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Abstract. First Story Detection (FSD) requires a system to detect the
very first story that mentions an event from a stream of stories. Near-
est neighbour-based models, using the traditional term vector document
representations like TF-IDF, currently achieve the state of the art in
FSD. Because of its online nature, a dynamic term vector model that is
incrementally updated during the detection process is usually adopted
for FSD instead of a static model. However, very little research has inves-
tigated the selection of hyper-parameters and the background corpora for
a dynamic model. In this paper, we analyse how a dynamic term vec-
tor model works for FSD, and investigate the impact of different update
frequencies and background corpora on FSD performance. Our results
show that dynamic models with high update frequencies outperform
static model and dynamic models with low update frequencies; and that
the FSD performance of dynamic models does not always increase with
higher update frequencies, but instead reaches steady state after some
update frequency threshold is reached. In addition, we demonstrate that
different background corpora have very limited influence on the dynamic
models with high update frequencies in terms of FSD performance.

Keywords: Novelty detection · First Story Detection · Nearest
neighbour · TF-IDF · Update frequency · Background corpus

1 Introduction

Novelty detection is the task of identifying data that are different in some salient
respect from other predominant chunks of data in a dataset [14]. In most cases,
there is not an explicit definition for novelty or sufficient novel data to form a
class of novelty before detection. Instead, novelty detection is normally treated
as an unsupervised learning application, i.e. no labels are available and the detec-
tion is implemented based on only the intrinsic properties of the data [16].

Online novelty detection is a special case of novelty detection, in which input
data are time-ordered streams. The online characteristic brings in two additional
constraints [9]: 1) the detection should be made quickly, e.g. before subsequent
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data arrives; and 2) looking forward is prohibited during detection, i.e. the detec-
tion can only be made based on the data that has already arrived. One impor-
tant application of online novelty detection within Natural Language Processing
(NLP) is to the task of First Story Detection (FSD). In FSD, the target text
documents are all stories that discuss some specific events. Given a stream of
stories in chronological order, the goal of FSD is to find out the very first story
for each event [2]. The stories are processed in sequence, and for each incoming
candidate story, a decision is made on whether or not it discusses an event that
has not been seen in previous stories; the decision making process is normally
based on a novelty score, namely, if the novelty score of an incoming story is
higher than a given threshold, we say the candidate is a first story.

Since it was first defined within the Topic Detection and Tracking (TDT)
competition series in 1998 [1,19], hundreds of models have been proposed for
the task of FSD. Nearest neighbour-based models with the traditional term
vector document representations currently achieve the state of the art in FSD
[11,13,16]. Because of its online characteristic, a dynamic term vector model that
is incrementally updated during detection is usually adopted for FSD instead
of a traditional static model [7,11,12]. However, very little previous research
has investigated how a dynamic term vector model works in practice for FSD,
or has investigated how to select hyper-parameters (such as the model update
frequency) and background corpora for such dynamic models.

In this paper, we first theoretically analyse how a dynamic term vector model
works for FSD, and then empirically evaluate the impacts of different update
frequencies and background corpora on FSD performance. Our results show
that dynamic models with high update frequencies outperform static models
and dynamic models with low update frequencies; and, importantly, also show
the FSD performance of dynamic models does not always increase along with
increases in the update frequency. Moreover, we demonstrate that different back-
ground corpora have very limited influence on the dynamic models with high
update frequencies in terms of FSD performance.

2 First Story Detection

As mentioned in Sect. 1, a wide variety of models have previously been investi-
gated for FSD. These models can generally be grouped into three categories [16]:
Point-to-Point (P2P) models, Point-to-Cluster (P2C) models, and Point-to-All
(P2A) models. Accordingly, their novelty scores are defined as the distance of
the incoming data to: an existing data point for P2P models, a cluster of existing
data points for P2C models, and all the existing data points for P2A models. The
P2P models are normally nearest neighbour-based [2,3,19] or approximate near-
est neighbour-based [7,12] that aim at finding the most similar existing story to
the incoming story. The P2C models use clusters of existing stories to represent
previous events and evaluate the incoming story by comparing it with these clus-
tered events [2,19]. The P2A models typically build a machine learning system
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with all the existing stories and apply this system to the incoming story to gen-
erate a novelty score [8,15,18]. Generally speaking, the nearest neighbour-based
P2P models outperform the other two categories of models.

