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Abstract

Comparative gene identification-58 (CGI-58),
also known as α/β-hydrolase domain-
containing 5 (ABHD5), is a member of a
large family of proteins containing an
α/β-hydrolase-fold. CGI-58 is well-known as
the co-activator of adipose triglyceride lipase
(ATGL), which is a key enzyme initiating
cytosolic lipid droplet lipolysis. Mutations in
either the human CGI-58 or ATGL gene cause
an autosomal recessive neutral lipid storage
disease, characterized by the excessive accu-
mulation of triglyceride (TAG)-rich lipid
droplets in the cytoplasm of almost all cell
types. CGI-58, however, has ATGL-
independent functions. Distinct phenotypes
associated with CGI-58 deficiency commonly
include ichthyosis (scaly dry skin), nonalco-
holic steatohepatitis, and hepatic fibrosis.
Through regulated interactions with multiple
protein families, CGI-58 controls many meta-
bolic and signaling pathways, such as lipid and

glucose metabolism, energy balance, insulin
signaling, inflammatory responses, and ther-
mogenesis. Recent studies have shown that
CGI-58 regulates the pathogenesis of common
metabolic diseases in a tissue-specific manner.
Future studies are needed to molecularly
define ATGL-independent functions of
CGI-58, including the newly identified serine
protease activity of CGI-58. Elucidation of
these versatile functions of CGI-58 may
uncover fundamental cellular processes
governing lipid and energy homeostasis,
which may help develop novel approaches
that counter against obesity and its associated
metabolic sequelae.
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13.1 Introduction

The human comparative gene identification-58
(CGI-58) gene was identified through compara-
tive gene identification studies using the
Caenorhabditis elegans proteome and human
expressed sequence tag (EST) nucleotide data-
base [109]. Human CGI-58 gene is located at
the chromosome 3p21.33 locus, spanning about
32kb and producing several splice variants. The
full-length human CGI-58 cDNA is transcribed
from seven exons and encodes a 349 amino acid
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protein of ~39 kDa (Fig. 13.1a). CGI-58 is also
known as α/β hydrolase domain-containing
5 (ABHD5). The ABHD subfamily belongs to a
large protein family defined by an α/β hydrolase
fold [146, 258]. The α/β hydrolase fold has a
highly conserved catalytic triad containing a
nucleophile (serine, cysteine, or aspartic acid),
an acidic residue, and histidine that are close in
3D structure, though apart from each other in
sequence [116, 258]. The ABHD subfamily has
a total of 19 members in humans and 15 members
in mice [128, 202], yet the functions of most
remain unknown. CGI-58 differs from other
members in this subfamily in that the critical
serine in the catalytic triad is substituted by
asparagine [116].

Mutations in the human CGI-58 gene were
identified as the cause of Chanarin-Dorfman syn-
drome (CDS, OMIM 275630) (Fig. 13.1), an
autosomal recessive neutral lipid storage disease
(NLSD) with ichthyosis (thickened dry skin)
[58, 116]. CDS is characterized by the accumula-
tion of triglyceride (TAG)-rich cytoplasmic lipid

droplets (LDs) in most cell types, including
leukocytes (Jordans’ anomaly) [96], hepatocytes,
myocytes, and cells in the epidermis, dermis, and
intestinal mucosa [33, 46, 183, 205]. Patients with
CDS often manifest hepatomegaly (hepatic
steatosis and steatohepatitis), myopathy, micro-
cephaly, cataracts, hearing loss, ataxia, mild men-
tal retardation, and short stature [33, 46, 90,
183]. Since the initial description of the disease
by Dorfman and Chanarin [33, 46], about
130 cases with more than 40 different mutations
spanning the entire protein sequence have been
reported worldwide [7, 49]. Types of mutations
include deletion, insertion, missense, nonsense,
and frameshift mutations (Fig. 13.1b) [1, 3, 5, 7,
9, 12, 22–24, 49, 52, 54, 89, 92, 116, 130, 150,
151, 169, 174, 181, 187, 192, 208, 219, 224, 243,
255]. While loss-of-function mutations cause
CDS (Fig. 13.1), it is currently unknown whether
gain-of-function exists for CGI-58 gene.

