regarded as safe (GRAS)-grade
excipients. Toxicities associated with a drug-delivery carrier pose a hindrance in
drug delivery as well as pharmacological effects. Ideal carriers efficiently encapsu-
late and deliver drugs at the desired sites, which are mostly physiologically inert and
show predictable clearance from the body [109]. The Organization for Economic
Cooperation and Development (OECD), started a strategic agenda in 2006, which
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arranges a global convention for the consideration of fabricated nanomaterials,
particularly their safety and risk assessment, and to promote the culpable advance-
ment of these nanotechnologies. OECD’s Working Party on Manufactured
Nanomaterials (WPMN) advocates international collaboration on human wellbeing
and environmental safety features of manufactured nanomaterials and centres on
developing suitable approaches and methods to guarantee the safe utilization of
nanotechnology [110]. More research regarding the development methods, safety
and efficacy verification of nanoformulations, implementation of product labeling
for transparency, and a better obtainment of quality data for regulatory functions are
much needed [111].

11.5.3 Production and Quality Control

The Food and Drug Administraion (FDA) currently implemented a new frame work
Quality-by-design (QbD) for the manufacturing and quality control of
pharmaceuticals. The design of experiments (DOE) and method analytical technol-
ogy are routinely employed as part of QbD principles from the raw material
procurement stage to finished product [109]. It is essential to develop sturdy and
documented process data for the preparation of nanoemulsion and other
nanotechnology-based delivery systems to confirm QbD requirements [112]. The
FDA provides guidance for nano-based products in terms of Pharmaceutical Devel-
opment, Quality Risk Management, and Quality System for pharmaceutical products
directed by the QbD [113]. In other legislative sectors such as food and cosmetics,
there are scientific committees and expert groups, which address sector-specific risk
assessment of nanomaterials. The scientific committee of the European Food Safety
Authority (EFSA), which manages its food and feed sector, has refined the
instructions on risk assessment and application of nanoscience as well as
nanotechnologies in various food operations [114].

11.6 Future Prospects of Nanoemulsion-Based Herbal Drug
Delivery

Phyto-formulation research, nowadays, popularly involves the development of
nanodosage forms like nanoemulsions, polymeric nanoparticles and nanocapsules,
solid lipid nanoparticles, phytosomes, liposomes, etc. Enhancement of solubility,
bioavailability, pharmacological activity, stability, minimum toxicity, sustained
delivery, enhanced tissue macrophage distribution, etc. are some advantages of the
nanoemulsion-based delivery of herbal drugs. Thus, it is evident that the novel
nanodelivery of herbal drugs has a probable future in enhancing the activity as
well as surmounting the difficulties correlated with plant-extracted medicines
[23]. Future development and research in the following areas might eventually
provide newer and more fruitful methods for an enhanced therapeutic approach by
nanoemulsion-based herbal drug-delivery systems.
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11.6.1 Macrophage-Targeted Vaccine Delivery

Future advancements in immunogenomics and prognostic gene-derived
toxicogenomics might, in the long run, provide new methods for evaluating an
individual’s sensitivity to nano-based drug delivery hence reducing the risk of
possible immune-mediated side effects [115]. The human reticuloendothelial system
consists of macrophages that play critical roles in determining immunogenicity and
generate appropriate immune responses. Macrophages are known to rapidly recog-
nize and clear particulate matter. This fact has contributed toward a realistic
approach to design macrophage-specific drug targeting with nanocarriers. In this
context, nanoemulsions can act as powerful adjuvants by either physical or covalent
association with protein antigens [116–119]. Macrophages deteriorate the involved
antigens and channel peptides into major histocompatibility complex (MHC)
molecules (class I or II) after endocytic uptake of nanoparticles. Thus, the advance-
ment of newer generation vaccines with nanoemulsions as adjuvants has consider-
able potential for either recombinant or fabricated peptide antigens that are both
nonimmunogenic [74, 120].

11.6.2 Vascular Imaging and Drug Delivery

The National Cancer Institute in the USA has devised scientific programs with the
goal of generating nanometer range multifunctional entities that can identify, ana-
lyze, and deliver therapeutic compounds and monitor the progress of cancer treat-
ment. These include architecture and engineering of smart nanodevices and
nanocarriers capable of consigning the biological and transformative diversity of
the numerous cancer cells that constitute a tumor. Vascular imaging and drug
delivery are two areas that nanotechnology is starting to modify the extent and
methods of Nanoemulsion systems might come across as beneficial to obtain the full
in vivo potential of nanotechnology in such targeted imaging and drug-delivery
systems. A precise understanding of both the physiological and physicochemical
framework of the drug as well as the nanoemulsion delivery process utilized might
provide a pertinent realization of this [115, 121].

11.6.3 Nanoemulsions in the Food Industry

The food industry utilizes assorted lipophilic-active ingredients as antimicrobials
and several bioactive compounds that might pose a barrier as they have instability
and water insolubility when incorporated in food formulations with aqueous content.
Low water solubility and sensorial detection thresholds, fast oxidation pose, and low
bioaccessibility after digestion in the gastrointestinal tract are some disadvantages of
lipophilic-bioactive ingredients during their incorporation into food. The composi-
tion and size of nanoemulsion droplets containing the lipophilic-active compound
influences the bioavailability and amount of lipid digestion. The smaller the droplet
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size, the greater is the rate of lipid digestion, which has been ascribed to the increased
surface area of lipid exposed to lipase-containing intestinal juices [65, 122]. There is
a compelling need for additional studies of active food ingredients loaded in
nanoemulsions to exemplify the authentic benefits of nanoemulsions in food tech-
nology. Despite nanoemulsions showing a better digestibility pattern as compared to
ordinary emulsions, further research in this area pertaining to their safety and
toxicology for application in the food industry needs to be assured. The biological
pathway of nanoemulsions, once they enter the human gut, should also be thor-
oughly studied to assess their tissue location and likely toxicity.

11.6.4 Nanoemulsions as Antiageing Formulations

Nanoemulsions are finer than normal emulsions and can be sprayed on. It is claimed
that as compared to normal emulsions and microemulsions, nanoemulsions transport
beneficial compounds deeper into the skin. Newer approaches and technologies are
advancing the field of nanotechnology to improve the cosmetic market even more,
although a lot of research and human studies in this field is required to obtain
subsequent real-life data [123]. Herbal plant extracts and essential oils with anti-
ageing and antioxidant activities are a big favorite nowadays even in skin care
formulations [124]. Some examples of such oils obtained are from the seeds of red
raspberry (Rubus ideaus), blueberry (Vaccinium corymbosum) [125], soya (Glycine
max), sunflower (Helianthus annus), corn (Zea mays), grape (Vitis vinifera), flax
(Linum usitatissiumum), hemp (Cannabis sativa), pumpkin (Cucurbita pepo), rice
bran (Oryza sativa), olive (Olea europaea) [126], and moringa (Moringa oleifera)
[127], to name a few. For cosmetic use, it is necessary to deliver the anti-ageing
actives into the dermis where their targeting site is. The transepidermal route (due to
its large fractional area) is the most favored route for transporting anti-ageing actives
across the stratum corneum to the dermis. For better penetration of the cosmoceutical
actives, the barrier function of the stratum corneum is overcome by the utilization of
several strategies such as modification of its structure, vehicle manipulation, and
even electrically assisted methods [128]. Nanoemulsions serve as advantageous
vehicles in this regard. Although previous in vitro data signify that nanoemulsions
could be potential candidates for anti-ageing drug-delivery systems, their in vivo
efficacy and toxicity data are still to be further studied [124, 129].

11.6.5 Fundamental Toxicology Research

The disease type, developmental stage, and location determine the design and
targeting approaches for any particular nano-based carrier. Very often, toxicity
issues are particularly ignored. Therefore, essential fundamental research that
signifies successful and adequate application of these technologies should be used
to address toxicity issues. Rational design of nanoemulsion-based tools and technol-
ogy based on accurate and comprehensive knowledge of biological mechanisms will
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work better for the future of nanomedicine rather than enforcing applications of
materials that are presently in vogue [115].

11.7 Conclusion

Herbal medicines have been widely recognized and explored since ancient times.
They are less costly, nontoxic, and freely available as compared to their synthetic
counterparts. Due to certain limitations like poor penetration power, rapid oxidation,
slow absorption pattern, degradation in gastric pH, low solubility, etc., herbal drugs
cannot entirely treat ailments or take longer time to cure diseases. Nanoemulsions are
gaining attention as novel drug carriers highly recommended for herbal drugs to
minimize their wastage and induce specific drug targeting at the desired site.
Nanoemulsion is appropriate for practically all routes of drug delivery and the
limitations of plant-based active pharmaceutical ingredients could easily be
conquered when formulated as a nanoemulsion-based delivery system. The spread-
ing interest in herbal drugs as alternatives to synthetic drugs needs more exploration
of the safety and efficacious therapy study of their delivery systems, i.e.,
nanoemulsions. Such novel formulations are expected to reign the commercial
market even more in the near future. Therefore, it is also necessary to obtain
regulatory foundations that accurately represent and especially manage the risks
associated with nanoemulsions as well as other relevant nanotechnology-based drug-
delivery systems.
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Abstract

Chemotherapy involves many anticancer drugs, which have mild to severe
adverse effects, when administered in conventional dosage forms. However, the
lack of adequate supply of drug to the target site, as well as biodistribution to
irrelevant body compartments has limited such drug-delivery systems. The major
challenge in the delivery of such drugs is the site specificity. This task can be
made simpler to a remarkable extent by employing stimuli-responsive polymers
for designing nanocarriers. The stimuli may be physical, chemical, or biological,
but should be sufficient enough to elicit structural changes in those polymers at
the local site to enable the release of drugs in a controlled manner. The cancer
cells exaggerate some biological phenomena as compared to the normal cells,
which can be utilized as site-specific stimuli. Nanocarriers fabricated by using
these polymers respond to stimuli like pH, temperature, redox potential light, etc.
Multiple stimuli responsiveness can also be exploited for more specific drug
delivery. This area of research seems to be very promising by exploring the
physiological environment minutely. This chapter highlights the recent trends in
different stimuli-responsive polymers, especially for delivering anticancer drug
and challenges on the way of developing nanoformulations as well as their
clinical translation.

S. Tripathy (*)
Goel Institute of Pharmacy and Sciences, Lucknow, U.P., India

R. Kesharwani · D. K. Patel
Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology
and Sciences, Prayagraj, U.P., India

M. K. Das
Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India

# Springer Nature Singapore Pte Ltd. 2020
M. K. Das, Y. V Pathak (eds.), Nano Medicine and Nano Safety,
https://doi.org/10.1007/978-981-15-6255-6_12

289

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6255-6_12&domain=pdf
https://doi.org/10.1007/978-981-15-6255-6_12#DOI


Keywords

Chemotherapy · Stimuli-responsive polymer · Site-specific drug delivery ·
Nanoformulations · Nanomedicine

Abbreviations

AIBN Azobisisobutyronitrile
CRP Controlled Radical Polymerisation
CST Critical Solution Temperature
DOX Doxorubicin
HLB Hydrophilic Lipophilic Balance
LCST Lower critical solution temperature
MMPs Matrix metalloproteinases
MTX Methotrexate
PEG Poly Ethylene Glycol
PEtOx Poly(N-ethyl oxazoline)
PMVE Poly(methyl vinyl ether)
PNIPAM poly (N -isopropylacrylamide)
PNP Polymeric Nanoparticles
PNVC Poly(N-vinylcaprolactam)
POZ Poly(Oxazoline)
RAFT Reversible-Addition Fragmentation Chain-Transfer
ROS Reactive Oxygen Species
SRPs Stimuli-Responsive Polymers

12.1 Introduction

Cancer has become the leading cause of mortality across the globe responsible for
nearly one in six deaths. The complexity of cancer lends itself to establish new
challenges in developing new drugs as well as delivering the existing chemothera-
peutic agents efficiently. The major challenge in treating cancer is to specifically
treat cancer-affected cells without any harm to healthy cells/tissues. Anticancer
drugs also possess different pharmacokinetic limitations like short half-life and
distribution to healthy tissues. It is also reported that practically an inadequate
amount of drug reaches the target site. The conventional drug-delivery methods
fail to overcome these limitations. Vital organs that redistribute the drug often get
affected due to the non-specific drug distribution by conventional drug-delivery
systems. The non-specific distribution of anticancer drugs sometimes leads to life-
threatening side effects like excessive vomiting, immune suppression, nephrotoxi-
city, hepatotoxicity and severe anaemia. Therefore, a need for such a drug-delivery
system is felt, which could eliminate the limitations and contribute to the improve-
ment in the efficacy of anticancer drugs [1].
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Nanotechnology has paved a path towards the successful delivery of Anticancer
drugs; especially the Polymeric Nanoparticles (PNP)s, which has become an area of
comprehensive research work and gathered sufficient interest of researchers for
delivering Anticancer drugs. Again, the selection of polymers for developing PNP
is crucial, as some traditional polymers have got systemic side effects, which may be
due to their distribution in different body tissues and lack of perfect control over drug
release [2]. Therefore, ultimately the requirement of such polymers is constantly felt,
which could release the drug when it is sensitized by stimuli. Nanoparticles can be
developed by using certain Stimuli-Responsive Polymers (SRPs) from which both
drug targeting and controlled release upon sensitisation are achievable. Such
developments may also reduce the frequency of dosing by accumulating the
payloads adjacent to the tissue or cells of interest over a prolonged period.
Nanoparticles by using SRPs maintain the steady level of plasma drug concentration,
minimize adverse effects, and toxicities increasing the efficacy of drugs [3]. This
specificity to respond against a stimulus makes such polymers Smart or Intelligent
macromolecules. Some stimuli-responsive polymers for developing Nanomedicine
against cancer have been described in this chapter. The stimuli, which have been
studied are Physical (Temperature, Light, Ultrasound and Magnetic), Chemical (pH,
Ion and Redox responsive) and Biological (Hypoxia, ROS, Glucose Enzyme, etc).
Many SRPs have been developed to date, but due to the lack of a standardized
manufacturing technique most of them have not reached clinical evaluation stages.
Regulatory and ethical challenges are still there for such polymers due to their
toxicity [4].

12.2 Physically Dependent Stimuli-Responsive Polymers

12.2.1 Temperature-Responsive Polymers

This category of polymers works with the fact that the cancer-affected tissue
maintains a little higher temperature than the healthy tissue adjacent to
it. Nanoformulations can be fabricated using such polymers, which preferably utilise
the temperature difference as a stimulus. The polymers possess a temperature-
dependent phase transition property called critical solution temperature (CST)
[5]. Those polymers that solubilise in water at low temperature and become insoluble
upon increase in temperature have a low CST (LCST). These LCST polymers are fit
to be used against cancer cell. These polymers once get temperature more than the
LCST initialise a collapse of the polymeric network, which ultimately triggers the
release of drug. The beauty of such polymers is that the drug release can be triggered
by externally inducing a local rise in temperature by using suitable means like
ultrasound, magnetic field, etc. In general terms, thermosensitive polymers can be
used for designing nanocarriers, which retain the drug at physiological pH and start
releasing drug when exposed to a little rise in temperature. Examples of some
polymers, which elicit the property of thermoresponsiveness, are poly-N-
isopropylacrylamide (PNIPAAm), pluronic/PEI and trimethylchitosan-gpoly
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(N-isopropylacrylamide (TMC-gPNIPAAm). Delivery of nucleic acid was also
possible by suitably manipulating the structure of certain polymers. The major
challenge that appears here is maintaining the safety along with an efficient swelling
change to deliver the drug [6].

12.2.2 Light-Responsive Polymers

The light-responsive polymers can be utilized for both Photothermal therapy as well
as Photodynamic therapy. The tumour cells possess a very high interstitial pressure
and the extracellular matrix is also quite thick, which makes the penetration of
nanocarriers difficult. The photoresponsiveness of such a class of polymer allows
them to absorb light of different wavelengths like near-infrared and ultraviolet. The
polymers convert light energy into heat. This local heat causes tumour ablation and
helps in penetration of drug deeper into the cell layers [7]. It should be noted that the
applied light must be absorbed maximally by the polymers and not by the local cells.
Optic fibres can be used to convey the stimulus to distant tissues. The frequency of
the light used must comply with the safety limits for biological application. Struc-
turally, the light-responsive polymers contain light-absorbing chromophores like the
azobenzene group, nitrobenzyl group, spironopiran group, stilbene, triphenylmeth-
ane 2-nitrophenylalanine, etc. Some polymers containing the chromophores are
PAA, PHPMAm PNOPAM, etc. A less invasive method to utilize light-responsive
polymer is the photodynamic therapy. In this method, the light-responsive polymers
produce ROS, which are potentially toxic to the tumour cells. Studies suggested that
a better targeting and effective killing of cancer cells can be achieved by this method.
The internalisation of drug into the cell by disrupting the endosomes with the
production of ROS and further disruption of cells can be achieved by photodynamic
therapy [8]. Endosomal enzymes generally degrade the drug. The ROS preferred
mostly is the 1O2. The 1O2 generated by the polymers disrupts the endosome as well
as it triggers the release of the therapeutic agent. However, photodynamic control of
drug release is a promising and challenging task. ROS-sensitive aminoacrylates have
been used by researchers for delivering drugs [9, 10].

12.2.3 Electro-Responsive Polymers

A controlled release of drug near the tumours can be achieved by using such
polymers, which swell, shrink or show bending and recoiling, when exposed to
Electrical and Electrochemical stimuli [11]. Precise control over the drug release is
achieved by tuning the parameters like the magnitude of current, the electrical pulse
duration and the time duration between consecutive electrical pulses. The feature
required for utilising such polymers is their conducting nature. The mechanism
behind drug release from such a polymer is the influx of solvent and counter ions,
which cause an increase in osmotic pressure and cause an expansion in volume
[12]. The polyelectrolytes are loaded or adsorbed on the porous material in such a
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manner that it can precisely control drug release. Sometimes, drug release is con-
trolled by the formation of multilayers of redox-active polyelectrolytes, which leads
to shrinkage of the polymers after the electrochemical movement of oppositely
charged ions, where the polymer contributes mostly negatively charged ions [13].

12.3 Chemically Dependent Stimuli-Responsive Polymers

12.3.1 pH-Responsive Polymers

Cancer cells possess an extracellular acidic pH ranging approximately from pH 6.5
to pH 7.2 due to excessive production of lactic acids. This pH may be down to
around pH 4 or pH 5 in the endosomes and lysosomes present in cancer cells
[14]. This microclimatic change around the cell is being exploited by many
researchers to deliver anticancer drugs to the specific site by utilizing
pH-responsive polymers. To respond to pH as stimuli, the polymer needs to carry
some ionisable groups. It means the polymer molecule should be a polyelectrolyte
containing weakly acidic or basic groups with pKa values ranging from 3 to
10 [15]. These groups should be ionisable. This range of pKa value allows the
acidic or basic group to exhibit a pH-dependent ionisation behaviour that means
under a certain pH condition these groups will ionise to different extents. After being
ionised, electrostatic repulsion is observed between different generated cations and
anions. This repulsion leads to change in coiling of polymer and the polymer
dramatically exhibits structural changes/swelling as depicted in Fig. 12.1. The
ionised groups may influence further ionisation of the pendant groups due to the
electrostatic effect [16]. Some ionisable groups showing this mode of responsiveness
are carboxylates, sulphonates amino groups, etc. Another mechanism of pH
responsiveness has been put forward by some researchers where the polymers
undergo protonation and deprotonation changes with the distribution of charges to
the different groups, which are ionisable upon pH change. The amino groups and
carboxyl groups are known to exhibit such events. The major drawback of this
system is that the transitions in the polymer are quite rapid, which respond to the
minute pH change (0.2–0.3 U of pH). Some typical pH-responsive polymers include
gelatin, albumin, poly(ethylene imine) (PEI), Chitosan, poly(acrylic acid) (PAAc)/
chitosan poly(methacrylic acid-g-ethylene glycol) [P(MAA-g-EG)], etc. Polymers
containing acid-labile or base-labile linkage can also be used as pH-responsive
polymers, more preferably the acid-labile linkage. These polymers degrade after

Fig. 12.1 Swelling behaviour of pH-responsive polymer
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entering a certain microclimate pH and show structural changes, thereby controlling
the drug release. This mode of pH responsiveness has been used by many researchers
to deliver anticancer drugs. Hydrazone, acetal, ketal and boronate esters are some
linkages reported to exhibit pH-dependent cleavage [13].

The pH-responsive behaviour is tuneable and is required many a times to ensure
development of nanomedicines with least off-target effect and toxicities. The
polymers are generally selected with a pKa value around the pH of the site of interest
of drug delivery. This ensures a 50% ionisation of the polymer. The pH
responsiveness can be manipulated by adding hydrophobic groups to the polymer
chain or changing the hydrophobic chain length. Copolymerisation with ionisable
and non-ionisable polymers can also give rise to newer polymers with a desired pKa
value [17].

12.3.2 Ion-Responsive Polymers

The presence of ionisable groups can also be exploited for another stimulus other
than pH, i.e. the ionic strength. The oppositely charged ions attract each other with
their static Coulombic charges. This leads to changes in the rheological properties of
the polymer at the target site. The change in ionic strength leads to lengthening of the
polymer chain. The polymer solubility also varies. A change in fluorescence
quenching kinetics may also occur when the chromophoric groups are attached to
electrolytes [13, 18].

12.3.3 Redox-Responsive Polymers

To elicit redox responsiveness, a polymer preferably should contain some labile
groups. The redox reaction succeeds to change the hydrophobicity and lipophilicity
of the polymers leading to swelling of the polymers. The normal redox potential for a
cell is oxidising extracellularly and reducing intracellularly. The reducing nature of
the intracellular environment is due to the presence of glutathione. In cancer cells,
the glutathione level is much higher than normal cells, so it makes the cytosol even
more reducing. That is why Redox-responsive polymers can be exploited for the
delivery of anticancer agents to cytosols [19]. The polymers with disulphide cross-
linking have attracted sufficient interest of researchers because the linkage degrades
when encounters any cellular environment with glutathione or cysteine content
[20]. Disulphide-functionalised polymers have been successfully prepared by
RAFT polymerisation. RAFT agents help in preparing bimolecular polymer
conjugates, which show responsiveness towards redox stimulus [21]. A few
examples of this category of polymers are poly (NiPAAm- co-Ru(bpy), (ethylene
glycol)-b-poly(lactic acid) (MPEG-SS-PLA) diblock copolymers, hyaluronic acid
(HA)-polycaprolactone (PCL) block copolymer Poly(ethyleneglycol)-b-polycarbon-
ate-b-poly(ethyleneglycol) triblock co-polymer, etc. [22].
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12.4 Biologically Dependent Stimuli-Responsive Polymers

12.4.1 ROS-Responsive Polymers

ROS concentration in mucosa has been reported to increase up to 100 times in colon
cancer than any healthy cells. ROS in body are hydrogrn peroxide, superoxides,
singlet oxygen, and hydroxyl radicals [23]. These reactive species can be exploited
for controlled and targeted delivery of anticancer drug [24, 25]. Gene delivery to
cancer-affected cell has been reported by Suk Shim and Xia [26]. They delivered
complex DNA into the cell by utilising the ROS-responsive thioketal system. The
thioketal linker containing a diblock polymer of PEG and poly (lactic-co-glycolic
acid) has been used to deliver Doxorubin-loaded nanoparticles in Cal27 cells
[27]. Selenium and Tellurium containing block polymers have also gained interest
to deliver anticancer drugs by exploiting the ROS responsiveness [28].

12.4.2 Hypoxia-Responsive Polymers

Hypoxia indicates a pathological condition where the cells experience lack of
adequate oxygen, with a fall of oxygen partial pressure from the surface to the
interior. This reduced oxygen partial pressure may reach an alarming value of
0–5 mmHg in cancer-affected cells. The hypoxia leads to huge biochemical changes
in the cells distinguishing them from normal cells. These changes offer the chance to
develop target-specific drug-delivery systems. Hypoxia-responsive polymers show
their responsiveness against this reduced partial pressure [13]. Son et al. developed
Carboxymethyl dextran-black hole quencher 3 with an azo linker for targeted
delivery of Doxorubicin to cancer cells. The drug release was controlled as the azo
linkage was reduced eventually under the oxygen-deficient environment [9]. Thambi
et al. developed polymeric nanoparticles with a hypoxia-responsive polymer, which
they fabricated by conjugation of the 2-nitroimidazole derivative with CMD for
delivering Doxorubicin [29]. In 2016, Thambi et al developed a micelle of amphi-
philic block polymer consisting of PEG and poly (ε-(4-nitro)benzyloxycarbonyl-l-
lysine) as the constituent to deliver Doxorubicin intracelluarly under hypoxic
conditions [30]. Biomolecules like si-RNA have also been delivered under hypoxic
conditions, where PEG, azobenzene, polyethyleneimine and phospholipid have been
used for developing a nanocarrier system [31].

12.4.3 Enzyme-Responsive Polymers

Enzymes are proteins, which are necessary to carry out several biochemical reactions
in the human body basically as biocatalysts. These are molecules, which respond to
even marginal changes in the level of biochemical or function of any organ. These
are specific towards a particular substrate. Their specificity and sensitivity to respond
to the changes make them suitable stimuli. Especially in cancer cells, the catalyst
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activity has its own importance to promote rapid cell division and growth of the cell.
Enzyme-mediated drug delivery can be preferred to target the cancer cells where
enzyme-responsive polymers can be utilized.

Several reports are there where the Matrix metalloproteinases (MMPs), an endo-
peptidase group of enzymes, have been explored by many researchers to target
cancer cells by using enzyme-responsive polymers [32, 33]. Cathepsin-B, a lyso-
somal cysteine protease enzyme, has been reported to be expressed on epithelial cells
of cancer-affected tissue. Both MMPs and Cathepsin-B together have been used as
stimuli for delivery of Gemcitabine in a study. Hyaluronidase enzyme breaks the
Hyaluronic acid, which plays an important role in cell proliferation in cancer. This
enzyme is utilised by researchers as stimuli for delivery of drug-like
5-FU. Azoreductase enzymes are responsible for reducing nitroaromatic group-
containing molecules. This enzyme has also been exploited as stimuli for delivering
anticancer drug for targeting colon cancer [34].

12.5 Dual or Multiple Stimuli-Responsive Polymers

Macromolecules exhibit their biological activities mostly due to a series of environ-
mental changes. To elicit a biological function or process, multiple changes occur in
the microclimate of cells or tissue at a time [35]. The multi-stimuli responsiveness in
polymers may, therefore, be exploited for delivering a drug via polymeric carriers to
target the cancer cells [20]. Many reports are there where this strategy has proved to
be successful in delivering anticancer drugs. The mechanism by which a drug-
delivery carrier releases the drug near the cell or inside the cell is crucial. The
premature drug release by an incompetent drug-delivery system may cause systemic
toxicity. The multi-stimuli responsiveness may help in reducing the systemic toxic-
ity by more specific mode drug delivery at the desired site. The cancer cells create an
acidic extracellular environment suitable for metastasis. This reduced pH can be
used along with other stimuli to exhibit target-specific drug delivery. The combined
stimuli responsiveness may be designed in ways where it takes place simultaneously
or in a sequence [34, 36].

12.5.1 pH- and Temperature-Responsive Polymers

The elevated temperature and acidic environment of cancer cells has been
utilised as dual stimuli for designing polymer-based nanocarriers. Poly
(N-isopropylacrylamide- co-N, N-dimethylacrylamide-co-10-undecenoic acid),
Copolymer of Poly (caprolactone) and poly (Nisopropylacrylamide-co-acrylic
acid), Copolymer of poly (tert-butyl acrylate) and poly (N-isopropyl acrylamide)
and Copolymer of N-methyldiethanolamine and poly (ether urethane) backbone are
some reported polymers for dual stimuli responsiveness. Some of these polymers
have shown poor drug loading in the nanocarriers [20, 37].

296 S. Tripathy et al.



12.5.2 pH- and Redox-Responsive Polymers

Polymeric NPs have been developed by using such polymers, which respond to both
these stimuli simultaneously and result in disassembling of the chain. In cancer-
affected cells, both these stimuli can be found. The drug release can be achieved by
GSH reduction and sustained release can be achieved by the pH sensitivity [38]. Cys-
teamine-conjugated chitosan and dextran sulphate, acrylamide-based linear
copolymers and poly (2-(pyridine-2-yldisulphanyl)ethyl acrylate) are some of the
polymer systems, which have been utilised for this particular set of stimuli. The
cross-linking of polymers is done by both imine and disulphide linkage to ascertain
pH and Redox responsiveness [39].

12.5.3 Triple Stimuli-Responsive Polymers

The development of such systems, which respond to triple stimuli, is fascinating and
also the drug targeting by such system is more specific. The stimuli like pH,
Thermal, UV, Magnetic, and redox are utilised in suitable combinations as per the
requirement at the desired site and feasibility of application. Drugs like Doxorubicin
have been reported to be delivered to target specifically by utilising triple stimuli-
responsive polymers [20, 40]. The effect of different stimuli on hydrogel has been
depicted in Fig. 12.2.

Fig. 12.2 Effect of different stimuli on hydrogels prepared with stimuli-responsive polymers
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12.6 Brief Description of Some Common Stimuli-Responsive
Polymers

12.6.1 Poly (N-Isopropylacrylamide) (PNiPAAm)

PNIPAM is the most commonly studied thermoresponsive Polymer (Fig. 12.3). The
widespread acceptance of PNIPAM is not only based on the lower critical solution
temperature (LCST) that is close to the body and room temperature (LCST
32–33 �C) making it very useful for controlled release application, but also on the
robust phase behaviour. The LCST position of PNIPAM does not shift with changes
in molecular weight, chain length and concentration, but changes can be observed
due to the shifting of hydrophilic/hydrophobic balance. PNIPAM turns out to be an
expanded coil form below the LCST and above it starts becoming more hydrophobic
as it collapses to a globular state [41, 42, 43]. The N -isopropylacrylamide (NIPAM)
monomers are polymerised by the process of free radical polymerisation of the vinyl
group utilising a common radical initiator, such as azobisisobutyronitrile (AIBN).
Recently, the polymers of defined and narrow molecular weight distribution and
defined end-groups were developed by controlled radical polymerisation (CRP) of
monomers. This enables straight forward modification and conjugation towards
biological species. The most important point in this regard is that the vinyl group
of NIPAM is activated by the amide group. The reversible-addition fragmentation
chain-transfer (RAFT) polymerisation of NIPAM can be achieved with RAFT-
agents including dithiobenzoate or trithiocarbonate groups [44, 45]. A triply trig-
gered supramolecular nanocontainer was prepared by Loh et al. having potential
chemotherapeutic applications. It is observed that in his article that the PNIPAAm
was used as a temperature-responsive and this block is utilised for the release of
loaded doxorubicin. It also acted as a pH-responsive segment. The temperature-
responsive portion was suitable for triggering Doxorubicin (DOX) release, the
pH-responsiveness has triggered the release within endosomal and lysosomal
vesicles at an acidic pH of 4 [35].

Fig. 12.3 Structures of poly
(N -isopropylacrylamide)
(PNIPAM)
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12.6.2 Poly (N-Vinylcaprolactam) (PNVC)

The other polymer of thermoresponsive polymer is Poly (N-vinyl caprolactam)
(PNVC) (Fig. 12.4). It is a nonionic amphiphilic polymer that has exceptionally
fascinating properties both for therapeutic and biotechnological applications. It
shows various properties like solubility in water and organic solvents, biocompati-
bility, high absorption ability and a transition temperature within the settings of these
applications [42].

It is comprised of seven-membered cyclic amide in which the carboxyl group and
an amide group are polar hydrophilic groups connected directly to a hydrophobic
vinyl chain. It shows solubility at normal body temperature but it also shows phase
transition behaviour at 32 �C. It is observed that in aqueous systems below its LCST,
the polymer forms a chair-like conformation and achieved syndiotactic configura-
tion. Due to amide linkage between the lactam ring and the carbon backbone chain, it
shows stability on hydrolysis and it does not form any toxic compounds. The
polyelectrolyte behaviour is observed in the presence of surfactants because of this
the adsorbed counter ions inside the polymer matrix along with surfactants, leading
to an increase in osmotic pressure triggering extensive swelling of polymer chains.
The transition temperature increases with increasing surfactant concentration until it
levels out at a certain surfactant concentration [46, 47].

NVC is polymerised by a free radical polymerisation process and the versatility of
this polymerisation process of NVC provides straightforward access to a wide range
of copolymers based on the large variety of vinyl monomers that are commercially
available [48, 49]. PNVC has received considerable attention because of the phase
transition induced by the alternation of the external environment and its biphasic
transition via two different transition states, one at 31.5 �C and another at approxi-
mately 37.5 �C. With thermoresponsive nanoplatforms, the present challenge is to
maintain the safety of the platforms without compromising their sensitivity to minor
temperature changes.

12.6.3 Poly (Methyl Vinyl Ether) (PMVE)

This polymer has a transition temperature exactly at 37 �C, governed by the
hydrophilic hydrophobic-balance (HLB). Such a polymer is sometimes referred to

Fig. 12.4 Structures of poly
(N-vinylcaprolactam)(PNVC)
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as ‘thermo-shrinking, and gets particular interest because of the abrupt nature of its
phase transition and the fact that the transition is reversible, which allows repeated
‘thermal-switching’. This property makes it very interesting for biomedical
applications. It exhibits a typical type III demixing behaviour, which quitely differs
from the thermal behaviour of PNIPAM. There are few limitations for this polymer
that it cannot be synthesised by using nucleophiles such as alcohol or amino group so
it has to be synthesised by cationic polymerisation using inert conditions [50, 51].

12.6.4 Chitosan

Chitosan is one of the most widely researched pH-sensitive polymers of natural
origin belonging to the aminoglucopyran family (Fig. 12.5). It is a type of cationic
polysaccharide, which is obtained by the partial deacetylation of chitin. Chitin is a
structural element of crustaceans and it is a part of the exoskeleton of crustaceans and
the cell wall of fungi. Due to its versatile properties such as pH sensitivity,
biocompatibilility and biodegradable behaviour, it is widely accepted for various
biomedical and pharmaceutical applications. It is suitable for designing various
drug-delivery systems [52–54].

It is utilised in the preparation of various nanoformulations due to the presence of
acid-swellable groups like the amine (-NH2) group. These are acid-swellable groups,
in contrast to the alkali-swellable carboxyl group. In acidic environments, the
internal charge repulsions between neighbouring protonated polybasic groups are
increased. As the pH value increases, the groups become less ionised, and the
polymer-polymer interaction increases due to a reduction in charge repulsion,
which is ultimately responsible for decreases in the hydrodynamic diameter of the
polymer. As it is comprised of primary amino groups in the main backbone making
its surfaces positively charged in biological fluids. Therefore, we can easily prepare
nano/microparticles by treating chitosan with various types of polyanionic
substances like sulphate, citrate, and tripolyphosphate, so we can utilise chitosan
in a wide variety of drug-delivery approaches [55].

Tamoxifen-loaded pH-dependent chitosan nanoparticles were prepared for the
treatment of breast cancer. In this research, it was observed that intracellular drug
concentration was higher than in the unloaded drug during in vitro testing with
human breast cancer cells, and its anticancer efficiency was enhanced. [53] It is also
accepted in the field of wound healing as it is capable of promoting the dermal
regeneration and triggering the wound-healing properties. Generally, it shows a

Fig. 12.5 Structure of
Chitosan
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minimal foreign body reaction and the typical course of healing with formation of
normal granulation tissue, often with accelerated angiogenesis [56–58].

12.6.5 Pullulan

Pullulan is a fungal linear exopolysaccharide produced from starch by
Aureobasidium pullulans (Fig. 12.6). It consists of α–1, 6-linked maltotriose
residues. Pullulan has unique properties that make it more suitable such as it is
biodegradable, impermeable to oxygen, non-hygroscopic and non-reducing and also
has high adhesion, film-forming abilities and structural flexibilities. The nonionic
polysaccharide and is blood compatible, biodegradable non-toxic, nonimmunogenic,
non-mutagenic and non-carcinogenic behaviour of pullulan has increased its
importance [59].

As nowadays, the polysaccharides play an important role in developing con-
trolled drug-delivery systems, pullulan also gains a lot of attraction towards the
formulation of pH-sensitive-derivatised pullulan nanoparticles. The negative charge
in pullulan is introduced by Carboxymethylation. The liver uptake clearance of
pullulan was decreased by more than a hundredfold. This derivative was then
investigated for application in chemotherapy. The authors conjugated doxorubicin,
a known chemotherapy drug used in various cancers, via a peptide linker to
carboxymethylated pullulan [60].

Na et al. found that the nanoparticles of succinylated pullulan acetate/
sulphonamide (PA/SDM) conjugates may provide some advantages for targeted
anticancer drug delivery due to the particle aggregation and enhanced drug release
rates at tumor pH. The drug release rate from the PA/SDM nanoparticles was
pH-dependent and it was significantly enhanced below a pH of 6.8 [61].

Fig. 12.6 Structure of pullulan
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The anticancer drug doxorubicin (DOX) was attached to the backbone of
pullulan, through a pH-sensitive hydrazone bond (Fig. 12.7) and it was observed
that drug release was significantly enhanced at pH 5. The same linkage, but to an
artificial recombinant chimeric polypeptide (CP), was also used successfully to
deliver DOX in a pH-dependent fashion, as reported by Mackay et al in 2009. The
CPs spontaneously self assemble into sub-100-nm-sized PNPs on the conjugation of
diverse hydrophobic molecules, including DOX [62].

12.6.6 Poly(N-Ethyl Oxazoline) PEtOx

Poly (N-ethyl oxazoline) has been explored as a hydrophilic segment in amphiphilic
block-copolymer and has a transition temperature around 62 �C, which is too high
for any drug delivery application (Fig. 12.8). Rueda et al. prepared a double
thermoresponsive system by graft polymerisation of EtOx onto a modified PNIPAM
backbone. Poly (oxazoline) was also used in preparing liposomes and shown to be
comparable to PEG in stealth effects. Currently, these systems are explored for their

Fig. 12.7 pH-sensitive pullulan–DOX conjugate

Fig. 12.8 Structure of poly(N-ethyl oxazoline) PEtOx
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potential in drug delivery, because they tend to aggregate micelles above the LCST.
Unfortunately, the poly (oxazoline) chemistry has the disadvantage that it is not very
tolerant against unprotected functionalities [50].

12.7 Stimuli-Responsive Polymeric Nanoformulations
for Cancer Therapy

There are various nanoformulations have been prepared using different stimuli-
responsive polymers by various researchers as presented in Table 12.1.

12.8 Challenges in Developing SRP-Based Nanomedicines
Against Cancer

The stimuli-responsive nanopreparations show much more specificity for controlling
the drug release at a desired location, time and quantity by responding to local
stimuli or dual or multiple stimuli in the microclimate around the cell and sometimes
within the cell after the internalisation. However, the stimulus-sensitivity of the
current nanoformulations still needs fine tuning. The most prominent challenge is
the off-tumor-targeting possibly by non-specific stimuli raised as a result of
up-regulation of stimulus proteins in healthy cells due to drugs or harsh conditions.
The polymeric nanoformulation offers more complexity in design aspects than the
conventional technology, which causes difficulties in sticking towards Good
Manufacturing Practice (GMP) standards during scale-up and quality control. Out
of the plethora of research reports by several researchers, only a handful of reports
are there with relevance to safety and efficacy of such polymers in preclinical studies
as well as at clinical levels. A regulatory guideline must be framed specially for
nanomedicines by collaborative efforts for successful translation of laboratory
research to the clinical level [75].

The competition of anticancer agents in clinical trials is at its limit and the chance
of failure is also highest for such formulation. For some cases, the root cause of the
failure has been found out. The paclitaxel-polyglutamic acid conjugate Opaxio™
entered phase III clinical trials as a medication for non-small cell lung cancer. The
results showed that survival benefit was observed for females only, but not males
[76]. Opaxio™ relies on enzyme as stimuli for the activation. The enzyme cathepsin
B mediated activation resulted in an interaction with the oestrogen levels [77]. This
results in the exclusion of female with oestrogen levels beyond marked threshold.
This puts an example for the researcher to study further a few things like drug
delivery barriers and the desired clinical outcome. The physico-chemical property
and rate and extent of stimuli responsiveness, the biodistribution property of the
polymer and also the nature of stimuli must be thoroughly understood before
formulating the nanomedicine in the beginning itself, so that less regulatory as
well as clinical obstacle be faced later [67, 78]. A large number of patents have
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been filed in this area of research by several scholars across the globe. A few recent
important patents have been given in Table 12.2.

12.9 Conclusion and Future Perspectives

This article highlights that basketful stimuli-responsive polymers have been
established to deliver the anticancer agents in response to endogenous (redox, pH,
hypoxia and ROS) and exogenous stimuli (temperature, light and ultrasound). The
endogenous stimuli-responsive system depends on the abnormal environments in
pathological tissues for target-specific drug delivery, whereas the exogenous stimuli-
responsive one desires previous information on the situation of the target site for
effective therapy as a result of the variation within the physiological conditions.
Different classes of polymers are mentioned here and varied SRP-based
nanoformulations used for cancer have been highlighted. Nanoformulations
containing such stimuli-responsive polymers have the potential to meet the
challenges, and will result in approaches applicable to a range of cancers. The
challenges in these ‘smart’ nanocarriers has led to the invention of recent and higher
tumor-specific targeting moieties, and their integration into ‘smart’ nanocarriers that

Table 12.2 Some recent patents on stimuli-responsive polymers for drug delivery

Sr.
No. Publication No. Title Researcher, year References

1 US20190254302A1 Systems and methods for
controlling the release from
enzyme-responsive
microcapsules with a smart
natural shell.

Abbaspourrad,
Ravanfar, 2019

[79]

2 WO2019133914A1 Method of treatment for solid
tumours containing hypoxia
and/or stroma features.

Sau, Iyer,
Alsaab, 2019

[80]

3 US10188606B2 Expansible cross-linked
polymerosome for pH
sensitive delivery of anti-
cancer drugs.

Liu, Yaszemski,
Lu, 2019

[81]

4 WO2019136268A1 Modulation of extracellular
vesicles with electrical
stimulation.

Wang, Worrel,
Lennon, Dong,
2019

[82]

5 US10406336B2 Adjustable rate drug-delivery
implantable devices.

Davey, 2019 [83]

6 US20190083649A1 Cross-linked polymers nano-
assemblies and uses thereof.

Thayumanavan,
2019

[84]

7 WO2018167618A1 Light-responsive quantum dot
drug-delivery system.

Naasani, 2018 [85]

8 US10117837B2 Methods of preparing stimuli-
responsive multi-functional
nanoparticles.

Lin, Wang, 2018 [86]
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exhibit self-assembly and adequate drug release inside the cytosol in response to
certain stimuli. Theranostic approach makes the neoplasm diagnosis and therapy
quite manageable and economical.

The ability of the stimuli-responsive polymers regarding their targeting efficiency
is unquestionable and the dual or multiple stimuli responsiveness of polymers has
taken the drug targeting to a new height. However, these polymers still need a
thorough study for their tissue toxicity in organs like spleen, kidneys, lungs and
liver. Somewhere in the chapter, we have also mentioned that the drug loading may
also reduce to a certain extent by using some stimuli-responsive polymers. An
interdisciplinary research area must be framed to know the physics of the polymer
dynamics within the biological environment along with a chemical approach to
it. Biologists and Physicians also must pay attention towards this to study the toxicity
issues during the clinical translation phase of the respective formulations. Exhaustive
preclinical studies need to be performed in desired orthotopic animal models to
deliver a new formulation from the research laboratory to the clinical level. Future
opportunities are open for these stimuli-responsive polymers towards the delivery of
the combination of drugs, biological macromolecules like DNA, RNA Peptides, etc.
by formulating them as nanomedicines. Problems like off-target accumulation,
membrane permeability, releasing an adequate amount of drug at the target site
and maintaining a wide therapeutic range also run parallel with the nanoformulation.
Finally, the aim is to utilize the polymers in developing nanomedicines, which are
cost-effective and manufacturers as well as researchers should pay sufficient atten-
tion to promote research in this area.

Conflict of Interest The authors declare that there is no conflict of interest. The Figures and
Tables used in this chapter are original and prepared by the authors themselves.
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Mehmet Can and Nurettin Sahiner

Abstract

Carbohydrates from simple sugars to complex polysaccharides comprise a large
number of biomolecules that are readily available from replenishable sources.
They perform crucial biological functions through diverse interplays with
proteins and lipids on the basis of specific interactions such as modulation of
immune response, cellular signaling, growth, and molecular recognition events.
Due to their ability to reversibly bind through hydrophobic interactions and
hydrogen bonding, carbohydrates have been exploited as intriguing substrates
for the design of responsive nanovehicles and therefore hold great potential for a
myriad of biomedical applications. Furthermore, functional groups that exist on
carbohydrates such as amino-, hydroxyl-, and acetate groups provide facile
modification sites for the prepared nanostructures and render additional
functionalities, e.g., carbohydrate particles with fine-tuned particle size, shape,
and surface properties. In addition to these advantages, carbohydrates are biolog-
ically safe, mostly biocompatible, degradable, and have stealth characteristics
along with their affinity to specific cellular elements, which enables the active
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targeting of the corresponding nanocarriers and the design of tailor-made, effi-
cient, and long circulatory carrier systems. This chapter provides a brief overview
of carbohydrates on the basis of structural and functional properties and
highlights the cutting-edge advancements on carbohydrate-based polymeric
materials in biomedical applications with a particular focus placed on the
applications of polysaccharide-based micro�/nanohydrogels in nanomedicine.

Keywords

Carbohydrates · Polysaccharides · Biopolymers · Nanoparticles · Microgel ·
Nanogel · Hydrogel · Targeting · Stealth · Long circulatory · Protein repellent

13.1 Introduction

Carbohydrates are one of the most abundant biomacromolecules, mainly because of
the existence of plant biomass and microorganisms. They constitute a ubiquitous
group of compounds playing structural and pivotal functional roles in a plethora of
biological processes and pathophysiology of various diseases [1, 2]. They are greatly
involved in numerous tasks such as signal transmission, intercellular
communications, molecular recognition, endocrine and immune response modula-
tion, as well as transportation, energy storage, and as components of cellular
structures.

Carbohydrates have drawn immense attention through many years by scientific
and commercial organizations due to their inherent physicochemical properties,
including hydrophilicity, humectancy, stabilization ability, viscosity, unique flow
behaviors, gel formation, and water holding capacity, as well as unique bioactive
properties, abundance, and affordable availability from renewable sources [1, 2].

Recent advances in medicine and nanotechnology have caused a significant
increase in the relevance of carbohydrate-based biomaterials and have altered the
strategies in which they are designed, manufactured, and utilized. Much of scientific
interest has been shifted to such natural biomolecules in designing nanocarrier-based
colloidal particulate drug delivery systems (DDSs) [3–5] as alternatives to liposomes
aiming to circumvent the storage-related instability issues [6]. In this context,
carbohydrate-based micro/nanostructures, e.g., microgels and nanogels, have gained
significant momentum as promising DDSs in the administration of various bioactive
agents such as drugs, nucleic acids, hormones, proteins, and so on into the human
body [4, 5, 7–9]. Due to their biodegradability, biocompatibility, and nontoxic
nature, carbohydrate-based DDSs can afford enhanced therapeutic efficacy and
safety by providing increased circulation and bioavailability, enhanced protection
of drugs against oxidative or any kinds of degradations, decreased toxic effects, and
control over the release of their payloads at specific sites, rates, and durations.
Additionally, various bioactive properties of carbohydrate-derived nanomaterials,
including higher loading capacity, ease of internalization, lower immunogenicity,
and active targeting abilities promote the domination of their use as prominent
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carrier systems [3–5, 8, 10, 11]. In this review, the importance of carbohydrates in
biological operations will be outlined as a brief reminder on carbohydrate structure
and classification. The substantial use of carbohydrates, especially of
polysaccharides as natural biopolymers, in the design and targeting of nanostructures
will be discussed.

13.2 Some Examples of Carbohydrates and Their Classification

The pharmacological and medicinal importance of carbohydrates is increasing in a
rapid pace owing to the increased awareness and understanding of their unique
bioactive features, some of which include modulation of lipid and protein functions,
immune stimulation, and anti-inflammatory, antioxidant, antimicrobial, and
antitumor effects [1, 11–18]. The colossal diversity and complexity of carbohydrates
had hampered the elucidation of their structural and functional properties due to the
absence and/or lack of experimental techniques and technology in the past few years.
These difficulties have led to the lack of agreement in the precise classification of
carbohydrates through their history. Although it is still quite challenging to accu-
rately characterize the structure of complex carbohydrates due to their structural
heterogenicity, recent studies and analytical techniques emerged by the accumula-
tion of knowledge on the chemical, therapeutic, and pharmacological properties of
carbohydrates, together with the ensuing progress in bioanalytical technology, have
paved new ways for better understanding of their structural and bioactive
characteristics, and thus opened up new possibilities to design carbohydrate-based
multifarious biomaterials as potential vaccines, drugs, and DDSs [3–5, 8, 11, 19–
21].

Carbohydrates also called glycans are the most abundant and widely distributed
biomolecules in nature. They can be classified in many ways based on their structure,
size, function, source, and nutritional properties such as caloric value, glycemic
response, carcinogenicity, fermentability, and so on. Figure 13.1 illustrates a funda-
mental classification of carbohydrates based on the constituent monosaccharides and
the number of monosaccharide units in their polymeric forms. Carbohydrates occur
in the form of saccharides and glycoconjugates as bound to other biomolecules such
as lipids, peptides, and proteins. They perform various cellular functions as
hormones [22] and receptors [23, 24]. Moreover, saccharides can be classified into
three subgroups including monosaccharides, oligosaccharides, and polysaccharides.

Monosaccharides are the smallest members of carbohydrates, which occur either
as polyhydroxy aldehydes or ketones (aldose and ketose sugars, respectively)
possessing three to nine carbon atoms in their skeleton. They are named based on
the number of carbon atoms they contain such as trioses, tetroses, pentoses, hexoses,
etc. They are also named as D- or L- sugars depending on the position of the
hydroxyl group that is on the farthest chiral carbon atom from the carbonyl group
e.g. for a ketopentose sugar ribose, if the farthest hydroxyl group that is on carbon
number 4 is on the right-hand side, it is called D-ribose, or if it is on the left side, it is
called L-ribose. The most commonly arising forms of monosaccharides are pentose
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and hexose sugars; xylose, ribose, and arabinose are some examples of pentose
sugars and glucose, fructose, galactose, and mannose are some examples of hexose
sugars. A large number of carbohydrate derivatives exist in nature because of the
anomeric carbon atoms in the backbone and as a result of the reduction, oxidation,
and substitution of hydroxyl groups with other functional groups e.g., amino,
carboxylate, phosphate, and sulphate groups [1, 2, 12, 25]. Some of the

Fig. 13.1 Basic classification of carbohydrates based on the number and type of monosaccharides
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monosaccharide derivatives include amino sugars (hexosamines, e.g. glucosamine
and N-acetyl glucosamine), acid sugars (aldonic acids, uronic acids, and aldaric
acids), sugar alcohols (also called alditols or polyols), nucleotide sugars (adenosine,
guanosine, ATP, etc.), and phosphate sugars that are phosphate esters of sugars
produced as intermediate products during the sugar metabolism in glycolysis e.g.,
glucose 6-phosphate.

All monosaccharides are referred to as reducing sugars that can potentially act as
reducing agents in basic environments since they all have free anomeric carbon
atoms, that is, the aldehyde or ketone groups in their structure. Monosaccharides
such as mannose, galactose, glucosamine, sialic acid, etc. are coupled with the cell
surface proteins and lipids to aid in molecular recognition [23, 24].

Oligosaccharides are composed of 2 or more units of sugars joined together in a
sequential progressive way from 2–10 monosaccharide repeats in their molecular
chain. Disaccharides as members of oligosaccharides are formed by joining two
monosaccharide units together via glycosidic bonds. Lactose, maltose, cellobiose,
and chitobiose are examples of reducing disaccharides, whereas sucrose and treha-
lose are nonreducing disaccharide sugars. Oligosaccharides greater than two units of
sugar molecules are classified according to the number of constituent
monosaccharides in their molecular chain such as trisaccharides, tetrasaccharides,
pentasaccharides, etc. up to decasaccharides [26]. They can be derived from
disaccharides and obtained by enzymatic or chemical (acid-catalyzed) breakdown
of polysaccharides into oligosaccharide-sized smaller units, e.g. cyclodextrins
(CyDs) are the oligosaccharides formed by enzymatic breakdown of starch. They
are composed of α (1–4)-linked glucopyranose residues with the most common
forms ranging from 6 to 8 glucose units and are respectively called α-, β-, and
γ-CyDs. They are cyclic oligosaccharides possessing a hydrophobic inner cavity and
a hydrophilic outer surface with a truncated cone-shaped structure that is convenient
for creating inclusion complexes for a broad range of molecules such as proteins,
oligonucleotides, ions, and many drugs, particularly of low water solubility. Amphi-
philic cyclodextrins have a tendency to form self-assembled supramolecular
nanostructures including nanoparticles, micelles, and vesicles. Cyclodextrins are
broadly used in biomedicine, e.g., in ocular applications as drug delivery
systems [27].

Another type of classification of oligosaccharides can be made based on the
origin of their formation, the ones derived from disaccharides or polysaccharides
such as maltooligosaccharides (MOS), fructooligosaccharides (FOS),
galactooligosaccharides (GOS), chitooligosaccharides (COS), xylooligosaccharides
(XOS), mannooligosaccharides (MaOS), and gentiooligosaccharides (GeOS). Other
types include human milk oligosaccharides (HMOS) found in the breast milk of
humans and the algae-derived marine oligosaccharides (ADMOS) including the
oligosaccharides of alginate, fucoidan, laminarin, ulvan, and so on [28]. Native
oligosaccharides in free forms exist in small amounts in nature, and they are mostly
found attached to other biomolecules such as lipids and proteins in the form of
glycolipids and glycoproteins, respectively [2, 23, 24, 26]. The examples of which
include oligosaccharide antigens bound to the lipids and proteins on the surface of
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red blood cells. They are involved in various processes including cellular recognition
and formation of blood group serotypes [1, 2, 23, 24]. Oligosaccharides are resistant
to enzymatic degradation and are commercially used as dietary prebiotic
supplements. Many of the oligosaccharides are reported to exhibit antibacterial,
antioxidant, immunomodulatory, and potential anticancer activities [28–33]. These
versatile bioactivities of oligosaccharides were utilized in the design and
functionalization of various oligosaccharide-based nanoparticles [3, 4,
27]. Polysaccharides are composed of long chains of polymeric sugars linked in a
similar fashion to that present in the oligosaccharides. They contain up to hundreds
of thousands of glycosyl repeats. The linear oligo- and polysaccharides have only
one reducing end because of the nature of most glycosidic bonds e.g., from the
anomeric carbon of one glycosyl unit to the nonreducing hydroxyl groups of other
units between their glycosyl units [1, 2]. The degree of polymerization (DP) is a
scientific term used for specifying the number of constituent molecules in polymers
(monosaccharides in the case of carbohydrates). Figure 13.2 shows the structures of
some selected saccharides.

Classification of polysaccharides has been challenging not only because they
have complex structures but they also exhibit a vast number of distinct, biological,
chemical, and nutritional characteristics [2, 5, 34]. Polysaccharides exist in a range
of structures from linear, e.g., cellulose and amylose, to highly branched forms such

Fig. 13.2 Chemical structures of some of the selected monosaccharides, disaccharides, and sugar
derivatives
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as amylopectin and glycogen. They can be obtained from plants, i.e., gum arabic,
inulin, locust bean gum, from animals e.g., chitosan, hyaluronic acid, heparin, and
heparan sulphate, from algae, i.e., agar, alginate, fucoidan, carrageenan, and from
microbial organisms such as dextran, pullulan, xanthan, and gellan gums.

They are classified by composition as homo- and heteroglycans. Polysaccharides
containing a single type of monosaccharide unit in their chain are called
homopolysaccharides or homoglycans e.g. cellulose, fructan, araban, mannan, and
galactan, likewise, those with more than two or more types of monosaccharide units
are called heteropolysaccharides or heteroglycans e.g. hyaluronic acid, chitosan,
guar, cassia, and locust bean gums. They can also be classified by their charge
such as chitosan, hyaluronic acid, and cellulose that are, respectively, cationic,
anionic, and neutral polysaccharides. Some of the bioactive polysaccharides that
have caught significant biomedical interest in a wide range of biomedical
applications are listed in Table 13.1.

The DP, number of repeating units, type of linking, molecular weight, and
monosaccharide contents found in the composition of polysaccharides vary
depending on their type and source. Additionally, branching, conformation, flexibil-
ity, hydrophilic/hydrophobic character, and electrical properties of polysaccharides
are subject to many variations. Taken together, it can be attributable that these
parameters are major factors for the physicochemical and bioactive properties of
polysaccharides that are pivotal for homeostasis in cellular functions. A highlighting
example on the relevance of distinct carbohydrate compositions and relation to their
function can be given as the complex structure of the glycocalyx. It is the outermost
layer that overlays the surface of the plasma membrane on most eukaryotic and
prokaryotic organisms. It serves as a protective shield for prokaryotic organisms and
contributes to the invisibility of the bacteria against the immune system detection of
host organisms and also associated with bacterial adhesion to surfaces and biofilm
formation [35, 36]. As the name implies, glycocalyx is composed of glycosylated
elements called glycoconjugates including glycoproteins, proteoglycans, and
glycolipids. The composition of the glycocalyx varies according to cell and tissue
types. Beyond its role as a mechanical barrier against pathogen invasions and
disruption of the plasma membrane by mechanical stress, glycocalyx has compli-
cated kinetic functions that include cellular recognition by providing compartmen-
talization for transmembrane proteins and receptors, modulation of cell-cell
adhesion, vascular homeostasis, and so on. Perturbations or redecoration of the
glycocalyx composition is associated with many acquired diseases, such as vascular
disorders caused by the deterioration of the glycocalyx of the endothelial cells, and
increased aggressiveness or lethality of some cancer types upon decorating the
composition of glycocalyx components [37–43].

These attributes are crucial to take into consideration when designing
carbohydrate-based particulate DDSs, as they will have a direct influence on the
surface charge, size, shape, and textural morphology, bioactive and physicochemical
properties of the derived nanoparticles (NPs), as well as their flocculation properties,
protein adsorption, and interactions with other biological molecules [3–5, 25, 44,
45]. Furthermore, biological safety, extent of compatibility, toxicity, degradation,
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duration of systemic circulation, and cellular internalization, alongside capacity of
drug loading and release behaviors of the resultant nanomaterials are greatly deter-
mined by these parameters [46–50].

13.3 Applications of Carbohydrate-Based Functional Interfaces
in Nanomedicine

Nanomaterials have been the subject of increased attention over the past few decades
as intriguing vehicles for biomedical applications [51–53]. They have been used as
drug delivery devices and in diagnosis, imaging, and treatments of various diseases
such as infection, cancer, neurological, and inflammatory disorders [54–57]. The use
of nanomaterials as DDSs provides several advantages in comparison to the admin-
istration of therapeutics by conventional ways.

Rapid clearance of circulating drugs via renal excretion, splenic, pulmonary, and
hepatic elimination as well as by the action of mononuclear phagocyte systems
(MPSs) can be reduced by tuning the size and surface properties of nanomaterials.
They also decrease the toxic side effects of drugs and enhance their bioavailability
by offering increased solubility and extra protection against harsh conditions, along
with decreasing unspecific cellular uptake and potentially controlled/responsive
release kinetics. Moreover, taking advantage of the small sizes, they can pass
through even the smallest capillaries and easily penetrate the cells, thereby increas-
ing the biodistribution and therapeutic efficacy of drugs [6, 20]. In a nutshell, the
biodistribution and overall efficiency of a drug delivery system are drastically
associated with the size, shape, and surface properties of nanomaterials [58]. In
this viewpoint, a wide range of nanomaterials have been developed from a variety of
sources and types including inorganic NPs, quantum dots, dendrimers, polymeric
NPs, micelles, and so on. Amongst the multifarious materials that have been used to
construct nanocarriers, polymeric NPs derived from natural and renewable sources
have gained a great deal of interest and feasibility in a broad spectrum of applications
such as in ophthalmic nanodevices [59–61], tissue engineering [60, 62], and delivery
of many drugs [63, 64], proteins [65, 66], siRNAs [67, 68], and so on. Furthermore,
carbohydrate-based nanocarrier systems have been the focus of intense research in
recent years upon a significant rise in demand for designing natural, biodegradable,
and effective drug delivery systems due to the objectives mentioned above. In
particular, the unique properties of carbohydrates, such as biodegradability, biocom-
patibility, nontoxicity, protein repellent ability also called the stealth effect, the ease
of modification, and tendency to form supramolecular networks, make them indis-
pensable biomaterials for drug delivery and release applications [3, 4, 27, 69–
71]. Besides, carbohydrates have been extensively implemented for their ability to
balance toxicity and colloidal stability, functionalization, biocompatibility and bio-
degradation of various nanovehicles.
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13.3.1 Functionalization of Carbohydrate Nanocarriers

Sugar-decorated cationic dendrimers are one of the examples addressing carbohy-
drate functionalization of dendritic nanocarriers that are hyperbranched multivalent
nanostructures with a large number of terminal groups. However, they induce
cytotoxicity and high hemolytic activity by disrupting biological membranes due
to high cationic density in their periphery [72]. Functionalization of cationic
dendrimers with carbohydrate moieties, e.g., maltose disaccharides are one of the
prime methods that have been exploited to decrease their toxic effects. Maltose was
used in functionalization of poly(propylene imine) (PPI-GX) dendrimers of second
to fifth generations while “X” denotes the generation numbers of PPI dendrimers.
Amongst the modified and unmodified PPI dendrimers, G2 and G5 generations of
both modified and unmodified dendrimers were evaluated for their hemolytic activ-
ity at 3 and 6 mg/mL concentrations. The results of the hemolysis test indicated that
while unmodified PPI dendrimers showed destructive hemolytic indexes at both
concentrations in a generation-dependent manner, upon maltose functionalization,
their hemolytic activity significantly decreased in both generations and dendrimer
concentrations [73]. Similar studies have shown the effect of carbohydrate
functionalization in reducing the toxic effect of dendrimers [74–77]. In another
study conducted by Sun et.al, self-assembled dendron-like poly(ε-caprolactone)
(PCL) and third-generation poly(amido amine) dendron (D3)-based
diazonaphthoquinone (DNQ) conjugated dendritic nanomicelles (D3-PCL-DNQ)
were prepared with about ~100–200 nm size ranges by Click chemistry [78]. The
obtained nanocarriers with two near-infrared (NIR) photon sensitivity at 365 and
808 nm were functionalized with lactose (D3-PCL-DNQ-LAC) and glucose
(D3-PCL-DNQ-GLC) as active targeting agents, respectively, with two types of
lectins Concanavalin A and Ricinus communis agglutinin (RCA120). The anticancer
drug doxorubicin (DOX) was loaded onto the sugar-conjugated dendritic micelles by
encapsulation with 6.2 weight (wt)% loading capacity of D3-PCL-DNQ-LAC and
6.8 wt% loading capacity of D3-PCL-DNQ-GLC. Drug release profiles from dual
responsive sugar-decorated dendritic nanocarriers were controlled by changing the
time of exposure to irradiation, and ~ 40% of DOX was released in 45 h for both
dendrimers at pH 7.4 up to 10 min of irradiation in PBS. Lectin-binding abilities of
the micelles were monitored by online DLS and optical density measurements,
which showed successful targeting of the micelles upon sugar conjugation.

Quantum Dots (QDs) are another type of nanocarriers with superior optical
properties aimed to be used as potential bioimaging and contrast agents
[79, 80]. However, their toxicity and low solubility limit their use in biolabeling
applications, increasing the need for modification and solubilizing and stabilizing
them in aqueous solutions. Sugar functionalization can be applied to achieve the
functional use of QDs in imaging applications. In a study conducted by Babu et al.,
sugar-functionalized CdSe-ZnS core-shell QDs (S-QDs) were produced with
increased solubility and stability in aqueous environments for detection of lectins
[81]. Lactose, melibiose, and maltotriose were used as sugar sources in the produc-
tion of S-QDs. Water-soluble S-QDs exhibited reversible selective agglutination and
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lectin specificities that promise marked potentials for analytical and nanomedical
applications. Carbohydrate functionalization also provides stable and protective
compartments for synthesis and reduces the toxicity of inorganic NPs [82–84]. Lam-
inarin polysaccharide (LP), which is a seaweed-derived bioactive polysaccharide
found in brown seaweed, i.e., Laminaria digitata, was used as a template in the
stabilization of selenium nanoparticles (SeNPs) that otherwise were unstable with a
tendency for aggregation. LP-decorated SeNPs (LP-SeNPs) with an average size of
60 nm was demonstrated to exert marked cytotoxicity against HepG2 cells by
inhibition of autophagy and increased apoptosis [85]. Carbohydrate-functionalized
NPs can be used in enhancing stability and dissolution of poorly water-soluble drugs
[65, 86]. Vengala et al. prepared three-layered lactose-coated ceramic nanoparticles
(aquasomes) with a median size of 92 nm to increase the dissolution rate of an
antipsychotic hydrophobic drug pimozide. The aquasomes were prepared via the
co-precipitation technique via sonication that was followed by lactose coating and
adsorption of the pimozide drug. The results of drug release from the aquasomes
exhibited first-order kinetics and improved dissolution of pimozide in comparison to
the solubility of a bare, nonadsorbed drug [87].

Hyaluronic acid (HA) is an important type of glycosaminoglycan (GAG) in the
extracellular matrix (ECM). It is composed of D-glucuronic acid and N-acetyl-D-
glucosamine repeats linked by alternating β-(1–3) and β-(1–4) glyosidic bonds
[88]. In a study, an antimicrotubule cancer drug paclitaxel (PTX) was conjugated
to primary hydroxyl groups of hyaluronic acid from C-6 of the N-acetyl-D-glucos-
amine (GlcNAc) residue retaining the carboxylate groups on the glucuronic acid
(GlcA) unmodified to reserve the bioactivity of HA [89]. The carboxyl groups of HA
was revealed to be essential in maintaining its hydrophilicity and CD44 receptor
interactions [90, 91]. Thus, PTX-conjugated HA (HA-PTX) was shown to contain
22% PTX in its composition with good water solubility and retained the CD44
receptor-binding capability. HA-PTX conjugates exhibited less than 12% and 20%
release of PTX in 96 h at pH 6.0 and 7.4, respectively. Upon incubation with
hyaluronidase (HAase) enzyme at pH 6.0, the release of PTX was increased from
12 to 42%. HA-PTX nanoconjugates were internalized by A549 and HepG2 cancer
cell lines through CD44-mediated endocytosis. The cytotoxicity studies indicated
that HA-PTX nanoconjugates showed increased apoptosis in both cell lines in
comparison to free PTX, from ~7.1 to 30.5% for A549 cells at 0.1 μg/mL PTX
concentrations and from ~10.9 to 22.1% for HepG2 cells at 0.025 μg/mL PTX
concentrations. Mannose is a simple hexose sugar with complex and stringent
regulation in the metabolism of humans [92]. It is a C-2 epimer of glucose
possessing important roles in recognition and communication events, e.g., glycosyl-
ation of cell surface proteins [93]. Mannose functionalization was applied to target a
C-type lectin receptor DC-SIGN also known as CD209 on the surface of dendritic
cells. Gold nanoparticles were functionalized with thiol-linked (oligo) mannosides to
block the binding of HIV envelope glycoprotein gp120 to the DC-SIGN receptor
[94] . In another work, dimannose and lactose moieties were used in the
functionalization of polyanhydride NPs via amine-carboxylic acid coupling to target
various C-type lectins on bone marrow-derived dendritic cells, again aiming to

324 M. Can and N. Sahiner



induce immune responses. Dimannose-coupled polyanhydride NPs were termed as
“pathogen-like” nanoparticles to be used as a potential vaccine adjuvant for improv-
ing the efficacy of vaccines [95]. Furthermore, various nanocarriers are
functionalized with different carbohydrate residues such as monosaccharides
[9, 96–98], disaccharides [99–102], oligosaccharides [49, 50, 103–105], and
polysaccharides [46–48, 106] for targeting, and distinct functionalities have been
rendered in each case.

Besides the functionalization of nanocarriers, carbohydrates were also used in the
functionalization and enhancement of therapeutic activities of native biological
molecules including growth factors, peptides, and proteins [107, 108]. HA was
conjugated to a peptide hormone, insulin. Its functionalization with HA enhanced
the hypoglycemic activity of insulin and prolonged its plasma half-life [109]. In a
similar rationale, a low molecular weight polysaccharide, dextrin, which is produced
by hydrolysis of glycogen or starch, was used in the functionalization of trypsin.
When it was conjugated to trypsin, its activity was masked by the polysaccharide in a
restorable manner and could be recovered after degradation of dextrin by α-amylase
enzyme [110]. This type of functionalization utilizing polysaccharides as protective
and/or reversible activity-masking agents for proteins are termed Polymer-masked
unmasked protein therapy (PUMT) [111].

13.3.2 Carbohydrates as Full Construction Agents: Synthesis
and Applications of Nanogels and Microgels

Besides the use of carbohydrates in the functionalization of nanocarriers and
biological molecules, they have been employed as construction precursors of com-
plete nanostructures, i.e., micro/nano hydrogels [63, 112, 113]. Hydrogels are
crosslinked hydrated networks of polymeric particles possessing remarkable supe-
rior properties such as high water absorption and surface area, adjustable particle
size, modifiable surface properties, and enhanced drug loading capacities as com-
pared to other nanovehicles [20, 64, 66, 70, 114, 115]. Various top-down and
bottom-up approaches are employed for the synthesis of hydrogels, each with their
advantages and limitations [116, 117]. Although diverse techniques have been
developed as bottom-up synthesis of colloidally stable hydrogels, such as photoin-
duced crosslinking, radical polymerization, precipitation polymerization, and emul-
sion polymerization, and the following two main mechanisms dictate hydrogel
formation:

1. Physical crosslinking via noncovalent interactions such as van der Waals forces,
hydrophobic and electrostatic interactions, hydrogen bonding, and chain
entanglements between polymers that result in the formation of self-assembled
physically crosslinked networks.

2. Chemical crosslinking through intra- [118, 119] and intermolecular [118] cova-
lent bonding under appropriate reaction conditions.
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Nanogels and microgels can be incorporated with various bioactive compounds
and therapeutics. Different methods of drug loading have been developed and
engineered to improve the kinetics of loading and release in terms of loading
capacity, pattern, and rate of drug release. As illustrated in Fig. 13.3a, three major
techniques have been employed for loading of drugs toward microgel and nanogel
structures:

(a) Incorporation of drugs through physical adsorption and entrapment from
solutions in appropriate solvents, and therefore, the interactions between func-
tional groups carried by drugs and hydrogel particles as well as noncovalent
interactions, for instance, van der Waals forces, hydrogen bonding, and hydro-
phobic and electrostatic interactions are the major decisive forces for the
efficiency of loading.

Fig. 13.3 Schematic illustration of (a) drug loading, (b) release, and (c) targeting techniques
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(b) Chemical attachment of drugs to pendent groups on the surface of hydrogels
through covalent conjugation that is mostly accomplished by using spacer
molecules carrying certain types of functional groups that form labile and
hydrolysable bonds, steadily degradable in biological environments, e.g., ester
bonds, amide bonds, carbonate bonds, and so on.

(c) Self-assembly by simultaneous organization of drugs and polymer chains
through noncovalent interactions, e.g., hydrophobic and/or electrostatic
associations as main driving forces in thermodynamically favorable minima
leads to the formation of stable molecular structures.

One of the fundamental goals in controlling the pattern of drug release is to
manage and keep the plasma concentration of drugs in their therapeutic ranges with
lesser fluctuations [120, 121]. As depicted in Fig. 13.3b, the mode of drug release
from nanocarriers can be realized by several mechanisms such as

1. Diffusion-mediated drug release,
2. solvent-controlled drug release,
3. the release upon degradation of nanocarriers, i.e., nanogels and microgels, and,
4. triggered release that causes a change in the physical or chemical state of

nanomaterials by sensing an external stimulus such as electromagnetic radiation,
pH, temperature, ultrasound, magnetic field, electricity, or ionic strength and
so on.