When applying a nearest neighbour-based model to FSD, the first step is to
represent each text story with a document representation vector so that quantita-
tive comparisons can be made between stories. In recent years a large number of
deep learning-derived distributed document representations have been proposed
that have achieved excellent performance across many NLP tasks [6]. However,
for the task of FSD, the state of the art is still achieved with traditional term
vector document representations [16], in which each term is represented with a
single feature (dimension) in the term vector space. The most well-known term
vector model is TF-IDF, short for term frequency - inverse document frequency,
in which the weight of each term in a specific document is calculated as the
product of the TF (term frequency) component and the IDF (inverse document
frequency) component. There are many schemes of calculating these two com-
ponents, but a widely-applied scheme is shown as follows [3,7]:

tf -idf(t, d) = tf(t, d) × idf(t) (1)

idf(t) = log
N

df(t)
(2)

where tf(t, d), representing the TF component, is the number of times the term
t occurs in document d, and idf(t), representing the IDF component, is the
logarithmic value of the proportion of the total number of documents N divided
by df(t), i.e., the number of documents that contain the term t. Briefly speaking,
the more a term occurs in a target document, and the less it occurs in other
documents, the bigger the TF-IDF weight is for that term for that document.

From the definition of TF-IDF, we can also see that the calculation of the IDF
component requires a corpus with a number of documents. However, because of
the “looking back only” constraint of online detection, the target corpus for FSD
detection is always unavailable for the construction of the TF-IDF model prior
to detection, and thus an additional background corpus is required. Specifically,
based on the background corpus, the TF-IDF model builds a term vocabulary
and calculates the IDF component for each term in the vocabulary. After this
step, there are two different ways to implement TF-IDF models for FSD [3,19].
The first option is to apply this fixed model, i.e., the fixed vocabulary and
IDF components, to the stories in the target FSD corpus. This type of model
is called a static TF-IDF model. In this way, any term that is unseen in the
background corpus will be ignored in the detection process. The second option
is to incrementally update the model, i.e., the vocabulary and IDF components,
during the detection process after a number of documents arrive. This type of
model is called a dynamic TF-IDF model. In this way, the terms that are unseen
in the background corpus but have been seen up to a certain point in the target
data stream are also taken into account. Because of its online nature, a dynamic
model should usually be adopted for FSD [7,11,12]. Given this, in the next
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section, we will analyse how a dynamic TF-IDF model works for FSD and its
difference from a static model in this context.

3 Dynamic Term Vector Models for First Story Detection

For a dynamic TF-IDF model we adopt an adjusted form of Eqs. 1 and 2 from
earlier. Specifically we adopt the following:

tf -idf(t, d) = tf(t, d) × idf(t)′ (3)

idf(t)′ = log
N ′

df(t)′ (4)

where tf(t, d) remains the same as that in Eq. 1, but the calculation of the IDF
component idf(t)′ now makes use of an N ′ that captures the total number of not
only the documents in the background corpus but also the stories in the target
FSD corpus up to the present point, and, similarly, df(t)′ refers to the number of
documents across both the background corpus, and the portion of target corpus
to the current point, that contain the term t.

Due to the dynamic nature of the TF-IDF model, the length and features
captured by a document vector now vary as we move through events, and this
has potential implications to the FSD process. To illustrate, let us consider two
documents (one being the candidate story and the other some story that has
already been processed by our model). The comparison of these two documents
is typically achieved with a distance metric; here we will assume the widely-used
cosine distance:

cosine distance(d,d′) = 1 − d · d′

|d||d′| (5)

where d is the TF-IDF vector for the candidate story and d′ is the TF-IDF
vector for a historic story that we are comparing to.

In order to better understand how a dynamic model performs for FSD, in
Table 1, we unfold these two document vectors to m term features from t1 to tm,
where m is the length of the vocabulary. In a dynamic model, the vocabulary
includes both terms that were present in the background corpus and new terms
that are added during the updates to the model. However, irrespective of whether
a term is a new term or not, the value for a term in the TF-IDF document
representation is the weight of the specific term based on the dynamic TF-IDF
model.

