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Preface

This book explores the possibility of using azimuthal Walsh filters derived from
azimuthal Walsh functions as an effective tool for the generation of 2D and 3D light
structures by manipulating far-field diffraction characteristics near the focal plane of
a rotationally symmetric imaging system when used as pupil filters. Starting with
the definition of Walsh functions, this book reports the generation and synthesis of
azimuthal Walsh filters. The inherent self-similarity present in the various orders
of the azimuthal Walsh filters has been explored, and the filters are classified into
self-similar groups and sub-groups. Azimuthal Walsh filters are observed to possess
a unique rotational self-similarity exhibited among adjacent orders.

Diffraction characteristics of azimuthal Walsh filters placed at exit pupil plane
have been computed analytically for far-field plane and are presented in this book.
The transverse intensity distributions along the far-field plane shows asymmetrical
patterns due to the phase asymmetries introduced by azimuthal Walsh filters.
Transverse intensity distributions on the far-field plane exhibited by each group
member have self-similar properties. They correspond to the structural
self-similarity of the filters in the group. The effect of defocus or ‘Depth of Focus’
aberration, in case of shifting of image plane in and around focal plane, has also
been presented. The results have been compared and analysed, and the possibility
of using them as the basis functions for trapping of contact-free handling of
particles of the size of micro- and nano-scale is proposed, where light and matter
can possibly interact.

Practical implementation of these filters can be achievable by the availability of
high-speed spatial light modulators where the in situ generation of different orders
of azimuthal Walsh filters is possible and combinations of lower order filters to
achieve higher orders may be explored. The lossless azimuthal Walsh filters are
energy efficient and can be used to solve the problem of direct implementation of a
finite number of constant as well as varying phase levels. The orthogonality and
self-similarity of the azimuthally varying Walsh filters could be harnessed to
sculpture 3D light distribution near the focus that could find potential application to
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different areas of physical sciences, namely of the inverse problem where a phase
filter needs to be synthesized in accordance with pre-specified diffraction
characteristics.

The authors wish to acknowledge PREIN—Photonics REsearch and INnovation,
the Finnish Flagship Program running at the Institute of Photonics and Department
of Physics and Mathematics, University of Eastern Finland, Joensuu, Finland, and
Department of Applied Optics and Photonics, University of Calcutta, Kolkata,
India, for the necessary support to write this monograph.

Joensuu, Finland Indrani Bhattacharya
Kolkata, India
April 2020
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Chapter 1
Walsh Functions, Walsh Filters
and Self-Similarity

1.1 Introduction

The concept ofWalsh functions was introduced by J. L.Walsh in 1923 as a closed set
of normal orthogonal functions defined over the interval (0, 1) and having the values
+1 or −1 within the interval [1]. But until recently these functions have not been
used to any significant extent in the treatment of physical problems [2]. The system
of Walsh functions has some unique properties [3] that the systems are orthonormal
in Hilbert space L2 (0, 1), and can be derived from the character group of the dyadic
group which is a topological group derived from the set of binary presentations of the
real numbers. Walsh functions may be defined for a single variable or two variables
in rectangular coordinates [4]. Formulations in polar coordinates can be made via
orthogonality properties [5–7]. Radial and azimuthal Walsh functions can be derived
from the polar Walsh functions [1, 8].

A structure is called self-similar when it can be divided into smaller and smaller
pieceswhen each piece becomes an exact replica of the entire structure preserving the
details of all scales, however small. A structure may be called fractal if it possesses
self-similarity. The term ‘Fractals’ was introduced by Benoit B. Mandelbrot in 1975
while developing a theory of “roughness and self-similarity” in nature and later he
wrote a book on this [9]. Self-similarity of azimuthal Walsh functions and filters,
their divisions into self-similar groups and subgroups and representation of each
group by analytical formulae has been discussed in detail in this chapter.

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2020
I. Bhattacharya and L. Hazra, Azimuthal Walsh Filters, Progress
in Optical Science and Photonics 10,
https://doi.org/10.1007/978-981-15-6099-6_1
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2 1 Walsh Functions, Walsh Filters and Self-Similarity

Fig. 1.1 One dimensional
Walsh functions, Wν(x), ν =
0, 1,…, 3

1.2 One Dimensional Walsh Functions

A Walsh function of a single variable x may be represented as where the
subscript refers to the order of the function. The function takes on values either
+1 or -1 over a specified domain and the set of Walsh function is orthogonal and
complete in the interval. The order of the function represents the number of zero
crossings or phase transitions within the interval. The orthogonality condition for the
set of Walsh functions defined for the interval (0,1) implies the following relation,

(1.1)

where is the Krönecker delta defined as

(1.2)

The first four one-dimensional Walsh Functions in rectangular co-ordinates are
shown in Fig. 1.1.

1.3 Two Dimensional Walsh Functions

1.3.1 Rectangular Walsh Functions

In two dimensions, the orthogonality condition takes the form



1.3 Two Dimensional Walsh Functions 3

(1.3)

where are the Krönecker delta defined as

(1.4)

and

(1.5)

1.3.2 Polar Walsh Functions

Binary polar Walsh functions are derived from two dimensional Walsh functions
expressed in polar coordinates and the orthogonality condition can be expressed as,

(1.6)

For radial invariant case, the Exp. (1.6) reduces to

(1.7)

where Wν(θ) may be defined as azimuthal Walsh function of order ν.
A few two-dimensional Walsh functions is illustrated in Fig. 1.2 in polar

coordinates.

1.4 Radial Walsh Functions

Radial Walsh functions [10] of index and argument r over the
interval (0, 1) require integer to be expressed in the form

(1.8)

where are the bits, 0 or 1 of the binary number and 2β is the integral power of
2 that just exceeds . Thus, ∀ r in (0, 1), we define,
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Fig. 1.2 Two dimensional Walsh functions in polar coordinates, . Red areas
represent the values of transmission as +1 and black areas represent +1

(1.9)

where t = r2. The function sgn(x) is defined as,

sgn(x) = +1, x > 0

= 0, x = 0

= −1, x = 0 (1.10)

Figure 1.3 shows some radial Walsh functions generated in polar coordinates, in
r space and the order is equal to the number of zero crossings or the change in
sign of the function in the interval (0, 1).

1.5 Azimuthal Walsh Functions

To define azimuthal Walsh function Wν(θ) of index ν ≥ 0 and argument θ over a
sector bounded by 0 and 1 as inner and outer radii respectively, it is necessary to
express the integer ν in the form,
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Fig. 1.3 Radial Walsh functions in r space, , of orders

ν =
α−1∑

m=0

νm2
m (1.11)

where νm are the bits, 0 or 1 of the binary numerals for ν, and 2α is the largest power
of 2 that just exceeds ν. Thus, ∀θ in (0, 2π), it can be defined as:

Wν(θ) =
α−1∏

m=0

sgn

[
cos

(
νm2

m θ

2

)]
(1.12)

where the function sgn(x) is defined in Exp. (1.10).
The orthogonality condition implies

(1.13)

where is the Krönecker delta as defined in Exp. (1.5).
Figure 1.4 shows polar plots of azimuthal Walsh functions of orders 0, 1, 2 and 3.
Manipulating the values of νm azimuthal Walsh functions of orders from zero to

sixty-three orders have been generated and shown in Table 1.1.
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Fig. 1.4 Polar plot of Azimuthal Walsh functions Wν(θ), ν = 0, 1, 2, 3

1.6 Self-Similarity in Azimuthal Walsh Functions

Azimuthal Walsh filters of orders within the range (0, 63) have been studied for
finding out self-similar groups and sub-groups between different orders to examine
self-similarity existing within them. Table 1.2 shows a vivid representation of
azimuthal Walsh functions Wν(θ), for order ν = 0, 1, 2, . . . , 63 where Each two
valued azimuthal Walsh function is represented by a row consisting of elements
comprised of either ‘+’ or ‘–’ representing the values of+1 or−1 respectively corre-
sponding to 0 orπ phase differences. Each azimuthalWalsh function has been divided
into equal parts within the domain (0, 2π) depending on the order of the Walsh func-
tion. For zeroth order azimuthal Walsh functionW0(θ), the value of the function is+
1 over the entire domain (0, 2π). The minimum number of equal sectors, M required
to define other orders of azimuthal Walsh functions is governed by the relationship
M = 2α , where α is a positive integer satisfies the relation 2α−1 ≤ ν ≤ 2α .

To obtain the higher orders of azimuthal Walsh functions, the technique proposed
by Hazra and Mukherjee [10] is used whereas the unique rotational self-similarity
between specific orders has also been observed. From W0(θ), W1(θ) can be derived
by dividing the interval (0, 2π) in two equal sectors: the first sector is within (0, π)
over which the phase is 0 and the second sector is within (π, 2π) over which the
phase is π. Thus writing ‘+’ in the left half and ‘−’ in the right half. W2(θ) can be
similarly obtained from W1(θ) by dividing each two sub-sectors of W1(θ), namely
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(0, π) and (π, 2π) into two equal sectors each, bounded by arcs of sector angles
lying between 0 to π/2, π/2 to π and π to 3π/2, 3π/2 to 2 π respectively. Thus, four

Table 1.1 Orders and corresponding diagrams of Azimuthal Walsh functionsWν(θ) generated for
ν = 0, 1, 2, . . . , 63

Order Diagram Order Diagram Order Diagram 
0  1  2  

3  4  5  

6  7  8  

9  10  11  

12  13  14  

15  16  17  

(continued)
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Table 1.1 (continued)

Order Diagram Order Diagram Order Diagram 
18  19  20  

21  22  23  

24  25  26  

27  28  29  

30  31  32  

33  34  35  

(continued)
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Table 1.1 (continued)

Order Diagram Order Diagram Order Diagram 
36  37  38  

39  40  41  

42  43  44  

45  46  47  

48  49  50  

51  52  53  

(continued)
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Table 1.1 (continued)

Order Diagram Order Diagram Order Diagram 
54  55  56  

57  58  59  

60  61  62  

63 

equal sectors are obtained and we write+ − in the sub sectors where it was+ before
and − + where it was − before. It is observed that W2(θ) is obtained from rotating
W1(θ) by +π/2 in the clockwise direction. Proceeding similarly, W3(θ), consisting
of four equal sectors of angles lying between 0 to π/2, π/2 to π, π to 3π/2 and 3π/2
to 2π, can be derived from W0(θ) by + − wherever the value was + in W0(θ).

W4(θ) is derived from W3(θ) and the angle of rotation is + π/4 of order W3(θ)

along the clockwise direction. W5(θ) is derived from W4(θ). W6(θ) is derived from
W1(θ) and the angle of rotation in this case is +3π/2 in the clockwise direction. For
a Walsh function of a higher order, choice of appropriate lower order from which it
can be derived is decided by the requirement that order of the function is equal to
the number of zero crossings. In the Table 1.2, the number on the right of each row
gives the order of the azimuthal Walsh function corresponding to the row, and the
number to the left of each row gives the order from which the function is originated.

Table 1.2 shows derivation of two valued azimuthal Walsh functions Wν over the
domain (0, 2π) for ν = 0, 1, . . . , 30. Each two valued Walsh function is represented
by a row. Elements of a row is denoted by either ‘+’ (≡ +1) or ‘−’ (≡ −1), provide
values of the function over the sub intervals. The number on the last but one column
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gives the order of theWalsh function, and the number on the left gives the originating
order of theWalsh function from it has been derived by means of alternating process.
The last column on the right gives the angle rotation by which the previous order is
to be rotated to find the present order azimuthal Walsh function.

Upon examining the set of azimuthalWalsh functions, it becomes apparent that the
whole set of azimuthal Walsh functions does not comprise of self-similar structures.
Distinct groups of Walsh functions exhibit self-similarity among their individual
constituents. Group I consists of azimuthal Walsh functions 1, 3, 7, 15, 31, 63 … all
of which are derived fromW0(θ) and they are the primary group members. Members
of Group II are derived from Group I. Similarly, members of Group III are derived
from Group II and so on. Each group acts as a parent for one or more subgroups.
Group I is unique. Members of Group I give rise to several subgroups namely IIA,
II B, IIC, IID and so on. Each of the subgroups give rise to further subgroups. Taken
together all of them constitute Group III whose individual subgroups are denoted
by terms IIIAA, IIIAB, IIIAC, IIIBA, IIIBB, IIICA etc. In this nomenclature, the
Roman numerals indicate the level of synthesis, followed by one or more letters of
the alphabet to indicate the specific subgroup of the parent group from which it is
generated; the last letter indicates the location of the first member of that specific
subgroup with reference to the first member of other subgroups of the same level in
an ascending order of sequence.