CGI-58 is ubiquitously expressed in mammals
[18, 112, 211]. It is predicted to be cytosolic
[116]. Interest in the scientific community

Fig. 13.1 (a) The amino acid sequence of human CGI-58
protein. The amino acids in red circles highlight those
mutated in patients with CDS. Some altered splice donor
or acceptor sites are not highlighted. According to the two
studies using the mouse CGI-58 protein [16, 74], the
amino acids 16–30 in the human CGI-58 protein are likely
required for LD anchoring. (b) CGI-58 mutations reported

in humans before March 2020. Biallelic mutations in red
color are associated with the full phenotypes of CDS,
biallelic mutations in blue color are associated with the
partial phenotypes (no ichthyosis) of CDS, and those in
black color denote monoallelic mutations associated with
nonalcoholic fatty liver disease
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regarding the functions of CGI-58 started in the
early 2000s when three laboratories simulta-
neously reported that CGI-58 localizes at cyto-
solic LDs [121, 211, 244]. This was the time
when biomedical scientists started to appreciate
the cytosolic LD as an organelle that dynamically
regulates energy storage and mobilization, rather
than as an inert liposome-like structure that pas-
sively stores excess energy. The conceptual
innovation placed cytosolic LDs at the center of
cellular energy metabolism whose dysregulation
is a hallmark of metabolic diseases, such as obe-
sity, insulin resistance, type II diabetes, fatty
liver, and cardiovascular disease. It was believed
that excessive deposition of cytosolic lipid
droplets would cause lipotoxicity, a biochemical
mechanism that was widely used to explain
impairments of cellular metabolism, cell signal-
ing transduction, and redox imbalance associated
with overnutrition-driven metabolic diseases
[221]. Mutations in the human CGI-58 gene
were known to cause LD deposition in almost
all cell types examined, which provided the bio-
medical research community an excellent oppor-
tunity to test how LD accumulation promotes
lipotoxicity. Over the past 15 years, we have
learned a great deal about the pros and cons of
cytosolic LDs by studying the biochemistry, cell
biology, and tissue-specific pathophysiology of
CGI-58. This chapter summarizes the current
knowledge about the role of CGI-58 in LD lipol-
ysis (i.e., hydrolysis of TAGs stored in cytosolic
LDs) and discusses how CGI-58-dependent met-
abolic and signaling pathways regulate the patho-
genesis of common metabolic diseases.

13.2 CGI-58 Interacts
with Lipolysis-Regulatory
Proteins

13.2.1 The PAT (Perilipin, Adipophilin,
TIP47) Protein Family

Biochemical and cell biology studies have
demonstrated that CGI-58 binds to cytosolic
LDs and interacts with perilipin 1 (PLIN1),

adipose differentiation-related protein (ADRP,
also known as adipophilin or PLIN2), TIP47
(PLIN3), and muscle LD protein (MldP or
PLIN5) [18, 63, 121, 161, 211, 244, 245]. These
are members of the PAT (perilipin, adipophilin,
TIP47) family that also includes S3-12
(or PLIN4) [105, 126, 133, 236]. The PAT family
proteins share a highly conserved N-terminal
structure. They localize at the surface of intracel-
lular LDs of different lipid compositions and
sizes, regulating energy storage and mobilization
in response to nutritional fluctuations and various
stimuli [126]. Using the two frame shift mutants
(Leu-404fs and Val-398fs) that cause partial
lipodystrophy in humans, Savage and associates
have shown that the C-terminal region of human
PLIN1 is essential for binding to CGI-58, and this
interaction stabilizes CGI-58 localization on the
LDs [63].