Moreover, there have been several methods of approach extensively investigated
in modeling the pattern of drug release kinetics for various nanocarrier systems
including

1. Statistical methods, e.g., exploratory data analysis and multivariate analysis of
variance (MANOVA),

2. Model-independent methods, e.g., difference factor (f1) and similarity factor (f2)
3. Model-dependent methods, e.g., zero-order, first-order, Higuchi, Korsmeyer-

Peppas model.

With regard to model-dependent methods, patterns regarding the rate of drug
release can be summarized as follows:

• Zero-order, this type of release kinetics exhibit constant rates of release in a
sustained manner over a period of time, which is the ultimate aim of most DDSs.

• First-order release is defined as the rate of the drug release that is dependent on its
concentration.

• Rapid initial burst release followed by zero- or first-order release.

More information on the kinetics of drug release can be obtained from compre-
hensive studies in the literature [122–124].

13 Carbohydrate-Derived Tailorable Interfaces: Recent Advances and Applications 327



Carbohydrate-based DDSs have attracted remarkable attention owing to their
inherent biodegradability and native or acquired responsiveness to external stimuli,
as they are intrinsically affine to some biomolecules, e.g., lectins. As depicted in
Fig. 13.3c, based on the multivalence of binding and plenty of functional groups that
can be easily modified by which responsive molecules can be linked to the backbone
of the polymer network and attain those behaviors [125–127].

Simple sugars such as lactose, sucrose, and maltitol were explored by our
research group as hydrogel precursors to create crosslinked polymeric networks of
micro- and nano sizes as shown in Fig. 13.4a-c [69, 113, 128]. Synthesis of
crosslinked poly(lactose) nanogels and microgels were achieved using divinyl
sulfone (DVS) as a chemical crosslinker [69]. Poly(lactose) micro/nano hydrogels
were reported to be compatible for blood interactions at 2 mg/mL particle
concentrations. Poly(lactose) particles with tunable surface charge and functional
groups were shown to be used as natural potential DDSs. Moreover, poly(maltitol)
micro/nano hydrogel particles were prepared as blood compatible, modifiable, and
biocompatible DDSs that were shown to be loaded with ciprofloxacin (CPX) by
physical absorption and chemical conjugation. They have exhibited almost linear
release profiles; about 3.5 mg/g of drug was released within 3 h from p(maltitol)

Fig. 13.4 SEM images of (a) sucrose, (b) lactose, (c) maltitol (d) HA, (e) HA:sucrose, and (f)
carrageenan, (g) carboxymethyl cellulose, (h) locust bean gum, and (i) inulin microgels and
nanogels. (b, c), and (f–h) was reprinted with permission from ref. 113, 115, 128, 133, 134, and,
respectively
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particles upon adsorption-mediated drug loading, whereas it was almost doubled in
amount, 6 mg/g with sustained CPX release up to 12 h from CPX-conjugated p
(maltitol) particles [113]. Similarly, poly(sucrose) microparticles were synthesized
by chemical crosslinking with DVS and tuned for their responsiveness to magnetic
field [128]. More than 66% of the poly(sucrose) particles were shown to be degrad-
able at pH 7.4 in 10 days. Besides, the simple sugars, polysaccharides of various
composition, size, charge, and bioactivities were also rendered to form versatile
networks for the delivery of therapeutic agents. The most common polysaccharides
that have been recruited in the design of DDSs are hyaluronic acid (HA), heparin
(HEP), chitosan (CS), alginic acid (ALG), dextran (DEX), and pectin (PEC)
polysaccharides, where distinct properties were endowed for each of the
nanovehicles. HA has been widely used in the preparation of various
nanomaterial-based formulations in the delivery of drugs, nucleic acids, hormones,
and proteins [129–132]. For instance, HA and HA:sucrose nanogels have been
prepared by our research group within the size range of 50–200 nm. The nanogels
attained spherical-like irregular shapes with rough and porous surfaces as illustrated
in Fig. 13.4d, e. Owing to the high surface area, HA and HA:sucrose nanogels are
amenable to surface decoration and/or modification for hydrophobic drug conjuga-
tion/adsorption studies. The prepared HA and HA:sucrose nanogels were found to
be blood compatible up to 250 μg/mL and hold promising potential as sustained
release systems with degradable and customizable characteristics [63]. Besides HA,
HA:sucrose, and simple sugars, polysaccharides such as inulin, carboxymethyl
cellulose, carrageenan, and locust bean gum-based microgels and nanogels were
reported by our group as seen in Fig. 13.4d–i [69, 113, 115, 128, 133–135].

It was reported that the design of HA-based particles with the ability of on-site
tracking and visualization upon coupling various fluorescent dyes to particle back-
bone is possible [136–140]. For instance, HA-based dual sensitive nanogels termed
F-nanogels are labile to pH-mediated and enzymatic degradation. They were
prepared as dual carriers for targeted co-delivery of DOX and nitric oxide (NO) to
cancer cells [29]. In the design of this system, boronic acid-conjugated lactose-
modified chitosan (chitlac-BOH) and dopamine and NO-conjugated partially
carbonized fluorescent HA [NO/DA-FNP(HA)] was crosslinked through boronic
chemistry. By means of the attached fluorescent dye and responsive degradability
alongside the natural cancer targeting ability of HA, the F-nanogel system shows
promising potential in theranostic cancer chemotherapy. The molecular weight of
HA is one of the major parameters affecting physicochemical characteristics and
in vivo performances of HA-derived carrier systems [141–144]. HA-based
nanomaterials have been reported by different types of preparation methods, e.g.,
self-assembled HA-testosterone conjugates were prepared by Quinones et al. for
sustained release of DOX and camptothecin (CPT) drugs [131]. In another study,
HA-steroid conjugates were obtained by self-assembly of hydrazide-modified HA
molecules and coupled with diosgenin and two types of brassionsteroids D131 and
S7. HA-steroid conjugates exhibited sustained release profiles up to 72 h with a
nearly constant rate of release in the first 8 h [145]. In another work conducted by Ji
et al., biodegradable β-cyclodextrin-grafted HA-based nanocomplexes were
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prepared by formation of inclusion complexes between β-cyclodextrin and phenyl
pendant groups, phenylalanine-based poly(ester amide). The prepared HA-based
supramolecular nanocomplex was used to improve the solubility of gambogic acid
to combat multidrug resistance in melanoma cell lines [146].

Heparin (HEP) is a negatively charged GAG type polysaccharide composed of
disaccharide units varying in sulfate composition. It interacts with proteins,
modulates the localization in the extracellular matrix, and regulates ligand binding
and proteolysis against proteins [147, 148]. HEP was employed in the preparation of
self-assembled amphiphilic nanoparticles [149–151] such as self-assembly of
thiolated-HEP and poly(ethylene glycol) (PEG) in dimethyl sulfoxide (DMSO),
resulting in the formation of HEP-PEG nanocomplexes by means of hydrogen
bonding. The HEP-PEG nanocomplex was crosslinked by ultrasonic treatment and
recruited for redox-responsive intracellular HEP delivery [151]. Similarly, thiolated
HEP-pluronic conjugates formed by self-assembly and crosslinked nanogels (DHP)
were formed through disulfide linkages upon oxidation of the HEP-based conjugates
[152]. RNase A was loaded into DHP nanogels by encapsulation in order to
investigate the efficacy of protein stabilization due to the electrostatic interactions
between proteins and HEP. DHP nanogels gained high-protein loading efficiency
with increased stability and redox responsive release that can be used as intracellular
redox responsive DDS. Moreover, low molecular weight HEP (LH) was prepared in
the form of nanogels (LHP) upon pluronic F127 conjugation. LHP was tested for its
role in liver fibrosis. It was preferentially internalized by liver tissue, compared to
nonconjugated LH, and distributed in the site of liver injury. LHP nanogels were
reported to exhibit hepatoprotective and antifibrotic activities by inhibition of
transforming growth factor-β1 (TGF-β1)/Smad signaling. Thus, the LHP nanogels
have a potential use in the treatment of cancers and injuries of the liver upon loading
with different anticancer agents [153]. Long circulating HEP-based nanogels were
prepared by disulfide crosslinking. Methacrylate-functionalized HEP was joined in
disulfide-crosslinking via copolymerization with cysteamine bisacrylamide (CBA)
in an aqueous environment, resulting in the formation of HEP nanogels with a size
range of 80–200 nm [154]. Synthesis of HEP nanogels was done through amidation
between the carboxylic acid groups of HEP. The prepared HEP nanogels were
loaded with DOX from basic drug solution. Up to 30% drug loading content and
90% efficiency were reported. As seen in Fig. 13.5a, in vitro release profiles revealed
slow drug release under physiological pH with ~10% at pH 7.4 and 20% at pH 5.5
for 240 h. Faster drug release was observed in the presence of 10 mM 3 mg/mL
glutathione (GSH) ~60% at pH 7.4 and ~ 80% at pH 5.5, respectively. In vivo drug
distribution was examined by near-infrared (NIR) fluorescence imaging dye,
NIR-797, labeling through the hydroxyl groups on HEP and monitored as a function
of time. DOX-loaded HEP nanogels have gained an extended systemic circulation
with effective targeting of the tumor cells. As can be seen from Fig. 13.5b, a rapid
and significant accumulation of HEP-based nanogels at the tumor site was observed
clearly even at only 1-h post-injection (p.i.). After 48 h, the accumulation of HEP
nanogels reached its maximum at the tumor site and lasted for 120 h before being
eliminated. Figure 13.5c shows the normalized NIR fluorescence images using a
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constant exposure time. In order to investigate whether the distribution of nanogels
were parallel with the distribution of DOX in tissues, DOX was recovered from the
tissues, and quantitative examination of the in vivo DOX distribution was performed
by fluorescence spectroscopy. The results were expressed in average percentage of
injected dose per gram of wet tissues (% ID/g) as shown in Fig. 13.5d. The
maximum DOX concentration in liver and spleen was found to be 22% ID/g at 1 h
p.i., and 14% ID/g at 4 h p.i., while it reached 4.5% ID/g at 1 h p.i. and increased up
to 9.3% ID/g after 24 h p.i. at the tumor site.

As clearly seen from Fig. 13.5, DOX-loaded HEP nanogels show sustained
release up to 240 h, sensing the pH and reductive stimulus of the medium. In vivo
administration of DOX-loaded HEP nanogels to H22 tumor-bearing mice showed
extended in vivo circulation times and successful accumulation around the site of
tumor. 9.3% ID/g DOX was retained at 24 h post-injection, indicating that HEP
nanogels can be used as long circulated, high loading, and effectively targeted
sustained DDSs. Figures were adopted from ref. [154] with permission.

Chitosan is a deacetylated derivative of chitin under alkaline conditions. It is
composed of N-glucosamine moieties linked by β-(1–4) bonds. CS has a nontoxic,
biodegradable, biocompatible, and mucoadhesive properties [155]. It is soluble in
dilute acid environments and insoluble under physiological conditions which can be
utilized in site-specific targeting of drugs, i.e., for ophthalmic [61] and colonic drug

Fig. 13.5 (a) In vitro DOX release from heparin-based (HEP) nanogels, 0.01 M PBS at pH 5.5 and
7.4 with/without the presence of 3 mg/mL GSH in release media, (b) NIR fluorescence images of a
hepatic H22 tumor-bearing mouse at different time points after injection of the NIR-797-labeled
HEP nanogels via the tail vein. The circled region is tumor; (c) the images shown (b) after
normalization using a constant exposure time. (d) Biodistribution of DOX in different tissues of
hepatic H22 tumor-bearing mice at various time points after injecting DOX-loaded nanogels via the
tail vein. The values were acquired as the percentage of ID per gram of collected tissues and based
on three mice per group. Adopted from ref. 154 with permission
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delivery [156, 157]. CS NPs formed by ionic gelation between CS and sodium
tripolyphosphate (TPP) in the range of 90–200 nm sizes with a narrow size distribu-
tion and loaded with bovine serum albumin (BSA) to a maximum of 51 wt%
[158]. In vitro BSA release from CS NPs was performed in simulated gastric fluid
(SGF) and simulated intestinal fluid (SIF) at pH values of 1.2 and 7.5, respectively.
The result of BSA release showed that 75–90% of the loaded BSA was released in
24 h in SGF. On the contrary, the BSA release in SIF was slower since the CS NPs
experienced partial collapsing and the BSAs were entrapped in CSNPs. In another
study, CS NPs were prepared by ionic gelation of CS with TPP ions and loaded with
quercetin, which is an antioxidant phenolic compound of plant origin with low water
solubility; CS-quercetin inclusion complexes formed to potentiate the bioavailability
of quercetin [159]. Another study was conducted by Maestrelli et al., in which
hydroxypropyl cyclodextrin (HPCyD) entrapped CS nanoparticles (HPCyD-CS)
were prepared aiming to increase the bioavailability of class 2 and 4 drugs, triclosan
and furosemide [160]. The ability of CyDs to form molecular inclusion complexes
with drugs were utilized, which in turn were entrapped with CS NPs, providing extra
protection and facilitated absorption of drugs. The release of drugs from HPCyD-CS
NPs showed similar kinetics for both drugs, that is, fast drug release within 1.5 h at
about 40–60% of the total release, and followed by delayed release to 24 h [160].

Alginic acid is a linear polysaccharide derived from brown seaweeds and some
bacterial species. It is composed of β-D-mannuronic acid (M) and α-L-gluronic acid
(L) residues through 1,4 glycosidic linkage [161]. The gel formation abilities of
ALG make it feasible for encapsulation of macromolecules, e.g., proteins and
peptides; however, the composition of ALG including viscosity and the ratio and
distribution of constituent monosaccharides M and L has important roles in the
swelling behaviors of prepared interfaces [162], for example, ALG beads were
synthesized by the ionotropic gelation technique [163, 164]. The counter ions used
in synthesis was reported to significantly change the release behaviors of ALG beads
[165]. Alginate NPs were prepared to encapsulate exemestane (EXE), a cancer drug
used for breast cancer, by controlled gelation and reported as a potential drug carrier
for sustained release of EXE [166]. In another research, ALG-CS construct-loaded
AgNPs were prepared with antibacterial and antitumor properties against HeLa cells,
while the L929 fibroblast cells retained their viability [167].

Dextran is a linear bacterial polysaccharide composed of α-(1–6) linked glucose
residues with an average of 5–10% α-(1–3) branching. It is not degraded by the
upper GI tract and metabolized by colonic microorganisms. DEXs have been used as
blood substitutes, scaffolds for cartilage tissue engineering [168], and conjugated
with various drugs [169, 170]. DEX-based nanogels were reported in siRNA
delivery and gene silencing applications [171]. Moreover, methacrylated DEX
nanogels by disulfide crosslinking were prepared with pH and redox dual-responsive
properties and internalized by Hela cells [169]. In a similar study, ovalbumin (OVA)
was immobilized on cationic DEX nanogels through disulfide linkage [172]. While
the release of OVA was significantly low at physiological pH without reductive
stimulus, it showed a rapid in vitro release in the presence of GSH, being consistent
with the intracellular release in D1 dendritic cells. It was concluded that thiol groups
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provide controllable release for intracellular drug delivery. Similar studies were
reported for protein and drug release from DEX-based nanogels [173–175].

Pectin is an acidic heteropolysaccharide found in the primary cell walls of plants.
It is majorly composed of linear chains of α-(1–4) linked d-galacturonic acid
moieties with hundred to thousand DPs. They are highly soluble in water but are
not digestible by the upper gastrointestinal tract and degraded by microbial
organisms in the colon. It has been used as a coating agent or excipient in ophthalmic
[176], oral [177], and vaginal [71] drug delivery systems. Many attempts have been
made to decrease the water solubility of pectin such as crosslinking with epichloro-
hydrin [178], amidation [179], and so on to design colon-targeted PEC-based DDSs
[180–182]. In a study conducted by Majzoob et al., pectin was thiolated by attaching
cysteine (Cy) amino acids to improve its mucoadhesive properties [183]. Upon
conjugation of PEC with Cy, PEC-Cy conjugates were treated with pectinolytic
enzymes to test its biodegradability. Consequently, thiolated PEC has been consid-
ered as a promising excipient possessing a biodegradable backbone with low toxicity
and bead forming ability; moreover, the inconvenient properties of native PEC such
as rapid hydration, swelling, and erosion were surmounted.

PEC and some other polysaccharides such as carrageenan, guar gum, and other
gums are used as drug carriers, matrix tablets, and excipients. When used alone, they
might not offer desired release profiles, e.g., zero-order release, although they are
often used as polymer blends and/or conjugated to other carriers or residues, e.g.,
hydrophobic molecules to obtain desired dosage forms.

Furthermore, sulfated polysaccharides derived from algal and/or microbial
organisms such as ulvan, laminarin, fucoidan, and so on have not been deeply
investigated, yet there has been some studies reported, and they have a vast scope
of potential in the development of nanocarriers due to their natural, degradable, and
biocompatible properties [184–192].

13.4 Carbohydrate-Based Smart Delivery Systems: Basics
of Targeted Delivery

Recently, emerging technology has arisen the quest of intelligent materials with
well-defined, tailor-made architectures and controllable behaviors. Amongst the
available materials, hydrogels and their smaller forms, nanogels and microgels are
having remarkable customization capabilities that can be exploited in site-specific
and/or target-oriented sensing of an external stimulus and release their contents
accordingly. There are two fundamental ways employed in manipulating NPs, as
passive and active targeting methods. Passive targeting encompasses the direction of
nanocarriers to the target site through affinity or mode of binding, which are
significantly influenced by experienced conditions in the present whereabouts of
carriers such as pH, temperature, molecular site, and shape of the environment.
Nanocarriers can be actively targeted to distinct tissues, cells, or biological
molecules by engineering their surface [20, 70, 116]. Attachment of specific affinity
ligands to the surface of hydrogels including oligosaccharides, polysaccharides,
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aptamers, antibodies, lectins, and so on enables the molecular recognition of targets
and hence selective binding [4, 81, 94, 95, 125]. As the stimulus has been detected
by a responsive hydrogel system, an immediate corresponding response is triggered
as a change in predetermined behavior, which could be the release of its therapeutic
cargo by changing the swelling-deswelling dynamics, movement in a certain direc-
tion, a change in particle size, color, shape, and so on.

Efficient targeting, prolonged periods of circulation, and lower immunogenicity
as well as sustained release of therapeutic cargo are the central responses aimed to be
received from in vivo applications of smart carrier systems, but it is yet to be
completely carried out. Although promising NPs formulated to achieve considerable
plasma half-lives in circulation [107, 154, 193], majority of the DDSs suffer either
from premature in vivo clearance by MPSs before they exert the therapeutic effects
or they induce cytotoxicity [194, 195]. In this regard, besides serving as excellent
functionalization agents, carbohydrates have been a great choice for the fabrication
of carriers for particular several reasons. As nanocarriers are administered to the
systemic circulation or a biological fluid, they interact with proteins in the environ-
ment, e.g., plasma proteins in blood will be adsorbed on the carrier surface due to the
hydrophobic/electrostatic interactions and high surface energy of most nanocarriers.
The absorption of proteins will result in the formation of a coating around NPs called
protein corona [196, 197]. The composition and size of the corona will determine the
subsequent fate of the nanocarrier system as it might cause phagocytic elimination of
the NPs by MPSs, a process called opsonization. Opsonization makes in vivo drug
targeting a quite challenging process. In order for a nanocarrier system to have a
prolonged plasma half-life, the extent of opsonization should be reduced. This would
be accomplished by the nanocarrier itself or by modification of its surface to create
steric hindrance for protein adsorption.

Modification of NP surfaces with polyethylene glycol (PEGylation) by conjuga-
tion, coating, or adsorption has been extensively implemented to reduce surface
opsonization. It has also decreased the uptake of nanocarriers by unspecific cells
owing to the increased hydrophilicity and steric repulsions by PEGylated surfaces
[47, 67, 68, 138]. However, the major drawback of PEG is that it is not a biodegrad-
able polymer, as has been revealed by recent studies that PEG caused the occurrence
of renal tubular vacuolization in animals [198]. This brings about some concerns that
using PEGylated therapeutics during prolonged periods of time may cause the
accumulation of PEG in the body especially in the kidneys [199, 200]. It has been
reported that natural polysaccharides or some of their synthetic counterparts such as
hydroxyethyl cellulose (HEC) were shown to exhibit low protein affinities [201–
203]. Moreover, glycolipids and polysaccharides derived from microbial organisms,
e.g., dextran were proven to decrease the uptake of nanocarriers by MPSs, which
could potentially be used as substituents for PEGylation to evade opsonization of
nanocarriers [204]. Another example of a carbohydrate with protein repelling
properties is a monosaccharide, sialic acid (SA), found on the surface of
erythrocytes. It naturally prevents erythrocytes from being phagocytized by MPSs
and the red blood cells lacking SA moieties on their surface experience rapid
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clearance from circulation [205]. This promising ability of SA was inspired for
various nanocarriers to surmount premature clearance of nanoparticles [206–208].

13.5 Concluding Remarks

Carbohydrates as prominent biomolecules are highly complex, howbeit, quite func-
tional elements in cells of living organisms. They function in diverse biological
processes governed by inherent algorithms underlying their unique structural
glycosides. The ubiquitous involvement of carbohydrates in the molecular recogni-
tion of biomolecules, signaling, and trafficking of cellular inputs and outputs as
gatekeepers and/or transporters in the form of glycoconjugates such as glycoproteins
and glycolipids as well as their use as primary instant energy sources and storage
molecules has been briefly reviewed.

Realization of the biodegradability, biocompatibility, and unique bioactive
properties of carbohydrates as well as their specific interplays in diverse cellular
processes has sparked evergrowing interest in the design of carbohydrate-based-
nanostructured interfaces as tailorable multifunctional bioplatforms for the construc-
tion of future therapeutics.

Nanocarrier systems provide exceptional feasibility from industrial to a large
number of biomedical applications. For instance, nanovehicles improve the pharma-
codynamic and pharmacokinetic properties of drugs in the following ways: They
protect the cargo against acidic and oxidative degradation, decrease overdosing and
related toxic side effects, show unspecific cellular uptake of drugs, and enhance their
half-lives, solubility, and therefore therapeutic efficacy and plasma concentration in
systemic circulation. The efficacy of nanocarriers is greatly dependent on the type,
size, charge, and their composition. Inherently natural biomolecules from renewable
resources are of paramount interest due to the lower immunogenicity and toxicity as
compared to their inorganic or synthetic counterparts. Moreover, various synthesis
mechanisms such as self-assembly, physical, and chemical crosslinking mechanisms
were explored by employing different experimental techniques. Similarly, methods
used for loading of distinct bioactive agents have been exploited to improve the
efficacy of encapsulation and release kinetics. Taking inevitable inspiration from
natural carbohydrates, nanocarriers were equipped with various moieties to target
specific sites and undergoes mimicking to evade immune system phagocytosis.

Furthermore, computational studies coupled to experimental works capture
envisaged snapshots to molecular interactions between drugs and biological
interfaces that will lead to the development of next generation, more accurate, and
easily controllable nanodevices, which will in turn hopefully enlighten new paths in
diagnosis and treatment of persistent disorders such as HIV, malaria, diabetes,
cancers, and genetic diseases. Researchers from glycobiology, nanotechnology,
biophysics, and computational science peg away at understanding the source code
of this secondary/auxiliary information network incorporating multidisciplinary
approaches.
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Abstract

The development of multifunctional nanoparticles has greatly expanded the
application of nanomedicines for various health care ailments with better diagno-
sis and therapy. The combination of suitable imaging modalities with drugs and
ligand-guided or external stimuli-guided site-specific delivery holds great poten-
tial for safer and efficient therapy. Various such nanocarrier systems have been
discussed in this chapter such as the polymeric conjugates, dendrimers, micelles,
gold nanostructures, Iron oxide nanoparticles, Quantum dots, carbon dots, and
stimuli-responsive systems. In recent trends, these multifunctional systems
involve a combination of photothermal, photoacoustic, and photodynamic effects
along with the chemotherapeutic and other drugs. These systems hold great
promise for better therapy for several difficult health care problems such as
cardiovascular diseases, atherosclerosis, rheumatoid arthritis, Alzheimer, psy-
chotic disorders, and inflammation and most importantly for the cure of various
types of cancer and are presently under clinical manifestation.
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14.1 Introduction

In recent years, research has been trending toward the design of multifunctional
nanocarriers, which can deliver the drug in a controlled manner to the targeted site
and act as an imaging agent for simultaneous diagnosis and therapy. Such systems
are termed as Theranostics, meaning a combination of Therapy and Diagnostics.
This field has been growing since the last decade with the advancement of
nanomedicines with a newer synthesis of nanostructures and due to the need of
getting cured for diseases difficult to treat like rheumatoid arthritis, cardiovascular
diseases, cancer, etc. [1]. Cancer is one of the major areas, which may be benefited
from these theranostic designs. The major problem for successful clinical
manifestations of various chemotherapy is the heterogeneity of the tumors
[2]. This necessitates an approach for the combination of diagnosis and multifacet
therapy using nanocarriers. Hence, the recent advancements in nanoparticulate
theranostics have been an integration of diagnosis, drug monitoring, and targeted
and controlled drug delivery [3].

Nanoparticles have been designed as theranostics as due to their large surface to
volume ratio they can be multifunctionalized for diagnosis and controlled and
targeted delivery. Moreover, many nanoparticles have intrinsic imaging properties
(such as iron oxide based) or therapeutic properties (metallic nanoparticles), which
can be cofunctionalized for better theranostic effect [4].

Most of these multifunctional designs are composed of a suitable imaging
modality for advanced diagnosis. Molecular imaging is performed for the character-
ization of biological processes at the cellular and subcellular levels in intact
organisms. These powerful techniques can help in simultaneous diagnosis with
drug delivery for better therapy. Some of the multifunctional systems include these
imaging contrast agents to achieve an image-guided more efficient site-specific
delivery with reduced toxicity. Currently used molecular imaging modalities include
MRI (Magnetic resonance Imaging), CT (Computed Tomography), US (Ultra-
sound), optical imaging (bioluminescence and fluorescence), single photon emission
computed tomography (SPECT), and positron emission tomography (PET) [5]. Sev-
eral multifunctional nanosystems have been designed containing these contrast
agents alone or in combination with the drug. Besides the imaging agent and drug,
these multifunctional systems also include suitable ligands for ligand-mediated
targeted delivery or stimuli-responsive agents (pH, temperature, Ultrasound, etc)
for stimuli-responsive targeted release of drugs. This has certainly helped in better
designs of delivery systems for several diseases. Different nanocarriers have been
designed successfully for such multifunctional approach, and recently, these systems
have been used for the combination of chemotherapy, photothermal therapy, or
photodynamic therapy and hold huge potential for better and safer efficacy for
various health care problems.
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14.2 Different Multifunctional Nanocarriers Used
as Theranostic System

14.2.1 Polymer Conjugates

Polymer-drug conjugates using nondegradable polymeric carriers, particularly poly
(ethylene glycol) (PEG) [6, 7] and N-(2-hydroxypropyl methacrylamide) (HPMA)
copolymers [8, 9], have been used extensively, and some of these have also
translated to use in the clinic. These functionalized conjugates are increasingly
being utilized to obtain biodegradable, stimuli-sensitive, and targeted systems to
increase the efficacy and safety of drugs particularly in cancer [10]. Numerous
studies have been conducted in recent years on these conjugates for theranostic
use for various health conditions. These theranostic agents help in monitoring the
biodistribution and accumulation at the target site of therapy in a noninvasive
manner [11]. Moreover, the extent of localization at the target site can be used as
an accurate predictor of efficacy, which may help in relieving a patient from
subsequent therapy that might not prove efficacious.

These polymer drug conjugates have been successfully designed for theranostic
use by conjugating with suitable ligands for active targeting and contrast agents for
imaging [12]. Besides, these polymer conjugations also result in increased circula-
tion time, passive targeting, and reduced toxicity [10]. Chemical conjugation and
copolymerization have been the two major schemes for functionalizing the polymers
with the therapeutic and imaging agents [5].These polymer conjugates have been
used for different types of imaging modality fluorescence imaging [13], MRI
[14, 15], PET [16, 17], SPECT [18], and Ultrasound [19]. These polymer drug
conjugates have been used for various ailments like inflammation cardiovascular
diseases and particularly in cancer [20].

In a recent work by Etrych T et al 2018, HPMA–doxorubicin conjugate has been
prepared for simultaneous malignant lymphoma treatment and lymphoma growth
imaging. Two types of passively targeted conjugates were prepared, one using a
single linear polymer chain and a star-shaped high-molecular-weight (HMW) poly-
mer employing a dendrimer core. Both types of conjugates were designed as stimuli-
sensitive systems by attaching the drug copolymer via a pH-labile hydrazone linkage
and reacted with near IR dye Cy7-NHS-ester for fluorescence imaging. The effect of
these conjugates was observed in murine models of malignant lymphomas including
one cell line-derived xenograft (RAJI) and two patient-derived lymphoma
xenografts (VFN-D1 and VFN-M2). They have better pharmacokinetics and uptake
of the drug and polymer. Dynamically analyzed fluorescence intensity over subcu-
taneously xenografted lymphomas closely corresponded to changes in the lym-
phoma tumor volumes, thereby enabling a noninvasive assessment of treatment
efficacy [21].

In a recent study by Gao X et al 2019, a novel theranostic probe (TPE-Man) has
been designed by conjugating mannose with red emissive and AIE (aggregation-
induced emission) active photosensitizers. The probe has been designed for applica-
tion in TAM (Tumor-associated macrophages) targeting, photoimaging, and

14 Multifunctional Nanoscale Particles for Theranostic Application in Healthcare 349



photodynamic therapy. The prepared TPE-Man showed excellent targeting specific-
ity for CD206, which is overexpressed on the membranes of TAMs. The study
showed high detection efficiency due to the high fluorescence staining contrast
between TAM and M0 macrophages and TPE-Man, which shall be a potentially
useful rapid diagnosis. They also showed excellent tumor-killing efficiency by
photodynamic effect by generating ROS upon exposure to irradiation by visible
light [22].

In recent years, most of these works have been based on combined modalities for
better detection along with targeted delivery. There have been works on polymeric
conjugates involving a combination of optical imaging, PET, SPECT, MRI, and
Ultrasound for better effects and to reduce the limitations of each other. In addition
to providing diagnostic signals, these conjugates have also been used for minimally
invasive therapeutic techniques of Photodynamic therapy (PDT), Photothermal
Therapy (PT), and Photoacoustic Therapy (PA) [23]. In one such study, Du C et al
2017 have prepared all-in-one biopolymer drug conjugate theranostics. It was an
attempt to integrate polymeric prodrug-induced chemotherapy and NIR
light-mediated photothermal therapy along with combined modalities of self-
fluorescence, Photothermal, and photoacoustic therapy. The study involved prepa-
ration of a pH-sensitive polydopamine-doxorubicin conjugate. The prodrug-induced
chemotherapy, intrinsic Photothermal therapy on NIR irradiation, and combined
PT-CT was observed in Hela cell-induced nude mice model. The study showed
prolonged blood circulation time and Doxorubicin self-fluorescence imaging, which
assisted in better tissue distribution and showed selective tumor uptake. The
photothermal effect was observed using a thermal imaging camera during NIR
irradiation, which showed hyperthermic effect on the tumor site due to the NIR
absorbing Polydopamine. This NIR light was also found to be absorbed by the
conjugate and converted to heat fluctuations that induced ultrasonic waves, resulting
in Photoacoustic imaging. The combined modality successfully killed the tumors
and showed a synergistic effect [24].

14.2.2 Dendrimers

Dendrimers are a new class of synthetic macromolecules and have been used as
nanocarriers with size in the range of 10-100nm. These have unique tree-like
branched architecture, which provides room for conjugation and incorporation of
various agents. These have been used for encapsulating hydrophobic drugs and for
site-specific delivery. The dendrimers have three parts: (1) A central core with two or
more reactive groups, (2) Homocentric layers called generations constituted of
repeated units, and (3) functional groups on the surface determining the physico-
chemical properties of the dendrimers [25]. The dendrimers are very good vehicles
for diagnosis and targeted delivery of different diseases. The higher dendrimers (>5)
have recently been used for designing multifunctional nanocarriers by simultaneous
grafting of the outer terminals with site-specific ligands, diagnostic contrast agents,
or their combinations for imaging along with the drug [26, 27] due to higher void
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spaces and terminals. Hence, these dendrimers have good potential to be sued as
multifunctional theranostics due to their monodispersity, low immunogenicity,
modifiable surface functionality, water solubility, and multivalency [28].

PAMAM (Polyamidoamine) and Poly(propylene imine) (PPI) are the two most
widely used types of dendrimers. However, the most successful and preferred in
theranostic designs have been the PAMAM (Polyamidoamine) dendrimers due to
their ease of preparation, surface versatility, and low toxicity. These dendrimers are
synthesized with polyamide branches containing an ethylene diamine core with
tertiary amines as focal points [29]. These dendrimers have been used in the design
of different theranostic nanocarriers by conjugating with suitable contrast agents
[30] such as 68Ga and 64 Cu [29, 31] for PET imaging, 67 Ga [27] and 99Tc [32] for
SPECT, Gadolinium (Gd) for MRI [33], Cy 5.5 [34] and 177 Lu [35] for optical
imaging, etc. These PAMAM dendrimer-based theranostic nanocarriers have been
designed for various diseases like arthritis [34], atherosclerosis [31], myocardial
infarction [36], malaria [37], neuroinflammation [38], and different forms of Cancer
[39, 40].

The major concerns for use of dendrimers as nanocarriers in humans are their
biocompatibility, circulation time, and degradation. Hence, there are efforts to
design more biocompatible dendrimers with long circulation time and reduced
toxicity [41]. There are efforts to achieve this surface or core modification of the
dendrimers by PEGylation as well as glycosylation, acetylation, [42] and conjuga-
tion with amino acids. PEGlytaed dendrimers have been the most widely explored
among these [43]. However, the toxicity due to its degradation product still remains a
major concern and the small size of less than 10nm is not suitable for enhanced
permeation and retention.

There are efforts to reduce this toxicity due to degradation by the design of
Peptide dendrimers [44]. These peptide dendrimers contain peptide bonds in their
structure and are synthesized from amino acids. These help in reducing the toxicity
as these amino acids of the degradation are used by the cells in their metabolism. In
such a study by Nigam S et al 2017, a peptide dendrimer was synthesized whose core
was made of ethylene diamine and cationic amino acid constituted branching
monomer. This peptide dendrimer was loaded with SPIO for MRI detection and
coloaded with anticancer drug doxorubicin for theranostic therapy. The dendrimer
showed efficient drug loading capacity. Moreover, a synergistic effect was observed
on combination of doxorubicin and magnetic hyperthermia effect with Alternating
current magnetic field (ACMF) for treating cervical cancers with this
nanocarrier [45].

However, the major problem of the high-generation PAMAM and Peptide
dendrimers is that they are not easy to prepare due to the steric hindrance to the
chemical reactions, are costly, and result in latent toxicity due to slow degradation
[43, 46, 47]. To resolve these problems with high generation dendritic theranostic
carriers, recently, there has been work on the use of hyperbranched or dendronized
polymer strategy [27]. These involve a combination of lower generation dendrimers
or dendrons with Polymers particularly polysaccharides like heparin [48] and
hyaluronic acid [45]. These dendronized polymer-based theranostic nanocarriers
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have been found to be better in terms of ease of synthesis, biocompatibility, and
biodegradability and considered more potential for clinical application (Table 14.1).

14.2.3 Polymeric Micelles

Polymeric micelles are another class of nanocarriers, which have been investigated
for their application as a multifunctional nanocarrier system. These are composed of
amphiphilic polymers having a hydrophobic core and a hydrophilic shell. Their
uniform size, ease of preparation, enhanced circulation time, and high colloidal
stability in vivo make them very promising nanocarriers [54]. These can be easily
designed for attaining multiple functionalities by loading the hydrophobic drug in
the core and the release controlling agents, ligands, and imaging agent in the
structure [55]. In a majority of studies, the hydrophilic outer layer is composed of
Polyethylene glycol, rendering a stealth nature, and prolongs its circulation time by
preventing from uptake by RES [55, 56]. These polymeric micelles have been
prepared with macromolecules of various shapes such as star-like, cycle-like,
brush-like, or hyperbranched polymers [49].

The polymeric micelles are broadly of two types, macromolecular and
Unimolecular [57]. However, the major problem with macromolecular micelles is
their sensitivity toward thermodynamic parameters such as temperature, pH, flow
rates, electrolyte concentrations, etc., which may lead to premature aggregation,
resulting in instability [58]. Hence, in recent times, more work has been on the
design of unimolecular polymeric micelles. There have been works on multifunc-
tional polymeric micelles by combination with different types of imaging agents for
theranostic applications such as Fluorescence imaging [59, 60], MRI [56, 61, 62],
PET [63, 64], SPECT [65, 66], and ultrasound imaging and therapy [67, 68]
(Table 14.2).

Recently, more work has been conducted involving the use of a combination of
contrast agents in the multifunctional polymeric micelles for imaging as well as
therapy. Particularly, NIR and Magnetic irradiation or Ultrasound has been used in
combination for imaging as well as Photothermal or Photoacoustic therapy along
with chemotherapy. In such a recent study by Zhang L et al 2018, they have designed
a pH reduction dual-responsive polymeric micelles loaded with doxorubicin and
decorated with folic acid on the surface. The micelles have also been loaded with
Indocyanine Green (ICG) for NIR fluorescence imaging and to achieve chemo-
photothermal combination therapy [69].

In another study by Pan G Y et al 2018, self-assembling nanomicelles were
prepared by conjugating copolymer methoxypoly(ethylene glycol)5k-block-poly
(l-aspartic acid sodium salt)10 (PEG-PLD) with hydrophobic near-infrared (NIR)
heptamethine cyanine molecule IR825-NH2 by amine-carboxyl reaction. The
resulting copolymers were amphiphilic in nature and could self-assemble into
nanomicelles. These systems resulted in NIR fluorescence-guided photothermal
therapy on irradiation, resulting in site-targeted delivery, enhanced cellular uptake,
and extended circular retention. These nanosystems resulted in effective
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photothermal effect as observed in He La cells and resulted in U14 tumor-bearing
mice [70].

14.2.4 SPIONs

Superparamagnetic iron oxide nanoparticles (SPIONs) are the most widely used
nanocarriers for multifunctional theranostic agents. These are based on inherently
paramagnetic iron oxide, which acts by shortening T2, and are known as Negative
contrast in MR Imaging, as discussed in an earlier section on MRI. Though Gado-
linium (Gd) is widely used as a contrast agent in MRI due to its brighter images,
however, it is potentially nephrotoxic by binding with ligands in vivo. Hence,
because of the better biocompatibility, Iron Oxide-based Contrast agents have also
been widely used in recent years. These iron oxide nanoparticles have iron oxide at
the core, which is considered to be superparamagnetically coated with various
macromolecular materials when the magnetic ions are aligned mutually and are
known as Superparamagnetic Iron Oxide nanoparticles (SPIONs) [71]. The mag-
netic properties of these nanoparticles have also been used for targeted delivery of
drugs using magnetic fields. Due to their low cost and versatile synthetic techniques,
biocompatibility, less toxicity, magnetic properties, size, and surface versatility,
these have been the most widely explored among all theranostic carriers.

The SPIONs can be prepared by several physical and chemical methods such as
Coprecipitation, Thermal decomposition, Hydrothermal method, Thermal Parsing,
Mild Reduction, Reduction precipitation, Micro/nanoemulsion, Polyol method,
Sonochemical /thermal/microwave-assisted synthesis, etc. [71]

These SPIONs have been efficiently used for targeted drug delivery with the use
of suitable ligands and diagnostics as MRI contrast agents because of their potential
to be used for chemotherapy, Photodynamic therapy, Photothermal therapy, etc. [81]
Multifunctional Surface-modified or conjugated SPIONs have been developed com-
bining with pH-sensitive [81], PEGylated [82], active targeting ligands, and other
imaging modalities like Optical imaging [83], PET [84] for chemotherapy [83],
Photodynamic effect [85], or Photothermal Therapy [45], etc.

The SPIONs are the most versatile among the theranostic carriers and have been
used for various health ailments besides cancer such as arthritis, AIDS, Tuberculosis,
Atherosclerosis, brain disorders, etc. as can be observed in Table 14.3. In recent
times, there have also been works on development of more advanced SPION-loaded
multifunctional nanocarrier systems like liposomes [41], Polymeric micelles [96],
nanomicelles [97], Microparticles [98], etc. for better efficacy in various critical
conditions.

In such a recent study, SPIONs containing anticancer drug Paclitaxel have been
loaded in a pH-responsive liposome [81]. The system contained pH-responsive
peptide H7K (R2)2 as targeting ligand, which acted as cell-penetrating peptide
(CPP) at lower pH of the tumor region. The SPIONs acted as MRI contrast agent
and assisted in image guided transport of the liposomes. The conjugate system was
prepared by thin film hydration method. The in vitro and in vivo experiments in
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MDA-MB-231-induced tumor-bearing mice showed better targeting effects,
showing increased accumulation and cytotoxicity, MRI imaging, and antitumor
effects with greater tumor inhibition and apoptosis. In another similar study, such
a theranostic system was developed by Shen C et al 2019 to get access to BBB in
glioma. The study involved the development of a hydrophobic SPION produced by
thermal decomposition method, which is then coated with DSPE-PEG and antican-
cer drug Doxorubicin by thin layer hydration method. For fluorescence imaging,

Table 14.3 Recent advancements in theranostic SPIONs

Surface
modification/
coating Drug/therapy

Purpose of coating/
modification Disease References

Polyethyleneimine
(PEI)

siRNA
(Macrophage)

Increased RNA
Delivery

Arthritis [86]

Gold MUC-1
Aptamers and
Photothermal
therapy

Photothermal effect Colon Cancer [87]

PEG Relaxin Increased
circulation time

Hepatic
Cirrhosis

[88]

Folic acid
PEG
PEI

PD LI-siRNA Active targeting,
Increased
Circulation time,
and Increased
Transfection

Gastric cancer [89]

Carboxymethyl
Assam Bora rice
starch

Doxorubicin Stabilization Breast Cancer [90]

Carboxymethyl
dextran-trimethyl
chitosan

HIV-1 Nef
siRNA

Stabilization and
increased solubility

HIV Infection [91]

Mesoporous silica Doxorubicin
Mucin -1
Aptamer

Modify
biocompatibility
and reduced
toxicity

Breast Cancer [92]

Lauric acid-HSA Dexamethasone Magnetic targeting
to deceased
vascular region

Atherosclerotic
Plaque

[93]

Alpha-methyl-L-
Tryptophan

1L-1β
Monoclonal
antibody

Increased uptake in
epileptic focus

Epilepsy [94]

NA Curcumin/
Magnetic
therapy

Increased
neuroprotection

Schizophrenia [95]

PEGylated
Phospholipid
IDG

Doxorubicin Increased
circulation

andfluorescence
Imaging

Glioma [83]

Note: All references of the sources of information in the compiled table have been cited accordingly
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further, a NIR contrast agent Indocyanine green (ICG) was coated on the lipid layers
of the surface. This theranostic system achieved a synergistic effect of MR Imaging,
Fluorescence imaging, EPR-based passive targeting, and chemotherapy of doxoru-
bicin in glioblastoma cells. The MRI and Fluorescence imaging confirmed the
successful crossing of BBB and sufficient accumulation of the nanocarrier at the
tumor site. These resulted in higher efficacy, showing a high tumor inhibition rate in
the C6 glioma bearing rats [83].

14.2.5 Quantum Dots

Quantum dots are fluorescent nanocarriers composed of semiconductors widely used
in LEDs and Lasers and for biomedical application of size 2–10 nm. These
semiconductor-based systems have been used in biomedical use for bioimaging
and drug delivery and as multifunctional theranostics [99]. These are based on the
Quantum Theory according to which the quantum effects resulting due to reduction
in the size of the semiconductors contribute to unique electronic and optical
properties of the resulting nanoscale particles. The reduction in size results in wide
energy gaps, which generally results in emission and absorptions during transition
from excited to ground state. By selecting specific composition and size, this
emission of light can be controlled into the UV, visible, NIR, or Mid IR range
[100]. The Quantum dots used in theranostics and drug delivery mostly involve
emission in the visible (400–650 nm) or Near IR range (650–950 nm) and can be
achieved by suitable adjustment of the size. The various types of quantum dots,
which are mostly used, are based on binary alloys of II-VI and III-V semiconductor
materials such as CuS (Copper sulphide) [101], CdSe (Cadmium Selenide), CdTe
(Cadmium Telluride), Cd ZnS capped [102], etc. The Quantum Dots are prepared by
both top-down and bottom-up methods; however, in recent years, green synthesis
has been the most preferred method [101].

The major advantages of these Quantum Dots as nanocarriers in theranostics use
are their tunable size, photostability, photophysical property, and biocompatibility
[103]. Moreover, the surface to volume ratio and the ease of surface modification are
advantageous in designing advanced multifunctional theranostic systems. The fluo-
rescence obtained is used as a suitable contrast agent for imaging, and the surface
modification with suitable conjugates and ligands can be sued for controlled and
targeted drug delivery. Moreover, these QDs can also be used as a scaffold to shield
both hydrophilic and hydrophobic therapeutic moieties. Lipophilic drugs can be
embedded between the inorganic core and amphiphilic polymer coating layer,
whereas lyophilic drugs can be immobilized onto the hydrophilic side of the
amphiphilic polymer, through covalent or noncovalent bonds [102, 104]. These
Quantum Dots have been used in conjugation with suitable ligands for targeted
delivery such as folic acid [101, 105], hyaluronic acid [106], transferrin [107],
peptides [108], etc. The Drug-loaded QDs are further loaded in magnetic
nanoparticles [109], pH-sensitive NP [110], hydrogels [111], liposomes [112],
implants [113], nanocomposite film [114], micelles [99], etc.
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In recent years, the theranostic QDs have been mostly used for combined
chemotherapy along with photothermal therapy [101] or photodynamic therapy
[115] besides using as contrast agents for better imaging.

In such a recent work by Yu W et al 2019, a chitosan and folic acid-conjugated
CuS QD was prepared for photoacoustic imaging-guided photothermal therapy. The
CuS QDs were prepared by a suitable green synthesis method of co-precipitation
using a chitosan surface conjugated with folic acid for increasing the biocompatibil-
ity and targeting efficiency. The QDs exhibited strong NIR photoabsorption and
high photothermal efficiency of 47%. The inherent property of polymer-coated CuS
QD was used for photothermal therapy, which resulted in efficient inhibition of
tumor in 4T1 cell-induced mice [101]. A similar work has also been reported
recently by Jin R et al 2019 where they have prepared a multifunctional polypeptide
PC10A-modified Ag2S QD-based hydrogel loaded with paclitaxel for photoacoustic
imaging-guided chemo and photothermal therapy. The combined approach system
showed excellent biocompatibility, imaging, and drug delivery and achieved effi-
cient sustained therapy against SKOV3 ovarian cancer in mice [111].

14.2.6 Carbon Dots (Graphene Quantum Dots)

Carbon dots are nanomaterials having quantum properties with size 2–8 nm and are
also known as graphene quantum dots, carbon dots, or carbon quantum dots. These
carbon dots are similar to graphene oxide in terms of their physical and chemical
properties; however, they are different in terms of their size. These were accidenatly
discovered by Xu B S et al 2004 during the arc discharge synthesis of carbon
nanotubes [116]. These are actually clusters of carbon atoms along with considerable
amount of oxygen and hydrogen and a trace amount of nitrogen [117].

Similar to quantum dots, these carbon dots also have similar properties of
biocompatibility, less toxicity, and photostability. They are soluble in water, and
their surface can be conveniently modified for multifunctional theranostic use [118].

Carbon dots are prepared by both top-down and bottom-up approach from a
suitable carbon precursor (Organic or Bioorganic). Some of these simple synthetic
processes are top-down methods such as laser ablation, chemical oxidation, electro-
chemical oxidation, ultrasonic synthesis, and bottom-up methods like hydrothermal
synthesis, thermal decomposition microwave synthesis, etc. [119]. In recent years,
there has been more work on the development of Carbon dots from organic sources
without chemical exposure by green synthesis because of the availability of precur-
sor, higher quantum yield, and self-passivation [120].

Some of the widely used organic sources are graphene, graphite, carbon
nanotubes, glucose, glycerol, etc., whereas silk, lychee [121], curcumin [122],
alginates [123], and honey are important bioorganic sources [118].

Due to their various advantages, these carbon dots are used widely for various
theranostic designs like other quantum dots [119]. They are more comparatively
preferred than the semiconductor quantum dots due to their excellent fluorescence,
higher photostability, and more tunable emission spectra [120].
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These have been designed for multifunctional nanocarriers for imaging-guided
targeted delivery of various genes [123] and drugs [124, 125] and as antibacterial
agents [126, 127]. They have also been designed for combined bioimaging and
imaging-guided photothermal therapy [128], photodynamic therapy [129] or both
for synergistic effect along with chemotherapeutic drugs. Some of these theranostic
designs are added with controlled stimuli-responsive targeted delivery for better
efficacy [130].

14.2.7 Gold Nanostructures

Gold Nanoparticles are most widely used theranostic nanocarriers next to SPIONs
because of their high surface to volume ratio, good solubility, and, most importantly,
readily tunable surface as most of the ligands have a high affinity for them
[131]. Moreover, the inert and nontoxic gold core and ease of synthesis further
add to their advantage [132]. Hence, these gold nanoparticles have been widely used
for targeted delivery of anticancer drugs [133, 134], antibacterial [135], gene
delivery [136], Cardiovascular drugs [137], etc. Another important application of
these nanoparticles is their inherent efficacy in bone [131] and dental
disorders [138].

These gold NPs have been designed into different shapes and structures as
spheres, cubes, rods, stars, etc. Because of their sharp and spike edges in nanorods
and stars, they have a tendency to enhance the electromagnetic radiation. This
property has been efficiently used in SERS imaging-based theranostic design.
Moreover, these NPs also have the property of absorbing X-rays strongly and
hence are used as contrast agents for X-Ray-based imaging and
radiotherapeutics [138].

These nanoparticles are synthesized by various simple top-down and bottom-up
approaches like chemical, electrochemical, and thermal reduction. Turkevich and
Brust methods are the most widely sued techniques. Turkevich method involves
reducing the metal salt using sodium citrate as a reducing agent, although ascorbic
acid, amino acids, and UV light have also been used [139]. Brust method is a
two-step process involving transfer from organic to inorganic solution with the
help of Tetrabutylammonium bromide (TOAB) as the transfer agent. Besides these
two methods, the Method of Seeding is another technique for growing different
structures like nanorods, nanocubes, etc., which have been used widely in recent
years. These methods employ development of nucleation and then build the desired
structure on it using ascorbic acid and hydroxylamine as the reducing agents [140].

Besides modification of their surface properties, the physical property of gold
nanoparticles can also be exploited particularly in local hyperthermia on irradiation
in NIR region of 800–1200 nm [132]. These designed gold nanostructures are
especially preferred for photothermal therapy because of their high photothermal
conversion and due to their surface plasmon response (SPR) effect, which can be
easily tuned as required [134] with change in size and shape. Hence, there are a lot of
efforts in designing gold nanostructures involving photothermal therapy. In most
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cases, they are combined with a suitable contrast agent for additional photoacoustic
effect and photodynamic therapy besides the chemotherapy [134] Moreover, there
have been lots of work on theranostic designs using a combination of gold
nanoparticles with SPIONs or MR-assisted [141] or FUS (Focused Ultrasound)
agents [142] or loading into carbon dots [143] and pH-sensitive structures
[133]. These combinations have resulted in much better therapeutic and diagnostic
results.

Gold Nanorods have been found as the most preferred nanostructure for
photothermal therapy due to their efficient thermal conversion, prolonged circula-
tion, and accumulation. However, the major limitations of gold nanorods are their
toxicity due to the use of CTAB (Cetyltrimethylammonium bromide) during synthe-
sis, instability in physiological medium, and poor drug loading [144]. There have
been efforts to address these by surface modification with various agents such as
hyaluronic acid, peptides [145], PEG [146], chitosan, [147] etc.

In such a recent work on such multifunctional design, a PEGylated Gold Nanorod
was developed having hydrazide linkage for pH-responsive combined triple therapy
approach of chemotherapy, Photodynamic therapy, and Photothermal therapy [146].
The nanoplatform was designed by adding a hydrazide linkage and PEG coating.
To this, the drug doxorubicin was added along with prophotosensitizer
(6-Aminolevulinic acid) which on NIR irradiation produced the photodynamic
effect and produced hyperthermia as the inherent property of gold nanorods. The
nanoplatform showed efficient uptake by the MCF-7 cells, showed pH-responsive
chemotherapeutic drug release, induced hyperthermia for the photothermal effect,
and succeeded in generating large amounts of Reactive Oxygen species for achiev-
ing better Photodynamic therapy. This triple therapy approach was successful in
completely site-specific suppressing of the tumor growth.

14.2.8 Stimuli Responsive

In recent years, there has been development of various multifunctional nanosystems
employing some sort of stimuli-responsive behavior. These structures undergo a
reversible or an irreversible physical or chemical transformation in response to
change in pH, temperature, light irradiation, or use of ultrasound, etc. [148]. Most
of these systems involve polymeric nanocarriers, hydrogels, Quantum dots, gold
nanostructures, mesoporous silica nanoparticle, [149, 150] etc.

14.2.8.1 Temperature Sensitive
Thermoresponsive nanocarrier systems have been developed using materials that are
safe and sensitive to temperature changes between 39 and 42

�
C, which can sequester

a drug until it reaches the target site, where temperature change can promote carrier
extravasation and a localized triggered release.

Among the various temperature-responsive nanocarriers used for theranostic
purpose are the fluorescence/temperature-sensitive hydrogels. These systems have
a suitable fluorescence contrast agent for imaging in the form of fluorescent dye,
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nanoclusters, or carbon dots. These are transformed to a thermosensitive hydrogel by
using monomers like NIPAM (N-isopropyl acrylamide) [78], N-vinylcaprolactam
[151], acrylamide [152], etc.

Similar thermoresponsive multifunctional nanogels have also been prepared
using magnetic nanoparticles, mostly iron oxide nanoparticles [148, 152].

In such a study by Shakoori Z et al 2017, a magnetic, temperature, and
pH-sensitive nanogel was developed for anticancer drug Cisplatin. The nanogels
were loaded with the drug and iron oxide nanoparticles. A combined system was
prepared by free radical copolymerization crosslinking technique using NIPAM as
temperature-sensitive polymer, DMAEMA(N,N Dimethyl amino ethyl methacry-
late) and 4-acrylamidofluorescein as the fluorescent agent. These nanogels showed a
sustained and pH- and temperature-sensitive drug release at the specific site [153].

Besides these hydrogels, the other forms of thermoresponsive nanocarrier
systems are liposomes [154], magnetoliposomes [155], mesoporous silica
nanoparticles [150], gold nanostars [156], Polymeric matrix, etc. Most of these
systems involve dual-responsive mechanism such as magnetic thermoresponsive
or pH thermoresponsive, etc. for better efficacy [157].

These nanosystems have been used for various disease conditions mostly micro-
bial conditions such as skin healing [156], AIDS [158], other microbial infections
[159], and cancer.

Mild hyperthermia has been recently used as an effective strategy for anticancer
drug delivery due to its cytotoxicity at temperatures of 40–42 �C and sensitizing of
tumor cells to chemotherapy. Hence, in recent years, a lot of thermoresponsive
theranostic systems have been designed for combined chemotherapy with
photothermal therapy of various tumors [160] or radiotherapy [161].

In such a recent study by Zhao T et al 2019, they have prepared a multifunctional
nanosystem for combined chemotherapy, photoacoustic imaging, ligand-mediated
targeting, and photothermal effect. The basic nanostructure consists of a suitable
temperature-sensitive fatty acid (Lauric acid, stearic acid) as phase change materials
are core loaded with docetaxel. It constituted of a Polypyrrole shell, which is an
organic conjugate polymer having both photothermal effect and photoacoustic
imaging property. This was further surface modified with the conjugation of
Hyaluronic acid for CD44 overexpressed receptor targeting. The designed
nanosystem showed good cellular uptake, site-specific photothermal effect, and
drug release in 4T1cell-induced tumor cells in mice. These synergistic effects
resulted in significant cytotoxicity and tumor inhibition in the mice [162].

14.2.8.2 pH Sensitive
pH-responsive delivery systems are considered the most effective stimuli-responsive
systems and hence are most widely used particularly in targeting the acidic environ-
ment of tumors and the microbes. There are numerous studies involving the devel-
opment of multifunctional theranostic designs with a pH responsive drug delivery.
Only the most recent ones have been outlined in this chapter.
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Such a nanocarrier system has been designed for anticancer drugs like doxorubi-
cin [128], methotrexate [163], bleomycin [164], 5-Fluorouracil [165], epirubicin
[166], monoclonal antibodies [167], cinnamaldehyde, [168] etc. Besides anticancer
drugs, these have also been used in recent times for Antimicrobial agents such as
antimicrobial nanofiber films [169], AntiAlzheimer drugs Huperzine A [170], gene
delivery [171], and other health care problems.

Different nanocarriers have been designed based on this approach such as
graphene oxide nanostructures [172], β-Cyclodextrin-based supramolecular self-
assembly or nanocomplex [173], Polymeric micelles [174], mesoporous silica
nanoparticles [175], Carbon Nanotubes [163], hydrogels [164, 165], Quantum dots
[176], Silver Nanoclusters [169], Polymeric nanoparticles [177], liposomes
[178], etc.

Most of these nanocarrier systems are based on the combination of a suitable
imaging contrast agent such as fluorescent agent [166, 176], MRI agent [179],
Ultrasound [174], etc. These theranostic systems are mostly intended for synergistic
effect due to combination of chemotherapy with Photothermal therapy [69, 176,
180], Photoacoustic effect [166], or Photodynamic therapy [174] and ligand-
mediated targeting [181] along with pH-responsive drug release or uptake. Such
synergistic multifunctional systems have shown successful drug delivery with better
efficacy and reduced toxicity.

14.2.8.3 Ultrasound Responsive
Ultrasound has been one of the effective agents in imaging, selective site-specific
delivery of drug, or therapy. The use of ultrasound results in cavitation, local
hyperthermia, enhanced poration or permeability of membranes, and coagulative
necrosis. These help in imaging and assist in site-specific drug delivery or tissue
ablation used in treating various health disorders [182]. The most widely used form
is the focused Ultrasound (FUS) or the high intensity focused ultrasound (HIFU)
technique [183] in combination with other functions in the newer theranostic
designs.

Similar to the other stimuli-sensitive multifunctional systems, several theranostic
designs have been developed responsive to ultrasound such as Microbubbles [184],
nanodroplets [184, 185], hydrogels [186], Gold nanostructures [184, 187], Poly-
meric micelles [188], polymeric nanoparticles [189], Gas-generating NP [190],
SPIONs [191], ligand-conjugated NP [176], etc.

Effecting imaging has been the major purpose of ultrasound in this multifunc-
tional system-assisted drug delivery [192]. It is also used for controlling the site-
specific drug release [185, 188], thermal ablation of the tissue [191, 193], and
enhanced permeation [184, 193].

These ultrasound-assisted theranostic designs have been used for various diseases
particularly in cancer [185, 192] and other diseases such as Alzheimer [193],
Parkinson’s disease [194], Ischemia [189], etc.

In such a recent study by Zhang T et al 2019, an ultrasound imaging-assisted
theranostic hollow nanocarrier was developed for combined chemotherapy and

362 B. P. Sahu et al.



photothermal therapy. The mesoporous hollow nanoparticles were loaded with
chemotherapeutic drug doxorubicin and contained Polydopamine (PDA). On NIR
irradiation, these polydopamine layers convert them into thermal energy for
photothermal effect on the tumors and pH-selective drug release. These ultrasound
imaging-assisted hollow nanocarriers achieved high tumor accumulation at the target
site and a pH-responsive drug release. This in combination with the photothermal
effect resulted in complete tumor suppression in 4T1 cell-induced breast cancer in
mice [192].

One of the major uses of ultrasound particularly Focused Ultrasound (FUS) has
been enhanced delivery through BBB. FUS has been approved by FDA safe for
noninvasive and reversible disruption of BBB. Several theranostic designs have
been developed using this approach. In such a recent study by Bai L et al 2019,
exosomes have been derived from macrophages and used as a natural nanocarrier for
brain cancer. These exosomes were then loaded with doxorubicin, and their transport
to the brain has been enhanced by FUS. This delivery system was assisted by NIR
fluorescence and ultrasound imaging. They achieved 4.45fold higher uptake in brain
due to use of exosomes and FUS and efficient glioma suppression in GL261 cell-
induced mice [195].

14.3 Conclusions

The development of multifunctional nanoparticles has greatly expanded the applica-
tion of nanomedicines for various health care ailments with better diagnosis and
therapy. The combination of suitable imaging modalities with chemotherapy and
ligand-guided or external stimuli-guided site-specific delivery holds great potential
for safer and efficient therapy. Most of these theranostic designs are based on NIR
and MRI imaging or a combination of both. However, other imaging modalities like
SPECT and PET have also been used. Among the stimuli-responsive designs, pH-
and temperature-responsive designs have been most widely explored successfully
and mostly in combination. Various such nanocarrier systems have been designed
such as the polymeric conjugates, dendrimers, micelles, gold nanostructures, Iron
oxide nanoparticles, Quantum dots, carbon dots, and stimuli-responsive systems.
Some of these systems are shown in Table 14.4. In recent years, these multifunc-
tional theranostic nanocarriers have been further modified for combined
photothermal, photoacoustic, and photodynamic effects along with the chemothera-
peutic and other drugs. These systems, therefore, hold great promise for better
therapy for cardiovascular problem, atherosclerosis, rheumatoid arthritis, Alzheimer,
psychotic diseases, and inflammation and, most importantly, for the cure of various
types of cancer. Several of these systems are currently under clinical trials. However,
the successful translation of these nanoplatforms from bench to bed shall depend on
the in vivo toxicity, metabolism of the nanocarriers, biocompatibility, and cost-
effective scale-up techniques.
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Abstract

Cancer is the most devastating disease currently prevailing worldwide. For the
treatment of cancer, various approaches like surgery, chemotherapy, radiother-
apy, and hormonal therapy are utilized have been utilized. However, the nonspe-
cific targeting approach has made the treatment ineffective in the majority of
cases. The nonspecific targeting also leads to an inadequate supply of drugs to the
desired tumor site, while cancer treatment requires a high dose of drugs with a
high frequency of drug dosing. Despite the advancement in cancer research,
treatment strategies, and available numbers of potent anticancer drugs, the effi-
cacy of treatment still is a matter of concern due to the lack of drug selectivity to
the target cells, pharmacotoxicities, and very poor patient compliance. Therefore,
novel strategies are utmost important for the effective delivery of the anticancer
drugs strictly to the specific tumor site, which can minimize the systemic
toxicities related to frequent and high drug doses. The active targeting approach
provides selective and site-specific treatment rather than passive targeting. The
active targeting technique works based on the molecular identification of
biomarkers that are generally overexpressed on tumor cells, through conjugated
targeting moieties over the nanodrug carrier. These targeting moieties signify the
biodistribution and affinity toward the target site of the drug carrier.
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15.1 Introduction

Cancer is considered to be a bunch of diseases with abnormal and unconstrained
growth and development of cells having a possibility of spread throughout the body.
There are above ten million patients diagnosed with cancer, and it is expected to be
increased to 27 million by 2030 [1]. The common three strategies of cancer treatment
prevailing are chemotherapy, radiotherapy, and surgery. These treatment strategies
show a nonselectivity, which affects the surrounding healthy tissues. The cytotoxic
drugs, which are available today, are very potent and efficient in killing cells, but
unable to differentiate between cancer cells and healthy cells. Due to this deficiency
in selectivity, patients suffer from some undesirable toxic effects. Despite the
challenge, it is the call of the time to improve the selectivity and specificity of
anticancer drug delivery system toward tumor cells only, for the effective treatment
of cancer. Many distinguishing features are found in tumor cells and tissues through
molecular, biochemical, and physiological from the healthy cells and tissues like
alteration in redox status, pH, receptor expressions, and increased permeability of
tumor tissues and vasculature. Thus, exploiting these differences, cancer possibly
benefits from drug targeting strategies [2]. Various molecular biomarkers of cancer
comprise the varying protein expressions in the cytoplasm, cell organelles, and
membrane surface. The differential proteins or receptors are precisely expressed or
overexpressed in tumor cells from the healthy normal cells. This overexpression of
receptors paved the way for exploitation by the active targeting of cytotoxic drugs to
tumor cells. Targeting of nanocomposites to a specific tissue or organ via the blood
or lymphatic circulation is termed as primary or first-order targeting, while the
accumulation all-around a tumor cell is termed as secondary or second-order
targeting and engineered the nanocomposites to uptake by cells and cell organelles,
which is known as tertiary or third order targeting [3]. Nanotechnology has emerged
as a powerful tool for the development of novel strategies to address unfulfilled
clinical challenges, right from the treatment of deadly diseases like cancer or
neuronal disorders to the prompt detection of diseases, which might eliminate the
disease as early as the symptom appears. Nanoparticles interact very efficiently with
cells, bacteria, and viruses as they are smaller in size than these biological agents
[4]. This intimate interaction has been utilized to achieve the desired effect such as
selective transport directly to the specific cells or tissues [5]. The precise detection of
distinctive biomarkers specific for particular pathology appears in complex
environments (e.g., urine, blood, and saliva) [6] or the development of clever
nanorobots capable of performing surgery precisely inside the body
[7]. Nanotherapeutics has shown great potential to act with these strategies through
the engineered nanoparticles capable of delivering therapeutic agents directly to
cancer cells bypassing the normal cells. Furthermore, the surface of nanocarriers can
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be architected with versatile targeting moieties or ligands, which coupled specifically
to the target proteins (receptors) expressed over the tumoral cells to facilitate the
uptake of particles. This may improve the cancer treatment with reduced side effects
created by the cytotoxic drugs and also lowers the resistance developed due to the
high doses of drugs in conventional treatments [8]. Moreover, additional targeting
ligands can be loaded on the surface of the particle that does not interact with the
surface receptors but recognizes the specific internal cellular organelles. It has been
widely explored for the delivery of cytotoxic drugs and genetic materials (i.e.,
silencing RNA).

15.2 Characteristics of Cancer Cells

The tumor tissues are poorly distensible having a haphazard array of blood vessels,
endothelial cell-cell synapse, and larger basement membrane fenestration. Angio-
genesis is not only the primary requirement for the growth of cancer cell from a
smaller to a dormant bunch of cancer cells resulting in a solid tumor but also equally
necessary for the metastasis [9]. The growth, development, multiplication, migra-
tion, and invasion of endothelial cells take place with the help of vascular endothelial
grown factor (VEGF), which interacts with tyrosine kinase receptor present over the
vascular endothelium. VEGF also increases the permeability of blood vessels and
favors the rapid extravasation of plasma protein in tissue [10]. The tumor angiogen-
esis is characterized by its variability in shape, high density, and heterogeneity, with
altered oxygenation, perfusion, pH, and metabolic conditions. The leaky vasculature
exerts a major impact on the EPR (Enhanced Permeability and Retention) effect
[11]. The normal physiology of blood flow in the tumors along with the transporta-
tion in tumor vessels is due to the abnormalities in tumor blood vessels. The tumor
microenvironment experienced high osmotic pressure [12]. The leaky tumor blood
vessels and altered lymphatics consequences in unnecessary accumulation of vascu-
lar contents in the tumor result in interstitial hypertension [12]. However, the pH of
the intracellular region is similar in both healthy and cancer cells, while the pH of the
extracellular region of the tumor is lower (pH 6.0–7.0) than that of the normal
healthy tissues (pH 7.4). The tumor pH varies as per the tumor area [13]. Thus, the
cancer cell possesses some variation in physiology from healthy cells such as altered
vasculature, interstitial pressure, oxygenation, pH, metabolic conditions, and abnor-
mal lymphatics. Utilizing these properties, encapsulated drugs can be delivered to
the tumor site either by passive or active targeting approaches.

15.3 Physiological Hindrance of Cancer Cell Targeting

As drug and drug carriers are eternal agents for the human body, the body tries to
prevent their entry inside the cells in a variety of ways. The obstacles faced by the
targeted DDS are nothing but the anatomy and physiology of the human body. One
such physiological barrier is the mucus layer present in a different region of the
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body. Other hurdles are the biochemical barrier to recognition of targets and
pharmaceutical hurdles to designing suitable techniques for ligand nanoparticle
conjugation. The mucus layers, which protect the delicate tissues from the detrimen-
tal environment throughout the body, also restrict the entry to therapeutic agents.
These mucosal layers trap and remove pathogenic agents, xenobiotics, and drugs to
various body parts, for example, lungs, eyes, GIT, and the female reproductive
system. Some viruses are hydrophilic and possess a net neutral electric charge,
which makes it possible to invade the human mucosal barrier. The RES and MPS
of blood are also a major hurdle for the distribution of nanocarriers to the desired site.
The larger size and hydrophobic particles are easily detected by this defense system
and eliminated out from the body. So, by making nanoparticle water-soluble, these
systems can be bypassed. Polyethylene glycol (PEG), a nontoxic hydrophilic mate-
rial, is extensively used for this purpose. PEG-coated nanocarriers show long
circulatory time and better targeting capabilities. Blood-Brain Barrier (BBB) is
another obstacle for brain tumor-targeted DDS. BBB is a semipermeable blood
capillary membrane made up of single-layered endothelial cells present in the
brain, which allows some specific materials to pass. Larger and low lipid-soluble
agents cannot penetrate inside the brain through this BBB. Oxygen, CO2, and
glucose can pass through BBB, but hydrogen ions cannot. High electrically charged
molecules are retarded its entry through BBB.

15.4 Strategies of Cancer Cell Targeting

Therapeutic agents can be transported either on their own or through a drug delivery
vehicle to a particular organ or specifically to the tumor cell surface. The necessary
items required for the targeted drug delivery system include the existence of specific
targets/receptors on the cell surface and targeting moieties/ligands for the cell targets
[14]. Targeted drug delivery approach utilizes the advantages of the pathophysio-
logical condition of tumor tissue, or it can actively target the cancer cells using some
cell-specific ligands.

Passive Targeting Passive drug targeting strategy utilizes the microenvironment,
pH, and EPR effect of tumor cells. The cancer cells grow and proliferate more
rapidly in comparison to healthy cells due to increased metabolism, which results in
more requirement of nutrients and oxygen as well. In the competition for nutrients,
the healthy cells become degraded and displaced by cancer cells [15]. The
nanocarriers are accumulated in the cancerous tissue through the EPR effect
[16]. As the vasculature are leaky in cancer cells, the passive targeting technique
takes the benefit of it, assists drugs to bypass the systemic metabolism, and helps to
enter directly into the tumor microenvironment [17]. So, the EPR effect has set the
basis of targeted drug delivery approach, although the EPR effect comes across some
difficulties. NPs and macromolecules can penetrate the cancer cells if RES and renal
clearance are bypassed. A drug can get inside the neoplastic tissue through the EPR
effect if it can persist for a minimum 6 hours duration in systemic circulation
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[18]. Because of the size restrictions of the tumor cells, it was reported that the EPR
effect is unable to sustain even the circulation of nanocarriers in the blood. It is a
challenging task to develop nanocarriers for therapeutic use with enhanced retention
time because the morphology of blood vasculature of the clinical tumor is signifi-
cantly different from the mice tumor model used for preclinical trials. This could
limit the intratumoral distribution of NPs [19]. Even though a practical clinical setup
is required to take the advantages of the nanotherapeutic treatment, till now, FDA
has approved several nanotherapeutics that work via the EPR effect, for example,
Doxil (1995), Feridex (1996), Mylotarg (2000), Zevalin (2002), Abraxane (2005,
2013), Oncospar (2006), and Ontac (2008) [20].

Surface Engineering of Nanocarriers with PEG The hydrophobic nature of
nanocarriers is responsible for the increased aggregation of NPs and opsonization
by blood components [21]. Hydrophilic polymers like PEG, poloxamers, and
poloxamines are mostly used to provide stealth property to the NPs by increasing
the hydrophilicity of NPs [22]. PEG is mostly used polymer to protect NPs by
protecting them from opsonization and phagocytosis [23]. PEG is unique due to its
solubility in organic as well as aqueous solvents. Hence, it can provide active
functional groups at both the terminal ends for various functionalities. The functional
group selection of molecules solely depends on the affinity toward the hydroxyl
groups of PEG. With the modification of the hydroxyl group of one end, different
molecules, protein, peptides, drugs, liposomes, etc. can be linked with the
heterobifunctional PEG. However, due to the formation of diol in high molecular
weight PEGs, these heterobifunctional PEGs are limited [24]. The increased reten-
tion time of therapeutic nanocarriers in the lymph is a major factor to calculate their
accumulation amplitude in the tumor microenvironment. The retention time of
PLGA nanocarriers can be improved by PEGylation, which is achieved due to the
stabilization of NPs by preventing their recognition by MPS, which results in
increased tumor accumulation and lower accumulation in other healthy cells
[25]. PEG is approved by FDA for clinical use. The surface hydrophilicity of NPs
is given by the chain length, shape, and density of PEG, and it is also a determinant
factor for their cell uptake [26]. It is well established that the NP size increases with
the increase in the length of the PEG chain, but the copolymer of PEG and their
blend give reverse effect due to its amphiphilic nature [25]. Although PEGylation
increases the NP retention in blood, it alters the release behavior of drug or covers the
functional groups of NPs at the tumor site.