Table 1.2 Derivation of two-valued azimuthal Walsh functions Wν over the domain (0, 2π) for
ν = 0, 1, . . . , 30

Origin Order Angle Rota on
0 -

0 1 -

1 2 +π/2 of order 1
0 3 -

3 4 +π/4 of order 3
2 5 -
1 6 +3π/2 of order 5
0 7 -

7 8 +π/8 of order 7
6 9 -
5 10 +π/2 of order 9
4 11 -
3 12 +3π/4 of order 11
2 13 -
1 14 +π/2 of order 13
0 15 -

15 + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + 16 +π/16 of order 15
14 + - - + + - - + + - - + + - - + - + + - - + + - - + + - - + + - 17 -
13 + - - + + - - + - + + - - + + - - + + - - + + - + - - + + - - + 18 +π/2 of order 17
12 + - - + + - - + - + + - - + + - + - - + + - - + - + + - - + + - 19 -
11 + - - + - + + - - + + - + - - + + - - + - + + - - + + - + - - + 20 +3π/4 of order 19
10 + - - + - + + - - + + - + - - + - + + - + - - + + - - + - + + - 21 -

9 + - - + - + + - + - - + - + + - - + + - + - - + - + + - + - - + 22 +π/2 of order 21
8 + - - + - + + - + - - + - + + + + - - + - + + - + - - + - + + - 23 -
7 + - + - - + - + + - + - - + - + + - + - - + - + + - + - - + - + 24 +π/16 of order 23
6 + - + - - + - + + - + - - + - - - + - + + - + - - + - + + - + - 25 -
5 + - + - - + - + - + - + + - + - - + - + + - + - + - + - - + - + 26 +π/2 of order 25
4 + - + - - + - + - + - + + - + + - + - - + - + - + - + + - + - 27 -
3 + - + - + - + - - + - + - + - + + - + - + - + - - + - + + - + 28 +3π/4 of order 27
2 + - + - + - + - - + - + - + - + - + - + - + - + + - + - + - + - 29 -
1 + - + - + - + - + - + - + - + - - + - + - + - + - + - + - + - + 30 +π/2 of order 29
0 + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - 31 -

+ - + - - + -

-

- + - + - +
+ - +

+ - +
- - + - + -

- + -
+ - + - + - +

+ - + - + ++ - + - - + -

- + -
+ - +- + -- + - - + -

- + -
- - ++ + - +

+

-
+ - - + - + +

- -

+ +
+ + -

+

+ - - + - + +
+ -

- - +- - + +
- - + + - -

+ +
+ + -+ + - -

+ - + + - -

+ - + -
+ - + - - + - +

-+ - +

+
+ - - + - + + -

+

-+

+--+
-+-+

+ - - + + - -

    0                                   θ                                                2π
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The formations of groups and subgroups for the first few levels are illustrated
in Tables 1.3, 1.4, 1.5, 1.6 and 1.7 where members of each group are given by the
expression [8],

Z(σ ) = 2σ+b + c, σ = 1, 2, 3, . . . (1.14)

b and c are two parameters specific for each subgroup where b ≥ 0 and c = −1, 0
or dependent on σ.

Table 1.3 Composition of self-similar groups and subgroups of azimuthalWalsh functions (Group
I and II A)

Group Sub 
group 

First few order members of the group 

I - 1 3 

2 

7 

3 

15 

4 

31 

5 

........ 

Originating Order 

                                                          0 

b c ( )

0 -1 -1 
II A 2 4 8 16 32 

....... 

Originating Orders 

1 3 7 15 31 ....... 

b c ( )

0 0 
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Table 1.4 Composition of self-similar groups and subgroups of azimuthalWalsh functions (Group
II B, C, D)

Group Sub 
group 

First few order members of the group 

II B 6 12 

2 

24 

3 

48 

4 

 ..... 

                           Originating Orders 

1 3 7 15 .....
b c ( )
1 

C 14 28 56 

.....

                          Originating Orders 
1 3 7 .....
b c ( )
2 

D 

..... 

30 06

.....

                          Originating Orders
1 3 .....
b c ( )
3 +

............

(continued)
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Table 1.4 (continued)
Group Sub 

group 
First few order members of the group 

III AA 5 11 

2 

23 

3 

47 

4 

...... 

                             Originating Orders 

2 4 8 16 ......

b c ( )
1 ) 

AB 13 27 55 

......

Originating Orders 
2 4 8 ...... 
b c ( )
2 + ( ) + + ( )

AC 

..... 

29 95

...... 

                          Originating Orders
2 4 ...... 
b c ( )
3 + ( ) + ( )

... ... ... ... 
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Table 1.5 Composition of self-similar groups and subgroups of azimuthalWalsh functions (Group
III AA, AB, AC)

Group Sub 
group 

First few order members of the group 

III BA 9 19 

2 

39 

3 

...... 

                             Originating Orders 

6 12 24 ...... 
b c ( )
2 ) 

BB 25 51 

...... 

                    Originating Orders 
6 12 ...... 
b c ( )
3 + ( ) + ( )

BC 

..... 

57 

...... 

                    Originating Order
6 ...... 
b c ( )
4 + ( ) + + ( )

............
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Table 1.6 Composition of self-similar groups and subgroups of azimuthalWalsh functions (Group
III BA, BB, BC)

Group Sub 
group 

First few order members of the group 

III CA 17 35 

2 

...... 

             Originating Orders 
14 28 ...... 
b c ( )
3 + ( ) 

CB 49 

...... 

Originating Orders 
14 ...... 
b c ( )
4 ) + ( )

............
IV AAA 

.... 

10 20 

2 

40 

3 

...... 

               Originating Orders 
14 28 56 ...... 

b c ( )
2 
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Table 1.7 Composition of self-similar groups and subgroups of azimuthalWalsh functions (Group
III CA, CB, Group IV AAA, AAB, BAA and Group V AAAA…)

IV AAB 49 

...... 

   Originating Orders 
14 ...... 
b c ( )
4 ) + + ( )

... ... ... ... 
IV BAA 

.... 

22 44 

2 

...... 

              Originating Orders 
9 91

...... 

b c ( )

2 
.... ....

V AAAA 21 43 

...... 

            Originating Orders 
10 20 ...... 
b c ( )

3 σ+1) σ+1)] 
.... .... .... .... 
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From the Tables it is apparent that not only higher order azimuthalWalsh functions
can be derived from members of each group and subgroup of lower orders, but new
subgroups will also emerge when Walsh functions of higher orders are taken into
consideration. For the subgroups already identified, members lying in higher orders
can be easily identified by using the analytical expression Eq. (1.14) for Z(σ ).

1.7 Walsh Filters

Walsh filters of various orders may be obtained from the corresponding Walsh
functions by realizing the values of +1 or −1 with 0 or π phase respectively.

1.7.1 Radial Walsh Filters

Radial Walsh filters, derived from radial Walsh functions, form a set of orthogonal
phase filters that takes on phase values of either 0 or π, corresponding to +1 or −1
values of the radial Walsh functions. Order of these filters is given by the number of
zero crossings, or equivalently phase transitions within the domain over which the
set is defined. In general, radial Walsh filters are binary phase filters or zone plates,
each of them demonstrating distinct focusing characteristics.

1.7.2 Azimuthal Walsh Filters

Azimuthal Walsh filters are derived from azimuthal Walsh functions, also form a set
of orthogonal phase filters that takes on values +1 or −1 of the azimuthal Walsh
functions specifies corresponding phase values 0 or π. Order of these filters is given
by the number of phase transitions within the angular domain of (0, 2π). Azimuthal
Walsh filter can be represented by sector shaped aperture bounded by constant inner
and outer radii with varying angles θ1 and θ2 within the domain (0, 2π). The values
of inner and outer radii are taken as R1 = 0 and R2 = 1. In general, azimuthal
Walsh filters can be considered as combination of binary phase filters or azimuthally
varying zone plates which are having unique properties of introducing phase factors
to the interacting light beam.

1.8 Self-Similarity in Azimuthal Walsh Filters

The set of azimuthal Walsh filters can be classified into distinct self-similar groups
and sub-groups in the same manner as the azimuthal Walsh functions from which
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they have been derived [11]. Group I is unique. It has no subgroups. Members of
this group possess self-similar structures as classified in Table 1.3. Groups IIA and
above can similarly be divided into subgroups as represented in the Tables 1.4, 1.5,
1.6 and 1.7. Members of each subgroup possess distinct self-similar structures or
phase sequences.
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Chapter 2
Transverse Intensity Distribution
on the Far-Field Plane of Azimuthal
Walsh Filters

2.1 Introduction

ToraldoDi Francia [1–3], pioneered investigations on pupil plane filtering to enhance
the resolving power of imaging system beyond the diffraction limit. Walsh filters
derived from radial Walsh functions can be used as pupil plane filters for tailoring
the resolution in microscopic imaging [4]. They are used effectively in tackling the
problem of apodization [5–7], and in studies on aberrated optical imagery [8–10].
The far-field amplitude characteristics of some of these filters have been studied [11]
and they show the potential for their effective use in various applications like high
resolutionmicroscopy, optical data storage, microlithography, optical encryption and
optical micromanipulation [12–18]. There has been a keen interest in the imaging
properties of sector shaped apertures and have been investigated bymany researchers.
These apertures play significant roles inmany applications such as holography, space
astronomy, micro-lithography etc., to name a few! The basic form of this type of
aperture is the circular aperture, bounded by specific values of radius and azimuth
and the far-field diffraction pattern of this aperture while illuminated by coherent
beam of light is the well-known Airy pattern [19]. It has been assumed that the
amplitude and phase remain constant over the aperture. The analysis of far-field
diffraction characteristics [20] has been studied using the technique of calculating
intensity point spread function for sector shaped apertures proposed by Mahan et al.
[21]. Lessard and Som [22] has extended the idea both theoretically and practically
and used this aperture for holographic multiplexing technique used by the authors.
Azimuthal Walsh filters are derived from the azimuthal Walsh functions. Diffraction
theory for azimuthally structured Fresnel Zone Plate has been studied by T. Vierke
and Jürgen [23] where they have studied the light transmission from concentric rings
with alternating binary transmission of zero and one and the said transmission has
beenmodulated in the azimuthal direction. The resulting structure reported by them is
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of importance in extremeUVandX-ray imaging and shows good focal properties that
can be obtained with it. Practical realization of azimuthal Walsh filters is facilitated
by the availability of high-speed Spatial Light modulators [24] where the in situ
generation of different orders of azimuthal Walsh filters are possible.

In this chapter we present the far-field intensity distribution on the transverse
image plane of a rotationally symmetric imaging system, with azimuthal Walsh
filter of specific order placed on the exit pupil plane. Azimuthal Walsh filters are
represented by a combination of sector-shaped apertures bounded by unity value
of radius and specific values of azimuths. The zero order azimuthal Walsh filter
corresponds to circular aperture of unity amplitude, and the corresponding far-field
diffraction pattern is the well-known Airy pattern. As the order increases, the point
spread functions show pronounced asymmetry introduced by the phases of azimuthal
Walsh filters [25, 26]. The results of intensity distribution on the far-field plane are
validated with theoretically known results for some pupils. Experimental verifica-
tion using SLMs with analytically computed values has also been represented. The
azimuthal Walsh filters can also be explored as phase-shifted zone plates to generate
complex 3D beam structures like petal shaped and optical ring lattice beams [27].

2.2 Analytical Formulation of Far-Field Amplitude
Distribution Along an Azimuth for a Single Sector
on the Exit Pupil

Let us start with a single sector-shaped aperture, AE′B, subtending an angle φ at the
centre E′ on the exit pupil of radius R of a rotationally symmetric optical imaging
system (Fig. 2.1).

Thus,

Fig. 2.1 Schematic diagram
of a sector shaped aperture,
AE′B of angle φ
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∠AE′B = φ (2.1)

Let E′T be the bisector of the aperture AE′B making an angle ψ with the x-axis
along E′X so that:

∠TE′X = ψ (2.2)

Hence,

∠AE ′ X = θ1 = ψ − φ/2 (2.3)

∠B E
′
X = θ2 = ψ + φ/2 (2.4)

The amplitude transmittance, T on the sector is given by:

T = eiχ (2.5)

where χ represents the phase factor.
Representing azimuthal Walsh functions, by single or combinations of sector-

shaped apertures, the phase term becomes,

χ = π or − π (2.6)

which implies the value of transmittance T,

T = +1 or − 1 (2.7)

on different sectors. The schematic diagram of a rotationally symmetric imaging
system with azimuthal Walsh filter placed at the exit pupil plane is shown in Fig. 2.2.

The normalized coordinates for a point, P on the pupil is (r, θ ), where r = ρ/R, ρ
is the radial distance of P from the centre of the exit pupil, and R is the radius of the
pupil as depicted in Fig. 2.3.

Normalized coordinates of a point Q on the far-field plane is defined as (p, ζ)
where

p = 2π

λ
· R

f
· ξ (2.8)

p is called the reduced diffraction variable at far-field plane, 2π
λ
is the propagation

constant, f being the focal length of the imaging system used, and ξ(= O′Q) is the
geometrical distance of the point of observation on the far-field plane with respect
to the centre O′ of the diffraction pattern.

Exp. (2.8) can be rewritten in terms of numerical aperture of the pupil plane as,
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Fig. 2.2 Schematic diagram of a rotationally symmetric imaging system

Fig. 2.3 A point P on the exit pupil plane and a point Q on a transverse imaging plane in the
far-field

p = 2π

λ
· (n sin α) · ξ (2.9)

where α is the angle subtended by the pupil plane at the centre of the far-field plane
and (n sin α) is the image space numerical aperture, n is the refractive index of the
image space and λ is the operating wavelength.