13.2.2 The PNPLA (Patatin-Like
Phospholipase Domain
Containing) Protein Family

The process that mobilizes the energy (mainly as
TAGs) stored in intracellular LDs for utilization
is called intracellular lipolysis (Fig. 13.2)
[253]. During LD lipolysis, the three fatty acyl
chains in a TAG molecule are sequentially
cleaved into diacylglycerol (DAG), monoacyl-
glycerol (MAG), and glycerol, releasing a fatty
acid molecule at each step. The first enzyme that
was discovered to catalyze hydrolysis of cytosolic
LD-embedded TAGs is hormone-sensitive lipase
(HSL) [86, 111, 177, 223]. The substrate spec-
trum of HSL appears to be quite broad, including
DAGs, TAGs, MAGs, cholesteryl esters, and
retinyl esters [40, 113, 234]. Monoacylglycerol
lipase (MAGL) was reported, shortly after HSL,
as a lipase that specifically hydrolyzes MAGs
[98, 223]. Both HSL and MGL belong to the
α/β-hydrolase fold family. For years, HSL was
thought to be responsible for hydrolyzing TAGs
in adipocyte LDs. However, HSL-null mice
showed the accumulation of DAGs rather than
TAGs in multiple tissues [77, 157, 179, 227],
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indicating that other enzyme(s) are involved in
the TAG hydrolysis. In 2004, three groups inde-
pendently reported a new lipase possessing abun-
dant TAG hydrolase activity, and the enzyme was
named calcium-independent phospholipase A2ζ
(iPLA2ζ), desnutrin, or adipose triglyceride lipase
(ATGL), respectively [95, 226, 264]. This newly
discovered lipase turned out to be the rate-
limiting enzyme of cytosolic LD lipolysis
(Fig. 13.2), and, thus, the name ATGL became
more popular than the other names. ATGL is also
known as patatin-like phospholipase domain
containing 2 (PNPLA2). The PNPLA protein
family consists of a total of nine members, includ-
ing PNPLA1 through PNPLA9, all of which seem
to be implicated in lipid metabolism through their
phospholipase or lipase activities, or other
functions [104, 144]. Comparative studies of

ATGL and CGI-58 in the context of adipose
lipolysis have resulted in a major breakthrough
regarding the biochemical function of CGI-58. In
2016, Dr. Rudolf Zechner and associates reported
that CGI-58 functions as a coactivator of ATGL
to promote in vitro TAG hydrolysis
[112]. Subsequent studies were consistent with
this original finding [70, 71, 161, 228, 233,
250]. Furthermore, CGI-58 was shown to release
from perilipin proteins following lipolytic stimu-
lation, which allowed CGI-58 to interact with
ATGL and activate TAG hydrolysis [70, 71,
211, 228]. In this scenario, the interaction of
CGI-58 and with perilipins functions as a brake
of lipolysis (Fig. 13.2), though its efficiency may
be cell-type specific due to distinct perilipin
compositions and the different abilities of

Fig. 13.2 Proposed model for CGI-58 regulation of cyto-
solic lipid droplet lipolysis. Lipolysis regulation differs
between basal and stimulated conditions. Under the basal
conditions, CGI-58 binds to PLIN1 in adipocytes or
PLIN5 in oxidative nonadipocytes, preventing its interac-
tion with ATGL. Thus, the lipolytic activity of ATGL is
limited. After stimulation, perilipins are phosphorylated,
resulting in the dissociation of CGI-58 from perilipins.

CGI-58 then interacts with ATGL and substantially
activates ATGL’s TAG hydrolase activity to stimulate
lipolysis, producing DAGs and fatty acids (FAs). The
DAGs are then hydrolyzed to produce MAGs and FAs
by HSL that was phosphorylated and recruited to the LDs
during the lipolytic stimulation. Finally, the MAGs are
hydrolyzed by MAGL to release the last fatty acyl chain
from the glycerol backbone of a TAG molecule
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individual perilipins in sequestering CGI-58 in
various cell types [161].