Active Targeting The main objective of active targeting is to deliver the cargo
directly into the infected cells, which can be achieved by conjugating the targeting
ligand with the drug-loaded NPs. The envelope of NPs is designed to have the
functional groups, which are necessary to interact with the surface receptor of cancer
cells. The main mechanism of action in active targeting is ligand-receptor binding or
antibody-antigen interaction [27]. Various materials like metals, polymers, lipids,
and ceramics have been utilized to prepare nanocarriers for drug targeting
applications. Currently, biodegradable polymers and lipids of natural and synthetic
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origins are highly used in drug delivery [28]. At the molecular level, the tumor cells
could be actively targeted by cellular recognition through aptamers, ligand-receptor
interaction, and antibody-antigen recognition. Active targeting of the drug can be
achieved by linking drugs or NPs with the chemical moiety called ligands, which is
specific to the targeted cell. These ligands have a specific affinity toward the
antigens/receptors expressed over the targeted cell surface, and they can distinguish
between the normal and tumor cells based on types and expression levels of receptor/
antigen [29]. In the active targeting approach, it facilitates cellular internalization of
nanocarriers, whereas in a passive targeting approach, it enhances accumulation
around the tumor cells. On this basis, the delivery systems are designed to target
nanocomposites to endocytosis-prone surface receptors [30].

15.4.1 Cancer Cell Targets and Targeting Ligands

In cancer, some receptors are specifically expressed or overexpressed on cancer cells
of various tissues, which set the basis of study physiology of cancer and its
treatment. In a strategy of cancer treatment, overexpressed receptors are targeted
by targeting ligands such as antibodies or other small molecules that specifically
bind to these receptors and inhibit their functions. Thus, blocking the undesired
stimulus for uncontrolled cell division leads to the destruction of the cancer cells and
their propagation. Targeted cancer therapy intentionally does not interfere normal
function of the receptor, but utilizes the overexpression of receptor for the effective
delivery of cytotoxic drugs that are usually nonselective toward cancer and healthy
cells. These drugs can be transported in a carrier coupling with targeting ligands
against such overexpressed receptors. The advancement of nanotechnology offers a
platform to escort and deliver cytotoxic drugs into tumor cells (Table 15.1).

15.4.2 G protein-Coupled Receptors

Most of the cancer cells overexpress G protein-coupled receptors (GPCRs) on the
surface in comparison with their native form. The scientist has started to utilize this
differentiation for the development of targeted chemotherapeutics, radiodiagnostics,
and radiotherapeutics [31].

15.4.2.1 Bombesin (Bn) Receptors
Bombesin receptors (BnRs) belong to the GPCR superfamily. They are also termed
as gastrin-releasing peptide (GRP) receptors, which are overexpressed in cancer cell
lines of lungs, prostate, breast, pancreas, head/neck, colon, uterus, ovary, renal,
glioblastomas, neuroblastomas, gastrointestinal carcinoids, intestinal carcinoids,
and bronchial carcinoids. Several numbers of Bn-conjugated NPs were constructed
incorporating cytotoxic drugs such as Doxorubicin, camptothecin, and Paclitexol,
which have shown the promising result of better selectivity and specificity in
preclinical trials [32]. Recently, some experiments employed nanotechnology to
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Table 15.1 Studies on antitumor activity of ligand-nanoparticle conjugates

NPs Outcome Cell lines Ref

Tf-coupled NPs

Tf -DOX-liposome The Tf-conjugated NPs
showed greater efficacy
than free doxorubicin in
tumor cell lines, in vitro

HL60, Hep2, and L292 [97]

Tf–PEG-PLA micelles Tf-PEG-PLA micelles
showed significantly more
uptake than nontargeted
micelles, in vitro and in vivo

Intra-cranial rat tumor
model of C6 glioma

[98]

Tf -Core-shell NPs
(containing sorafenib in
albumin shell and DOX in
PVA core)

NP uptake and cytotoxic
effect increase with Tf
conjugation in tumor cells
in both 2D and 3D cultures,
in vitro

Hepatocellular carcinoma
(HCC)

[99]

Tf-DOX-lipid-coated
PLGA

Tf-functionalized NPs
prevent tumor growth in the
lung cancer-bearing nude
mice, in vivo

A549 tumor-bearing mice [100]

Tf-plasmid DNA-DAB
G3 dendrimer

Increased DNA transfection
by Tf-tagged NPs, in vivo

A431 tumor-bearing
immunodeficient BALB/c
mice

[101]

CPP-conjugated NPs

TAT-conjugated
liposome (TAT-LIP)

TAT-LIP showed high brain
drug delivery due to its high
delivery ability to cross the
BBB

Brain capillary endothelial
cells (BCECs) of rats

[102]

Dox-conjugated TAT-Au
NPs

With pH-sensitive
dox-conjugated TAT-Au
NPs showed significant
survival benefit as
compared to the free dox

U87 mouse model [103]

TAT-SPION TAT-conjugated carriers are
internalized into
hematopoietic and neural
progenitor cells in
immunodeficient mice

C17.2 and mouse
splenocytes and
immunodeficient
NOD/SCID mice

[104]

Penetratin-deferasirox-
micelle

CPP-drug conjugates for
use as nanocarriers for
hydrophobic drugs, in vitro

RBE4 [105]

TAT-DOX-chitosan TAT-targeted NPs could
effectively reduce tumor
volume, in vivo

BALB/c mice bearing
subcutaneous tumors

[106]

LDL-coupled NPs

Hematoporphyrin-DOX-
NPs

The phototoxicity was
enhanced using
hematoporphyrin coupled
NPs, in vivo

HepG2 tumor-bearing
mice

[72]

(continued)
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Table 15.1 (continued)

NPs Outcome Cell lines Ref

LDL-DOX/siRNA-N-
Succinyl-chitosan

LDL-functionalized NPs
were significantly
accumulated in the tumor
site, in vivo

In vitro (HepG2, L-02,
and HepG2/ADM) in vivo

[107]

LDL-DOX-PEG-
liposome

LDL-conjugated
nanocarriers across the BBB
greater than free DOX in
cells accessed to statins,
in vitro

hCMEC/D3, U87-MG,
SJKNP cells, MDA-MB-
231, and A549 cells

[75]

Apolipoprotein
E-dalargin/loperamide
polysorbate 80- PBCA

NPs tagged with
polysorbate 80 or
apolipoprotein E induced an
antinociceptive effect,
in vivo

ICR and C57BL/6 J mice [108]

LDL-DHA NPs LDL-DHA NPs showed
enhanced physical and
oxidative stabilities
compared to native LDL
and free DHA, in vitro

TIB-73, BNL CL.2,
TIB-75, and BNL 1ME
A.7R.1

[109]

Integrin-targeted NPs

cRGDyk-cisplatin-
liposome

cRGDyk-tagged liposomes
exhibited higher cellular
uptake and higher
cytotoxicity, in vitro and
in vivo

RM-1 cells and RM-1
tumor-bearing C57BL/6
mice

[110]

RGD-albumin
nanoparticle

RGD-tagged NPs increase
cell uptake by pancreatic
cancer cells, in vitro and
in vivo

In vitro (BxPC3, SW1990,
PANC-1and CFPAC-1),
and in vivo BALB/C-nu/
nu mice with pancreatic
cancer xenografts

[111]

cRGD-platinum-
polymeric micelle

cRGD-tagged micelles
(cRGD/m) accumulated in
the tumor, in vivo

Mouse model of U87MG
(human glioblastoma cell
line)

[112]

cRGDfK-gold nanorods Targeted NPs showed better
uptake in vitro, but not
in vivo due to clearance of
the NPs from the blood

In vitro (DU145 and
HUVEC) and in vivo
(prostate tumor-bearing
athymic mice)

[113]

PR-b-(Polymersomes)
[poly(1,2-butadiene)-b-
poly (ethylene oxide)]
encapsulating siRNA

PR-b-anchored vesicles
induced high cytotoxicity in
cancer cells, in vitro

T47D and MCF10A [114]

FR-targeted NPs

FA-5-FU-PNVCL-b-PEG
micelles

FA-tagged micelles showed
a cytotoxic effect in tumor
cells, in vitro

EA.hy 926 and 4 T1 [54]

FA-2-ME-BSA NPs FA-tagged NPs entered into
the cells through the folic
acid-mediated endocytosis,
leading to higher antitumor
efficacy, in vitro

SMMC-7721 [115]

(continued)
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take advantage of overexpressed BnR to specifically deliver cytotoxic drugs loaded
in NPs tagged with Bn or Bn analogs. Accardo A et al. have efficiently delivered
Doxorubicin-loaded liposomes coupled with BnR ligand (7–14) peptide fragment
called BN (7–14) into PC-3 tumor cells [33].

15.4.2.2 Somatostatin Receptors
Somatostatin receptors (SSTRs) belong to the GPCR superfamily and are
overexpressed in cancer cell lines of lungs [34], neuroendocrine [35], prostate
[36], breast [37], colorectal [38], gastric [39], and liver [40]. These receptors mediate
the signal of basic processes involved in secretion, cell division, propagation, and
apoptosis. Huang C.M. et al. [41] documented the utilization of SSTRs to target
taxol into the cancer cells by tagging SSTR-specific ligand octreotide (OCT).
OCT-taxol conjugates target SSTR-expressed human breast carcinoma (MCF-7)
cells and showed triggered apoptosis [42]. Doxorubicin-loaded sterically stabilized
liposomes (SSLs) conjugated with OCT using polyethylene glycol led to enhanced

Table 15.1 (continued)

NPs Outcome Cell lines Ref

FA-dextran-
DOX � retinoic acid
magnetic NPs

FA-functionalized magnetic
micelles exhibit IC of the
targeted drug to about
10 times slower than the
free drug, in vitro

MCF-7 and MDA-MB-
468

[116]

FA-SPION-DOX-PEG-
lipid shell

FA-functionalized core-
shell NPs codelivered drugs
and SPIONs to the same
cells, in vitro

HeLa cells [61]

FA-DOX-magnetic NPs FA-tagged DOX-NPs
enhanced apoptosis of
cancer cells, in vitro

C30 and CP70 [117]

EGFR-targeted NPs

Biotinylated
EGF-NeutrAvidin(FITC)-
gelatin NPs

EGF-conjugated NPs were
mainly transported in
cancerous lungs

A549 tumor-bearing nude
mice

[118]

EGF-PAMAM-QD-
vimentin/yellow
fluorescent protein siRNA

EGF-modified NPs can be
internalized in EGFR
expressed cells, in vitro

HN12, NIH3T3, and
NIH3T3/EGFR

[80]

EGF-magnetic NPs EGF-decorated NPs
facilitated the MR imaging
contrast at the cancer site

Murine tumor models of
melanoma and hepatoma

[119]

EEEEpYFELV (EV)-
PEG-liposome-
protamine-heparin NPs

EGFR-targeted nanocarriers
were localized in tumor
cells in the cytoplasm,
in vitro

NCI-H460 [120]

GE11-PEG-DSPE-PTX
micelle

GE11-conjugated micelle
significantly restricted the
tumor cell growth, in vitro

U-937 and Hep-2 [82]
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selectivity and delivery of the drug in SSTR2 expressed cells via receptor-mediated
endocytosis [43].

15.4.2.3 Endothelin Receptors
Endothelin (ET) is composed of three polypeptide molecules such as ET-1, ET-2,
and ET-3, each of which is made up of 21 amino acids that can bind with GCPRs,
endothelin receptor A (ETRA), and endothelin receptor B (ETRB or EDNRB). All
three ETs can bind to ETRB with equal affinity, whereas ET-1 and ET-2 bind to
ETRA with double affinity compared to that of ET-3 [44]. In a preclinical study
drug, ligand conjugate showed promising efficacy in a low expressed ETRB model
[45]. The ETRB pulls the attention as a target for ligand–drug conjugate due to its
low level of expression on healthy tissue, its localization in the cell surface, and its
fast endocytosis.

15.4.3 Integrin Receptors

Integrins are the receptors present over the cell surface, which facilitate cell-
extracellular matrix (ECM) adhesion. Among various integrin receptors, αv
(or αvβn) integrin receptors are highly expressed in activated endothelial cells and
tumor cells, while in resting endothelial cells and normal cells, their expression is
minimum. Thus, integrin receptors can serve as potential targets for targeted anti-
cancer therapeutics [46].

15.4.3.1 Integrin avb3
Studies on DOX-loaded NPs showed that the targeted delivery to the integrin αvβ3
expressed cancer vasculature restricted the growth and proliferation of tumor cells,
avoiding the toxicity and weight loss side effect of this drug [47]. Chen et al.
developed integrin αvβ3-targeted PEGylated amphiphilic triblock copolymer-coated
iron oxide NPs. The native NPs are conjugated with near-infrared fluorescent (NIRF)
dye, i.e., IRDye800, and a cyclic Arginine-Glycine-Aspartic acid (RGD) peptide,
i.e., c(RGDyK) for selective binding to αvβ3 receptor possessing U87MG glioblas-
toma cells as indicated by in vitro binding assay [48].

15.4.3.2 Integrin a-3
α-3 integrin receptors are overexpressed in breast cancer, ovarian cancer, and
melanoma [49]. So, these α-3 integrin receptors have been utilized as a target for
targeted drug delivery systems in the treatment of ovarian cancer [50]. Conjugation
of OA02 peptide with micellar NPs comprising polyethylene glycol (PEG) block
dendritic cholic acid (CA) copolymers (PEG5k-CA8 NPs) significantly increased
the efficiency of cell uptake in α-3 expressed SKOV-3 and ES-2 ovarian cancer cells,
but the opposite effect was observed with α-3 integrin-deficient K562 leukemia cells.
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15.4.4 Folate Receptors

Folic acid (FA) or folate or vitamin B9 is utilized by living cells for the synthesis of
purines and pyrimidine. Living cells get FA only after internalization through the
folate receptors (FRs) [51]. As FRs are less expressed in normal cells and highly
overexpressed on cancer cells such as the tumors of the brain, lungs, breast, colon,
myeloid cells, kidney, and ovary, therefore, FA can be utilized as a targeting ligand
for active delivery of therapeutic agents to the tumor cells [52]. Due to the smaller
size and high affinity for binding of FA, it acts as targeting ligand. FA-conjugated
nanocarriers with pH-sensitive spacer molecule potentiate rapid drug release inside
the cancer cells at pH 5.0 [53]. Fa-conjugated micelles also facilitate specific drug
targeting to the cancer cells [54]. Albumin-based NPs, when combined with hyper-
thermia, can effectively show the cytotoxic effect of antitumor drugs
[55]. FA-conjugated Gold NPs also exhibit higher efficacy in specific drug delivery
[56]. In a study where FA-conjugated berberine hydrochloride (BHC)-loaded gold
NPs showed marked delivery of their cargo to FR-expressing HeLa cells [57],
FA-conjugated gold NPs are also employed for the delivery of therapeutic agents
such as DOX [58], siRNA [59], and PDT [60]. FA-functionalized magnetic NPs are
also investigated for the delivery of DOX, PTX, methotrexate, and mitoxantrone to
tumor cells [61].

15.4.5 Transferrin Receptors

The efficient transferrin (Tf) uptake by cancer cells that overexpress transferrin
receptors (TfRs) makes it effective to deliver cytotoxic drugs, proteins, and genes
[62]. TfRs are categorized into two types, TfR1 or CD71 and TfR2. TfR1 is
prevalent at low levels in the majority of cells, whereas TfR2 specifically expresses
in hepatocytes [63]. Although the expression of TfR1 is low in normal cells, it
increases in the case of a tumor, indicative of malignancy [64]. For instance, in the
case of several cancers of breast, ovary, and brain, the expression of TfR1 is found to
be increased [65]. Jiang et al. [66] successfully developed a contrast agent for
targeted magnetic resonance imaging (MRI) by conjugating transferrin with
superparamagnetic iron oxide NPs (Tf-SPIONs) for the diagnosis of brain glioma
in rats [67].

15.4.6 LDL Receptor

Based on densities, lipoproteins are classified into five categories such as
chylomicrons, very-low-density lipoproteins (VLDL), low-density, lipoproteins
(LDL), intermediate-density lipoproteins (IDL), and high-density lipoproteins
(HDL). Lipoproteins are the transporter of lipids and cholesterol in the blood. In
the LDL apolipoprotein, B-100 occupies around one half of the entire LDL surface,
which helps in targeting the LDL toward LDL receptor (LDLR)-expressed tissues,
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like liver, adrenal glands, and ovaries [68]. The body’s immune system considers
lipoproteins as an endogenous component, and therefore, the phagocytic system is
unable to detect them. In many cancer presenting cells in acute myelogenous
leukemia, adrenal adenoma, colon cancer, pancreatic cancer, lung cancer, brain
cancer, and prostate cancers, LDLRs are overexpressed. Therefore, LDLs are suit-
able to be used as targeting ligand in targeted cancer chemotherapy [69]. In a study,
more accumulation of DOX was observed in the liver in comparison to free DOX
after administration of LDL-DOX conjugate into a mice model [70]. Hematoporphy-
rin (HP) can also bind the LDLRs on the membrane of the tumor cell
[71]. HP-functionalized DOX-loaded NPs improve the effect of photodynamic
therapy (PDT) in liver cancer treatment [72]. Osthole-loaded chitosan NPs conju-
gated with LDL improved the targetability of nanocomposites to liver cancer cells
both in vitro and in vivo [73]. The BBB is also found to be overexpressed with
LDLRs, and therefore, LDL can be employed for effective drug delivery into the
CNS [74]. Moreover, simultaneous administration of statins with DOX-loaded NPs
conjugated with LDL increases the drug delivery and induced tumor death in the
CNS [75]. Also, apolipoprotein E (ApoE)-functionalized NPs can be endocytosed
better in the CNS across the BBB through LDLRs [76].

15.4.7 Epidermal Growth Factor Receptors

Epidermal growth factor (EGF) belongs to the family of tyrosine kinase (RTK)
receptors. Alternatively, it is also called ErbB or HER [77]. It has a significant
relationship with cancer propagation [78]. EGFRs are significantly overexpressed in
lung cancer, breast cancer, bladder cancer, and ovarian cancer. PTX-loaded
EGF-functionalized polymeric lipid NPs showed a significant reduction in cell
proliferation in vivo in tumor-bearing mice model [79]. Quantum dot-labeled
EGF-conjugated polyamidoamine (PAMAM) Generation 4 dendrimers are also
explored for selective delivery of genetic materials and imaging agents [80]. Also,
EGFR possessing HepG2 cells could significantly take up EGF-tagged PAMAM/
DNA NPs in vitro. However, significant accumulation of these NPs was observed in
the cancer site in vivo [81]. PTX-loaded PEG-di-stearoyl phosphatidylethanolamine
(PEG-DSPE) micelles functionalized with GE11 were effectively internalized by
EGFR positive Hep-2 and EGFR negative U-937 tumor cell lines as well
[82]. Aptamers are also a novel tool for selective targeting of tumor cells using
targeted nanodrug therapy. Scientists have formulated 80-residue aptamer,
J18-tagged gold NPs, which specifically targeted EGFR expressed A431 cancer
cells [83].

15.4.8 Fibroblast Growth Factor Receptors

Fibroblast growth factor receptors (FGFRs) are overexpressed in breast cancer,
prostate cancer, bladder cancer, and gastric cancer and responsible for tumor growth
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and proliferation [84]. Overexpression of FGFR1, FGFR2, and FGFR4 is observed
in breast and prostate cancer cells, whereas in gastric cancers, only FGFR2 is
overexpressed. In papillary thyroid carcinoma, only FGFR1 and FGFR3 have been
observed [85]. Xiao et al. developed a truncated human basic fibroblast growth
factor (tbFGF) peptide-conjugated DOX-loaded cationic liposomal NPs. tbFGF is a
modified peptide possessing active sites for the FGF2 receptor and part of heparin.
This tbFGF could specifically bind to FGFR2 and results in cell lysis observed in
mouse Lewis lung carcinoma (LLC) cells by the synergistic activity of DOX and
plasmid loaded in the common cationic liposome. The one-third concentration of
DOX in this system shows 50% cell lysis as compared to the concentration of free
DOX [86]. It was observed that C57BL/6 J mice bearing B16 melanoma cells
showed better accumulation of PTX-loaded PEGylated liposomes in mononuclear
phagocyte system containing organs such as liver and spleen, whereas less accumu-
lation was observed in other organs such as heart, lungs, and kidney as compared to
PTX-loaded PEGylated-liposome and free PTX [87].

15.4.9 Sigma Receptors

Scientists are excited to explore sigma receptor-ligand interaction for cancer cell
targeting. Sigma receptors are overexpressed in nonsmall cell lung carcinoma
(NSCLC), breast, prostate, and melanoma [88]. Initially, the sigma receptor was
considered a member of the opioid receptor family [89]. The sigma-1 receptor (S1R)
is a widely studied protein, whereas the sigma-2 receptor (S2R) is elusive now
[90]. The novel sigma-2 receptor-specific targeting ligand SW43 showed promising
targeting efficacy and cell lysis by loaded gemcitabine pancreatic cancer [91]. S1R is
generally found in the cerebral cortex, hippocampus, and cerebellar Purkinje cells
[92], and therefore, it can be used as the target for the DDS in the treatment of
CNS-related diseases such as Alzheimer’s disease, schizophrenia, depression,
stroke, amnesia, pain, and addiction [93]. S1R is generally expressed in
mitochondria-associated ER membranes [94, 95]. S2R-specific ligands are still in
the research and structural characteristics of S2R are yet to be known, while it is
found to be overexpressed in a variety of breast cancer, pancreatic cancer, neuro-
blastoma, bladder cancer, and lung cancer. SV119-decorated DOX-loaded
liposomes showed better cell uptake in human breast cancer (MCF-7), human
prostate cancer (PC-3, DU-145), and human lung cancer (A549, 201 T) as compared
to normal human bronchial (Beas-2B) cancer cells. Similarly, SV119-functionalized
liposome showed a higher cytotoxic effect in DU-145 cells as compared to
nonfunctionalized liposomal DOX [96].
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15.5 Conjugation Strategies to Functionalize Nanocarriers

The drug delivery systems prepared for active targeting to tumor cells mostly
comprises five basic components, viz., a drug carrier system, a corona of hydrophilic
polymer to shield from opsonization and to increase retention time, a targeting ligand
that specifically binds to a particular receptor of the cell at the disease site, a coupling
agent or functional group, which links the carrier with the ligand, and a drug or
imaging agent encapsulated or bound chemically with the carrier.

The anticancer drugs or drug carriers can be coupled with the targeting ligand by
a suitable method of chemical conjugation. The ligand can be conjugated with the
drug or drug carrier directly or by a spacer/linker (Fig. 15.1). The chemistry behind
the conjugation must be chosen in such a way that it does not show any adverse
effect on the selectivity of the targeting agent and drug activity [121]. The linker
used to bind the drug and the targeting ligand helps in the reduction of steric
hindrance and results in the increase in flexibility of the ligands, leading to enhanced
efficiency of coupling with the receptors. The spacers employed may be constructed
in such a way that they can possess additional control on drug release from the carrier
inside the cell. They assist in targeting and efficient cell internalization of
nanocarriers [122]. The conjugation between the targeting ligand and drug or its
carrier is done by holding some chemical reactions involving the functional groups
of drug or carrier and targeting ligand, which generally do not take part in biological
function. It is well established that simply conjugating drugs to a carrier does not
show specific targeting. However, functionalized nanocarriers composed of a biode-
gradable polymer, drug, and a targeting ligand are mandatory for effective targeted
drug delivery system [17]. Different methods of functionalization of the NP surface
are described in the following section (Table 15.2).

Fig. 15.1 Schematic diagram of ligand nanoparticle conjugation

390 A. Sarma et al.



15.5.1 Covalent Method of Conjugation

Antibody-NP Covalent Conjugation: Various methods of covalent conjugation are
being used to link monoclonal or polyclonal antibodies with NPs using crosslinking
agents. The importance of spacer moiety in conjugation chemistry is more than the
binding of mAb with NPs, since the mAb could be polymerized itself and unable to
identify the binding site of antibody on the NPs [123]. Depending upon the reactive
functional groups present at both the end of the spacer molecule, they can be
categorized into homobifunctional and heterobifunctional. Homobifunctional
spacers possess the same reactive functional group in both terminals, whereas
heterobifunctional spacers possess different chemical groups. To eliminate the
chance of steric hindrance between drug and mAb, spacer groups of different lengths
should be selected [124]. Sulfhydryl group-containing amino acids such as cysteine
or cystamine could be covalently coupled with NPs to form thiolated NPs having
free thiol groups available for antibodies or drugs. Alternatively, for the formulation
of thiolated NPs, chemical compounds such as 1-Ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDC/EDAC), tris-carboxyethyl phosphine hydrochloride (TCEP),
and dithiol-DL-threitol (DTT) have also been utilized [125]. Some commonly
used methods of chemical conjugation using various spacer molecules are men-
tioned below.

(i) Conjugation using Carbodiimide Chemistry: Following the carbodiimide
chemistry, the covalent conjugation method is utilized to form an amide bond
between the carboxylic and amine group of NPs and the antibody, respectively
[126]. Briefly, EDC interacts with the carboxylic acid groups of PLGA, which
activates the carbonyl moieties to bind with the amino group of antibodies. To
improve the binding efficiency, NHS or its water-soluble analog (sulfo-NHS) is
incorporated by EDC coupling methods [127]. Cirstoiu-Hapca et al. develop a
double-step carbodiimide reaction for prepare thiolated PLA NPs by thiolation of
the carboxylic groups of PLA. Then, the Paclitaxel-loaded PLA NPs were exposed
to link the thiol group with anti-HER2 mAb using m-maleimidobenzoyl-N-
hydroxysulfosuccinimide ester (sulfo-MBS) as a spacer [128]. Preattached PLGA

Table 15.2 Pros and cons of different conjugation methods

Types of Conjugation Pros Cons

Physical adsorption
(takes place via ionic,
electrostatic, and Van-
der-Waals forces)

• Easy and simple
method

• No modification of
ligand and nanoparticle is
required

• Denaturation of the ligand can
take place due to reversible
hydrophobic interaction

• The weak interaction between
ligand and nanoparticles

• Serum protein can cause
displacement of ligand

Covalent
Conjugation
(takes place via the linker
Moiety)

• Stable and
reproducible method

• Linker moiety can
overcome unfavorable
reaction conditions

• Unfavorable reaction conditions
may hamper the ligand

• Linker moiety have a significant
effect on function
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NPs with biotin or PEG are activated by the Carbodiimide conjugation method
before EDC/NHS treatment. Biotin binding spacers such as Avidin, NeutrAvidin,
and Streptavidin can be attached to the biotin-tagged PLGA NP. It was observed that
NeutrAvidin showed a better affinity toward the protein in comparison to Avidin and
Streptavidin. Each spacer has four binding sites for biotin to tag the biotinylated NPs,
leading to NP aggregation. Therefore, optimized amount for biotinylation is neces-
sary to restrict the aggregation [129]. Also, palmitic acid (PA) activated by NHS
could react with cationic Avidin. For the quantification of the surface density of
Avidin on NPs, a number of PA-Avidin complex were incorporated in PLGA NPs.
More amounts of PA-Avidin on the NP surface increase the surface roughness [130].

(ii) Conjugation using Maleimide Chemistry: The interaction between the
maleimide group and sulfhydryl groups leads to a highly selective and precise
conjugation. Here, the conjugation between sulfhydryl reactive groups and amine-
reactive groups via a maleimide heterobifunctional spacer imparts superior flexibil-
ity in antibody-NP hookup [131]. Using the carbodiimide chemistry, thiolated
nanocomposites were formulated where carboxylic group-activated NPs could be
coupled with cystamine. Sulfo-MBS was employed as a bifunctional spacer to link
the thiolated NPs and NeutrAvidin, which produced functionalized NPs. In these
modified NPs, NeutrAvidin showed greater affinity to bind than plain NPs. It is well
proven and confirmed that NeutrAvidin-biotin binding has no impact on its activity
during the tagging processes with the NPs [132]. In a study, on PLA NP, thiol group
was covalently inserted. The PLS NPs were prepared using the salting-out method
with around 25,000 thiol groups per NP. Over these NPs, anti-HER2 and anti-CD20
antibody were tagged covalently taking sulfo-MBS as a spacer. The functionalized
NPs were investigated for their targeting efficiency against target cancer cell lines.
The results showed that the type of antibody and its configuration signify a lot rather
than its quantity on NP surface for cell internalization as depicted in human ovarian
carcinoma cells (SKOV-3). Anti-HER2-decorated NPs exhibit precise binding and
internalization. Despite the more quantity of anti-CD20 on anti-CD20-
functionalized NPs, it remained over the cell surface [133].

(iii) Conjugation using Click Chemistry: Click chemistry is the most efficient
method of conjugation, which takes place in mildly reactive aqueous solutions. In
this conjugation process, there is no production of any unwanted byproducts such as
dicyclohexylurea, which occurred in carbodiimide reaction. The click reaction
generally held between 1,3 dipolar cycloaddition of azides and terminal alkynes
catalyzed by copper, known as CuAAC (copper-catalyzed azide-alkyne cycloaddi-
tion). These 1,3-triazoles are biocompatible, and therefore, their use is approved by
the FDA for drug formulation. Herein, the PEG or propargyl-dPEGNHS spacer was
prepared by the activity of EDC and sulfo-NHS at pH 6 to interact with the amine
functional group of antibody [134]. This antibody-coupled azide group then reacts
with the alkyne group possessing fluorescence-labeled PLGA. Recently, it was
reported that the copper-free azide-alkyne cycloaddition can reduce in vivo
cytotoxicity [135].

(iv) Conjugation using Only Spacer: Apart from the above-mentioned conjuga-
tion techniques, nanocomposites can also be functionalized using a linker avoiding
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any kind of chemical modification. So, in this NP preparation technique, there is no
formation of unnecessary intermediates as occurred in carbodiimide-amine and
maleimide-thiol reactions. The noncovalent attachment of homobifunctional linker
molecule Bissulfosuccinimidyl suberate (BS3) with PLGA NPs facilitates the for-
mation of a covalent amide bond between the antibody and NPs. In this simple
process, an amide bond was formed between the carboxylic group and amine group
of BS3 and targeting ligand, respectively. The enhanced cell uptake of NPs was
observed due to the covalent bond that exists between the ligand and BS3 [136].

Polysaccharide-NP Covalent Conjugation: The amine functional group of
chitosan could form a covalent bond with the carboxyl functional group of PLGA.
The carboxyl group of PLGA NPs could react with the amine group of chitosan after
activation by EDC. These NPs could constantly release the cytotoxic drug
mitoxantrone [137]. In a study, the thiol functional group of 2-iminothiolane was
immobilized by covalent attachment with amino groups of chitosan NP surface. This
covalent conjugation results in enhanced mucoadhesive properties, leading to
increased residence time in the intestine than chitosan alone [138].

PEG-NP Covalent Conjugation: PEG can be attached by forming a covalent
bond with the reactive groups of NP surface, which can additionally reduce the
possibility of optimization in blood. PEG composites can interact with amino acids,
glycosylated proteins, and thiols, which allows PEG to serve as a crosslinker
between the NP and the ligand [139].

15.5.2 Physical Adsorption Methods

As an alternative to the covalent conjugation methods, antibodies could also be
linked with the NP surface using simple adsorption techniques, e.g., Paclitaxel-
loaded PLGA NPs are coated by simply adsorbing cationic SMFv-polylys, where
positively charged polypeptide polylysine (polylys) was tied with SM5–1 scFv
(SMFv), which was obtained from SM5–1 mAb. The positively charged SMFv-
polylys was linked with negatively charged PLGA NPs using electrostatic interac-
tion. This occurred due to the isoelectric point, electrostatic force, and negative
charge of PLGA in neutral pH, which strongly facilitates the coupling of positively
charged targeting proteins on the PLGA NP surface [140]. Similarly, transferrin and
bovine serum albumin (BSA) at a ratio of 1/1 (w/w) were physically adsorbed with
PLGA NPs by simply mixing with NPs (1 mg/ml concentration) by shaking at room
temperature for 3 h [141]. Additionally, by employing different surfactants during
formulation, the surface charge of PLGA NPs could be altered. For instance,
cetyltrimethylammonium bromide (CTAB), which is a cationic surfactant, can be
used to formulate positively charged NPs ideal for the adsorption of plasmid DNA
[142]. In a study, hydrophobic PLGA was tagged with an antibody molecule using
its hydrophobic part to target human invasive ductal breast carcinoma. To enhance
the hydrophobic interaction, the phosphate-buffered saline (PBS) of pH 5 was
replaced with the buffer of neutral pH [123]. The hydrophilic polymer PEG can
also be tagged with hydrophobic NPs by the physical adsorption method
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[139]. More than one layer over core PLGA NPs by physical adsorption could show
better efficacy in targeting tumor cells. PLGA NPs could be coated with pluronic or
in conjunction with heparin or chitosan through a urethane bond formed between the
amine and hydroxyl group of heparin or chitosan and pluronic, respectively [143].

15.6 Cell Internalization of Nanocarriers

It is very difficult to detect cancer in the acute state, and it becomes disseminated in
the advanced stage of cancer. Hence, the intravenous route is mostly considered for
the delivery of cytotoxic agents via nanocarriers. The nanocomposites are mainly
internalized in the target cell by the endocytosis mechanism. The endocytosis of NPs
can take place by either phagocytosis or pinocytosis (Fig. 15.2). The phagocytic cells
like macrophages, neutrophils, and dendritic cells engulf the foreign substances by
phagocytosis, while the pinocytosis takes place in all other cells. The pinocytosis can
be classified as micropinocytosis, clathrin- or caveolae-mediated endocytosis, and
clathrin/caveolae-independent endocytosis [144]. The larger particles are generally
taken up by the phagocytosis pathway. For phagocytosis, nanocarriers must be
enveloped with the opsonins for their recognition by phagocytic cells via opsonin
receptors like mannose and scavenger receptors. The binding of the ligand with a
receptor causes the rearrangement of actin and forms the phagosome, which leads to
the creation of a cup-like shape, with some outgrowth around the substrate resulting
in the internalization of the NPs [145]. Pinocytosis pathway is generally suitable for
fluids and suspensions possessing small particles in them. Based on the type of
proteins engaged, pinocytosis can be categorized into micropinocytosis, clathrin-
and caveolae-dependent endocytosis, and clathrin- and caveolae-independent endo-
cytosis. All the mammalian cells exhibit clathrin-dependent endocytosis for the
uptake of nutrients like cholesterol (LDL) using the LDL receptor and iron using
the Tf receptor [146]. This ligated receptors coupled with the cytoplasmic adaptor
proteins and forms a clathrin lattice [147]. The vesicles are detached from the
membrane via GTPase activity and generate clathrin-coated vesicles [148]. Caveolae
are present in the cholesterol-rich area of the membrane possessing caveolin-1. This
mechanism of internalization bypasses the lysosomes, and therefore, several
pathogens utilize this transport mechanism to get entered into target cells
[149]. The caveosome has a neutral pH and takes the help of actin to move within
the cell [150]. The nanocarriers, which utilize this pathway, can bypass the lyso-
somal degradation and enhance the drug delivery efficacy to endoplasmic reticulum
or nucleus. It is reported that the anionic nanocarriers use the caveolae-dependent
endocytosis mechanism [151].
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15.7 Conclusion and Prospects

With the advancement of nanotherapeutics, rigorous research has been continuously
done on targeted nanodrug carriers. Some of the key factors responsible for efficient
drug targeting have been described in this chapter. But to get optimal clinical success
in humans still a challenge, due to many unknown conditions. Most importantly, the
behavior of the targeted DDS inside the cell is not fully known. However, many
kinds of research demonstrate the intracellular behavior of nanocarriers, but till now,
any generalized conclusion for every NP and biomarker does not persist. Mostly,
intracellular trafficking is also influenced by the phenotype of the tumor cell. This
may have a great impact on the clinical practice of the treatment since the patient

Fig. 15.2 Biofate of ligand nanoparticle conjugate
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might possess a versatile disease phenotype. However, the proper understanding of
the intracellular behavior and biological fate of the nanocarriers might have a huge
impact on the clinical outcomes. Proper knowledge might help in the smart design-
ing of cell organelle-specific nanocarriers. Indeed, it is a very challenging task to
develop a targeted DDS for cancer treatment.
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Tunable Biopolymeric Drug Carrier
Nanovehicles and Their Safety 16
Selin S. Suner, Betul Ari, Sahin Demirci, and Nurettin Sahiner

Abstract

Biopolymers are types of biomolecules encompassing a wide range of
macromolecules such as polysaccharides, proteins, DNA, RNA, enzymes, and
polyphenols that are abundant in nature. The most striking properties of these
biopolymers are that they are renewable, eco-friendly, nontoxic, biodegradable,
and natural, and most of the time, they are relatively inexpensive materials. The
capability to design novel material through nanotechnology and related
developments have widened and enabled the development of superior-controlled
drug delivery systems. Because of the unique properties of biopolymers together
with nanotechnology capabilities, the use of biopolymeric nanomaterials as a
drug nanocarrier was inevitable. This chapter covers the literature in the field of
biopolymeric nanovehicle design for tailor-made devices such as drug carriers.
The advantages and disadvantages of loading techniques such as physical, chem-
ical, and encapsulation methods in the preparation of biopolymeric drug carrier
vehicles are discussed. Finally, the potential application area of these
biopolymeric carriers from ocular delivery to targeted cancer therapy and, espe-
cially, their safety will be outlined with clinical evidence.
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16.1 Introduction

For many years, therapeutic agents and drug molecules have been directly used in
the treatment of many diseases and novel drug molecules have been designed,
synthesized, or discovered to eliminate health problems. The usage areas of these
therapeutic agents are limited because of their unstable chemical structure, low
solubility, and poor bioavailability and they can undergo oxidative degradation
and have inappropriate concentration levels or therapeutic levels [1]. Nowadays,
there is growing interest in the design of drug carrier systems to avoid these
challenges. Drug-carrying nanovehicles derived from different types of biological
sources including carbohydrates [2], proteins [3], and polyphenolics [4] are gener-
ally designed to regulate the pharmacokinetic and pharmacodynamic ability of active
molecules [5].

Since the 1980s, the term nanotechnology has attracted great interest leading to
many advances in fields including electronics, mechanics, aerospace engineering,
and biomedicine [6]. Nanomaterials, nanosurfaces, and nanoparticles (NPs) repre-
sent important aspects of nanotechnology; especially, nanoparticles ranging in size
from 1–100 nm are cornerstones for the design of superior material properties
[7]. Recently, many research groups have shown interest in the use of nanomaterials
and made significant progress in biomedical fields, e.g., controlled drug release [8],
gene therapy [9], tissue engineering [10, 11], imaging of specific sites, and probing
of DNA structure, and so on [12, 13]. However, instead of synthetic polymers, NPs
derived from biopolymer-based structures have attracted substantial attention espe-
cially for drug delivery use due to their appealing properties, abundance in nature,
biocompatibility and biodegradability, and renewable, nontoxic, and inexpensive
properties [14, 15]. A general classification of biopolymers is shown in Fig. 16.1.

These materials afford many advantages when used as delivery systems due to
their exceptional properties such as improving drug bioavailability, reduction of
drug side effects, increasing solubility, protecting drug molecules, enabling higher
drug efficacy, increasing cell membrane crossing, enhancing drug diffusion to the
cell surface, enhancing the residence time of drug at the specific site, and promoting
drug targeting and therapeutic biodistribution.

The evolution of controlled drug release systems from the middle of the nine-
teenth century is summarized in Table 16.1. Accordingly, controlled drug delivery
technology has made considerable progress over the last 70 years. This progress in
the last 70 years can be divided into two generations. Accordingly, the progress in
drug delivery began in 1950 with the introduction of the first continuous release
formulation [16–19], and then, the first generation drug delivery systems
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Fig. 16.1 Basic classification of biopolymers

Table 16.1 Evolution of drug delivery systems through the years

Years Controlled drug delivery systems

1950–1980 basics of
controlled release

Oral delivery (twice- or once- a day)

Transdermal delivery (once- a day or week)

Drug release mechanism (dissolution, diffusion, osmosis, or
ion-exchange

1980–2020 smart delivery
systems

Zero order release (zero- vs first- order release)

Smart polymers and hydrogels (environmental sensitive, self-
regulated release)

Peptide and protein release (biodegradable depot)

Nanomaterials (gene delivery, targeted delivery)

2020–2050 modulated
delivery systems

Switchable release (on-off release, sensitive release)

Targeted delivery (anticancer drags, siRNA)

Long-term delivery systems (>6–12 months with the minimal
initial burst effect)

- in vitro - in vivo correlation (prediction of pharmacokinetic
profiles from in vitro release study)
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(1950–1980) focused on the development of oral and transdermal sustained release
systems and established a few controlled drug delivery mechanisms.

The second generation drug release systems involving current technology
between 1980 and 2020 began with the development of zero-order release systems,
self-release systems, and long-term formulations where drugs can be stored and
nanotechnology-based delivery systems. During the second generation, systems,
polymers, and hydrogels, originally called “smart” materials, were developed to
make delivery systems that can be triggered by changes in the environment of the
carrier. Stimuli such as pH, temperature, magnetic field, or light can be used as
triggers to release, control, and modulate the drug release performance. Biodegrad-
able NPs, solid implants, and in situ gel-forming implants have been used to
maintain the release of peptides and proteins [20]. In the last decade, the second
generation drug release systems have continued to be developed mostly as
nanotechnology-based drug delivery systems [16]. In this review, the methods
used for NP synthesis from the most prominent natural and synthetic biopolymers,
their size distribution, and their use in drug delivery systems are discussed. The
biopolymers, used in the synthesis of NPs, are chosen as polysaccharides, proteins,
polyphenols, and a few synthetic biopolymers.

16.2 Design of Biopolymeric Nanovehicles

Biopolymer-based NPs can be prepared in various forms and morphology, and their
use in drug delivery has received great attention [21–23]. Biopolymeric NPs were
developed primarily for drug delivery systems as alternatives to liposome technol-
ogy to overcome problems associated with the stability of these materials in
biological fluids and during storage [24]. The selection of biopolymer can directly
affect (1) the size and morphology of NPs, (2) the surface charge and permeability of
the prepared NPs, (3) the biodegradability and the degrees of biocompatibility and
cytotoxicity, and (4) drug loading/release performances. Therefore, these parameters
are considered in the preparation of nanovehicles to attain the required drug release
performances [25, 26].

Despite the difficulties in size adjustment during the synthesis of NPs from
biopolymers, the innate properties of biopolymers, as well as higher bioactive
material loading capacity compared to clay, metal, and other inorganic-based NPs,
have attracted great interest from many researchers [27, 28]. In addition, bipolymeric
NPs can be considered bioactive material [29], can readily transport the cargo
materials into tissues and cells [27, 28], and are innately biocompatible and biode-
gradable with low immunogenicity. Moreover, biopolymeric NPs can increase the
efficacy of drugs, reduce the unwanted toxic effects of free drugs, protect the drug
from harsh environments, increase cellular uptake, and can transport many active
agents to different regions in the body [30–33].
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16.2.1 Polysaccharide-Derived Nanocarriers

Polysaccharide-derived NPs and nanostructured surfaces help to improve the bio-
compatibility of materials that are toxic to cells, providing new approaches for
immobilization of active agents. NPs prepared from natural polysaccharides can be
readily designed to deliver peptides, proteins, and nucleic acids where needed [34–
36]. The most commonly used polysaccharides in NP synthesis are chitosan,
hyaluronic acid, cyclodextrin, pectin, alginic acid, dextran, and carrageenan and
their composites [30, 37].

It was reported that cross-linked κ-carrageenan NPs using a polysaccharide with
an average size of less than 100 nm could be synthesized and display thermo-
responsive behavior by undergoing reversible volume change in a temperature
range acceptable for living cells, e.g., 37–45 �C [38]. These kinds of material or
nanogel are considered intelligent therapeutics as they can unload the cargo
materials with temperature-controlled release rate as thermo-sensitive drug carriers.
In another study, different polysaccharides of chitosan and carrageenan were used in
NP preparation via electrostatic interactions [39]. Chitosan-carrageenan NPs can
have many potential applications not only in drug delivery but also in tissue
engineering and regenerative medicine because of their innate properties
[39, 40]. Furthermore, it was reported in the literature that chitosan-carrageenan
NPs show noncytotoxic behavior during in vitro tests against L929 fibroblasts and
provide controlled release of ovalbumin, used as model protein, for up to 3 weeks
[41]. Although curcumin has many pharmacological effects, it is difficult to use as a
beneficial drug because of the difficulty in transition to metabolites and its short half-
life. Therefore, β-cyclodextrin-curcumin nanoparticle complexes were synthesized,
and in turn, β-cyclodextrin-curcumin nanoparticle complexes increased the dissolu-
tion rate of curcumin by ten-fold and curcumin permeability increased from
β-cyclodextrin-curcumin nanoparticle complexes by tenfold compared to free
curcumin [42].

NP drug delivery systems encounter many difficulties in the treatment process
due to drug resistance. NPs prepared from hyaluronic acid (HA), a polysaccharide,
were modified to target the loaded drug to the relevant site [43]. As a result, in vitro
and in vivo studies have revealed that HA NPs were highly biocompatible and
capable of targeting and effectively surmounting drug resistance and also have great
potential in cancer therapy [43]. HA NPs with sizes varying between 237 and
424 nm were modified so that the drug could reach the target site and be visualized
at the site of action. The systemic administration of modified-HA NPs to a tumor-
bearing mouse was monitored as a function of time using noninvasive near infrared
fluorescence imaging, enabling the visualization of biological distribution. Regard-
less of particle size, significant amounts of HA NPs were found to circulate in the
bloodstream for two days and were selectively collected at the tumor site. It was
confirmed that smaller-sized HA NPs can reach the tumor site more effectively and
faster than larger HA NPs. However, the concentration of HA NPs in the tumor site
decreased dramatically when the mice were pretreated with an excess of free
HA. This shows that HA NPs can accumulate in the tumor site by a combination
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of passive and active targeting mechanisms [44]. Another modification was
performed to circumvent the preferential deposition in the liver after systemic
administration, as this is the main drawback of HA-based drug conjugates in cancer
treatment. In another study, poly(ethylene glycol) was conjugated with HA in NP
formulation and resulted in 1.6 times more effective use in tumor tissue than bare HA
NPs, showing that p(ethylene glycol)-conjugated HA NPs may be useful tools in
cancer treatment [45]. Our group reported the porous and biodegradable HA and
HA:sucrose NPs with the size range of 50–200 nm [46]. These porous, biodegrad-
able HA, and HA:sucrose NPs with rough surface and irregular shapes were shown
to be suitable for chemical modification to be used for drug conjugation and/or
adsorption. These HA and HA:sucrose NPs were reported to be promising materials
as drug carriers, including for hydrophobic cancer drugs, with adjustable and
sustained release capabilities [46].

Studies with pectin polysaccharides generally include NP synthesis for encapsu-
lation of proteins as pectin-encapsulated proteins retain their stability in the presence
of many variables. It was shown that drug release systems made with pectin NPs via
encapsulating ensure the ability of bioactive substances over longer storage times
[47, 48]. In a study conducted by Izadi et al., whey protein was encapsulated within
pectin NPs and pectin-whey protein NPs showed good stability at low pH and high
resistance to gastric protease. Additionally, pectin-whey protein NPs were
synthesized with the potential to carry drugs for the treatment of colon cancer
chemotherapy treatment but were not found to be very effective because of the
ability to bind hydrophobic ligands. It was further reported that these NPs have the
potential to serve as new and effective tools in oral drug delivery applications
[49]. Moreover, the pectin NPs serve as a ligand for galectin-3 receptors in colorectal
cancer cells, and therefore, the particles were loaded with cancer drugs and the drug-
loaded pectin NPs were coated with Eudragit S100. The in vivo studies showed that
drug-loaded NPs coated with Eudragit S100 successfully protected the drug until it
reached the colon site and showed stability for long periods of time. The drug
delivery system was found to be 1.5 times more effective than the free drug [50].

In order to produce more effective drug delivery systems employing NP, various
methods such as chemical modification, coating, and preparing them in porous
formulation with different sizes and morphologies were found to be effective for
sustained and controlled drug delivery applications [45–50].

16.2.2 Proteins/Polypeptide-Based Nanocarriers

Proteins and polypeptides are high molecular weight natural polymers that can be
used in their natural state, as well as in chemically, physically, or enzymatically
modified forms to alter their functional properties [51, 52]. It is possible to generate
new functions and new performance of proteins for specific applications. For
example, in drug delivery systems, protein-based materials are expected to provide
superior performance as most proteins are biocompatible and are easily digested in
the human digestive tract [53, 54]. Additionally, some proteins exhibit antioxidant
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properties that may be beneficial to protect chemically unstable active components
[55]. Proteins can be crosslinked for NP production via chemical, physical, or
enzymatic curing processes used to stabilize particle structures [56]. However,
protein NPs are generally very sensitive to changes in pH, ionic strength, and/or
temperature, which leads to changes in surface charges and hydrophilicity/
hydrophobicity. Proteins that are used to produce biopolymeric NPs can be classified
as having animal and vegetable origin. The most commonly used animal proteins in
NP synthesis are albumin, casein, gelatin, collagen, fibroin, whey protein, and so on,
whereas the plant-derived proteins used for synthesis of NPs are lectin, zein, gliadin,
soy protein, etc. [3, 37, 57].

By using biochemical and chemical methods, α-lactalbumin NPs of varying sizes
between 2 and 5 nm were synthesized [58]. In the study, metal ions were loaded into
the synthesized NPs to release specific drugs to organs and tissues within the body
and to use them as a controlled drug delivery system. It was also shown that such
NPs may have many applications in the food and pharmaceutical industry, e.g., in
formulating foods with high nutritional value in the oral and digestive tracts. Human
serum albumin (HSA) was used in NPs and modified with PEG [59]. The major
advantage of PEG modification of HSA NPs is that it helps to achieve excellent
cellular targeting with minimal monoclonal antibody, making the binding of mono-
clonal antibodies more economically viable. In addition, the physical and chemical
activities of NPs were stable for a period of 12 weeks. This shows that the NPs can be
used as a targeted nanoparticle delivery system to successfully deliver various drugs
or nucleotides in targeted immunotherapy and gene therapy applications [59]. Enzy-
matic degradation of protein-based nanoparticle drug delivery vehicles is an impor-
tant factor affecting the route of administration as well as the site-specific
distribution of the drugs. Thus, synthesized bovine serum albumin NPs were coated
with polylysine polymers and their stability in proteolytic medium increased. siRNA
used as a model drug could be targeted and released under control by polylysine-
coated bovine serum albumin (BSA) NPs [60].

Recently, different studies were conducted to demonstrate the successful delivery
of bioactive substances using casein protein. Model hydrophobic chemotherapeutic
drugs such as mitoxantrone, vinblastine, irinotecan, docetaxel, and paclitaxel were
successfully retained in casein-based NPs and nanomaterials [61, 62]. Zhen et al.
showed that cisplatin drug-loaded casein NPs had the ability to penetrate cell
membranes, target tumors, and prevent tumor growth in hepatic tumor-bearing
mice [63]. In another study, curcumin as a model drug was encapsulated in casein
nanomicelles and the solubility of curcumin increased by at least 2500-fold, and
cytotoxicity of curcumin to human leukemia cell line increased in the presence of
casein nano micelles [64]. In another study, flutamide-loaded casein NPs were
reported to have effective anticancer activity in rats with prostate cancer [65]. It
was shown that drug-loaded casein NPs could release the drug slowly for up to
4 days and showed higher antitumor activity than the free drug as assessed by their
ability to reduce tumor growth and prostate-specific antigen levels [65]. Moreover,
the gastric digestibility of casein enabled the use of casein NPs as targetable drug
system for gastric cancers. In this context, paclitaxel was entrapped within NPs of
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casein and its cytotoxicity on gastric carcinoma cells was studied [66]. In the study, it
was observed that casein NPs with entrapped paclitaxel were found to be approxi-
mately 1.5 times more effective than the free drug. In addition, casein-paclitaxel NPs
were found to show no undesirable toxicity in buccal and esophageal
epithelium [66].

In one study, collagen NPs were reported to be biodegradable and thermally
stable and shown to be easily sterilized [67]. Moreover, when used as a drug delivery
system, it may provide greater uptake of collagen-based NPs as a systemic delivery
carrier to a number of cells, particularly macrophages, which may be an additional
advantage [68]. Due to high adsorption capacity and water dispersibility, collagen-
based NPs were used as sustained release systems for antimicrobial agents or
steroids [69]. In addition, collagen NPs were used to increase the dermal delivery
of certain drugs and afforded better and faster transport [67, 70]. Gelatin protein
obtained by acidic and basic hydrolysis of collagen was also used for nanoparticle
synthesis followed by use in anticancer, antiHIV, antimalarial, antimicrobial,
analgesics, etc., release systems [3].

Silk fibroin is generally defined as protein polymers spun into fibers by some
lepidoptera larvae, such as silkworms, spiders, scorpions, mites, and flies [71]. Silk
proteins were reported to be promising materials for drug delivery and tissue
engineering due to biocompatibility, slow biodegradability, self-assembling ability,
excellent mechanical properties, and controllable structure and morphology
[71]. Active amino groups and tyrosine residues on silk fibroin particles provided
favorable conditions for vascular biological conjugation of endothelial growth factor
and sustained endothelial growth factor release for three weeks [72]. Similarly,
curcumin was encapsulated into silk fibroin and chitosan NPs, and pure silk fibroin
curcumin NPs showed higher drug release and intracellular uptake and were more
effective against breast cancer cells compared to silk fibroin-chitosan curcumin NPs
[73]. In another study, silk sericin was successfully prepared in self-assembled
micelle nanostructures by mixing with pluronics, and it was observed that the
nanomicelles were capable of transporting both hydrophilic and hydrophobic
drugs and were used as controlled drug delivery systems [74].

NPs prepared from plant proteins are more convenient than animal proteins in
drug delivery systems due to their cheaper and more hydrophobic nature, and these
NPs can be made without the use of crosslinkers and have many functional groups
that can be easily used to adsorb or covalently bind molecules to alter their properties
[75]. It was also reported that plant proteins may have properties such as being
capable of inhibiting the spread of certain diseases, acting as direct drugs
[76]. Zhong et al. used high-hydrophobic zein NPs to encapsulate oil-soluble
compounds and showed their controlled release [77]. In addition, zein NPs were
also used for controlled release of hydrophilic, drugs and controlled drug release
systems were established with release occurring for up to 20 days [78]. In another
study, controlled release of water-soluble lysozyme from zein nanocapsules at
neutral pH was successfully performed [79]. In addition, the potential targeting of
zein NPs to the liver was demonstrated, and drug release in the targeted region was
observed for at least 24 h [76]. In another study, doxorubicin-loaded zein NPs were
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reported to show controlled release of drugs over 4 days and increased cytotoxicity
in doxorubicin-resistant breast cancer cells [80]. In a study by Duclairoir et al.,
gliadin NPs were shown for use as hydrophobic and amphiphilic drug delivery
systems with their controlled delivery ability [81]. Furthermore, due to the
bioadhesive properties of gliadin NPs and the ability of neutral amino acids to
make hydrogen bonds with the mucosa, mucoadhesive gliadin NPs containing
amoxicillin were developed for the destruction of Helicobacter pylori in the
stomach [82].

16.2.3 Polyphenol-Based Nanocarriers

Since ancient times, compounds of plant origin have been known to be very useful in
the treatment of many diseases. Studies have also reported that diets containing fruits
and vegetables reduce the occurrence of chronic diseases such as cardiovascular
diseases [83], diabetes [84], and cancer [85]. Among the compounds of plant origin,
the consumption of polyphenols was reported to have positive effects on human
health [86]. Tannic acid from black tea, quercetin abundant in red onion and
cabbage, epigallocatechin-3-gallate from green tea, resveratrol from grapes, and
curcumin from turmeric are just examples of many polyphenols of plant origin
[87–91]. Polyphenols were reported to have prophylactic properties against many
diseases due to their antioxidant, anti-inflammatory, anticarcinoma, antimicrobial,
antiviral, and cardioprotective properties [87–92]. Therefore, controlled intake of
polyphenols as drug active substances was extensively studied in the literature [93–
99].

In recent years, NPs of many polyphenols were synthesized in studies conducted
by Sahiner et al. and investigated as potential natural active agents/drugs by means
of controlled release from directly produced polyphenolic particles [88, 100–
107]. For example, poly(tannic acid) (p(TA)) particles were synthesized and their
controlled degradation provided linear and continuous tannic acid release for up to
12 days [107]. In addition, these p(TA) particles were shown to be antibacterial,
blood compatible, and biocompatible [107]. Furthermore, micro- and nano-p(TA)
particles were prepared using many different biocompatible crosslinkers, and con-
trolled tannic acid release was achieved successfully for up to 30 days [105]. It was
reported that porous p(TA) particles possess greater antioxidant properties in com-
parison to nonporous particles [104]. In another study, donut-like tannic acid-iron
nanocomplexes with magnetic and conductive properties were reported and their
antioxidant properties were investigated [106]. P(TA) NPs were synthesized and
their anti-inflammatory effects were investigated by Perelshtein et al. [108]. Other
phenolic compounds of poly(rutin) and poly(quercetin) micro- and NPs were
reported to have fluorescence, antioxidant, and antibacterial properties, and their
potential use in the biomedical field as drug delivery systems was proven
[88, 103]. The biocompatible, blood-compatible, and antioxidant properties of
poly(rutin) and poly(quercetin) particles were reported with their controlled degra-
dation by showing linear and continuous release of rutin for up to 24 h and quercetin
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for up to 120 h [102]. Another polyphenolic NP derived from rosmarinic acid was
synthesized, and their enzyme inhibitory effect, antioxidant properties, and
rosmarinic acid release with degradation of particles were illustrated [101]. Poly
(naringin) particles from polyphenol naringin were also reported to be low toxicity,
antioxidant, and biodegradable material for biomedical applications [100].

16.2.4 Others Nanocarriers Derived from Small Biological Molecules

Some biopolymers can be prepared from natural monomers and used as drug
delivery systems. For example, micro- and nanoparticles can be synthesized from
amino acid, e.g., poly(L-Lysine) micro�/nanoparticles with tunable surface charge
were reported to have blood compatible and biocompatible properties [109] and
possess great potential for biomedical purposes. In another study, ε-Poly-L-Lysine/
plasmid DNA nanoplexes were successfully synthesized for in vivo gene delivery
[110]. Moreover, carbon dots from amino acid precursors, such as arginine, lysine,
histidine, cysteine, and methionine, were demonstrated to be blood compatible and
highly antimicrobial with excellent fluorescence properties, which enabled visuali-
zation during in vivo studies [111]. Other biomolecules, such as dopamine that is a
neurotransmitter, were used in the corresponding nanoparticle preparation with
porous morphology and chemically modifiable forms [112]. P(dopamine) particles
were also shown to be blood compatible, biocompatible, and biodegradable, releas-
ing dopamine molecules up to a few weeks. Also, sugar molecules such as sucrose,
lactose, and maltitol were treated as monomers in the synthesis of their
corresponding micro�/nanoparticles [113–115]. For example, the synthesized
poly(sucrose) particles were found to be biocompatible and were used as drug
delivery systems [113]. Can et al. also report micro�/nanoparticles from lactose
molecules as poly(lactose) particles with chemically modifiable structure and tun-
able surface charges for potential drug delivery systems [114]. Moreover, poly
(maltitol) particles were synthesized from maltitol and also shown to be modifiable
with blood and biocompatible properties. Also, the prepared poly(maltitol) particles
were used as drug delivery material, and increased amounts of drug can be loaded
after modification [115].

16.3 Drug Loading and Release Studies for Biopolymeric
Nanovehicles

Different drug loading techniques are used and have been improved for the effi-
ciency of loading and release, as well as for the release time. Loading efficiency
generally depends on the loading method employed and the physicochemical
properties of the drug, as well as the natural properties of the nanovehicles. Three
basic drug-loading techniques of physical loading by adsorption of drug from
solution, chemical loading by covalent binding of the drug, and encapsulation/
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entrapment of the drug into nanovehicles are the most widely used methods
presented in Fig. 16.2.

16.3.1 Physical Drug Loading and Release

The loading of the drug into vehicles physically is considered to be the most simple
process and is generally employed for micro- and nanocarriers; however, it has
several drawbacks, e.g., limitation of drug loading, lack of appropriate solvents for
both drug and carriers, rapid release kinetics, and so on [116]. In this process, the
active agent physically interacts with the carrier vehicles via physical adsorption
from the corresponding drug solution as shown in Fig. 16.2. The physical interaction
between the active agent and nanovehicle basically depends on the functional groups
in the drug molecule and nanovehicle. Therefore, the shape, size, charge, and
especially functionality play significant roles in the carriers, e.g., on polymeric
matrices. Therefore, loading efficiency can be controlled by modification of the
functional groups on the polymers by rendering different appropriate groups that can
interact with the drug of interest. Among the carrier vehicles, hydrogel-based

Fig. 16.2 Schematic representation of drug loading processes using drug adsorption, drug conju-
gation, and encapsulation methods for biopolymeric nanoparticles (NPs)
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nanocarriers are among the convenient materials for these modification reactions as
they have –OH, –COOH, –SH, –SO3, and -NH functional groups that can be readily
converted into the desired ones. Also, among the biopolymers, carbohydrate-based
particles are commonly used as drug carrying vehicles in many biomedical
applications because of their renewable, biocompatible, nontoxic, and biodegradable
properties and modifiable structure. For instance, Sahiner et al. (2017) reported that
carrageenan particles could readily react with cationic modifying agents such as
diethylenetriamine (DETA) and employed them in the adsorption of rosmarinic acid
(RA) as a therapeutic agent. The amount of therapeutic agent, RA, loaded into the
amine-modified forms of carrageenan particles increased tremendously, e.g., ~240
fold that is to 43.7 mg/g RA from 0.18 mg/g RA via physical adsorption process due
to the high interaction affinity of e amine groups on the modified particles for RA
molecules. Hence, the modified carrageenan particles resulted in sustainable and
long-term drug release capability over 20 h. It was shown that a polymeric carrier
can be used effectively in drug loading/releasing studies by adsorption processes by
adapting chemical modification methods [117]. In another study, poly(dopamine)
particles were prepared by self-oxidation polymerization of dopamine and new
functionalities with negative and positive charges (–SO3

� and –
+N(CH3)3 groups)

were utilized as the responsible functional groups on the carrier materials for drug
delivery purposes [112]. The model drug acyclovir was loaded into bare and
modified poly(dopamine) particles, and the loading and release capacities of
modified poly(dopamine) particles (with chlorosulfonic acid) were increased nearly
two-fold in comparison to the unmodified form of the particles because of the
interaction of sulfonic acid groups on the modifying agents with amine groups of
drug [112]. In addition to chemical modification of carriers, surface area, pore size,
distribution, [118] and porosity [119, 120] of the carriers are important parameters to
be considered to increase loading efficiency and release kinetics of the drugs. Thus,
nanosized porous materials are anticipated to interact more with the drugs in
comparison to the nonporous bigger size forms during physical adsorption processes
of drugs. In the design of advanced drug delivery devices, chemical and morpholog-
ical tunability of carriers is the crux for the physical loading process.

16.3.2 Chemical Drug Loading and Release

The design of polymer-drug conjugates was first reported by Helmut Ringsdorf in
1975 [121, 122]. The Ringsdorf model depends on chemical linking between drug
and macromolecules through a labile bond like a hydrolyzable or biodegradable
bond. The most commonly exploited biodegradable bonds are reported as carbonate,
anhydride, ester, amide, orthoester, and urethane as demonstrated in Fig. 16.2. These
reactive groups can be used to link to the end groups of the polymer chain or can be
pendant groups on the side chain [123]. With time, the technology has gradually
improved and is implemented for different types of nanocarrier systems. Among all
techniques, the drug conjugation by chemical linkage method is the most widely
preferred and useful technique because of superior properties such as high stability,
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high carrier capacity, prolonged half-life, nontoxicity, nonimmunogenicity, and
antigenicity. Additionally, the conjugation of drug to nanocarrier also improves
the solubility, lowers the toxicity, protects from enzymatic degradation, and prevents
or reduces aggregation of the drug [124, 125]. Chemical drug loading also allows
controlled release kinetics from the carrier vehicles. Our group (2019) successfully
demonstrated the usability of porous and degradable hyaluronic acid
(HA) nanoparticles and copolymeric forms with sucrose (Suc), HA:Suc
nanoparticles, as drug delivery systems with controllable antibiotic [126] or cancer
drug [127] release capabilities. For this purpose, coumarin-derived cancer drugs or
vancomycin as antibiotics was loaded into HA-based particles by absorption and
conjugation processes. In the absorption process, the drugs dissolved in DMSO
directly interacted with the carrier, whereas in the conjugation process, N,N´-
-carbonyldiimidazole (CDI) was used as coupling agent between carrier and drugs
to attain covalent drug binding onto the carrier. As mentioned, generally a coupling
agent, e.g., CDI, is used and reacts with the carboxylic acid groups on HA particles
by the esterification reaction in DMSO at 25 �C for 1 h in the first step. Then, these
HA particles were activated and reacted with hydroxyl groups on the drugs at 80 �C
for 24 h. According to the study, vancomycin-conjugated HA particles were loaded
with 349 � 31 mg/g drug, whereas only 18 � 3 mg/g of the same drug was loaded
into HA particles via the physical absorption process. The association efficiency of
the drug is notably enhanced to about 19-fold through drug conjugation to the
polymeric network. In in vitro release of drug, approximately 11.4 � 2.8 mg/g
vancomycin antibiotic was quickly released over 8 h from the drug-absorbed HA
particles, whereas the conjugated drugs showed longer and sustained release
capabilities from the carrier matrix of almost 50.5 � 4.2 mg/g vancomycin release
within 168 h [126]. These results supported the view that drug loading capacity and
release kinetics can be significantly improved by the conjugation process because of
the chemical linkage of drug molecules into carrier systems. It was shown that
sustainable drug release for a hydrophobic cancer drug was tenfold increased from
degradable and porous HA-Suc nanoparticles by chemical conjugation compared to
physical adsorption. The HA unit of the particles inherently has the ability to target
the specific overexpressed receptors, i.e., CD44 receptors, on the cancer cells or
cancer stem cells [128]. Alongside this, Suc sections of the particles have targeting
effects against the tumor site because malignant cells tend to consume more energy
because of their rapid proliferation, and this requirement can be met by Suc moieties
within the carrier network. Furthermore, some studies reported that saccharides have
affinity against binding proteins such as lectins contained in many cancer cells and
show targeting ability to the cancer site [2, 127, 129]. Therefore, targeting and
releasing the payload to cancer cells were achieved by HA and Suc moieties of the
copolymeric HA:Suc particles, affording prolonged drug delivery for a hydrophilic
cancer drug with the drug conjugation process. In a study conducted by Yan et al.,
the insulin-silk fibroin nanoparticle bioconjugates improved the stability of insulin
in vitro [130]. In another study, two different drugs, curcumin and doxorubicin
cancer drugs, were loaded into chitosan-legumain peptide NPs by two different
loading methods: physical loading of curcumin and chemical loading of doxorubicin
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to overcome multidrug resistance gene for cancer therapy. Legumain in the particle
structure triggered codelivery of drugs to the cancer cells. This dual delivery
nanocarrier system shows perfect inhibition effects on cancer cells due to long-
term circulation time and targeting ability against the tumor site [131].

16.3.3 Loading by Encapsulation/Entrapment and Release

Various types of encapsulation techniques are reported in the literature such as
emulsification, spray drying, extrusion, electrospinning, layer-by-layer deposition,
and coacervation for nanosized encapsulated systems. Coaservation is the most
suitable technique to prepare hydrogel-based nanocarriers via encapsulation, which
is sometimes called entrapment [1]. In the encapsulation/entrapment or drug loading
by coaservation process, the therapeutic agent can be embedded into the polymeric
matrix during the production of the carrier vehicles, as illustrated in Fig. 16.2. To
develop promising carrier materials via encapsulation methods, some important
parameters for carrier vehicles should be considered beforehand, such as particle
size and morphology, hydrophilicity, encapsulation efficiency, and the proposed
application of the encapsulated compound [1]. Also, the stability of the drug with
high self-life, bioavailability, and sustainable release kinetic could be provided
through carrier systems. These types of techniques are generally preferred to carry
hydrophobic drugs especially because of the higher and controlled loading capacity
of the method. The entrapment efficiency of the drug basically depends on the solid-
state drug solubility within the polymeric network, which is related to drug-
nanovehicle interactions in the presence of functional groups such as carboxyl or
ester [132]. Zhang et al. (2017) prepared dextrin nanogels targeting metastatic breast
cancer as a cancer drug delivery material for cancer therapy. In this study, doxorubi-
cin cancer drug was encapsulated in AMD3100-coated dextrin nanogels for
targeting and releasing purposes. According to the in vitro and in vivo results, this
drug-encapsulated AMD3100-coated dextrin nanogel system had high drug loading
capacity and decreased the toxicity of the cancer drug by loading techniques with
effective targeting capacity [133].

Most commonly, encapsulation methods are generally used in the delivery of
biomacromolecules, such as DNA, nucleic acid, protein, and genes, as treatment
agents for targeting cancer and gene therapy. In a study, carbohydrate derivate
heparin NPs were prepared and modified with polyethyleneimine as protein and
gene delivery in the growing of stem cells. Fibroblast growth factor (FGF) as protein
was loaded into heparin NPs by encapsulation methods. Then, the in vivo release of
FGF and specific genes was introduced to human endothelial progenitor cells and
shown to enhance nanovascularization in an animal model [134]. In another study,
chitosan-carrageenan NPs were used to encapsulate recombinant human erythropoi-
etin and prepared NPs had 50% continuous in vitro release profile over a 2-week
period. It was reported that the surface loading of the prepared NPs and the molecu-
lar weight of the chitosan reduced the rate of recombinant human erythropoietin
release and, therefore, allowed longer release time [40]. To improve the drug release
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profile of chitosan NPs used as drug delivery systems, chitosan, carrageenan, and
alginate polysaccharides containing composite NPs were synthesized via electro-
static interactions and used for encapsulation of bovine serum albumin (BSA). The
release profile of BSA encapsulated in composite NPs showed a first burst release in
the first few hours of the experiment and subsequently a slow release profile over
time [135].

The advantages of loading techniques for various biopolymeric nanocarriers and
bioactive molecules are listed in Table 16.2.

These investigations support the fact that the drug loading techniques should
depend on the types of nanoparticle systems and physicochemical properties of the
therapeutic agent. To overcome the deficiencies of drug molecules such as unstable
chemical structure, exposure to oxidative degradation, low solubility, fast release,
and especially toxicity, the biopolymeric nanocarrier or NPs should be prepared by
considering the most appropriate loading techniques such as adsorption, conjuga-
tion, and encapsulation.

16.4 Clinical Application and Safety of Therapeutic Carrier
Nanovehicles

Therapeutic agent carrier nanovehicles are promising materials with superior phar-
macokinetics and biodistribution compared to free drug molecules. Recently,
researchers have focused on the development of biopolymeric nanocarriers for
drug delivery applications because of their inherent biodegradable, biocompatible,
nontoxic, high surface area, nonimmunogenic, and, especially, biomimetic
properties [137].

Biopolymeric nanocarriers can enhance the residence time of the drug on the
releasing surface, decrease drug loss, improve bioavailability, and improve cellular
uptake. Nevertheless, many problems such as selective binding, targeted delivery,
and, especially, toxicity need to be surmounted for use of these materials in the
pharmacological industry [138]. For many years, many drug carriers composed of
carbohydrates, proteins, polyphenols, and small biological molecules have been
used for the design of novel nanovehicles and extensively studied for in vitro and
in vivo drug delivery application to afford long-term, sustainable, and site-specific
release capabilities and ensure higher safety for healthy cells and tissues [2, 26]. The
advantages of using nanoparticles in therapeutic applications are listed in Table 16.3.