In order to analyse how a TF-IDF representation treats both old and new
terms in a document representation we group the features in our document
representation into two parts: Range A which includes terms that have been
present in the model for a substantial amount of time (because they were present
in the background corpus or were added to the model several updates previously);
and Range B which includes terms that have been added to the model recently.

In a static TF-IDF model there are only terms in Range A coming from the
background corpus, and no term in Range B since the target corpus is not incor-
porated into the TF-IDF representation. Thus, the performance of the TF-IDF
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Table 1. Two document representation vectors based on a dynamic TF-IDF model

Range A Range B

t1 ... ti ti+1 ... tm

d v1 ... vi vi+1 ... vm

d′ v′
1 ... v′

i v′
i+1 ... v′

m

model depends on how well the weights from the background corpus represent
the terms in our target corpus. As the term weights are only calculated based
on the background corpus, the selection of the background corpus has a great
impact on the static TF-IDF model, and also influences the FSD performance
[17]. Thus, a large-scale domain-related background corpus is normally adopted
to generate realistic weights for the terms.

For a dynamic TF-IDF model, however, although it can use a large back-
ground corpus initially, new terms that are unseen in the background corpus will
emerge and be incorporated into the model as detection proceeds – thus forming
Range B. By definition these new terms did not occur in the background corpus,
this may be because the new terms are genuinely rare in language, or else it
may be because the selected background corpus was not representative of the
language in the target data stream that the model is processing, or finally the
new term may be a true neologism in a language. Whatever the true cause for
why a particular term is a new term for a model, the weights of these new terms
may be not well calibrated with respect to the weights for the terms in Range
A. In Eq. 4, df(t)′ denotes the number of documents that contain the term t not
only in the already-processed target stories, but also in the documents of the
background corpus. However, by definition new terms in Range B will not have
appeared in the background corpus and will only have appeared in the most
recent documents in the target data stream. Therefore, the value of df(t)′ of a
new term in Range B will be very small compared to N ′ in Eq. 4, and thus the
TF-IDF weights for these new terms are normally very large, so we call these
the rough weights with respect to the realistic weights in Range A. In the calcu-
lations of cosine distance (Eq. 5) more attention is focused on the features with
larger values, and thus, the terms in Range B have a bigger effect on comparison
calculations based on a dynamic TF-IDF model than they are expected to have
based on the language.1

From the analysis above, we find that a key difference between dynamic and
static TF-IDF models, when making comparisons between document vectors, is
that the focus of dynamic models is more on the new terms with large rough

1 It is worth noting that if looking at the whole FSD process rather than the com-
parison between two specific document vectors, new terms keep on being added into
Range B as the updates are implemented. On the other hand, the terms already
existing in Range B keep on being moved to Range A as more and more new stories
arrive and the number of stories since the term’s first appearance becomes large
enough to generate realistic weights.
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weights that emerge during detection, whereas static models focus on the existing
terms whose weights are calculated only based on the background corpus.

In order to improve a static model, or indeed the static elements of a dynamic
model, we can try to find a more suitable background corpus in order to gen-
erate realistic weights for the terms in the target data stream. However, for the
dynamic approach it is hard to improve performance from a theoretical perspec-
tive due to the way in which weights are calculated for newly encountered terms.
To overcome this limitation and try to optimise the dynamic aspects of TF-IDF
modelling for FSD, in the next section we present an experimental analysis to
investigate the impact of update frequency and background corpus on the model.

4 Experimental Design

In the following, we present our experimental design for evaluating the impact of
the dynamic aspects of a TF-IDF model in the context of the FSD task. We focus
on the impact of different update frequencies and the relevance of background
corpora selection.

4.1 Target Corpus

In our experiments, we use the TDT5 corpus2 as the target corpus for FSD
detection. This corpus contains approximately 278 thousands newswire stories
generated from April to September 2003.