Although CGI-58 activates ATGL’s TAG
hydrolase activity [112], mutations in CGI-58
and ATGL cause distinct phenotypes in humans
and mice [58, 65, 75, 78, 116, 135, 172, 237]. For
example, human CGI-58 mutations cause NLSD
with ichthyosis [33, 46, 90, 116, 183], whereas
human ATGL mutations cause NSLD without
skin defects but with mild myopathy [58]. Global
CGI-58 knockout mice die ~16h after birth due to
a skin barrier defect [172], yet global ATGL
knockout mice are viable [78]. These phenotypic
differences associated with mutations of the two
genes indicate that CGI-58 must have ATGL-
independent functions. Recently, CGI-58 was
shown to interact with PNPLA1, another member
of the PNPLA protein family, to stimulate
PNPLA1-mediated ω-O-acylceramide production
in skin [102, 154], providing a potential mecha-
nism for skin barrier defect seen in patients with
CDS. CGI-58 was also shown to functionally
interact with the wild-type PNPLA3, the fatty
liver-promoting PNPLA3(I148M) variant [180],
and a lipase dead PNPLA3 mutant [32],
suggesting that CGI-58 may coordinate with
PNPLA3 and other lipases to regulate LD turn-
over independently of PNPLA3’s lipase activity.
Consistent with this scenario, two laboratories
reported that PNPLA3, the fatty liver-causing
PNPLA3(I148M) variant, in particular, competes
with ATGL (PNPLA2) to bind with CGI-58,
reducing TAG hydrolysis in the liver and brown
adipocytes [233, 250]. These observations
provided a mechanism for how the PNPLA3
(I148M) variant promotes fat deposition. How-
ever, such observations cannot explain why
PNPLA3, including PNPLA3(I148M) but not a
lipase dead mutant, retains its ability to reduce LD
sizes when co-expressed with CGI-58 in the
absence of ATGL [32]. It remains possible that
PNPLA3 displays an in vivo lipase or
transacylase activity toward specific substrates
under some pathophysiological or nutritional
conditions. In addition to PNPLA1-3, other
members of PNPLA protein family may also
interact with CGI-58 to fulfill unique functions

under specific pathophysiological and nutritional
conditions.

13.2.3 The Fatty Acid-Binding Protein
(FABP) Family

Another group of proteins that interact with
CGI-58 is the fatty acid binding protein (FABP)
family members [85]. It was hypothesized that
FABP interacts with CGI-58 to promote ATGL-
mediated intracellular lipolysis by serving as an
acceptor of free fatty acids released from TAG
hydrolysis [85]. This was an important finding
because it provided a mechanism for the handling
of lipolytic products. Intriguingly, the lipolytic
product long-chain acyl CoA was shown to bind
CGI-58 and promote CGI-58 interactions with
perilipins to suppress lipolysis [188]. This phe-
nomenon seems to be an end-product feedback
mechanism that fine-tunes hydrolysis of TAGs
stored in intracellular LDs. The interactions of
CGI-58 with LD coat proteins, lipases, and lipids
suggest that CGI-58 likely play a key role in
organizing major components of LD lipolysis
into a functional “lipolysome” [85].