Chitosan is one of the most commonly employed carbohydrate-based
biopolymers in drug delivery systems due to its exceptional properties of being
nontoxic, nonimmunogenic, biocompatible, biodegradable, antimicrobial, on-site
gelation, mucoadhesion, and permeability enhancement [118, 145]. Mitra et al.
reported the effect of dextran-doxorubicin (DEX-Dox) conjugate, which was
encapsulated with chitosan NPs as an antitumor and tumor-targeting carrier system
against J774A.1 macrophage tumor cells in mice. Dox is a chemotherapy drug used
to treat cancers, and one of the most serious side effects is cardiotoxicity. Conjuga-
tion of Dox with DEX minimizes the toxicity effect, and then encapsulation of the
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Table 16.2 Advantages of loading techniques for various biopolymeric nanocarriers and bioactive
molecules

Materials Advantages
Loading
process

Active agent
and release
time Ref

Carrageenan
particles

Modified with positively
charged molecules to increase
drug loading and release

Physical
loading

Rosmarinic
acid 20 h

[117]

Poly(dopamine)
particles

Modified with anionic and
cationic molecules to increase
drug loading and release

Physical
loading

Acyclovir 15 h [112]

Degradable and
porous
hyaluronic acid
particles

Enhancing the loading
efficiency, sustainable and
long-term releasing

Chemical
loading

Vancomycin
168 h

[126]

Degradable and
porous
hyaluronic acid:
Sucrose particles

Increasing the solubility of
hydrophobic cancer drug and
enhancing the release
capacity, promoting of the
drug targeting to the cancer
site

Chemical
loading

Curcumin
derived cancer
drug 150 h

[127]

Silk/fibroin
particles

Improves the stability of drug Chemical
loading

Insulin [130]

Chitosan-
legumain
particles

Legumain triggered dual
delivery to the cancer cells by
long-term circulation time
with highest tumor targeting
for multidrug resistance gene

Physical and
chemical
loading

Curcumin and
doxorubicin
15–25 h

[131]

Dextrin particles High drag loading, decreasing
the cytotoxicity of drug

Encapsulation Doxorubicin
10 h

[133]

Heparin particles Modified with polyethleneimi
to improve of gene loading
capacity and encapsulated of
fibroblast growth factor to
improving of bioactivity

Encapsulation Fibroblast
growth factor
24 h

[134]

Chitosan/
carrageenan
particles

Encapsulated human
erythropoietin to allow longer
release

Encapsulation Human
erythropoietin
330 h

[40]

Chitosan/
carrageenan/
alginat particles

Encapsulated the protein to
more slowly release over time

Encapsulation Bovine serum
albumin

[135]

Human serum
albumin particles

High loading efficiency.,
promote the encapsulation of
photosensitizer IR780 iodide,
linearly and long-term
releasing to the specific cancer
site

Encapsulation Paclitaxel
dimeric
prodrug and
IR780 dye
100 h

[136]
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conjugated drug-DEX molecules with chitosan NPs increases the efficacy of the
drug. In this study, it was concluded that this antitumor carrier nanoparticle system
enhanced survival time of the mice in comparison with drug conjugated and free
drug forms, as well as improving the therapeutic efficiency of the drug for in vivo
study [139]. The other important carbohydrate-based biopolymer is hyaluronic acid
(HA), which is inherently nonthrombogenic, nonimmunogenic, bioactive, biode-
gradable, and also biocompatible in mammalian organisms. HA-based carrier
materials have a wide range of applications encompassing ocular delivery systems
and gene delivery systems for cancer therapy. HA has biological functions such as
inflammatory responses to cancer metastasis and is specific to the CD44 receptor

Table 16.3 The advantages of nanoparticle use in therapeutic applications

Materials Advantage Application Ref

Dextran-dox
conjugate
encapsulated with
chitosan NPs

Cardiotoxicity decreases and
increases the therapeutic efficacy of
cancer drug

Chemotherapy [139]

HA coated pDNA
based polyplexes

Good mobility in bovine vitrous
humor, effectively taken up in vitro,
improvies drug delivery efficiency,
biocompatible for retinal delivery

Retinal target gene
therapy

[140]

Insulin loaded
Alginic acid NPs
with nicotinamide

Mucoadhesive material, high insulin
loading capacity, high
pharmacological avability and
bioavalibility and reduces of the
glucose level

Insulin treatment in
diabet

[141]

Timolol maleate
loaded thiolated
pectin NPs

Mucoadhesive effects, more corneal
permeability through the excised
goat cornea

Ocular delivery
system

[142]

Paclitaxel dimeric
drug and NIR dye
loaded albumin NPs

Enhancestumor accumulation,
reduces systemic toxicity and
improvestherapeutic performances

Chemotherapy and
photothermal therapy

[136]

Lectin conjugated
gliadin NPs

Increases eradiction rates in vitro and
higher cleaning efficiency in vivo
Helicobacter pylori treatment

Drug delivery system [143]

Poly(rutin) and poly
(quercetin) NPs

Degradable nature and sustainable
delivery, highest antioxidant
capacity, good bioavalibility and
inhibites of cancer cell lines

Therapeutic delivery [102]

Transferin
conjugated dextran-
spermin NPs

Reduces drug loss and side effects,
monitoring of drug, across the blood
brain barrier, pH-triggered cellular
uptake, targeting ability against brain
tumor

Targeted drug
transplantation along
the blood-brain
barrier

[144]

Dox loaded
AMD3100 coated
dextrin NPs

Directly taken up by the cancer cells
by tumor targeting, inhibites of
tumor metastasis and reduces cancer
cell proliferation, greater
cytotoxicity

Breast cancer
targeting

[133]
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[121, 146, 147]. There is growing interest in retinal gene therapy, which affects
vision loss in many people, and the use of therapeutics in ocular delivery, which do
not aggregate and remain mobile in the vitreous humor to reach the retina,
necessitates specific carbohydrates such as HA. Martens et al. reported the
intravitreal injection of therapeutic HA-coated nonviral gene complexes into the
retina in the bovine eye for gene therapy. The results illustrated that this HA-coated
nanocomplex system has good mobility in bovine vitreous humor, is effectively
taken up in vitro, improves drug delivery efficiency, and is biocompatible for retinal
delivery [140]. Devarajan developed bioadhesive insulin-loaded alginic acid NPs
and forms containing nicotinamide to increase permeability of NPs for the treatment
of diabetes. The results indicated that alginic acid NPs have the highest insulin
loading capacity of 95%, and insulin-loaded alginic acid NPs with nicotinamide
showed high pharmacological availability and bioavailability and importantly
reduced the glucose level in a diabetic rat model [141]. In another study with pectin
NPs, thiolated pectin NPs were synthesized using ionic crosslinks, e.g., magnesium
chloride as ionic crosslinker, and timolol maleate was used as model drug for ocular
delivery study. The thiolation of pectin was carried to improve the mucoadhesive
properties of natural polymers. In the study, timolol maleate was loaded into the
thiolated pectin NP system, providing significantly higher ex vivo corneal perme-
ation of timolol maleate across the excised goat cornea than the conventional
aqueous solution of timolol maleate, and it was concluded that thiolated pectin is a
mucoadhesive polymer that can be used for ocular delivery of timolol maleate [142].

In a similar study, protein-derived carrier systems were promising candidates for
drug and gene delivery in clinical applications related to their unique protein
structure. These structures provide site-specific drug conjugation and targeting
ability [3]. Patil et al. (2019) reported human serum albumin (HSA) nanoparticles
that contained paclitaxel cancer drug and photosensitizer IR780 iodide as near
infrared (NIR) dye in the core of the particles as seen in Fig. 16.3a. In the particle
design, dimeric paclitaxel was prepared by using thioether bridges (PTX2-S) to
enhance the loading efficiency and stability of drugs and created tumor redox
heterogeneity-triggered drug release as well as facilitated IR780 iodide to combine
chemo�/photothermal therapy [136]. The results for in vivo antitumor efficacy and
the biosafety of cancer drug and NIR dye-loaded albumin NPs (HSA(S-Cy) are
demonstrated in Fig. 16.3b by the NIRF images of tumor-bearing mice after intra-
venous administration with HSA(S-Cy) and photos of excised tumors. As can be
seen in the NIR fluorescence signal, HSA(S-Cy) NPs have good biodistribution and
enhanced accumulation at the tumor site in 36 h continuing up to 96 h and showed
significant in vivo photothermal activity. It was reported that these albumin-based
carrier systems are promising materials with enhanced tumor accumulation, reduced
systemic toxicity, improved therapeutic performances, and more safety for in vivo
applications in chemo�/photothermal therapy with no significant damage to the
heart, liver, spleen, lungs, and kidneys after treatment [136].

In a different study, a carrier system for eradication therapy of Helicobacter
Pylori (H. Pylori) was developed and the method significantly reduced the effective
dose of triple therapy with amoxicillin, clarithromycin, and omeprazole drugs and
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prevented bacteria from gaining antibiotic resistance [143]. For this purpose,
proteinic-based gliadin NPs and lectin-conjugated gliadin NPs were synthesized
for triple drug treatment, and amoxicillin, clarithromycin, and omeprazole drugs
were loaded by encapsulation. The reason for lectin conjugation is the binding
ability of this protein against carbohydrates on the bacterial surface. In vitro
antibacterial study of triple-therapy lectin-conjugated gliadin NPs showed higher
eradication rates than triple-therapy gliadin NPs and bare triple therapy. Further-
more, targeted lectin-conjugated gliadin NP systems exhibited higher in vivo
cleaning efficiency than nonconjugated gliadin NPs and bare drugs. These results
clearly state that the targeted lectin-conjugated gliadin NP system with triple therapy
causes maximum bacterial destruction from the intestine by selective release of these
triple drugs. The mucoadhesive properties of the systems help keep them in contact
with the mucosal layer, and the specific ligand (lectin) provides interaction with
H. Pylori, which demonstrates the potential removal of bacteria in the intestine.

Fig. 16.3 (a) Schematic illustration of paclitaxel dimeric prodrug PTX2-S and IR780 loaded into
albumin NPs (HSA(S-Cy)) for combined chemo�/photothermal therapy. (b) In vivo antitumor
efficacy in the NIRF images of tumor-bearing mice after intravenous administration with HSA
(S-Cy) and photos of excised tumors. From up to down: PBS, PBS under irradiation (L+), HSA(S),
HSA(S-Cy), and HSA(S-Cy) under irradiation (L+), adopted from ref. [136]
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Therefore, it was stated that the targeted lectin-conjugated gliadin NPs with triple
therapy lead to a higher drug concentration at the site of action due to their superior
cellular uptake capacity, thereby maximizing the therapeutic index. Thus, injection
with the targeted lectin-conjugated gliadin NPs with triple therapy can be more
effective for the elimination of H. Pylori [143].

Rutin (RT) and quercetin (QC) are well-known phenolic biomolecules with
various biological properties such as antimicrobial, anti-inflammatory, antiallergic,
antioxidant, anticancer, antidepressant, and antidiabetic features. It was reported that
crosslinked poly(rutin) and poly(quercetin) NPs can be readily prepared and used
directly as therapeutic agent release material due to their degradability in physiolog-
ical conditions, e.g., pH-triggered release can provide long-term RT or QC release
[102, 103]. These nanoparticles formulated from phenolic materials are promising
candidates in cancer therapy with excellent antioxidant ability and highest inhibition
effects against A549 cancer cells, in addition to hemocompatible nature and
noncytotoxic effects [102].

Targeting ability of the vehicles is very important as it provides target specific
release of the active agents to the disease sites and avoids the site effects of the toxic
drugs on healthy tissues. Polymeric nanoparticles could be decorated by targeting
agents for specific delivery. To create targeted release systems, different agents such
as antibodies, peptides, small molecules, aptamers, designed proteins, and nucleic
acid can be attached to carrier materials by chemical bonding [118, 148, 149]. These
targeting moieties are conjugated with polymeric nanoparticles by using chemical
linkers to obtain bionanoconjugates for site-specific delivery. Poly(ethylene) glycol
(PEG) is a well-known linker for the bioconjugation process for these molecules
owing to various customizable end functional groups and tunable polymeric chain
lengths. These types of bionanoconjugates have many advantages and disadvantages
based on design techniques and materials used [148]. In one study, targeted drug
carrier nanovehicles derived from dextran-spermine biopolymers were synthesized
by conjugation with transferrin as a targeting agent and capecitabine as a cancer drug
for treatment of brain tumors. This system is a promising material for the treatment
of brain tumor with increased drug transport across the blood brain barrier and
pH-triggered cellular uptake. Therefore, these types of biopolymeric nanocarrier
systems can be used for in vivo diagnosis and tumor treatment applications because
of outstanding properties including site-specific delivery to the brain with targeting
ability and imaging and monitoring of therapeutic effect of drug due to magnetic
properties. The use of this targeted drug delivery system in the treatment of cancer-
ous cells can reduce drug loss and side effects [144]. In a study, AMD3100-coated
dextrin nanogels were synthesized and loaded with Dox, a cancer drug, for targeted
drug release in metastatic breast cancer. CXCR4 receptors and their cognate ligand
SDF-1 are regulated at the metastasis site of breast cancer. The inhibition of the
interaction of these molecules by receptor antagonists such as AMD3100 could
inhibit tumor growth, induce apoptosis, and prevent metastatic spread. These studies
revealed that the use of Dox-loaded AMD3100-coated dextrin nanogels could
directly be taken up by the cancer cells due to tumor targeting with AMD3100
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agents, leading to the inhibition of tumor metastasis and reduction of cancer cell
proliferation with greater cytotoxicity for breast cancer treatments [133].

16.5 Concluding Remark

This chapter highlights the preparation of tunable biopolymeric drug carrier
nanovehicles by utilizing different methods in the synthesis process and a variety
of drug loading techniques with recent advantages of these nanocarriers for delivery
applications with clinical evidence. Recently, biopolymers have gained tremendous
interest for the development of nanocarrier systems because of their inherent
features, e.g., mucoadhesive, nontoxic, nonimmunogenic, biocompatible, biode-
gradable, and biomimetic properties and more importantly tunable functionality
for drug delivery in biological systems. For example, these carriers can enhance
drug bioavailability, decrease drug side effects, improve solubility, protect the drug
molecules from harsh environments, enable higher drug efficacy, increase the
residence time of drugs, and so on. Thus, various studies on the design of
biopolymeric carrier systems for the regulation of pharmacokinetic and pharmaco-
dynamic abilities of therapeutic agents through tunable morphology and chemical
structures will be continuously performed. Especially, due to nanometer size and
modifiable surface characteristics, these carriers can directly cross the cell membrane
and offer good biodistribution, also promoting drug targeting of specific sites. In
order to produce effective and targeted drug delivery systems, numerous techniques
such as modification, coating, marking, or conjugating with targeting agents could
be performed. The therapeutic agent loading techniques using physical adsorption,
chemical linkage, and encapsulation methods also affect the loading efficacy and
release time, as well as stability, solubility, toxicity, and bioactivity of delivery
systems. To summarize, the use of biopolymer-based nanoparticles as nanocarriers
in controlled delivery systems is adaptable, safe, and feasible for therapeutic and
clinical applications due to (1) control of particle size, e.g., nanometer range to
facilitate cellular uptake and phagocyte system, (2) ability to modify and conjugate
to increase the efficiency of the nanocarrier system, such as greater drug loading/
release, and (3) targetability and on-demand release capability via smarter stimuli-
responsive nanovehicles. These promising drug carrier biopolymeric nanovehicles
are becoming indispensable materials for a wide range of biomedicine utilizations,
e.g., for ocular delivery, gene therapy, diabetic treatment, and especially cancer
treatments with chemotherapy.
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Abstract

From the last two decades, many technological inventions and high-end equip-
ment are available for cancer detection, diagnosis, and treatment modalities.
However, the complete cure for cancer is not possible till date. Effectiveness of
the treatment depends on the tumor size, lymph node involvement, and distant
metastasis. Recent chemotherapeutic drugs have improved therapy but the
problems of inability to reach tumor site, crossing of BBB at effective doses,
toxicity, and poor pharmacokinetics still persists. The advanced-stage tumors are
aggressive and existing chemotherapeutics are not effective, possess side effects,
and recovery is not possible. The mode of management for metastatic tumors is
fairly dependent on the available treatments; however, in solid tumors, they are
much more dependent on the type of biomarkers and their expression pattern
which can serve as diagnostic, predictive, and prognostic markers. The novel
nano approaches used in treatment modalities for solid tumors are also discussed.

Almost all existing chemotherapeutic drugs are administered either in the
adjuvant and neoadjuvant settings depending on the pathological staging and
tumor burden as per the National Comprehensive Cancer Network (NCCN)
guidelines. This chapter gives an insight into the pathophysiology, signaling
pathway of solid tumors of lung, head & neck, and breast cancer, with the recent
research utilizing nanoformulations to treat respective organ cancer is also
discussed. Finally, the ways to overcome hurdles persisting in solid tumors and
nanotechnology-based approach are discussed.
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17.1 Introduction

Cancer is a disorder of cell cycle regulation. The mechanics of the molecular
pathways that control cell cycle are often mutated and disturbed in neoplasia. Cell
cycle progression of mutated cell leading to uncontrolled cell proliferation is criti-
cally dependent on the cumulative mitogenic stimuli received from diverse sources.
The changes at cellular, genetic, and epigenetic levels cause abnormal cell division
leading to carcinogenesis. The programmed cell death, apoptosis, is disturbed when
there are mutations in DNA and other epimutations leading to uncontrolled cell
division. Only certain mutations are responsible for carcinogenesis. Apart from
genetic and epigenetic causes, DNA damage is one of the primary causes of cancer.
Factors causing DNA damage can be endogenous (reactive oxygen species) or
exogenous like tobacco consumption, smoking, alcohol consumption, environmen-
tal chemicals, UV solar radiation, human papillomavirus, etc. Such agents that can
alter the DNA or other related systems in the body to cause cancer are called
initiators of cancer development. This is followed by the influence of promoters
which help in cell proliferation. This further leads to progression wherein the benign
tumor develops characteristics favorable for malignancy.

17.1.1 Stages of Tumor Development

Carcinoma is a multistage process with the following steps:

1. Hyperplasia: The mutated cell divides in an uncontrolled manner
2. Dysplasia: The genetic changes in the hyperplastic cells lead to abnormal growth

and disorganization
3. Carcinoma in situ: Here. the altered cells become de-differentiated or anaplastic.

At this stage, the altered cells remain confined to their initial location without
invasion to other tissues

4. Malignant tumors: The cells invade to neighboring tissues, i.e., metastasize to
healthy tissues.

This chapter gives a detailed insight into carcinogenesis of breast, lung. and oral
and lip cavity including nanoparticles used to treat them. Finally, it gives an insight
into the use of novel nano approaches to tackle various hurdles presented by tumors.

Solid tumor is an abnormal mass of tissue that usually does not contain cysts or
liquid areas. Solid tumors may be benign (not cancer), or malignant (cancer).
Different types of solid tumors are named for the type of cells that form them.
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Uncontrolled growth of lung cells causes tumor that reduces a person’s ability to
breathe. Lung cancer is mostly categorized as Non-small cell lung cancer (NSCLC)
and Small cell lung cancer (SCLC). NSCLC is the most common and is classified
into lung adenocarcinomas, squamous cell carcinomas, and large cell carcinomas.
SCLC is the second most common form and is termed based on the appearance of the
cells under the microscope. Similarly, Head and neck cancer remains the sixth most
commonly occurring cancer globally having high mortality rate especially in devel-
oping countries. Squamous cell carcinoma is the general form of head and neck
cancer affecting oral cavity, larynx, paranasal sinuses, pharynx, and nasal cavity. On
the other hand, Breast cancer is the most frequently occurring malignancy in women
having an incline incident rate. Due to its highly heterogeneous characteristics, this
cancer type has shown to have a few cases where there is slow growth with an
excellent prognosis, and others just having aggressive tumors [1]. Breast cancer is
classified mainly into three types based upon the presence or absence of different
markers mainly in the breast cancer cells. Hormone receptor-positive breast cancer
has either the estrogen receptor (ER) or progesterone receptor (PR) protein in the
cancerous cells and this type of cancer makes up to 70% of all breast cancer. ERBB2-
positive (also known as HER2-positive) breast cancer has high levels of ERBB2
protein and is reported to make up to 15% to 20% of breast cancer. Triple-negative
breast cancer lacks all the three ER, PR, or ERBB2 protein and generally constitute
to 15% of breast cancer cases [2].

17.1.2 Epidemiology

Briefly, epidemiology of different cancers is such that in India, considering both the
sexes, widely prevalent cancer includes those of breast, lip and oral cavity, and
lungs. The statistics of mortality are no different with the highest mortality observed
in the order of breast, lip and oral cavity, and lungs (refer Table 17.1).

From the last century, lung carcinoma has progressed from a rare and obscure
disease to the utmost common cancer in the world and the most prevailing cause of
death from cancer. Lung cancer is a foremost reason of death worldwide; according
to WHO, in 2018, 2.09 million new cases were estimated. In men, lung cancer is the
most frequently occurring cancer, and in women, it is the third most frequently
occurring cancer. 1,368,524 new cases of lung cancer in men were diagnosed and
725,352 in women were reported [American Institute for Cancer Research]. Risk of

Table 17.1 Statistics of mortality as per WHO, Globocan, 2018

Cancer Rank Incidence (%) Mortality (%)

Breast 1 15.46 12.11

Lip and oral cavity 2 11.42 10.09

Lungs 4- Incidence
3- Mortality

6.45 8.82

17 Nanomedicine for Challenging Solid Tumors: Recent Trends and Future Ahead 435



evolving lung cancer in women is about 1 in 17 and for men, the chance is about
1 in 15.

Worldwide, head and neck cancer estimate for >650,000 cases and 330,000
deaths yearly. Head and neck cancer estimate for 3% of malignancy in the US,
with almost 10,800 Americans dying and 53,000 emerging head and neck cancer
every year from the disease. The occurrence of head and neck cancer is twofold less
in females than males with ratio covering from 4:1 to 2:1. The prevalence rate of
head and neck cancer in males is twenty per one lakh in regions of Hong Kong,
Brazil, the Indian subcontinent, Eastern and Central Europe, Spain, France, and
Italy, and among African Americans in the US. In India, tongue and mouth cancers
are common; in Hong Kong, nasopharyngeal cancer is common and laryngeal/
pharyngeal cancers are found more common in different populations. In 2018,
about 120,000 new cases of OCC were observed in India, out of which 72,000
patients died.

Around 1 million cases have been reported across the globe every year signifying
that breast cancer is rapidly growing and seems to be the most common malignancy.
More than 14,000 deaths have been reported each year and it has been more
specifically observed among women of age group of 50–64 [3]. Due to a high and
increased incident rate as well as mortality rate, breast cancers have now become the
most common malignancy of all cancer types. A huge increased trend of breast
cancer cases has been observed in several Asian countries, parts of South America,
and Africa [4]. It is predicted that the occurrence of this cancer type might reach up
to approximately 3.2 million new cases over a period of 20–30 years.

17.1.3 Risk Factors

Genetic, environmental, and behavioral are the major risk factors for the develop-
ment of lung cancer. For lung cancer, behavioral risk factors consist of smoking and
tobacco. The solitary greatest risk factor in the growth of lung cancer is the use of
tobacco cigarettes, with up to 90% of lung cancers attributed to smoking [5].

The foremost risk factor responsible for HNSCC comprises consumption of
tobacco (both ‘smokeless’ and smoked), more consumption of any of the alcoholic
beverage, the mastication of areca nut, HPV (human papillomavirus) (HPV-18 and
HPV-16), and any human herpesviruses (HHVs) (HHV-4). Nowadays, it has been
observed that the patients analyzed with oropharyngeal cancer are young and those
who have never smoked or consumed any products like tobacco. One of the major
risk factors for cancer of lip, specifically of the lower lip is ultraviolet radiation.
Radon, asbestos, pollution, air quality, infection, and inflammation in the lungs are
the environmental risk factors which may lead to lung cancer. Genetic risk factors
are also responsible for the growth of lung cancer. GWAS (Genome-Wide
Association Studies) related chromosome regions 15q25-26, 6q21, and 5p15 with
augmented risk for lung cancer. Adenocarcinomas mutations like EGFR and EML4-
ALK are related in non-smokers.
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In recent years, the percentage of lung cancer in non-smoker (LCINS) has
augmented, even after monitoring for race or ethnicity and gender. Worldwide, it
is estimated that 25% of lung cancer patients are non-smokers. Environmental risk
factors are stated to play a major role in LCINS, comprising smoke exposure,
occupational exposures, environmental particulate matter, radon, and indoor air
pollution. Consequent bacterial load in mouth and poor oral hygiene are emerging
as noteworthy risk factors for oral cancer. Additionally, epidemiological studies
showed that industrial employment along with occupational exposures to asbestos,
wood dust, solvents or acid mists, and textiles and leather manufacturing are related
with an amplified risk of HNSCC.

Various studies have been reported earlier stating that nearly 20–30% of breast
cancer cases have been associated with the occurrence of various risk factors that
contribute majorly to this disease. These risk factors have been categorized mainly
into two: (1) Intrinsic Factors and (2) Extrinsic Factors. The intrinsic risk factors
mainly involve age, sex, race, and genetic makeup of an individual. The second set
of risk factors comprise mainly of the diet, lifestyle, and other environmental factors
[6]. Moreover, it has also been reported that breast density also plays a major role in
conferring the risk of this disease. Increase in the density contributes to a major risk
as compared to patients having low breast density [7].

17.1.4 Pathophysiology

EGFR (Epidermal Growth Factor Receptor) is a prototypical member of a TKs
receptor (tyrosine kinase) family, which consists of four receptors: EGFR
(HER1, ERBB1), ERBB2 (Neu, HER2), ERBB3 (HER3), and ERBB4
(HER4). The epidermal growth factor and transforming growth factor are the
distinctly recognized targets of EGF receptor [93]. EGFR generates a dimer with
another EGFR once it binds with its ligands, and causes autophosphorylation.
This autophosphorylation further activates intracellular signalling events com-
prising, Ras/Raf/mitogen activated protein kinase (MAPK), protein kinase C
(PKC) pathways, signal transducer and activator of transcription (STAT), mam-
malian target of rapamycin (mTOR), Janus kinase (Jak), phosphatidylinositol-
3kinase (PI3K), AKT [94] enabling cell growth, survival, angiogenesis and
metastasis [95]. EGFR plays a vital role in squamous cells and transmitting the
message via the Ras–MAPK, PI3K–PTEN–AKT and phospholipase C pathways.
Intranuclear EGFR stimulates CCND1, connecting progression of cell cycle to
mitogen stimulation.

EGFR downregulation has been observed in multiple tumor types, including
lung cancer, breast cancer, and HNSCC. Signaling pathway of EGFR genes has
been known to be mutated in HNSCC and lung cancer. It was evaluated that
recurrent EGFR gene overexpression is reported in about 90% of HNSCC
tumors, 62% in squamous cell of NSCLCs, and in subtypes of ADC.
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Overexpression of EGFR is frequently related with adverse prognosis. On the
basis of geographical location, KRAS and EGFR mutations have been found in
ten to 30% of NSCLCs.

It has been found that the EGFR has been directly linked to phosphorylation of
stearoylCoA desaturase-1 (SCD1), thereby in the upregulation of monounsaturated
fatty acid production. Owing to its significant role in cancer, several EGFR-targeted
therapies have also been developed. Further challenge that lies in the way is to
understand more EGFR-targeted therapies and how it interplays membrane traffick-
ing for cancer treatment. This may further help to increase the efficacy and overcome
or delay the occurrence of resistance to such treatment.

RAS/RAF/MEK Pathway
In the RAS/RAF/MEK pathway, the RAS genes activating oncogenic mutations are
common in various human cancers, along with lung cancer. Not only in SCLCs but
in 10–15% of NSCLCs mainly in adenocarcinoma (20–30%), RAS mutations are
found. The mutations arise at various hot spots in genes affecting 12, 13, and
61 codons which activate intrinsic GTPase action. In lung cancer, about 90% of
the RAS mutations are found to be KRAS mutations. Multiple number of drugs have
been developed that aim to target various aspects of RAS metabolism and function.
Downstream effecter of the RAS pathway is a BRAF protein threonine/serine
kinase. BRAFmutations arise rarely in lung cancers (3% of NSCLCs), but frequently
in melanoma (70%) [8].

The mitogen-activated protein kinases (MAPK) pathway, involving a cascade of
protein kinases composed of RAS, RAF, mitogen-activated protein/extracellular
signal-regulated kinase (MEK), is one of the best-characterized signaling cascades
that regulate a variety of normal cellular functions. Targeting the MAPK pathway
has gained insight into the field of cancer therapy. ERK inhibitors have also been
reported to become the optimal target to overcome acquired drug resistance in the
RAF-MEK-ERK pathway [9]. Specifically, the MEK1 andMEK2 inhibitors, homol-
ogous in nature and because of their dual specificity, sharing ERK as their only
known catalytic substrate, makes MEK a promising target for cancer drug develop-
ment in future [10]. The identification of relevant biomarkers specifically of MEK
inhibitor responses remains a major challenge, and also seems to be a promising
approach for tailoring individualized therapies.

ALK fusion (Anaplastic lymphoma kinase fusion proteins) may play a role in
stimulating RAS. Thus, it is undesirably related with the existence of EGFR or
KRAS mutations, and might favor histology of ADC and non-smoker status. Seven
percent of NSCLCs results in the initiation of an effective ALK fusion protein.
Augmentation of any of theMYC family member occurs in SCLCs of 18–31% and in
NSCLCs of 8–20%. Amplification of MYC occurs in both NSCLC and SCLC;
however, amplifications of MYCL and MYCN always arise in SCLC [11].
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The p53 Pathway
p53 functions include DNA damage, as a sensor of numerous stress signals, hypoxia,
and activation of oncogene. This transcription factor has downstream target genes
involving cell cycle arrests (G1 and G2), DNA repair or apoptosis, and upstream
regulatory genes, including p14 and Mdm2. In lung cancer, p53 is the utmost
commonly mutated gene. In DNA-binding domain, deactivating mutations are
exhibited in 90% of SCLC and 50% of NSCLC. Amplification of Mdm2 is infre-
quent (6% of NSCLC), though at the level of protein and mRNA overexpression is
recurrent, occurring in 30% of both NSCLC and SCLC [12]. Over 80% of HPV-ve
HNSCCs have mutations of p53 which results in the loss of function.
Overexpression or amplification of any other family member of p53, TP63, is
evaluated in about 80% of HNSCCs [13]. The p53 downstream pathway comprises
of p53 transcription target genes, which play vital roles in the death receptor pathway
and the mitochondrial apoptotic pathway: Bcl-2 the anti-apoptotic gene and Bax the
pro-apoptotic gene are upregulated and downregulated by p53, respectively;
TRAIL-death receptor 5 (tumor necrosis factor receptor-like apoptosis inducing
ligand receptor DR5) is included in the family of tumor necrosis factor receptor. In
lung cancer, these 4 factors are mainly downregulated, which results in outcomes of
robust resistance in mitochondrial and death receptor-induced apoptosis.

Currently, there have been least six different approaches reported to treat these
cancer cells with mutant or wild-type form of the tumor suppressor gene. Immuno-
therapy and virus-gene-mediated therapy have gained much insight into the current
scenario [14]. Loss of p53 suppressor gene can also facilitate switching mechanism
with regard to resistance during any anti-androgen therapy in prostate cancer too.
Thus, this tumor suppressor gene p53 pathway considered as the bridging point
between the apoptotic mechanisms itself confers a novel therapeutic approach in
treating cancer.

PI-3K/AKT Pathway
The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling path-
way is known to be involved in the regulation of various multiple cellular physio-
logical processes. One of the important approaches in recent times for the treatment
of tumors is to rationally design a specific drug using molecular targets in the PI3K/
AKT signaling pathway [15]. In the current status for the treatment for the PI3K/
AKT signaling pathway, various mTOR blockers have been studied extensively.
Activation of such PI3K/mTOR proves to be a common mediator of resistance to
various anticancer agents that includes conventional chemotherapy. The recent
development of CRISPR/Cas9 technology has also been shown to play a role for
the regulation of PI-3K/AKT pathway. In spite of its role in cancer biology, PI3Ks
have also been found to play a major role in the regulation of cellular metabolism and
in immune system functions [16]. PI3K inhibitors also have gained their importance
with CDK4/6 inhibitors in breast cancer in recent times.
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PI 6INK4/Cyclin Pathway
Preclinical and clinical data suggest that CDK 4/6 inhibitors have significant poten-
tial in breast cancer treatment. CDK 4/6 inhibitors have shown to have antitumor
activity, and ongoing studies are exploring the combination of these agents with
existing endocrine treatments and with inhibitors of various upstream and down-
stream signaling molecules. Reports claim that combining PI3K inhibitor with an
antiestrogen resulted in much enhanced, robust tumor regression during the preclini-
cal trial. Although endocrine therapy is primarily being focused as one of the main
treatments for ER+ breast cancer, there is an increased requirement for novel
treatment approaches due to the de novo and acquired resistance that mainly occurs
in many patients with the progression of this disease [17]. However, identifying the
optimal treatment combinations and refining the suitable biomarkers that will be
beneficiary to the patient response for the treatment needs to be explored and still
remain the major challenge.

In p16INK4/cyclin D1/Rb pathway, the first tumor suppressor gene to be known
is the Rb gene, and is the downstream effector of G1 arrest mediated by p53 through
initiation of the CDK inhibitor p21 (cyclin-dependent kinase). *Rb protein loss
arises in 90% and 70% of high-grade neuroendocrine SCLC and LCNEC tumors,
and in 15% of NSCLC. Rb inactivation functions by NSCLC phosphorylation is
mainly attained by the p16 CDK expression loss or overexpression of cyclins E and
D1. RB is mainly lost in SCLC, but cyclin D1 or p16INK4 alterations are
infrequent [12].

MYC
The MYC gene family encodes three nuclear phosphoproteins (MYC, MYCN, and
MYCL), which heterodimerize with MAX proteins and function as transcription
factors for genes in a variety of cellular processes, including cell growth, cell
proliferation, and apoptosis. Myc has been considered as the most common
deregulated oncoproteins in all cancer types [8]. Certain drug-eluting stents, which
released Myc inhibitors continuously for short distances, seem to be promising mean
by which high-local compound concentrations could be achieved, thus overcoming
some of the pharmacologic drug-related shortcomings [18]. Understanding how
Myc reprograms itself into various metabolic pathways seems to be a promising
approach to understand the mechanism of altered oncoproteins. Deregulating MYC
in cancer has also a great potential as a therapeutic approach for studying the
inhibition of such potent oncogene in cancer [19]. Also, it has been reported that
the MYC protein expression interplays with the B-cells and B-cell lymphoma,
thereby providing evidence that the MYC-responsive machinery might have signifi-
cance with relation to the modifications in B-cell lymphoma [20]. Amplification of
one member of the MYC family occurs in 18% to 31% of SCLCs and in 8–20% of
NSCLCs.MYC amplification occurs in both SCLC and NSCLC, whereasMYCN and
MYCL amplifications nearly always occur in SCLC.
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TGFβ (Transforming Growth Factor-β) Pathway
TGFβ (transforming growth factor-β) pathway is a significant and inhibitory growth
factor pathway associated with lung cancer and HNSCC. TGFβ1 functions through
the TGFβ receptors, and the signal is transduced by SMAD3 and SMAD2 phosphor-
ylation, which, together with SMAD4, monitors the target genes transcription.
Mutations with SMAD2, SMAD4, and SMAD3 have also been reported in
HNSCC and NSCLC [21].

Notch Signaling Pathway
The Notch signaling pathway is associated with the regulation of cell cycle exit,
survival, and self-renewal capacity. In mammals, this signaling is comprised of
4 receptor isoform (Notch1, Notch2, Notch3, Notch4) and five ligands: DLL1
(Delta-like 1), DLL3 (Delta-like 3), DLL4 (Delta-like 4), Jagged 1 and 2. The
pathway is initiated when any cell expressing a notch receptor interacts with the
appropriate ligand expressing on another cell. The Notch signaling pathway is
activated in lung cancer and HNSCC [22]. Inhibition of this pathway is a potential
therapeutic method of lung cancer and HNSCC. In HPV +ve, HPV-ve HNSCCs and
lung cancer, abnormal regulation of STAT (the signal transducer and activator of
transcription) family has been stated. STAT3, STAT5, and STAT6 are
overexpressed in NSCLC and upregulation of STAT3 and its gene targets contribute
to the malignancy of HNSCCs, resistance to chemotherapy, radiotherapy, and
EGFR-targeted therapy.

17.2 Treatment

The standard common treatments available for treating cancer are surgery, radiation,
and chemotherapy. For better efficacy, different combinations of treatments are used
depending on the stage of cancer and its primary site. Classic open surgery or
minimally invasive procedures like transoral robotic surgery (TORS) or laser sur-
gery are employed depending on the anatomy and tumor characteristics. All of these
treatments are associated with toxicity leading to some degree of late organ dysfunc-
tion that may be substantial whether a surgical or nonsurgical approach is taken.
Immunotherapy is used as novel therapy for treating cancer and also called as
biologic therapy intended to boost the natural defense of body to fight cancer.
Adoptive cell therapy, vaccines, immune checkpoint inhibitors, and monoclonal
antibodies are included in immunotherapy [23].

Immune Checkpoint Inhibitors Programmed Cell Death protein-1 (PD-1) is an
immunoreceptor and a negative regulator of the immune response. Interaction
between PD-1 and its ligands, PD-L1 and PD-L2, on tumor cells leads to
downregulation of T-cell response in the tumor microenvironment. Cytotoxic T
lymphocyte-associated protein 4 (CTLA-4) is expressed mainly on T cells (CD4+,
helper and CD8+, killer T cells) with some expression in other immune cells
including B lymphocytes and fibroblasts. There is an overexpression of PD1/PD-
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L1 and CTLA-4 in lung and head and neck cancer. Nivolumab and Pembrolizumab
are two FDA-approved PD-1 blocking antibodies for lung cancer and head and neck
cancer. Some of the FDA-approved PD-L1 blocking antibodies are Atezolizumab,
Durvalumab, and Avelumab. Ipilimumab and Tremelimumab are two most well-
known CTLA-4 blocking antibodies. Clinical trials for CTLA-4 inhibitors,
Ipilimumab and Tremelimumab, are still ongoing because of their promising effect
on NSCLC [23].

Targeted Antibodies
Anti-Epidermal Growth Factor Receptor (EGFR) Antibodies

Cetuximab inhibits the phosphorylation of EGFR and transmission of signals to
the cell, due to it preventing the attachment of other ligands via its direct binding to
the receptor.

It is noteworthy that despite the high EGFR expression in tumor cells of HNSCC,
the response rate of cetuximab monotherapy ranges between 10 and 15% in the
treatment of recurrent or metastatic stage of the disease.

Erlotinib, Gefitinib, and Afatinib are approved as first-line treatments for target-
able EGFR alterations.

Panitumumab is a completely human EGFR monoclonal antibody. Other human
EGFR antibodies include zalutumumab and nimotuzumab. Nimotuzumab has a
promising effect in patients with advanced HNSCC.

Some monoclonal antibodies, such as Nimotuzumab and Ficlatuzumab, have
shown efficacy in combination with chemotherapy and radiotherapy. Nimotuzumab
(h-R3) is a humanized monoclonal antibody to EGFR, which binds to this receptor
and inhibits binding of EGFR to cancer cells. It is in clinical trials for NSCLC.
Ficlatuzumab is a monoclonal antibody (IgG1) humanized and directed to hepato-
cyte mesenchymal intraepithelial (HGF) and is currently under study for NSCLC and
its combination with Nimutuzumab has revealed signficant efficacy together with
chemotherapy and radiotherapy [24].

Anti-Vascular Endothelial Growth Factor (VEGF) Antibodies
The most common molecules used in targeted therapies are Bevacizumab, Sorafenib,
Sunitinib, and Vandetanib. Bevacizumab is a humanized monoclonal antibody that
targets VEGF-A. The antitumor therapy uses its ability to inhibit angiogenesis and to
increase the delivery of chemotherapeutic agents to tumor cells by reducing micro-
vascular permeability and reducing the pressure inside the tumor. Bevacizumab was
approved by the FDA for treatment of advanced cancer types, including colon
cancer, kidney cancer, cervical cancer, and brain cancer. Preclinical trials reported
that Bevacizumab has the ability to increase the sensitivity of HNSCC to
radiotherapy.

A biomarker study indicates that bevacizumab also improved tumor vasculature
and blood perfusion in NSCLC patients.

Other VEGF inhibitors that are evaluated in clinical trials for the treatment of
HNSCC include Pazopanib, Axitinib, Nilotinib, and Linifanib [24].
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ALK Inhibitors
Crizotinib is a multi-targeted TKI that is active against ALK, ROS1, and MET. It has
been approved as a first-line treatment for ALK+ or ROS1+ NSCLC. Ceritinib and
Alectinib are second-generation ALK TKIs approved for Crizotinib-resistant or
intolerant cases.

Brigatinib was given to 222 patients with Crizotinib refractory, ALK+ NSCLC
under a phase II study (ALTA, NCT02094573).

Lorlatinib (PF-06463922) was tested in phase I/II study (NCT01970865) of ALK
+/ROS+ NSCLC. A majority of the participants had prior treatment with
�2 ALK TKIs.

Ensartinib (X-396) is a novel ALK inhibitor with additional activity against
ROS1, MET, SLK, Axl, LTK, ABL, and EPHA2. A phase 3 study
(NCT02767804) comparing Ensartinib and Crizotinib in a front-line setting is
currently recruiting patients.

MET Inhibitors
Crizotinib has shown some activity in selected MET-amplified and exon 14-skipping
mutant NSCLC (NCT00585195). Cabozantinib, a multi-targeted MET inhibitor,
was given to five patients with exon 14 mutations and had a stable disease for
5 months. Capmatinib (INC280) is a selective MET inhibitor. In a phase I study
(NCT01324479), relapsed NSCLC patients with high cMET expression were given
Capmatinib.

RET Inhibitors
Vandetanib, Sorafenib, Sunitinib, Lenvatinib, Ponatinib, and Cabozantinib are
multi-targeted TKIs with RET-blocking activity. They are currently approved for
other malignancies. In a phase 2 study with Cabozantinib, 38% PR was seen among
16 evaluable patients, and there was a median PFS of 7 months. Vandetanib in
advanced RET-rearranged NSCLC showed an ORR 53%, a DCR 88%, and a
median PFS of 4.7 months in 17 eligible patients. In a phase 1 study
(NCT01582191), Vandetanib was combined with Everolimus (mTOR (mammalian
target of rapamycin) inhibitor) to prevent resistance development based on in-vitro
studies.

PI3K Inhibitors
PQR309 is a pan-PI3K, mTOR inhibitor. Its safety and maximum tolerated dose
have been recently established in a phase 1 study (NCT02483858 (completed)) with
advance solid cancers. No response data are available for NSCLC cohort.

BRAF/MEK Inhibitors
Vemurafenib and Dabrafenib are currently approved for BRAF V600E-positive
malignant melanomas, but single-agent activity in BRAF V600E-positive NSCLC
is limited. Dabrafenib had an ORR of 33% in platinum refractory cases with a
median duration of response of 9.6 months in a single study (NCT01336634).
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mTOR Inhibitors
The first-generation inhibitors are derived from rapamycin, a macrolide antibiotic
that is produced by Streptomyces hygroscopicus bacteria. Rapamycin forms a
complex with the cytoplasmic protein peptidyl-prolyl cis-trans isomerase tacrolimus
binding protein, which connects to mTOR. There are rapamycin analogues, which
are used in humans, including Temsirolimus and Everolimus. The second-generation
mTOR inhibitors are ATP-competitive and include Torin1, PP242, and PP30.
Temsirolimus is an intravenous drug that was approved by the FDA for the treatment
of kidney cancer. The results of several trials performed in vitro on cell lines and
in vivo on models of xenograft demonstrated that Temsirolimus inhibits proliferation
of HNC. Researchers are currently waiting for the results of phase I/II trial, which
used Temsirolimus in combination with the weekly administration of chemotherapy
with paclitaxel and carboplatin in recurrent or metastatic HNSCC (NCT01016769).
Everolimus is another mTOR inhibitor, which is used as an immunosuppressant to
prevent organ transplant rejection and for the treatment of kidney cancer and other
cancer types. There are several trials that demonstrated antitumor effect of
Everolimus for the treatment of HNSCC. Currently, Everolimus is being evaluated
in several clinical trials. The randomized phase II trial compares Everolimus to
placebo in the adjuvant treatment of patients with locally advanced HNSCC
(NCT01111058).

Fibroblast Growth Factor Receptor (FGFR) Inhibitors
BGJ398 is a potent, selective pan-FGFR (Fibroblast Growth Factor Receptor).
FGFR1 amplification is found in around 21% of squamous NSCLC cases. In a
single phase 2 trial, 26 evaluable patients showed a PR of 15% and an SD if 35% in
dose >100 mg. Dovitinib is another FGFR inhibitor tested in squamous NSCLC.
Among 26 patients, the ORR was 11.5%, the DCR was 50%, and the median PFS
was 2.9 months.

17.2.1 Other Potential Targeted Therapies

Dalantercept (ACE-041) is a novel anti-angiogenic agent, which inhibits ALK1
signaling. In contrast to other anti-angiogenic agents, ACE-041 does not block the
proliferative phase of angiogenesis but it modulates the maturation phase of
angiogenesis.

Bortezomib is the first therapeutic proteasome inhibitor to be tested in humans
and has demonstrated 50% disease control rates in patients with recurrent and
metastatic HNSCC. Notably, recent studies demonstrated that the combination of
bortezomib with docetaxel, or with cetuximab and radiotherapy, may result in
reduced progression-free survival (PFS) or overall survival (OS).

G-Protein Coupled Receptors (GPCRs) are the largest family of cell-surface
molecules involved in signal transmission and their improved understanding may
provide promising opportunities for drug discovery in cancer prevention and treat-
ment. The Notch signaling pathway is associated with multiple biologic functions,
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including regulation of self-renewal capacity, differentiation, cell-cycle exit, and
survival. The Notch pathway may be a potential therapeutic target in the treatment of
different types of cancer. NOTCH1 mutations have been reported to occur in
10–15% of HNSCC. Increased activity of Notch has been observed in a number of
cancer types. Notch inhibition can be conducted by inhibiting four receptors using
γ-secretase inhibitors; however, they do not inhibit Notch activation but reduce the
activity of further γ-secretase substrates. The tumor suppressor role of Notch signal-
ing requires to be evaluated in further studies.

Both CCND1 and CDKN2A alterations can lead to an increase in downstream
CDK4/6 signaling. The CDK4/6 inhibitor Palbociclib has recently been approved
for breast cancer. In head and neck cancer, Palbociclib has been tested in combina-
tion with cetuximab in a phase I trial and was well tolerated. Some preliminary
efficacy was observed, and a phase II study is currently enrolling patients
(NCT02499120).

17.3 Current Challenges

For lung cancer, the standard treatment includes surgery, chemotherapy, radiation
therapy, and immunotherapy. Radiation therapy, as well as surgery, cannot be used
to treat widely spread lung cancer. A combination of two or more chemo drugs is
used for better efficacy. However, chemotherapy may also damage healthy cells in
the body, including blood cells, skin cells, and nerve cells. Moreover, chemotherapy
may lead to relapse and development of resistance leading to lethality and mortality.
Thus, because of several disadvantages of chemotherapy and recent advantages
being offered by immunotherapy, it is used as novel approach for lung cancer.
Immunotherapy includes adoptive cell therapy, monoclonal antibodies, vaccines,
and immune checkpoint inhibitors. But primary and adaptive resistance to immuno-
therapy might occur which limits the efficacy of treatment by following patients
under immunotherapy. Immunotherapy may lead to immune-related adverse events
(irAEs) in a significant figure because of the initiation of over immune reactivity
stimulation, else due to the induction of absolute autoimmune phenomena. This calls
for concepts of nano-drug delivery and nanotechnology in medicine [23].

17.3.1 Tumor Challenges and Nanoformulations to Overcome It

The tumor itself plays a resistive role in allowing drugs to show their effect. Solid
tumors of breast and lung cancer and malignancies of different organs present a very
challenging scenario to target and cause a hindrance to drug to act on them. The
physiological properties of these tumors demand advanced and novel formulations
that can permeate these complex structures and show their effects. Apart from this, a
major challenge is faced by formulators to design a formulation that reduces the
off-target effects of these cytotoxic anti-cancer drugs. These off-target effects are the
major reason for side effects [25]. Tumors present complexities like tumor interstitial
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fluid pressure (TIFP) [26], tumor microenvironment (TME) hypoxia [27], complex
extracellular matrix with increased fibroblast causing a rise in TIFP, solid tumors
having high cell packing and density [28]. Most tumors lack lymphatic vessels but
have extensive blood vessel development (angiogenesis) [29] which are tortuous and
varied in spatial distribution that act as a hindrance for drug to penetrate. Novel drug
delivery system focuses on overcoming these barriers and improving efficacy [30] of
anticancer drugs. Formulation strategies focus on passive tumor targeting, where it
exploits the enhanced permeability and retention effect (EPR) and [31], wherein the
leaky tumor vasculature allows nanoparticles enter the tumor. Active tumor targeting
focuses on attaching ligands like folic acid that specifically attach to folate receptors
expressed in certain cancers [32]. The vast array of barriers presented by tumor
demands the utilization of novel drug delivery systems, smart drug delivery systems
like pH responsive [33], thermoresponsive [34], etc., systems in treating cancer. The
following section covers the formulation and drug delivery strategies adopted to
overcome barriers in treating solid tumors and other malignancies.

Nanoparticles have emerged as potent drug carriers which on account of their
small size and large surface area to volume ratio have proven to be more efficacious
and decrease toxicity [35]. Nanoparticles can further dictate the release pattern of
drugs. Nanoparticles with a large surface area to volume ratio offer a platform for a
wide variety of surface modification which can help in targeting specific diseases
like cancer but also to organs like bones [36]. Surface modification with hydrophilic
systems can also help in decreasing uptake by mononuclear phagocytes which can in
turn prolong the circulation time in blood [37].

The following section covers the issues expressed by solid tumors of different
organs and the formulation strategies employed in recent years to overcome it.

17.3.1.1 Tumor Interstitial Fluid Pressure (TIFP)
Hypoxia (lack of oxygen) in tumor is responsible for increasing interstitial fluid
pressure. It depends on the size of the tumor to the nourishing blood vessels. If the
size of tumor volume exceeds 1–2 mm3 more than the nourishing blood vessels, the
tumor becomes devoid of oxygen and nutrients supplied to it. In such cases, to
compensate for the lack of oxygen and nutrients, the transcription factors, there is
rise in the number of growth factors like vascular endothelial growth factor-A
(VEGF-A) and platelet-derived growth factors (PDGF) that trigger angiogenesis
[38]. The VEGF is responsible for increases in the permeability of tumor vasculature
and increases the fenestrations [39]. Thus, angiogenesis leads to the formation of
new vessels and hence a rise in interstitial fluid [40]. The interstitial fluid pressure
(IFP) in normal tissues is 0–3 mmHg as compared to tumor tissues which are around
5–40 mmHg [41]. Factors responsible for increasing tumor interstitial fluid include:

1. Permeability of blood vessels
2. Poor lymphatic drainage
3. Dense extracellular matrix (ECM)
4. Dense collagen matrix
5. Rapid proliferation of cancer cells
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The abnormal tumor environment provides a window for improvement of formu-
lation and use of novel drug delivery systems to better target cancer.

Lipid Nanoparticles To Overcome TIFP
1. Nanostructured lipid carriers: Gao et al. developed modified cationic lipid

nanoparticles for decreasing IFP and hinder pulmonary metastasis of breast
cancer. The cationic nanostructured lipid carriers (NLCs) were modified with
low molecular weight gelatin. NLCs help in penetrating the lipid bilayer of cells
and increase the permeability. The NLC consisted of two anticancer drugs which
were docetaxel (DTX) and quercitin. This drug containing NLC core was
modified with low molecular weight gelatin owing to the fact that gelatin is
biocompatible, biodegradable, and low cost. The gelatin coat consisted of
Imatinib (IMA), a tyrosine kinase inhibitor (TKI). IMA has the potential to stop
the expression of Bcr-Abl gene and PDGF receptors as well [42]. It also has the
ability to inhibit excessively produced ECM by inhibiting PDGFR-β and
disrupting the “CAFs—ECM interaction [43]. This leads to decreased IFP and
better delivery of drugs to the target tumor. The concept was to use gelatin loaded
with IMA to decrease TIFP and enhance the uptake of NLCs loaded with DTX
and quercitin. NLCs were prepared by solvent injection, followed by solvent
evaporation. Briefly, the lipids glyceryl monostearate (GMS) and Caprylic/Capric
triglyceride (GTCC) were dissolved in methanol at 60 �C. To this, DTX and
quercitin were added to form organic phase I. Egg phosphatidylcholine (EPC)
and Tween 80 were added to ethanol and dissolved under ultrasonic waves. Both
the organic phases were mixed and then this was injected into aqueous phase
having water and cetrimonium bromide (CTAB). This was stirred at 60 �C at
600 rpm till the concentrated NLC was obtained. Preparation of GNPs (gelatin-
coated nanoparticles) was done by adding NLC solution drop by drop into 0.1%
gelatin aqueous solution (35 mL) containing 2 mg IMA in the water bath at 60 �C,
600 rpm for 30 min, and solidified for another 30 min in ice bath. In-vitro
cytotoxicity studies revealed that most decrease in cell viability was observed
with GNP-DTX/Qu/IMA which was with lowest IC50 value. This was due to
better interaction between cationic lipid and negatively charged cell membrane.
Apoptosis studies were such that highest to lowest apoptosis were of the order:
GNP-DTX/Qu/IMA > NLC-DTX/Qu > DTX + Qu > DTX. This clearly shows
that IMA in gelatin coat has additive effect to a large extent. The gelatin was
degraded by matrix metalloproteinases (MMP) to release IMA. This further
exposed the positively charged lipid which better interacted with negatively
charged cell membrane and released the cytotoxic cargo, DTX, and quercitin to
efficiently induce apoptosis. The decrease in IFP was also estimated by
GNP-DTX/Qu/IMA in comparison with saline. In-vivo studies on 4T1 tumor-
bearing mice found that the saline-administered mice had IFP of 29.8 mmHg and
NLC-administered formulation had IFP of 17.2 mmHg. In similar comparison for
reduction in tumor volume with saline, it was found that saline had a tumor
volume of (1622.4 � 272.6) mm3 and NLC had a tumor volume of
(568.4 � 73.6) mm3 [44].
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2. Liposomes: The hindrance of TIFP to drug penetration was overcome by a
liposomal formulation prepared by Fan et al. in which sterically stabilized
liposomal formulation (SSL) loaded with IMA and doxorubicin (Dox) was
individually and in combination was tested for decrease in TIFP and tumor
volume. Liposome was prepared from 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2000),
egg phosphatidyl choline (EPC), and cholesterol in ratios of (62.0: 31.8: 6.2,
m/m/m) for SSL-Dox and SSL-IMA (57.1: 37.9: 5.0, m/m/m). The liposomes
were prepared by thin film hydration technique in which DSPE-PEG2000, EPC,
and cholesterol were dissolved in chloroform and evaporated at 37 �C under
reduced pressure. The obtained dry lipid film was then hydrated with 123 mM or
300 mM ammonium sulfate for SSL-DOX or SSL-IMA, respectively. Following
this, a gradient developed by ammonium sulphate was utilized to elute the blank
liposomes from Sephadex G-50 column equilibrated with PBS (pH 7.4). Then,
after optimization of appropriate quantities of Dox and IMA, they were passively
loaded into blank liposomes and eluted from Sephadex G-50 column to remove
unentrapped drug. The tumor IFP was measured in C57BL/6 mice by inoculating
B16 cells to develop armpit melanoma model. The dose of SSL-IMA
administered i.v. was 20 mg/kg and that of free IMA was 100 mg/kg administered
by oral gavage. The tumor IFP reduced by 42.7% relative to the initial tumor IFP.
Single dose administered at 20 mg/mg of IMA also significantly reduced the
tumor IFP which lasted for 50 h. Probable mechanism could be that IMA blocks
PDGF-beta which in turn inhibits fibroblast, which are responsible for contractile
property contributing to high tumor IFP by rising matrix tension. IMA for this
reason also reduces the tumor vasculature. The decrease in IFP gave way to
administer SSL-Dox which showed antitumor effects at concentration as low as
1 mg/kg when administered with SSL-IMA [45].

17.3.1.2 Tumor Microenvironment Challenges

Low Tumor pH
Tumor microenvironment (TME) is often acidic and often hypoxic at many times.
Acidic TME is often due to metabolism happening at the cancer site. This low pH
makes the permeation dependent on ionizing property of drug. Weakly basic drug
often gets ionized at the acidic pH of the tumor and fail to permeate.

pH-sensitive Liposomes Masarweh et al. prepared sodium bicarbonate liposomal
nanoparticles. Sodium bicarbonate acted to raise the pH of the TME so that doxoru-
bicin uptake could be increased. Doxorubicin is a weakly basic drug whose absorp-
tion was found to be affected by the low pH of TME. Liposome formulation was
prepared from 50 mM hydrogenated soyabean phosphatidylcholine (55%), DSPE-
PEG2000 (5%), and cholesterol (40%), by dissolving in ethanol and warming it. This
was added to dextrose solution (5% w/v) containing sodium bicarbonate 0.5M,
warmed to the same temperature (65 �C). The multilamellar vesicles (MLV) formed
were then subjected to lipid extrusion through different sizes of polycarbonate
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membrane (400 nm, 200 nm, 100 nm, and 80 nm) to get uniform sized liposomes.
Doxorubicin was loaded on to liposome by active loading technique using ammo-
nium sulphate gradient. Effects of uptake of Dox in the presence of sodium bicar-
bonate was evaluated on triple-negative (4T1) breast cancer cell lines where it was
found that cells treated with doxorubicin had 48% viability compared to 12%
viability in cells treated with doxorubicin plus bicarbonate at an initial media pH
of 6.5. At pH 7.4, the effect of bicarbonate was minor (22 vs. 5% viability). In-vivo
studies on female BALB/c mice showed the potency of using liposomal dox in
combination with liposomal bicarbonate which manifested in best therapeutic out-
come to mice. It was also found that the liposomal dox with liposomal bicarbonate
mainly accumulated in extracellular matrix of tumor [46].

Long-circulating pH-Sensitive Liposomes Monteiro et al. developed long-
circulating pH-sensitive liposome formulation loaded with paclitaxel (PTX) for
targeting breast cancer. Lipids in this liposomal formulation is composed by
dioleylphosphatidyl-ethanolamine(DOPE), cholesteryl-emisuccinate (CHEMS),
distearoyl phosphatidyl-ethanolamine-polyethylene-glycol2000 (DSPE-PEG2000),
and distearoyl phosphatidyl-ethanolamine-polyethyleneglycol2000-folate (DSPE-
PEG2000-folate) in the molar ratio of 5.7:3.8:0.45:0.05, respectively. CHEMS has
the ability to protonate in lower pH of tumor thus converting itself to hexagonal
phase which assist in release of the drug. The method employed was thin film
hydration. To prepare the liposomes, PTX and lipids were dissolved in aliquots of
chloroform in a round bottom flask. It was then evaporated under reduced pressure to
obtain thin film. Hydration was done with NaCl (0.9% w/v), followed by vigorous
shaking. The formed vesicles were then sonicated at 20% amplitude in an ice bath for
5 min using ultrasonic high intensity processor. Folate was coated on to synthesized
liposomes by using 0.05% of DSPE-PEG2000-folate and adding it to the lipid film.
Biodistribution was done on BALB/c female nude mice and it was found that
maximum distribution in liver, spleen, and kidney. It was also found that percentage
release was higher as pH decreased, up to 30% in pH 6.8 and up to 70% in pH
5.0 [47].

pH-sensitive Silica Nanoparticles Bhavsar et al. developed pH-responsive
mesoporous silica nanoparticles (MSNs) for targeting breast cancer. The prepared
MSNs were further modified using succinic anhydride to produce carboxylic acid
functionalized MSN-COOH. The functionalized MSN-COOH were briefly prepared
as follows: a solution of 3.5 ml NaOH (2M) in 480 ml of deionized water to which
1 g surfactant CTAB and 5 ml co-surfactant (isopropyl alcohol) were added and
heated up to 80 �C to form homogenous solution. To this, 5 ml of tetraortho silicate
(TEOS) was added to form a slurry. It was then calcified in the air at elevated
temperatures up to 550 �C. To prepare COOH functionalized MSN, the prepared
MSN were first functionalized with amino group (-NH2), with the help of
(3-aminopropyl)triethoxysilane (APTES). The prepared MSNs-NH2 then treated
with succinic anhydride in the presence of DMSO (dimethyl sulfoxide) to get
MSN-COOH. This prepared MSN was then loaded with the drug Anastrazole and
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its entrapment efficiency and loading capacity was estimated. The drug-loaded
MSN-COOH was then conjugated with chitosan-folic acid (CH-FA) conjugate
(prepared by EDC-NHS chemistry) to get CH_FA modified drug-loaded MSN.
Characterization for pH dependent in-vitro release was done in dialysis bag at pH
7.4 and pH 5.5 and it was found that almost 96% of ATZ was released at pH 5.5
which was almost 1.39 times more release of ATZ than at pH 7.4. Chitosan had the
ability to swell in low pH environment, thus allowing for higher permeability at pH
5.5. Thus, there was stimuli-responsive sustained release at low pH indicating the
potential to exploit the low pH of tumor for site-specific release. The in-vivo
anticancer activity of MSN-ATZ-CH-FA against free ATZ, MSN-ATZ was studied
against Ehrlich Ascites Carcinoma (EAC) induced breast cancer in Balb C mice. It
was found that MSN-ATZ-CH-FA best controlled the metastasis highest efficacy in
treating the induced tumor [48].

Tumor Hypoxia
Rapidly growing tumors often get deprived of oxygen as they fall short of the blood
supplied. Such hypoxic regions are mostly those regions, when oxygen available is
consumed within 70–150 μm of tumor vasculature by rapidly proliferating tumor
cells which decreases the amount of oxygen diffusing to the interior tumor tissues.
Hypoxia often results increased levels of glycolysis increased production of
hypoxia-inducible factor (HIF-1). Hypoxia also results in increased chances of
metastasis to distant organs, upregulation of factors that are responsible for angio-
genesis, etc. From formulation and novel nano drug delivery perspective, hypoxia-
responsive systems can greatly aid in abating tumor progression. Smart drug systems
mostly are (a) hypoxia-responsive prodrugs (HRPs) and (b) hypoxia-responsive
linkers (HRLs) [49]. Hypoxia-responsive nanocarriers have been of great focus for
better penetration into the tumor.

Dendrimers Xie et al. developed stimuli-responsive nano carrier system that
shrunk in low oxygen environment. Both Doxorubicin (Dox) and siRNA were
delivered with the purpose to increase penetration and improve the chemo-
sensitization to doxorubicin at comparatively decreased concentration. Briefly, the
preparation of shrinkable nanocarrier was as follows: Polyamidoamine (PAMAM)
dendrimer was conjugated to polyethylene glycol (PEG)-2000 using hypoxia-
sensitive linker which was azobenzene (AZO) to form PAMAM-AZO-PEG. This
was followed by incorporation of Doxorubicin (DOX) in the hydrophobic core of
PAMAM, and then the hypoxia-inducible factor 1a (HIF-1a) siRNA (si-HIF) was
bound to the surface of PAMAM through electrostatic forces between anionic
siRNA and cationic primary amine groups at the periphery of the PAMAM (i.e.,
PAP+DOX+si-HIF). The effect of PEG conjugation was such that it assisted in
enhanced EPR effect due to longer circulation time. After entering the tumor, due to
low oxygen content the hypoxia sensitive linkage broke off giving way to dissocia-
tion of PEG from the complex structure of small sized and charged PAMAM
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containing DOX and siHIF. Hypoxia-based release was established in the presence
of reducing agent Na2S2O4. Cleaving of hypoxic AZO bond was confirmed by
UV-Vis spectroscopy and it was found that as long as AZO bond remained, the
PAP solution was yellow colored and there was characteristic absorption peak at
445 nm and after AZO bond cleavage by reducing agent, the peak at 445 nm was
lost. After separating, TLC was performed for the presence of any PEG-2000 spots,
but the hypoxic condition was reduced PEG and no spots were observed. TEM
analysis of reduced PAP solution confirmed the reduction of PEG in hypoxic
condition as the size of PAP was decreased to 5.4 nm. In-vitro studies on MCF-7
cell line showed that though the release of DOX from PAP was slower as compared
to DOX solution, the release was higher of PAP-DOX as compared to free DOX in
hypoxic (1.6-folds) and normoxic (1.3-folds) conditions. In-vivo studies on MCF-7
tumor bearing mice also demonstrated higher penetration of PAP into the tumor [50].

Block Copolymers Another problem presented by hypoxic tumor environment is
the resistance to radiation therapy. Radiation therapy kills the cells by the ionizing
radiation used in it which interact with biomolecules like DNA. Oxygen plays a vital
role fixing the DNA damage, but in hypoxic tumor it hinders this process and results
in radio-resistance. Therefore, much attention has been given to develop formulation
to deliver radiosensitizers so that effectiveness of radiotherapy can be improved. Yin
et al. synthesized block copolymers of amphiphilic biodegradable poly(ethylene
glycol)-block-poly(L-glutamic acid) (PEG-b-PLA) introduced with metronidazole
(MN) moieties to form PEG-b-P(LG-g-MN), which behaved as radiosensitizer. This
then was loaded with Dox to improve chemosensitivity and further improve the
radio-sensitivity. PEG-b-P(LG-g-MN) were prepared by condensation reaction
between MN and PEG-b-PLA in the presence of suitable catalyst. DOX was
encapsulated into the micelles of PEG-b-P(LG-g-MN) by nanoprecipitation method
where in the DOX and micelles were added in organic solvent DMSO and quickly
injected into aqueous PBS. To estimate the release of DOX in hypoxic condition,
NADPH was used. The release in normoxic condition was up to 30% which rose to
80% in hypoxic condition. In-vitro cytotoxicity on 4T1 showed that DOX-hypoxia
responsive micelles (DOX@HMs) had IC50 values of 0.45 ug/ml in hypoxic condi-
tion and 0.55 ug/ml in normoxic condition, which confirms enhanced release of
DOX in hypoxic condition. Hypoxic micelles without DOX (HMs) had sensitized
enhanced ratio up to 2.18 at a dose of 180 ug/ml and with DOX-loaded HMs
(DOX@HMs) had similar SERs at lower concentration of 150 ug/ml indicating
the synergistic effect of anticancer drug. In-vivo studies on BALB/c female mice
were done and bulky tumors (4T1) having volume of 500 mm3 were treated with
DOX@HMs. Without radiation the decrease in tumor volume was up to 28% and
along with radiation at a dose of 4 Gy, majority of tumor was reduced indicating
potent agent for tumor reduction. Thus, DOX@HMs showed better chemosensitivity
and anticancer effects [51].
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17.3.1.3 Angiogenesis and Vascular Disrupting Agent (VDA)
Vascular disrupting agents act on developing or developed blood vessels unlike anti-
angiogenic drugs that stop new developing blood vessels and thus act as a preventive
measure. VDAs act in a way such that the blood vessels of tumor are disrupted
causing the developed tumor to undergo necrosis or ischemia [52]. VTAs also
behave in similar fashion to VDA and there exits ambiguity in distinguishing it
from VDA. VTA like VDAs inhibit the existing developed vessels by inducing
necrosis and ischemia. VTAs are generally of two types small molecule based which
destabilize microtubulin and ligand type like peptide, proteins, antibodies, etc.
[53]. VDAs include some of the newer class of anticancer agents as well as novel
techniques like hyperthermia, photothermal treatments, photodynamic
treatments, etc.

a. Hyperthermia-Induced Vascular Disruption (VD)
1. Direct Hyperthermia-mediated VD: The effects of hyperthermia on vascular

injury to tumors was studied and established by Badylak et al. The effects of
microwave-assisted hyperthermia which produced a temperature of about 43 �C
to 45 �C for 20 min in Walker 256 tumor rats and transmissible venereal tumors
(TVT) of dogs were studied in ameliorating the tumor. It was found that there was
significant tumor vascular endothelial damage at both the temperatures and there
was significant effect of hyperthermia on both the tumors [54].

2. Photothermal-based hyperthermia for VD: Diagaradjane et al. prepared gold
nanoshell having silica core for modulating tumor vascular changes for better
radiation response on tumor. Gold nanoshells were activated optically and the
hyperthermia produced was analyzed by magnetic resonance temperature imag-
ing. Briefly, the gold nanoshells were prepared as follows: initially, gold colloids
were synthesized which had a colloidal size of 1–3 nm. This was then added to
amine-modified silica nanoparticles. The gold colloids adsorbed on the amine
groups that behaved as nucleating sites for HAuCl4 to reduce in the presence of
formaldehyde to form gold shell. The reduced gold further provides a platform for
remaining colloids to reduce on the surface of gold shell and core of silica. The
silica core had a size of 120 nm and the shell was of the size of 12–15 nm thick. It
was then coated with thiolated PEG (SH-PEG). The prepared nanoshells were
evaluated for enhancement in radiation effects by hyperthermia. Mice bearing
tumors of 7–8 mm diameter were treated with 20 min of near infrared laser
illumination for hyperthermia and 10 Gy radiation after 3–5 min after hyperther-
mia. It was found that there was a decrease in tumor volume and the time taken for
tumor volume to double for hyperthermia-radiotherapy combination as compared
to nanoshells alone, or with hyperthermia only or with radiation therapy only.
Hyperthermia-radiation combination also reduced the tumor microvessels’ den-
sity to the greatest extent as compared with single modality treatment. Hyperther-
mia caused by gold nanoshells increased perfusion of tumor vessels by distorting
the vascular patterns. The possible mechanism proposed was that hyperthermia
initially increased the perfusion and decreased the hypoxic cells and subsequently
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the radiation effects assisted in vascular distortion and its collapse ultimately
causing necrosis of tumor cells [55].
Thus, gold nanoparticle-mediated hyperthermia proved to be a potential agent in
treating tumors by vascular disruption and showed considerable promise in
alleviating the disease state.

3. Metal-assisted radiosensitization for VD: Kunjachan et al. developed targeted
gold nanoparticles and combined it with image-guided irradiation to improve the
radiotherapy. To establish the effects of gold nanoparticles and radiation on
vascular disruptions, they were tested on pancreatic tumor model. The gold
nanoparticles were decorated with polyethylene glycol and further functionalized
with targeting moiety Arg-Gly-Asp (-RGD), a tumor neovascular targeting
ligand. Au dose injected in mice bearing pancreatic tumor xenografts was
1.2 mg/g. The prepared gold nanoparticles were coated with PEG followed by
EDC-NHS reaction coupling reaction to form RGD functionalized gold
nanoparticles. To assess in vitro effects of functionalized gold nanoparticles
and irradiation (+RGD:AuNP/+IR), studies were performed on human umbilical
vein endothelial cells (HUVEC) that overexpressed αvβ3 integrins. This was
compared against control in which no functionalized AuNP and radiation was
provided (-RGD:AuNP/-IR). The radiation dose was tested in the range of 10 Gy,
5 Gy, and 0 Gy. HUVEC survival was observed for the +RGD:AuNP/+IR
(10 Gy) sampled vs. the unirradiated controls and was found to be
(58% vs. 98%). It was also found that there were morphological changes and
endothelial cell rupture for (+RGD:AuNP/+IR) as compared to control. Similarly,
survival rate was just 33% for (+RGD:AuNP/+IR). Further in-vivo on tumor
vascular damage in Panc-1 tumor xenografts at 24 h post-IR showed that there
was high degree of vascular damage, with segregated endothelial cells at the
damaged site with (+RGD:AuNP/+IR). To study the effects of irradiation in
increasing the effectiveness of nanoparticle, it was administered with
functionalized gold nanoparticle. The DNA damage that occurred due to radiation
was assessed in combination with nanoparticle. The groups (+RGD:AuNP/+IR),
(-RGD:AuNP/+IR), (+RGD:AuNP/-IR), and (-RGD:AuNP/-IR) had shown a
DNA damage up to 57%, 19%, 6%, and 6% respectively. This showed gold
nanoparticles assisted to damage DNA of cancer cells synergistically in combi-
nation with radiation [56].