Following the complex notation as suggested by Born [1], complex amplitude on
the far-field plane can be expressed along with a multiplicative constant:

(2.10)
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where ω = (θ − ζ ).

2.3 Azimuthal Walsh Filters on the Exit Pupil

In case of radially invariant filters, the pupil function or transmittance of a
sector shaped aperture with sector angle extending from θm−1 to θm reduces to
and is expressed as:

(2.11)

Representing azimuthally variant Walsh filter by Wν(θ) of order ν on the pupil,
the pupil function may be expressed as:

(2.12)

where Bm(θ) are azimuthal Walsh Block functions defined as:

Bm(θ) = 1; θm−1 ≤ θ ≤ θm

= 0; otherwise (2.13)

where

θm−1 =
(

m − 1

M

)
2π and θm =

( m

M

)
2π (2.14)

with M = 2α is the largest power of 2 that just exceeds ν. Over the mth sector of
Wν(θ), value of kψm is 0 or π, if Wν(θ) = +1 or − 1 = + 1 or − respectively.

Substituting in Eq. (2.10), we can write:

A(p, ζ ) =
1∫

0

2π∫
0

M∑
m=1

eikψmBm(θ) exp[i pr cosω]rdrdθ (2.15)

Evaluation of the integration in (3.14) involving the exponential has been done as
suggested by Mahan et al. [2], and Som and Lessard [3], and the complex amplitude
distribution A(p, ζ ) can be expressed as:

A(p, ζ ) = T [C(p, ζ ; θ) − i S(p, ζ ; θ)] (2.16)

where T is the transmission factor of the pupil function given by:
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T =
M∑

m=1

eikψm (2.17)

and C(p, ζ ; θ) and S(p, ζ ; θ) are the real and imaginary parts of A(p, ζ ) at the
far-field plane can be expressed as the series of Bessel functions of even and odd
arguments as:

C(p, ζ ; θ) = φ
J1(p)

p
+

{ ∞∑
n=1

2n + 1

n(n + 1)

J2n+1(p)

p
X

n∑
m=1

[sin 2m(θ2 − ζ )

− sin 2m(θ1 − ζ )]
}

(2.18)

and

S(p, ζ ; θ) = 8
∞∑

n=1

n

4n2 − 1

J2n(p)

p

n∑
m=1

(−1)m−1[sin(2m − 1)(θ2 − ζ )

− sin(2m − 1)(θ1 − ζ )] (2.19)

respectively.
Each azimuthal Walsh function, Wν(θ), ν = 1, 2, 3, … may be considered

consisting of 2N no. of sectors where the value of N depends on the order ν. For
example, for W0, W1, W2 and W2, N = 4. Value of transmission T in each of the
four sectors is either +1 or −1, as per the order of the Walsh function.

Far-field amplitude distribution for each of these Walsh functions, Wν(θ) can be
obtained as:

A(p, ζ ) =
3∑

s=0

Ts[Cs(p, ζ ; θ) − i Ss(p, ζ ; θ)] (2.20)

Corresponding intensity distribution, I (p, ζ ) can be calculated as

I (p, ζ ) =
[

3∑
s=0

Ts[Cs(p, ζ ; θ)]

]2

+
[

3∑
s=0

Ts[Ss(p, ζ ; θ)]

]2

(2.21)

The normalized intensity point spread function at the far-field plane IN (p, ζ ) is
given by,

IN (p, ζ ) = I (p, ζ )/I (0, 0) (2.22)

where I (0, 0) is the intesity distribution at the origin of the far-field plane where
p = 0, ζ = 0.
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2.4 Asymmetrical Amplitude Point Spread Function
on the Far-Field Plane Due to Azimuthal Walsh Filter
at Exit Pupil Plane

The azimuthalWalsh filter Wν(θ) of order ν = 1, 2, 3,… is placed on the exit pupil of
a rotationally symmetric imaging system (Fig. 2.2) and the complex amplitude distri-
bution on a transverse plane in the far-field of azimuthal Walsh filters is determined
by Eq. (2.16). The real and imaginary parts of the complex amplitude distribution are
determined by the Eqs. (2.18) and (2.19) which are the series of Bessel functions of
odd and even arguments of reduced transverse distance p as given in Eq. (2.9). The
inherent phase asymmetry imposed by azimuthal Walsh filters placed on exit pupil
plane leads to asymmetrical amplitude point spread function in the far-field plane.

The variation of real part, C(p, ζ ; θ) of complex amplitude distribution A(p, ζ )

has been plotted against reduced transverse distance p for azimuths ζ = 0°, 45°,
90°, 135°, 180°, 225°, 270°, 315° and 360° in the far-field plane (Fig. 2.4). It is seen
that C(p, ζ ; θ) is either independent of azimuthal variation, ζ or maintains constant
values for different values of ζ defined in the far-field plane.

Fig. 2.4 Variation of imaginary and real part of complex amplitude distribution with azimuthal
angle ζ at far-field plane for Zero order azimuthal Walsh filter at the exit pupil: a and c for ζ = 0°,
90°, 180° and 360°; b and d for ζ = 45°, 135°, 225° and 315°
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The variation of imaginary part S(p, ζ ; θ) of complex amplitude distribution,
A(p, ζ ) has been plotted against reduced diffraction variable p for different values
of azimuths, ζ namely, ζ = 0°, 45°, 90°, 135°, 180°, 225°, 270° 315° and 360°
in the far-field plane. The imaginary part of complex amplitude distribution shows
pronounced azimuthal dependence. The variation of real and imaginary parts of
complex amplitude distributions as well as variation of IPSF with azimuthal angle
for zero, first, second and third order azimuthal Walsh filters on the exit pupil plane
are discussed in the following sub-sections.

2.4.1 Case 1: Zero Order Azimuthal Walsh Filter

Figure 2.4 shows that the imaginary part of complex amplitude point spread function
is widely varying with change in far-field angle ζ . Contribution of imaginary part in
far-field amplitude distribution for ζ = 0° and 360° is just equal and opposite to that
for ζ= 180° and hence cancels each other. Contributions of imaginary part in far-field
amplitude distribution for ζ = 45°, 135°, 225° and 315° are very much negligible, of
the order of 10−14. The contribution of real part of complex amplitude distribution
in the far-field plane for zero order azimuthal Walsh filter on exit pupil is positive
and independent of change in values of far-field angle ζ as illustrated in Fig. 2.4.

Intensity distribution at the far-field plane is plotted against reduced transverse
distance, p for zero order azimuthal Walsh filter on the exit pupil plane as shown in
Fig. 2.5. The intensity distribution is an Airy pattern which closely resembles with
the real part of the complex amplitude distribution and is completely independent
of azimuthal variation. The centre of the intensity distribution is maxima and the
pattern is symmetrical about the origin.

Fig. 2.5 Far-field intensity
distribution for zero order
azimuthal walsh filter on exit
pupil shows symmetry
against variation of zeta (ζ )
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2.4.2 Case 2: First Order Azimuthal Walsh Filter

The variations of real and imaginary parts of complex amplitude point spread func-
tions with azimuthal angle, ζ in the far-field plane are shown in Fig. 2.6 for first order
azimuthal Walsh filter placed on the exit pupil plane. Contribution of imaginary part
in the complex far-field amplitude distribution for ζ = 90° is appreciable. Contribu-
tions of imaginary part in the far-field amplitude distribution for other values of ζ are
considerable. On the other hand, contributions of real part in the complex far-field
amplitude distribution for change in far-field angle ζ , is very much negligible, of
the order of 10−15 and maintains constant values for any particular value of far-field
angle ζ as illustrated in Fig. 2.6. Hence it can be inferred that contribution of real
part is becoming negligible for forming the far-field amplitude distribution pattern
for first order azimuthal Walsh filters placed at the exit pupil plane. The contribution

Fig. 2.6 Variation of imaginary and real part of complex amplitude distribution with azimuthal
angle ζ at far-field plane for first order azimuthal walsh filter at the exit pupil: a and c for ζ = 0°,
90°, 180° and 360°; b and d for ζ = 45°, 135°, 225° and 315°
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Fig. 2.7 Far-field intensity distribution for first order azimuthal walsh filter a for ζ = 0°, 90°, 180°
and 360°; b for ζ = 45°, 135°, 225° and 315°

of imaginary part is predominant in the complex amplitude distribution which shows
the azimuth dependence imposed by azimuthal Walsh filter of order one.

Intensity distributions at the far-field plane are plotted against reduced transverse
distance, p for First order azimuthal Walsh is shown in Fig. 2.7. The intensity distri-
bution is changing widely with change in the values of ζ in the far-field plane which
is due to the phase asymmetry imposed by the Walsh filter. The resultant intensity
distribution at the focal plane for all values of ζ within (0, 2π ) will be asymmetrical
compared to the symmetrical Airy pattern produced by zero order azimuthal Walsh
filter. The centre of the intensity distribution for all values of ζ show minima.

2.4.3 Case 3: Second Order Azimuthal Walsh Filter

The variations of real and imaginary parts of complex amplitude point spread func-
tions with azimuthal angle, ζ in the far-field plane for Second order azimuthal Walsh
filters placed on the exit pupil plane are shown in Fig. 2.8. Contributions of imag-
inary parts in far-field amplitude distribution for ζ = 0°, 180° and 360° are found
appreciable. On the other hand, the contributions of real part of far-field complex
amplitude distributions are shown to be very minimal, of the order of 10−13–10−15 or
sometimes constant for any particular value of ζ as illustrated in Fig. 2.8. The corre-
sponding intensity distributions for are plotted against reduced transverse distance
and shown in Fig. 2.9.
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Fig. 2.8 Variation of imaginary and real part of complex amplitude distribution with azimuthal
angle ζ at far-field plane for Second order azimuthal walsh filter at the exit pupil: a and c for ζ =
0°, 90°, 180° and 360°; b and d for ζ = 45°, 135°, 225° and 315°

Fig. 2.9 Far-field intensity distribution for second order azimuthal walsh filter on exit pupil: a for
ζ = 0°, 90° and 360°; b For ζ = 45°, 135°, 225° and 315°
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2.4.4 Case 4: Third Order Azimuthal Walsh Filter

For third order azimuthal Walsh filter placed on the exit pupil plane of a rotationally
symmetric imaging system, imaginary part of far-field amplitude distribution for
different values of ζ ranging from 0°, 45°, 90°, 135°, 180°, 225°, 315° and 360°
are plotted against reduced transverse distance, p in Fig. 2.10. Variation of real part
of far-field complex amplitude distribution for change in far-field angle ζ is plotted
against p and shown in Fig. 2.10. As apparent from Fig. 2.10 the variations of real
part maintain constant values for different values ζ . The contribution of imaginary
part is predominant in the intensity point spread function as illustrated in Fig. 2.11.

Fig. 2.10 Variation of imaginary and real part of complex amplitude distribution with azimuthal
angle ζ at far-field plane for second order azimuthal walsh filter at the exit pupil: a and c for ζ =
0°, 90°, 180° and 360°; b and d for ζ = 45°, 135°, 225° and 315°
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Fig. 2.11 Far-field intensity
distribution for third order
azimuthal Walsh filter on
exit pupil for ζ = 0°, 90° and
360°

2.5 2D Intensity Distribution on the Far-Field Plane

The azimuthal Walsh filter is placed on the exit pupil of a rotationally symmetric
imaging system (Fig. 2.2) and the normalized 2D intensity distribution on a transverse
plane in the far-field of azimuthal Walsh filters is determined by Eq. (2.22).

Apoint on the transverse imageplane in the far-field is representedby theCartesian
co-ordinate (ξ, η) with O′ as the origin of the axes as in Fig. 2.3. The normalized
transverse intensity IN (p, ζ ) is represented byEq. (2.22).where (p, ζ ) are the reduced
diffraction variables defined as the reduced transverse distance, p as represented in
Eq. (3.8) and ζ is the azimuthal variation. Normalized transverse intensity IN (p, ζ )

against variation of reduced transverse distance, p at different azimuthal variation,
ζ has been plotted for all orders of azimuthal Walsh filters from 0 to 63. The 2D
normalized intensity variations alongwith contour plots are shown for each individual
order of azimuthal Walsh filters. Except for zero order, the normalized intensity
distribution against reduced transverse distance show asymmetrical variation along
different azimuths.

For zero order azimuthal Walsh filter at the exit pupil, the transverse inten-
sity distribution on the far-field plane is the Airy pattern which is symmetric and
showing no azimuthal dependence. The normalized intensity distribution with the
central maxima at the origin of the far-field plane with magnitude one is illustrated
in Fig. 2.12.

The intensity distributions on the far-field plane corresponding to azimuthalWalsh
filtersWν(θ), for orders ν = 0, 1, 2, 3, . . . , 63 are shown inTable 2.1 in the next page.
A contour plot of the intensity distribution is also shown in each case to underscore
the nature of intensity variations.