4.2 Background Corpora

For the evaluation of the impact of different background corpora on the FSD
results, we selected COCA (The Corpus of Contemporary American English) [4]
and COHA (Corpus of Historical American English) [5] as the basic background
corpora to be used for evaluation. The former is a comprehensive contemporary
English documents collection from 1990 to present in different domains such as
news, fiction, academia and so on. The latter is similar to COCA in themes
but covers the historical contents from 1810 to 2009. The numbers of documents
in COCA and COHA are approximately 190,000 and 115,000 respectively. In
both cases we only make use of the subsets of the two corpora that predate
2003, i.e., the year of TDT5’s collection. Additionally, to tease out the influence
of domain relevance, we also divide the COCA corpus into two distinct subsets -
COCA News and COCA Except News. COCA News contains only the doc-
uments in the domain of news, which is the same as the domain of the target
TDT5 corpus, while COCA Except News contains the documents in all other
domains apart from news. With these four corpora, we can investigate out how
the temporality (COCA vs. COHA) or domain specificity (COCA News vs.
COCA Except News) of the background corpora influence the dynamic TF-
IDF models for FSD.
2 https://catalog.ldc.upenn.edu/LDC2006T18.

https://catalog.ldc.upenn.edu/LDC2006T18
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4.3 Update Frequencies

There is no standard update frequency for a dynamic TF-IDF model. Typically,
updates are implemented so as to be less frequent than every 100 documents [7],
as the update process is very expensive if the update frequency is higher than
every 100 documents. In our experiments, we evaluate a range of update fre-
quencies - specifically, every 100, 500, 1000, 10000 and 100000 documents, and
also implement a static TF-IDF model as a baseline. The static model can be
interpreted as a dynamic model where updates are extremely infrequent. For
each update frequency we build TF-IDF models for all background corpora.

4.4 FSD Evaluation

Our implementation of FSD is based on the nearest neighbour algorithm, with
the cosine distance algorithm adopted as the dissimilarity measure between doc-
uments. The preprocessing of data and the evaluation of FSD results are similar
to our previous research [17]. In order to reduce the effect of useless terms and
different term forms, we remove terms with very high and very low document
frequency, i.e., stop words and typos, for all the background and target corpora,
and subsequently stem all remaining terms. Aligning with previous research [19],
comparisons are only implemented with the 2000 most recent stories for each
candidate story. The output of each FSD model is a list of novelty scores, one
for each story in the target corpus TDT5. Based on these outputs, the standard
evaluation process for FSD is implemented by applying multiple thresholds to
sweep through all the novelty scores. For each threshold, a missing rate and a
false alarm rate are calculated; then for all thresholds, the missing and false
alarm rates are used to generate a DET (Detection Error Tradeoff) curve [10],
which shows the trade-off between the false alarm error and the missing error in
the detection results. The closer the DET curve is to the origin, the better the
FSD model is said to perform. Thus, from the DET curves we calculate Area
Under Curve (AUC) for each FSD model, and the model with the lowest AUC
is judged to be best.

5 Results and Analysis

Below we present our experimental results in Fig. 1, and analyse the impacts of
different update frequencies and background corpora on the dynamic TF-IDF
models for the FSD task.

5.1 Comparisons Across Different Update Frequencies

We begin by examining the FSD performance results as influenced by update fre-
quency. From the results shown in Fig. 1, we firstly see a trend that for each back-
ground corpus, the dynamic TF-IDF models with high update frequencies, i.e.,
every 100, 500 and 1000 documents, outperform the static model and dynamic
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Fig. 1. Comparisons across different update frequencies and background corpora

models with low update frequencies, i.e., every 10000 and 100000 documents. As
explained in Sect. 3, the dynamic models with high update frequencies focus more
on the terms with large rough weights (i.e., the terms in Range B in Table 1),
while the static models only focus on the terms with what we believe are realistic
weights (i.e., the terms in Range A in Table 1). From this perspective, we can
conclude that the terms with large rough weights play a more important role in
FSD than the terms with realistic weights. Similarly, as the update frequency of
a dynamic model becomes very low, the weights of most new terms are also well
calibrated, and thus this dynamic model has fewer terms with rough weights, but
more terms with realistic weights, which thus leads to poor FSD performance.

Secondly, we also find that for each background corpus, the FSD performance
does not always improve but instead stays steady with a difference of less than 1%
between models with a update frequency higher than every 1000 documents. One
potential reason for this may be that as we increase the update frequency there
are two counteracting processes with respect to rough weights: (a) a high update
frequency means that new terms with rough weights are introduced into the
model frequently, but (b) a high update frequency also means that the already-
existing rough weights will themselves be updated incrementally and so may be
smoothed frequently and so they don’t stay rough for long. This is only our
hypothesis of what might be happening.