17.3.1.4 Active and Passive Tumor Targeting
Tumor vasculature often exhibits leaky vasculature which provides a window of
opportunity for nanoparticles to enter and reside in the tumor environment. This is
called the enhanced permeation and retention (EPR) effect. The nanoparticles’ size
and their surface modification to enhance their circulation time play a vital role in
EPR effect and together this leads to passive tumor targeting. This strategy is often
combined with active targeting wherein targeting moieties are attached which
increases the selectivity of drugs in targeting tumors and thus reducing the side
effects [57].
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1. Micelles: Lu et al. prepared spherical micelles of pluronic F127 and chondroitin
sulphate (PF127-ChS) for passive and active targeting of solid tumors. Initially,
micelles of PF127 and ChS were prepared and then loaded with Doxorubicin
(DOX). The PF127 was oxidized to get aldehyde modified pluronic (PF127-
CHO). The amine-terminated ChS was prepared by functionalizing ChS with
adipic acid dihydrazide by EDC NHS chemistry. The micelles of pluronic and
modified ChS were prepared by Schiff base reaction where the aldehyde and
amine reacted with each other. The DOX was then loaded onto the prepared
micelles by stirring vigorously for 24 h. The prepared micelles had a size of
155–241 nm and showed enhanced release at acidic environment. In-vitro release
at pH of 7.4, pH 6.5, and pH 5.5 revealed that there was damage to the micelles as
the pH decreased which was indicated by increasing size. At pH 7.4 the size was
240 nm, at pH 6.5 the size was 410 nm, and at pH 5.5 the size was around 650 nm
which established breaking of Schiff base bond as pH decreased. Cytotoxicity
analysis on human lung cancer cell line, A549 cells, showed that cell viability was
above 90% at concentration of 100 ug/L indicating biocompatibility of PF127
and ChS. Confocal microscopy and flow cytometry analysis proved that the
micelles were effectively taken up by A549 cells. Thus, PF127-ChS micelles
showed that it had potential for passive targeting and active targeting at the same
time [58].

2. Modified liposomes: Li et al. prepared dual targeting octreotide (Oct) modified
magnetic oleanolic (OA) loaded liposomes. To prepare this liposome, initially,
soya lecithin (SPC), cholesterol, and OA (weight as 50, 6, and 5 mg, respectively)
were dissolved completely in 3 ml absolute ethanol. Five milligrams L-glutamic
acid (Glu) and 10 μl Tween-80 were dissolved in 10 ml phosphate-buffered saline
(PBS, pH ¼ 6.5). The ethanol solution of lipid was added dropwise to the 45 �C
PBS solution with a constant drop rate. The absolute ethanol was evaporated to
obtain Glu-OA-liposomes. Then, the OA-Olips were obtained by mixing the
prepared Glu-OA-liposomes and Oct solution (1 mg/ml) in a 1:1 ratio under
shaking for 4 h. The resulting solution was purified by dialyzing against 10 wt%
sucrose solutions using a 14 kDa membrane. Fe3O4 MNPs were prepared by
co-precipitation method shown in the Supplementary Material. To prepare
OA-OMlips, aqueous suspension of MNPs (0.2 mg/ml) was mixed with the
prepared OA-Olips (1:2, v/v) at room temperature. After that, the solution was
stored at 4 �C overnight to precipitate the aggregated MNPs. The supernatant was
centrifuged at 90 � g for 10 min to further remove nonadsorbed MNPs. Finally,
the OA-OMlips were successfully prepared. In-vitro antitumor effects showed
that there was more than 86% bioavailability for HeLa and A549 cells. To study
in-vivo antitumor effects, the S180 tumor-bearing mice were used as animal
model and the tumor were grown up to a volume of 100–150 mm3 and were
injected with saline, free OA, OA-lips, OA-Olips, OA-OMlips, OA-OMlips with
magnet and cyclophosphamide (CTX). CTX served as a positive control group in
the experiment, which is a conventional medication used as chemotherapy. There
was significant reduction in the tumor volume of modified liposome formulation
as compared to naked liposomes. The tumor volume was 53% less in case of
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OA-Olips with magnet as compared to without magnet, thus establishing
enhanced targeting and accumulation with help of magnet. Thus, the size of
modified liposomes was obtained in the range of 163.20 nm which was suitable
to target tumor passively by EPR effect and octreotide and magnetic targeting
acted as active targeting agent [59].

17.3.1.5 Multidrug-Resistance
Most solid tumors like those in breast cancer exhibit drug resistance due to increased
efflux of drug. This leads to decreased efficacy of drug and rise in multidrug
resistance. This increased efflux is mediated by Pgp-1 protein that expels the drugs
that enter the cellular lipid bilayer. Many strategies have been utilized like
administering PgP-1 inhibitors like verapamil to overcome this issue. From formu-
lation point of view, it has been projected that the nanoparticles encapsulating or
carrying the drug will have the ability to limit the drug from interacting with PgP
proteins after entering the lipid bilayer of cell membrane. This was established
recently by researchers working on improving the effects of paclitaxel (PTX) by
incorporating it in solid lipid nanoparticles (SLN).

Solid Lipid Nanoparticles
Xu et al. prepared PTX-SLN and compared its uptake with PTX in Cremophor-EL
and PTX-DMSO vehicles in MCF-7/ADR breast cancer cell line which
overexpressed PgP protein. SLN-loaded PTX was prepared by dissolving PTX in
chloroform solution containing egg phosphatidylcholine (PC) and DSPE-
mPEG2,000. The chloroform solution was dried completely using nitrogen follow-
ing which Trimyristin (Tm) was added to dried phospholipid and maintained at
65 �C such that PTX dissolved in Tm and phospholipid. This oily hot solution was
then added to prewarmed water and sonicated to get milky white dispersion which
was dipped in liquid nitrogen to freeze the solution. This was then thawed at room
temperature to get SLN. Further Rhodamine (RHO)-loaded SLN was prepared by
sonication as previously described and further subjected to 5 cycles of high-pressure
homogenization. Increased cytotoxicity was observed in MCF7/ADR cell line for
PTX-SLN as compared to DMSO and Cremophor-EL vehicles used. Also, there was
significant rise in uptake of SLN-PTX as compared to both vehicles in MCF-7/ADR
cell line. It was concluded that SLN-PTX followed different routes of uptake
endocytosis other than the clathrin and caveola. It had the ability Pgp efflux
pumps in MDR cells [60].

17.3.2 Nanoformulations to Treat Different Cancers

Recent years have focused on using nanoformulations to treat different cancers.
Tables 17.2, 17.3 and 17.4 below present an overview of different nanoformulations
to treat cancers of breast, head and neck, and lung cancer.
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Table 17.2 Nanoformulations to treat breast cancer

Nanosystem prepared Cell line/in vivo test Outcome Reference

Iron nanoparticle
embedded poly(dl-lactide-
co-glycolide) (PLGA)
nanoparticles loaded with
doxorubicin and
conjugated with herceptin

FACs analysis on
1. MDA-MB-231
2. SK-BR3
3. NIH3T6

Diagnosis using magnetic
nanoparticles and
targeted doxorubicin
delivery using Herceptin
conjugation

[61]

Tamoxifen-poly(ethylene
glycol)-thiol gold
nanoparticle conjugates

1. ERR(�)
MDAMB-231

2. ERR(+) MCF-7
breast cancer cells

Selective targeting of
estrogen receptor-α with
enhanced potency and
future potential for
enhanced laser
photothermal therapy

[62]

Curcumin-albumin
nanoparticles

MDA-MB-231 (breast
adenocarcinoma)

1. Albumin
nanoparticles increased
bioavailability of
delivered curcumin

2. Better
antiproliferative effects
on cell lines of curcumin-
albumin nanoparticles

[63]

Superparamagnetic iron
oxide NP loaded with
DOX

1. In-vitro:
MDA-MB-231

2. MDA-MB-231
tumor bearing female
athymic nude mice

1. Increased
cytotoxicity of SPION-
DOX with hyperthermia

2. Better tumor growth
inhibition

[64]

Mesoporous silica
nanoparticles (MSN)
loaded with Dox and Bcl-2
interfering siRNA

1. MDA-MB-231 1. pH and redox
responsive system

2. Co-delivery of Dox
and Bcl-2 siRNA resulted
in better cell apoptosis of
mDA-MB-231

[65]

Rapamycin (RPM) and
piperine (PIP) loaded
PLGA nanoparticles

1. MDA-MB-231 1. Better cytotoxicity
of RPM loaded PLGA
NP

2. Improved absorption
of RPM due to inhibitory
effects on Pgp by PIP

[66]

Hyaluronan modified
SPIONs

1. CD44 HA
receptor-
overexpressing
MDA-MB-231 cells

2. MDA-MB-231
tumor-bearing mice

1. Decreased cell
viability with laser-
irradiated HA-SPIONs

2. Effective tumor
destruction by NIR
irradiation on
HA-SPIONs

[67]

(continued)
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17.4 Conclusion

The use of targeted therapy has increased with revelation and understandings of
newer different pathways. The disease has become more dynamic with cancer cells
adopting different pathways when certain pathway is blocked thus developing
resistance. Also, the PFS and OS have failed to improve over the years. The complex
situation requires newer targeting agents and strategies that have been addressed by
nanomedicines. Recent years have hence seen a surge in the research and develop-
ment of nanoformulations that consider the tumor microenvironment and respond in
such a way that the drug is delivered at the site of action. Considerable focus has
been on improving the efficacy of drugs and decreasing the toxicity due to anticancer
agents. Trend and future scope of nanomedicine have been toward developing

Table 17.2 (continued)

Nanosystem prepared Cell line/in vivo test Outcome Reference

Core-shell system of poly-
l-histidine nanocores
loaded with immune
regulator R848 bound to
HA-Dox

1. Human breast
cancer cell line: MCF-7
and MDA-MB-231

2. Mouse breast
cancer cell line: 4T1
and luciferase-labeled
4T1 (4T1-Luc)

3. Sprague Dawley
rats

1. Better cell
internalization and inhibit
their proliferation

2. Tumor growth
regulation and their
killing

[68]

Estrone-modified glycol
chitosan nanoparticles
(GCNP-ES) loaded with
paclitaxel (PTX)

1. In-vitro on MCF-7
cell line

2. Mice with MCF-7
breast cancer xenograft

1. More than fivefold
internalization if GCNP-
ES as compared to GCNP
alone

2. More than 81%
tumor accumulation in
mice xenograft model of
GCNP-ES

[69]

Lipid nanoparticles
encapsulating siRNA and
coated with Fab’ antibody
targeted against heparin-
binding EGF-like growth
factor

1. MDA-MB-231
cell line over-
expressing heparin
binding EGF like
growth factor

2. MDA-MB-231
carcinoma-bearing
mice

1. Effective
suppression of polo-like
kinase 1

2. Tumor growth
suppression

[70]

Light activated core-shell
nanoparticles with Chlorin
e6-, docetaxel-, and anti-
Twist siRNA-containing
polymeric nanoparticle
(CDTN)

1. mouse TNBC cell
line 4T1

1. Spatio-temporal
release when irradiated
by laser light

2. down-regulation of
twist-protein expression
and tumor growth
reduction

[71]
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Table 17.4 Nanoformulations to treat lung cancer

Nanosystem used
In-vitro cell line/in-
vivo animal model Outcome Reference

G3139 anti-sense
nucleotide loaded in lipid
nanoparticles

1. A549 lung
cancer cells
2. A549 murine

xenograft tumor
model in male
BALB/c mice

1. Downregulation of
Bcl2 expression in-vitro

2. Inhibition of tumor
growth

[82]

Dox conjugated Gold
nanoparticles (AuNP) with
polyvinylpyrrolidone
(PVP)

A549, H460, and
H520 lung cancer
cells

1. Decrease in the
proliferation and induction
of apoptosis of lung cancer
cells

2. Upregulation of tumor
suppressor genes

[83]

Microparticles Erlotinib
(ETB) loaded solid lipid
nanoparticles (SLN) to
prepare dry powder
inhalation (DPI)

A549 cells Potential lymphatic uptake
and anticancer effect on
lung cancer cells

[84]

SP5-52 peptide conjugated
and gemcitabine-loaded silk
fibroin nanoparticles

1. Lewis lung
carcinoma cells
(LL/2 cell line) and
BEAS-2B cells
2. Lung tumor

induced in Balb/c
by injecting LL/2
carcinoma cells

Higher therapeutic efficacy
of targeted drug loaded silk
fibroin nanoparticles

[85]

Folate conjugated and
radiosensitizing agent
loaded poly
(N-isopropylacrylamide)-
chitosan shell and PLGA
core nanoparticles

1. A549 and
H460 lung cancer
cells
2. H460 tumor

bearing mice

1. pH and temperature
responsive system
developed

2. Reduction in tumor
growth rate

3. Safe simultaneous
radiotherapy and
chemotherapy possible

[86]

Folic acid (FA)-conjugated
poly-amidoamine
dendrimer (Den)-based
nanoparticle (NP) for
delivery of siRNA and
cis-diamine platinum
(CDDP)

H1299 lung cancer
cells

1. DNA damage and
apoptotic cell death.

2. Decreased toxicity to
normal cell

[87]

Disulfiram (DSF) loaded
PLGA nanoparticles

A549 lung cancer
cells

Influence of various
formulation parameters on
cytotoxicity of DSF loaded
PLGA NP

[88]

PTX loaded hyaluronic
acid-disulfide-vitamin E
succinate (HA-SS-VES,
HSV) conjugate nanocarrier
system

1. A549 cell line
2. Mice bearing

A549 tumors

1. Enhanced cytotoxicity
and apoptosis

2. Decrease in tumor
growth rate

3. Stimuli triggered
release

[89]

(continued)
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multimodal theranostic systems that diagnose, image, and deliver therapeutic moiety
simultaneously. Also, careful consideration has to be given to the regulatory and
toxicity aspects of nanomedicine.
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Abstract

Nanomedicine has gained tremendous attention in medical professionals owing to
its smart strategies of treatment and huge applications in healthcare.
Nanomedicine is mainly used for drug delivery with special attention to drug
targeting, their excellent properties of high drug loading, sustained drug release,
surface tunability, surface modification possibilities, and unique surface
properties. A major portion of nanomedicine has been occupied by nanocarrier
systems. For diagnosis and therapeutic purposes, nanoparticles, nanoliposomes,
dendrimers, and other nanoparticulate devices have been reported for treatment/
diagnosis of diseases. Several nanomedicines with emerging therapeutic efficacy
have been already commercially available and many more are in pipeline. Despite
their impressive therapeutic benefits, some critical challenges are associated with
their transition from laboratory to clinical usage. Toxicity caused by
nanoformulated drug is the most adverse barrier for its broad range of application.
In this chapter, we have reported different nanocarriers available for their
diversified applications in the management of several diseases, with a special
emphasis on recently published reports, clinical evidence, and, their toxicity and
safety concerns.
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18.1 Introduction

Nanomedicine is a branch of medical science, which deals with an emerging field of
knowledge, applications, and novel tools of nanotechnology for diagnostic and
therapeutic smart approaches to manage human healthcare system. According to
the European Science Foundation, nanomedicine is defined as nanosized tools used
for diagnosis, prevention, and treatment of diseases with an increased understanding
of the complex pathophysiology associated with it [1]. Nanocarrier system reigns
over a vast area in nanomedicine. Hence, we mostly focus on nanocarriers in the
current discussion. Due to the nanoscale size, enhanced surface area to volume ratio,
and new surface properties such as super magnetism, surface charge, etc., the
nanosize drug delivery systems are considered to achieve prolonged circulation
time, greater stability, improved accumulation at the target site, and controlled
release of drug in a sustained manner that enhances their therapeutic efficacy with
reduced cytotoxicity to normal tissues. Nanocarriers have been reported for the
treatment of cardiovascular diseases, different types of cancer, brain tumor,
HIV/AIDS, gastrointestinal diseases, skin disorders, respiratory diseases, pulmonary
fungal infections, neurological diseases, stroke, hypertension, leishmaniasis, visceral
diseases, epilepsy, ocular diseases, and many more. For the last few decades,
emerging research on nanomedicine evolves various biocompatible and biodegrad-
able nanoscale materials which include nanoparticles, nanoliposomes, dendrimers,
micelles, polymer-protein conjugates, albumin-drug conjugates, DNA-drug
conjugates, antibody-drug conjugates, ligand-conjugated polymeric nanoparticles
or nanoliposomes for targeting specific organs of interest, and so
on. Nanoliposomal formulations have a great advantage for their ability to include
both hydrophilic and hydrophobic drug types in the delivery system and to cross
various physiological barriers. Designing of the nanomedicinal targeted anticancer
drug delivery systems are of great scientific interest in the field of biomedical
research. Many of these nanoparticulate medicines have been translated into clinical
trials and some already been introduced commercially, reflecting the successful
outcome of laboratory research on nanomedicinal formulations. Despite their well-
versed medical applications and fast-developing future prospect, some unavoidable
toxic outcomes often limit their extensive use. Evidence in animal studies suggested
that certain nanomaterials can interact in cell constituents in vivo in a different
manner than small molecules [2]. They can produce a wide range of alterations
such as oxidative stress, induction of inflammatory responses, protein aggregation,
mitochondrial perturbation, blood coagulation and cell death, induction of
autophagy and apoptosis, complement activation, etc., as observed in experimental
models. The ability of nanomaterials to cross several biomembranes (e.g., blood–
brain barrier) may produce off-target effects and unpredictable dose-response pro-
file. Assessment of environmental exposure to nanomaterials in humans, animals,
and our ecosystem and their potential hazards, if any, their persistent use causing
nanomaterial-related effect, their immediate effects, and long-term risk should be
monitored minutely. Development of suitable devices, testing methods, and
guidelines for assessment are in need and currently under the supervision of many
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regulatory authorities throughout the world to ascertain the safety concerns. Differ-
ent strategies are required to develop to avoid nanomedicine-mediated in vivo
toxicity in humans and animals.

In this chapter, we have mainly provided recent reports on several nanomedicinal
drug carriers used for treatment, diagnostic, and theranostic purposes. The toxicity
profiles of many such nanomedicinal materials observed in various experimental
models were also discussed to understand the problems associated with current
research in the field and requirements to cross the hurdles of clinical trials.
Nanomaterials under clinical investigations and their outcomes and safety concerns
are also discussed.

18.2 Polymeric Drug Nanocarriers

Polymeric drug nanocarriers have been successfully used for cancer drug delivery
since last few decades. Polymers can be natural, synthetic, or pseudosynthetic. In the
design of commercial nanocarriers, size, surface morphology, and characteristics
have been used to achieve successful delivery. The design of optimized formulation
for effective delivery to target sites of action with minimum off-target effects
remains a vital research objective. Hence, it is in an urgent requirement to develop
new chemotherapy using polymer-based nanocarriers to enhance therapeutic effi-
cacy. Polymer nanoparticles can be fabricated in a wide range of varieties and sizes
from 10 to 999 nm. They can range in size from a single polymer chain used directly
as a therapeutic or as a modifying agent for a drug or diagnostic agent to large
aggregates within the nanoscale [1, 3, 4]. Polymer nanodrugs can be categorized as:
(1) degradable polymer forms for controlled release applications and (2) polymer–
drug conjugates that increase circulation time and drug half-life or improve biocom-
patibility/solubility [1].

Two of the top ten best-selling drugs in the U.S. in 2013 were polymeric drugs,
Copaxone (glatiramer acetate injection), approved in 1996 for the treatment of
relapsing-remitting multiple sclerosis, and Neulasta (pegfilgrastim), approved in
2002 for chemotherapy-induced neutropenia [1]. Polymer (NPs) can facilitate drug
release for weeks without accumulating in the body. Therefore, polymeric NPs are
considered promising carriers for numerous medications, including treatments for
cancer, cardiovascular disease, diabetes, bone-healing therapies, and vaccinations
[1, 3]. One of the most well-established polymers is polyethylene glycol (PEG).
Plegridy, a pegylated interferon beta-1a formulation, has been approved in 2014 for
the treatment of relapsing forms of multiple sclerosis, showed improved drug half-
life and exposure. Another such pegylated form is Adynovate (antihemophilic factor
[recombinant]), which was approved in 2015 for bleeding prophylaxis and hemo-
philia A [1, 5]. Rebinyn (coagulation factor IX [recombinant], glycopegylated), was
approved in 2017 for treatment and control of bleeding episodes and perioperative
bleeding management in patients with hemophilia B [6, 7]. Apart from pegylated
polymers, biodegradable polymers are also of prime interest because they can be
fully metabolized and removed from the body. Poly-(lactide-co-glycolic acid)
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(PLGA), Polyhydroxyalkanoates (PHAs), and cyclodextrins (CDs) are the most
commonly used polymer for core fabrication [8]. Polyvinyl alcohol (PVA), PEG,
and monomethoxy poly-(ethylene glycol) (mPEG) have been applied in surface
modification of polymer-based nanocarriers which gives nontoxic hydrophilic
outer shells and outstanding blood biocompatibility. The United States Food and
Drug Administration (USFDA) has approved biodegradable polymer such as PLGA
and PLA for human use [9]. Poly lactic-co-glycolic acid (PLGA) is an especially
intriguing example of a biodegradable polymer because relative proportions of
polylactic acid (PLA) and polyglycolic acid can be used to tune finely the biode-
gradability of PLGA [3]. Zilretta is extended-release injectable suspension
microspheres consisting of crystals of triamcinolone acetonide embedded in a
PLGA copolymer matrix used for the treatment of osteoarthritis knee pain
[6, 7]. In addition to increasing half-life, polymer conjugation can improve passive
tumor targeting by increasing the size of a drug [10]. Abraxane® and Transdrug® are
the clinically approved passively tumor-targeted nanoparticles in cancer therapy.
Abraxane®, a solvent-free, albumin-bound nanoparticle of paclitaxel which is also
known as nab-paclitaxel presently used in breast cancer and Transdrug® contains
cytotoxic drug doxorubicin currently used to treat hepatocarcinoma clinically [11].

In a recent study, Nosrati et al (2019) developed a mono methoxy poly (ethylene
glycol)-poly (ε-caprolactone) (mPEG-PCL) co-polymer based on novel methotrex-
ate sodium (MTX) drug delivery carrier with the objective of enhancing the loading
efficiency of the drug in nanocarrier as well as achievement of an effective control
release rate of the drug. They showed that these polymersomes provided an ideal
carrier for the delivery of MTX to breast cancer cells (MCF-7) [12]. In another
research article, Zheng et al (2019) reported that PEGylated poly (lactic-co-glycolic
acid) nanoparticles conjugated with LFC131 (a peptide inhibitor of CXCR4)
co-delivery of sorafenib and metapristone via the CXCR4-targeted nanoparticles
showed a synergistic therapy against hepatocellular carcinoma. Here, they showed
enhanced cytotoxicity, colony inhibition, apoptosis, and caspase signaling
pathways. Their results also suggested combinational treatment of
chemotherapeutics enhanced circulation and target accumulation at tumor sites and
consequently inhibited tumor growth in an animal model [13]. Many polymer-
containing nanodrugs are being investigated in clinical trials and are discussed in
the relevant section of this text. CRLX101 (camptothecin conjugated cyclodextrin-
PEG formulation) is currently under clinical trial for lung cancer and solid
tumors [3].

18.3 Liposomal Drug Nanocarriers

Liposomes were initially described in 1965 and its drug delivery properties were first
proposed in the 1970s. It is a spherical vesicle composed of a self-assembling lipid
bilayer membrane arranged around an empty core which carries and delivers both
hydrophilic and hydrophobic molecules within the cores. This special characteristic,
along with biocompatibility and biodegradability, makes liposomes more unique as
a drug delivery carrier. In a structural point of view, liposomes can be divided into
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unilamellar vesicles (UVs) and multilamellar vesicles (MLVs) on the basis of lipid
bilayers. Each of UVs is composed of an aqueous core enclosed by a lipid bilayer,
separating the inner aqueous core from the outside, and MLVs consist of various
layers of lipid bilayers along with the aqueous core. Fabrications of liposomes are
the first drug delivery system in the field of nanoscale to make the transformation
from concept to clinical practice [14]. USFDA approved lipids used for the prepara-
tion of liposomal vesicles are 1, 2-distearoyl-sn-glycero-3-phospho-ethanolamine
(DSPE), hydrogenated soybean phosphatidylcholine (HSPC), phosphatidylglycerol
(eggPG), and 1, 2-distearoyl-sn-glycero-3-phosphocholine (DSPC) [15]. Most of the
conventional chemotherapeutic agents circulate nonspecifically in the body and have
poor pharmacokinetic profiles and systemic toxicity associated with major side
effects. Hence, the establishment of nanodrug delivery systems able to target the
tumor site is becoming a genuine challenge [16]. Liposome-based nanomedicines
showed the ability to circulate in the bloodstream for an extended time thus
providing a longer treatment to affect and accumulate more drugs at the site of a
tumor or infection [1, 3, 10]. Attachment of polyethylene glycol chains at liposomal
surface proved a 4- to 16-fold enhancement in drug delivery during malignancies, in
contrast to prior non-liposomal trials [17]. Liposomes can reach tumor site passively
through the leaky vasculature surrounding the tumors by the increased permeability
and retention effect although ligands modified at the surface of liposomes allow
specific targeting by binding to the receptors overexpressed by cancer cells or
angiogenic endothelial cells [16]. By using lipids of different fatty-acid-chain
lengths, liposomes can be made temperature or pH sensitive, thereby controlling
the release of their contents under specific environmental conditions [3, 10]. Drugs
with low bioavailability or high toxicity have been successfully delivered by
liposomes [1, 4]. Co-encapsulation of drugs in nanoformulations can also provide
a novel means of drug delivery. More specifically, these formulations can deliver
drugs sequentially and at specific molar ratios within the tumor microenvironment,
allowing for maximal synergy that is not possible with conventional drug delivery
methods [10].

Starting with the approval of Doxil in 1995, many nanodrugs incorporating
liposomes have been approved, including antifungal agent, anticancer drug, and
analgesic [1, 10, 18]. Myocet® is a remarkable example presently used to treat breast
cancer clinically in combination with another chemotherapeutic agent (cyclophos-
phamide). Doxil is used to treat metastatic breast cancer and AIDS-related Kaposi’s
sarcoma. Other liposomal non-PEGylated systems have been approved such as
DaunoXome® and Onco-TCS® for drugs daunorubicin and vincristine
[15, 19]. Recently, in 2017, Vyxeos, a liposomal formulation of cytarabine and
daunorubicin in a 5:1 fixed molar ratio, also got FDA approval for the treatment of
acute myeloid leukemia (AML) [20, 21].

Guan et al (2019) reported doxorubicin-loaded 8-mer and 16-mer D-peptide
ligand-modified liposome preparation and studied systemically enhanced
immunocompatibility. The biodistribution and biosafety of two different peptide-
modified liposomes were assessed in healthy BALB/C mice and antiglioblastoma
effect was determined in nude mice bearing intracranial glioblastoma [22]. In
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another research work, Awad et al (2019) showed that human serum albumin (HSA)
modification of pegylated liposome remarkably increased their binding to the surface
of the breast cancer cell line MCF-7 and MDA-MB-231, resulting in the increased
uptake of the drug by cancer cells. Therefore, the HAS-coated liposomes coupled
with ultrasound-mediated enhanced drug release indicate desirable prospective in
breast cancer chemotherapy [23].

18.4 Nanocrystal Drug Nanocarriers

Nanocrystal is formed by an optically active core which emits tunable, narrow,
symmetric, photochemically stable spectrum and is surrounded by a shell which
makes nanocrystal less sensitive to photo-oxidation and medium changes
[24]. These nanocrystal-based medicines are composed entirely of drug compound
(s); therefore, the surface area of these drugs is increased and their dissolution speed
and saturation solubility are also enhanced. Due to increased saturation solubility,
they get absorbed through the gastrointestinal tract easily [1, 4]. Nanocrystal
formulations improve the Pharmacokinetic/Pharmacodynamic (PK/PD) properties
of poorly water soluble organic or inorganic drug by increasing their bioavailability
and solubility [4, 25]. However, the mechanism behind their oral absorption and
behavior after subcutaneous injection are not fully understood.

First FDA-approved (2000) organic nanocrystal medicine was Rapamune that
contains bacteria-derived immunosuppressant sirolimus and acts to prevent organ
rejection (particularly kidney) after transplantation. This formulation makes poorly
soluble sirolimus into an extended release drug. This technique is also used in other
types of formulation such as tablets, oral suspension, and intramuscular injections
[1]. After the approval of Rapamune, several other nanocrystal medicines were
marketed using the techniques like Tricor, Emend, etc., and provided the potential
solution for solubility issue of many compounds [18]. In comparison to organic
nanocrystal formulation, FDA approval of inorganic nanocrystal formulations are
only limited to hydroxyapatite and calcium phosphate nanocrystal as a bone-graft
substitutes [1].

18.5 Micelle Nanocarriers

Micelle nanoparticles contain a hydrophobic internal core for easy encapsulation of
poorly aqueous soluble drugs but adequate polarity on its outer surface helps them to
dissolve in aqueous solution [1]. These are self-assembling polymeric amphiphilic
structures and may be customized for slow and controlled delivery of hydrophobic
drugs as well as their structures can be finely tuned to get desired particle size, drug
loading, and release characteristics [10]. A huge number of new chemical entities
coming out of research laboratories suffers from low water solubility, making them
slightly challenging to the manufacturer for administration and often causing delay
in drug formulation and development. Additionally, so many poorly soluble drugs
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have not achieved their potential on the market due to intolerable levels of toxicity
from the drug or the excipients in the formulation. The most common hydrophilic
block used to make the hydrophilic shell is the FDA-approved excipient poly
(ethylene glycol) (PEG) or poly (ethylene oxide) (PEO) [26]. Research on
nanocarriers composed of block copolymer micelles is a rapidly developing and
exciting area of drug delivery. These systems are being studied for stabilization,
solubilization, and delivery of the most challenging therapeutic agents. The distinc-
tive architecture, small size, stability, and ability of block copolymer micelles to be
modified for good compatibility with the drugs are best preferable properties for a
drug delivery system [27]. To target abnormal cancer cells actively, special types of
ligands are used to modify the micelle surface, namely aptamers, folic acid,
carbohydrates, peptides, and antibodies. The core of the micelle can be
functionalized to release the drug at the right concentration to the target site. The
stimuli used in smart drug delivery systems based on micelles are changes in
temperature, pH gradients, ultrasound, enzymes, and oxidation [28].

Optimized doxorubicin polymeric micelles (NK911, Nippon Kayaku, Co.) were
the first clinically evaluated in 2001. NK911 micelles have been tested for metastatic
pancreatic cancer in Phase II clinical trials, but the results have not been reported
[29]. Paclical (orphan drug status in 2009 by the FDA) and Genexol-PM (approved
in South Korea) are two examples of micellar formulation of paclitaxel for ovarian
cancer and metastatic breast cancer and advanced lung cancer treatment, respec-
tively, with significantly less toxicity [4, 10]. Genexol-PM consists of low-
molecular-weight amphiphilic diblock copolymer, monomethoxy poly (ethylene
glycol)-block-poly (D, L-lactide) (mPEG-PDLLA) and drug paclitaxel [30]. Micellar
formulation of estradiol (Estrasorb) got FDA approval in 2003 and used for the
treatment of menopause-related moderate-to-severe vasomotor symptoms. As it is
administered transdermally, gastrointestinal side effects may be avoided [31]. Toxic-
ity of Kolliphor-based paclitaxel drug can be reduced by micellar formulation.
Nephrotoxicity of cisplatin drug also reduced due to micellar formulation
[32]. Therefore, due to this broad applicability of micellar-based nanoformulations,
we can expect many new products in the near future.

Recently, Seo et al (2015) revealed a co-delivery scheme based on the
temperature-responsive micelle that can carry genes along with anticancer drugs
[33]. Doerflinger et al (2019) developed a targeting aptamer ligand to functionalize
polydiacetylene micelles [34].

18.6 Protein-Based Nanocarriers

In protein-based nanocarriers, proteins are used as a carrier, active therapeutic agents
as well as for targeted delivery and reduction of toxicity [1]. In the last decade,
albumin is mainly studied as a drug carrier and many albumin-based nanomedicines
are at present in clinical trials. The advantages of these albumin-based
nanomedicines are higher passive accumulation in the tumor site and also facilitating
the cellular uptake of the drug by the albumin receptor [35]. Abraxane is an early
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albumin-based nanoparticle conjugated with paclitaxel drug and got FDA approval
in 2005. This formulation eliminates the use of toxic Kolliphor solvent required to
make paclitaxel soluble as it causes immune reaction [1]. Therefore, an improvement
in infusion time, drug efficacy, drug PK, and reduction in toxicity was observed
during Abraxane use [36]. After the successful entry of Abraxane into the market,
several other albumin-bound nanoparticles are in clinical trials for improving the
efficacy of the drugs like docetaxel, rapamycin, heat shock protein inhibitor, etc.
[31]. Nowadays, apart from unmodified proteins, engineered particle complexes are
also being designed to enable active targeting and Ontak is an example of this
engineered fusion targeting proteins with cytotoxic molecules. It is an interleukin
(IL)-2 receptor antagonist and used to treat non-Hodgkin’s peripheral T-cell
lymphomas and helps to suppress overexpression of IL-2 receptor on T cells
[1]. Ontak also showed a significant reduction in organ toxicity and thus may be
an effective treatment for many hematological malignancies which are related to
overexpression of IL-2 receptor [37].

18.7 Dendrimers

Dendrimers are well-defined, multivalent molecules with a nanometer size
branching structure. There are three distinct components of dendrimer: core,
branching dendrons, and surface-active groups. Conventional dendrimers face
immune system clearance and lower uptake by cancer cells. Modification of the
conventional dendrimer is the solution to these limitations. Chemical modification,
linear polymer copolymerization, and hybridization with other nanocarriers are some
of the choices for overcoming these limitations as reported so far [28]. To target the
cancer cells, peptides, proteins, carbohydrates, aptamers, antibodies, etc., can change
the surface of the dendritic structure. The surface of the dendritic structure can also
be modified for different stimuli-responsive systems, such as light, heat, pH change,
protein, and enzyme transformation [38, 39].

Most of the successful nanocarriers were synthesized using classical linear,
random coil polymers, such as polyethylene glycol (PEG), poly (glutamic acid)
(PGA), N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers, poly
(ethyleneimine) (PEI), and dextrin (a-1, 4 polyglucose). These polymers have
produced conjugates and polyplexes that have now been used to develop
formulations and that are in the clinical trial [40].

The cationic nature of PAMAM (polyamidoamine) makes it extremely beneficial
for the delivery of genetic materials among other dendrimers. The effectiveness of
delivery relies on PAMAM generation. In 1993, Haensler and Szoka were the first to
report the delivery of PAMAM nucleic acid [41]. The tumor imaging dendritic
contrast agent is also very promising [42].
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18.8 Other Nanocarriers

Recently, the use of other different nanomaterials has been tried to build effective
nanocarriers for drug delivery applications [43]. A large number of inorganic
materials, such as metal, metal oxide, silica, carbon nanotubes, etc., can be used to
create nanoformulations for therapeutic and imaging applications and metal and
metal oxide are being explored intensely.

18.8.1 Carbon Nanotubes

Carbon nanotubes (CNTs) are cylindrical large molecules composed of a hexagonal
structure of hybridized carbon atoms that may be composed of one sheet of graphene
(single-walled CNTs) or by rolling up various sheets of graphene in a concentric
manner (multi-walled CNTs) [44]. CNTs have some unique physicochemical and
biological features and high surface modification capabilities that make them a
successful drug delivery carrier. The distinctive shape of the nano-needle is particu-
larly interesting, as it enables endocytosis to cross the cell membrane, while CNTs
with size ranging from 50 to 100 nm are easy to be engulfed [45]. Any drugs can
either be encapsulated in the internal space or be attached (covalent or noncovalent
functionalization) to the surface of the CNTs.

The main issues with CNTs are their low water solubility, nonbiodegradable, and
cytotoxicity. Although, CNT nanocarriers have the potential to be surface-
functionalized (chemically or physically) which render them water-soluble, biocom-
patible, and nontoxic or less toxic. While PEGylation is used to improve solubility,
prevent reticuloendothelial system (RES), and reduce toxicity, their surface
functionalization with poly (N-isopropylacrylamide) polymer could be used to
modify the CNTs for stimulus-responsive (temperature) nanocarriers. Castillo et al
(2013) reported the formulation of a graphene electrode modified with peptide-
conjugated nanotubes and folic acid for improving target specificity of human
cervical cancer cells overexpressing folate receptors [46]. Lu et al (2019) developed
anti-IGF1R antibody (IGF-1R Ab) coupled carbon nanotubes for photothermal
therapy of orthotopic pancreatic cancer guided by optical imaging [47].

18.8.2 Metal and Metal Oxide Nanoformulations

Gold nanoparticle (AuNP) is the most distinctive inorganic material in nanotechnol-
ogy with a wide range of biological and biomedical applications. It has been
suggested for drug delivery and gene delivery applications as nontoxic carriers
[48]. Passive targeting is well known to be accomplished by using AuNP as a carrier
due to its better tumor cell accumulation (Enhanced Permeability and Retention)
effect [49]. In fact, AuNP particular characteristics, such as its elevated surface to
volume ratio, unique optical properties, simple synthesis, and flexible surface func-
tionality, are committed to cancer therapy in the clinical sector [50]. In addition,
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AuNP has optical properties that can be readily adjusted according to their form and
structure to desirable wavelengths, enabling photothermal and imaging applications.
Battogtokh et al (2019) reported glycol chitosan-coated near-infrared
photosensitizer-encapsulated gold nanocages for glioblastoma in vitro and in vivo
[51]. In another article, Liu et al (2019) reported that zwitterionic gadolinium (III)
complex dendrimer entrapped AuNP showed target specificity to αvβ3 integrin
expressing cells and enhanced CT/MRI imaging of lung cancer metastasis model
in vivo [52]. Albertini et al (2019) developed RGD-link pentapeptide decorated
AuNP for diagnosis and treatment of cancer. The peptide conjugation was selected
for its ability to recognize the αvβ3 integrin receptor [53]. Most of the gold
nanoparticles are at the in vivo stage (preclinical), and few have reached clinical
trials.

In several studies, iron oxide nanoformulations have been considered for exam-
ining their use as contrast enhancement reagents for magnetic resonance imaging
(MRI) [1, 4]. The iron nanoformulations for treating chronic kidney disease (CKD)-
associated anemia are Venofer (iron sucrose injection), Ferrlecit (sodium ferric
gluconate complex in sucrose injection), Infed (iron dextran injection), and
Dexferrum (iron dextran injection). These formulations avoid toxicity and thus are
administered rapidly in large doses, without increasing free iron levels in the blood
[1]. Superparamagnetic iron oxide nanoparticles (SPIONs) have low toxicity, more
half-life, and are biodegradable that respond strongly when exposed to a magnetic
field; used both as targeted and nontargeted contrasting MRI agents to target specific
tumors [3, 10]. Three FDA-approved SPION drug formulations are—Feraheme,
Feridex, and GastroMARK. Feraheme is used to treat CKD and is also being
deliberated as an imaging agent in clinical trials [32]. SPIONs also release energy
in a magnetic field, permitting them to be used as promising hyperthermia agents
against tumors in preclinical and early clinical studies. Nanotherm is one of such
SPIONS to treat glioblastoma tumors; the subsequent injection in the tumor causes
programmed and non-programmed cell death due to local thermal heating [1, 10].

Several metals, including silver, are known to be potent antimicrobials as they can
easily penetrate bacterial cells and induce toxic effects. Cornell dots are inorganic
silica nanoparticles that are being developed at Cornell University as a diagnostic
and therapeutic tool in cancer treatment [1, 4, 10]. Although designed for lymph-
node mapping in cancer patients, these nanoparticles have also been found to induce
cancer cell death in vitro and reduce the size of tumors after multiple high-dose
injections were administered to mice. They are composed of an internal silica core
labeled with a near-infrared fluorescent dye, a targeting moiety, and an antifouling
polymer layer. This design has created a nanoparticulate system that is more stable
and 20 to 30 times brighter than a conventional solution of the constituent dye.
Various FDA approved nanomedicines used in cancers and non-cancerous diseases
have been given in Tables 18.1 and 18.2.
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18.9 Toxicity Aspect of Nanomaterials

In the following section, we have described in brief the observed toxicity of
nanomaterials used for medicinal purposes in an organ-specific/physiological sys-
tem-dependent manner.

18.9.1 Neurotoxicity

Several nanomaterials such as polymeric nanoparticles, liposomes, inorganic metal-
lic nanoparticles, carbon nanotubes, dendrimers, quantum dots, etc., have been
applied for diagnosis and treatment of brain diseases. They can enter the brain by
penetrating through the blood–brain barrier with the help of a series of transporters
or receptors expressed on the endothelial cells of brain capillaries, or through
adsorption-mediated transcytosis, or through the intranasal route; bypassing the
blood–brain barrier [60]. Nanosized drug carriers, if permeating through the
blood–brain barrier can interact with the hippocampal cells of the brain and can
cause alteration of brain functions [61]. The common mechanisms of
nanoformulation-induced neurotoxicity involves oxidative stress, induced cell apo-
ptosis and autophagy, and immune response and inflammation resulting in
activation-specific signaling pathways which can subsequently alter the neuronal
structure or activity and also can alter the function of the blood–brain barrier
[60]. Charge of nanoparticles has an impact on its permeability through the blood–
brain barrier. For example, anionic wax nanoparticles were found to penetrate the
blood–brain barrier better than its neutral or cationic counterparts [62]. Considering
the role of surfactants in penetration of nanoparticles through the blood–brain barrier
and toxicity of polymeric nanoparticles in the neuronal system, one study revealed
that Polysorbate 80-modified chitosan nanoparticles after intravenous injection in
rats causes a dose-dependent accumulation of the nanoparticles in the frontal cortex
and cerebellum, with neuronal apoptosis, mild inflammation, increased oxidative
stress, and loss of body weight [63]. Liposomes are considered to be superior over
many other formulations in delivering drugs through the blood–brain barrier but
empty liposomes had also found to possess toxic effects on the neuronal system. In a
comparative study of the cisplatin containing liposomal formulation, free-drug and
drug-free liposomes, it was found that cisplatin-loaded liposomes increased in vitro
cytotoxicity against glioma cells and high tumor retention in glioma-bearing rats
compared to the free cisplatin but the drug-free liposomes also induced minimal to
severe neuroinflammation and necrosis in control rats. This study suggested the
intrinsic toxicity of the liposomes alone [64]. Dendrimers of different generations
with various surface groups were used to assess the neurotoxic effects on human
neural progenitor cells. It was found that cationic dendrimers of higher generation
altered mitochondrial activity, induced oxidative stress, apoptosis, and subsequent
DNA damage; also can interfere with neuronal differentiation, and gene expression.
Metal nanoparticles were also studied extensively to elucidate their neuronal toxicity
[65]. Gold nanoparticles may accumulate in the brain where through transportation
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via the BBB or olfactory nerve and can induce neurotoxic effects such as increased
seizure activity, cognition effects, and astrogliosis [66]. The neurotoxicity of silver
nanoparticles involves increased ROS generation, caspase activity, and cytokine
release resulting in inflammation and cell death. Additionally, the release of silver
ions from nanoparticles of silver or its oxides can directly trigger necrosis through
the disruption of membrane integrity [67]. Iron oxide nanoparticles were also found
to alter synaptic transmission and nerve conduction leading to several inflammatory
responses [68]. TiO2 nanoparticles were also reported to induce similar toxicities
resulting in the alteration of synaptic plasticity and disrupted signaling pathways
[69]. The intranasal administration of silica nanoparticles also leads to the accumu-
lation of nanoparticles in the brain and subsequently to cognitive dysfunction and
impairment, synaptic changes, and pathologies similar to neurodegeneration. Carbon
nanotubes enter the brain through olfactory or systemic administration [70]. Studies
have shown that the inhaled carbon nanotubes can accumulate in the olfactory bulb,
causing activation of microglial cells and subsequent inflammatory responses. Multi-
walled carbon nanotubes (MWCNT) were reported to induce higher neurotoxic
effects than single-walled carbon nanotubes (SWCNT) [71]. Neurotoxicity
associated with carbon nanotubes can also result in neurobehavioral changes such
as anxiety and depression [60]. Oberdörster et al (2004) studied the effect of
colloidal fullerenes on the neuronal system of largemouth bass and observed
increased lipid peroxidation in brain and reduction of glutathione in gills after 48 h
of dosing [72]. The neurotoxic effects of quantum dots are similar to the general
neurodegenerative toxicity, including increased oxidative stress and cell function
damage; and are dependent on their size, surface charge, concentration, surface
coating, the nature and the solubility of the constituent materials [60].

18.9.2 Cardiotoxicity

Metal nanoparticles were most extensively studied to elucidate their toxicity to the
heart. Using a zebrafish model, it was revealed that titanium nanoparticles can
translocate between organs and can accumulate in the heart through crossing the
blood-heart barrier. Thinning of cardiac muscles, tissue inflammation followed by
cell necrosis and cardiac biochemical imbalance are the consequences of chronic
exposure to TiO2 nanoparticles. Molecular analysis revealed that TiO2 nanoparticles
can bind with lactate dehydrogenase (LDH) thereby increasing its activity along with
the activity of some other enzymes such as AST (aspartate aminotransferase), CK
(creatine kinase), HBDH (α-hydroxybutyrate dehydrogenase), which leads to
myocardial injury [73]. The other reasons found to be the elevation of ROS (reactive
oxygen species) level: mitochondrial swelling, increased activity of caspase-3, and
augmentation of DNA peroxidation in cardiac muscle [74]. ZnO nanoparticles are
mainly bioaccumulated by the interaction of Zn and sulfur-containing proteins. ZnO
nanoparticles were found to be toxic in both in vitro and in vivo studies. Apart from
heart, acute oral exposure to ZnO nanoparticles also targets liver, spleen, pancreas,
and bone [75]. Long-term exposure of rats to ZnO inhalation was reported to cause
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both cardiac damage and lung inflammation [76]. In order to find a correlation
between cardiac and respiratory toxicity of ZnO nanoparticles, Bessemer et al
(2015) conducted a study on freshwater fish model Catostomus commersonii.
They concluded that myocardial damage was due to increased parasympathetic
input in the heart, which is a consequence of gill neuroepithelial cell damage by
ZnO [77]. While studied at the molecular level, increased level of troponin T,
CPK-MB (creatine phosphokinase-MB), and myoglobin were found to be responsi-
ble for ZnO-induced myocardial damage [78]. Like TiO2 and ZnO, Ag nanoparticles
can also induce ROS and upregulation of cytokine activity, thus producing oxidative
stress and inflammation. While searching for molecular marker behind Ag-induced
myocardial injury, in a study on chicken, it was found that Ag nanoparticles
downregulate FGF-2 (fibroblast growth factor-2, a modulator of cardiomyopathy)
and upregulate VEGF-A (vascular endothelial growth factor-A, an angiogenesis
modulator) [79, 80]. Inhaled carbon nanoparticles and carbon nanotubes can also
cause cardiac damage through depletion of serum thiol content and an increase in
lipid peroxidation products. Administration of multi-walled carbon nanotubes
(MWCNT) through intratracheal instillation can worsen ischemia/reperfusion (I/R)
injury [74]. Both intravenous and intratracheal administration of fullerene was found
to cause myocardial infarction [81]. Exposure to silica nanoparticles can also create
inflammatory responses in the cardiovascular system and is associated with an
increased level of eotaxin-1, LDH (lactate dehydrogenase), and CKMB (creatine
kinase MB) [82].

18.9.3 Pulmonary Toxicity

The main toxic effects of nanoparticles on the pulmonary system are inflammation,
oxidative stress, and functional disturbances. Inorganic metal nanoparticles such as
Co, TiO2, SiO2, Ni, and ZnO were found to induce lung epithelial damage, leading to
inflammation and this effect is prominently higher in case of nanosized particles
compared to their macrosized congeners. Carbon black nanoparticles can also
generate similar inflammation and its effect is worse than ZnO nanoparticles.
Release of interleukin-8 is responsible for such inflammatory conditions
[61]. Heavy metal nanoparticles like cadmium, iridium, and gold showed variable
toxicity depending on their solubility and reactivity to the tissues. Inhalation of
insoluble iridium and gold nanoparticles did not induce pulmonary inflammation,
while soluble cadmium nanoparticles at high doses were found to induce pulmonary
injury via translocation from the lung to the liver [83]. Exposure to carbon
nanoparticles are mainly through inhalation in occupational level, hence lung is
the primary target for carbon nanoparticles. But inhaled carbon nanoparticles and
carbon nanotubes can distribute in heart, liver, kidney, and brain and cause multiple
dysfunctions such as necrosis of liver and kidney tissue, inflammation, depletion of
serum antioxidants such as GSH (glutathione) and SOD (superoxide dismutase), and
abnormalities of alveolar microvessels [84]. When instilled in the lung, SWCNTs
(single-walled carbon nanotubes) can be phagocytosed by lung epithelial cells and
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these result in both local and systemic inflammation [74]. A study about carbon
black nanoparticle toxicity revealed that these nanoparticles can increase intracellu-
lar calcium by controlling cellular ion channels, resulting in impaired phagosome
transport and cytoskeletal dysfunction [85]. Presence of airway inflammation,
asthma, and obstructive pulmonary diseases can increase the retention of inhaled
nanoparticles and this could worsen the situation. This hypothesis was also tested in
animal models [86]. Smaller sized nanoparticles were found to be superior in the
induction of inflammatory responses compared to larger nanoparticles or
microparticles. Tumorigenesis associated with the inhalation of nanoparticles is
invariably related to its size and the smaller congeners are often more severe than
their larger analogs. This is supposed to be due to poor detection of smaller
nanoparticles by macrophages thereby improper clearance, resulting in nanoparticle
buildup, chronic inflammation, fibrosis, and eventually tumorigenesis [87].

18.9.4 Hemotoxicity

Hemotoxicity of nanoformulations is directly related with their circulation half-life,
interaction with RBC and macrophages, ability to escape from hepatic reticuloendo-
thelial system, and affinity for enzymes present in serum. The size of nanoparticles
regulates their persistence in circulation in a variable way. Nanoparticles with
5–10 nm diameters are rapidly cleared from systemic circulation after systemic
administration but those with 10–70 nm diameters can penetrate through blood
capillary wall and distribute easily throughout the body. Nanoparticle with
70–200 nm diameters needs longer time to penetrate the blood capillary wall and
also can persist in systemic circulation for a longer period. Hence, their toxicity also
varies depending on their circulation half-life. Senior and Gregoriadis found that
neutral liposome with a diameter of less than 100 nm had circulation half-life up to
20 h while the anionic liposomes had a half-life of less than 1 h [88]. The high
surface to volume ratio nanoformulations provide a large exposure of surface
molecules toward the circulation system, and this is one of the major reasons behind
nanoformulation-related RBC damage. Another important factor is the surface
charge which interacts with the cell membrane of RBC. Cationic polystyrene
nanoparticles were found to cause hemolysis and blood clotting while such effects
were absent in case of its anionic counterparts. Carbon nanotubes were found to
cause platelet aggregation and in vivo thrombosis in experimental models while
carbon fullerenes with almost similar diameter had not produced such effects. This
can be explained with the difference of their shape which plays an important role in
binding with platelets [61].

18.9.5 Hepatotoxicity and Nephrotoxicity

Polymeric nanoparticles used in drug delivery have variable effects on liver
depending on their physicochemical properties such as functional groups present,
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size, biodegradability, etc. For example, polyalkylcyanoacrylate nanoparticles were
found to produce mild and reversible inflammatory condition to the liver in animal
model due to their biodegradable nature and rapid clearance from systemic circula-
tion. Polystyrene nanoparticles indeed, produce severe toxicity in the liver due to
their nonbiodegradable nature and prolonged circulation [61]. Polyamidomamine
dendrimers can induce lysosomal dysfunction in the liver, resulting in vacuolization
of hepatocytes as observed in the experimental mice model [89]. Acrylic
nanoparticles like cyanoacrylate and isobutylcyanoacrylate nanoparticles showed
high accumulation in kidneys in experimental rats and this can cause renal injury and
proteinuria [90]. Metal nanoparticles were studied extensively to elucidate their
effects on hepatorenal system. Isoda et al (2017) reported size-dependent toxicity
of Pt nanoparticles with a comparative study of 1 nm and 8 nm Pt nanoparticles and
found that 1 nm Pt nanoparticle can cause acute hepato-renal injury in mice by
increasing serum aminotransferases and blood urea nitrogen [91]. They also
concluded that upregulation of interleukin-6 and interleukin-1β is responsible for
such hepatic and renal injury, respectively. Similar findings were also reported by
Yamagishi et al (2013) who found that administration of Pt nanoparticles less than
1 nm diameter to mice for several weeks produces urinary casts, tubular atrophy, and
accumulates inflammatory cells [92]. Negatively charged superparamagnetic iron
oxide nanoparticles were found to significantly damage actin cytoskeleton of kidney
and brain cells in both in vitro and in vivo studies [74].

18.9.6 Genotoxicity

Nanoparticles when entered inside the cell can interact directly with the nucleus and
transport into the nucleus through the formation of nuclear pore complexes (NPC).
As the diameter of NPC is around 30 nm, nanoparticles with a diameter of 30 nm or
less can cross nuclear envelope through NPC. Nanoparticles larger than 30 nm enter
into the nucleus during mitotic division when the nuclear membrane dissembles.
Inside the nucleus, nanoparticles can interact with DNA and affect replication and
transcription of DNA. In a study, Li et al (2014) showed nanoparticles of 3–46 nm
size have a high affinity for DNA and strongly inhibit replication of DNA [93]. Tsoli
et al (2005) reported gold nanoparticle of 1.4 nm size interacts with major grooves of
DNA in a unique manner which could account for its genotoxicity [94]. Not only
size but also the charge of NPs can affect its transportation into the nucleus. In a
study using THP-1 cells, Nabiev et al (2007) demonstrated that green quantum dots
(2.1 nm) can enter the nucleus through NPC while the red ones (3.4 nm) cannot, and
concluded such transportation is mediated by histone binding [95]. Apart from direct
interaction with DNA, nanoparticles can interfere with DNA repair through the
interaction of DNA repairing molecules in BER and NER pathways (base excision
repair and nucleotide excision repair). Carbon nanotubes due to their similarities
with cellular microtubules can interact or mimic mitotic spindle, resulting in loss or
gain of chromosomes (known as aneugenic effect). Such aneugenic effects were also
observed in CuO and gold nanoparticles [96, 97]. Transition metal nanoparticles
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(like Fe, Ag, Cu, Mn, Ni NPs) can release free metal ions which can directly induce
ROS generation through Fenton reaction and this accounts for a major metal
nanoparticle-induced genotoxicity as a consequence of oxidative stress. This phe-
nomenon is also known as inflammation-induced or secondary genotoxicity. Inter-
national Agency for Research on Cancer (IARC) evaluated that amorphous silica is
not carcinogenic to humans but the crystalline is carcinogenic. Several in vivo
studies using amorphous SiO2 have supported this with mild or no genotoxicity
induction (DNA damage) [98]. For crystalline silica, the secondary inflammation-
driven genotoxicity mechanism is recognized as an important mechanism for its
carcinogenicity. In several in vitro studies, it was found that smaller SiO2

nanoparticles induce more toxicity due to higher penetration and ultimate lysosomal
overload. Although most of the in vivo studies reported TiO2 anatase did not induce
micronuclei formation in hepatic reticulocytes and leukocytes but some of the
studies reported significant micronuclei formation in bone marrow cells and periph-
eral blood cells (erythrocytes), which is a hallmark of genotoxicity [98]. However,
intratracheal or inhalation administration of TiO2 nanoparticles to mice and rat has
been reported to induce inflammation in the lung but not significant genotoxicity in
both lung epithelial lung cells and erythrocytes [99]. Intraperitoneal administration
of TiO2 NPs has been found to accumulate titanium in liver, kidney, and bone
marrow and to induce oxidative stress-mediated genotoxicity in those organs
[100]. In the case of gold nanoparticles, high genotoxicity was found in the admin-
istration of larger nanoparticles compared to smaller ones. Both acute and chronic
intraperitoneal administration of differently sized AuNPs (10 nm and 30 nm, citrate
coated) in rats induced DNA damage in blood and liver cells as evaluated by comet
assay [101]. As gold can cross the blood–brain barrier, while studying genotoxicity
of AuNPs in rat it was found to cause DNA damage in the cerebral cortex. Toxicity
of gold nanoparticles greatly depends on its surface chemistry and manufacturing
methods. For example, AuNPs prepared in aqueous media did not produce cyto- or
genotoxicity but those prepared from pure acetone solution produced remarkable
genotoxicity as studied by Di Bucchianico et al (2015) [102]. They concluded the
presence of amorphous carbon and enolate ions on the surface of acetone-derived
gold nanoparticles were responsible for this effect. Genotoxicity of silver
nanoparticles was reported to be mainly oxidation-induced and was prominent in
case of larger nanoparticles (200 nm). Several in vitro studies revealed genotoxicity
and mutagenicity of silver nanoparticles in vitro, and were confirmed by micronuclei
formation, DNA double-strand break, and comet assay [98]. Intranasal administra-
tion of MWCNT was found not to induce genotoxicity in lung up to 90 days of
treatment but produced pulmonary inflammation in animal models (rats) [103]. Even
they (MWCNTs) have not induced DNA damage or micronuclei formation in
peripheral blood leukocytes or bone marrow erythrocytes. On the other hand,
SWCNT and carbon nanofibers even after single-dose administration can persist in
the lung for a long period and can induce micronuclei formation, nuclear protrusions,
and pulmonary fibrosis [84]. Catalán et al (2016) showed that the structure and
dispersion of carbon nanotubes and their administration routes can give variable
results. They showed straight-walled MWCNTs were able to induce DNA damage in
mouse BAL (broncho-alveolar lavage) cells after inhalation but not after pharyngeal
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aspiration, while both straight-walled and tangled MWCNT can induce DNA dam-
age in lung cells (alveolar) irrespective of aforementioned routes of administration
[104]. When functionalized by carboxylation, both SWCNT and MWCNT induced
chromosomal aberration in bone marrow cells [98]. This suggests the presence of
important interaction of COOH groups with chromosomes in vivo. Dendrimers can
form complexes with DNA and this complexion can damage DNA through distor-
tion or complete separation of double-stranded DNA. G4 and polyamidoamine
dendrimers were reported to induce considerable genotoxicity [61].

18.9.7 Methods of Assessment of Toxicity of Nanomaterials

Nanotoxicity refers to the biological adverse effects caused by nanomaterials.
Toxicity assessments of nanomaterials should follow a standardized set of rules to
avoid confusion and misconduct in designing nanomaterials for biomedical
applications [60]. Overall walkthrough of nanomaterial toxicity assessment involves
(a) characterization of nanomaterials, (b) in vitro and in vivo studies, and (c) final
clinical trials. Subsequently, we discussed these aforementioned analyses in detail.

(a) Characterization of nanomaterials: There are several essential physicochem-
ical characteristics to be studied. They include but not limited to, particle shape and
size, distribution, surface charge and reactivity, surface area, chemical composition,
solubility and partition properties, aggregation tendency in relevant media, crystal-
linity, porosity, and sample purity. Chemical reactivity, surface chemistry, redox
potential, and photocatalytic activity are some of the chemical analysis necessary to
identify the chemical nature of nanomaterials. Nanomaterial characterization is
generally achieved through spectroscopy, electron microscopy, X-ray diffraction,
differential light scattering, magnetic resonance, mass spectrometry, chromatogra-
phy, zeta potential measurement, thermal techniques, and circular dichroism
[60]. Sterility of the formulations is generally assessed by endotoxin test through
kinetic turbidity LAL assay [105]. Standardized guidelines should be implemented
on the physicochemical characterization of nanomaterials to generate reproducible
nanomaterials with desired physiochemical properties. The results obtained in this
step should be relevant to the objective and end-point target of the study. Interaction
of nanomaterials with body components, especially with proteins and receptors can
change its surface characteristics. So, there is a possibility of discrepancies between
cellular studies and theoretical predictions based on physicochemical properties and
care should be taken to assess such evaluations. Furthermore, combination with
biological macromolecules can promote intracellular uptake, reducing body clear-
ance and can lead to chronic and degenerative changes.

(b) In vitro studies: In vitro toxicity assessments are crucial for investigating the
mechanism of nanomaterial-induced toxicity on biological entities. Conventional
in vitro models consist of different cell culturing systems, xenograft models, and
studies on tissue sections. Choice of cultures and tissues depends on the organ of
interest on which toxicity needs to be evaluated. In vitro toxicity assessments can be
categorized into cell proliferation, apoptosis, necrosis, cell cycle, oxidative stress,
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and DNA damage assays. The most common methods involved in in vitro
experiments are fluorescence, chemiluminescence, analytical, and molecular
marker-based detection systems; often accompanied by chromatographic separation
techniques [60]. Cell proliferation analysis is the primary study to detect both the
efficacy of cytotoxic agents and unwanted toxicity toward cells of ‘not interest’.
Cytotoxicity is generally assessed by MTT assay and LDH assay [106]. Cell death
can occur through two different routes, namely apoptosis and necrosis. Apoptosis is
a programmed cell death, characterized by changes in the nuclear morphology owing
to chromatin fragmentation and condensation and identified by specific biomarkers
(translocation of phosphatidylserine), occurrence of apoptotic bodies, and cell
shrinkage. The main mechanisms of apoptosis involve caspase activation, mitochon-
drial swelling, release of cytochrome c, and DNA fragmentation. On the other hand,
necrosis represents accidental cell death due to trauma, hypoxia, or pathogens;
characterized by nuclear swelling, chromatin flocculation, loss of organelle function,
membrane break, extracellular release of cytoplasmic content, etc.; and can be
identified by microscopic studies. Another necessary assay involves the detection
of oxidative stress as a response to the exposure of cells to nanomaterials. Major
in vitro studies involve estimation of ROS (reactive oxygen species), activity of GSH
(glutathione), and SOD (superoxide dismutase). In vitro studies in the evaluation of
genotoxicity involves mutation testing in bacteria and mammalian cells, in vitro
cytogenic effects and micronuclei analysis, micronuclei testing in erythrocytes,
comet assay, and chromosomal aberration in bone marrow cells [98]. The major
limitations of in vitro assay using cell culture involve the inability of the cell to
mimic the native tissue microenvironment and reactivity of formulation ingredients
with the assay components. However, the recent development of organ culture
established in vitro studies more reliable in evaluation of actual phenomena happen-
ing in vivo on exposure to nanomaterials and also opened a new era of diverse
biological experiments [60].

(c) In vivo studies: In vivo experiments are mandatory for investigation of
nanomaterial toxicity and are superior over other methods as they allow assessment
of physiological action for the whole organ and cannot be modeled in vitro. Several
in vivo models and techniques have been developed to assess the organ distribution
of nanomaterials. The most widely used invasive techniques are analysis of blood
and tissue sampling after intravenous injection, microdialysis, quantitative autoradi-
ography, and autopsy. The most popular noninvasive techniques are fluorescent and
radio-imaging [60]. Assessment of organ-specific toxicity involves the measurement
of various parameters specific to the organ system. For example, assessment
nanomaterial-induced neurotoxicity primarily involves evaluation of behavioral
changes regarding movement, learning, memory, motor coordination or reflexes,
tremor, or paralysis; analysis of synthesis, release, and uptake of neurotransmitters;
and histopathological observation of neuronal system [107]. Regarding
cardiotoxicity assessment, the primary studies involve echocardiography, cardiac
magnetic resonance imaging, Speckle-Tracking imaging, and analysis of several
biomarkers such as troponin I, CKMB (creatine kinase-MB), LDH (lactate
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dehydrogenase), myoglobin, myeloperoxidase, FGF-2 (fibroblast growth factor-2),
NT-proBNP (N-terminal pro-B type natriuretic peptide), etc. [74].

18.10 Theranostic Applications of Nanomedicines

The term “Theranostic” was first coined by Furkhouser in 2002. It refers to “any
material” with a dual ability of therapeutic and diagnostic potential. The application
of nanotechnology in the field of therapeutics gives rise to the development of
nanotheranostics which provide significant promise to develop much effective
precision medicine by tuning the treatment depending on the molecular understand-
ing of the disease and genetic makeup of the patients leading to protection of patients
from adverse side effects. Thus, nanotheranostics help to monitor simultaneously the
bioavailability of therapeutics and noninvasive evaluation of therapeutic efficacy in
real time. Thus, nanotheranostics belong to a platform which provides integration
between molecular therapy and molecular imaging. This integration offers myriads
of promising characteristics such as early detection of disease, disease staging,
therapy selection, planning and scheduling of treatment, identification of adverse
effects at early stages of the treatment, and finally, planning of follow-up therapies.
Plenty of researchers prefer to see the nanotheranostics as an integrated platform of
nanomedicine and nanosensor due to the ability of nanosensor to identify significant
numbers of biomarkers from a small sample volume and nanomedicine can extrava-
sate from the blood vessel and deliver the therapeutic payloads predominantly into
the target tissue by receptor-mediated active targeting. Plethoras of materials used
for the development of nanomedicines are explored for the production of theranostic
nanomedicines as described below.

18.10.1 Drug-Polymer Conjugate

Covalent interaction between drug and polymer depending on the functional group
present in drug and polymer carrier resulted in the formation of drug–polymer
conjugate. N-(2-hydroxypropyl) methacrylamide (HPMA) polymer is predomi-
nantly explored for the formation of drug-polymer conjugate because of its stability,
nontoxicity, and biocompatibility for in vivo application. I-131 labeled HPMA-
doxorubicin conjugate (HPMA-DOX conjugate) had been studied in Phase-1 clini-
cal trial.

18.10.2 Polymers, Liposomes, Micelles, and Dendrimers

Nanocarriers made up any of these platforms have been widely explored to deliver
the drug to the central nervous system (CNS) through the blood–brain barrier,
neoplastic cells, and to remote organs such as lungs due to their biocompatibility,
stability, cellular membrane-mimicking properties, and their ability to release the
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drug in a sustainable manner. They can be converted into theranostic nanomedicine
by dual loading of imaging modalities and therapeutic entities. Examples of imaging
modalities include magnetic resonance imaging (MRI) contrast agents, radioactive
agents for radionuclide imaging via positron emission tomography (PET) or single-
photon emission computed tomography (SPECT), fluorescent agents for fluorescent
imaging, and nano/microbubbles for ultrasound imaging. Each imaging modality
has its own advantages and disadvantages and therefore their usage depends on their
suitability for the maximum desired outcome.

18.10.3 Noble Metal Nanoparticles

Gold and silver at their nanodimension acquire optical properties known as surface
plasmon response which occurs due to excitation and relaxation from the surface of
nanoparticles and the surrounding solution. Optical property can be modulated by
tailoring their size, shape, and surface properties. The use of surface plasmon
response for cancer detection has limited to superficial sites due to their inability
to penetrate deep even in the presence of near-infrared region where the absorbance
of tissue is minimum. In contrary, noble metal nanoparticles provide promising
outcome X-ray computed tomography (CT) imaging as they are highly dense in
comparison to human soft tissues due to the presence of certain vital characteristics
such as higher X-ray absorption coefficient, long circulation time in blood, and high
surface area for easy attachment of targeting and therapeutic agents. They create
high-contrast regions by dampening the amplitude of X-ray leading to much better,
noninvasive real-time molecular imaging of solid tumors as compared to iodine, the
commonly used CT contrast agent.

Heo et al (2012) synthesized gold nanoparticles (AuNPs) functionalized with
PEG, biotin, and rhodamine B-linked beta-cyclodextrin with an objective to function
as a theranostic system for the treatment of glioma. Among the two types of
nanoformulations developed by them, AuNPs-5 showed a more promising result
as it exhibited much better interaction with cancer cells as compared with normal
cells. Further, the authors revealed that the developed theranostic system can simul-
taneously monitor pharmacokinetic profiles of loaded-drug and detection of cancer
cells upon induction by laser light [108].

18.10.4 Quantum Dots (QDs)

Pioneer work by Brus and his coworkers at the Bell laboratories gave the birth of
QDs in the year 1983. QDs are inorganic semiconductor nanocrystals which can
serve as a versatile tool for molecular diagnostics and nanotherapeutics. The absorp-
tion and emission spectra of QD are predominantly dependent on size and thus
optical spectrum can be finely adjusted by tailoring the size of the nanoparticulate
core. Among the various types of QDs, cadmium selenide (CdSe)/zinc sulphide
(ZnS)-based QDs are most popularly explored for diagnostic purpose and they
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contain a core made up of CdSe which is overcoated with layers of ZnS. QDs offer
long-term repetitive bright imaging as they are devoid of photobleaching,
overcoming the disadvantages associated with the organic chromophore. One seri-
ous drawback associated with QDs is the toxicity of cadmium and their inability to
penetrate to a deeper part of tissues leading to the detection of cancers at superficial
sites such as skin cancer, esophageal cancer, etc.

Yang et al (2017) developed photostable and multifunctional carbon QDs (known
as carbon dots) which was tailored with polyamine containing organosilane
molecules for simultaneous cell imaging and anticancer drug delivery. The amine
groups of polysilane allowed extremely high loading of doxorubicin (DOX),
i.e. 62.8%. Further, the surface hydroxyl groups ensured its significantly good
dispersibility in water and the fluorescence property enabled to dynamically trace
the drug-release characteristics. Results of in vitro investigations revealed carbon
dot-doxorubicin complex (CDs –DOX) was effectively internalized by MCF-7 cells
and upon internalization, DOX detached from the complex and moved to the nucleus
whereas CDs resided in cytoplasm. Findings of the in vivo investigations revealed
that CDs-DOX complex showed much improved performance as compared to free
DOX. Further, in vivo investigation revealed that CDs–DOX showed negligible
systemic toxicity and was able to successfully illuminate fungal, bacterial, and
mammalian cells, signifying it to function as a universal cell imaging reagent.
Finally, they concluded their investigations might accelerate the development of
carbon dots as a novel nanotheranostic for various biomedical applications [109].

18.10.5 Carbon nanotubes

Cylindrical shaped carbon nanotubes (CNTs) are considered as allotropes of carbon
with hindered biodegradation and poor biocompatibility. They can be branched into
different types such as fullerene, CNTs, graphene, and carbon dots. All of these
varieties have characteristic electronic and mechanical properties which make them
suitable for theranostic applications. Further, both single-walled and multi-walled
carbon nanotubes designated as SWCNTs and MWCNTs, respectively, have a high
surface area and internal volume which are quite sufficient to simultaneously load
the therapeutics and imaging agents.

18.11 Nanomedicines in Clinical Trials

Meanwhile, several nanodrugs are available commercially and many more are at
clinical trials. Subsequent test-approval by FDA generally leads to clinical trials
which are normally done to govern safety and efficacy in humans. These trials can be
classified into phase I (dosing, toxicity, and excretion in healthy subjects), phase II
(safety and efficacy in subjects with the target illness), and phase III (randomized,
placebo-controlled, multicenter trials). When these trials are accomplished, a new
drug formulation can be filed with the FDA for approval [1]. The bulk of the
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nanoformulations which are in clinical development are generally based on different
types of drug distribution methods such as polymeric, micelles, liposomes,
dendrimers, and inorganic nanoparticles [110]. Liposomal nanoformulations of
doxorubicin currently being studied in clinical trials are HER2-targeted MM-302
(Merrimack Pharmaceuticals, Inc.) and thermosensitive Thermodox (Celsion Corp.).
HER2 targeting is expected to improve efficacy compared to non-targeted liposomal
doxorubicin; a phase I clinical trial is well tolerated and the phase II trial of this
formulation is ongoing in patients with HER2-positive breast cancer
[10]. Thermodox comprehends liposome-bound doxorubicin formulated with ther-
mally sensitive lipids. The combination of this nanodrug with radiofrequency
thermal ablation shows site-specific targeted combat in phase III trials in the
treatment of hepatobiliary tumors [4, 10, 111]. CPX-351 is another liposomal
formulation containing dual drugs, cytarabine and daunorubicin, recently passed
phase II clinical trial with improved efficacy and reduced side effects to sensitive
patients. Pegylated liposomal formulations of irinotecan IHL-305 and MM-398 were
also well tolerated in phase I clinical trial with reduced side effects (such as
neutropenia and diarrhea) compared to commercially approved formulation
FOLFIRI. MM-398 also crossed the hurdles of phase II and phase III clinical trials
and is awaiting FDA approval. A phase II clinical study was conducted using
liposomal irinotecan sucrosofate for metastatic pancreatic cancer-affected patients
whose success led to a global phase III trial (NAPOLI-1) [112]. But this study was
also not devoid of common adverse effects of anticancer agents such as diarrhea,
nausea, anorexia, vomiting, alopecia, neutropenia, and leucopenia. Hepatocyte-
directed vesicular (HDV) insulin is a nanoformulation of liposomal insulin that
provides prolonged delivery of the drug directly to the liver. An oral formulation
of HDV insulin is also undergoing evaluation in phase II and III clinical trials
[10]. Among the liposomal formulations that underwent clinical trials, many are
terminated due to low treatment benefits (in spite of reduced side effects too);
e.g. L-NDDP, SPI-77, lipoplatin, and Li-PlaCis; or due to success of other
formulations, e.g. LEP-ETU and EndoTAG-1 which were left over because of the
success of albumin-based and polymeric formulations of paclitaxel (e.g. NK015).