The Far-field intensity distributions for azimuthalWalsh filters for orders 0–63 are
evaluated analytically and presented in Table 2.1. The intensity distributions along
with the corresponding contour plot on the far-field plane are shown for each order ν
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Fig. 2.12 The normalized
intensity distribution at
far-field plane due to zero
order azimuthal Walsh filter
on exit pupil, the Airy pattern

of azimuthal Walsh filter Wν(θ). The contour plots corresponding to intensity distri-
bution has been made coloured to highlight the position of the peak or maximum
value compared to other values of intensity. The yellow colour represents the loca-
tion of peak values or maxima of the intensity distribution pattern obtained for any
azimuthal Walsh filter Wν(θ) of order ν. It is apparent from 2D IPSF that the central
dark region of the intensity distribution spreads out as order ν increases.

A 3D view of the IPSF can be generated from the 2D pattern, as presented for
zero order azimuthal Walsh filter, W0(θ) in Table 2.2. The intensity distribution is
showing central maxima with alternate dark and bright concentric rings of dimin-
ishing amplitude arranged in a symmetric fashion about the centre and is independent
of azimuthal variation along the far-field plane. The central yellow patch shows the
location of peak value or the maxima of the intensity distribution.

A 3D view of the IPSF for first and second order azimuthal Walsh filters, W1(θ)

and W2(θ) is presented in Table 2.3. The intensity distribution is asymmetric, and
it is dependent upon the azimuthal variation along the far-field plane with central
minima. The yellow patches show the location of peak values or the maxima of the
intensity distribution. It is seen that the peak values are located on both sides of the
origin.

2.6 Experimental Verification

Figure 2.13 shows the experimental arrangement for addressing reflecting SLMs to
codify with azimuthal Walsh filters of different orders and corresponding far-field
diffraction patterns are generated and recorded.

Table 2.4 shows the experimental results of far-field intensity distributions for
some specific orders of azimuthal Walsh filters and compared with corresponding
patterns generated analytically. The results show perfectly matched with each other.
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Table 2.1 Azimuthal Walsh filters Wν(θ), for orders ν = 0, 1, 2, . . . , 63 and their transverse
intensity distributions on far-field plane alongwith intensity contour diagrams

Order         Azimuthal Walsh ilters            2D IPSF                    Contour IPSF           Scale

   0 

  1 

  2                 

 3 

4 

5 

6 

(continued)
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Table 2.1 (continued)

Order        Azimuthal Walsh ilters            2D IPSF                    Contour IPSF          Scale 

     7 

     8             

    9 

   10 

   11 

  12 

  13 

(continued)
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Table 2.1 (continued)
Order        Azimuthal Walsh ilters      2D IPSF                    Contour IPSF          Scale

    14        

   15 

   16 

  17 

 18 

 19  

20 

(continued)
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Table 2.1 (continued)
Order        Azimuthal Walsh ilters      2D IPSF                    Contour IPSF            Scale

    21     

   22 

   23 

  24 

 25               

 26 

 27     

(continued)
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Table 2.1 (continued)
Order       Azimuthal Walsh ilters      2D IPSF                    Contour IPSF            Scale

   28            

  29 

  30                

  31 

 32                

33 

34               

(continued)
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Table 2.1 (continued)
Order        Azimuthal Walsh ilters      2D IPSF                    Contour IPSF            Scale

   35 

  36 

  37 

 38 

39                                    

40 

41   

(continued)
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Table 2.1 (continued)

Order       Azimuthal Walsh ilters      2D IPSF                    Contour IPSF            Scale

    42 

    43 

    44 

    45 

   46               

   47              

  48 

(continued)
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Table 2.1 (continued)

Order        Azimuthal Walsh ilters      2D IPSF                    Contour IPSF            Scale

   49 

  50 

 51 

 52 

53 

54 

55 

(continued)
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Table 2.1 (continued)

Order       Azimuthal Walsh ilters      2D IPSF                    Contour IPSF            Scale

   56 

  57 

  58 

  59 

 60 

  61 

  62 

(continued)
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Table 2.1 (continued)
Order        Azimuthal Walsh ilters       2D IPSF                     Contour IPSF            Scale

   63

Table 2.2 AzimuthalWalsh filter Wν(θ), for order ν = 0 and its 3D view of 2D transverse intensity
distribution at far-field plane is generated analytically

 0   

Order     Azimuthal Walsh    Contour IPSF                3D IPSF generated                Scale
                             ilters            

Table 2.3 Azimuthal Walsh filter Wν(θ), for orders ν = 1&2 and snapshots of the 3D views of
transverse intensity distributions at far-field plane generated analytically

1       

2    

Order  Azimuthal Walsh    Contour                 3D IPSF generated                     Scale
                      ilters                        IPSF         
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Fig. 2.13 Schematic diagram of the experimental arrangement showing reflecting type spatial light
modulator (SLM) to generate azimuthal Walsh filters and their corresponding far-field diffraction
patterns are recorded

Table 2.4 2D IPSFs generated analytically at the far-field plane arematchingwith the experimental
results for random ordered azimuthal Walsh filters

Order        Azimuthal         2D IPSF                Scale
Walsh filters        Experimentally Analytically      

Obtained                   Calculated                 

0

1

3

(continued)
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Table 2.4 (continued)
Order        Azimuthal                                               2D IPSF                                        Scale

Walsh            Experimentally             Analytically  
Obtained                         Calculated                           

14

5 

7 

10
 

 11 
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Chapter 3
Self-similarity in Transverse Intensity
Distributions on the Far-Field Plane
of Self-similar Azimuthal Walsh Filters

3.1 Introduction

The fractal or self-similar structures play an important role in describing and under-
standing a large number of phenomena in several areas of science and technology
[1]. In optics, the fractal structure of some optical wave fields and the diffraction
pattern generated from various fractal apertures are examples of this category [2,
3]. Fractal zone plates find applications in scientific and technological areas where
conventional zone plates have been successfully applied. Modified fractal general-
ized zone plates extend depth of focus and has been used in spectral domain optical
coherence tomography [4]. Fractal zone plates also inspired the invention of other
photonic structures [4–6]. Very recent proposals of optical tweezers use phase filters
to facilitate the passing of particles in three dimensional structure [7]. Fractal gener-
alized zone plates and spiral fractal zone plates [4] find applications in trapping
and optical micro-manipulations [8–14]. Non-uniform distribution of fractal zone
plate’s focal points along the optical axis could be exploited in the design of multi
focal contact lenses. In recent years there is a growing interest in the study and
research on quasi-periodic and fractal optical elements. Fibonacci fibre Bragg grat-
ings can transform evanescent wave into propagating waves for far-field superreso-
lution imaging. Fibonacci lenses are being used to generate arrays of optical vortices
to trap micro-particle for driving optical pumps [15–24]. Fibonacci diffraction grat-
ings [25, 26] which is an archetypal example of aperiodicity and self-similarity are
finding application as image forming devices.

Self-similarity is studied within the distinct groups and subgroups of azimuthal
Walsh filters and it has been discussed extensively with illustrations in Sect. 1.6.
Self-similarity is also observed in the corresponding transverse intensity distributions
of self-similar groups as well as sub-groups of azimuthal Walsh filters. Azimuthal
Walsh filters of specific group members are placed on the exit pupil of a rotationally
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symmetric imaging system (refer to Figs. 2.2 and 2.3) and the transverse inten-
sity distributions on the far-field plane are plotted. Groupwise and sub-groupwise
self-similar transverse intensity distributions have been presented in the following
sections.

3.2 Transverse Intensity Distributions for Zero Order
Azimuthal Walsh Filter on the Far-Field Plane

Azimuthal Walsh filter of order zero is placed on the exit pupil plane of a rotationally
symmetric imaging system and the normalized transverse intensity distribution on
the far-field plane is computed and plotted in Fig. 3.1.

The logarithmic plot of transverse intensity distribution due to zero order
azimuthal Walsh function is also computed and shown in Fig. 3.2 where the central
maxima is at the origin.

Azimuthal Walsh filter of order zero is called the originating order from which
Group 1 has been originated.

Fig. 3.1 The normalized intensity distribution at far-field plane due to zero order azimuthal Walsh
filter on exit pupil
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Fig. 3.2 The intensity distribution at far-field plane is plotted on log scale due to zero order
azimuthal Walsh filter on exit pupil

3.3 Self-similarity in Far-Field Intensity Distributions
for Group I Self-similar Members of Azimuthal Walsh
Filters

Azimuthal Walsh filters of Group I consists of orders ν = 1, 3, 7, 15, ….. and the
corresponding self-similar transverse intensity distributions on the far-field plane for
a particular azimuth, ζ = 0 are illustrated in Fig. 3.3a–d. The intensity at the origin is
zero for all members of this group which is the signature of azimuthal Walsh filters.

It is apparent from Fig. 3.3 that the far-field intensity distributions at the transverse
plane with members of Group I azimuthal Walsh filters, are similar with central
minima associated with first maxima along both sides of the origin followed by
second, third, fourth, …. maxima of diminishing amplitudes. For higher orders of
Group I self-similar members, the width of the central minima increases and the
sharpness of first maxima increases.

3.4 Self-similarity in Far-Field Intensity Distributions
for Group IIA Self-similar Members of Azimuthal
Walsh Filters

The members of Group IIA consists of azimuthal Walsh filters of orders, ν = 2, 4, 8,
…… and their corresponding transverse intensity distributions at the far-field plane
for azimuth ζ = 0 are shown in Fig. 3.4a–c) respectively.

Figure 3.4 shows that the transverse intensity distributions at the far-field plane for
self-similar members of Group IIA azimuthal Walsh filters are similar to each other.
The patterns are having central minima associated with sharp first maxima along
both sides of the origin followed by successive maxima of diminishing amplitudes.
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Fig. 3.3 a–dTransverse intensity distributions at far-field plane of azimuthalWalsh filters of Group
I members of orders, ν = 1, 3, 7 and 15 for azimuth, ζ = 0

Fig. 3.4 a–c Transverse intensity distributions at far-field plane of azimuthalWalsh filters of Group
IIA members of orders ν = 2, 4 and 8 for azimuth, ζ = 0
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For higher orders, the width of the central minima increases and the sharpness of
first maxima increases as exhibited by Group I members.

3.5 Self-similarity in Far-Field Intensity Distributions
for Group IIB Self-similar Members of Azimuthal
Walsh Filters

Group IIB consists of azimuthal Walsh filters of orders 6, 12, 24, 48 …. as shown in
Table 1.4. The transverse intensity distributions at far-field plane due to azimuthal
Walsh filters of orders 6 and 12 from the self-similar Group IIB for azimuth ζ = 0
are illustrated in Fig. 3.5a, b respectively.

FromFig. 3.5 it is apparent that for theGroup IIAmembers, the transverse intensity
distributions at far-field plane show the central minima along with first maxima
immediately followed by the second one along both sides of the origin. The intensity
reduced to zero for both orders as one move away from the origin of the transverse
far-field plane.

3.6 Self-similarity in Far-Field Intensity Distributions
for Group IIIA Self-similar Members of Azimuthal
Walsh Filters

Subgroup IIIAA consists of azimuthal Walsh filters of orders 5, 11, 23, 47, … as
shown in Table 1.5. The transverse intensity distributions due to azimuthal Walsh
filters for orders ν= 5 and 11 are shown in Fig. 3.6a, b respectively. The patterns show
amazing resemblance with central minima followed by 1st, 2nd, 3rd, … maxima of
diminishing amplitudes. Intensity distribution in both cases dies down as one move
away from the origin at the centre of the far-field plane.

It is observed from Figs. 3.3, 3.4, 3.4 and 3.6 that the transverse intensity distri-
butions at the far-field plane due to each group and subgroup of azimuthal Walsh
filters, are showing self-similarity as a consequence of self-similarity existing within
the members of corresponding group and subgroup as depicted in Tables 1.2, 1.3,
1.4 and 1.5. It is also observed that as the order, ν increases within each subgroup,
the maxima of the intensity distributions become sharper with increasing ripples of
diminishing amplitudes in the sidelobes.
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Fig. 3.5 a, b Transverse intensity distributions at far-field plane of azimuthal Walsh filters of
self-similar members of Group IIA for orders ν = 6 and 12 for ζ = 0

3.7 Rotational Self-similarity Observed in 2D Transverse
Intensity Distributions at Far-Field Plane for Adjacent
Orders of Azimuthal Walsh Filters

In addition to the inherent self-similarity exhibited like radial and annular varieties,
2D intensity distributions at transverse far-field plane due to azimuthal Walsh filters
are observed to possess a unique rotational self-similarity exhibited among adjacent
orders. The 2D intensity distributions due to a succeeding ordered azimuthal Walsh
filter can be retrieved from the preceding order by just rotating it by some specified
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Fig. 3.6 a, b Transverse intensity distributions at far-field plane of self-similar azimuthal Walsh
filters of Group IIA of orders ν = 5 and 11, for azimuth ζ = 0

angle likeπ,π/2,π/4,π/8…and the angle of rotation depends upon the order ν of the
azimuthal Walsh filter under consideration. The rotational self-similarity observed
in transverse 2D intensity distributions at far-field plane for adjacent orders with the
respective angle rotation for orders ν = 0, 1, …, 18 is discussed in detail in [27].
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Chapter 4
Transverse Intensity Distribution
in the Far-Field Region of Azimuthal
Walsh Filters

4.1 Introduction

Azimuthal Walsh filters Wν(θ), for order ν = 0, 1, 2, . . . are placed on the exit
pupil of a rotationally symmetric imaging system (Fig. 4.1) and the normalized
intensity at the point Q on an axially shifted image plane is computed by adding
a defocus aberration term using another alternative method. The plane where Q
located is shifted longitudinally from the paraxial focal plane or image plane by an
actual longitudinal shift �Z. a represents the reduced axial coordinate or distance
as expressed by Eq. (4.7). The normalized intensity IN (p, ζ ;W20) is dependent
on the actual longitudinal shift �Z and hence on the reduced axial coordinate a.
Normalized intensities are computed for different values of reduced axial distance
a. Plots of normalized intensity with reduced transverse distance are shown for all
orders of azimuthal Walsh filters from 0 to 7 and are presented in the next sections.
The origin of the intensity distribution curves represents the location of the paraxial
focal plane or far-field plane (Fig. 4.1) and the positive and negative values of a
represent axial shifts on either side of the paraxial focal plane or far-field plane. The
analytical method and the illustrative results with discussions are shown in the next
sections.