13.3 CGI-58 as a Serine Protease

The latest member of the CGI-58 interactome is
histone deacetylase 4 (HDAC4). Backs and
associates reported that CGI-58 functions
in vitro and in vivo as a serine protease that
cleaves HDAC4 in the heart in response to cate-
cholamine stimulation, generating an N-terminal
polypeptide of HDAC4 (HDAC4-NT) to protect
cardiac functions [94]. This study was
conceptually paradigm shifting, because it was
the first to demonstrate that CGI-58 can function
as a serine protease. CGI-58 was previously
shown to function as a coactivator of a lipase
that promotes lipolysis, and it was never thought
to be a protease that promotes proteolysis. Per-
haps, CGI-58 is a protein of dual function that
promotes both lipolysis and proteolysis. This
novel function of CGI-58 raises many new and
exciting questions regarding the core function of
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the protein. For example, does CGI-58 cleave
other proteins interacting with it? If yes, is this
proteolytic function required for CGI-58 to acti-
vate LD lipolysis? Does a lipase require proteo-
lytic cleavage prior to digesting a lipid molecule?
Answers to these questions are expected to pro-
vide fundamental insights into the molecular and
biochemical bases of lipolysis and its potential
crosstalk with proteolysis.

13.4 Molecular Basis for CGI-58
Activation of ATGL-Dependent
Lipolysis

The cellular, structural, and biochemical bases for
CGI-58 and ATGL interaction to promote TAG
hydrolysis remain incompletely understood. The
N-terminal amino acids 1–30 of mouse CGI-58
were shown to form a lipophilic tryptophan-rich
stretch, which is essential for CGI-58 to localize
at the LD and activate ATGL in cultured cells
[74]. This tryptophan-rich stretch appears to
anchor CGI-58 to the LD surface through its
three tryptophan residues serving as the left and
right anchor arms [16]. A comparative study of
mouse ABHD5 (CGI-58) and ABHD4, an ABHD
family member that is closely related to ABHD5
but does not activate ATGL, identified R299 and
G328 as essential residues for activating ATGL’s
TAG hydrolase activity. However, these two
amino acids of ABHD5 did not affect ATGL
translocation to LDs or ABHD5 binding to
PLIN1 [189]. These studies collectively suggest
that the LD localization is a prerequisite for a
functional CGI-58 to activate ATGL in vivo.

Studies with ATGL mutants associated with
NLSD have showed that the mutations result in
the expression of either enzymatically inactive
proteins localizing to LDs or active TAG hydro-
lase lacking LD localization [196]. Whereas
CGI-58 was identified as a coactivator of ATGL
[112], G0/G1 switch gene 2 (G0S2) was subse-
quently discovered as an inhibitor of ATGL func-
tion [246, 247]. It was further demonstrated that
G0S2 and CGI-58 do not appear to compete with

each other for binding to ATGL in cultured cells
transfected with tag-proteins [131]. The
254 N-terminal amino acids of mouse ATGL
were reported to be the minimal domain that can
be activated by CGI-58 and inhibited by G0S2
[41]. Interestingly, deleting ~220 amino acids
from the C-terminus of human ATGL protein
increases its interaction and activation by
CGI-58 in vitro in the test tube, despite defective
LD localization in vivo in cultured cells
[196]. This finding indicates that the C-terminal
region of ATGL is required for its targeting to
LDs and plays a regulatory role in ATGL activa-
tion by CGI-58. Considering the newly identified
protease function of CGI-58 [94], it would be
interesting to test whether CGI-58 activates
ATGL by a two-step process. In the first step,
CGI-58 may cleave ATGL to release the suppres-
sive role of ATGL’s C-terminal region on its
enzymatic activity, which would be consistent
with the observation that ATGL protein levels
are often increased in the absence of CGI-58
[75, 242, 263]. The second step may involve
conformational changes of the two proteins,
resulting in tight interactions and correct position-
ing of “lipolysome” components on the surface of
LD for hydrolysis of TAG in vivo.