A protein-based nanoparticle RSV-F (Novavax) containing a respiratory syncy-
tial virus (RSV) fusion protein has completed phase II trial and is being used in
healthy women of childbearing age. The formulations of Pulmaquin (Aradigm
Corp.) in combination with liposomal and aqueous-phase ciprofloxacin have
completed company-sponsored phase II studies in cystic fibrosis (CF) or non-CF
bronchiectasis patients. An important candidate SGT-53 (SynerGene Therapeutics)
containing anti-transferrin antibody fragment for its binding to glycoprotein receptor
on cancer cells have completed phase I and II trials to use in glioblastoma, solid
tumors, and metastatic pancreatic cancer [1, 10]. Dendrimer-based nanodrug
DTXSPL8783 has been investigated in phase I clinical trials among patients with
progressive cancer.

Polymeric nanoformulation can potentially improve chemo-radiotherapy treat-
ment through tumor-specific delivery of the drugs, which increases efficacy while
decreasing toxicity in normal tissues. Nanoformulations such as SN-38 and
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Genexol-PM have been completed both the phase I and phase II trials in treating
triple-negative breast cancer and advanced lung cancer, respectively. Genexol-PM
also showed fairly low toxicity and good overall response (40–60%). SP1049C is a
polymeric formulation of doxorubicin, which completed phase II clinical trial and
obtained the title of orphan drug for the treatment of advanced gastric cancer and
currently undergoing a phase III clinical trial. Opaxio and CRLX101 are two
promising examples. Opaxio, a polyglutamic acid-conjugated paclitaxel formulation
is currently under clinical investigation of ovarian and fallopian tube cancer. But
while used in NSCLC (non-small cell lung cancer), Opaxio did not improve survival
compared to Taxol, and when used in combination with carboplatin, it worsened the
situation causing grade III/IV hemotoxicity (neutropenia, leucopenia) and significant
neurotoxicity. CRLX101, a drug–conjugate formulation of camptothecin and a
cyclodextran-PEG polymer, is being studied in numerous phase I and II clinical
trials in the treatment of lung cancers (SCLC and NSCLC), gynecological
malignancies, and solid tumors. Clinical studies of CRLX101 in renal cell carcinoma
and gastrointestinal cancers have been completed and have shown promising early
clinical results [10, 32, 113]. Nanoparticle Lipoxal that contains the drug
Oxaliplatin, has been used in Phase II trials for colorectal cancer and glioma
[114]. Docetaxel having the nano preparation LE-DT has completed Phase I/II in
cure of solid tumors and pancreatic cancers. Drugs like K105 and Paclical are in
Phase III trials to cure gastric cancer and ovarian cancer, respectively [10, 114].

Antimicrobial agents have also been profusely used in nanodrugs trials. Polymer
nanoparticles with antibacterial properties are also being investigated in the treat-
ment of active infections. Quaternary ammonium polyethylenimine-based polymers
are promising as they have a potent activity to disrupt a number of gram-positive and
gram-negative bacteria membranes. Such activity make this polymeric nanoparticle
particularly promising [10, 115]. Polymeric nano-form of doxycycline have
demonstrated a more sustained release and improved efficacy in the treatment of
chronic periodontitis. Two polymeric nanoformulations of antiretroviral agents are
being investigated for HIV treatment. Efavirenz, a non-nucleoside reverse transcrip-
tase inhibitor, and Lopinavir, a protease inhibitor, are commonly used in combina-
tion therapy against HIV. NANOefavirenz and NANOlopinavir are
nanoformulations of these antiretroviral agents that have been developed with the
aim of reducing total dosage while maintaining clinical efficacy, thereby improving
patient tolerability and decreasing treatment costs [10, 116]. One antifungal agent
amphotericin B which has been used as nanoformulation (MAT2203) in phase II
trials among chronic candidiasis patients. Another antiviral/antibiotic compound,
VivaGel (Starpharma), is now being used in patients having bacterial vaginosis
(BV) in phase III clinical trials after being effective in phase II.

Inorganic nanoparticles are also an excellent choice for nanoimaging technology
and nanomedicine. Superparamagnetic iron oxide nanoparticles (SPIONs) are used
as promising hyperthermia agents in the treatment of solid tumors. One such
formulation, MFL AS1 (aminosilane coated SPION) has passed phase I clinical
trial with no systemic toxicity following intratumoral injection but skin irritation was
observed in some patients due to high heat generation in local region (44 �C).
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Aurimune (CytImmune) has been developed as recombinant human TNF which is
attached to gold NPs using a PEG linker. During its Phase I trials, Aurimune was
shown to be well tolerated in patients with advanced cancer. CYT-6091, another
from CytImmune, was the first product in a clinical trial using gold nanoparticles for
solid tumor patients [61]. AuroLase® is silica-AuNPs decorated with PEG and is
approved by the FDA for a pilot test to treat solid tumors [117]. In February 2017, it
has been applied for the treatment of patient’s tumors of head and neck cancers.
AuroLase was explored for the treatment of primary or metastatic lung cancer in
another clinical trial (Phase I) [118]. More recently, in patients with recurrent
multiform glioblastoma or gliosarcoma, Nu-0129 has been started the clinical trial
using spherical nucleic acid [119]. But till date, the FDA has not yet approved any
gold-based nanodrugs [1, 120]. Hafnium oxide is another promising nanoparticle
suitable for intratumoral injection and a good candidate for radiation-based chemo-
therapy. NBTXR3 is a hafnium oxide nanoparticle which is undergoing several
phase I clinical trials in patients with soft tissue sarcomas and head and neck cancers.
A recent “first in human” trial demonstrated a favorable and safety profile when used
as a tumor imaging agent, allowing investigation in additional trials with humans in
the near future [1, 121].

For the last few years, several nucleic acid nanotherapies are under progress to
address nucleic acid targets in the study of organ-specific diseases. These therapies
are generally siRNA mediated. Several such formulations are DCR-MYC,
ALN-RSV01, TKM-130803, and AGN211745 which were dismissed after phase I
and II trials. Reasons of termination are not always related to safety issues (as in case
of AGN211745) but some gave fatal output, e.g., TKM-130803 (9 out of 12 died in a
study within 14 days). CALAA-01 and PRO-040201 are used for curing solid
tumors, but terminated in a clinical trial due to only modest activity in vivo [10].

18.12 Regulatory Authorities for Monitoring Nanomedicines
and Their Adverse Effects and Safety Concerns

In the U.S., USFDA is the main regulatory authority in the approval of foods, drugs
and formulations, cosmetics, medical devices, and veterinary products. National
Nanotechnology Initiative was programmed by USFDA in the objective of develop-
ment and regulation of nanoscale products, development of new and world-class
nanotechnology as well as academic and industrial progress of nanotechnology.
Office of Science and Health Coordination (OSHC) under FDA regularly
coordinates information delivered by major experts of different internal
organizations under FDA [122]. Apart from USFDA, the Center for Drug Evaluation
and Research, the Center for Biologics Evaluation and Research, and the Center for
Devices and Radiological Health are some regulatory bodies who shared
responsibilities of risks associated with nanotechnology and involved in assessment
and regulation of nanoscale products.

Under the control of EU, REACH (Registration, Evaluation, Authorization, and
restriction of Chemicals) is a policy for controlling chemicals and is a hoe for proper
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evaluation and regulation of nanomaterials in European territory [123]. REACH
provides a set of standard tests, testing procedures, and testing requirements which
are practically feasible in assessing the safety of nanoscale materials. EMA
(European Medicines Agency) has also taken initiatives for the development of
nanotechnology-based medicinal products. In the UK, government organization
DEFRA (Department of Environment, Food & Rural Affairs) is working in the
issue of nanotechnology-related risks and published its report on the risk of
engineered nanomaterials on human health and environment. European Nanosafety
Cluster (NSC) is a forum for Framework Projects like FP6 and FP7, which are
national projects in EU member states and seeks to maximize the synergies between
the existing projects by addressing toxicology, ecotoxicology, and exposure and risk
assessment, mechanisms of interaction, and standardization issues. The European
Academies Science Advisory Council (EASAC) and the Joint Research Centre of
the European Commission (JRC) recently published a report entitled “Impact of
Engineered Nanomaterials on Health: Considerations for Benefit–Risk Assessment”.
The report pointed on the limitation of current knowledge and technologies and
provides a guideline for further research; focusing on ‘safety-by-design’ principle for
the successful implementation of the emerging nanotechnologies [124].

Airborne nanoparticles are the main occupational hazards in manufacturing units
of engineered nanomaterials. UCLA (University of California, Los Angeles, CA)
has developed new testing methods for measurement of airborne nanomaterials in
manufacturing units, analysis of the exposure of workers to those materials, and its
associated health risks; and also suggested guidelines for the safe manufacturing of
engineered nanomaterials. Some nongovernment industries like QuantumSphere are
also working on the regulation of occupational hazard in cooperation with govern-
ment agencies such as NIOSH (National Institute for Occupational Safety and
Health) in the USA [122]. The concern of adverse effects of nanomaterials on
environment and ecosystem motivated many research organizations to conduct
individual research on the toxicity of nanomaterials on the ecosystem. CBEN
(Center for Biological and Environmental Nanotechnology), under the regulation
of Rice University, is one of the leading organizations currently working on water-
based ecosystem. The International Council on Nanotechnology was established in
2004 as an extension of CBEN and involved in the exploration of health and
environmental risks of nanotechnology, data management and screening of knowl-
edge gathered from nanotechnology-related publications, and also in increasing
public awareness of nanotechnology. Environmental Protection Agency is a govern-
ment organization in the USA sharing the responsibilities on the assessment of toxic
effects on the environment [122]. It possesses the authority to regulate the
manufacturing, usage, commercial distribution, and disposal of existing chemical
substances as well as new chemical entities. Incorporation of engineered
nanomaterials in food, medical, and pharmaceutical industry also comes under the
scrutiny of this organization.
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18.13 Conclusion

Thus, nanomedicines, their potential uses, and even their scientific and commercial
aggression before human healthcare system in the near future cannot be ignored.
However, their toxicity and safety concerns should not be jeopardized by the
enormous possibilities of favorable sea-change in human healthcare.
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Nanotoxicity and Risk Assessment
of Nanomedicines 19
Vivekanandan Palaninathan and Aswathy Ravindran Girija

Abstract

Nanotechnological advances have significantly boosted the quality of human life.
However, the underlying risks associated with the engineered nanomaterials
(ENMs) express serious concerns about their side effects on living things and
the surrounding environment. Evaluation of the direct or indirect risks posed by
ENMs through deliberate or accidental exposure to them along with their toxicity
and biokinetics is the core strategy adopted in nanotoxicology. The rapid evolu-
tion of nanotechnology challenges the nanotoxicology division to emphatically
provide a precise understanding of the desirable and undesirable effects
associated with the application of nanomaterials to the living things or the
surrounding environment. Intelligently designed nanomaterials with a multidisci-
plinary effort may ensure a better understanding of their toxicity through specific
approaches surrounding their physicochemical and surface properties.
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19.1 Introduction

Nanotechnology is a study that deals with the controlled manipulation of materials
and/or devices in the 1–100 nm range. This is a key enabling technology that has
grown exponentially over the years with the simultaneous discovery and upgradation
of instrumentation along with the methods, due to which it has created obvious
ripples across the scientific community owed to its potential applications irrespective
of the fields [1, 2]. Technological advances in engineering, biomedicine, food,
environment, agriculture, etc. have become a reality of late, due to some significant
nanoresearch that has allowed the transfer of the technology from lab to market,
especially in engineering and biomedicine. Now, healthcare has always been the
foremost priority worldwide with increasing awareness among masses about various
medical conditions, and to fulfill those demands with better efficacy and results,
nanotechnology has been applied to yield nanomedicines. The genesis of
nanomedicine sprang from one of the most ambitious and visionary ideas that
nanomaterials could be designed, synthesized, and delivered in the human body to
perform molecular therapy and/or diagnosis [3]. Nanomedicines encompass the use
of diverse materials to synthesize distinct nanoparticles and nanorobots for drug
delivery, diagnosis, and sensing, which are already an indispensable part of several
therapies or diagnoses. More specifically, nanomedicines are meant to enhance their
bioavailability and/or while responding to an external stimulus. The outcomes of
such nanotechnological advancements in biomedicine range from early disease
diagnosis to better treatment and lower costs associated with it.

Nanomedicines hold immense potential in healthcare and research for both
in vitro and in vivo diagnostics and treatment due to their unique physicochemical
properties. For instance, some metal nanoparticles exhibit superparamagnetism,
luminescence, and plasmonic, which can be used for theragnostics, while other
nanoparticles based on carbon, micelles, polymers, liposomes, etc. can be used to
deliver drugs, peptides, genes, and nucleotides. Nanoparticles may also be used in
formulating nanovaccines, implants, and regenerative medicine. However, there is a
certain level of risks associated with them, which may lead to several undesirable
effects and/or may pose threat to health through different toxicodynamics or phar-
macodynamics, different organ and cellular distributions, or altered toxicokinetics or
pharmacokinetics. Moreover, the composition, size, surface coatings, and function-
ality of a nanoparticle can unveil varying toxic potentials across different cell types
and organisms. So, a detailed technical know-how about the toxicity and biokinetics
of nanoproducts is a must to avert such inadvertent calamities to both humans and
their environment.

19.2 Nanotoxicology

Nanotoxicology is an emerging branch of toxicology that deals with the assessment
of potentially noxious properties of nanostructures or nanoparticles (NPs) under
100 nm with an intent to determine the magnitude of environmental or societal risk
associated with their use. Aforementioned, the inherent properties of NPs,
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physicochemical properties like the size, shape, surface area, surface charge, crystal
structure, coating, and solubility/dissolution, and external factors such as the tem-
perature, pH, ionic strength, salinity, and organic matter collectively determine NP
toxicity, behavior, and fate inside a biological system, as shown in Fig. 19.1a, b. This
very disparity in NP characteristics and properties is the basic hitch in this field of
science even though numerous in vivo, in vitro, and in situ models have been studied
to estimate the nanotoxicity levels. So, it would be apt to describe nanotoxicology as
a branch of science that categorizes the circumstances leading to toxic effects of
nanomaterials, which also strategizes to prevent and treat in the event of high-risk
exposure.

Fig. 19.1 (a) An illustration of critical factors responsible for the outcome of diverse
characteristics and applications of nanomaterials. Reprinted with permission from Heinz et al. [4]
under Creative Commons CC-BY. (b) Interplay between distinct properties of nanomaterials that
determine the NP-biological system interactions and their impact on nanomaterial toxicity.
Reprinted with permission from Madannejad et al. [5]. (c) Typical routes of nanomaterial uptake
in a human body
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19.2.1 Nanomaterial Cellular Uptake

The increasing use of NPs in nanomedicine is possibly due to a widely accepted
hypothesis that NPs can easily penetrate any tissues or cells escaping through the
tight biological barriers, membranes, and other defense mechanisms of the body due
to their incredibly small size. The classical routes of nanomaterial intake are shown
in Fig. 19.1c, where (1) nasal route allows inhaled NPs to reach lungs, (2) skin
allows absorption of NPs through any topical applications of nanomaterial-based
creams, and (3) oral ingestion of nanomaterials allows access to gastrointestinal
tract. Table 19.1 shows various routes of nanomaterial uptake and its fate. In the
following section, we shall discuss the classic nanomaterial intake individually.

19.2.1.1 Nasal Route
Inhalation is one of the recurrent routes of unintentional exposure to nanomaterials,
which allows them to enter a biological system. The inhaled nanomaterials may
reach deep inside the lungs compromising the barriers like macrophage clearance,
bronchial epithelium, and mucociliary system [6]. Thus, direct exposure of NPs
through the respiratory tract poses an extreme risk to the human lungs due to a large

Table 19.1 Absorption of nanomaterials through different routes

Material Size State Application Absorption

Inhalation routea

Porous PLGA
microparticles

26–33 μm – Inhalation Lungs

Chitosan NPs 300 nm – Inhalation Lungs

Liposomes 90 nm – Inhalation Respiratory epithelia

PEI – – Inhalation Lungs

GI tract routeb

Fullerene – Water soluble Oral Intestinal

Gold NPs 4–58 nm – Oral Detected in all
tissues

TiO2 25–80 nm Suspension Oral Liver, spleen,
kidney, and lungs

Polystyrene 48 nm Monodisperse Oral Liver, nymph nodes,
and spleen

Dermal routeb

TiO2 10–60 nm Anatase and rutile
uncoated

Topical Stratum corneum

ZnO 80 nm Emulsion Topical No transdermal
absorption

Latex particles 50 and
100 nm

Water soluble Diffusion
chamber

Not penetrated skin

Quantum dots 16–19 nm Water soluble Intradermal
injection

Entered lymphatics

aReference [15]
bReference [16]
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surface area [7]. Several studies have been performed both in vitro and in vivo to
elucidate the toxicity of different inhaled NPs, of which a report on AgNP exposure
in rats resulted in bronchial hyperresponsiveness and eosinophilic and neutrophilic
inflammation [8]. Such studies exemplify that inhalation routes can be an effective
alternative to the systemic chemotherapy in the case of lung cancer because the
inhalation route allows a direct supply of drugs to the lungs, which in turn provides
high local concentrations with enhanced anticancer activity and fewer side effects.
However, targeted chemotherapy may be well suited for the purpose of preventing
localized toxicity [9].

19.2.1.2 Gastrointestinal Uptake
Gastrointestinal (GI) tract is a complex site (mouth, stomach, and intestine) that
hosts symbiotic interactions between the host cells and resident microbiome. GI tract
presents entry route to nanomaterials that are ingested either intentionally or through
unintentional modes like inhalation (secondary ingestion), contaminated water,
food, etc. [10]. When a nanomaterial is ingested, it goes through distinct pH and
biochemical compositions that may affect its physicochemical properties, bioavail-
ability, and toxicological properties. Particularly, the interaction of nanomaterials
with intestinal epithelial cells regulates their bioavailability and the associated
systemic effects [11]. Based on these phenomena, oral nanoparticles as therapeutics
are proposed for effective absorption from the GI tract. For instance, a study carried
out by Kim et al. exhibited specific high-efficiency intestinal uptake of oral NPs [12].

19.2.1.3 Skin Uptake
Skin is the largest organ in the body that is highly dynamic and is constantly
evolving. It acts as the first line of defense against the intruding foreign materials
and mechanical damage. NP-based topical drug delivery systems like drug patches
or sunscreens may provide access to nanomaterials into the skin. For instance,
coated-TiO2 microparticles present in the sunscreen creams as UV filters were
found to penetrate the horny layer and the hair follicular orifice [13]. Another
study suggests that when the skin was exposed to polystyrene, NPs could penetrate
only until stratum disjunctum [14]. In both the cases, intact or partially compromised
skin does not allow the penetration of NPs beyond the superficial layers, thus
inaccessible to the live epidermis or beyond.

19.2.2 Factors Influencing Nanotoxicity

Nanomaterials have garnered such a huge claim due to their small size that bestows
multidimensional properties to several consumer products due to the quantum effect
at the nanoscale. While this feature presents tremendous opportunities in the current
state and envisages futuristic applications, it may affect human and his surroundings
adversely as well. This may be attributed to a large surface-to-volume ratio of NPs
compared to their respective bulk form, which makes them highly reactive.
Table 19.2 shows the in vitro and in vivo approaches to estimate nanomaterial
toxicity.
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Table 19.2 Classic in vitro and in vivo approaches to gauge nanomaterial toxicity

Assay
type Classification Category Assay principle Techniques

In
vitro

Uptake Localization of
particles

TEM

Quantitative
measurement of
uptake and
localization within
the cell

ICP-AES, ICP-MS,
fluorescence imaging

Viability Metabolic
activity

Assessment of
metabolically active
cells

MTT, alamar blue,XTT,
WST-1, MTS

Hemolysis Membrane
disruption and
necrosis

Spectrophotometric
detection of hemoglobin

Necrosis Measurement of
membrane integrity

Uptake of dyes: neutral
red and trypan blue,
LDH assay

Apoptosis Membrane
alterations

Annexin-V, propidium
iodide

DNA fragmentation Comet assay (SCGE),
TUNEL, DNA
laddering

Functional DNA synthesis Cell proliferation/
cell cycle arrest

BrdU incorporation,
thymidine incorporation

DNA damage Single-stranded
break

Comet assay

Proliferation Double-stranded
break

TUNEL

Gene expression Increased expression
and activation of
DNA repair related
proteins

Immunohistochemistry,
DASL assay, qRT-PCR,
Western blot

Immunogenicity

Exocytosis Number of cell
colonies

CFE assay, clonogenic
assay

Oxidative stress DNA synthesis Thymidine
incorporation

Cell counting Flow cytometry, high
content image analyzers

Altered expression
of functional genes
in cellular processes

DNA microarray, PCR,
q-PCR

ELISA, q-PCR

Cytokines levels Carbon-fiber
microelectrode
amperometry

Secretion of electro-
active small
molecules

DCFDA assay, DHE
assay, NBT assay,

(continued)
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Table 19.2 (continued)

Assay
type Classification Category Assay principle Techniques

(e.g. serotonin,
epinephrine)

dihydrorhodamine
123 assay

Directly: ROS C11-BODIPY, TBA
assay

Indirectly: secondary
effects of increased
cellular ROS

DTNB

Amplex red

Lipid peroxidation NBT,WST-1

Antioxidant
depletion

ELISA

Presence of lipid
hydroperoxides

Immunoblotting

Superoxide
dismutase (SOD)
activity

8-hydroxy
deoxyguanosine
levels

SOD expression

In
vivo

Lethality Median lethal dose
(LD50): the dose
required to kill 50%
of the participating
animals

ICP-AES, ICP-MS,
fluorescence imaging,
radiolabeling, TEM,
haematoxylin-eosin
staining, helium-3/
proton

Bio-distribution
and clearance

MRI, Raman
spectroscopy

Hematology
serum chemistry

Following the
nanoparticle
localization,
metabolism, and
passage through the
animal body

Flow cytometry,
hematology analyzers

Turbidity or
nephelometric
measurements, capillary
electrophoresis, protein-
specific labeling
methods

Histology/
histopathology

Examining blood
composition, cell
population (RBC,
WBC, T cell,
macrophages)

Light microscopy

Changes in proteins
and enzymes levels:
albumin, ALT, AST,
alkaline
phosphatase,
hemoglobin, and
total protein

(continued)
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19.2.2.1 Size
Particle size is of prime importance in nanotoxicology as it plays a vital role in the
internalization rate and mechanism. Several researchers have reported the size-
dependent toxicity and biodistribution of metallic nanoparticles. For instance, a
study by Li et al. showed that larger gold nanoparticles (AuNPs) (40–60 nm) tend
to accumulate only in the liver and spleen. However, the smaller AuNPs (6–24 nm)
were found not only in the liver and spleen but also in other organs [17]. In another
study, the effect of surface capping and size-dependent toxicity of AuNPs on
different trophic levels was evaluated, which implied that toxic effects of AuNPs
varied under distinct test systems (in vitro and in vivo), emphasizing the importance
of size and surface functionalities at different trophic levels [18]. In the case of silver
nanoparticles (AgNPs), a decrease in size saw a dip in toxicity, while the reactive
oxygen species (ROS) production was dose and size dependent in cochlear cells
[19]. So, the particles over 200 nm in size might not reach the venous circulation as
they are filtered out by the spleen, and the ones below 5 nm are rapidly filtered out
through renal system. It is only the particles that are within the 40–50 nm range,
which show maximum internalization in the cell body [4].

19.2.2.2 Morphology
Apart from the distinct size of NPs, the morphology of NPs plays a significant role in
the toxicity of nanomaterials. Researchers have synthesized a wide range of NPs
with different morphologies (spheres, cubes, rods, star, truncated triangles, flakes,
etc.) for specific purposes. Now, the shape of a NP directly affects its transport or
kinetics in the body of an organism or in the environment, which is in turn related to
its toxicity. For instance, it is known that AgNPs with different shapes and sizes are
toxic to aquatic life. In a recent study, the effects of three different Ag-based
nanomaterials (like Ag-nanospheres, Ag-nanowires, and Ag-nanoplatelets) with a
species of algae, Chlorococcum infusionum, were studied to evaluate their growth
and photosynthetic activity upon interaction. This study proposed that the toxic
potential of the Ag nanomaterials was dependent on their diameter and shape, which
resulted in decreased growth and photosynthetic activity of the algae [20]. In another
study with alumina nanoflakes and nanorods, the shape-dependent toxicity on rat
astrocytes was evaluated. The findings of this study emphasized that the morphology
of nanoalumina played a significant role in its toxic potencies and its underlying

Table 19.2 (continued)

Assay
type Classification Category Assay principle Techniques

Other analytes;
bilirubin, creatinine,
glucose, urea,
nitrogen

Changes in the tissue
or cell morphology

Reprinted with permission from Maddannejad et al. [5]
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mechanisms. Here, both the nanoalumina materials showed dose-dependent cyto-
toxicity and apoptosis after 72 h of exposure, which was attributed to the elevated
ROS generation and inflammation induction. It was noteworthy that the nanorods
inflicted much damage to astrocytes than the nanoflakes [21].

19.2.2.3 Surface of Nanomaterial
The surface functionality of a NP is believed to influence its surface charge, where
the charge on a NP plays a crucial role in not only the dispersion or aggregation
characteristics but also the adsorption of various ions or molecules [22]. Therefore,
even though the particle geometry is of prime importance in nanotoxicology, the
surface charge, functionality, wettability, and adsorption with polysaccharides or
other ligands also hold great significance. Surface functionality confers high flexi-
bility and high hydrophilicity to the NPs. This can be understood with an example of
a study that shows that the surface-modified polystyrene nanoparticles
(d-α-tocopherol polyethylene glycol (1000) succinate or TGPS) of 100 and
200 nm have higher cellular uptake efficiency across the gastro-intestinal barrier
(Caco-2 cells) and the blood-brain barrier (MDCK cells) than 20–100 nm sized
particles [23]. This study contradicts the size-based internalization of NPs across the
physical barriers of cells as mentioned in the earlier section, which clearly illustrates
the need for a case-by-case study and relevance of surface functionality of NPs in
toxicology. In another study conducted with the coating of natural organic matter
(humic acid) on iron oxide nanoparticles, an enhanced surface charge was observed,
which led to the disaggregation of those NPs, which confirmed the influence of
surface charge on the aggregation characteristics of NPs [24].

19.2.3 Materials

The usage of different nanomaterials owed to their size and aspect ratios based on
distinctive requirements of the wide spectrum of consumer products available today
necessitates the need to analyze material-based toxicity evaluations due to growing
concerns of their noxious effect in human and other living organisms alike. Carbon
allotropes are one of the most sought after supplies in both material-based research
and industry. So, it is particularly important to understand the underlying
mechanisms of cytotoxicity and some potential factors influencing the detected
cytotoxicity involving carbon allotropes. Apart from the carbon nanomaterials, the
metallic NPs like gold, silver, platinum, copper, zinc, etc. have also been used
extensively in nanomedicine for drug delivery and bioimaging to various biological
sites. However, when there is a decrease in size of the certain NPs, the toxicity profile
is seemingly enhanced even when they are inactive in their bulk material. The
driving force behind the use of multiple variants of nanomaterials is the quest for
suitable nanocarrier to achieve desired responses by targeting cells and/or receptors
for distinct clinical conditions with minimal side effects. Figure 19.2a gives a brief
insight into material interactions with various experimental models and their
associated cytotoxicity. While the use of nanomaterial-based consumer products
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has grown significantly over the last decade, it is now also evident from the available
reports that exposure to various nanomaterials poses serious risks to biological
systems. The following section will discuss the mechanisms behind the possible
toxicity of nanomaterials as a result of the interaction with cells.

Typesa

b

Experimental models Toxic effects

Carbon nanoparticles

Bacteria, microalgae, crustacean,
zebrafish, Drosophila melanogaster,
Caenorhabditis elegans

•

•

•
•
•
•
•
•
•
•
•
•
•

•
•
•

Fish, oysters, Pigs, guinea pig, mouse,
rat,

Gold nanoparticles

Silver nanoparticles

Quantum dots
Astrocyte

Oxidative stress•
•
•
•
•
•

Metabolic activity, membrane activity•
•
•
•
•

Cell viability
Mitochondrial damage
Mitochondrial integrity
Reactive oxygen species production

DNA damage
Apoptosis
Actin filament integrity
Blood brain barrier destruction
Alteration of gene expression

Breast cancer cells
Human epidermal keratinocyte cells
Hippocampal neuronal cells
Human hepatoma cells

Human lymphocytes
Human hepatocytes

Carcinoma cells
Human bronchial epithelial cells
Messenchyma stem cells
Mouse lung epithelial cells

Fullerenes

Aluminum nanoparticles

Zinc nanoparticles

Iron nanoparticles

Titanium nanoparticles

Silicon nanoparticles

Liver, spleen, colon mucosa, kidney
Sperms, lung, gill, pulmonary organs
Human skin

Fig. 19.2 (a) Various nanomaterials and their associated noxious effect upon interaction with
different experimental models. Reprinted with permission from Kumar et al. [25] under Creative
Commons CC BY. (b) Possible routes of cell damage inflicted by NPs. Reprinted with permission
from Sukhanova et al. [26] under Creative Commons CC BY
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19.2.4 Underlying Mechanisms Behind NP-Mediated Toxicity

NP toxicity is not limited to the site of administration alone but can be traced to other
regions of the body to reach specific target organs due to translocation. Different NPs
might favor specific target organs and/or cellular compartments based on the above-
mentioned factors that are extremely critical in deciding the fate of NPs in the body
of an organism. So, the experimental models both in vitro and in vivo are extremely
important to determine the toxicity of NPs because in vitro models provide valuable
insight into the toxic effects inflicted by a NP on an individual cell and/or a tissue
and/or its components, while an in vivo model allows the estimation of NP toxicity
in individual organs or the whole body itself. Additionally, the concentration of NPs
including their duration of interaction with a living system, their stability in
biological fluids, and the capacity to accumulate in tissues and/or organs may
possibly decide their toxic effect. Hence, it is pivotal to have a complete understand-
ing of all factors and mechanisms underlying NP toxicity to develop safe and
biocompatible NPs. Figure 19.2 depicts the possible damage caused by NPs when
they come into contact with cells. There are possibly eight different ways through
which the NPs can inflict damage to cells; however, the most prevalent causes have
been discussed below.

19.2.4.1 Oxidative Stress
An interlude in the balance of free radical (reactive oxygen species) generation and
the antioxidant defenses that result in tissue damage may be attributed to oxidative
stress [27]. Typically, these free radicals are unstable and highly reactive molecules
due to the presence of unpaired electrons. As a result, they tend to interact with other
nonradical biological molecules, lipids, proteins, nucleic acids, carbohydrates, etc.
[28]. Now, under normal circumstances, homeostasis is maintained by the host body;
however, when exposed to engineered nanomaterials (ENMs) depending on their
physicochemical properties and exposure (high/low), they may either generate free
radicals or modulate nontoxic redox signaling [29]. There are numerous ways of
nanomaterial uptake like active and passive diffusion, phagocytosis, and receptor-
mediated endocytosis. Once the nanomaterials enter a cell, they may interact with
various biomolecules inside the cell to cause oxidative stress that may enhance
inflammation by upregulating the redox-sensitive transcription factors like NF-κB,
activator protein-1, kinases, etc. [30]. ENM localization and interaction with cell
organelles especially mitochondria and nucleus contribute to apoptosis and ROS
generation, where they may end up in DNA damage, mutagenesis, or cell cycle
arrest [31].

19.2.4.2 Autophagy and Disruption of Lysosomal Function
Intracellularly, nanomaterials are predominantly captured and destroyed in the
lysosomal compartment. Thus, autophagy and lysosomal dysfunction hold tremen-
dous significance in understanding the mechanisms of nanomaterial toxicity. Both
phagocytic and nonphagocytic internalization of nanomaterials into lysosome often
exposes them to an extremely hostile environment with varying pH, enzymes that
are meant for degradation [32]. Reports also suggest that nanomaterials induce
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autophagy (self-eating) [33], which is basically a highly conserved homeostatic
process meant to degrade intruding pathogens, impaired organelles, etc.
[32, 34]. Here, the researchers had exposed cells to carbon and metal-based
nanomaterials, which showed an increase in autophagic activity with elevated
autophagic vacuoles toward nanomaterial clearance, which contributed to cell
death. Other reports suggest that cellular autophagy may get affected upon exposure
to nanomaterials like CNTs, quantum dots, and gold nanoparticles [35].

19.2.4.3 Necrosis and Apoptosis (Cell Death)
The pathophysiological or the likely cytotoxicity that may be incurred as a result of
using nanomaterials has often questioned their prospects, which is directly related to
their physicochemical properties and dose that may either generate ROS or
autophagy that eventually decides the cell fate via necrosis or apoptosis [36]. Non-
specific cell injury that often occurs due to trauma, infections, toxins, or neurode-
generative diseases contributes to cell necrosis that was long considered to be not
driven by any distinct signaling and has been clarified by studies that it may also be
regulated (necroptosis) and may play a role in physiological and pathological
processes [37]. Predominantly, when cell membrane integrity is breached due to
nanomaterial uptake, it results in leakage of cytoplasmic contents, which in turn
leads to necrosis [38]. In a study on size-dependent toxicity of gold nanoparticles,
1.4 nm gold NPs lead to rapid cell necrosis within 12 h as a result of the oxidative
stress and mitochondrial injury after their intracellular uptake [39].

In contrast, apoptosis is a programed cell death that is genetically controlled. In
the case of apoptosis, cell and nuclear shrinkage can be observed. Unlike necrosis,
the plasma membrane integrity of cell is preserved until late apoptosis. Here, the
cytoskeletal proteins are cleaved by death receptor signaling and activation of
caspases, which leads to break down of the subcellular components. It also leads
to chromatin condensation, nuclear fragmentation, and the formation of plasma
membrane blebs [40]. In a study, the copper NPs induce intrinsic apoptosis in
mice kidney tissue through ROS and reactive nitrogen species generation, regulation
of Bcl-2 family protein expression, release of cytochrome c from mitochondria to
cytosol, and activation of caspase-3; however, they also observed the activation of
FAS, caspase-8, and tBID, which suggests the involvement of extrinsic pathways,
which shows that nanomaterials trigger extrinsic and intrinsic apoptotic pathways
[41, 42]. Further investigations on the complexities of the nanomaterial-induced cell
death may give a better insight into the consequences of human exposure.

19.3 Risk Assessment

Nanomaterial risk assessment is a global issue that must be addressed owed to the
diverse forms of the same material, which means different toxicity. The unavailabil-
ity of a standard protocol to gauge the toxicity further makes the job difficult. Thus,
there arises a significant uncertainty over the ENM toxicity. That is why
nanotoxicology becomes an indispensable part of any new nanotechnologies.
Table 19.3 shows the newer strategies for risk assessment for nanomaterials.
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The aim and scope of the presented frameworks for risk assessment are very
broad and lack decision criteria. However, the listed risk assessment strategy could
be used to prioritize nanomaterial hazards in human health.

19.4 Conclusion

Nanotechnology, nanomedicine, and nanotoxicology aim to improve human life,
where nanomedicine drives the development of novel and superior diagnostic,
therapeutic, and preventive measures, while nanotoxicity details the necessary safety
assessment for nano-enabled products. It is now understood that the size, shape,
surface chemistry, and aggregation of nanomaterials are the key aspects that influ-
ence their toxicity. With the rising use of nanomaterials in different sectors,
nanotoxicology plays a vital role in guiding through the challenges to get it right
and recognize and avoid potential risks associated with ENMs. It is noteworthy that
in vivo studies can provide adequate information regarding ADME of ENMs;
however, long-term studies require systemic knowledge.

Another important limitation in understanding the toxicity of nanomaterials is
posed by the discrepancies in assessments under in vitro and in vivo conditions. This
is largely due to the findings that reveal toxicity under in vitro conditions; however,
the same may fail to reciprocate under in vivo conditions. Therefore, clearly, more
understanding is needed to compare in vitro and in vivo testing systems. Intelligently
designed nanomaterials and appropriate methodology combined with proper
experiments may ensure better understanding of toxicity of nanomaterials, which
may further find their way into futuristic applications for the welfare of mankind.
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Clinical Toxicity of Nanomedicines 20
Nadim Ahamad, Prateek Bhardwaj, Eshant Bhatia,
and Rinti Banerjee

Abstract

Nanomedicine (NM), the use of nanoparticles in diagnosis, prevention and
treatment of human disease has drammatically improved the practices of medi-
cine in the past two decades. Approximately 50 NM products have received
US-FDA approval for a variety of human diseases and even greater number are
currently under clinical evaluation. One of the main advantages of NMs is
explored in drug delivery owing to thier unprecedented ability to facilitate high
payload drug delivery thereby reducing the systemic toxicity associated with free
drug administration. Despite their widespread popularity, the NMs receive sev-
eral toxicological and regulatory apprehensions. Clinical toxicity of NMs is one
such inevitable challenge limiting the success of a large number of NMs in
clinical translation. Regulatory agencies ensure that any NM must demonstrate
rigorous safety profile during preclinical and the clinical studies prior to consid-
ering its commercialization. Outcomes from toxicological research revealed that
the clinical toxicity of NMs is governed by multiple factors and not merely a
drug-dependent response. In this chapter, the role of key factors such as physico-
chemical properties of NMs (namely size, surface area, charge, shape, and
composition) and route of administration contributing to the clinical toxicity of
NMs are elaborated. This chapter also provides mechanistic insights into the
potential mechanism of toxicity of NMs in different systems. Towards the end,
the chapter summarizes different pros and cons of well-established models for
testing NM toxicity. Lastly, the globally acceptable safety guidelines and roles of
various regulatory bodies in promoting research on nanomedicine are outlined.
The understanding from this chapter will help in designing a safe and effective
NM for specific application.
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Abbreviations

ALP Alkaline phosphatase
ALT Alanine aminotransferase
AST Aspartate aminotransferase
DOPC 1,2-Dioleoyl-sn-glycero-3-phosphocholine
DOPS 1,2-Dioleoyl-sn-glycero-3-phosphoserine
DPPC 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine
GGT Gamma-glutamyl transferase
GM-CSF Granulocyte-Macrophage Colony Stimulating Factor
IL Interleukin
TNF-α Tumor Necrotic Factor- Alfa
US-FDA Food and Drug Administration

20.1 Nanomaterials in Medicine: Nanomedicine

According to the most widely adapted definition, a material having at least one of its
dimensions between 1 nm and 1000 nm scale is classified as a nanomaterial
[1]. Humans are always surrounded by nanomaterials, for example, viruses (diame-
ter 20–400 nm), bacteria (diameter ~400 nm), or tiny particles generated from
anthropogenic sources, e.g., volcanic ash, dust storm, or industrial waste [2–
4]. These particles have a great impact on human health. Also, engineered
nanomaterials or nanoparticles (NPs) are synthesized for diverse applications in
multiple areas of science and technology.

In a biological perspective, a material when brought to nanoscale
dimention acquires two unique features which cause it to behave dramatically
different from its bulk state. The first one is a tremendously high surface area-to-
volume ratio which creates a vast platform for incorporation or functionalization
with a large amount of molecule of interest and secondly, owing to its inherently
small size, it can comfortably cross biological barriers such as moving out from
blood vessels, crossing the blood–brain barrier, and entering into cells (diameter
10–100 μm) via different mechanisms of endocytosis. Taking advantage of these
properties, researchers have explored an array of inorganic and organic
nanomaterials for diagnosis, prevention, and treatment for a variety of human
diseases, and such nanomaterials are known as nanomedicine (NM). The term NM
was first used during the late 1990s, although scientists have been studying these
from multiple decades [5, 6].
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20.1.1 Biodegradable or Nonbiodegradable NPs

A group of NPs when placed under physiological conditions when undergo
subsequent degradation due to hydrolytic or enzymatic action are known as biode-
gradable, and the rest are nonbiodegradable. Most popular biodegradable materials
used in developing NMs include polymer-based [natural (chitosan, alginate, dextran)
and synthetic (poly (lactic-co-glycolic acid; PLGA or polycaprolactone; PCL], lipid-
based [natural (phospholipids, cholesterol) and synthetic (DPPC, DOPC)], protein-
based (albumin, gelatin) materials, and few others such as silica, synthetic
dendrimers, and cyclodextrins. Popular examples of nonbiodegradable materials
include gold (Au), silver (Ag), iron (Fe), aluminum (Al), and copper (Cu) [7–
9]. These materials have been processed in various nanoforms such as porous
particles, liposomes, micelles, cochleates, nanofibers and some nonspherical shapes
(rod-shaped, diamond, cuboidal, etc.) specially made using metallic material.

20.1.2 Bioactive or Carrier Function of Nanoparticles in NMs

A large number of nanomaterials, mostly nondegradable, show specific bioactivity
which has been leveraged by biomedical scientists for developing effective
diagnostics or therapeutic NMs. For instance, AuNPs have been exploited for their
evident antimicrobial, anti-inflammatory, or anti-arthritic properties [10, 11]. Simi-
larly, AgNPs (anti-microbial), CuNPs (bone resorption) [12], and CNTs (anti-
cancer) [13] also achieved substantial interest in therapeutics. Additionally, these
NPs when combined with other therapeutic agents result in overall improved
efficacy [14]. Also, metallic NPs behave differently when exposed to electromag-
netic radiation, which makes them preferred NMs for theranostics purpose. For
example, when illuminated with radiation of specific wavelength, metallic particles
produce light or heating effect in the body. The ability to produce light [e.g.,
fluorescence or near-infrared fluorescence] has been strategically utilized in devel-
oping a variety of diagnostic devices or nanosensors for tracking/monitoring distri-
bution and selective accumulation in the body [15]. Also, many of these NPs have
attracted considerable interest as contrast-enhancing agents in ultrasound imaging
[16–18]. On the other side, the heating effect has been exploited for targeted killing
of cancer cells in patients, a phenomenon well known as hyperthermia-based
killing [19].

Nanomaterials particularly those which are biodegradable also serve as drug
delivery carriers where they enhance the biodistribution and absorption of their
encapsulated cargo which is therapeutic. This property or carrier function helped
in significantly reducing toxicity associated with free drug administration and also
improving therapeutic efficacy [20–22].

Nearly 50 NMs have already been approved by US FDA including both nonbio-
degradable as well as biodegradable formulations. Among the approved products,
nonbiodegradable particles have been primarily used for diagnostics purpose (e.g.,
superparamagnetic iron oxide nanoparticles; SPIONs) and some therapeutic
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applications such as cancer treatment using hyperthermia in combination with
radiotherapy (e.g., variety of metallic NPs). Whereas, biodegradable particles have
been mostly used for their carrier function (Table 20.3) [23, 24].

20.2 Clinical Toxicity of NMs

Ideally, any NMs intended to be administered in the body essentially need to be
biocompatible in nature, i.e., they should not elicit any undesirable immune
responses or toxicity when injected or implanted in the body [25]. Despite the
utmost care being taken in designing the material and dose, NMs may elicit clinical
toxicity when administered into the body. For example, Shi et al. tested safety and
chemotherapeutic potential of monomethoxy polyethylene glycol–poly (D, L-lactic
acid) (mPEG-PDLLA) polymeric micelles-paclitaxel particles in the treatment of
cancer. They injected formulation in 18 patients with confirmed advanced
malignancies in low (175 mg/m2) to highest (435 mg/m2) dose. The dose was
intravenously injected for 3 h without premedication on day 1 (on a schedule of
21 days). Among the six patients receiving high dose (300 mg/m2), 4 showed grade-
4 neutropenia and 1 patient showed grade-3 numbness. Also, 6 out of 18 patients
(33.3%) having prior exposure to chemotherapy showed partial hypersensitivity
reactions [26].

Therefore, increasing applications of NM research has given rise to critical safety
and regulatory concerns. Certainly, it is unethical to conduct toxicity studies on
humans; most of the knowledge about toxicology of NMs is apparantly generated
using cell culture and preclinical animal models. The OECD guidelines particularly
in Sect. 20.4 (health effect) emphasized rigorous evaluation of toxicity in preclinical
models. Specifically, for toxicological profiling, the subject animal should be moni-
tored for any altered respiration, salivation, weight loss, muscle spasm, diarrhea,
convolution, lacrimation, numbness, tremors, and loss of a reflex. If any of these
symptoms appear during the first 24 h or within 14 days of single/multiple
exposures, then it is considered as acute toxicity. These symptoms can also extend
to 28 days (subacute), ~3 months (sub-chronic), or 6 months and above (chronic
toxicity). Additionally, organ-specific toxicity such as hepatotoxicity, cardiotoxicity,
neurotoxicity, and hemotoxicity are needed to be evaluated. The first-in-human
toxicity and safety studies of developed NMs are conducted in phase 1 clinical trials,
while phase II and III clinical trials focus on evaluating efficacy (Table 20.1).

20.3 Factors Responsible for Clinical Toxicity of NMs

The clinical toxicity of NMs results from multiple factors such as individual factor
(e.g., genetic variability, disease condition, and immunity), physicochemical
properties of NPs, and its route of administration [2]. Additionally, some other
factors such as inadequate handling/storage of formulation, and inappropriate dosing
might also result in acute to sub-chronic toxicity in patients receiving such
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formulations. Thus, a sound understanding of all factors contributing to clinical
toxicity is essential for designing safe and effective NMs for human applications. In
this section, the role of physicochemical properties and routes of administration of
NMs on its clinical toxicity are discussed.

20.3.1 Physicochemical Properties

The physicochemical properties including size, shape, surface charge, coating,
stability in biological fluids, and agglomeration rate have been considered the key
factors leading to clinical toxicity of NMs3. Physicochemical properties of NMs can
affect the particle’s ability to cross biological barriers (e.g., skin or mucosal barriers),
distribute, accumulate, and eventually get cleared from the body which has substan-
tial impact on its clinical toxicity (Fig. 20.1).

20.3.1.1 Effect of Size, Surface Area, and Shape
The size and surface area of NMs play an important role in deciding how the body
responds to, distributes, and eliminates the particles. Particle surface area to volume
ratio increases exponentially with decreasing particle size which makes the particle

Table 20.1 Stages in clinical development of nanomedicine

Stage Objective Design

Number
of
volunteers Outcome (if successful)

Preclinical
studies in
small
animals

Development of
investigational new
drug (IND)

NA Application to FDA on
IND

Phase I Safety profile and
pharmacology. To
study dose-limiting
toxicity (DLT)

“3 + 3”
cohort
expansion
designa

20–80 Dose and schedule
decided for further
evaluation or
recommended phase
2 dose (RP2D)

Phase II Efficacy against
placebo
Also, validation on
toxicity and
tolerability

Single arm
OR
randomized
trials

Several
hundreds

Progress to phase 3 Or
conditional FDA
approvalb

Phase III Efficacy over ‘gold
standard’

Randomized Hundreds
to
thousands

FDA approval

Post-
marketing
surveillance

Safety studies during
sales

NA Data on small risk,
benefit, and optimal use.
Recall in case of adverse
effects

aDose escalation by increasing 3 + 3 volunteers in each step
bIn case of robust Phase II and interim Phase III data and unmet medical need
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surface chemically more reactive. As a consequence, particles undergo more
agglomeration and interact differently with biological fluids. Particle agglomeration
results in serious toxic effects in body [27]. Small size particles have the ability to
easily cross biological barriers hence, they get distributed to multiple organs impor-
tantly in brain, liver, kidney, intestine, pancreas, and spleen, hampering their func-
tion thus leading to acute and chronic toxic effects in body. Caster et al. studied the
role of particle size on the efficiency and toxicity in chemoradiotherapy (CRT) of
xenograft tumor model. In a comparison between 50, 100, and 150 nm particles, the
authors demonstrated that in contrast to larger particles (100 and 150 nm), the 50 nm
particles avoided liver and spleen accumulation and penetrated homogenously in the
xenograft tumor model. The small size particles caused more small bowel toxicity in
animals [28].

The particle shape and aspect ratio have important effects on the clinical toxicity
of NMs [29, 30]. Almost all the NMs that reached the clinical stage have been
fabricated in spherical shape. Spherical shape has distinct advantages such as ease
and reproducibility of fabrication with most existing techniques and favorable
interactions with cells. In literature, few shapes such as flakes/needle shaped (e.g.,
single or multi-walled carbon nanotubes, SWCNTs/MWCNTs), irregularly spheri-
cal (dendrimers and cyclodextrins), and other shapes including rod-shaped, ellipti-
cal, cube, diamond, clusters (mostly AuNPs) have been explored for developing
NMs. The shape of particles affects absorption and phagocytic clearance from the
body. The endocytosis of spherical particles is relatively easier and more efficient
when compared to the rod-shaped particles [31, 32]. For example, the toxicity of
SWCNTs and MWCNTs (both being rod-shaped) is attributable to their adverse
effect on the process of endocytosis, particularly, influencing the membrane
wrapping and formation of endocytic pocket [33]. Due to this, in contrast to

Fig. 20.1 Illustration of various physicochemical properties of nanomedicine
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spherical fullerene, the CNT due to tubular shapes caused more platelet aggregation
and vascular thrombosis in rat carotid arteries [34].

20.3.1.2 Effect of Surface Charge and Coating
Surface charge and particle coating play a significant role in the clinical toxicity of
NMs. Inability to maintain optimum surface charge (positive/negative) results in
precipitation/agglomeration of NPs during storage or inside the body. Agglomerated
NPs do not distribute homogeneously in the body and potentially lead to toxicity in a
specific organ. In a study, Saxena et al. showed that carboxylated-SWCNT (more
anionic) showed profound in vivo toxicity in a mouse model when compared to
pristine SWCNT, which might attribute to their homogenous dispersion and eventu-
ally higher availability in different organs [35]. Additionally, surface charge (with
size) also controls the formation of ‘protein corona’ (a shell of plasma protein formed
on particle surface in biological fluid) on the particle surface [36]. Protein corona
determines biological identity of particles in the body, regulates their distribution,
and organ-specific toxicity [36]. For initiating phagocytic clearance of NMs from
body, protein corona facilitates opsonization, thus helping in reducing toxicity
[37, 38]. Moreover, surface charge also controls the affinity of the particles toward
oppositely charged biomolecules, e.g., protein, nucleic acid, and lipid inside or on
the cell surface. As a general consensus, cationic NPs are considered more toxic over
anionic particles. The toxic effect of cationic particles is due to their higher affinity
toward anionic head of phospholipid and negatively charged proteins embedded on
the cell surface. Excessive binding or adsorption of cationic particles on cell surfaces
inhibit associated cellular function eventually causing severe toxic effects. Earlier
studies have demonstrated that cationic particles are more likely to cause
hemotoxicity by inducing platelet aggregation and hemolysis, in contrast to nega-
tively charged or neutral surface which is considered mostly biocompatible [39]. In a
study by Heiden et al., it was observed that cationic polyamidoamine
(G4) dendrimers showed time-dependent toxicity in zebrafish embryo model,
whereas anionic dendrimers were not toxic [40].

In order to modulate toxicity due to particle surface properties, NP surface is
strategically coated by grafting differently charged molecule onto them. Thus, a thin
coating or shell on the nanoparticle surface helps in stabilizing particles and making
their surface more biocompatible. In some cases, the coating improves solubility,
tissue-specific targeting (known as active targeting), or preventing opsonization-
triggered phagocytic clearance of NPs from the body. For example, SPIONs show
systemic toxicity due to the poor solubility and high rate of agglomeration under
physiological conditions which potentially impede blood flow. For NM applications,
SPIONs have been coated with various biocompatible materials (e.g., silica or
polymers) for improving their solubility hence, retention in the body, and simulta-
neously reducing hemotoxic effect [41–45]. Similarly, for active targeting, particles’
surface is functionalized or coated with a ligand which specifically recognizes the
cells of the target tissue, thus minimizing toxicity at nontarget locations. For
example, coating the particle surface with folic acid improves their uptake by cells
overexpressing folate receptor-β (FR- β), such as cancer cells [46] and
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pro-inflammatory macrophages [47]. In most NM products, phagocytic clearance
due to opsonization often results in premature clearance of the particles from the
body. To prevent this, particle surfaces are grafted with polyethylene glycol (PEG)
coating (known as PEGylation). PEGylation turns NP surface biologically inert
preventing their phagocytosis, as a result the stealth NPs retain longer in circulation
without showing toxic effects [48]. PEGylation is a biocompatible coating approved
by the FDA for reducing the toxicity of various NMs. PEGylation has been success-
fully used for reducing the toxicity of multiple NM products approved by US-FDA,
e.g., PEGylated liposomal doxorubicin (anti-cancer), PEGylated GM-CSF (Neutro-
penia), and PEGylated TNF-α inhibitor (Crohn’s disease) [24].

20.3.1.3 Effect of Composition and Degradability
The chemical composition of NPs is another important factor leading to toxicity. It
has been observed that, in contrast to degradable NPs in which toxicity is mostly
attributable to encapsulate drugs, nondegradable NPs show inherent toxicity by
accumulation at vital organs. Moreover, NPs prepared using different materials
(similar size) can have different toxicity effects. In a study, aimed at understanding
the toxicity due to composition of NPs, Herper et al. used 11 different types of NPs
fabricated using different materials (although comparable sizes) and evaluated their
toxicity on the embryo of the zebrafish model. The range of NPs included titanium
oxide, aluminum oxide, gadolinium oxide, zirconium oxide, samarium oxide, dys-
prosium oxide, holmium oxide, and erbium oxide (all positively charged) and silicon
dioxide, yttrium oxide, and alumina doped, and cerium oxide (all negatively
charged). These NPs were individually exposed to zebra fish embryo by
supplementing in water (waterborne exposure) at 10–250 ppm concentration and
subsequent toxic effects were evaluated. Through this study, the authors interest-
ingly observed that NPs different in composition (even with comparable surface
charge and size) had different toxic effect on the morphology as well as mortality of
zebrafish embryo [49].

Degradability of NMs is another factor that is associated with clinical toxicity.
Toxicity of nondegradable NMs such as metallic or latex particles, injected into the
body for a therapeutic or diagnostic purpose, is attributable to their long-term
accumulation in vital organs and inefficient clearance from the body. Also, nonde-
gradable metallic NPs due to small size are known to accumulate inside the cell,
disrupting normal cellular function ultimately leading to uncontrolled production of
toxic free radicals (e.g., ROS) [50]. On the other hand, toxicity of biodegradable
nanoparticles depends on the toxicity of released degradation product (monomers).
For example, NMs developed using PLGA are most biocompatible as the degrada-
tion products such as lactic acid and glycolic acid are safely absorbed by the body. It
was demonstrated by Semete et al., where they injected PLGA NPs (200–300 nm) in
blood, and 7 days postinjection, they observed that nearly 40% particles were
accumulated in the liver, while rest were localized in brain and kidney without
showing any toxic effect [51]. Additionally, the rate of degradation (or rate of
releasing encapsulated drug) can also lead to toxicity. For instance, burst-releasing
formulations can show acute toxic effects in the body which is mostly attributable to
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the loaded therapeutic agent. Thus, depending on the requirement, either burst
releasing (e.g., micelles), fast releasing [e.g., albumin-based or polylactic acid
(PLA) or polyglycolic acid (PGA) particles], or slow releasing (e.g., PLGA, PCL)
nanocarriers are selected. Besides, material type, the rate of degradation also
depends on NP size and percent porosity. Small size particles with more porosity
degrade faster due to more accessible surface area for hydrolytic and enzymatic
actions during degradation [52].

20.3.1.4 Other Factors
There are certain other properties of NPs such as surface roughness, surface elasticity
of particle assembly, surface acidity or basicity, and surface density which have been
understood up to some extent on in vitro systems. However, their role in toxicity is
not clearly understood thus far [53–56].

20.3.2 Route of Administration

The choice of route of administration plays a substantial role in controlling toxicity
of NMs. Each route results in a unique biodistribution profile in different bodily sites
and associate to different toxicities depending on the physicochemical properties of
NMs. Thus, the inherent toxicity of NMs can be strategically minimized by the
selection of an appropriate route of administration with the intent to achieve a high
benefit to risk ratio. In this section, the toxicological impact of various routes of
administration of NMs is discussed (Table 20.2).

20.3.2.1 Systemic Routes of Administration

Intravenous
Intravenous drug administration is most successful in delivering NMs at accessible
sites in body, also incurred as the most dangerous route due to associated systemic
toxicity. Organs rich in morphonuclear-phagocytic cells (e.g., liver, lungs, spleen,
and bone marrow) are the most common biodistribution site for the passive accumu-
lation of NPs [58–60]. Close proximity with blood and lymphatic nodes potentially
causes hematological, immunological, cardiac, and renal toxicities [60]. Following
intravenous administration, the silica NPs (SiO2NP) showed toxicity in liver, spleen,
and lungs with substantial mononuclear infiltration and hepatic necrosis [61]. In
another study, systemic administration of AuNPs elicited acute inflammatory
responses in rat liver and kidneys involving enhanced production of IL-6, IL-1β,
and TNF-α cytokines[62] and significant alteration in the levels of liver enzymes
(AST, GGT, ALP, and ALT) [63]. Moreover, there is evidence of NP extravasation
through blood–brain barrier (BBB) following intravenous injection inferring their
neurotoxic potential. Intravenous delivery of polysorbate 80-coated
polybutylcyanoacrylate NPs (containing dalargin peptide) in Swiss mice showed
breaching of BBB with potent neurotoxicity leading to decreased locomotor activity
and increased mortality [64].
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20.3.2.2 Slow Absorbing Systemic Routes of Administration
Routes other than systemic administration facilitate gradual entry of NMs/released
drug in circulation (Table 20.2).

Oral
Owing to convenience factor and high patient compliances, oral NM delivery
remains one of the most preferred and widely accepted noninvasive routes. How-
ever, due to the combined effect of gastric and mucosal barriers along with first-pass
metabolism in the liver, the bioavailability of drugs at various organs is considerably
poor. Bednarski et al. observed that oral administration of AuNPs resulted in
excretion of ~55.8% and 3.7% AuNPs in feces and urine, respectively, in contrast
to only 1.02% and 1.9% excretion after intravenous administration. Moreover, of the
total orally administered particles, nearly 40% were adsorbed on bowel walls and
other organs leading to acute toxic symptoms in mice [65].

Respiratory Tract
Intranasal mucosal surface presents another vast surface area for noninvasive deliv-
ery of aerosolized NMs. Unlike oral route, it avoids first-past metabolism. Exposure
to large or small particles leads to toxicity in different ways. Large-sized particles
(3–5 μm) get retained in the trachea while the smaller NPs (0.1–1 μm) infiltrate to the
deepest part of the lungs, i.e., alveoli and enter into the systemic circulation
[66]. However, even with a smaller size of NPs, when compared to degradable
counterparts, the toxic effect is more profound with nondegradable NPs. Nondegrad-
able NPs get conveniently accumulated deep into the lung tissues and lead to various
toxic effects. Miller et al. reported that an increase in the accumulation of different
sized AuNPs (nondegradable) in vascular inflammation sites after inhalation
enhances incidence and risk of cardiovascular diseases [67]. Sub-chronic inhalation
of 4–5 nm AuNPs in rats showed a dose-dependent increased bioaccumulation
involving active infiltration of inflammatory cells (macrophage, neutrophil,
lymphocytes) in lungs and kidneys when compared to blood, liver, and olfactory
bulb [68]. Moreover, due to instant access, high surface area with abundant blood
supply, fenestrated endothelium and permeability to BBR, intranasal delivery of
NMs can also associate with toxicity in brain [69]. For example, intranasal instilla-
tion of different sized nondegradable TiO2 NPs in mice showed brain accumulation
through olfactory bulb with increased oxidative damage and inflammation
contributing to toxicity [70].

Skin
Skin is another attractive noninvasive site for NM delivery. The uppermost
keratinized layer of the skin, i.e., stratum corneum, poses the biggest challenge for
NMs for deep extravasation to the epidermis and dermis, which have accessibility to
fine blood vessels. NM delivery via skin (topical, subcutaneous, and transdermal
administration) is more often associated to local toxicity involving acute allergic
symptoms, irritation, redness, and swelling, but sometimes systemic toxicity by a
gradual entry in circulation [71]. Subcutaneous depots [72] and transdermal delivery
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creams, lotions, patch containing NPs in them [73], and micro-needles [74] have been
used for prolonged systemic delivery of nanotherapeutics. The accumulation of NPs in
hair follicle (root), though help their intrafollicular migration to deep skin layers, also
may be associated with toxic effects depending on the nature of the nanoparticle. Ilver
et al. locally applied zinc oxide NPs to treat local skin inflammation in atopic
dermatitis mice model. Although ZnO particles diminished skin inflammation, they
evoked allergy by inducing systemic IgE antibody production [75].

20.3.2.3 Route for Local Delivery at Diseased Site
Locations in the body where systemic bioavailability with either enteral or parenteral
route is considerably poor are often administered with nanoparticles locally. Most
common locations are brain tissue, eye, ear, articular joints, skin, terminal GI tract,
vagina, deep muscles tissue, lungs, and interior of solid tumors. For visualization and
deep access in body/tissues, local injections are sometimes used as imaging or
endoscopic probes [76]. However, as local injections suddenly provide a high dose
at a confined location, it often results in acute inflammatory responses. Warheit et al.
showed that intratracheal administration of 300 nm titanium dioxide NPs (TiO2) and
nanorods (200 � 35 nm) resulted in local pulmonary toxic effects including inflam-
mation and cell injury 24 h postinstillation [77]. Also, intra-articular administration
of solid-lipid-NPs (SLNs) and hyaluronic acid functionalized-PLGA NPs in the rat
knee was considered safe without showing notable sign of joint inflammation
[78]. Clinical study on intraocular retinoblastoma showed reduction in systemic
toxicity and periocular toxicity associated with administration of free carboplatin
through periocular application of carboplatin-loaded polymethylmethacrylate
NPs [79].

20.4 Clinical Insights into the Mechanism of NM Toxicity

Understanding the mechanism of clinical toxicity is essential for improving the
strategy for NM development. As already discussed, NMs due to small size and
unique surface properties can easily penetrate biological barriers and cause changes
at the cellular, subcellular, and molecular levels that eventually determine the toxic
outcome of NMs.

20.4.1 Cellular Mechanism

NPs elicit various toxicological responses in cells which dysregulate cellular homeo-
stasis by multiple mechanisms. Among these, induction of free radical generation
(reactive oxygen species; ROS) is central to most toxicological outcomes (Fig. 20.1).
This has been observed with several NPs like Au, Ag, Fe, and SiO2 that high ROS
(peroxide, superoxide, singlet oxygen, and hydroxyl ion) production in the cell
results in net oxidative environment disrupting cellular functions. As a consequence,
cell undergoes shrinkage leading to aberrations in cytoskeleton network affecting the
function of actin and tubulin fibers ultimately leading to cell death by necrosis or
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apoptosis [80]. Additionally, loss in cell membrane integrity manifested by leakage
of lactate dehydrogenase (LDH) enzyme in extracellular space is another predomi-
nant mechanism of cellular toxicity of NMs [81]. Multiple NPs, AuNPs for instance,
exert their cytotoxic effect by inhibiting the production of focal adhesion complexes
(FAC) which serve as a link between cytoskeletal actin filaments and transmembrane
integrin receptors [82]. Warren and Payne studied CHO and HeLa cells exposed to
NP treatment and found an alteration of the membrane potential. They observed that
positively charged polystyrene NPs blocked potassium channels; as a result, a
positive charge was accumulated inside the cells leading to membrane depolarization
[83]. Also, NPs may cause toxicity by affecting the process of endocytosis which is
critical for phagocytic clearance of foreign particles from the body. For example,
rod-shaped particles are difficult to be engulfed by macrophages, as the longitudinal
shape of these particles inhibits the formation of endocytic pocket, thus ultimately
slowing down overall endocytosis [84].

20.4.2 Subcellular Mechanisms

Depending on their physicochemical properties, the NMs interact differently with
the plasma membrane (PM) and organelles such as mitochondria, lysosomes, endo-
plasmic reticulum (ER), Golgi bodies (GB), and nucleus disrupting associated
function and thus overall cellular physiology (Fig. 20.1). A group of hydrophobic
NPs accumulate inside lipid bilayers due to affinity for hydrophobic tails of
phospholipids. Accumulation or interaction of NPs with PM may affect their effi-
ciency of endocytosis. Following endocytosis, NPs are mostly stored inside
lysosomes. Storage of NPs in a lysosome may disrupt the efficiency of lysosomal
degradation by alkalinization of lysosomal lumen and accumulation of
autophagosomes [82, 85]. Other studies have shown that NP treatment, using
AgNP for instance, activates oxidative stress in ER by altering redox state of cells.
The ER stress stimulates upregulation of genes involved in cellular protein unfolding
responses [86]. On the other hand, platinum NPs and AgNPs showed dose-
dependent reduction in mitochondrial membrane potential and also altered the
redox state of mitochondria [87]. Damaged mitochondria undergo leakage and
release cytochrome c, a key component of the intrinsic pathway leading to cell
death by apoptosis [88] (Fig. 20.2).

20.4.3 Molecular Mechanisms

Detailed mechanism of NM toxicity is understood by analyzing the interaction of
NPs with biomolecules, e.g., proteins, glycans, lipids, and nucleic acid inside the
cell. Binding of NPs to biomolecule inhibits their cellular function to maintain
morphology, cellular homeostasis, and redox potential [89]. Prolonged exposure
with carbon nanotubes is known to damage calcium (Ca2+) homeostasis in cells
[90]. Small-sized NPs can potentially translocate through nucleopores directly
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interacting with nucleic acids. Interaction of NPs with DNA is a key mechanism that
regulates the toxicity of a variety of NMs. NPs binding to DNA may cause physical
damage, affecting methylation pattern, leading to the formation of micronuclei
(MN) and nuclear buds ultimately affecting gene expressions (NP-associated
genotoxicity) [91]. Comet assay and cytokinesis-block micronucleus test revealed
that exposure to TiO2-NPs increased both DNA damage and formation of MN in
endothelial cells [71].

20.5 Models for Assessing Toxicity

A range of in vitro and in vivo (preclinical) models have helped in understanding the
toxicity of NMs to a great extent. For simplification, the models are broadly
classified into two groups, namely cell-based and animal models.

20.5.1 Cell-Based Models

The in vitro cell culture system is an excellent and well-established model for
evaluating the toxic potential of NMs under investigation. Under laboratory
conditions, cells can be conveniently handled, grown, and manipulated. Moreover,
most of the assays required for studying even a slight change in their morphology,
behavior, proliferation, and differentiation have already been established. Overall,
cell-based evaluation of clinical toxicity is an economically viable, rapid, and
effective approach for reproducibly understanding the toxicity of NMs. Under
in vitro conditions, cells can be grown either on 2-dimensional (2D) surface or in
3-dimensional (3D) microenvironment.

20.5.1.1 2D Cell Culture Models: A High-Throughput Screening
Approach

Advancements in cell culture techniques and instrumentation have provided the
researchers with an unprecedented ability to simultaneously monitor multiple
parameters in a toxicity study. For evaluating the toxicity of CNTs on 2D cells,
Movia et al. performed high content screening and analysis (HCSA) of the treated
ThP-1 cells. The authors could study multiple cellular properties such as cell
viability, cell membrane permeability, lysosomal mass/pH, and nuclear staining at
the same time. The comprehensive set of data obtained on CNT toxicity was
reproducible, consumed less time, and helped predicting expected toxicity in live
organisms [92]. Additionally, high-throughput analysis also facilitates analysis of
free radicals (e.g., ROS) production, cytokines, and change in cell membrane
potential as a result of NM exposure.

Further, in order to predict clinical toxicity better than cell lines, researchers have
used human-derived primary cells as screening models. Although growing primary
cells is challenging as the cells lose viability beyond a few generations, the results
are more relatable to the clinical scenario. In this context, pluripotent and multipotent
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stem cells (SCs) have achieved substantial interest. As SCs tend to differentiate into
specific lineage (for instance, bone, cartilage, muscles, neuronal) when exposed to
specific physical, chemical, or biological cues, they have attracted huge interest for
studying NP influence on differentiation. Moreover, the majority of cellular signal-
ing pathways triggering their differentiation have also been investigated in detail.
Thus, SCs have been considered an excellent model for understanding the specific
toxicity of NMs on cellular proliferation and differentiation behavior. Coccini et al.
have used mesenchymal stem cells (MSCs) derived from human umbilical cord for
toxicity screening of iron-based magnetite NPs and observed enhanced senescent
phase with decreased mitochondrial activity [93].

20.5.1.2 3D Monoculture and Coculture Models: Physiological
Relevance

3D cell culture models are widely adapted for their ability to recapitulate tissue
microenvironment by facilitating near-native cell–cell and cell–matrix interactions,
thus more closely mimicking original tissue morphology and function [94]. Models
et al. developed small aggregates of human monocytes (Thp-1) to monitor cytotoxic
potential of SWCNTs. SWCNT exposure on 3D cellular aggregates did not result in
a severe inflammatory response, which otherwise was seen on 2D culture of the same
cells. This emphasizes a poor correlation between 2D and 3D cell culture
models [92].

Besides conventional monoculture (using one cell type), researchers have also
developed 3D coculture models involving more than one cell type. These models
have been designed to mimic unique anatomical, morphological, and/or functional
features of any organ such as GI tract, liver, placenta, kidney, and skin [94–
96]. Interestingly, these models help better understand the toxicological effects of
NMs on the specific functions of the particular organ. For example, Muoth et al.
studied the effect of cadmium telluride (CdTe) and copper oxide (CuO) NPs on 3D
coculture microtissue placenta model containing fibroblasts core surrounded by a
trophoblast cell layer resembling the in vivo placenta. Cell viability and rate of hCG
release were considered as the parameter of acute toxicity [97]. In line with this,
human artificial skin models such as EpiSkin™ and SkinEthic™ (EpiSkin Research
Institute, France) and EpiDerm™ (MatTech Co., USA) have been commercialized.
Kim et al. used EpiDerm™ for evaluating dermal toxicity of metallic NPs. Measure-
ment of cell viability and cytokine release suggested that FeNPs, AlNPs, TNPs, and
AgNPs are noncorrosive and nonirritant to human skin [98].

20.5.2 Animal Models for Toxicity Testing

Despite enormous advancement in cell culture-based models, the results of clinical
toxicity barely correlate to results obtained on live animals. The data from cell
culture studies are useful for primary screening, however, should be essentially
validated on animal models. Animal models are suitable for evaluating acute,
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subacute, sub-chronic, and chronic toxicity potential of developed NMs with more
reliable and relatable observations to clinical scenario.

20.5.2.1 Small Animal Models
Rats and mice are the most popular animal models for toxicological studies but
sometimes rabbit, guinea pig, and dogs are also used. There are guidelines for safe
and ethical handling of animals for toxicological studies. These animals have been
suitably administered NMs via systemic, oral, nasal, skin, or any local route for
studying symptoms of acute to chronic toxicity. Small animals have been used as
gold standard for studying biodistribution, accumulation, and organ-specific
toxicities [99]. Small animals were also used for evaluating the genotoxic effect of
NMs studied by monitoring chromosome aberrations, mitotic index, and
micronuclei test.