4.2 Analytical Formulation of Intensity Distribution
on Axially Shifted Image Planes

The transverse image plane of a rotationally symmetric system is shifted longitudi-
nally from the paraxial focal plane by an amount �Z is shown in Fig. 4.1.
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Fig. 4.1 Exit pupil, image plane and an axially shifted image plane in the image space of a
rotationally symmetric imaging system

Considering the case of azimuthal Walsh filter,Wν(θ) of order ν placed at the exit
pupil plane of the imaging system,

(4.1)

where Bm(θ) are azimuthal Walsh Block functions [1] defined as,

Bm(θ) = 1; θm−1 ≤ θ ≤ θm

= 0; otherwise (4.2)

where

θm−1 =
(
m − 1

M

)
2π and θm =

( m

M

)
2π (4.3)

with M = 2α is the largest power of 2 that just exceeds ν. Over the mth sector of
Wν(θ), value of kψm is 0 or π, if Wν(θ) = +1 or −1 respectively.

The complex amplitude distribution at a transverse plane shifted from the paraxial
focal plane by an amount �Z can be obtained by adding a defocus aberration term
W (r) in the Exp. (4.1), for and we
can write:

(4.4)

where W (r) is the wave aberration function defined as
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W (r) = W20r
2 (4.5)

A value of

kW20 = aπ (4.6)

corresponds to the reduced axial coordinate a, given by:

a = 1

nλ
(n sin α)2�Z (4.7)

where n represents the refractive index of the image space and (n sin α) is the image
space numerical aperture.

The shift of image plane from paraxial focal plane by an amount �Z causes
defocus or ‘Depth of Focus’ aberration which is a measure of asphericity of the
image forming wavefront as shown in Fig. 4.2.

The complex amplitude distribution on the axially shifted image plane is:

A(p, ζ ;W20) =
1∫

0

2π∫
0

exp
[
ik

{
Wν(θ) + W20r

2
}]

exp[i pr cosω]rdrdθ (4.8)

where ω = (θ − ζ ) and R = 1.

Fig. 4.2 Shift of image plane from paraxial focal plane by �Z causes defocus or ‘Depth of Focus’
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At the origin,

A(0, 0;W20) =
1∫

0

2π∫
0

exp
[
ik

{
Wν(θ) + W20r

2}]rdrdθ (4.9)

i.e.,

A(0, 0;W20) =
2π∫
0

eikWν (θ)dθ

1∫
0

eikW20r2rdr = A1A2 (4.10)

where

A1 =
2π∫
0

eikWν (θ)dθ (4.11)

and

A2 =
1∫

0

eikW20r2rdr (4.12)

To evaluate A1, the value of Wν(θ) is to be substituted from Eq. (4.1) to Exp.
(4.11) and we have:

A1 =
2π∫
0

eikWν (θ)dθ =
M∑

m=1

eikψm

2π∫
0

Bm(θ)dθ (4.13)

To evaluate A2, we will substitute r2 = t so that 2rdr = dt and substituting in
Eq. (4.12) we have:

A2 =
1∫

0

eikW20r2rdr = 1

2

1∫
0

eikW20t dt
1

2ikW20

[
eikW20 − 1

]
(4.14)
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Hence,

A(0, 0;W20) = A1A2 =
⎧⎨
⎩

M∑
m=1

eikψm

2π∫
0

Bm(θ)dθ

⎫⎬
⎭X

[
1

2ikW20

[
eikW20 − 1

]]

(4.15)

The intensity distribution at origin of the shifted image plane is,

I (0, 0;W20) = |A(0, 0;W20)|2 (4.16)

At any point (p, ζ) on the image plane, the complex amplitude distribution can be
written from Eq. (4.8) by substituting the value of Wν(θ) from Eq. (4.1) and W (r)
from Eq. (4.5) as:

A(p, ζ ;W20) =
M∑

m=1

eikψm

1∫
0

2π∫
0

Bm(θ) exp
[
ikW20r

2
]
exp[i pr cosω]rdrdθ

(4.17)

Expressing,

τ(r, θ) = exp
[
ikW20r

2
]
exp[i pr cosω] (4.18)

Equation (4.17) can be further simplified as,

A(p, ζ ;W20) =
M∑

m=1

eikψm

1∫
0

2π∫
0

BM
m (θ)τ (r, θ)rdrdθ (4.19)

4.3 Synthesis of Azimuthal Walsh Filters Using Azimuthal
Walsh Block Functions

The synthesis of azimuthal Walsh filters Wν(θ), for order ν = 0, 1, 2, 3 from
azimuthal Walsh Block functions, Bm(θ) and the derivation of corresponding
complex amplitude and normalized intensity distributions at the shifted image planes
is shown below:

Case 1: For zero order azimuthal Walsh filter, W0(θ) when ν = 0
For Zero order azimuthal Walsh filter, ν = 0, m = 1, M = 1, θm−1 = 0, θm = 2π ,
kψ1 = 0 (Fig. 4.3),
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Fig. 4.3 Synthesis of zero
order azimuthal Walsh
function, W0(θ) using
azimuthal Walsh Block
function Bi

1(θ), where i = 1

Wν(θ)|ν=0 = W0(θ) = eikψ1B1
1(θ) = B1

1(θ) (4.20)

where

B1
1(θ) = 1, 0 ≤ θ ≤ 2π (4.21)

Amplitude distribution at shifted image plane due to zero order azimuthal Walsh
filter at exit pupil can be computed from Eq. (4.19) as:

A(p, ζ ;W20)|ν=0 =
1∫

0

2π∫
0

exp
[
ikW20r

2
]
exp[i pr cosω]rdrdθ (4.22)

=> A(p, ζ ;W20)|ν=0 =
1∫

0

2π∫
0

τ(r, θ)rdrdθ (4.23)

Normalized Intensity distribution at the plane longitudinally shifted by �Z can
be written as:

IN (p, ζ ;W20)|ν=0 = I (p, ζ ;W20)|ν=0

I (0, 0;W20)|ν=0
=

∣∣ A(p, ζ ;W20)|ν=0

∣∣2
| A(0, 0;W20)|ν=0|2

(4.24)

Case 2: For first order azimuthal Walsh filter, W1(θ)

For first order azimuthal Walsh filter, ν = 1; M = 2α|α=1 = 2; m = 1, 2; and we
can write,

Wν(θ)|ν=1 = W1(θ) =
2∑

m=1

eikψmBM
m (θ) (4.25)

=> W1(θ) = eikψ1B2
1(θ) + eikψ2B2

2(θ) (4.26)

W1(θ) is expressed as summation of twoWalshBlock functions,B2
1(θ) andB2

2(θ)

defined as:

B2
1(θ) = 1; 0 ≤ θ ≤ π = 0; π ≤ θ ≤ 2π (4.27)
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B2
2(θ) = 1; π ≤ θ ≤ 2π = 0; 0 ≤ θ ≤ π (4.28)

Also, over the m = 1 sector, the value of W1(θ) is +1, so the value of kψ1 = 0
and over the m = 2 sector, the value of W1(θ) is −1 and hence kψ2 = π .

Substituting these values of kψ1, kψ2 and B2
1(θ) andB2

2(θ) from Eqs. (4.27) and
(4.28) in Eq. (4.26) we can write,

W1(θ) = B2
1(θ) − B2

2(θ) (4.29)

Synthesis of first order Walsh filter W1(θ) using Walsh Block functions B2
1(θ),

B2
2(θ) is depicted schematically in Fig. 4.4.
The complex amplitude distribution at shifted image plane due to first order

azimuthal Walsh filter, W1(θ) on exit pupil can be written as,

=> A(p, ζ ;W20)|ν=1 =
1∫

0

π∫
0

τ(r, θ)rdrdθ −
1∫

0

2π∫
π

τ(r, θ)rdrdθ (4.30)

The normalized Intensity distribution is:

IN (p, ζ ;W20)|ν=1 = I (p, ζ ;W20)|ν=1

I (0, 0;W20)|ν=1
=

∣∣ A(p, ζ ;W20)|ν=1

∣∣2
| A(0, 0;W20)|ν=1|2

(4.31)

Fig. 4.4 Synthesis of first
order azimuthal Walsh
function, W1(θ) using Walsh
Block functions, Bi

1(θ) and
Bi

2(θ), where i = 2
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Case 3: Second order azimuthal Walsh filter, W2(θ)

For second order azimuthal Walsh filter, ν = 2; M = 2α|α=2 = 4; m = 1, 2, 3, 4;
and hence,

Wν(θ)|ν=2 = W2(θ) =
4∑

m=1

eikψmBM
m (θ)

W2(θ) = eikψ1B4
1(θ) + eikψ2B4

2(θ) + eikψ3B4
3(θ) + eikψ4B4

4(θ) (4.32)

W2(θ) is expressed as a summation of four azimuthal Walsh Block functions,
B4

1(θ), B4
2(θ), B4

3(θ) and B4
4(θ) defined by:

BM
m (θ) = +1,

(m − 1)

M
2π ≤ θ ≤ m

M
2π

= 0, otherwise (4.33)

Also, over m = 1 sector, the value of W2(θ) is +1, so the value of kψ1 = 0; over
m = 2 sector, W2(θ) is −1 and kψ2 = π ; over m = 3 sector, the value of W2(θ) is
−1 and kψ3 = π ; and over m = 4 sector, W2(θ) is +1 and kψ4 = 0.

Substituting the values of kψ1, kψ2, kψ3, kψ4 and BM
m (θ) ‘s evaluated from

Eq. (4.33) in Eq. (4.32) and we can write:

W2(θ) = B4
1(θ) − B4

2(θ) − B4
3(θ) + B4

4(θ) (4.34)

The synthesis of W2(θ) from azimuthal Walsh Block functions BM
m (θ) where

M = 4 and m = 1, 2, 3, 4 is schematically represented in Fig. 4.5. The complex
amplitude distribution at the shifted image plane is,

Fig. 4.5 Synthesis of second
order azimuthal Walsh
function, W2(θ) using Walsh
Block functions
Bi

1(θ),Bi
2(θ),Bi

3(θ),Bi
4(θ),

where i = 4
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A(p, ζ ;W20)|ν=2 =
1∫

0

π/2∫
0

τ(r, θ)rdrdθ −
1∫

0

π∫
π/2

τ(r, θ)rdrdθ

−
1∫

0

3π/2∫
π

τ(r, θ)rdrdθ +
1∫

0

2π∫
3π/2

τ(r, θ)rdrdθ (4.35)

The normalized intensity distribution at that plane is:

IN (p, ζ ;W20)|ν=2 = I (p, ζ ;W20)|ν=2

I (0, 0;W20)|ν=2
=

∣∣ A(p, ζ ;W20)|ν=2

∣∣2
| A(0, 0;W20)|ν=2|2

(4.36)

Case 4: Third order azimuthal Walsh filter, W3(θ)

Third order azimuthal Walsh filter can be synthesized by defining the parameters,
ν = 3; M = 2α|α=2 = 4; m = 1, 2, 3, 4; and hence:

Wν(θ)|ν=3 = W3(θ) =
4∑

m=1

eikψmBM
m (θ)

=> W3(θ) = eikψ1B4
1(θ) + eikψ2B4

2(θ) + eikψ3B4
3(θ) + eikψ4B4

4(θ) (4.37)

W3(θ) is expressed as summation of four azimuthal Walsh Block functions,
B4

1(θ), B4
2(θ), B4

3(θ) and B4
4(θ) as shown in Exp. (4.37).

In this case, over the first sector, the value ofW3(θ) is+1, so the value of kψ1 = 0;
over the second sector, the value ofW3(θ) is−1 and hence kψ2 = π ; over third sector,
the value of W3(θ) is +1 and hence kψ3 = 0; and over fourth sector, the value of
W3(θ) is −1 resulting the value of kψ4 = π .