13.5 CGI-58 Regulation
of Autophagy and Lipophagy

The role of CGI-58 as the coactivator of ATGL to
promote intracellular lipolysis has been
established and reproduced in a series of in vitro
and in vivo studies. ATGL is a cytosolic neutral
lipase that initiates cytosolic/neutral lipolysis by
cleaving a fatty acyl chain from a TAG molecule
stored in cytosolic LDs, thus playing a critical
role in intracellular lipolysis [95, 226, 257,
264]. Recently, the lipid-specific
macroautophagy (lipophagy) was shown to also
digest cytosolic LDs by delivering LD-associated
fat to lysosomes for degradation by lysosomal
acidic lipase (lysosomal/acidic lipolysis)
[203]. Autophagy refers to the “self-eating” of a
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cell in response to starvation or nutrient depriva-
tion for generating energy essential for its sur-
vival [155]. It is also a catabolic pathway for
recycling of excessive or damaged organelles,
such as mitochondria (mitophagy) [217]. In
humans, insulin resistance suppresses CGI-58
mRNA expression in liver [99]. The nutritional
and hormonal regulations of “neutral” lipolysis
and lipophagy (“acidic” lipolysis) are strikingly
similar. Both are induced by nutrient deprivation
[45], and both are activated by glucagon or
inhibited by insulin [45, 57]. It is currently
unknown if CGI-58 promotes fat lipolysis by
mediating lipophagy in addition to activating
ATGL. It was demonstrated that ATGL, a lipase
target of CGI-58, promotes autophagy and
lipophagy in a sirtuin 1 (SIRT1)-dependent man-
ner and that lipophagy is required for ATGL to
promote LD catabolism and associated fatty acid
oxidation in hepatocytes [190]. The crosstalk
between ATGL-dependent lipolysis and
autophagy was also seen in macrophages, though
this crosstalk may be indirect or compensatory
[66]. Some studies appear to suggest a role of
CGI-58 in regulating autophagy and lipophagy.
For example, in C2C12 muscle cells, CGI-58
overexpression increases, whereas CGI-58
knockdown decreases, autophagy and mitophagy
through regulation of AMPK and mTORC1 sig-
naling pathways [259]. CGI-58 was shown to
bind Beclin1, a major regulator of autophagy
[159, 163]. Many autophagy components can
localize to LDs under some conditions [48, 51,
100, 160, 200, 203], though it is not known
whether they interact with CGI-58 or other LD
proteins to specifically regulate lipophagy.
PLIN2, a major LD coat protein interacting with
CGI-58 [244, 245], also binds the heat shock
cognate protein of 70 kDa (Hsc70) for degrada-
tion via chaperone-mediated autophagy (CMA)
[100]. The inhibition of CMA reduces both neu-
tral and acidic lipolysis [100]. Hepatic CMA defi-
ciency, like CGI-58 deletion, induces severe
hepatic steatosis with liver damage and inflamma-
tion [220]. More studies are needed before the
direct role of CGI-58 in the mediation of
autophagy and lipophagy can be established.

13.6 Tissue-Specific Roles of CGI-58
in Energy and Lipid
Metabolism

13.6.1 Adipose CGI-58
in Thermoregulation
and Metabolic Health

CGI-58 is ubiquitously expressed in mammals,
with the highest expression in adipose tissue.
Adipose tissue is classically divided into white
adipose tissue (WAT) and brown adipose tissue
(BAT) that have distinct locations and opposite
functions in energy balance. In general, WAT
stores excess energy as TAGs in the large uniloc-
ular LD of white adipocytes, whereas BAT
dissipates metabolic energy as heat for adaptive
nonshivering thermogenesis in multilocular
LD-containing brown adipocytes.

During prolonged fasting or increased energy
demand, such as exercise and inflammation, the
stored energy in WAT is mobilized via adipose
LD lipolysis for utilization by cell types and
pathways critical in sustaining life, meeting ener-
getic demand, clearing infectious agents, or
resolving inflammation. This process is generally
defined as the stimulated adipose lipolysis,
because it involves activation of a cell membrane
receptor and its downstream signal transduction
by neural and humoral factors in response to
various stimuli [47, 108, 213, 253]. The classical
signal-stimulating adipose lipolysis is the activa-
tion of β-adrenergic receptors by catecholamines
released from the sympathetic nerves innervating
adipose tissue. Binding of a catecholamine to the
β receptor activates adenylate cyclase, which is an
enzyme that uses ATP as the substrate to produce
cAMP [55]. Elevation in cellular cAMP activates
protein kinase A (PKA), which then
phosphorylates several lipolytic components,
such as PLIN1 and HSL, to stimulate lipolysis
(Fig. 13.2) [213]. Thus, any stimulus that
activates PKA or increases cellular cAMP levels
is thus expected to stimulate adipose lipolysis.
Phosphorylation of a perilipin, perhaps together
with phosphorylation of CGI-58 on S239 [185],
causes CGI-58 disassociation from the perilipin