Owing to numerous ethical and regulatory concerns for using small animals for
toxicology study, there was a pressing need for having alternative models for
bridging the gap between in vitro and in vivo models. In this context, zebrafish
(Danio rerio) emerged as a prominent alternative animal model. Zebrafish offers
several advantages including: (a) it is a live animal unlike cell culture, (b) simple and
cost-effective culture maintenance, (c) easy to grow in laboratory, (d ) easy to handle
and manipulate due to small size (4–5 cm), (e) rapid testing due to high fecundity and
rapid development of embryos, ( f ) well-characterized development stages and
optical transparency, (g) no limitation of upper limit of replicates per test unlike
animal, (h) high-throughput screening is possible, and interestingly (g) being a
vertebrate animal, it shares up to 70% genetic homology, anatomical, and pathologi-
cal features with humans [100]. Importantly, there are no strict ethical concerns for
using zebrafish for toxicity testing [101]. Overall, zebrafish has been considered as
the ‘gold standard’ for biosafety assessments of chemicals and is gaining recent
interest even for NM toxicity testing. Lee et al. observed size-dependent toxicity of
AgNP on zebrafish embryos. Similarly, there have been multiple studies using
zebrafish model for understanding the role of physicochemical properties of NMs
on their toxicity [102].

Besides, zebra fish, Drosophila melanogaster also achieved considerable interest
for evaluation of toxicity of NMs [103].

20.5.2.2 Nonhuman Primate Models
Proportionally, the use of nonhuman primates (e.g., capuchin, cynomolgus
monkeys, rhesus monkey) for the toxicological study is remarkably low when
compared to small animals. As these animals most closely resemble human, hence
enable best prediction of clinical toxicity of newly developed NMs. However, due to
limitation in numbers, tedious handling, and high cost of maintenance, their use is
recommended only under special circumstances (Fig. 20.3).

In a study, Ye ling et al. compared the gestational toxicity of nanocrystals in
rodents and primates [104]. In a study, Sedic et al. observed that intravenous
administration of cationic lipid-based NPs in cynomolgus monkeys showed mild
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splenic necrosis and lymphocyte depletion, accompanied with reversible comple-
ment activation [105].

20.6 Regulatory Guidelines for Clinical Toxicity of NMs

Assessment of clinical toxicity or safety of NMs in human is on utmost priority and a
number of standards and guidelines have been developed for ensuring it. In most of
the cases, the toxicity of NMs is evaluated in accordance with the regulation policies
and guidelines developed for chemical drugs. Regulatory guidelines impose rigorous
evaluation of NMs for their potential to cause acute to chronic toxicity. Whereas, on
the other hand, guidelines from animal welfare restrict the use of animals to the most
desired and permitted studies. In addition to toxicity profile, regulatory guidelines
also ensure efficacy and quality by periodic assessment of critical quality attributes
(CQAs) of NMs and postulation of regulatory accepted standardized test methods
and strategies [106].

20.6.1 Some of the Challenges Associated with Nanomaterial
Regulation Are [107, 108]

1. Diverse regional legislative framework and pharmaceutical classification.
2. Lack of consistent terminology and classification of NMs.
3. Lack of single and harmonized regulatory framework for NMs.
4. Limited number of approved products and their heterogeneity.
5. Lack of robust datasets necessary for designing common guidelines and

standardized procedures for their quality and safety testing.
6. Lack of regulatory framework for ‘Nano similars’ (products similar to the ones

already approved), ‘Borderline products’ (products that impart therapeutic action
physically rather than chemically like metal oxides), and ‘Combination products’
(complex products possessing both diagnostic and therapeutic properties).

Fig. 20.3 Schematic presentation of different models for testing the toxicity of Nanomedicines
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20.6.2 Current Global Regulatory Status

Regulatory authorities across the world realized the need for harmonization of
information on nano-specific properties and requirement of an independent NM
characterization facility. This would essentially support regulators in assessing the
performance of new and existing test methods for the evaluation of nano-systems
[109]. In USA, the Nanotechnology Characterization Laboratory (NCL) established
by the National Cancer Institute (NCI) has been providing assistance to regulatory
agencies such as US-FDA and product developers. This interaction is tremendously
improving the quality and safety of NMs being approved. Similarly, six European
laboratories with NCI-NCL have founded European Nanomedicine Characterization
Laboratory (EU-NCL) to offer services and expertise to European regulatory agency
including European Medical Agencies (EMA) and the developers at the same
time [109].

Further, in order to quantify the importance of information acquired from the
methods developed/validated under EU-NCL for regulatory, decision-making
agencies periodically conduct survey. The survey encompasses questionnaires
from regulatory scientists involved in NMs Working Group (NWG), established
by International Pharmaceutical Regulators Forum (IPRF). The NWG acts as a
platform for the dissemination of information on the work related to
NMs/nanomaterials and supports regulatory harmonization and consensus finding
on standards. Around 9 agencies including EMA, US-FDA, Health Canada
(Canada), Pharmaceuticals and Medical Devices Agency (PMDA, Japan),
Swissmedic (Switzerland), National Institute of Public Health and the Environment
(RIVM in Dutch, Netherlands), Centre for Drug Evaluations (CDE, Taiwan),
Medicines and Biological Products Office (MBPO, Brazil), and Ministry of Food
and Drug Administration (MFDA, Korea) have responded to the surveys conducted
by IPRF chaired by EMA109 (Table 20.3). The results of the survey showed the
consensus of participating agencies in attributes like stability, particle size and
distribution, surface properties, solubility, and drug release kinetics as relevant for
the evaluation of NMs. Particle dispersity, endotoxin testing, agglomeration behav-
ior, and empty carrier-associated inherent toxicity testing were considered highly
relevant before clinical trials being conducted [109].

Present regulatory guidelines require robust data on physicochemical properties
and nano-specific toxicity on target tissues to identify the hazardous potential during
preclinical testing itself [110, 111]. Such information will be beneficial to assess the
need for additional toxicity testing before clinical trials. Specific in vitro tests need to
be developed for toxicity and efficacy assessments to minimize the expenses
involved and cruelty toward animals during preclinical testing.
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20.7 Summary and Challenges

The clinical toxicity of NMs has a great impact on their success in clinical transla-
tion. One of the main reasons for exploring NM platform is to reduce toxic effects
associated with free drug administration. As discussed in this chapter, the toxicity of
NMs heavily depends on their physicochemical properties and preferred route of
administration. The chemistry of particle such as size, surface area, charge, and
composition has been found to play a pivotal role in governing clinical toxicity of
NMs. Efficient targeting and preventing early clearance of drug from body are
essentially two important ways by which NMs help reducing toxicity while improv-
ing efficacy. Analysis at cellular, subcellular, and molecular levels evidently
revealed that body responds differently with all NMs having varied physicochemical

Table 20.3 Present global status of NM regulatory guidelines

Region Initial guidance document

USA FDA’s draft guidance for industry on
• Liposome drug products (2002)
• Drug products, including biological products, that contain nanomaterials
(2017)
• Liposome drug products (revised) (2018)

European
Union

Reflection papers
• Data requirements for intravenous iron-based nano-colloidal products
developed with reference to an innovator medicinal product (EMA/CHMP/
SWP/620008/2012)
• Surface coatings: General issues for consideration regarding parenteral
administration of coated NM products (EMA/325027/2013)
• Data requirements for intravenous liposomal products developed with
reference to an innovator liposomal product (CHMP/806058/2009/Rev.02)
• Development of block-copolymer-micelle medicinal products (EMA/CHMP/
13099/2013)
• Nonclinical studies for generic nanoparticle iron medicinal product
applications (EMA/CHMP/SWP/100094/2011)

Japan Reflection papers
• Development of block-copolymer-micelle medicinal products (2013) [Joint
with European Medicine Agency]
• Nucleic acids (SiRNAs)-loaded nanotechnology-based drug products (2016)
Guidelines for development of liposome drug products (2016)

Canada Nanotechnology-based health products and food-related general guidance

Brazil Not available

Taiwan Draft guidance on technical review on chemistry, manufacturing, and control
(CMC) of liposomal drug products

Korea Not available

India • Guidelines for the evaluation of Nanopharmaceuticals
• Guidelines for the evaluation of Nano-Agri input products and Nano-
agriproducts

Switzerland Not available
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properties, which ultimately define its toxic effects. Majority of NMs elicit toxic
response by adversely affecting phagocytosis, free radical-induced oxidative stress,
and disrupting cellular physiology by interacting with membrane or cytosolic sig-
naling receptors. Choice of appropriate animal model for assenssing toxicity of NMs
formulation remained a debatable topic. However, numerous studies have
emphasized the fact that initial assesment of toxicity of developed formulation on
cell-based model or zebra fish may help reducing experimental load on animal
models. Various regulatory bodies are consistently trying to harmonizing globally
acceptable guidelines to ensure this.

Despite substantial advances in nanotechnology and enormous efforts being
invested, so far approximatley 50 NMs products succeed in receiving clinical
approval in past 20 years (key examples in Table 20.4). Clinical toxicity remained
a long-standing challenge that indirectly impede the success in the clinical transla-
tion of NMs. In most of the cases, toxicity of NMs is attributable to NP accumulation
(mostly metallic NPs) and undesirable drug release (nanocarriers) behaviour at
off-target organs. Additionally, availability of suitable model for toxicity testing
limits the progress of most NMs. Toxicological results from cell culture and lower
animal are rarely reproducible in humans, which ultimately result in discontinuation
of clinical trials in early stage. Further, there are very few harmonized regulatory
guidelines specific for NMs. There is a pressing need to formulate separate specific
set of guidelines for evaluation of NMs under clinical trials.

Table 20.4 Some examples of FDA-approved NM products

Approved
NMs

Year of
approval

Nanocarrier
systems

Therapeutic
molecule Target disease

Zoladex 1989 PLGA Goserelin
acetate

Prostate and breast
cancer

Lupron Depo 1989 PLGA Luprolide
acetate

Prostate cancer and
endometriosis

Doxil 1995 PEGylated
liposome

Doxorubicin Multiple cancer types

Feridex 1996 SPION coated with dextran Imaging agent (also
2008)

Ambisome 1997 Liposome Amphotericin
B

Fungal infection

GastroMARK 2001 SPION coated with silicon Imaging agent (also
2009)

Estrasorb 2003 Micelle Estradiol Vasomotor symptoms of
menopause

Abraxane 2005 Albumin Paclitaxel Breast cancer

Sometulin 2007 PLGA Lanreotide Acromegaly

Cimzia 2008 Polymer-drug
conjugate

PEGylated
TNF-α

Crohn’s disease

Ozurdex 2009 PLGA Dexamethasone Macular Edema

Onivyde 2015 Liposome Irinotecane Pancreatic cancer
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20.8 Future Prospects

Clinical safety is the first and the most important criteria for clinical translation of
NMs. Challenges at biological, technological, economical, ethical, and regulatory
grounds cumulatively slow down overall progress in clinical translation. In toxico-
logical perspective, there is great need to accelerate the development and translation
of suitable and cost-effective advanced cell-free and animal-free models for toxicity
evaluation [112, 113]. Models should be able to provide rapid and high throughput
toxicological profiling with anticipated similarity of results in human trials. Such
models will help reducing heavy usage and concurrent cruelty associated with
animal testing. Alongside, it is necessary to define separate safety and regulatory
guidelines about CQA specifically for NMs giving bifurcated division on biodegrad-
able as well as nondegradable products. Results or case studies from toxicity and
safety studies on NMs from previously conducted clinical studies could be
centralized on a single portal for the public interest in specific domains. It will
help expedite the development of NMs generated on a common platform or with a
similar ingredient.
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Abstract

Nanomedicine is a developing area of medicine, which uses the techniques and
tools of nanotechnology to deliver the drugs using appropriate drug delivery
systems. These are used for diagnosis, prevention, or treatment of acute or
chronic diseases. At present, there are three major areas where nanotechnology
has been adopted in medicine, diagnostics, theranostics, drug delivery systems,
and regenerative medicine. A new branch of toxicology has been proposed called
nanotoxicology, and a lot of studies are reported about various risks involved
with nanoapplications. This chapter covers various aspects of nanomedicines and
risks involved in using nanomedicine, some of the safety concerns are discussed,
and it also covers the regulatory aspect of nanoproducts under US FDA as well as
approaches adopted by various countries. Finally, it discusses the public health
and public opinion about nanoproducts and nanomedicines.
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21.1 Introduction

21.1.1 NanoMedicine

Nanomedicine is a developing area of medicine, which uses the techniques and tools
of nanotechnology to deliver the drugs using appropriate delivery systems. These are
recommended for diagnosis, prevention, or treatment of acute or chronic diseases.
There are several devices and techniques that are used in surgery, which can also
come under nanomedicine if they have the ability to prevent or treat the diseases [1].

The application of nanotechnology in developing new medicines is a part of the
research and development worldwide. In USA and European Union (EU), it is
recognized as an important enabling technology, capable of providing an innovative
medical solution to address medical needs especially in the treatment of chronic
diseases [2, 3].

Major applications of nanomedicine:
Three major areas have been identified in the medical field for applications of

nanotechnology in medicines:

Diagnostics and Theranostics Nanomaterials have shown significant applications
in the development of diagnostic tools for diagnosis, which provide information
about the disease. These are also used to analyze or detect diseases or medical
conditions, which can be useful in treating thee conditions. Nanodiagnostics is used
to describe application of nanobiotechnology in diagnosis, which helps in develop-
ing personalized cancer therapy. It is supported by pharmacogenetics,
pharmacogenomics, and pharmacoproteomic information. It also considers environ-
mental factors that influence the response to patient therapy [4]. Nanoparticles with
unique intrinsic physical properties are used as bioimaging agents. Some of these
imaging agents included nanoprobes and magnetic metal nanoparticles, which are
widely used as MRI contrast agents for cancer imaging, helping to provide
anatomical details and monitoring of the therapeutic response [5].

Theranostics is a new area of therapy, which uses specific targeted therapy-based
targeted diagnostic tests. These involve using nanoscience to provide diagnostic and
therapeutic applications in a single form allowing diagnosis, drug delivery, and
treatment for a particular disease simultaneously. Some of the examples of
theranostics include Lutetium Octreotate therapy (somatostatin positive tumors),
Lutetium PSMA Therapy (prostate cancer), and Yttrium-90 SIRT for liver cancer.

Chitosan, a biopolymer, is biocompatible and carries several functional groups,
which can be used for delivering drugs to the human body. It is utilized in the
formulation or coating of nanoparticles, thus producing different particles with
multiple functions, which can be used for the detection and diagnosis of chronic
diseases [6, 7].

Lee et al. [8] reported about oleic acid-coated FeO nanoparticles. Oleic acid-
conjugated chitosan (oleoyl-chitosan) was reported to be used for examining the
accumulation of nanoparticles in tumor cells through the penetrability and retention
in the in vivo state. Analytical tools, such as near-infrared and resonance imaging
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(MRI), were used to study the accumulation of these nanoparticles. Both these
techniques showed measurable signal strength and enhanced effect in the tumor
tissues through a higher EPR consequence after the injection of cyanine-5-attached
oleyl-chitosan nanoparticles intravenously in in vivo studies [8].

Yang et al. [9] reported the application of nanoparticles for the diagnosis of
colorectal cancer (CC) cells via a light-mediated mechanism. These cells are visible
owing to the physical conjugation of alginate with folic acid-modified chitosan. This
property led to the formation of nanoparticles with increased 5-aminolevulinic
(5-ALA) release in the cell lysosome. The reports confirmed that alginate-engineered
nanoparticles were voluntarily endocytosed by the CC cells due to the folate
receptor-based endocytosis process [9].

Drug Delivery Systems or Nanomedicine in Therapy Nanomedicine and
nanodelivery systems are rapidly growing science where nanoscale materials are
employed to serve as diagnostic tools or deliver drugs to specific sites in a sustained
delivery [10] Several polymeric and natural materials have been used as carriers in
the form of nanoparticles for drug delivery including chitosan, alginate, pectin,
PLGA, PLA, Caprolactone, and so on. The nanodrug delivery has been used for
buccal, intestinal, nasal, eye, pulmonary, and vaginal therapy. From the 1990s, FDA
of the United States has approved several nanotechnology-based products and
clinical trials of such products have significantly increased. Even though regulatory
mechanisms for nanomedicines, e.g., their safety/toxicity assessments, are in the
formative stage, nanomedicine has significantly improved the way we discover and
administer drugs [10].

Parnajape and Goymann, 2014 have written a very nice review on Colloidal drug
delivery systems and their application in lung diseases. We strongly recommend the
readers to refer to this interesting review.

Regenerative Medicine (RM) Regenerative medicine can be identified as the
process of “regenerating” human cells, tissues, or organs to establish a normal
function of these body parts. RM shows the promise of reviving damaged tissues
and organs in the body by substituting or by activating the body’s own repair
mechanisms to heal in the natural process. RM may also help scientists to grow
tissues and organs in the laboratory setting and safely implant them when the body is
unable to heal itself due to damaged tissues or cells. Currently, it is estimated that
approximately one in three geriatric American population could potentially benefit
from RM. It is a biomedical approach that uses nanoscience to build clinical therapy
involving the stem cells or other bodily tissues. The examples of such RM include
injection of stem cells or progenitor cells in the form of nanoparticles,
immunomodulation therapy using nano-embedded biologically active molecules or
secretions (infused by cells), or tissue engineering using laboratory-grown cells and
tissues for treatment [11].

RM aims to understand the functional rehabilitation of body systems injured due
to external harm, disease, or aging. Nanotechnology can provide advanced
biomaterials with specified morphologies, promoting the adhesion and proliferation
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of stem cells and accelerating somatic cell differentiation in tissue engineering. Pan
et al. wrote a review that summarizes the biological effects of nanomaterials and their
RM applications in orthopedic surgery research and nervous tissue [12].

Biocompatibility is the fate of biopolymers and their compatibility with body
systems. With the application of nanotechnology, new concerns are associated with
biocompatibility of these nanobiomaterials. The size and variability of physicochem-
ical properties, nanoparticles’ distribution within the body, and interactions with the
target cells and tissues can pose challenges to the patient. Zor et al. have provided a
summary about NPs, the concept of biocompatibility and biocompatibility-related
issues in nanomedicine, and a number of other different nanoparticles [13]. In
a review by [14], reported recent applications of nanotechnology to ophthalmology,
drug, gene, and trophic factor delivery [14] were discussed.

21.2 Growing Areas for Nanomedicines

Cancer treatment is one of the most important areas of nanomedicine applications,
and more than 90% of the products approved by US FDA as commercial products or
investigational products are used for diagnosis or treatment of various types of
cancers. The next group is infectious diseases that witness many new products for
the treatment of various infectious diseases using nanodrug delivery systems. Some
other areas include treatment of hepatitis, anesthetics, cardiovascular disorders,
inflammatory and immune disorders, endocrinal and exocrine diseases, and neuro-
degenerative diseases. Some other areas that are employing nanoparticles include
in vitro testing, in vivo imaging, in vivo device coatings, bone substitute, dental
applications, medical dressing, and preventing bacterial infections of wounds, sur-
gical devices, and nanorobots for minimally invasive surgeries.

21.3 Nanomedicine: Known and Unknown Risks

Nanotoxicity The term nanotoxicology was coined in 2004, which refers to the
evaluation of the destructive outcomes of nanostructure interactions with biological
and ecological systems [15]. Many research papers are published since then (2004),
which address various aspects of nanoparticle toxicology for both biological and
environmental systems. The nanosize particles pose different kinds of challenges
due to their quantum size and enormous surface area to volume ratio, which may or
may not bring toxicity to the living things.

As of today, we do not have a complete understanding of the biointeractions of
nanoparticles. The biochemical pathways and biochemical molecule interaction with
the quantum size nanoparticles are not well understood. One of the major challenges
is the nonavailability of the appropriate analytical techniques to measure the small
amount of material in the tune of nanograms to picograms when it is delivered to
biological systems. Magnificent growth of healthcare applications of nanoparticles
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in the last two decades triggers the concerns of possible potential health and
environmental risks due to the use and widespread production of nanoparticles.

The nanoparticle applications creating concern include the deposition and clear-
ing, biocompatibility, systemic translocation and body distribution of nanoparticles,
intestinal tract involvement, and direct effects on the central nervous system, which
warrants a detailed study. The toxic effects caused due to different physicochemical
and structural properties of nanoparticles that result from their nanoscale size may be
responsible for a number of material interactions, which need further evaluation.

In the coming decades, we have to develop methods and techniques to understand
the toxicology techniques to understand the increasingly sophisticated nanoparticle-
based systems that exhibit novel dynamic and multifunctional applications. Today,
we are not aware whether these systems may or may not be good for the users or
biological systems they will be exposed to in the course of their production to
application. In order to better serve the challenges, the scientific community working
in nanotoxicology will have to move toward picotoxicology and to treat these
sophisticated nanoparticles as a challenging entity.

21.4 Risks for Nanomedicines

1. Nanoparticles due to their size can enter lungs, GIT, Lymph systems, mucosa,
and skin and can accumulate there, leading to local toxicity, which needs more
data for further evaluation and educated decision about nanomedicine
applications and safety.

2. Nanoparticles due to their size can influence Absorption, Distribution, Metabo-
lism, and Elimination, and there is a need to understand how these processes are
affected for nanomedicines.

3. The smaller size of Nanoparticles can affect the dose level of the drugs, due to the
enormous surface area, and the dose levels can be reduced, leading to reduced
toxicity.

4. There is a need to develop techniques and animal models to understand the
nanotoxicity and nanosafety, which are not available at present.

5. One has to go carefully as the effects are still unknown and may be quite
dangerous to the patients, and so, to protect the safety for patients, we need
more data in these areas.

21.5 Nanomedicines in Biological Systems

As the nanoparticles are size-specific, they can range from very small like 10–20 nm
to almost 500 nm sizes. For each of these size ranges, they offer significantly
different surface area, and individual particles might exhibit different properties.
These particles based on their particle size range may exhibit different levels of
interactions in the biological systems.

We need to seek answers to these questions:
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1. Will nanoparticles gain access to tissues and cells that normally would be avoided
by the larger particles?

2. Once nanoparticles enter tissues, how long do they remain there? What is their
fate once they enter in the tissues?

3. How are these cleared from tissues and blood? Elimination from the biological
system is a major challenge, and very little data are available to find out the
elimination route from body systems for the nanomedicines?

4. If nanoparticles enter cells, what effects do these have on cellular functions
(transient and/or permanent)? Do the cells have the ability to remove these
nanoparticles from the cellular structure?

5. Do the nanoparticles interact differently with different cell types?

21.6 Route-Specific Issues Related to Inhalation

The accumulation of nanoparticles in the alveoli and other lung cellular structures
may lead to local toxicity, it can also affect the regular physiological function of
Lungs, and these may exhibit some sort of local lung toxicity, which need more data
and studies. It is expected that the nanoparticles that carry drugs may release the drug
in the lungs and whether the drug can enter into systemic circulation and the extent it
will reach systemic circulation is not clearly known yet [16].

21.7 Route-Specific Issues Related to Subcutaneous
Sensitization

Nanomaterials can enter the body by different routes, if they are nanostructured
materials, which become airborne or come into contact with the skin, they get
absorbed through the skin surface [17] and can penetrate and enter the subcutaneous
levels. Countless nanoparticles float in the environment, which can potentially be
absorbed by the human skin surface. There are many consumer products like
sunscreens, cosmetics, and natural or man-made processes, which contribute to the
concentrations of nanoparticles in the environment [18]. These nanoparticles in the
air represent a target for potential toxicity for human skin and other body organs.
These nanoparticles can also enter the human body through inhalation [19].

21.8 Route-Specific Issues Dermal

21.8.1 Increased Dermal and Systemic Bioavailability

Increased follicle retention and distribution to local lymph nodes.
The dermal absorption refers to the dermis that is the outer covering of the skin

classified into two parts, epidermis and dermis. Skin is considered to be the largest
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surface area for absorption of material, of the human body, and it also works as a
protective layer for the underlying internal organs.

Debilitated skin represents a possible channel for entry of finer and even larger
particles (0.5–7 μm) as reported [20]. Accumulation of soil particles in lymph nodes
of bear-footed human related to elephantiasis was reported. It is observed that
quantum dot NPs can penetrate the skin, providing insight into potential danger to
individuals involved in the manufacturing of quantum dots [21].

21.9 Other Safety Issues Due to Nanoparticle Exposure

Phototoxicity It is very well exemplified by Titanium Dioxide nanoparticle studies.
Titanium dioxide (TiO2) is a major component in sunscreens, soaps, shampoos,
toothpastes, cosmetics, paper products, plastics, ink, paint, and building materials
[22] in both its bulk form and its nanoform. It is also utilized in human food as a
colorant and inactive ingredient. From 1916 to 2011, an estimated total of
165,050,000 metric tons of TiO2 pigments were produced worldwide (bulk form
and nanoform combined), with a current annual estimated production of more than
six million tonnes/year [23, 24].

Titanium dioxide nanoparticles are considered to be photoactive and produce
reactive oxygen species under natural sunlight, showing dangerous side effects in
human bodies, which warrants further a detailed study.

Hemocompatibility Mayer et al. [25] focused on adverse effects on human blood
and its interaction with the blood and blood constituents. Blood-related interactions,
which include and need special attention, are clotting, reaction-triggering inflamma-
tory and immune responses, and hemolysis due to interaction with the nanoparticles.
They also reported the effect of size and surface charge on the induction of coagula-
tion, thrombocyte activation, complement activation, granulocyte activation, and
hemolysis. Using polystyrene particles, they showed the possible interactions
between the blood components, the different size and charge of the polystyrene
nanoparticles, and variations in the interactions. Positive surface charge induced
activation of the complement. Small size caused thrombocyte and granulocyte
activation and hemolysis [25].

21.10 Possibilities of Nanoparticle Exposure in Industrial Setting

There are likely possibilities that the resultant environment may increase nanoparti-
cle hazards too:

1. If you work with nanoparticles in solution without adequate protection, you may
get exposed to the risk of skin exposure and side effects.
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2. In nanoparticle processing where agitation is occurring, it will lead to an increase
in p inhalation of the droplets, leading to lung and respiratory tract injuries and
side effects.

3. Manufacturing of nanoparticles in the gas phase or an aerosolized system, in
nonenclosed systems, will enhance the likelihood of aerosol expose to the
workplace, and the nanoparticles may find their way to Lungs and other body
organs.

4. People who are responsible for the maintenance of equipment and processes used
to produce or fabricate nanosize materials or the cleanup of spills or waste
material will be exposed to fine nanoparticles and may show the side effects of
such exposure in due course of time [26].

5. Cleaning of dust collection systems may capture NPs, which can pose risk for
both skin and inhalation for the cleaning persons.

6. The transfer of nanomaterials in open systems is likely to increase exposure
potentials even for relatively hydrophobic NPs [27]. Open systems during NP
processing may increase exposure to human beings [28].

With the present amount and extent of knowledge available and the techniques
used to understand the nanoparticle toxicity, we still need to be worried about the
safety of these nanomedicines in different settings, such as natural nanomaterial
exposure or anthropogenic nanomaterial exposure.

21.11 Occupational Hazards After Nanoparticle Exposure

The exposures to nanoparticles might lead to serious inflammation after the deposi-
tion of nanoparticles in the respiratory tract because of their large particle numbers,
surface areas, complex chemical compositions, sizes, shapes, and electric charges.
Several studies such as for different nanomaterials have been reported, and we will
recommend to visit these research papers to get in-depth information about occupa-
tional hazards due to nanoparticles. Kousake et al. studied the nanosized magnetic
nanoparticles and showed the challenges due to the size of the particles to the
workers working with these nanoparticles.

Manke et al. [29] reported similar challenges posed by carbon nanotubes, and
they used mice model to study the interactions of carbon nanotubes and their effect
on the DNA system of mice.

Hamilton et al. [30] examined the effect of size (20 and 110 nm) and surface
stabilization (citrate and PVP coatings) on toxicity, particle uptake, and NLRP3
inflammasome activation in a variety of macrophage and epithelial cell lines.

Wang and Fan [31] reported nanoscale titanium dioxide (TiO2), one of the most
commonly produced and widely used nanoparticles, as a model to study the
nanotoxicity of nanoparticles. The correlation between the lung toxicity and pulmo-
nary cell impairment associated with TiO2 NPs and their unusual structural features,
including size, shape, crystal phases, and surface coating, is reviewed thoroughly in
this research paper.
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Recent toxicological studies have suggested that they can easily penetrate cells or
tissue and may result in many irreversible health effects, such as chronic pulmonary
inflammation, epithelial cell hyperplasia, cardiovascular disease, and lung tumors.

21.12 Nanomedicine and the Pharmacokinetic
and Pharmacodynamic Considerations

Nanodrug systems are developed for various routes of administration and materials,
which include dendrimers, nanocrystals, emulsions, liposomes, solid lipid
nanoparticles, micelles, and polymeric nanoparticles. Nanodrug systems are
employed to enhance the efficacy, safety, physicochemical properties, and pharma-
cokinetic/pharmacodynamic profile of pharmaceutical substances. This creates a
need for understanding of the pharmacokinetic and safety characteristics of
nanodrugs and the limitation of each drug delivery mentioned above [32].

Particle size, shape (chemical structure), and surface chemical characteristics
affect the pharmacokinetic characteristics of nanomedicines [33]. Nanoparticles
with sizes less than 10 nm are removed by kidneys, whereas those with particle
size more than 10 nm are removed by the liver and/or the mononuclear-phagocyte
system (MPS).

By regulating particle size in nanoproducts, their retention in target tissues can be
increased and can also be removed rapidly when distributed to nontarget tissues.
Choi et al. reported Nanoparticle targeting supported chemical properties of
nanoparticles and surface coatings comprises active and passive targeting
[34]. This is especially applicable to solid cancer tumors during which targeting
leads to increased vessel and transporter permeations and retention (enhanced
permeability and retention, EPR effect) of nanomedicines and their increased accu-
mulation in tumor tissues [34].

Specific or active targeting is defined as selective transport of nanomedicines
containing protein, antibody or small molecule only to specific tissues and/or
specific cells. This may occur via homing to overexpressed cell-surface
receptors [34].

Some of the questions that can be raised and need to be answered when it comes
to the Pharmacokinetic and pharmacodynamics studies of nanomedicines are as
follows:

1. Are there differences in the ADME profile, for nanoparticles versus larger
particles? Are these drug specific or nonspecific?

2. Are current methods used for measuring drug levels in blood and tissues adequate
for assessing levels of drugs delivered through nanoparticles (appropriateness of
method and limits of detection)? As the drug concentrations in blood and plasma
may be in picogram levels?

3. How accurate are mass balance studies, if doses of drug administered are very
low, i.e., can we account for 100% of the drug administered?
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4. How is clearance of targeted nanoparticles accurately assessed? If nanoparticles
concentrate in a particular tissue, how will clearance be assessed accurately?

5. Can nanoparticles be successfully labeled for ADME studies?

The present data are miniscule, mostly obtained by pharmaceutical companies for
their brand products, and little available for the researchers. So, there is a need for
developing some database where such information may be made available to the
researchers and can be used for further development of the nanomedicines.

21.13 Regulations of Nanoproducts and Nanomedicines

In recent years, the incorporation of nanomaterials into products and components
utilized in the pharmaceutical and medical fields has increased significantly. There
are a large number of products with nanomaterials already in commercial distribu-
tion and many more in the development and conceptual stages. It is an accepted fact
that present risk assessment methodologies are not sufficient to deal with this
toxicity because they typically consider mass alone and ignore the number of
particles and surface area [35–37].

Regulatory bodies are looking at various possibilities and factors and trying to
develop a rational system, which will signal the general public that its health and
safety interests are being protected while ensuring developers and supporters that
their effort will not be compromised if certain safeguards are observed [35–37].

21.14 Challenges Ahead for the Regulatory Bodies

Two major challenges are faced by the governmental bodies considering the need to
regulate nanotechnology

1. Inadequate reliable data to make any rational decisions related to nanomaterials.
2. Inadequate reliable tools to help to reproducibly characterize and evaluate the

nanoparticle-based products.

The question that the regulatory bodies will have to answer is How are the new
technology and its characterization, application and established safety to the
consumers, and the personnel involved in manufacturing and handling of these
products? Regulatory bodies tempted to use the application of existing regulatory
provisions for pharmaceuticals and medical products to nanomaterials containing
products. This might help to circumvent the delays caused due to nonavailability of
specific regulations for nanoproducts. Invariably, the question arises as to whether
the present framework is relevant and/or adequate to address issues related to
nanoproducts. Nanoproducts in the food sector have the potential to lead to healthier,
safer, and better tasting foods, with improved food packaging, but the hesitation of
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the food industry and public fears in some countries about tampering with nature
could also be holding back the introduction of nanofoods [38].

United States FDA generated its own definition in 2011 under guidance issued by
FDA for nanoproducts. The FDA highlighted the following aspects: [39].

1. Engineered material or end product
This term is used to distinguish between products that have been engineered to
contain nanoscale materials or involve the application of nanotechnology from
those products that contain incidental or background levels of nanomaterials or
those that contain materials that naturally occur in the nanoscale range.

2. At least one dimension in the nanoscale range (approximately 1–100 nm).
3. Exhibits properties or phenomena . . . that are attributable to their dimension(s)

These terms are used because properties and phenomena of materials at the
nanoscale enable applications that can affect the safety, effectiveness, perfor-
mance, quality, and, where applicable, public health impact of FDA-regulated
products [39].

21.15 US FDA Guidance Document 2011

FDA intends to incorporate attention to nanomaterials into its product-specific
review procedures and apply certain considerations to better understand the
properties and behavior of engineered nanomaterials.

For products not subject to premarket review, manufacturers are encouraged to
consult with FDA to reduce the risk of unintended harm to human or animal
health [39].

We strongly recommend the readers to consult the US FDA guidelines and keep
abrest of the new developments and suggestions posted by the FDA on their website.

21.16 US FDA Center for Drug Evaluation and Research (CDER)
Guidelines for Nanoproducts

The Center for Drug Evaluation and Research (CDER) has posted a Manual of
Policies and Procedures (MAPP), effective June 3, 2010.

The Manual provides CMC section (chemistry, manufacturing, and controls)
reviewers in CDER with “the framework by which relevant information about
nanomaterial-containing drugs will now be captured in CMC reviews of CDER
drug application submissions.”

U.S. Food and Drug Administration. 2010. CDER Manual of Policies &
Procedures, Chap. 9, “Reporting Format for Nanotechnology -Related
Information in CMC Review.” http://www.fda.gov/AboutFDA/CentersOffices/
OfficeofMedicalProductsandTobacco/CDER/ManualofPoliciesProcedures/default.
htm.

We strongly recommend the readers to visit this website for the most updated
guidelines for their references.
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21.17 The Center for Veterinary Medicine (CVM) Guidelines

The center for veterinary medicine also provides a similar guideline document for
veterinary products. CVM writes a procedure that is intended to identify points to
consider for technical sections for products containing nanomaterials or otherwise
involve the application of nanotechnology, which might require additional data or
special steps to address potential safety or quality issues.

The CVM procedure refers to the investigational stage, also the postclinical stage.
We strongly recommend the readers to visit their website for the most updated

guidelines for their references.

21.18 The Center for Food Safety and Applied Nutrition (CFSAN)
Guidelines

CFSAN has issued two guidelines,

1. For cosmetics and one.
2. For food.

Both these guidelines contain important information about the agency’s thinking
on nanotechnology-based product regulation.

The first document discusses the proof of safety for cosmetics that contain
engineered nanomaterials.

There has been concerted opposition to the utilization of nanomaterials in
cosmetics, especially fullerenes because they pose a big theoretical risk to users
without a perceived benefit that might be worth any risk.

U.S. Food and Drug Administration. 2012. Draft Guidance for Industry:
Safety of Nanomaterials in Cosmetic Products. http://www.fda.gov/Cosmetics/
GuidanceComplianceRegulatoryInformation/GuidanceDocuments/ucm300886.htm.

We strongly recommend the readers to visit this website for the most updated
guidelines for their references.

21.19 CFSAN on Food and Food Packaging Guidance

• The other guidance document posted by CFSAN is related to food and food
packaging.

• CFSAN identifies the purpose of the document “to describe the factors you
should consider when determining whether a significant change in the
manufacturing process for a food substance already in the market:

• Affects the identity and/or safety of the food substance;
• Affects the regulatory status of the use of the food substance; and.
• Does the alteration in products warrants regulatory submission to FDA.
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• U.S. Food and Drug Administration. 2012. Draft Guidance for Industry: http://
www.fda.gov/Food/GuidanceRegulation/
GuidanceDocumentsRegulatoryInformation/
IngredientsAdditivesGRASPackaging/ucm300661.htm.

We strongly recommend the readers to visit this website for the most updated
guidelines for their references.

21.20 Environmental Protection Agencies (EPA) and Toxic
Substances Control Act (TSCA) Recommendations
Adopted by FDA

The strategy of EPA (Environmental protection agency), which is somewhat more
directed to implementing specific regulations, supported two major statutes it
administers.

The law of broader application is the Toxic Substances Control Act (TSCA) that
gives EPA authority over “chemical substances,” including nanoscale materials.

EPA would like to ensure that nanoscale materials are manufactured and utilized
in a manner that protects against unreasonable risks to human health and therefore
the environment, and EPA is pursuing a comprehensive four-prong regulatory
approach under TSCA.

This approach includes the Pre-Manufacture Notifications (PMN); Significant
New Use Rule (SNUR); information gathering authority; and test authority.

We strongly recommend the readers to visit these EPA websites for the most
updated guidelines for their references.

21.21 FDA Guidelines on Devices Using Nanotechnology

Nanotechnology may be a new and evolving field for both the medical device
industry and therefore the regulating Agency (Such as the US FDA).

At this time, FDA has not adopted nanotechnology-specific criteria to assist
manufacturers in determining when a change to a device that contains nanomaterials
or otherwise involves the application of nanotechnology rises to the extent of
significance that needs submission of a replacement 510(k).

For this reason, FDA recommends that manufacturers consult the agency for any
nanotechnology-related changes to devices to work out whether and the way the
change may affect the security or effectiveness of the device.

U.S. Food and Drug Administration. Guidance for Industry and FDA
Staff—510(k) Device Modifications: Deciding When to Submit a 510
(k) for a Change to an Existing Device. http://www.fda.gov/MedicalDevices/
DeviceRegulationandGuidance/GuidanceDocuments/ucm265274.htm.

We strongly recommend the readers to visit this website for the most updated
guidelines for their references.
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21.22 Regulations About Nanoproducts in Other Countries

European Union on Nanomaterials The European Union (EU) has been active in
improving regulations to approve nanomaterials, their impact on the environment,
and the possible regulation of pharmaceuticals, foods, cosmetics, and other medical
products. Several reports and descriptions of these activities are readily available on
their websites.

Germany Guidelines Germany is interested to have a dialogue on the effects on the
environment from the nanomaterial production and use of such materials for human
consumption. They have come up with recommendations regarding regulations and
labeling, and there has been a consideration and need felt for the necessity for further
research.

The German Federal Institute for Risk Assessment has posted its view on the
potential for risk in the use of nanomaterials (Figure taken from http://www.euro
pean-coatings.com/Raw-materials-technologies/Technologies/Nanotechnology/Sur
vey-on-micro-and-nanotechnology-in-Germany). We strongly recommend the
readers to visit this website for the most updated guidelines for their references.

Australia Guidelines In Australia, the federal organization responsible for drugs is
known as Therapeutic Goods Administration (TGA), which manages the regulation
of medical products, pharmaceuticals, and cosmetics.

TGA has taken keen interest in the regulation of nanotechnology, due to contro-
versy of using sunscreens, leading to the high level of skin cancers in Australians.
TGA describes its plans on its website:

To date, the prevailing regulatory framework of the TGA has proved to be quite
capable of identifying, assessing, and managing the risks related to therapeutic
products that incorporate nanotechnologies. (Australian Government Department
of Health Guidelines).

21.23 Nanotechnology, Public Health, and Public Opinions

Nanoproducts have been a misleading concept in the general public as they have
been hijacked by many different products that have no relationships such as I POD
nano, nanocars, or computer nanoproducts, nano/quantum TV, nanopaints, and so
on. Worldwide, there are still no clear guidelines on how the regulatory bodies are
responsible for consumer product safety (mostly controlled by the local Govern-
ment) will regulate nanomaterials, and this has led to the reluctance of some
nanoproduct manufacturers to use the term nano in their marketing.

It is also creating a fear in these companies that they could be targeted by
consumer advocacy groups, which may affect their product market However, this
reluctance is an overall reflection of uncertainty surrounding nanoproducts. The
unclear guidelines lead to a lingering possibility that consumers might reject
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nanotechnology products. Based on this concern about the impact of nanomaterials
on human health and the environment, therefore, this is likely to be one of the
reasons why the commercialization of nanotechnology is not keeping pace with
basic research in nanoscience [40].

Even though thousands of research papers are published, which are mostly
dedicated to some or other aspects of nanotechnology, there are very few articles
that are geared toward the education of public and public opinion about
nanotechnology [41].

In a recent publication by [42], it is mentioned that even with the widespread use
of nanomaterials in everyday life, consumer knowledge about the functionality,
benefits, and possible danger of nanotechnology is still modest. As with any
developing technology, its public perception has direct implications on future
policies and has got to be taken under consideration by academia and industry
alike. As an interdisciplinary research project, they conducted an online survey using
a Citizen Science-guided approach. The main goal was to evaluate the current levels
of knowledge and the attitude toward nanotechnology among the general Austrian
public and to determine how differing sociodemographic factors may affect these.
Over the course of 17 months, they collected a total of 1067 responses and quantita-
tively analyzed. They found that while Austrians display a generally optimistic view
and a positive attitude toward nanotechnology, there are still remaining concerns
about its safety and possible risks [42].

Understanding stakeholder views is an important part of addressing this uncer-
tainty. This provides insight into the possible social reactions and tolerance of
unpredictable risks.

In the field of nanotechnology, due to the existence of uncertainties regarding the
important and perceived risks, this technology may wear society. We need to offer
better evidence, which is needed to address various issues. Capon et al. conducted a
survey of public, academics, Government officials, and business stakeholders about
the perception of the risk with nanotechnology. Capon et al. recommended that
policy makers should consider the disparities in risk and trust perceptions. This is
happening between the general public and influential stakeholders. It places a
greater emphasis on risk communication and the uncertainties of risk assessment
in these areas. Scientists being the very best trusted group are well placed to speak
the risks of nanotechnologies to the general public.

Public acceptance is of utmost importance and a necessary pre-requisite for the
sustainable development of nanotechnologies, or for that matter, any new
technologies are introduced in the society. A large number of research initiatives
and consumer polls have attempted to gauge public awareness and perception of
nanomaterials and nano-enabled products [43–45].

Overall, it appears that the public is still largely unaware of nanotechnology and
its applications. Of those who are aware, nanotechnology is generally seen in a
positive light.

In general, concerns about the perceptions of risks of nanotechnology are low and
there is some evidence to suggest that these may be decreasing further; as people are
using these products with no apparent risks, the acceptance is growing. However, the
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potential for a big change public opinion, thanks to the way in which
nanotechnologies are portrayed by the media and NGOs or because the results of
a single negative event, remains high, and media can play an important role in
changing these perceptions about nanotechnologies.

Many initiatives on Government and NGO levels are underway to promote
interaction between institutions and the public, but what is stressed most is that
risk communication strategies should involve “early” or “upstream” public engage-
ment. This will create an opportunity for the public to inform and shape the direction
of research and development and helps to generate and maintain trust and confidence
in new technologies.
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New Deliveries and Nanomedicines:
Commercial Aspects and Business
Perspectives

22

Sunita Dahiya and Rajiv Dahiya

Abstract

At present, the global pharmaceutical industry is going through various
challenges such as limited and slower translation of medical science
advancements in the therapeutic benefits, changing regulatory requirements,
escalating costs, and lower estimated returns spent on R&D. These challenges
collectively pose the pharmaceutical business sector a less fascinating choice for
the investors. The developmental cost for transferring a novel drug candidate to
the commercial platform is quite expensive, risky as well as time-consuming;
however, the total costs of imitations are considerably low, simple, and less
tedious. Under this scenario, counting on the new therapeutic opportunities for
existing drugs using “repurposing” or “reformulation” can be considered as the
mainstream commercial strategy for the pharmaceutical industry. In addition to
clinical success, these strategies offer financial benefits in terms of relatively low
cost and shorter development span, patent extension provisions, as well as higher
and fast returns as compared to developing an entirely new drug, and therefore,
manifest to be powerful strategies for the financial health of the companies. Also,
over the last three decades, nano-drug delivery and nanomedicines have drawn
considerable attention of the researchers and pharmaceutical companies due to
their undeniable advantages over conventional dosage forms which has led to
several successful commercial nanoformulations. In fact, first generation
nanoformulations were expanded by altering original formulation, i.e. by
reformulating existing drugs to overcome associated physicochemical and
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toxicity issues. This approach further revolutionized in the second generation
with an emergence of new classes of therapeutic biomolecules including proteins
and nucleic acids, or other biotherapeutics, as the therapeutic effectiveness of
such molecules relied on effectual nano-based deliveries. Among different
repurposing approaches, reformulation can be viewed as the key segment for
the growth in product’s life cycle management, as it acts as a pivotal resource of
outrageous revenue generation and value addition in company’s economic health
and status. This chapter portrays various economic facets and business
perspectives of the new deliveries including nanomedicines, and discusses road
maps and challenges to their successful clinical translation and
commercialization.

Keywords

New deliveries · Nanomedicines · Commercial · Business · Market · R&D ·
Investment · Repurposing · Reformulation

22.1 Overview

Advancement of drug delivery systems for enhanced health benefits and patient
compliance has been a subject of ongoing interest in the pharmaceutical industry
with a specific focus on creating better and smarter dosage forms. This includes not
only meeting the therapeutic needs by maintaining the desired plasma concentrations
for extended periods, but also the ability of avoiding drug toxicity, thereby making
patient compliance less oppressive. Pharmaceutical companies display perspicuous
interests to try smart polymers and technologies to achieve performance-driven and
competitive differentiation in the market by producing high quality and
cost-effective delivery systems. In this milieu, pharmaceutical companies have
traditionally converged on developing novel compounds with documented safety
and efficacy in treating a disease. In doing so, these companies have relied upon the
consortium position held by their patent status. Later, with the continued develop-
ment of controlled drug delivery systems, a parallel industry emerged that grown
their focuses on the improvement of drug delivery technologies by either aiding or
enabling the administration of therapeutic compounds. Such delivery systems
included various formulation technologies as well as specialized devices such as
inhalers, transdermal patches, nano-drug delivery systems, etc. These endeavors led
to partnering or merging of pharmaceutical companies with drug delivery companies
to co-establish next generation proprietary products. This can be well-exemplified by
Alza that developed several sustained-release cardiovascular drug delivery products
with the pharmaceutical firms like Bayer AG and Pfizer. With such a co-developed
and/or co-launched drug delivery system, the relationship terms between the drug
delivery companies and pharmaceutical companies are determined by the virtue of
value that the co-developed product or device creates in the market. DiMasi and
co-workers proposed methodological approach that estimated the resource values
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spent by industry to invent and develop novel therapeutics and biologics, including
the degree to which private sectors’ expenditure shifted gradually [1, 2]. It was
indicated that the new drug development expenditures played an unambiguous role
in the research investment incentives necessary for medical innovation.

22.2 Basic Economics and Resources

22.2.1 Profits and Patent Protection

Since a new drug can enjoy its patent protection only for 18 years, the off-patent time
period allows any other company to manufacture that product. This leads to a drastic
reduction in the profit provoked by that particular new drug molecule. On the other
side, the percentage of the cost that is used for the development of a novel drug
delivery system is as low as 10% of the cost of the new drug development process.
This concept enables a higher investment return and shorter time span for developing
new medicinal products which offer fast-track societal benefits in addition to its
eligibility to apply for its own patent. Also, when a newly developed entity requires
an efficiently designed delivery system, the development of a novel drug delivery
system could be carried out not only for that specific new drug, but can be
unquestionably applied to other existing drugs for omitting crucial patent
regulations [3].

From the pharmaceutical manufacturers’ viewpoint, steps to decrease prices in
turn lead to lower innovation in the future. This conception is based on the timing of
market policies including shortening the patent period, making generic approval
process rapid or regulatory tool such as price control. This response from the
manufacturer appears valid as lower revenues give rise to reduced research and
development (R&D) investment. This can be explained based on the economic law
of diminishing returns wherein only a few breakthroughs are expected based on
supplemental sources taking part in innovation. In this context, extra sources aiding
R&D may not defend the cost that the consumers pay in the form of higher prices to
support this unit. Massive societal impacts of pharmaceutical innovation are
evidenced from comparative studies within heterogeneous inter-country data for
specific disease expenses on prescribed medicines in and outside the United States
(US), pointing out the higher community recovery with respect to persistence and
overall quality of life [4]. The welfare from health inventions originates largely from
patent-related strategies and the market exclusivity for innovative products. From
economists’ perspective, the drug development industry is a marginal cost industry
due to its high-fixed and low-cost nature. Transferring a novel entity from laboratory
to commercialization is an expensive, uncertain, and tedious venture. On the other
hand, the cost of developing a different system of an existing commercial product is
usually relatively low. In spite of conflict on the accurate cost of transferring a new
chemical entity to the market, the approximate expenditure for each new product to
reach the commercial market is millions of dollars. Contrarily, the costs of imitation
are low for most drugs, and the process is untroublesome and economical for
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non-innovator pharmaceutical companies. This leads to an indisputable fact that if
free competition becomes permissible, companies spending lots of money on new
drug development process to make it to market would be insecure about recovering
their business due to those market rivalries which would be operating at low process-
to-production costs.

22.2.2 Patent Expiration: Brands Versus Generics

Patent expiry is one of the major factors affecting the company’s revenue. Appar-
ently, with the entry of the generic competitor of a blockbuster drug in the market,
the sales of that blockbuster drug demonstrate a significant decrease. To exemplify,
the patent expiry of Pfizer’s Lipitor resulted in 90% reduction in the annual sales
revenue of the drug. Astra Zeneca lost patents for two major drugs: Crestor and
Seroquel XR, which were accounted for a combined revenue of $7.34 billion
annually in 2016. In 2016, Merck lost the patents for four drugs: Invanz, Vytorin,
Cancidas, and Cubicin, that were estimated to value around $3.4 billion which was
10% of company’s revenue of the year 2015. Generic medicines have undertaken a
dominating part to play in the pharmaceutical business. With beginning of the
modern generics industry in 1984, the Drug Price Competition and Patent Term
Restoration Act progressed with a substantial increase in the pace and level of
generic substitution [5]. In 1984, an 8% share of the generic medicine
manufacturers’ prescription drug market increased to 39% within five-year period,
and the number of generic medicines’ applications multiplied twice from 470 in
1984 to 1985 to 1069 in 1985 to 1990 [6]. This state of affairs empowered the
generic companies to acquire reliability and rewarding the health practice through
managed care. Also, as the patents guarantee market exclusivity and artificially high
premiums, the patent expiration renders rapidly declining sales for brand-name
pharmaceuticals. Usually, when the generic versions of drugs are introduced at
20–25% of the branded drugs’ prices, the branded drug’s market collapses rapidly
and loses 60–80% of the total days of therapy within 6 months under the influence of
managed care and mandatory substitution laws [7]. Table 22.1 provides information
of drugs that turned out off-patent in the year 2018 [8].

22.2.3 Price Controls and After-Tax Returns

A moderate 5–10% price changes are approximated to show a proportionately small
influence on the product development motives with an estimated 5% negative effect.
However, 40–50% price reduction in the US ranges in 30–60% reduction in R&D
projects to be undertaken during the early drug development stages [1]. In recent
years, the central concern of business and policymakers displays the growing costs
of health care. This began in 2003 after the enactment of Medicare Modernization
Act. In the current global scenario, prices of only the US pharmaceutical market
remain largely unregulated, unlike in many other countries where governments

582 S. Dahiya and R. Dahiya



regulate drug prices in a direct or indirect manner [9]. In the opinion of some critics,
the pharmaceutical companies are encouraged to charge high product costs to the
consumers due to two main reasons: firstly, the freedom to price medicines in the
US, as well as declaration of the product’s present status as “patent protected”.
Secondly, the ability to utilize flaws in the established insurance policies. Different
studies indicated that the price controls achieved by decreasing the financial recov-
ery through drugs’ sales would lessen the number of new drugs to be developed for
the market by that company. This sort of economic study indicated that a short-term
benefit of consumers could negatively impact huge public welfare in the future.
However, it may take decades to assess such a negative impact [10].

One of the major dilemmas for the drug industry revealed that out of every ten
products, only two to three are capable of generating after-tax returns considering
total averaged and R&D costs. This involves major technical risk since only one out
of thousands of investigated compounds may succeed to get the FDA approval
[11]. Most of the R&D projects end as flops due to stringent regulatory requirement
for efficacy, safety, or commercial feasibility. Very few compounds gain FDA
approval for market launch. As per one study reported in 2007, the complete
procedure from the discovery stage to product launch takes about 12–15 years
with a huge estimated cost of around $802 million on pre-tax basis. An average
cost of developing is about $480 million if the company is able to sell tax benefits.
Therefore, the company expects profit at the time of a product launch. However, the

Table 22.1 Off-patent drugs of the year 2018

Brand
name

Generic name
(s) Indication Pharmaceutical company

Net
business
in a year
(billion
U.S.$)

Lyrica Pregabalin Nerve and muscle pain Pfizer 3.46

Rituxan Rituximab Blood cancer and
rheumatoid arthritis

Roche 7.9

Cialis Tadalafil Erectile dysfunction Eli Lilly 2.3

Xolair Omalizumab Allergic asthma and
chronic idiopathic
urticarial (CIU)

Genentech, Inc. and
Novartis
Pharmaceuticals
Corporation

51.9

Restasis Cyclosporine Dry eye treatment Allergan 1.41

Advair Fluticasone
propionate and
salmeterol

Asthma and chronic
bronchitis

GlaxoSmithKline 1.55

Neulasta Pegfilgrastim Non-myeloid
malignancies

Amgen 3.93

Zytiga Abiraterone
acetate

Prostate cancer Johnson & Johnson 20.4

Sensipar Cinacalcet Hyperparathyroidism Amgen 1.58

Ampyra Dalfampridine Multiple sclerosis Acorda Therapeutics 5.43

22 New Deliveries and Nanomedicines: Commercial Aspects and Business Perspectives 583



company must review the economic background for making a decision about
undertaking an R&D project for full clinical translation. This uncertainty factor
analyzes the behavior of the industry and may explain the logic behind greater
probability of success with minor innovations rather than carrying out more inven-
tive research efforts that pose higher failure risks with enhanced health outcomes [9].

22.3 Drug Repurposing in Pharmaceutical Industry: New
Therapeutic Opportunities for Existing Drugs

22.3.1 Rationale and Approaches of Repurposing

Despite tremendous advancements in the field of technology and medical science,
the enhanced knowledge of human disease is still not fully exploited to be translated
into therapeutic benefits, and the progress to achieve this goal has been far slower
than expected [12, 13]. On the other side, the global pharmaceutical industry is
facing challenges in terms of excess time and unsteady regulatory requirements to
make a new drug to reach the market. These two factors together account for
escalating prices and lower estimated returns spent on R&D [14], making the
pharmaceutical industry a relatively less fascinating option for investment. In this
context, drug repurposing has been a major approach in drug development, although
it deals with multiple challenges; one of which is the changing regulatory framework
for the repurposed drug. Drug repurposing includes drug repositioning, drug
reformulation, and new combination (Fig. 22.1). In its simplest meaning, drug
repositioning is a strategy in which an old drug is used for a new disease or condition
for a different curative area. Drug reformulation is an alteration in the original
formulation and/or a different pharmacological target. Two or more drug
components can be combined in a new drug combination [12, 13].

Fig. 22.1 Drug repurposing strategies
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The repurposing strategies demonstrate advantages in terms of cost of investment
as well as associated risk spent for new drug development for a specific disease or
condition. The repurposed drugs are safe to be used in animal models and humans
and have less chances of failure in safety and efficacy trials, demonstrating less
overall risk of failure. Additionally, the repurposed drug development requires
considerably less time, as most of the animal testing, safety assessment, and formu-
lation development of the drug are supposed to be completed in most cases. From the
economic viewpoint, repurposed drug development requires less financial inputs,
although it may vary based on the development process of the particular candidate to
be repurposed [15]. Together, these positive aspects have the promise to achieve a
less risky and more rapid return on their development costs. Undeniably, in present
time, a repurposed drug-cost estimates to be US$300 million which is much lower as
compared to that of ~$2–3 billion for a new molecule to bring it to the market
[16]. Repurposing offers valuable market exclusivity for the new product by
protecting its new formulation. This is true even when the original product has lost
its patent protection for active ingredient or formulation and/or its indication
[17]. Repositioning approach is beneficial in the case of both the approved drugs
as well as several rejected compounds which have been tested in humans to have
adequate information on their pharmacology, toxicity, dose, and formulation [18]. In
academic settings, drug repositioning is conducted for redeveloping a compound to
be used in a different disease or condition [19].

22.3.2 Reformulation: Key Segment in Pharmaceutical Product Life
Cycle Management

The life cycle management of a pharmaceutical product includes the systematic
process of developing and managing the sequential events such as research, design,
manufacture, service, and disposal of a specific product during its entire develop-
ment phase. A well-designed life cycle management tool can maximize product sales
throughout its life cycle by providing a competitive edge for higher profitability and
retaining market share, particularly when the product approaches patent expiry.
Since the pharmaceutical companies invest high capital and resources for protecting
the product’s patent life and its subsequent profits, the companies face a rapid and
significant reduction in its returns due to generic competition after patent expiration.
This further necessitates refined policies for maximizing a product’s lifetime value,
once the patent expires. Likewise, the financial health of big pharma firms relies
massively on drug portfolios earning more than a billion dollars annually. Such
blockbuster drugs require a stupendous expenditure of resources to be spent on their
research and development. As per the statement of the Pharmaceutical Research and
Manufacturers of America [20], 1 out of 10,000 compounds investigated by
America’s research-based pharmaceutical companies reaches the development pipe-
line and approved by the United States Food and Drug Administration (USFDA) for
patients’ use [14]. In such a scenario, life cycle management planning should be a
major focus of the company’s attempts to solve diminishing R&D productivity and
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growing generic-brand rivalry in order to fulfill company’s urge for financial com-
pensation against huge prior investment. Because of the high cost and long time-
span required for creating a completely new chemical entity [16], it is not a new idea
to develop the existing drug as a new drug delivery system. For instance, 60% of the
new drug applications (NDAs) submitted to the FDA in the year 1990 were for the
existing drug substances [14]. In this context, reformulation is the key segment in the
product’s life cycle management as it acts as a pivotal resource of great revenue
generation and value addition in the company’s financial health. Reformulation
approaches can be divided into three categories: (1) reformulation of the drug entity;
(2) reformulation for new deliveries; and (3) reformulation for new indications.
(Fig. 22.2). Within the scope of drug delivery technologies, reformulation using
new deliveries finds enormous scope for developing both controlled release and/or
nano-based delivery systems which is described in further discussion.

22.4 Prioritization Process for Reformulation Drug Candidates

Once the pharmaceutical company decides to proceed for reformulating an original
product, the most critical component is the selection of drug candidate to reformu-
late. This process mainly includes five explicit steps (Fig.22.3): developing drug
candidates’ list, examining the delivery technology, analyzing the therapeutic or
administrative unfilled needs, conducting a competitive screen, and mapping the
market.

22.4.1 Developing Drug Candidates’ List

Primarily, the companies often focus on their blockbuster drugs which are either
approaching patent expiration or are off-patent. Another source of selecting drug
candidates is among those drugs that have clinical potential but could not pass in
human trials because of side effects or administrative problems with specific routes
[17]. This may be of more value in reviving those drugs which have consumed costly
drug discovery dollars but would not gain regulatory approval and/or market accep-
tance without reformulation.

Fig. 22.2 Different
reformulation approaches
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22.4.2 Scrutinizing the Delivery Technology

Companies must evaluate technical constraints for drugs under consideration for
each delivery technology. This can be in terms of relation of physicochemical
properties and/or stability aspects of drugs to be suitable with the respective delivery
technology [21]. These parameters are molecular weight, water insolubility, thermal
or enzymatic stability, absorption window, etc. For instance, insulin has a narrow
therapeutic index and the absorbable dose must be accurate. Further, the drugs that
are reformulated from injectable drugs to oral drugs demonstrate different pharma-
codynamic and pharmacokinetic profiles. Also, some biologics cannot withstand
harsh manufacturing techniques such as encapsulation. Compounds unstable in the
acidic environment of gastrointestinal tract must be protected to be released in the
stomach. Therefore, it is critical for the drug delivery company to assess both
strengths and weaknesses of intended delivery technology and scrutinize the relevant
delivery technology for further screening.

22.4.3 Analyzing Therapeutic or Administrative Unfulfilled Needs

One of the main purposes of reformulation is satisfying the unfulfilled needs of the
selected drug candidate. The input from clinicians and physicians assists the
companies to know what type of reformulation technology would be appropriate
to satisfy these needs. For instance, the administration-related unfulfilled need for the
asthma led to evolvement of easy-to-operate new inhaler system, whereas develop-
ment of sustained release products for reducing the dosage frequency resulted in
enhanced patience compliance in case of cardiovascular drug therapy [7]. Further,
anti-inflammatory drugs have been reformulated as delayed release systems that
reduces gastric disturbances which is the major side effect of this category of drugs.

Fig. 22.3 Steps in
reformulation process
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22.4.4 Conducting a Competitive Screen

This is another significant step in selecting a drug candidate to proceed with
competing reformulation. In spite of the fact that reformulations of drug candidates
going off-patent are prime candidates for significant competitive activity,
reformulations of drugs within the same class present a significant competitive threat
as well. Analyzing the drugs in the pipeline as well as other new therapies can be
employed to complete overall screening [7].

22.4.5 Mapping the Market

Both the pharmaceutical and drug delivery companies should be aware of the market
potential of the reformulation product in order to negotiate a commercially success-
ful deal. The components that determine the market size include the relevant patient
population, the price of the therapy, penetration of the market, and market share
estimates [21]. Although estimates of direct patient populations are available in
clinical literature, the relevant “subset” of the patient population is a more difficult
estimate. For example, depending upon the drug candidate, the “subset” patient
population may be defined as those patients with associated diabetes; or those
patients seen as outpatients, or those patients that have contractual insurance. Such
patient subsets can be identified with the help of secondary search of the literature
and/or patients’ databases and records. Moreover, the required price-per-day of the
therapy can initially be estimated using available analogs from the product class.
Reformulation may also command price premium when realized reasonable,
whereas some companies use the pricing strategy that lowers the prices over time
and gain market share. The market share estimates usually reflect the degree of
competition in the category and the marketing partner’s previous success in that
category [7]. The market penetration is affected by the degree of fragmentation of the
market, suggesting that the marketing campaigns can easily target the physicians and
increases the direct sales of the product. To prepare for the final negotiation,
analogous deals that have been conducted on similar products can be used as
standard criteria to recommend reasonable deal structure.

22.5 Decisive Reformulation Factors

The five decisive factors which are sources of value during successful reformulation
are: extended patent life: brands vs generics, reduced patient noncompliance,
enhanced therapeutic efficacy, decreased manufacturing costs, and expanded
market.
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22.5.1 Extended Patent Life: Brands Versus Generics

In today’s managed care environment where pricing-power for the pharmaceutical
firms are restricted and managed care organizations use drug formularies, the drug
reformulations can command premium prices only when they actually deliver value
on these products. Reformulating a branded drug creates an improved version over
the less expensive generic versions of the original branded product, and may be
preferred by clinicians as well as patients. Patents on the reformulated product allow
the company to effectively extend the patent life of the drug causing the dramatic rise
in the branded drug’s market share. In this framework, the company with the
branded product may launch a reformulation 1 year before patent expiration to
quickly preserve the market share. During this period, generic versions could seize
only a small portion of the market, until the patent expires on the reformulated
product [17]. For instance, Hoechst Marion Roussel Inc. reformulated Cardizem to
Cardizem CD, a once-daily controlled release reformulation of diltiazem. The
company was able to retain 86% of sales of diltiazem with the reformulated
product after the patent expiration. However, it was markedly different than the
market evolution for Tagamet (cimetidine). Further, in the scenario where generic
drugs are expected to represent an increasing percentage of the pharmaceutical
market, the large number of upcoming patent expirations on blockbuster products
must not be neglected as it might be the steering trend for the growth of this
industry [7].

Each year, patent expiration may be due to the best-selling blockbuster drugs. In
this situation, summarizing the value of these drugs compels the companies toward a
strategic move to reformulate these branded drugs using appropriately screened drug
delivery technologies. In a similar fashion, generic companies target these drugs as
their opportunities to develop premium-priced products. Further, drug companies
require to employ a range of delivery technologies to reformulate their products,
since each drug represents distinguished technical challenges and different unful-
filled clinical needs. In this context, drug delivery companies tend to apply their
technologies across a range of clinical segments despite the fact that they are focused
players. This strategy functions as diversified technology platforms so as to elaborate
their commercial applicability and viability.

22.5.2 Reduced Patient Noncompliance

Patients’ noncompliance with the prescribed medication regimens is one of the most
significant obstacles to curing diseases and keeping patients healthy. Noncompliance
describes why therapies often demonstrate greater efficacy in closely monitored
clinical trials than in routine medical practice. Compliance with prescribed therapy
regimens is not a significant issue in the closely supervised hospital setting as it is for
the outpatients. Patient compliance becomes a more significant issue when the
average length of hospital stays decreases, as it releases the patients in a less sturdy
environment. Noncompliance in US healthcare system approximately costs about
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$100 billion per annum in direct and indirect costs, significantly exceeding the $30
billion cost of prescriptions themselves according to the study of Center for the
Advancement of Health, Washington [7]. Therefore, despite everything, adherence
to the prescribed regimen including the correct timing, dosage, method of delivery,
and physical status determines the drug’s ultimate success. Among factors affecting
patient noncompliance, the nature of the disease and disease symptoms, cognitive or
functional ability, and financial resources are personal factors which depend on the
individual patient. Some other important factors influencing patient compliance
include the frequency and mode of administration and the extent of drug-related
side effects, which are formulation dependent and can be modified through drug
reformulation. Table 22.2 summarizes the factors affecting patient noncompliance,
ways to achieve compliance and outstanding reformulations which enhanced both
compliance and sales to the companies.

22.5.3 Enhanced Therapeutic Efficacy

Besides patient compliance, enhancing therapeutic efficacy employing better drug
delivery technologies could determine the reformulation success. Bioavailability
improvements may help drugs to work more efficiently using technologies that
allow the release of the drug at specific times [22]. In 1996, Covera-HS, an Alza
reformulation of hypertensive drug initially launched by Searle, was designed to
deliver peak concentrations when blood pressure and heart rate are at their highest
[7]. Recently, nanotechnology-based breakthroughs in the field of anticancer therapy
are not only well-established but also an ongoing interest to attain the highest
therapeutic outcomes. In the field of diabetes treatment and research, a number of
companies worldwide are working on technologies to help diabetic patients maintain
stable, close to normal physiologic levels of insulin. This is because closely titrated
patients have been subjected to fewer long-term complications from the disease as
compared to those with widely fluctuating levels.

22.5.4 Decreased Manufacturing Costs

Decreasing manufacturing cost is an obvious method of increasing profitability. On
numerous occasions, oral drug formulation with poor bioavailability is required to be
administered in high doses, as only they show dissolution-limited absorption
resulting in only a small percentage of the drug absorbed by the body.
Reformulations that are designed specifically to improve the bioavailability of the
drug need less amount of drug dose to produce an equivalent therapeutic effect,
thereby reducing manufacturing costs [23]. In general, the manufacturing cost of a
small molecule is low, whereas macromolecular therapeutic agents such as proteins
and peptides are very expensive. Although the research efforts for maximizing the
bioavailability of macromolecular therapeutics cost millions of dollars, their suc-
cessful reformulation development will be rewarded in the market.
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22.5.5 Expanded Market

Due to unique and delicate structural features, the majority of peptides and proteins
macromolecules are traditionally delivered via an invasive parenteral route [24]. In
those cases, where treatments require periodic physician visits or admission to the
hospital, injection therapy does not significantly increase cost or inconvenience to
the patient. However, patients simply do not tolerate injections for many chronic
conditions. Therefore, the inclusion of more alternative administrative routes and
patient-friendly formulations would allow pharmaceutical companies to apply their
drugs to a much broader patient population. Additionally, it would open the gates to
expand and utilize the range of prospective chemical compounds that may be
considered as drugs, to their fullest potential.

22.6 Drug Industry’s Need of “New Deliveries” Approach

As discussed in the preceding sections, new formulations that augment bioavailabil-
ity, optimize drug delivery profiles, or improve patient compliance by reducing
dosing frequency and/or improving patient’s experience for the usage of medication
demonstrate real capability to deliver rapid returns on investments as compared to
the development of an entirely new molecular entity. Therefore, strategies that are
used to achieve any of these goals are identified as pharma company’s productive
keystone in today’s cost-constrained environment. Therefore, global pharmaceutical
companies are intensely looking for new strategies to increase profitability through
developing the controlled release reformulations of existing drugs due to short
pathway for approval while maintaining their market share. Pharmaceutical
companies are increasingly reformulating existing compounds, often using the
FDA’s NDA 505(b) (2) pathway [25], which is generally faster and more cost-
effective than bringing new compounds to market. The pathway can provide patent
extension for existing compounds that secure continued market exclusivities for
several additional years. As 505(b) (2) product development often targets enhanced
bioavailability and/or optimized drug delivery profiles, it can provide reduced pill-
burden as well as new indications or specialized formulations for pediatrics [23]. Fig-
ure 22.4 shows significant reformulation strategies based on “New Deliveries”
approach.

Fig. 22.4 Different
reformulation strategies based
on “New deliveries” approach
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22.6.1 New Presentations

New presentation means changing a physical form of the dosage form [7]. For
example, reformulating capsule to a tablet or a softgel, to differentiate it from the
original product. Although new presentation is a market-driven reformulation strat-
egy, it must be based on a combination of the target product profile and the
characteristics of the API. Target product profile, which is driven by the marketing
and clinical considerations for the new presentation, must direct the pharmaceutics
team in terms of the specifications required whether it is the dissolution rate for a
controlled release formulation or the dosage levels for fixed-dose combinations. For
example, a non-steroidal anti-inflammatory drug (NSAID) ibuprofen finds
applications in several areas of medicine that is presented from the original conven-
tional ibuprofen tablet to a controlled release version for chronic pain and gastric
side effects prevention. In the present time, ibuprofen can be found in many other
presentations such as softgels and used in different markets or disease areas [23]. The
reason behind softgel presentation of ibuprofen claims to have a faster onset as it
dissolves ibuprofen in the softgel matrix presenting a potential advantage for acute
pain. Other ibuprofen presentations include pediatric suspensions, fast-melt tablets,
topical gels, and combination products with analgesics or decongestants. Also,
formulations or presentations and packaging that target specific disease areas such
as menstrual pain or headaches are also available for ibuprofen, each having a
marketable advantage for its particular market or disease area [23].

22.6.2 Extended-Release Formulations

Pharmaceutical companies often develop extended-release drug products, including
oral dosage forms or injectable depots as part of a company’s reformulation strategy
to differentiate its brand from generic competition, thereby extending market exclu-
sivity. In spite of the fact that extended-release formulations are more challenging to
formulate, they provide added value and distinguished merits such as improved
pharmacokinetic profiles, prolonged duration of therapeutic effect, lower incidence
of adverse reactions, and reduced dosing frequency resulting in improved patient
compliance [22]. Since extended-release formulations are able to maintain desired
plasma drug concentration below toxic concentrations, this reformulation strategy
offers specific benefits in the condition of chronic diseases and complex dosage
regimens requirements [26].

Pfizer reformulated its twice daily, immediate-release 5-mg tablet (tofacitinib
citrate, Xeljanz) for rheumatoid arthritis into a once-daily, modified-release formu-
lation. Pfizer’s NDA for Xeljanz 11 mg once-daily, modified-release tablet was
accepted to review by FDA based on its NDA that represented data demonstrating
its pharmacokinetic equivalence in key parameters with older Xeljanz 5 mg twice-
daily formulation. Roche, in collaboration with GlaxoSmithKline, reformulated the
oral bisphosphonate into a once-monthly formulation that was initially marketed as
bisphosphonate ibandronate, Boniva, as once-a-day tablet for the prevention and
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treatment of postmenopausal osteoporosis [27]. This was the FDA’s first-ever
approval of the improved formulation for once monthly oral treatment for any
chronic disease [28]. Despite its advantage in terms of reduced dosing frequency,
this oral bisphosphonate requires a rigid treatment schedule to follow, such as to stay
in the standing position without eating, drinking (except water), or taking other
medications pre- or post- administration of this medicine. Oral bisphosphonates may
not be suitable for some women, either due to other medical conditions or because
the patient is unable to remain standing posture for a specific time. To address the
need, Roche and GlaxoSmithKline developed an injection of ibandronate (3 mg)
available as a prefilled syringe. This injection is intravenously administered over a
period of 15- to 30-second once in every 3 months [29].