Substituting the values of kψ1, kψ2, kψ3, kψ4 and BM
m (θ)‘s evaluated from

Eq. (4.33), into Eq. (4.37), we can write:

W3(θ) = B4
1(θ) − B4

2(θ) + B4
3(θ) − B4

4(θ) (4.38)

The synthesis of W3(θ) from azimuthal Walsh Block functions BM
m (θ) where M

= 4 and m = 1, 2, 3, 4 is schematically represented in Fig. 4.6.
Therefore, complex amplitude distribution at the shifted image plane due toW3(θ)

on exit pupil plane can be expressed as,
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Fig. 4.6 Synthesis of third
order azimuthal Walsh
function W3(θ) using
azimuthal Walsh Block
functions
Bi

1(θ),Bi
2(θ),Bi

3(θ),Bi
4(θ),

where i = 4

A(p, ζ ;W20)|ν=3 =
1∫

0

π/2∫
0

τ(r, θ)rdrdθ −
1∫

0

π∫
π/2

τ(r, θ)rdrdθ

+
1∫

0

3π/2∫
π

τ(r, θ)rdrdθ −
1∫

0

2π∫
3π/2

τ(r, θ)rdrdθ (4.39)

The corresponding normalized intensity distribution at that plane is:

IN (p, ζ ;W20)|ν=3 = I (p, ζ ;W20)|ν=3

I (0, 0;W20)|ν=3
=

∣∣ A(p, ζ ;W20)|ν=3

∣∣2
| A(0, 0;W20)|ν=3|2

(4.40)

In this section, azimuthal Walsh filters Wν(θ) of orders ν = 0, 1, 2, 3 have been
synthesized usingWalsh Block functionsBM

m (θ) and shown both analytically as well
as pictorially with M = 2α , the largest power of 2 that just exceeds ν and m = 1, …,
M, the number of sectors by which the filter is constituted.

4.4 Evaluation of Integral Using the Concept of Concentric
Equal Area Zones of Azimuthal Walsh Filters

To evaluate the integral in Eq. (4.22) namely,



4.4 Evaluation of Integral Using the Concept … 67

A(p, ζ ;W20)|ν=0 =
1∫

0

2π∫
0

exp
[
ikW20r

2
]
exp[i pr cosω]rdrdθ (4.22)

where ω = θ − ζ , the following method of separation of integrands of variables r
and θ has been adopted.

Re-arranging Eq. (4.22), we can write:

A(p, ζ ) =
1∫

0

exp
[
ikW20r

2
]
⎧⎨
⎩

2π∫
0

exp[i pr cos(θ − ζ )]dθ

⎫⎬
⎭rdr (4.41)

Defining r2 = t , so that 2rdr = dt and substituting in Eq. (4.41) we have:

A(p, ζ ) = 1

2

1∫
0

exp[ikW20t]

⎧⎨
⎩

2π∫
0

exp
[
i p

√
t cos(θ − ζ )

]
dθ

⎫⎬
⎭dt (4.42)

Defining I as:

I = exp(ig(t)) =
2π∫
0

exp
[
i p

√
t cos(θ − ζ )

]
dθ (4.43)

and putting in Eq. (4.42), the complex amplitude distribution at the shifted image
plane can be further simplified as:

A(p, ζ ) = 1

2

1∫
0

exp[i{kW20t + g(t)}]dt (4.44)

To evaluate the integral I in Eq. (4.43), a set of values of reduced coordinates at
the image plane (pm, ζn) has been defined and for these values I = I1 takes the form
as:

I1 = exp(ig(t)) =
2π∫
0

exp
[
i pm

√
t cos(θ − ζn)

]
dθ (4.45)

For better accuracy of results, each of the M zones of the pupil will be subdivided
into L number of equal area subzones such that the whole exit pupil has = ML
number of equal area concentric zones. For each of these sub zones having outer and
inner radii r1 and r2, the value of r� can be evaluated as:
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r� = r1 + �.
r2 − r1

L (4.46)

where = 0, 1,…, L.
We have divided the exit pupil zone in = 29 = 512 numbers and the integration

has been carried out for 512 values of t� = √
r� and the result has been stored within,

(4.47)

The integration in Exp. (4.47) is reduced to a single variable integrand, θ and it
has been evaluated within the specified domain of (0, 2π).

AzimuthalWalsh filtersWν(θ) are synthesized and the corresponding 2D normal-
ized intensity distributions along the transverse planes shifted from the focal plane
have been calculated analytically and are plotted for orders, ν = 0, 1, 2, …, 7 and are
presented in the following section. The results are validated with the known result
of Airy pupil.

4.5 Illustrative Results with Discussion

4.5.1 Intensity Distributions in the Far-Field Region for Zero
Order Azimuthal Walsh Filters

Intensity distribution at the far-field plane due to azimuthalWalsh filters of order zero
placed at the exit pupil plane of a rotationally symmetric imaging system corresponds
to that due to the Airy pupil as shown in Fig. 2.12. The intensity at the origin of the
far-field plane is maximum and the intensity distribution along the axis is symmetric
around the far-field plane.

The variation of intensity of the centre of the diffraction pattern for zero order
azimuthalWalshfilter placedon the exit pupil plane, at different longitudinally shifted
image planes along the far-field region, has been calculated and plotted against the
defocus aberration term, W20 and is shown in Fig. 4.7.

The values of W20 considered here, are ranging from −5 to +5 with succes-
sive steps of 0.5, where the intensity is seen to be completely exhausted beyond
W20 = ±5. The graph shows evidence of defocusing of Airy pupil or the well-known
phenomenon of Fresnel diffraction at the vicinity of the focal plane.
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Fig. 4.7 Axial variation of centre of the diffraction patterns for zero order azimuthalWalsh function,
at shifted transverse planes, with defocusing aberration term, W20 ranging from −5 to +5

4.5.2 Intensity Distributions in the Far-Field Region
for Higher Order Azimuthal Walsh Filters

With computational results for zero order azimuthal Walsh filters exactly matching
with the existing results for Airy pupil, we have proceeded for computation of inten-
sity point spread functions for higher order azimuthal Walsh filters Wν(θ), for order
ν = 1, 2, . . . , 7, taking into consideration of defocus aberration term W20 varying
from −5 ≤ W20 ≤ 0 and 0 ≤ W20 ≤ +5 with successive steps of 0.5. Tables 4.1,
4.2, 4.3, 4.4, 4.5, 4.6 and 4.7 represent the polar plots of 2D IPSF, contour IPSF and
snapshots of 3D IPSFs generated analytically from 2D intensity distributions due to
azimuthal Walsh filters Wν(θ) for orders ν = 1, 2, 3, 4, 5, 6 and 7 respectively, for
defocus aberration term W20 varying from 0 ≤ W20 ≤ +5, i.e., moving away from
the far-field plane in the (+)ve direction.

The results presented above for higher order azimuthal Walsh filters for 0 ≤
W20 ≤ +5 are found to be exactly similar to those calculated for variation of defocus
aberration termW20 from −5 ≤ W20 ≤ 0, i.e., moving away from the far-field plane
in the (−)ve direction.An inspection to the tables above reveals that the axial intensity
on the far-field plane is zero for all orders and the intensity distribution along the
axis is asymmetric. It is also observed that the intensity distributions along transverse
planes spread out with the increase in the value of W20.
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Table 4.1 PSFs due toW1(θ) on transverse planes axially shifted in the (+) ve direction away from
the far-field plane, i.e. for 0 ≤ W20 ≤ +5

4.6 Intensity Distributions on Transverse Planes Very Near
to the Focus with Azimuthal Walsh Filters

The light distributions in the immediate vicinity of the focal plane of the rotationally
symmetric imaging system under consideration, with azimuthal Walsh filters Wν(θ)

of orders, ν = 1, 2, 3, 4, . . . , 7 placed on the exit pupil plane (refer to Fig. 4.1) are
studied to observe the more accurate effect of wavefront aberration on diffraction
pattern and are presented below.



4.6 Intensity Distributions on Transverse Planes Very Near … 71

Table 4.2 PSFs due toW2(θ) on transverse planes axially shifted in the (+) ve direction away from
the far-field plane, i.e. for 0 ≤ W20 ≤ +5

Azimuthal Walsh Filter :: Order : 2  

W20 2D  IPSF Contour IPSF 3D  View of IPSF Rotated 3D View of IPSF
0

 1

2 

3 

4 

5 

Near field intensity distribution in the immediate vicinity of the focal plane for
Wν(θ), for order ν = 1, placed on the exit pupil plane has been calculated and
presented in Tables 4.8 and 4.9 for 0 ≤ W20 ≤ +1.25 and +1.5 ≤ W20 ≤ +2
respectively in successive smaller steps of 0.25 to capture the minute variation of
intensity distribution due to corresponding change in defocus Aberration, W20.

Tables 4.10 and 4.11 present polar plots of 2D IPSF, contour IPSF and snapshots of
3D IPSF and rotated view at the near focus transverse planes, showing zero intensity
at the centre of the intensity distribution for second order azimuthal Walsh filter,
W2(θ), for 0 ≤ W20 ≤ +1.25, and+1.5 ≤ W20 ≤ +2, with successive smaller steps
of 0.25.



72 4 Transverse Intensity Distribution in the Far-Field Region …

Table 4.3 PSFs due toW3(θ) on transverse planes axially shifted in the (+) ve direction away from
the far-field plane, i.e. for 0 ≤ W20 ≤ +5

Azimuthal Walsh Filter :: Order : 3  

W20 2D  IPSF Contour IPSF 3D  View of IPSF Rotated 3D View of IPSF
0

 1

2 

3 

4 

5 

As per Tables 4.12 and 4.13, the axial intensity on the far-field plane for W3(θ) is
zero and the intensity distribution along the axis is asymmetric around the far-field
plane as in W2(θ) and W1(θ). The intensity distribution along the axis is same for
both+�Z and−�Z, where+�Z represents axial shift of the transverse plane along
the (+)ve direction and −�Z is the corresponding shift along the (−)ve direction
of the far-field plane, considering the position of focal plane at the centre of the
coordinate system.
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Table 4.4 PSFs due toW4(θ) on transverse planes axially shifted in the (+) ve direction away from
the far-field plane, i.e. for 0 ≤ W20 ≤ +5

Azimuthal Walsh Filter :: Order : 4  

W20 2D  IPSF Contour IPSF 3D  View of IPSF Rotated 3D View of IPSF
0

 1

2 

3 

4 

5 

Tables 4.14 and 4.15 present the near field intensity distributions for fourth order
azimuthal Walsh filter W4(θ), placed on the exit pupil plane of the rotationally
symmetric imaging system under consideration, has been calculated and presented
for different values of defocus aberration termW20 varying from 0 ≤ W20 ≤ +1.25
and 1.5 ≤ W20 ≤ +2 respectively.
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Table 4.5 PSFs due toW5(θ) on transverse planes axially shifted in the (+) ve direction away from
the far-field plane, i.e. for 0 ≤ W20 ≤ +5

Azimuthal Walsh Filter :: Order : 5 

W20 2D  IPSF Contour IPSF 3D  View of IPSF Rotated 3D View of IPSF
0

 1

2 

3 

4 

5 

Tables 4.16 and 4.17 present polar plots of 2D IPSF, contour IPSF, 3D IPSF and
rotated view of 3D IPSF at the near focus transverse planes, showing zero intensity at
the centre of the intensity distribution for fifth order azimuthalWalsh filterW5(θ), for
variation of defocus aberration termW20 as 0 ≤ W20 ≤ +1.25 and 1.5 ≤ W20 ≤ +2,
respectively, with successive steps of 0.25.
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Table 4.6 PSFs due toW6(θ) on transverse planes axially shifted in the (+) ve direction away from
the far-field plane, i.e. for 0 ≤ W20 ≤ +5

Azimuthal Walsh Filter :: Order : 6 

W20 2D  IPSF Contour IPSF 3D  View of IPSF Rotated 3D View of IPSF
0

 1

2 

3 

4 

5 

Tables 4.18 and 4.19 present polar plots of 2D IPSF, contour IPSF, 3D IPSF and
rotated view of 3D IPSF at the near focus transverse planes, showing zero intensity at
the centre of the intensity distribution for sixth order azimuthalWalsh filterW6(θ), for
variation of defocus aberration term W20 as 0 ≤ W20 ≤ +1 and 1.25 ≤ W20 ≤ +2,
respectively, with successive steps of 0.25.
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Table 4.7 PSFs due toW7(θ) on transverse planes axially shifted in the (+) ve direction away from
the far-field plane, i.e. for 0 ≤ W20 ≤ +5

Azimuthal Walsh Filter :: Order : 7 

W20 2D  IPSF Contour IPSF 3D  View of IPSF Rotated 3D View of IPSF
0

 1

2 

3 

4 

5 

Tables 4.20 and 4.21 present polar plots of 2D IPSF, contour IPSF, 3D IPSF and
rotated view of 3D IPSF at the near focus transverse planes, for W7(θ), for variation
of defocus aberration term W20 as 0 ≤ W20 ≤ +1.25 and +1.5 ≤ W20 ≤ +2
respectively, with successive steps of +0.25.
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Table 4.8 PSFs due toW1(θ) on transverse planes axially shifted in the (+) ve direction away from
the far-field plane, i.e. for 0 ≤ W20 ≤ +1.25

Azimuthal Walsh Order : 1 

W20 2D  IPSF Contour IPSF 3D  View of IPSF Rotated 3D View of IPSF
0

0.25

0.5 

0.75 

1

1.25 

It is calculated that the change in diffraction pattern due to change in the values of
W20 from −2 ≤ W20 ≤ 0 is exactly same as that due to change in the values ofW20

as 0 ≤ W20 ≤ +2. This means the diffraction pattern on the near focal transverse
planes changes in the same way as one proceed away from the far-field plane along
the (+) ve or (−) ve direction.