5.2 Comparisons Across Different Background Corpora

We also make comparisons from the perspective of background corpora. From
Fig. 1, it can also be seen that the differences caused by different background
corpora are only noteworthy in the static model and dynamic models with low
update frequencies. In the dynamic models with high update frequencies such as
every 100, 500, 1000 stories, the influences are minor (less than 1%). This raises
the possibility that models with high update frequencies are not affected by the
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choice of background corpus, in which case it may be possible to achieve good
performance with a relatively small background corpus.

5.3 Comparisons Across Mini Corpora

Based on the results seen in Sect. 5.1 and 5.2, we might conclude that back-
ground corpora have very limited influence on dynamic models with high update
frequencies in terms of FSD performance. The experiments thus validated our
hypothesis about large-scale background corpora. However they have said little
about the influence of very small background corpora. Given this, we can also
propose the hypothesis that even a small background corpora can achieve as
competitive a performance for FSD as a large-scale domain-related corpus.

To investigate the influence of corpus size at a more fine grained level, we
extracted two small sets of documents, i.e., the first 500 stories and the last
500 stories, from each of the four background corpora to form eight very small
background corpora. After that, eight dynamic TF-IDF models are built based
on these corpora, and the update frequency was set to every 500 documents
(the update frequency that leads to the best results in Sect. 5.1 and 5.2). The
comparisons of FSD results are shown in Fig. 2 with the results of static models
as the baseline.

Fig. 2. Comparisons across mini background corpora with the update frequency set as
every 500 stories

From the results, we can see that even based on background corpora that
are quite different in scale, domain or collection time, there is no big difference
(also within 1%) in the FSD results. Especially, the FSD result generated by
the model based on the First 500 COHA corpus is a little bit better than the
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full COHA corpus, even though the stories in the First 500 COHA corpus are
collected around the year 1810 from various domains.

It is also worth mentioning that the corpus size 500 was not a crucial fac-
tor. It could have been 100, 1000 or any other number within this range. For
further comparison, we also implemented pure dynamic TF-IDF models3, i.e.
the dynamic models that do not use any background corpus or with the corpus
size set as 0, as shown with the tick “no background corpus” in Fig. 1. Unsur-
prisingly, the results show that the pure dynamic TF-IDF models with update
frequency set as 100 or 500 do not make any big difference in FSD performance
in comparison to the dynamic models based on any other background corpus
with a similar update frequency, and this finding supports our conclusion that
background corpora have very limited influence on dynamic models with high
update frequencies in terms of FSD performance.

6 Conclusion

In this paper we empirically validated that the dynamic TF-IDF models with
high update frequencies outperform the static model and the dynamic models
with low update frequencies, and set out some factors that may explain this
finding. However, a key element of these explanations is the observation that
a high update frequency can result in new terms with relatively large weights
being introduced into the TF-IDF representations. We also found that the FSD
performance of dynamic models does not always improve but stays steady as the
update frequency goes beyond some threshold, and that the background corpora
have very limited influence on the dynamic models with high update frequencies
in terms of FSD performance. Finally, we conclude that the best term vector
model for FSD should be a dynamic model whose weights are initially calculated
based on any small-size corpus but updated with a reasonable high frequency,
e.g., for our scenario we found an update frequency of every 500 stories results
in good performance.

Acknowledgement. The authors wish to acknowledge the support of the ADAPT
Research Centre. The ADAPT Centre for Digital Content Technology is funded under
the SFI Research Centres Programme (Grant 13/RC/2106) and is co-funded under the
European Regional Development Funds.

3 Actually, pure dynamic TF-IDF models should not be applied to the TDT task,
because this specific task requires the detection to start from the very first story
in the target data stream. However, as the first one story to be evaluated is on the
577th, if we use the stories before it as the background documents to calculate the
initial TF-IDF weights, there will be no influence on the detection results. Therefore,
we apply pure dynamic models with a update frequency equal to or higher than every
500 stories to the task, but just for the analysis and the proof of our hypothesis.
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