22.6.3 Fixed-Dose Combinations

Fixed-dose combinations combining two or more drugs in a safe and effective
manner are another potential reformulation strategy for pharmaceutical companies
striving to maximize the value of their products. Fixed-dose combinations can be
used in two ways: first, to combine different actives into one, single-dosage form,
and second, to combine an immediate-release with an extended-release formulation
for achieving a precise release profile of a specific drug. The advantages of fixed-
dose combinations include enhanced efficacy through the synergistic effect of
potentially lower doses providing increased therapeutic benefit and reducing the
pill-burden, thereby increasing overall patient compliance [26, 30]. Table 22.3
depicts some successful fixed-dose combinations.

22.6.4 User-Friendly Dosage Forms

User-friendly dosage forms are formulations that provide a more positive experience
to the user as compared to traditional tablets and capsules. Such dosage forms are
designed to circumvent the widespread difficulties related to the swallowing of
traditional dosage forms. Examples of user-friendly dosage forms include
reformulating large tablets such as paracetamol into effervescent tablet, or aspirin
into oral disintegrating granules to avoid swallowing difficulties. Other examples
include oral disintegrating tablets or fast dissolving tablets that eliminate the need of
water for administration. In this list, Capsugel designed its Coni-Snap consisting of
sprinkle capsule feature and innovative closure rendering it easier and safer for both
care-givers and patients to open the capsule and administer the medication by
sprinkling the contents onto soft food for oral consumption. It is important to note
that this reformulation strategy is utilized mainly for instantaneous release, and find
limited scope in controlled release formulations, since the primary concern of latter
is to achieve and maintain desirable kinetics and release profiles for better therapeu-
tic outcomes which are difficult to achieve while focusing on “user-friendliness”
feature of the dosage form. However, microneedles or passive transdermal patches
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are attractive patient-friendly reformulation options offering unique benefits in terms
of patient-friendly features, enabling patients to self-administer and opening new
opportunities to move treatments out of the clinic and into the patient’s own home
[23, 25].

22.6.5 Alternative Routes of Administration

In general, the use of alternative routes of administration is a reformulation strategy
that develops delivery systems to be administered by routes other than oral. Two
major alternatives to oral delivery are the non-invasive transdermal route and the
invasive parenteral route. Many times, an appropriate non-oral route can be
recommended to deal with drug’s specific problem such as limited oral bioavailabil-
ity due to first pass metabolism. While considering the reformulation for converting
an oral dosage form to a suitable non-oral dosage form, technological performance,
opportunity to capture additional market share, and product life cycle management
are important factors to be considered at an early phase to avoid delays in project
timelines and formulation processing [23, 25, 26].

Table 22.3 Examples of reformulated fixed-dose combinations

Combination Purpose
Brand
Names

Perindopril + Amlodipine
Irbesartan +
Hydrochlorothiazide
Amlodipine besylate +
Benazepril HCl

Antihypertensive combinations to provide
better blood pressure control

Prestalia®

Avalide®

Lotrel®

Glibenclamide + Metformin
Pioglitazone + Metformin

Antidiabetic combinations for more effective
glycemic control

Glucovance®

Actoplus
Met®

Darunavir + Cobicistat
Efavirenz + Emtricitabine +
Tenofovir + Disoproxil
fumarate

Antiretroviral combinations for the treatment
of HIV/AIDS
Antiviral combination to treat HIV

Prezcobix®

Atripla®

Rifampicin + Isoniazid +
Pyrazinamide + Ethambutol

Antitubercular combinations to target bacteria
in different ways and make treatment more
effective and to reduce possible bacterial
resistance

Voractiv®

Artemether + Lumefantrine Antimalarial combinations to utilize markedly
different absorption and elimination
parameters to complement and support the
product efficacy

Coartem®

Clindamycin + Benzoyl
peroxide

Anti-acne topical combination therapy Onexton
gel®
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22.7 Drug Industry’s Need of Miniaturization
and Nanotechnology: Evolution and Revolution
of Nanomedicine

Including patent expiration of several blockbuster drugs, numerous other challenges
led to altered drug landscape stimulating the drug companies to focus on alternative
drug development technologies. Miniaturization using nanotechnology emerged as a
very potential approach and considered as an urgent need for the drug development
process to combat many challenges associated with conventional and new deliveries.
This also addressed the enormous pressure experienced by US drug companies to
deliver superior quality medications to the consumers without adversely affecting
the profit margins [31]. Almost five decades before, the study of nanomedicine
began with the description of the first lipid vesicles and came up with a great rise
in the past two decades [32, 33]. The basic concept of nanotechnology is scaling
down the material size to their molecular level. This principle entirely alters and
enhances the physicochemical properties of nanomaterials [1, 33]. Therefore,
nanomedicines offer enormous promise for advancing the treatments [1, 34, 35]. Fur-
ther development of nanomedicine should own a thorough understanding of techni-
cal and medical aspects along with economic hurdles that hinder their clinical
translation to the market.

Since its evolution to till nowadays, there has been tremendous excitement and
expectations regarding the potential impact of nanomedicine in the healthcare sector.
Although the early phase of the nanomedicine commercialization process is encour-
aging, there are numerous obstacles as the development process furthers. One such
obstacle is the complicated and confused patent claims which emerged from the
mushrooming of patent applications, and continued granting of unusually broad-
ranging patents by the US Patent and Trademark Office (PTO). In addition, a wide
definition of nanotechnology as per US National Nanotechnology Initiative is not
adequately accurate and relevant from the nanomedicines’ context [31]. These
challenges are major causes liable for hindered translation of nanomedicines to
clinic and commercialization. Consequently, there will be restrictions to its full
exploration to benefit the society. This fact creates a need for a robust patent system
to promote development of marketable revolutionary nanomedicines that upgrade
patient’s overall health and life quality at minimum costs of healthcare. Drug
companies’ annual R&D investment increased to US$40 billion in 2003, from US
$1 billion in 1975 [36]; till 2018, it raised to US$79.6 billion. In spite of this rise over
the years, the number of new approvals remained almost the same, i.e. 20–30 drugs
per year. Besides, over the past few years, new molecular entities covered only 25%
of new product approvals, most of the product approvals belonged to either
reformulations or new combinations of existing drugs [37]. This revealed the fact
that only 30% of new drugs are capable of recovering their ever-increasing R&D
costs. Further, the drug industries are also haunted by issues such as the weakened
product pipeline, as well as decreasing numbers of new drug approvals by the
USFDA and other foreign drug agencies. However, nanotechnology’s potential
still impresses governments around the globe allocating research funds in this area.
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Issues such as growing international rivalries [38, 39] and political alliances strain
the battle lines. In global scenario, US$12.4 billion in 2006, which was 13% higher
than 2005, was spent by corporations, governments, and venture capitalists for
nanotechnology research [40]. Studies claimed the presence of over 500 nanotech-
nology-based consumer products in the market worth US$30 billion in 2005
[41, 42]. Although it is hard to estimate its volume and growth, the nanomedicine
sector undeniably comprises a billion-dollar market with a rapid rise [43].

Since its evolution, nanomedicines are available in numerous forms such as
liposomes, nanoparticles, nanoemulsions, polymer–protein/drug conjugates, self-
assemblies, dendrimers, nanocrystals, polymeric vesicles, antibody–drug
conjugates, nanogels, nanotubes, gold nanoparticles etc., among which several
forms are already approved nanoproducts for diagnostic and/or therapeutic use
[44]. In 1995, the first PEGylated liposome delivering doxorubicin (Doxil) was
approved by the FDA, following which the nanomedicine research never looked
back. However, this field is still not fully exploited to its real promise for
revolutionizing the therapies and diagnosis. This is because the development path-
way for nanomedicine toward their success has never been absolutely straightfor-
ward. It is unarguable that nanomedicines present exceptional merit such as superior
efficacy, improved transport across the biological barriers, disease targeting, better
absorption and bioavailability, prolonged and higher drug retention, reduced toxicity
and immunogenicity, etc. over their conventional counterparts [45]. These merits are
attributed to their basic physicochemical properties like nanosize, higher surface-to-
volume ratio as well as surface characteristics that have been utilized in developing
advanced nanomedicine products [46]. Therefore, a thorough physicochemical
characterization of nanomedicines prior to in vivo evaluation is one of the
requirements for progressing this field. In general, when research is performed
using appropriate standards, controls, and procedures, it gathers important under-
standing for the whole scientific community; however, the regulatory agencies’
guidance is very important for identifying the information needed for NDAs. The
diversity and complexity of different nanomedicine approaches obstruct the fulfill-
ment of a general guidance protocol for nanotechnology-based products; however,
FDA addresses this point with industry-guidance documents. For instance, the
“Liposome Drug Products,” provides information about chemistry, manufacturing
and control, clinical pharmacokinetics, bioavailability, and labeling requirements for
liposomal products [47]. Also, another document “Drug Products, Including
Biological Products, that Contain Nanomaterials” [48] provides vital information
for the development of new nanomedicine approaches. In addition, one study
claimed that the variability of published data with respect to the characterization
and experimental details reported is one of the causes of the hardships in the progress
of different nano-drug delivery systems employed for various therapeutic
applications [49]. This fact suggests a need to harmonize the nanomedicine’ charac-
terization using standard protocols and appropriate reporting of the experiments in
order to promote comparability between different approaches and reproducibility of
the data. The majority of nanomedicines studied were nanoformulations of already
approved drugs, wherein nanomaterials used possessed specific physicochemical
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properties with safety and toxicity concerns. As nanosystems interact differently
with biological components, it is important to examine their toxicities using
validated protocols based on the nanomaterial types [50].

Nanomedicine ranges from nanomaterials to biological devices and
nanoelectronic biosensors for advancing human health and treatment.
Nanomedicines are engineered nanoscale materials whose nanostructure extends
unique therapeutic benefits for a range of diseases and conditions. Nanomedicines
can be conveniently divided into three major classes: nanopharmaceuticals
(i.e. intended for drug delivery), nanodiagnostics (i.e. used for imaging and
diagnostics), nanotheranostics (i.e. combined therapeutic and diagnostic), and
nanobiomaterials (i.e. medical implants). Nanopharmaceuticals hold 75% of the
approved nanomedicines’ market share [51]. Initially, the first generation
nanopharmaceuticals were developed by reformulating existing drugs for purposes
such as solubility enhancement or altered biodistribution, in order to achieve effi-
cient drug delivery at the site of action with reduced organ toxicities [52]. Such
reformulated nanomedicines have been mainly employed in cancer treatment for
enhanced clinical outcomes [53–55]. The majority of the nanoformulations in
development and clinical trials focused on cancer targeting with more than 80% of
the overall nanomedicine-based publications during the last two decades [56]. The
second generation nanomedicines were produced to achieve better efficiency of
therapeutic biomacromolecules and other biotherapeutics to take direct advantage
of nanoscale on their therapeutic efficacy [57].

22.8 Challenges in Nanomedicines’ Clinical Translation
and Commercialization

Inadequate understanding of medical and technical aspects of nanomedicines such as
nanomaterials used, processes employed, in vivo fate as well as safety and toxicity
are major parameters that hinder clinical translation of nanomedicine to commercial
scale. The challenges encountered in nanomedicine development to commercializa-
tion is presented in Fig. 22.5. The points discussed below highlight the obstacles in
nanomedicine research and development suggesting some remedial measures to
foster the commercialization of nanomedicines [58–60].

22.8.1 Biological Barriers

Nanomedicine development has been a formulation-directed approach in which novel
delivery systems are firstly engineered and characterized using the physicochemical
interpretation. Therefore, the limitations in its clinical translation cannot be recognized
until the nanomedicine is attempted to align with a pathological application. The
relationship between biology and technology should be understood to identify the
impact of disease pathophysiology on nanomedicine in terms of retention and efficacy,
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distribution, accumulation. Also, the correlation of biopharmaceutical factors of the
delivery system with its in vivo animal or human behavior is crucial during successful
nanomedicine development. This leads to applying a disease-directed approach to
capacitate utilization of pathophysiological changes in the nanomedicine design and
development for augmenting their clinical translation [61]. It is crucial to consider the
relationship between disease pathophysiology and disease heterogeneity in humans
along with the physicochemical properties of various nanomedicines to overcoming
biological barriers. This approach enables enhanced targeting of the drug to the
diseased tissues and/or reduced drug accumulation in non-target organs. Significantly
less research efforts have been dedicated toward a complete understanding of the
interrelationships between nanomedicine performance and patient physiology under
particular clinical conditions. Therefore, undertaking a disease-directed approach to
nanomedicine development could build extensive in vivo data sets, that at its best can
anticipate clinical efficacy in patients to promote clinical translation.

22.8.2 Manufacturing and Scale-up Complexities

Nanoformulations possess physicochemical and structural complexities which
diminish its clinical translation. Also, complicated and/or tiresome procedures
involved in synthesis can be problematic for large-scale pharmaceutical production
which can limit the clinical translation potential [62–66]. In addition, manufacturing
is based on overall product quality and cost, whereas quality comprises of the

Fig. 22.5 Challenges in
nanomedicine development to
commercialization
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manufacturing process and stability of the formulation. Potential issues challenging
the overall product quality include poor quality control, scale-up complexities,
incomplete purification processes, high cost of material and/or manufacturing, low
production yield, low batch-to-batch reproducibility, consistency and storage stabil-
ity, inadequate infrastructure and/or in-house expertise, scarcity of venture funds,
and pharmaceutical industry investment [60, 62, 63, 65].

22.8.3 Biocompatibility and Toxicity Issues

In general, the regulatory authorities recommend the sponsor to precisely assess any
changes in the drug substance and drug product formulation at any phase of the
manufacturing process to determine the direct or indirect effects of any such change
on the product safety. Recommended changes affecting product safety during the
critical manufacturing control throughout the investigational new drug (IND) pro-
cess are: changes in the synthesis steps, reagents used to manufacture the drug
substance, product, or formulation, changes giving different impurity profiles,
changes such as chemical synthesis, fermentation process or derivation from a
natural source used in the actual manufacturing method, changes in the source of
raw materials, changes in the sterilization method used for the drug substance or
drug product, changes in the administration route, changes in the composition and/or
type of dosage form, changes in the product manufacturing process that can affect
product quality, and changes in the drug product package that can affect product
quality, e.g. dose delivery [67]. In addition, specialized toxicology studies can be
conducted in animal models to assess both short-term and long-term toxicity, as
circulation half-lives and drug retention times are generally considerably raised with
nanoencapsulation. Further, an in-depth understanding of the absorption, distribu-
tion, metabolism, and excretion of novel nanomaterials in vivo is important for
predicting the toxicological responses to nanomedicine [65, 68]. Enough assessment
protocols are also needed to monitor various aspects of the nanomedicine drug
delivery process including pharmacokinetics, biodistribution, target site accumula-
tion, localization in healthy tissues, kinetics of drug release, and therapeutic efficacy
[69]. Additionally, real-time imaging techniques can be incorporated to achieve a
better understanding of nanomedicine’s interactions with biological organs and
tissues, following in vivo administration [68, 70, 71]. Moreover, biocompatibility,
immunotoxicological, and inflammatory potential should be assessed with func-
tional outcomes and correlated with tissue uptake mechanisms and clearance
[70]. Also, the need to be well-examined based on dose, dosage form, and adminis-
tration route to establish safe drug limits before clinical trials, specifically when
nanomedicines contain any new material that has been used first time for the clinical
applications should be addressed [70, 71].
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22.8.4 Ineffective Patenting

Over the last few decades, a significant increase has been observed in the number of
nanotechnology patent applications, which gives rise to patent review delays, patent
thickets, and invalid patent issuance [72–74]. Bawa and co-workers indicated a need
for a universal nano-nomenclature on identical or similar nanostructures or
nanomaterials, and the use of more refined search tools including commercial
databases so that issuance of multiple nanopatents on the same invention can be
avoided [72, 74]. Also, the online publication database used by the Patent and
Trademark Office should be searchable through worldwide publications including
old research that were published before the emergence of online publication
databases [65]. Intellectual property and patenting of nanomedicine require
improved clarity with the possible implementation of universal regulations and
policies.

22.8.5 Inadequate Regulations

In spite of the scientific and regulatory challenges, nanomedicines demonstrate
enormous promise to boost up the pharmaceutical market by advancing the
treatments for augmenting human health. Nanomedicine manufacturing for com-
mercialization is influenced by regulatory factors such as quality control, safety, and
patent protection as proposed by government policies [65, 66, 70]. Further, the
inadequacy of straightforward safety and regulatory guidance has affected the timely
and effective clinical translation of nanomedicine [65, 66, 70]. This can be
exemplified by polymers which have been investigated for nanomedicines; the
safety and efficacy of which are dependent on the polymer conjugation chemistry
and polydispersity, molecular weight, and molecular structure [31, 75]. At present,
there is an increased number of novel polymeric materials employed in the fabrica-
tion of complex polymer-based nanoformulations which creates a need for appropri-
ate regulatory framework to assist in their evaluation [31]. Since each polymer-based
nanoformulation is different, each one should be considered individually based on
dose, dosing frequency, administration route, and proposed clinical indication. Main
regulatory authority of respective regions, e.g. Food and Drug Administration
(FDA), Therapeutic Goods Administration (TGA), and European Medicines Agency
(EMA) are currently engaged for the nanomedicine regulations within the conven-
tional framework.

The first generation nanomedicines were relatively simple, and therefore they
passed regulatory approval by complying only with general standards of medicinal
compounds. The modern nanomedicines are complex formulations and these general
regulations are inadequate to confirm their quality, safety, and efficacy for clinical
use [62, 65, 66]. This is because the complex nanomedicine structures exhibit in vivo
complexities like unclear interaction with cells and tissues within the human body,
the polyfunctional nature of some formulations like the integration of therapeutics
with imaging diagnostics (theranostics) and their increased complexity for clinical
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use [62, 65, 66]. These parameters collectively indicate that the regulatory protocols
should consider nanomedicine complexity, route of administration, pharmacokinet-
ics, pharmacodynamics and safety profile, and bridge both medicine and medical
devices regulations for their validation [65]. Ongoing efforts for developing global
regulatory standards for nanomedicines by key countries need closer collaboration
with academia, industry, and regulatory agencies [63, 70, 76]. Contract
manufacturing organizations (CMOs) worldwide that are specialized in producing
nanoproducts in compliance with the regulatory standards are limited [63] and can
be divided based on their infrastructure capabilities of producing specific
nanomedicines, e.g. liposomes, polymeric nanoparticles, dendrimers, drug–polymer
conjugates, etc. The nanomedicines produced by CMOs are likely to be marketed in
many countries and be governed under the same regulatory standards [63],
incorporating industrial standards for both quality control and environmental issues
for complete evaluation and documentation of nanomedicine production processes
[70]. Manufactured nanomedicines still need to comply with general pharmaceutical
standards such as purity, sterility, stability, manufacturing operations, and related
industrial control standards [70]. In addition, validated analytical methods for
physical evaluation of particle size and size distribution, surface chemistry, mor-
phology, surface area, surface coating, hydrophilicity, porosity, and surface charge
density of nanomedicine which can affect in vivo performances are also required
[65, 66, 70]. Nanomedicine characterization methods vary depending on the type of
nanomaterials employed and nanostructures. Also, the standardized toxicity
protocols and testing methods to ensure product safety and efficacy are required.

22.8.6 Financial Resources, Profitability, and Overall
Cost-Effectiveness

The nanomedicines’ development is mainly dependent on start-ups as well as small-
and medium- scale enterprises in spite of their huge R&D costs [77]. Usually, such
small- to medium- scale enterprises suffer from insufficient financial resources to
utilize and market their inventions, and they are seldom capable of commercializing
nanotechnology-based therapeutics [77]. Large-scale pharmaceutical companies
may not have a clear incentive to collaborate with such enterprises [77, 78] because
their profit with traditional blockbuster drugs can be compromised if they invest in
the development of new nanomedicine. This fact leads to low commercial interest to
switch to nanomedicine option in spite of their high therapeutic potential. Here,
profitability is also endangered due to high purchase costs for patients [77].

22.8.7 Generics Market and Insurance Policies

In theory, brand and generic products differ only in their prices [79]. It is a general
tendency of insurance companies and other third-party payers to refund only the
cheapest generic products [80]. Current health policies do not include the costs of
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“unproven” technology related to experimental therapies for both general and
nanomedicines. Cheaper generics drive the overall medicine market growth rather
than innovative products. This is indicated from the expected growth of the generics
market by 10–15%, as compared to 7–9% growth by the overall pharmaceutical
market. Although a profitable generic market may lead to more revenues, it
also provides limited progressive medical benefits for patients when compared
with advanced nanomedicines [81].

22.9 New Deliveries and Nanomedicine: Market and Forecast

Among various new deliveries, controlled release drug products are relatively
difficult to formulate due to drug substance challenges, including very low solubil-
ity, lack of absorption, high dose, gastric fluid degradation, first pass metabolism,
and/or rapid clearance rates [22]. Additionally, treatments for patient population
where swallowing is difficult, controlled release formulations can be challenging
because of high drug loading, inability to crush, excipient amount, and dosage size.
To combat these challenges, pharmaceutical companies look forward to use enabled
technologies including amorphous or nano-sized particles, multiparticulates, and
multilayer tablets [25]. Products requiring high drug loading and low solubility are
particularly difficult to formulate without being large in size. Geriatric and pediatric
populations have difficulty swallowing large, monolithic controlled release dosage
forms [31, 82], whereas multiparticulates including particles, pellets, beads,
granules/mini-tablets offer more flexibility in terms of the final dosage forms that
can vary from capsules and tablets to orally dissolving tablets, sachets, and sprinkle
capsules. Drug incompatibility can be a concern for some fixed-dose controlled
release combination products whereby multilayer tablets or multiparticulate products
can be employed to maintain stability. Furthermore, the role of polymers in con-
trolled drug delivery development is enormous and polymeric controlled drug
delivery using semi-synthetic, synthetic, and biodegradable polymers is highly
researched and applied approach in the pharmaceutical field. Medical devices
employing biodegradable polymers will drive the worldwide biodegradable
polymers market. Increased market trend for controlled and nanoscale drug delivery
systems is attributed to the use of technological advancements that can be applied to
various formulation approaches. Routes of interest for new deliveries and
nanomedicine that attract future pharmaceutical market are represented in Fig. 22.6.

Pharmaceutical market foresees future growth in specialized dosage forms,
nanomedicines, monoclonal antibodies, and other functionalized polymer-based
medicines for autoimmune, cancer, cardiovascular, neurological, viral, and other
disabled disorders. Drug delivery devices such as pen injectors and prefilled syringes
will also exhibit rapid growth. Among new deliveries, controlled release
formulations will maintain market growth. The overall market potential will be
alleviated by patent expirations and generic competition. Controlled drug delivery
market predicts overall future growth in oral controlled release segment, retaining
the highest market share based on the number of applications for marketing
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approvals received in 2017. The targeted drug delivery beared the fastest raise during
the forecast period [32, 83]. Activation-modulated osmotic delivery is also likely to
witness the magnified growth rate. The maximum compound annual growth rate
(CAGR) during the forecast period is expected due to higher investments by leading
competitors such as India, China, and Brazil as they predicted promising growth
during the forecast period. This market growth seems achievable due to increased
tendencies for catering specific patient care through improved healthcare infrastruc-
ture and medical technologies. According to Grand View Research Inc.’s report,
market size is expected to reach US$90.18 billion with a CAGR of 14.0% by 2025
[83]. In addition, increasing demand in novel drug delivery systems for geriatric and
pediatric population as well as alternate therapies will come up with a boost to the
market [32]. According to the report, the Asia Pacific region will broadcast the
largest CAGR but North America will keep the leading edge over the market during
the forecast period due to advanced technology and infrastructure, expanded R&D
activities, and presence of key players in the region. Meanwhile, the pharmaceutical
sector is captured between the pressure of lowering the prices and the raising
expenses of successful drug discovery and development. In this situation, some
products are being launched and some others are expected to reach the market soon.
Approaches using depot, nanoparticulate targeted delivery, transdermal delivery,
etc. are showing rising interest and will continue to contribute in the overall market
growth, whereas some more sophisticated wearable devices and advanced transder-
mally controlled drug delivery systems are marketed and some more are in the
development pipeline.

As per WHO, cancer is one of the major causes of mortality and morbidity
globally, with approximately 14 million cancer-related new cases in 2012 with 8.2
million deaths. These figures demonstrate the increased nanomedicine demand to
fight this deadly disease and is expected to lift market progress [84]. Nanomolecules
and associated technology-based products are accommodated in potential product
pipeline and anticipate a market-drive with powerful growth avenues. This is
because about 40% of products in phase II trials are expected to result in some key
commercialization over the coming years to contribute revenue generation over the

Fig. 22.6 Drug delivery
systems of interest for future
market

604 S. Dahiya and R. Dahiya



forecast period. The field of precision medicine for the customized treatments of
genetic abnormalities is a substantial option of future medicine. A report by Grand
View Research Inc. assesses nanomedicine market to reach US$350.8 billion by
2025. This lucrative growth rate is expected through a rise in number of research
grants, higher demand for prevention of deadly diseases, rise in the number of
venture capitalists from developing countries as well as higher number of interna-
tional research collaborations and partnerships to push growth in nanomedicine
market during the forecast period [85].

22.10 Concluding Remarks

New drug development process requires considerably higher cost and time as
compared to developing a new delivery or reformulation of an existing drug. Modern
drug delivery technologies are capable of incorporating improved formulations of
drug to fabricate new delivery systems leading to therapeutic and economic benefits.
Since drug discovery research is a very costly and tedious affair, many pharmaceu-
tical and drug delivery companies are focusing on repurposing or reformulating
existing drugs providing improved efficacy, convenience of drug administration,
higher patient compliance, low investment, low failure risk, less time, and high
returns as compared to developing a new drug. Reformulating an existing drug as
new delivery or nanomedicine after the product’s patent protection period may be
chosen as value-added strategy since reformulation strategy can provide the benefit
of patent protection, and helps companies to retain their sales with the original
product even after patent expiration. Developing new deliveries and/or nano-drug
delivery system of existing drugs represents a cost-effective way to advance the drug
candidates as compared to new drug discovery approach; therefore, it is considered
at an earlier stage in the development process. Pharmaceutical companies assess
drug-driven, patient-driven, and market-driven needs for reformulating an original
product to the new deliveries or nano-drug delivery systems including both technical
and commercial objectives, and follow the steps explicitly for a successful reformu-
lation of an existing drug. Modern pharmaceutical and drug delivery market have
come far away to witness several breakthroughs providing new hopes in medical
treatment and will likely to maintain its therapeutic potential and financial growth at
a phenomenal rate in the future. A huge economic prospective of drug delivery
market supports the idea of partnering between pharmaceutical companies and
academic laboratories. This sort of partnership may encourage nano-drug delivery
research, promoting opportunities for clinical translation of promising research
findings as enabled nanomedicine for advancing the treatment and enhancing the
human health.
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Abstract

Nanotechnology related to the health sector, known as Nanomedicine, has
benefited scientific ideas to be implemented in the research and development of
Nanomedicine. Nanoscale matter is beneficial over traditional therapy for the
diagnosis and treatment of several diseases like Cancer, Diabetes, Alzheimer’s
disease, and Parkinson’s disease. Even though Nanomedicines are accepted
worldwide and several governmental as well as nongovernmental organizations
and industries are promoting Nanomedicine-based projects, the existing global
inequity, in terms of socioeconomic status, health, and regulatory policies, retards
its proper and successful implication. Thus, the present review discusses several
applications, benefits, global market size, challenges to be faced, and the global
impact of Nanomedicine.

Keywords

Nanomedicines · Health issues · Regulatory policies · Toxicity · Socioeconomic
issues

23.1 Introduction

Nanotechnology is the ‘top to bottom’ process based on the qualitative and quanti-
tative manipulation of matter at atomic and molecular levels with a scale of
1–100 nm for specific technological use. The word ‘Nano’ originated from the
Greek word meaning “Dwarf”, which signifies one-billionth of a metre (10�9 m).
The term ‘Technology’ was also derived from the Greek word ‘tekne’ and ‘logos’
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meaning know how to do things [1]. It is a multidisciplinary field to sum up the
exploitation necessary for technology development at the nanoscale level involving
a collaborative approach of both basic sciences such as chemistry, physics, and
biology and applied sciences such as biophysics, molecular biology, and bioengi-
neering [2]. As such, the term Nanotechnology was first coined by ‘Norio
Taniguchiin’ in 1974 who defined it as “the production technology to obtain the
extra high accuracy and ultrafine dimensions, of 1 nm”. It is processed by separation,
consolidation, and deformation of materials by one atom or one molecule [3]. Dated
back to history, in 1959, Richard Fennyman, the father of nanotechnology in his
lecture “There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of
Physics” explained about the manipulation of individual atoms or molecules at the
atomic level. He gave the concept of “nanoscale machines” that can arrange the
atoms in the way they want [4]. Later on, a technique to deposit single atomic layers
(Molecular Beam Epitaxy) was invented in 1968. The concept given by Richard
Feynman was more widened after the advent of the Scanning Tunneling Microscope
(STM) in 1981 and the Atomic Force Microscope (AFM) in 1986, which paved the
way for scientists to visualize and work on the manipulation of matter in the
nanoscale range [5]. On the other hand, in the same year, 1986, Eric Drexler, was
associated with molecular nanotechnology described in his book “Engine of Crea-
tion: The Coming Era of Nanotechnology” that uncontrollable pieces of machinery
could be built by molecular nanotechnology as the nanoscale assemblers that could
make several replicate copies of themselves described the benefits and risks of
nanotechnology [6]. Later on, in 1989, nanotechnology was applied when xenon
atoms were used to write the IBM logo on a copper surface. A series of
advancements in nanotechnology took place afterward when S. Lijima discovered
Carbon Nanotube for the first time in 1991 [7]. Then, in 1999, the first book on
Nanomedicine entitled “Nanomedicine” was published by R. Freitas [8]. Also, the
National Nanotechnology Initiative was launched in 2000 [9]. Later on, in 2001,
Feynman prize in nanotechnology was awarded in the areas of developing
nanometer-scale electronic devices and for the synthesis and characterization of
carbon nanotubes and nanowires. Feynman Prize in nanotechnology was awarded
in 2002, for using DNA in the self-assembly of new structures and molecular
machine modeling and in 2003 for the development of nanoscale silicon devices
[10]. In 2004, the first policy conference on advanced nanotechnology was held. In
2005–2010, a 3D nanorobotics concept was introduced [11]. Afterward, in 2011, the
era of molecular nanotechnology was started [7]. To date, the nanotechnology
concept has gained widespread attention worldwide. Researchers throughout the
world worked on nanotechnology to explore its applicability in several sectors.
Nanotechnology in the size range of 1–100 nm has different inherent properties
from bulk materials such as electrical conductance, chemical reactivity, magnetism,
optical effects, and physical strength. Small-sized nanoscale matter has a high
surface area to volume ratio. Its other advantages are being stronger, lighter, cheaper,
durable, precise, and can be mass-produced [12]. Thus, nanomaterials are used as
quantum dots in display screens, as nanorobots used to clean the block capillaries
allowing efficient surgery, in genetic nanotechnology, molecular nanotechnology,
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and tissue engineering [13]. Thus, Nanotechnology-based scientific endeavors
received several explorations in different sectors of organic chemistry, surface
chemistry, molecular biology, electronics, warfare, health, etc. Health is a crucial
sector and nanotechnology used in health and medicine is called Nanomedicine
[14]. Nanomedicine is considered to be the promising branch of nanotechnology in
the twenty-first century.

23.2 Nanomedicine and its Application

Thus, Nanomedicine can be defined as the branch of nanotechnology consisting of
materials in the size range of 1–100 nm which are used for diagnosis, imaging,
treatment, and prevention of most of the diseases. The materials that have particle
sizes in the range of 1–100 nm are known as nanoparticles [15]. Nanomedicines
have a profound impact on the health sector and pharmaceutical industries. Common
drawbacks with conventional systemic administration include difficulty with poorly
soluble and impermeable drugs, nonspecific targeting, systemic toxicity, difficulty in
maintaining drug concentration within the therapeutic window which ultimately
reduces the efficacy and availability of the drug at the targeted site. On the other
hand, the size of nanoparticles resembles the pore size of our biological membrane
and thus nanoparticles can easily penetrate through the biological membrane to
deliver the drug at the site of action, i.e. diseased tissue. As small-sized nanoparticles
have a large surface area, they can deliver sufficient concentration of the drug to the
diseased tissue within the therapeutic concentration. Thus, targeted, site-specific
drug delivery is the most important property of nanoparticles [16]. Specific drug
targeting to the site of action prevents unwanted accumulation in nonspecific sites
causing the reduction of unwanted side effects and enhanced bioavailability of the
drug. Nanomedicines are useful for targeted delivery and dissolution of drugs that
are poorly water-soluble. Small-sized nanoparticles have a large surface area and
thus increase the rate of drug release (Dissolution) which makes an increase in
bioavailability at the specific site [17]. Nanomedicines undergo passive targeting
of the drug by the enhanced permeability and retention (EPR) mechanism. It can
increase the retention of drugs in the body for long periods by increasing the
absorbability of drugs [18]. To date, several research studies have been done, and
still, research studies are undergoing to explore its implications in several fields. The
safety and efficacy of nanodrug delivery over the conventional therapy find faster
opportunities in the delivery of anti-cancer drugs, hormones, vaccines, gene and
brain-targeted delivery of anti-HIV drugs, anti-Alzheimer drugs, and anti-cancer
drugs. Prior to the treatment of diseases, diagnosis is required. Nanomedicines based
on non-invasive technology improve the intracellular diagnosis and screening of
diseases in our body in a precise and controlled manner. Thus, nanoparticle-tagged
fluorescent markers and quantum dots as diagnostic agents for intracellular imaging
have advantages due to the requirement of small volumes of samples, reduction of
reagent, and fast reaction time [19]. The different types of nanoparticles [20], shown
in Fig. 23.1a, have several applications in the medical field in terms of drug delivery,
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gene therapy, image contrast agents, biomarkers, etc. To date, the FDA has approved
some of the Nanomedicines [21] for marketing as shown in Table 23.1. The status of
research activities from 2009 to 2019 in terms of Nanomedicine applications in
several areas such as drug delivery, gene therapy, imaging, and diagnosis and
monitoring of diseases is shown in Fig. 23.1b, indicating that the highest number
of research studies are done in drug delivery followed by imaging.

23.3 Global Market of Nanomedicine

Nanomedicine is the fastest growing market owing to its potential to diagnose and
treat diseases at the same time. With reference to BCC Research, “Nanotechnology
in Medical Applications: The Global Market”, Nanomedicine market is expected to
grow at a compound annual growth rate (CAGR) of 13.5% by 2024 as observed in
2019 [46]. As per the Grand View Research Inc. report (Revenue, USD Billion;
2013–2025), Nanomedicine market value is estimated to be $350.8 billion by 2025
[47]. With reference to this report, the nanoparticles’ regional outlook shows that in
the Nanomedicine market, North America is the leading country with a revenue

Polymeric nanoparticles Lipid based nanoparticles

Magnetic nanoparticlesMetal nanoparticles

Carbon nanoparticles
Quantum dot nanoparticles

Ceramic nanoparticles

Types of 

nanoparticles

a

Drug 
screening
(Labelling)

Gene delivery
(Transfection)

Diagnosis

Drug 
Delivery
(therapy)

Imaging

Monitoring 
of diseases

Nanomedicine Application, research works (2009-2019)

b

Fig. 23.1 (a) Classification of nanoparticles, (b) Nanomedicine application (2009–2019) shows
the highest Nanomedicine-based research is done in drug delivery to specific diseased sites
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share of 42% [47]. Europe is the second largest revenue shareholder followed by
Asia-Pacific, Latin America, and the Middle East and Africa (MEA) [47]. The
tremendous growth of these countries is due to the presence of patented
Nanomedicine products (U.S. patent), Table 23.2, [48], highly developed healthcare
systems, the presence of several Nanomedicine-based manufacturing companies,
and the involvement of government for the upliftment of several healthcare devel-
opment programs [47]. In the year 2000, the National Nanotechnology Initiative
(NNI) was initiated in the United States, to look after nanotechnology-related
activities. Several agencies are working under NNI to work in collaboration with
companies and universities for the treatment of several cancer and infectious
diseases using Nanomedicines [49]. Nano-manufacturing in Small Business
Innovation Research (SBIR) programs is such an example [50]. In a recent strategic
plan presented by the NNI in 2016, several programs were identified to further
advance the research and development programs, over the forecast period. The
Nanomedicine market is expected to grow at a faster rate in the Asia-Pacific region
due to its rising aging population, increasing international research collaborations,
rising nanotechnology R&D expenditure, and rapidly growing healthcare industry.
Similarly, in the Nanomedicine product outlook report, high revenue shares are
expected in therapeutics, regenerative medicines, in-vitro diagnostics, in-vivo
diagnostics, and vaccines [47]. The Nanomedicine market is dominated by six
Pharmaceutical industries which attributed to 65–70% of nanotechnology-based
products for technology improvement, drug bioavailability improvement as well as
administration. These companies are Stryker Corporation (U.S.), 3 M Company
(U.S.), St. Jude Medical, Inc. (U.S.), Smith & Nephew, Inc. (U.K.), Affymetrix, Inc.
(U.S.), and Perkin Elmer, Inc. (U.S.) [51]. Other pharmaceutical companies are
Combimatrix Corp, Ablynx NV, Abraxis Bioscience Inc., Celgene Corporation,
Teva Pharmaceutical Industries Ltd., Arrowhead Research, GE Healthcare, Merck
& Co. Inc., Pfizer Inc., and Nanosphere, Inc. [52]. In February 2017, the European
Commission approved the first drug, REVLIMID (Lenalidomide), for marketing in
Europe for the monotherapy of multiple myeloma [53]. The existence of several
other companies in the market increases competition among the existing major
companies. The positive effect is that these companies are adopting several new
strategies to develop Nanomedicine leading to innovation so as to solve challenges
in the healthcare system. As per the Nanomedicine market survey for diseases,
significant progress is found in Nanomedicine based cancer chemotherapy during
these years [54]. Also, several drawbacks linked with oral administration of drugs for
a range of neurological or brain disorders lead to significant research in
Nanomedicine-based treatment of neurological disorders like Alzheimer’s disease,
Parkinson’s disease, brain cancer, and neuro-AIDS. The advantage of Nanomedicine
is that it can easily cross the blood–brain barrier (BBB) owing to its small size
(�100 nm) and low molecular weight. Thus, a sufficient concentration of the drug
within its therapeutic range can be delivered across the BBB [55]. Some of the
nanoparticles, such as Gold nanoparticles, Lipid nanoparticles, Polymeric
nanoparticles, and Chitosan nanoparticles, are promising for drug targeting to the
brain. Cancer is also such disease responsible for mortality and morbidity of millions
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Table 23.2 List of patented nanomedicines, US Patent

Sr.
no. Title Application

Patent
number

1 Nanoparticulate systems prepared
from sorbitan esters

Medicines or medical devices, in
tissue engineering or regenerative
medicine, for cosmetic, hygienic or
nutritional uses, and in surface
coatings

9,861,588

2 Preparation of extremely small and
uniform sized, iron oxide-based
paramagnetic, or pseudo-
paramagnetic nanoparticles and
MRI T1 contrast agents using the
same

MRI contrast agent 9,861,712

3 Mucoadhesive nanoparticle
composition comprising an
immunosuppressant and methods
of use thereof

Delivery of immunosuppressant,
cyclosporine A to the mucosal site

9,878,000

4 Nanofiber scaffolds for biological
structures

Transplantation 9,884,027

5 Low-density lipoprotein
nanocarriers for targeted delivery of
omega-3 polyunsaturated fatty
acids to cancer

Anticancer activity to malignant
liver cells

9,889,092

6 Nanoparticles, composed of sterol
and saponin from Quillaja
Saponaria Molina for use in
pharmaceutical compositions

Cancer treatment 9,907,846

7 Polyvalent-functionalized
nanoparticle-based in vivo
diagnostic system

Diagnonistic agent 9,910,035

8 Immune-modifying nanoparticles
for the treatment of inflammatory
diseases

Ameliorate inflammatory immune
responses

9,913,883

9 Nanoparticles/theranostic vehicles Facilitates diagnoses, treatment,
and targeting of amyloid deposits

9,950,002

10 Carbon nanotube-based anticancer
agent capable of suppressing drug
resistance

The present invention provides an
anticancer agent comprising a
multiwalled carbon nanotube and
an anticancer drug covalently
attached to the surface of the
multiwalled carbon nanotube, with
the anticancer agent capable of
solving the drug resistance problem

9,981,042

11 Stable liposomal formulations for
ocular drug delivery

Treatment of ocular disorders 9,956,195

12 Method of treating diabetic wounds
using biosynthesized nanoparticles

Treatment of diabetes 9,974,749

(continued)
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Table 23.2 (continued)

Sr.
no. Title Application

Patent
number

13 Targeted self-assembly of
functionalized carbon nanotubes on
tumors

Treatment of cancer 9,976,137

14 Tolerogenic synthetic nanocarriers
for antigen-specific deletion of T
effector cells

Tolerogenic immune responses
(e.g., antigen-specific T effector
cell deletion)

9,987,354

15 Nanospheres encapsulating
bioactive material and method for
formulation of Nanospheres

Transdermal delivery of a vaccine 10,004,790

14 Liposomes active in vivo on
neurodegenerative diseases

In-vivo reduction of the amyloid
plaque in the central nervous
system

10,010,505

15 Compositions and methods of
tumor treatment utilizing
nanoparticles

Treatment of cancer after
intraperitoneal administration

10,016,365

16 Multifunctional metal nanoparticles
having a polydopamine-based
surface and methods of making and
using the same

Treatment of cancer or bacterial
infections, and for use in diagnostic
imaging

10,016,499

17 Porous nanoparticle-supported lipid
bilayers (protocells) for targeted
delivery and methods of using the
same

Treatment of hepatocellular cancer 10,022,327

18 Multimodal silica-based
nanoparticles

Detection, characterization,
monitoring, and treatment of a
disease such as cancer

10,039,847

19 Paramagnetic solid lipid
nanoparticles (pSLNs) containing
metal amphiphilic complexes for
MRI

Imaging 10,039,843

20 Nanoparticles drug delivery Treatment of chronic obstructive
pulmonary disease, bronchial
asthma, cystic fibrosis, chlorine
inhalation, influenza, and acute
myocardial infarction

10,034,837

21 Nucleic acid nanostructure barcode
probes

Detectable labels for probes 10,024,796

22 Silica-based antibacterial and
antifungal nanoformulation

Treatment of citrus canker, inhibit
the growth of mold and mildew,
and add nutrients to soil used for
agricultural purposes

10,085,444

23 Nested particles and the use thereof
for the coordinated delivery of
active agents

Facilitates sequence-specific drug
release.

10,076,509

24 Assembly of micelle aggregates of
surfactant micelles and silver
nanoparticles and use as
antibacterial agents

A product comprising such
assemblies for use in treating or
preventing bacterial infections

10,064,891

(continued)
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Table 23.2 (continued)

Sr.
no. Title Application

Patent
number

25 Methods of treating pulmonary
disorders with liposomal amikacin
formulations

Treatment of pulmonary disorders 10,064,882

26 Nanoparticulate compositions for
targeted delivery of acid-labile,
lipophilic prodrugs of cancer
chemotherapeutics and their
preparation

Treatment of cancer by targeting
LDL receptors

10,064,823

27 Nano-enhanced wound dressing Dermal drug delivery 10,058,455

28 Chemically activated nanocapsid
functionalized for cancer targeting

Treatment of cancer 10,053,494

29 Photoactivatable lipid-based
nanoparticles as vehicles for dual
agent delivery

Incorporation of two drugs for dual
treatment

10,117,942

30 Hyaluronidase and a low-density
second PEG layer on the surface of
therapeutic-encapsulated
nanoparticles to enhance
nanoparticle diffusion and
circulation

Improve penetration in tumour cells
and increase the blood circulation
of therapeutic agents

10,117,886

31 Methods of assessing amyloid-beta
peptides in the central nervous
system by blood-brain barrier
permeable peptide compositions
comprising a vab domain of a
camelid single domain heavy chain
antibody against an anti-amyloid-
beta peptide

Treatment of Alzheimer disease 10,112,988

32 Nanoparticle drug conjugates Diagnosis, treatment of cancer 10,111,963

33 Magnetic nanoparticles Highly sensitive detection as well
as diminished non-specific
aggregation of nanoparticles

10,111,971

34 Particle formulations of all-trans
retinoic acid and transforming
growth factor beta for the treatment
of type 1 diabetes mellitus

Treatment of an autoimmune
disease, such as diabetes, or an
inflammatory disease

10,105,334

35 Nanoparticles, the process for
preparation and use thereof as
carriers for amphipathic and
hydrophobic molecules in fields of
medicine including cancer
treatment and food-related
compounds

Treatment of cancer 10,100,078

36 Nanoparticulate composition
containing antibiotics for
intramammary administration in
animals

Therapy for mastitis in cows,
avoiding the inconvenience of the
use of high doses of drugs used in
conventional formulations, thus
contributing to an improvement in
milk quality

10,098,840

(continued)
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Table 23.2 (continued)

Sr.
no. Title Application

Patent
number

37 Polycation-functionalized
nanoporous silicon carrier for
systemic delivery of gene silencing
agents

Diagnostic and/or therapeutic
regimens for delivery of genetic
constructs to one or more cells,
tissues, and/or organs of interest
and treatment of cancer

10,087,442

38 Rod-shaped plant virus
nanoparticles as imaging agent
platforms

Detection of tumor or
atherosclerotic tissue

10,086,095

39 Therapeutic nanoparticles having
EGFR ligands and methods of
making and using same

Therapeutic purpose 10,137,088

40 Polymeric nanogels with
degradable backbones and from gas
components, and compositions and
methods thereof

Drug delivery, diagnostics, and
specialty materials

10,131,745

41 Monodisperse glycogen and
phytoglycogen nanoparticles and
use thereof as additives in
cosmetics, pharmaceuticals, and
food products

Rheological modifiers (including
modulation of thixotropic
behavior), stabilizers of organic and
biological materials, and
photostabilizers in sunscreens

10,172,946

42 Cell-targeting nanoparticles
comprising polynucleotide agents
and uses thereof

Delivery of polynucleotide to
targeted cell

10,179,113

43 Method of delivering therapeutics
and imaging agents to the brain by
nanoparticles that cross the blood–
brain barrier

Delivery of therapeutic agents to
the brain

10,182,986

44 Surface modified polymeric
nanofiber substrates by plasma
treatment and fabrication process
for the same

Tissue regeneration 10,184,211

45 Biosensor comprising metal
nanoparticles

Biosensor for visual detection of an
analyte, based on the light to heat
conversion properties of metal
nanoparticles

10,197,566

46 Iron garnet nanoparticles for cancer
radiotherapy and chemotherapy

Radiation treatment of skin lesion
for cancer or psoriasis

10,195,297

47 Drug carrier for tumor-specific
targeted drug delivery and use
thereof

Tumor targeted drug delivery 10,195,155

48 Expansile crosslinked
polymersome for pH-sensitive
delivery of anticancer drugs

Cancer treatment 10,188,606

49 Polymeric nanoparticles useful in
theranostics

Controlled drug delivery 10,233,277

50 Functionalized magnetic
nanoparticles and use in imaging
amyloid deposits and
neurofibrillary tangles

Imaging beta.-amyloid deposits and
neurofibrillary tangles

10,232,059

(continued)
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Table 23.2 (continued)

Sr.
no. Title Application

Patent
number

51 Liposomal composition comprising
a sterol-modified lipid and a
purified mycobacterial lipid cell
wall component and its use in the
diagnosis of tuberculosis

Diagnosis of tuberculosis 10,228,371

52 Nanofiber-based graft for heart
valve replacement and methods of
using the same

Wound repair and tissue
replacement, particularly during
heart valve transplant

10,219,895

53 Combinational liposome
compositions for cancer therapy

Cancer therapy 10,213,385

54 Fluorescent solid lipid
nanoparticles composition and
preparation thereof

These nanoparticles allow a
prolonged blood circulation half-
life, show enhanced photostability
and improved fluorescence signals

10,251,960

55 Nanocapsule containing a bioactive
compound, and a method of
reducing toxicity resulting from
cancer therapy

Nanocapsules of bioactive
compounds showed synergy in the
treatment of cancer therapy-
induced toxicity

10,251,842

56 Stereospecific lipids for
locoregional therapy with long-
term circulating stimuli-sensitive
nanocarrier systems

Thermosensitive liposome for
treating tumors, especially urinary
bladder tumors and other localized
tumors

10,251,838

57 Lymph node-targeting
nanoparticles

Modulation of immune response by
delivery of nanoparticles
comprising heparin, chitosan, and
at least one immunomodulatory
agent, e.g. a cytokine

10,245,319

58 Lipid nanoparticle compositions
and methods for MRNA delivery

Treatment of diseases associated
with protein/enzyme deficiency

10,238,754

59 Antibody-albumin nanoparticle
complexes comprising albumin,
bevacizumab, and paclitaxel, and
methods of making and using the
same

Treatment of cancer 10,279,036

60 Nanoparticle-stabilized
microcapsules, dispersions
comprising nanoparticle-stabilized
microcapsules, and method for the
treatment of bacterial biofilms

The microcapsules and dispersions
can be particularly useful for
treating a bacterial biofilm

10,272,126

61 Rapid diffusion of large polymeric
nanoparticles in the mammalian
brain

Gene and drug delivery to the brain 10,307,372

62 Multifunctional RNA nanoparticles
and methods of use

Therapy and diagnosis of several
diseases

10,301,621

63 Delivery of bioactive,
nanoencapsulated antioxidants

Delivery of Leutin or other
antioxidants for treating or preventing
conditions such as age-related
macular degeneration or cataracts

10,292,943

64 Crystalline forms of tenofovir
alafenamide

Treatment of viral infection using
tenofovir alafenamide

10,287,307

(continued)
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Table 23.2 (continued)

Sr.
no. Title Application

Patent
number

65 Nanoparticle complexes of
paclitaxel, cetuximab, and albumin

Treatment of cancer, in particular
cancer that expresses EGFR

10,307,482

66 Lipid nanoparticle compositions for
antisense oligonucleotides delivery

Treatment of cancer 10,307,490

67 Nanoparticulate titanium dioxide
nanomaterial modified with
functional groups and with citric
extracts adsorbed on the surface, for
the removal of a wide range of
microorganisms

Anti-microbial properties with high
disinfectant and antiseptic power,
removing bacteria, fungi,
mycobacteria, spores,
mycobacteria, protozoa, and viruses

10,342,840

68 Methods providing a therapeutic
macromolecule and synthetic
nanocarriers comprising
immunosuppressant locally and
concomitantly to reduce both type I
and type IV hypersensitivity

Comprises of immunosuppressants
and therapeutic macromolecules for
reducing type I and type IV
hypersensitivity

10,357,482

69 Stable oxaliplatin-encapsulating
liposome aqueous dispersion and
method for stabilizing same

Improve stability of oxaliplatin 10,383,822

70 Conjugated porphyrin carbon
quantum dots for targeted
photodynamic therapy

Bioimaging and/or photodynamic
therapy

10,369,221

71 Dendrimer compositions and their
use in the treatment of diseases of
the eye

Treatment of bacterial fungal
endophthalmitis

10,369,124

72 Synthesis of ursolic acid
nanoparticles

The ursolic acid nanoparticles
exhibit greater anticancer activity
than conventional-size particles,
and that the nanoparticles exhibit
antimicrobial effect against gram-
positive and gram-negative
bacteria, as well as fungi

10,442,833

73 Synergistic liposomal formulation
for the treatment of cancer

The synergistic liposomal
formulation comprising,
phophatidylcholine, stearylamine,
and anticancer drugs for the
treatment of cancer

10,426,728

74 Tolerogenic synthetic nanocarriers
for antigen-specific deletion of T
effector cells

Nanocarriers comprising
administering immunosuppressants
and MHC class I-restricted and/or
MHC class II-restricted epitopes
that can generate tolerogenic
immune responses (e.g., antigen-
specific T effector cell deletion)

10,420,835

75 Multivalent delivery of immune
modulators by liposomal spherical
nucleic acids for prophylactic or
therapeutic applications

The liposomal spherical nucleic
acids of the invention are useful
prophylactic and therapeutic
applications as well as research and
diagnostic indications

10,434,064
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of people with 14 million cancer suffered cases in 2012, of which 8.2 million people
died as per WHO report [56]. Such cases increase the chance of application of
Nanomedicine due to their specific targeting ability, nonaccumulation of the drug in
nonspecific organs, and benefits over conventional treatment. Thus, several research
studies related to Cancer and other diseases like cardiovascular diseases, orthopedic
diseases, and infectious diseases pave the way for better innovative strategies in drug
combination using Nanomedicines in the coming years. Another application is
Nanorobotics, which is used for specific drug targeting in cancer therapy, is under
progress through to 2025. The application of DNA origami has also attributed to
further growth [57].

23.4 Nanomedicine: A Disruptive Innovation

The industrial impact of Nanomedicine on the existing conventional drug delivery
system causes pharmaceutical companies to think about their existing technology.
Not only Nanomedicine but also nanotechnology gain a wide scope and implications
in other sectors like electronics, food industry, energy, and agriculture. Small-sized
(�100 nm) nanoparticles based carriers are targeting drugs efficiently and effectively
at a faster rate than the conventional injection, tablets, and suspension. Unlike
existing drug delivery, Nanomedicine can cross the biological barriers within the
body. As reported by the “Transparency Market Research”, the global market of
Nanomedicine is to reach $177.6 billion by the end of this year due to increasing
incidence of chronic diseases like cancer and diabetes [58]. Some of the factors
might restrict the growth of Nanomedicines like high cost required for
manufacturing and lack of regulatory affairs [59]. On the other hand, the increasing
rate of acute and chronic diseases and the rise in the aging population are the factors
that demand the application of Nanomedicine in the health sector which enhances
the opportunities of Pharmaceutical companies to invest in the Nanomedicine
market. In nanotechnology, the manipulation of particles occurs at the atomic level
known as Atomic Precise Manufacturing (APM). APM might capture the existing
manufacturing technology as researchers worldwide are engaged in several studies
related to APM. Some examples are the use of scanning probe instruments for
imaging; placing or joining individual molecules; the use of computer-aided design
software in protein engineering to design small structural components and functional
devices within the nanoscale range; the emergence of structural DNA nanotechnol-
ogy to fabricate millions of frameworks in the nanometer range; the use of quantum
dots for modeling and molecular engineering; and inclusion of molecular mechanics
in chemistry [60]. Thus, the emergence of nanotechnology and its deployment in
sectors such as health may replace conventional treatment causing a huge impact on
the socioeconomic levels of several countries at the ground level.
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23.5 Challenges in Global Growth of Nanomedicine

In spite of its huge potential in treating diseases, Nanomedicine faces challenges for
its development from laboratory innovation to market or clinics. The challenges
faced by Nanomedicine is effective and efficient drug delivery to the specific site,
maintenance of therapeutic concentration of a drug with fewer side effects and
maximum clinical benefit, improvement of drug biological system interaction,
reduction of unwanted accumulation in nonspecific organs, and reduction in toxicity
[61]. It is reported that the synthesis of Nanomedicine is costly over conventional
physicochemical methods. The requirement of expensive chemicals in
Nanomedicine synthesis may be toxic creating environmental hazards and thus
safe disposal is essential. Also, complex engineering techniques are needed for
manufacturing Nanomedicine, compared to conventional bulk products causing
their production and storage more expensive than conventional medicines
[62]. Long duration is required to pass stages of drug discovery in the laboratory
to the market place involving filing of patents in order to protect intellectual
properties of inventor and pharmaceutical companies, clinical trials of drug and
time taken to gain regulatory approval of drug diminishes the time available for
companies to make a profit [63]. Large pharmaceutical companies can invest fairly
to progress a drug from the laboratory to the market place as they are well equipped
with, scientists to conduct research, engineers for the manufacturing process,
lawyers for filing and defending patents, shareholders, and existing profit availability
from marketed drugs. While, for small scale industries, limited budget and insuffi-
cient resources may not permit these companies to start up with expensive
Nanomedicine projects, ending up with other less expensive opportunities and
projects. As per Tufts centre report for the study of drug development, it was
observed that the whole phases of Nanomedicines from the laboratory to commer-
cialization which include initial ideas, preclinical studies on animals, industrial
development, clinical trials on human volunteers, gaining regulatory approval,
commercialization, and marketing requires $2870 million, of which the phase of
clinical trials cost about $1012–1744 million [64]. This high cost in the development
of Nanomedicine and failure in gaining regulatory approvals lead to an increase in
the project failure rate. Unclear guidelines for the assessment of the safety profile and
toxic effects of nanomaterials (both to patients, manufacturing persons, and the
environment) further prohibit its application. Regarding regulations for approving
Nanomedicines or Nanopharmaceuticals, the FDA has not published any specific
guidelines except that in 2016, the documents related to general regulations for all
nanomaterials related to cosmetics, food ingredients, and animal feedstock were
issued. Research studies are going on to prove that Nanomedicines behave differ-
ently in a physiological environment in terms of biodistribution, toxicity, pharmaco-
kinetics, and excretion profiles, but clear findings report on these findings is awaited
[65]. As discussed, in 2000, NNI discussed challenges related to its aim in advanced
healthcare, therapeutic, and diagnostic sectors. Their aim was to use
nanotechnology-based biosensors and new imaging technologies for earlier detec-
tion of cancer and other diseases; gene and drug targeting systems; the use of rapid
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gene sequencing for more effective, less expensive diagnostics and therapeutics; the
use of novel biocompatible materials; the use of vision and hearing aids; treatment
based on tiny “smart” medical devices to minimize collateral damage of human
tissues [9]. Although significant efforts were made in these areas, positive outcomes
in fulfilling these aims are still lagging behind. Ex-vivo challenges include the
implementation of fully automated pieces of machinery for processing, analysis,
and readout data; the use of hundreds of biomarkers in molecular fingerprinting in
diseases for preclinical research and clinical diagnostics. Regarding in vivo studies,
major challenges are the requirement of appropriate data collection and systematic
modeling methods for the identification and prediction of interaction of
nanoparticles with biological organs; analysis of nanoparticles in complex tissues;
the use of facile and reproducible synthesis of large nanoparticle libraries to enable
systematic screening of optimal physicochemical parameters and problems for large
scale manufacturing of nanoparticles [66, 67]. Despite several challenges, several
Nanomedicines in the form of nanocrystals, liposomes, polymeric nanoparticles, and
lipid nanoparticles are in the market (Table 23.1) and still pharmaceutical companies
are engaged in high-grade research to apply nanotechnology for efficient treatment
of different acute and chronic diseases.

23.6 Impact on Economically Weak Countries: Pros and Cons

Not only the developed nations but also developing nations are attracted towards the
opportunities of nanotechnologies in the development of water purification systems,
energy systems, medicine and pharmaceuticals, food production and nutrition, and
information and communication technologies. In this aspect, many developing
countries, such as Costa Rica, Chile, Bangladesh, Thailand, and Malaysia, are
investing substantial amounts of resources in the research and development of
nanotechnologies. Budding economies like Brazil, China, India, and South Africa
are also spending a lot on R and D, which are reflected in their number of scientific
publications in journals. However, still, these nations are lagging behind in terms of
the financial assistance required for the upliftment of scientific and institutional
capacity for necessary infrastructure, regulation of human health, worker safety,
machinery, trained personals, and environmental protection [68].

On the other hand, the growth of nanotechnologies has both positive and negative
impacts on the export of some countries [69]. The economy of some developing
countries is dependent on the production and export of natural products such as
rubber, cotton, coffee, and tea. Due to the replacement of natural products by
nanoproducts affect the livelihoods of farmers in such countries, for example, the
production and export of natural rubber. With the advent of nanotechnology, it is
found that the incorporation of nanoscale materials enhances the strength and
durability of rubber, which might lead to a decrease in demand for natural rubber,
whereas the use of nanoscale titanium oxides, such as titanium dioxide nanotubes
(to produce and store hydrogen) increases the demand for its production and export,
which in turn enhances the economy of some countries. An increase in the economy
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leads to the growth of nanotechnology-based companies which in turn increases job
opportunities. As only trained personnel are employed to work in this field, proper
education and training should be given. It is found that the world’s educational
system is lagging behind in preparing students for the “Nanotech Age” [70].

Health Issues Nanomedicines are effective in treating most of the diseases world-
wide such as cancer, diabetes, Alzheimer’s disease, and Parkinson’s disease as
compared with traditional medicines. The lifespan of human beings will increase
with Nanomedicine [71]. The initial step before disease treatment is diagnosis;
nanotechnology makes the diagnosis of the disease easier due to the presence of a
nanosensor that can be placed within the body. It can pass through a patient’s
bloodstream which can analyze a large number of components in less time [72]. Sim-
ilarly, Quantum dots are also effective diagnostic tools [73]. Secondly, surface-
functionalized nanoparticles can improve drug delivery to the specific diseased site
with reduced side effects. Thirdly, the coating of nanoparticles increases the dura-
bility and adhesion of implants within the body. However, there are a few factors that
obstruct the development of Nanomedicine in the health sector. It is an expensive
technique with a lack of technically trained personnel [74]. No doubt that developed
countries like the US and European countries can make some efforts, but developing
countries are still lagging behind. According to the World Health Organization
(WHO), by 2002, 80% of the Nanomedicine market was located in North America,
Europe, and Japan, a geographic area which is inhibited by only 19% of the world
population lives. However, 90% of the population suffering from the disease is
located in poor countries. In these countries, patients are economically weak to buy
medicine. It is reported that 18 million people died of communicable diseases in
2001 because of insufficient money and poor medicinal infrastructure [75]. Sophisti-
cated nanotechnology-based medicines and nanodevices failed to proliferate in such
countries. Nanomedicine is a knowledge-based technology that is known to few
well-trained personnel like doctors, engineers, scientists, and researchers, whereas
traditional medicine is known to all sections of people worldwide. This knowledge
gap creates insufficient treatment of diseases. Also, the lack of toxicity assessment of
Nanomedicines is an obstacle. Nanotechnology is a technical term whether in terms
of Nanomedicines or nanodevices and its application in the health sector might
convert the art of execution of diagnosis and treatment of diseases to a team and
technology service [76]. Thus, the lack of trained personals might cause an improper
use of Nanomedicines or nanodevices which in turn might lose the trust of patients in
physicians [77]. On the other hand, the National Science Foundation and the
Environmental Protection Agency are concerned about the waste disposal of
Nanomedicines in industries. The impact of waste in the environment and health is
of major concern [78]. The major ways of disposal are air and water. The small-sized
nanoparticles remain suspended in air for long periods. Upon inhaling, it might cause
harmful respiratory disorders [79]. Thus, a proper waste disposal system is to be
developed. In this aspect, developing countries are lagging behind due to insufficient
funds and trained personals.
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Societal Issues The economic development of any country depends on some
criteria such as gross national products, political stability, and equality between
citizens. When compared with developed countries, developing countries are
lagging behind in some basic necessities such as potable water, education, and
health services. The lack of basic necessities shows obvious reasons for reduced
research and development. No doubt that few countries like China are affordable in
research and development progression. The whole process of progression of
Nanomedicines from the R and D sector to commercialization consists of several
steps—the creation of research ideas and development of the process for its progres-
sion; manufacturing, marketing, and utilization of products; disposal of waste
materials [80]. The initial step is a key factor in development. In the case of a
wrong decision, it may lead to unnecessary expenses, in terms of money and labour.
These expenses might not be bearable by developing countries, while developed
countries can easily overcome the expenses and start new research, due to a fair
profitable margin from the marketing of available nanoproducts than developing
nations [81]. In the case of production and export of minerals, it is observed that
most of the mineral deposits are located in developing countries and these countries
rely on metal trade for economic development. With the inclusion of nanotechnol-
ogy, more resistant and light metals can be produced having advantages than
available metals. This might decrease the metal trade of developing countries,
causing a negative impact on economy. This increases the gap between developed
and developing countries [82]. On the other hand, demandable raw materials
required for nanotechnology increase the production and export of such countries
leading to economic development [83]. No doubt that development of
Nanomedicine based pharmaceutical industries can increase employment, but at
the same time due to lack of proper infrastructure for Nanomedicine development
in research and development sectors, the researcher engaged, workers involved in
research related activities might suffer from the effect of harmful toxic materials
produced during manufacturing and testing procedures [84]. Nanomedicines consist
of very small particles (�100 nm). Small nanoparticles have a large surface area
which might aggregate the short term and long term toxicity in human beings. Thus
biocompatibility and toxicity of nanomaterials should be studied during preclinical
and clinical studies to ensure the safety and efficacy of Nanomedicines in the human
body [85]. Other problems in developing weak countries include poor regulatory
procedures and poor buying capacity for Nanomedicines. Still, in some countries
like India, Brazil, and South Africa, investment in Nanomedicine research is
undertaken for years to inculcate new methods in traditional medicines. Even if
Nanomedicines are launched in the market, intellectual property (IP) rights are with
pharmaceutical companies and for commercialization, the price will be higher which
economically poor people cannot afford causing a deficit in the effective treatment
for diseases [86]. Thus, to develop nanotechnology in a socially responsible manner,
global equality between developed and developing nations is important. On the other
hand, it is reported that improvement in nanotechnologies may improve the living
condition of people as support by government, international funding agencies and
increase in competition between pharmaceutical companies may improve the
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economic condition of developing and weak developing countries making
Nanomedicines accessible at an affordable price to all sections of people.

23.7 Future Prospects of Nanomedicines

Nanomedicines have wide future scope over conventional therapy for the treatment
of diseases like Cancer, Diabetes, AIDS, and neurological disorders like Alzheimer’s
disease and Parkinson’s disease. Not only treatment, it can also be used for diagnosis
and imaging of diseased tissue. There are several FDA-approved Nanomedicines
and patented Nanomedicines, and still few Nanomedicines are in clinical trial
phases. The developed countries like the USA and European countries have captured
the Nanomedicine market worldwide because they have sufficient funds,
technologies, and infrastructures. Comparatively, developing nations like India
and China are lagging behind because of insufficient funds, infrastructure, and
poor economic conditions as in Middle East African (MEA) nations. In developing
countries, research-related studies have been carried out during recent years for the
development of Nanomedicine and application in clinical practice. Some of the
Nanomedicine research perspectives with developing countries in Asia during recent
years are listed below:

Regarding Cancer therapy, the Chinese Academy of Sciences reported the appli-
cation of fullerene derivatives for the specific targeting of cancer stem cells. While in
Japan, polymeric micelles were developed for drug delivery in cancer cells. Simi-
larly, the Korean Society for Nanomedicine had established Korean research experts
published on DNA imaging (in vitro), multiplex surface-enhanced Raman spectro-
scopic (SERS) imaging (endoscopic or pathologic tissue imaging), nanoparticle
fluorescence imaging (both in vitro and in vivo), and theranostics based on graphene
oxide nanoparticles (in vitro and in vivo). The Seoul National University reported on
automated, single-cell morphological analysis on bacterial antibiotic sensitivity
testing proven to have a great impact on clinical practice. Also, Singapore-based
research work reported that nano-sized particles may pass through adherens
junctions between endothelial cells to remove vascular leakiness both in vitro and
in vivo in a lung metastasis model [87]. It is reported that in India, several
organizations both private and government are providing funds for several projects
based on the promotion of Nanomedicine research and development such as the
Department of Science and Technology (DST) launched Nanoscience and Technol-
ogy (Nanomission) program in 2007. Similarly, the DBT, Ministry of Science and
Technology, Government of India, promotes the development of Nanomedicine-
based drug delivery, development, and toxicity testing. The Indian Council of
Medical Research (ICMR), Department of Health Research, Ministry of Health
and Family Welfare, also promotes the research and development of Nanomedicine.
Also, different academic and research organizations and pharmaceutical industries
have taken initiative measures for Nanomedicine promotion and development, for
example, the Indian Institutes of Technology (IITs), CSIR institutes, medical
colleges, and pharmacy colleges. Joint collaboration of academic industries—the

23 Global Growth of Nanomedicine and What Role it Will Play for Economically. . . 629



Nano Functional Materials Centre, established by the Indian Institute of Technology
Madras in partnership with Orchid Pharma, the University of Hyderabad in collabo-
ration with Dr. Reddy’s Labs, Centre for Pharmaceutical Nanotechnology at the
National Institute of Pharmaceutical Education and Research (NIPER), is also in
collaboration with a pharmaceutical company. Other than these, several Indian
academic institutions and industries have collaborated with different foreign
countries like USA, United Kingdom, Russia, European Countries—Department
of Science and Technology have collaborated with Portugal to work on the project
‘Novel targeted chitosan-based therapeutic polymeric Nanomedicines for lung can-
cer application’. Moreover, a constant rate of increase in Nanomedicine research-
based publication shows the growth of Nanomedicine research in India. Also,
several Nanomedicine-based products have captured the Indian market as shown
in Table 23.3. These include pain management, antimicrobials, cancer treatment,
ayurvedic nanoformulation, and biomaterials. For example, Volini, launched by
Ranbaxy Laboratories Ltd, Gurgaon, is used for pain relief, which contains
Diclofenac sodium entrapped in nanoparticles. Its advantage is smaller-sized
particles with increased surface area and enhanced penetration through skin tissue
than conventional medicine [88]. Other pharmaceutical industries like Shasun

Table 23.3 Nanomedicine products marketed in India

Sr.
no

Name of
product Drug Name of company Application

1 Nanoxel Paclitaxel Fresenius Kabi
Oncology Ltd.
(erstwhile Dabur
Pharmaceuticals Ltd.)

Cancer therapy

2 Genexol-
PM

Paclitaxel Lupin Ltd. Cancer therapy. It reduces
Cremophor EL-related toxicities
and increases therapeutic efficacy

3 Paclitax
Nab

Paclitaxel Cipla Ltd Breast cancer therapy

4 Taxedol Docetaxel Venus Remedies Ltd Treatment of breast cancer,
prostate cancer, gastric
adenocarcinoma, non-small cell
lung cancer, head and neck
cancer, and ovarian cancer

5 Trois Natural
ingredients

Venus Remedies Ltd Treatment of pain and
inflammation associated with
rheumatoid arthritis, ankylosing
spondylitis, osteoarthritis, gouty
arthritis, juvenile idiopathic
arthritis, backache, sprain
psoriatic arthritis, and
fibromyalgia

6 Oxalgin
Nanogel

Diclofenac
sodium

Cadila Healthcare Ltd Pain management therapy
(arthritis, backache, joint pain,
etc.)
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Pharmaceuticals Ltd., worked in collaboration with Nanoparticle M/s. Biochem,
Inc., USA, to develop gold nanoparticles-enabled radioactive medicine to treat
prostate cancer. Cadila Pharmaceuticals Ltd. developed an alliance with
M/s. Novavax Inc., USA, for developing, manufacturing, and selling
nanotechnology-based novel therapeutic and prophylactic vaccines, biological ther-
apeutics, and diagnostics in India. On the other hand, nanomedicine developed by
Sun Pharma Advanced Research Centre is in clinical trials, namely, ‘Paclitaxel
Injection Concentrate for Nanodispersion (PICN)’ and ‘Docetaxel Injection Con-
centrate for Nanodispersion (DICN)’ [89]. The Indian Institute of Technology (IIT),
Bombay, reported on gold nanostructures, for cancer treatment is in clinical trial
phase II [90]. NIPER, Mohali, Chandigarh, NanoCrySP, a nanocrystalline solid
dispersion, to improve the aqueous solubility of poorly soluble drugs [91]. Even
though significant progress in Nanomedicine based research and development has
taken place in developing countries like China, South Korea, and India, but still,
proper guidelines on regulatory policies for safety and toxicity of Nanomedicines are
not developed in these countries.

23.8 Conclusion

Nanomedicine is the most rewarding sector of nanomaterials due to its worldwide
demand and acceptance ratio. The constant rate of increase in the number of research
publications over recent years is proof. Still, the existing lacuna in health issues,
safety and toxicity issues, socioeconomic status, as well as regulatory policies causes
a gap between countries like the USA, European countries, and developing
countries. So, global equity, fund provision for research and development, govern-
ment support, industry support, training of students/personals, increase in
Nanomedicine-based collaborative projects with developed countries, and imple-
mentation of regulatory policies are the cornerstone for the exploitation of
Nanomedicine.
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