78 4 Transverse Intensity Distribution in the Far-Field Region …

Table 4.9 PSFs due toW1(θ) on transverse planes axially shifted in the (+) ve direction away from
the far-field plane, i.e. for 0 ≤ W20 ≤ +2

Azimuthal Walsh Order : 1 

W20 2D  IPSF Contour IPSF 3D  View of IPSF Rotated 3D View of IPSF
0

1.5

1.75 

2 

So, it is apparent that light can be efficiently sculpted around the far-field region
of the rotationally symmetric imaging system (refer to Fig. 4.1) with azimuthal
Walsh filters at the exit pupil plane. This can be efficiently used to form gradient
force trap required for conventional as well as plasmonic optical tweezers [2–5]
for manipulating objects of size comparable to a single atom to 100 μm without
mechanical contact.
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Table 4.10 PSFs due to W2(θ) on transverse planes axially shifted in the (+) ve direction away
from the far-field plane, i.e. for 0 ≤ W20 ≤ 1.25

Azimuthal Walsh Filter :: Order : 2  

W20 2D  IPSF Contour IPSF 3D  View of IPSF Rotated 3D View of IPSF
0

0.25

0.5 

0.75 

1 

1.25 
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Table 4.11 PSFs due to W2(θ) on transverse planes axially shifted in the (+) ve direction away
from the far-field plane, i.e. for 0 ≤ W20 ≤ +2

Azimuthal Walsh Filter :: Order : 2  

W20 2D  IPSF Contour IPSF 3D  View of IPSF Rotated 3D View of IPSF
0

1.50

1.75

2 
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Table 4.12 PSFs due to W3(θ) on transverse planes axially shifted in the (+) ve direction away
from the far-field plane, i.e. for 0 ≤ W20 ≤ +1.25

Azimuthal Walsh Filter :: Order : 3  

W20 2D  IPSF Contour IPSF 3D  View of IPSF Rotated 3D View of IPSF
0

0.25

0.5 

0.75 

1 

1.25 
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Table 4.13 A PSFs due to W3(θ) on transverse planes axially shifted in the (+) ve direction away
from the far-field plane, i.e. for 0 ≤ W20 ≤ +2

Azimuthal Walsh Filter :: Order : 3  

W20 2D  IPSF Contour IPSF 3D  View of IPSF Rotated 3D View of IPSF
0

 1.5

1.75 

2 
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Table 4.14 PSFs due to W4(θ) on transverse planes axially shifted in the (+) ve direction away
from the far-field plane, i.e. for 0 ≤ W20 ≤ +1.25

Azimuthal Walsh Filter :: Order : 4  

W20 2D  IPSF Contour IPSF 3D  View of IPSF Rotated 3D View of IPSF
0

0.25

0.50 

0.75 

1 

1.25 
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Table 4.15 PSFs due to W4(θ) on transverse planes axially shifted in the (+) ve direction away
from the far-field plane, i.e. for 0 ≤ W20 ≤ +2

Azimuthal Walsh Filter :: Order : 4  

W20 2D  IPSF Contour IPSF 3D  View of IPSF Rotated 3D View of IPSF
0

 1.5

1.75 

2 
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Table 4.16 PSFs due to W5(θ) on transverse planes axially shifted in the (+) ve direction away
from the far-field plane, i.e. for 0 ≤ W20 ≤ +1.25

Azimuthal Walsh Filter :: Order : 5 

W20 2D  IPSF Contour IPSF 3D  View of IPSF Rotated 3D View of IPSF
0

0.25

0.5 

0.75 

1 

1.25 
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Table 4.17 PSFs due to W5(θ) on transverse planes axially shifted in the (+) ve direction away
from the far-field plane, i.e. for 0 ≤ W20 ≤ +2

Azimuthal Walsh Filter :: Order : 5 

W20 2D  IPSF Contour IPSF 3D  View of IPSF Rotated 3D View of IPSF
0

1.50

1.75 

2 
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Table 4.18 PSFs due to W6(θ) on transverse planes axially shifted in the (+) ve direction away
from the far-field plane, i.e. for 0 ≤ W20 ≤ +1.25

Azimuthal Walsh Filter :: Order : 6 

W20 2D  IPSF Contour IPSF 3D  View of IPSF Rotated 3D View of IPSF
0

0.25

0.5 

0.75 

1 

1.25 
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Table 4.19 PSFs due to W6(θ) on transverse planes axially shifted in the (+) ve direction away
from the far-field plane, i.e. for 0 ≤ W20 ≤ +2

Azimuthal Walsh Filter :: Order : 6 

W20 2D  IPSF Contour IPSF 3D  View of IPSF Rotated 3D View of IPSF
0

 1.5

1.75 

2 
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Table 4.20 PSFs due to W7(θ) on transverse planes axially shifted in the (+) ve direction away
from the far-field plane, i.e. for 0 ≤ W20 ≤ +5

Azimuthal Walsh Filter :: Order : 7 

W20 2D  IPSF Contour IPSF 3D  View of IPSF Rotated 3D View of IPSF
0

0.25

0.5 

0.75 

1 

1.25 
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Table 4.21 PSFs due to W7(θ) on transverse planes axially shifted in the (+) ve direction away
from the far-field plane, i.e. for 0 ≤ W20 ≤ +2

Azimuthal Walsh Filter :: Order : 7 

W20 2D  IPSF Contour IPSF 3D  View of IPSF Rotated 3D View of IPSF
0

 1.5

1.75

2 
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Chapter 5
Self-Similarity in Transverse Intensity
Distributions in the Far-Field Region
of Self-Similar Azimuthal Walsh Filters

5.1 Introduction

Self-similarity in transverse intensity distributions on the far-field plane has been
observed within self-similar members of distinct groups and subgroups of azimuthal
Walsh filters [1, 2] and it has been illustrated and discussed extensively in Chap. 3.
Self-similarity has also been observed in the transverse intensity distributions at
shifted image planes along the far-field region by themembers of self-similar Groups
and Sub-Groups of azimuthal Walsh filters. Azimuthal Walsh filters of self-similar
group members are placed on the exit pupil of a rotationally symmetric imaging
system (Fig. 4.1) and the normalized intensity distributions on longitudinally shifted
image planes from the paraxial focal plane are computed. The image planes are
shifted longitudinally from the paraxial focal plane or far-field plane by an actual
amount �Z, which causes defocus or ‘Depth of Focus’ aberration represented by
the term W20. W20 is a measure of asphericity of the image forming wavefront as
shown in Fig. 4.2. Transverse intensity distributions at shifted image planes, around
the far-field plane, for self-similar members of azimuthal Walsh filters Wν(θ), for
orders ν = 1, 2, 3, . . ., have been calculated and presented in this chapter group
and sub-group-wise and for different values of defocus aberration term W20, within
ranges −5 ≤ W20 ≤ 0 and 0 ≤ W20 ≤ +5 with a regular interval of ±1.
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5.2 Self-Similarity in Transverse Intensity Distributions
in the Far-Field Region for Group I Self-Similar
Members of Azimuthal Walsh Filters

Azimuthal Walsh filters of Group I consisting of orders 1, 3, 7, … observed to
produce self-similar transverse intensity distributions around the far-field region,
when calculated for any particular azimuth. Transverse intensity distributions around
the far-field plane due to Group I self-similar members, for a particular azimuth,
ζ = 0 taking into consideration of defocus aberration term W20 within the ranges
of 0 ≤ W20 ≤ +5 and −5 ≤ W20 ≤ 0 have been illustrated in this section. The
axial intensity on the shifted image planes is observed to be zero. In absence of
defocus aberration term, i.e., for W20 = 0, at the far-field plane, the transverse
intensity distributions at shifted image planes, due to self-similar members of Group
I azimuthal Walsh filters, for orders ν = 1, 3 and 7 are illustrated in Fig. 5.1a–c
respectively, for azimuth ζ = 0.

In absence of defocus,W20 = 0 i.e., on the far-field plane, the normalized intensity
distributions exhibited by Group I self-similar members of azimuthal Walsh filters
show self-similar pattern with central minima. The central minima widen with the
increase of order number, ν. The intensity of the side lobes increaseswith the increase
of ν of the members of Group I as observed for azimuth, ζ = 0.

Fig. 5.1 a–c Transverse intensity distributions at far-field plane, whereW20 = 0 due to self-similar
members of Group I azimuthal Walsh filters for orders, ν = 1, 3, 7 respectively, for any particular
azimuth, ζ = 0
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5.2.1 Study of Self-Similarity on Transverse Image Planes
Shifted Towards Right or (+)ve Side of Far-Field Plane

Study of self-similarity in the transverse intensity distributions on the longitudi-
nally shifted image planes from the far-field plane by an amount +�Z, where +�Z
represents longitudinal shift of the image plane from the far-field plane along (+)ve
direction, has been presented in this section. The corresponding defocus or ‘Depth
of Focus’ aberration term W20 in this region has been considered to be within the
range 0 ≤ W20 ≤ +5 with successive steps of 1.

Case 1: For W 20 = 1
For the value of defocus aberration term W20 = 1, the transverse intensity distribu-
tions due to Group I self-similar members of azimuthal Walsh filters for orders ν =
1, 3 and 7 are illustrated in Fig. 5.2a–c respectively for azimuth, ζ = 0.

Case 2: For W 20 = 2
For the value of defocus aberration term W20 = 2, the transverse intensity distribu-
tions due to self-similar members of Group I azimuthal Walsh filters for orders ν =
1, 3 and 7 are illustrated in Fig. 5.3a–c respectively, for azimuth ζ = 0.

Fig. 5.2 a–c Transverse intensity distributions at shifted image plane towards the (+)ve side of the
far-field plane with W20 = 1, due to self-similar members of Group I azimuthal Walsh filters, for
orders, ν = 1, 3 and 7 respectively, for any particular azimuth, ζ = 0
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Fig. 5.3 a–c Transverse intensity distributions at shifted image plane with W20 = 2, due to self-
similar members of Group I azimuthal Walsh filters for orders, ν = 1, 3 and 7 respectively, for any
particular azimuth ζ = 0

Case 3: For W 20 = 3
For the value of defocus aberration term W20 = 3, the transverse intensity distribu-
tions due to self-similar members of Group I azimuthal Walsh filters for orders, ν =
1, 3 and 7 are illustrated in Fig. 5.4a–c respectively, for azimuth ζ = 0.

Case 4: For W 20 = 4
For a defocus aberration term W20 = 4, the transverse intensity distributions due to
self-similar members of Group I azimuthal Walsh filters for orders ν = 1, 3 and 7
are illustrated in Fig. 5.5a–c respectively, for azimuth ζ = 0.

Case 5: For W 20 = 5
For defocus aberration termW20 = 5, the transverse intensity distributions at shifted
image plane due to self-similarmembers ofGroup I azimuthalWalsh filters for orders
ν = 1, 3 and 7 are illustrated in Fig. 5.6a–c respectively, for azimuth ζ = 0.
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Fig. 5.4 a-c Transverse intensity distributions at shifted image plane with W20 = 3, due to self-
similar members of Group I azimuthal Walsh filters for orders, ν = 1, 3 and 7 respectively, for any
particular azimuth ζ = 0

Fig. 5.5 a–c Transverse intensity distributions at shifted image plane with W20 = 4, due to self-
similar members of Group I azimuthal Walsh filters for orders, ν = 1, 3 and 7 respectively, for any
particular azimuth ζ = 0
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Fig. 5.6 a–c Transverse intensity distributions at shifted image plane with W20 = 5, due to self-
similar members of Group I azimuthal Walsh filters for orders, ν = 1, 3 and 7 respectively, for any
particular azimuth ζ = 0

5.2.2 Study of Self-Similarity on Transverse Image Planes
Shifted Towards Left or (-)ve Side of Far-Field Plane

Study of self-similarity in the transverse intensity distributions on the longitudinally
shifted image planes from the far-field plane by an amount—�Z, where—�Z repre-
sents longitudinal shift of the image planes from the far-field plane along (−)ve
direction or towards the left, has been presented in this section. The corresponding
defocus or ‘Depth of Focus’ aberration term W20 in this region has been considered
to be within the range −5 ≤ W20 ≤ 0 with successive steps of −1.

Case 1: For W 20 = −1
For a defocus aberration term W20 = −1, the transverse intensity distributions due
to Group I members of azimuthal Walsh filters for orders ν = 1, 3 and 7 and for
azimuth ζ = 0 are illustrated in Fig. 5.7a–c respectively.

Case 2: For W 20 = −2
For a defocus aberration term W20 = −2, the transverse intensity distributions due
to Group I members of azimuthal Walsh filters for orders ν = 1, 3 and 7 and for
azimuth ζ = 0 are illustrated in Fig. 5.8a–c respectively.
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Fig. 5.7 a–c Transverse intensity distributions at shifted image plane with W20 = −1, due to
self-similar members of Group I azimuthal Walsh filters for orders, ν = 1, 3 and 7 respectively, for
azimuth, ζ = 0

Fig. 5.8 a–c Transverse intensity distributions at shifted image plane with W20 = −2, due to
self-similar members of Group I azimuthal Walsh filters for orders, ν = 1, 3 and 7 respectively, for
azimuth, ζ = 0
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Fig. 5.9 a–c Transverse intensity distributions at shifted image plane with W20 = −3, due to
self-similar members of Group I azimuthal Walsh filters for orders, ν = 1, 3 and 7 respectively, for
azimuth, ζ = 0

Case 3: For W 20 = −3
For a defocus aberration term W20 = −3, the transverse intensity distributions due
to Group I members of azimuthal Walsh filters for orders ν = 1, 3 and 7 and for
azimuth ζ = 0 are illustrated in Fig. 5.9a–c respectively.

Case 4: For W 20 = −4
For a defocus aberration term W20 = −4, the transverse intensity distributions due
to Group I members of azimuthal Walsh filters for orders ν = 1, 3 and 7 and for
azimuth ζ = 0 are illustrated in Fig. 5.10a–c respectively.

Case 5: For W 20 = −5
For a defocus aberration term W20 = −5, the transverse intensity distributions due
to Group I members of azimuthal Walsh filters for orders ν = 1, 3 and 7 and for
azimuth ζ = 0 are illustrated in Fig. 5.11a–c respectively.

It is observed from Figs. 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10 and 5.11 that self-
similarmembers ofGroup I azimuthalWalshfilters exhibit self-similarity in the trans-
verse intensity distributions while computed on shifted image planes around far-field
region. It is further observed that as the order ν increases, the self-similar intensity
distributions show wider central minima. As the shift in image plane �Z increases
with an increase in the corresponding wavefront aberration termW20, for any partic-
ular order ν, the ripples or noise increases resulting in defocusing in the corre-
sponding intensity distribution function. It is further observed that the self-similar
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Fig. 5.10 a–c Transverse intensity distributions at shifted image plane with W20 = −4, due to
self-similar members of Group I azimuthal Walsh filters for orders, ν = 1, 3 and 7 respectively, for
azimuth, ζ = 0

Fig. 5.11 a–c Transverse intensity distributions at shifted image plane with W20 = −5, due to
self-similar members of Group I azimuthal Walsh filters for orders, ν = 1, 3 and 7 respectively, for
azimuth, ζ = 0
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intensity distributions are exactly identical for image planes shifted longitudinally
by an amount +�Z or −�Z, for any particular order ν.

5.3 Self-Similarity in Transverse Intensity Distributions
in the Far-Field Region for Group IIA Self-Similar
Members of Azimuthal Walsh Filters

Azimuthal Walsh filters of Group IIA consisting of orders, ν = 2, 4, … are observed
to produce self-similar transverse intensity distributions around the far-field region,
when computed for any particular azimuth. Transverse intensity distributions around
the far-field plane due to Group IIA self-similar members, for a particular azimuth,
ζ = 0, taking into consideration of defocus aberration term W20 within the ranges
of 0 ≤ W20 ≤ +5 and −5 ≤ W20 ≤ 0 have been illustrated in this section. The axial
intensity on the shifted image planes is observed to be zero as observed in case of
Group I self-similar members.

In absence of defocus aberration term, W20 = 0, at the far-field plane, the trans-
verse intensity distributions, due to self-similar members of Group II A azimuthal
Walsh filters, for orders ν = 2, 4, …, calculated for azimuth ζ = 0, are illustrated
in Fig. 5.12a, b respectively. It is seen from Fig. 5.12 that for W20 = 0 i.e., on the
far-field plane, the normalized intensity distributions exhibited by Group IIB self-
similar members of azimuthal Walsh filters show self-similar pattern with sudden
central dip or minima. The dip widens with the increase of order number, ν.

5.3.1 Study of Self-Similarity on Transverse Image Planes
Shifted Towards Right or (+)ve Side of Far-Field Plane

Study of self-similarity in transverse intensity distributions on the longitudinally
shifted image planes from the far-field plane, by an amount +�Z, where +�Z
represents longitudinal shift of the image plane from the far-field plane along (+)ve
direction, has been presented in this section. The corresponding defocus or ‘Depth of
Focus’ aberration term W20 in this region has been within the range 0 ≤ W20 ≤ +5
with successive steps of 1.

Case 1: For W 20 = 1
For the value of defocus aberration term W20 = 1, the transverse intensity distribu-
tions due to Group IIA self-similar members of azimuthal Walsh filters for orders ν

= 2 and 4 are illustrated in Fig. 5.13a, b respectively, for azimuth ζ = 0.
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Fig. 5.12 a, b Transverse intensity distributions with W20 = 0, due to self-similar members of
Group IIA for orders, ν = 2, 4, … respectively, for azimuth ζ = 0

Case 2: For W 20 = 2
For the value of defocus aberration term W20 = 2, the transverse intensity distribu-
tions due to Group IIA self-similar members of azimuthal Walsh filters for orders ν

= 2 and 4 are illustrated in Fig. 5.14a, b respectively, for azimuth ζ = 0.

Case 3: For W 20 = 3
For the value of defocus aberration term W20 = 3, the transverse intensity distribu-
tions due to Group IIA self-similar members of azimuthal Walsh filters for orders ν

= 2 and 4 are illustrated in Fig. 5.15a, b respectively, for azimuth ζ = 0.

Case 4: For W 20 = 4
For the value of defocus aberration term W20 = 4, the transverse intensity distribu-
tions due to Group IIA self-similar members of azimuthal Walsh filters for orders ν

= 2 and 4 are illustrated in Fig. 5.16a, b respectively, for azimuth ζ = 0.
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Fig. 5.13 a, b Transverse intensity distributions at shifted image planes around far-field region,
with W20 = 1, due to self-similar members of Group IIA for orders, ν = 2, 4, … respectively, for
azimuth ζ = 0

Case 5: For W 20 = 5
For the value of defocus aberration term W20 = 5, the transverse intensity distribu-
tions due to Group IIA self-similar members of azimuthal Walsh filters for orders ν

= 2 and 4 are illustrated in Fig. 5.17a, b respectively, for azimuth ζ = 0.

5.3.2 Study of Self-Similarity on Transverse Image Planes
Shifted Towards Left or (-)ve Side of Far-Field Plane

Study of self-similarity in the transverse intensity distributions on the longitudinally
shifted image planes from the far-field plane, by an amount—�Z, where—�Z repre-
sents the longitudinal shift of the image planes from the far-field plane along (-)ve
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Fig. 5.14 a, b Transverse intensity distributions at shifted image planes around far-field region,
with W20 = 2, due to self-similar members of Group IIA for orders, ν = 2, 4, … respectively, for
azimuth ζ = 0

direction or towards the left, has been presented in this section. The corresponding
defocus or ‘Depth of Focus’ aberration term W20 has been considered to be within
the range of −5 ≤ W20 ≤ 0 with successive steps of −1.

Case 1: For W 20 = −1
For a defocus aberration term W20 = −1, the transverse intensity distributions due
to Group IIA members of azimuthal Walsh filters for orders ν = 2 and 4 and for
azimuth ζ = 0, are illustrated in Fig. 5.18a, b respectively.

Case 2: For W 20 = −2
For a defocus aberration term W20 = −2, the transverse intensity distributions due
to Group IIA members of azimuthal Walsh filters for orders ν = 2 and 4 and for
azimuth ζ = 0, are illustrated in Fig. 5.19a, b respectively.
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Fig. 5.15 a, b Transverse intensity distributions at shifted image planes around far-field region,
with W20 = 3, due to self-similar members of Group IIA for orders, ν = 2, 4, … respectively, for
azimuth ζ = 0

Case 3: For W 20 = −3
For a defocus aberration term W20 = −3, the transverse intensity distributions due
to Group IIA members of azimuthal Walsh filters for orders ν = 2 and 4 and for
azimuth ζ = 0, are illustrated in Fig. 5.20a, b respectively.

Case 4: For W 20 = −4
For a defocus aberration term W20 = −4, the transverse intensity distributions due
to Group IIA members of azimuthal Walsh filters for orders ν = 2 and 4 and for
azimuth ζ = 0, are illustrated in Fig. 5.21a, b respectively.

Case 5: For W 20 = −5
For a defocus aberration term W20 = −5, the transverse intensity distributions due
to Group IIA members of azimuthal Walsh filters for orders ν = 2 and 4 and for
azimuth ζ = 0, are illustrated in Fig. 5.22a, b respectively.
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Fig. 5.16 a, b Transverse intensity distributions at shifted image planes around far-field region,
with W20 = 4, due to self-similar members of Group IIA for orders, ν = 2, 4, … respectively, for
azimuth ζ = 0

It is observed fromFigs. 5.13, 5.14, 5.15, 5.16, 5.17, 5.18, 5.19, 5.20, 5.21 and 5.22
that self-similarmembers ofGroup II B azimuthalWalsh filters exhibit self-similarity
in the transverse intensity distributions computed on shifted image planes around
far-field region. It is further observed that as the order ν increases, the self-similar
intensity distributions show wider central minima. As the shift in image plane �Z
increaseswith an increase in the correspondingwavefront aberration termW20 for any
particular order ν, the ripples or noise increases resulting in defocusing in the corre-
sponding intensity distribution function. It is further observed that the self-similar
intensity distributions are exactly identical for image planes shifted longitudinally
by an amount +�Z or −�Z, for any particular order ν.
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Fig. 5.17 a, b Transverse intensity distributions at shifted image planes around far-field region,
with W20 = 5, due to self-similar members of Group IIA for orders, ν = 2 and 4 respectively, for
azimuth ζ = 0
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Fig. 5.18 a, b Transverse intensity distributions at shifted image planes around far-field region,
withW20 = −1, due to self-similar members of Group IIA for orders, ν = 2 and 4 respectively, for
azimuth ζ = 0
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Fig. 5.19 a, b Transverse intensity distributions at shifted image planes around far-field region,
withW20 = −2, due to self-similar members of Group IIA for orders, ν = 2 and 4 respectively, for
azimuth ζ = 0
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Fig. 5.20 a, b Transverse intensity distributions at shifted image planes around far-field region,
withW20 = −3, due to self-similar members of Group IIA for orders, ν = 2 and 4 respectively, for
azimuth ζ = 0



110 5 Self-Similarity in Transverse Intensity …

Fig. 5.21 a, b Transverse intensity distributions at shifted image planes around far-field region,
withW20 = −4, due to self-similar members of Group IIA for orders, ν = 2 and 4 respectively, for
azimuth ζ = 0
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Fig. 5.22 a, b Transverse intensity distributions at shifted image planes around far-field region,
withW20 = −5, due to self-similar members of Group IIA for orders, ν = 2 and 4 respectively, for
azimuth ζ = 0
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Chapter 6
Future Perspectives

The possibility of using azimuthal Walsh filters, derived from the orthogonal set
of azimuthal Walsh functions, as base functions have been proposed to manipu-
late the far-field diffraction patterns of imaging systems opens up new frontiers
in wave optical engineering. The existence of self-similarity observed in the 2D
intensity distributions exhibited by members of self-similar Groups and Sub-Groups
of azimuthal Walsh filters unfolds another interesting feature of periodic or semi-
periodic diffracting structures. The rotational self-similarity portrayed in the 2D
intensity distributions by corresponding adjacent as well as distant orders of self-
similar azimuthal Walsh filters rotated by specific angles provides a unique property
exhibited by azimuthal Walsh filters compared to radial and annular categories. We
have usedMATLAB 2017a platform for the advance level computation and generate
high-quality graphics for the study of the far-field diffraction pattern for different
orders of azimuthal Walsh filters.

Further scope of research includes the use of azimuthal Walsh filters as phase-
shifted zone plates to generate complex 3D beam structures like petal-shaped and
optical ring lattice beams [1, 2]. Azimuthal Walsh filters can be used very effi-
ciently near the focus of an imaging system to cater the needs of complex imaging
in advanced microscopy, 3D imaging, lithography, optical super resolution, optical
tomography and many other related fields. Optical micro- and nano-manipulation
using azimuthal variant Walsh filters or combinations with radial variety can be used
to form gradient force trap for optical tweezers [3, 4] for manipulating objects of
size comparable to a single atom to 100 µm without mechanical contact.

It would be worthwhile to demonstrate the principal phenomenon of Optics to
be presented by a collection of high-quality images and photographs, which is very
much useful for the purpose of research and teaching. The effort has been explored
by Cagnor et al. [5] for some specific optical phenomena supported by experiments.
This research monograph may be referred to an atlas of diffraction phenomenon with
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sector-shaped apertures as pupil functions represented by azimuthal Walsh filters
of different orders. Further scope of the research monograph lies in extending the
investigation in case of two dimensional binary polar Walsh filters which may be
formed by the combinations of Azimuthal and radial or annular varieties to cater
into solutions for more general problems like generating multidimensional optical
trap and tackling inverse problem where a phase filter needs to be synthesized in
accordance with pre-specified diffraction characteristics.
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