13 CGI-58: Versatile Regulator of Intracellular Lipid Droplet Homeostasis 203



for CGI-58 to interact with ATGL (Fig. 13.2)
[70, 71, 211, 213, 244, 251]. It was shown that
the in vitro TAG hydrolase activity of ATGL can
be increased up to 20-fold with CGI-58 interac-
tion [112]. The in vivo significance of CGI-58 as
an essential mediator of the stimulated lipolysis
was demonstrated in a study showing that
adipose-specific inactivation of CGI-58 abolishes
the isoproterenol-stimulated increase in plasma
levels of free fatty acids in mice [201].

The nonshivering thermogenesis in BAT is
mainly mediated by uncoupling protein
1 (UCP-1), which resides in the inner membrane
of a mitochondrion, uncoupling chemical energy
from ATP synthesis and dissipating the energy as
heat [27]. Under some environmental and patho-
physiological conditions, such as cold exposure
and β-adrenergic receptor activation, a cell type
with features of both white and brown adipocytes
appears in the classically white fat depots. This
type of adipocytes is named brite or beige
adipocytes that often express UCP-1 and produce
heat [165, 238]. The process that drives the
appearance of brite/beige adipocytes in WAT is
called WAT browning or beigeing [97]. The ori-
gin of beige adipocytes may include mature white
adipocyte transdifferentiation and/or de novo
adipogenesis, depending on the condition that
induces WAT browning [39, 83, 114, 115, 182,
229, 230].

Cytosolic LD lipolysis was thought to be cen-
tral in nonshivering thermogenesis [27]. Several
animal and human studies suggested the essential
role of brown fat lipolysis in thermogenesis,
though the genetic or pharmacological manipula-
tion of adipose lipolysis employed in the studies
inhibited intracellular lipolysis in both BAT and
WAT [4, 15, 44, 78, 107]. We created mice
deficient in CGI-58 in UCP1-positive brown and
beige adipocytes (BAT-KO mice) and mice
lacking CGI-58 in all adipocytes (FAT-KO
mice), which allowed us to directly test the role
of brown adipocyte LD lipolysis in thermoregu-
lation. To our surprise, BAT-KO mice were not
cold sensitive even when food was unavailable
[201]. The mice became cold sensitive only when
the following two conditions were met

simultaneously: (1) deletion of CGI-58 in both
WAT and BAT and (2) removal of food. Similar
phenotypes were observed in mice lacking ATGL
in BAT or the total adipose tissue [195]. When
CGI-58 or ATGL was deleted in the total adipose
tissue in mice, the in vivo lipolysis (fatty acid
release from the tissue to the blood circulation)
stimulated by isoproterenol, a β-adrenergic recep-
tor agonist, was completely abolished in mice
[195, 201]. The results demonstrated the indis-
pensable role of CGI-58 or ATGL in mediating
the stimulated lipolysis in the whole animal.
These two animal studies also demonstrated a
key role of WAT in regulating adaptive
nonshivering thermogenesis, likely by providing
the heat-producing cells with the metabolic fuels
and/or by exposing the temperature sensors in the
body to the thermogenically important adipokines
or signaling molecules. It is currently unclear how
food rescues the cold sensitivity of mice lacking
CGI-58 or ATGL in the total adipose tissue
[195, 201]. A simple explanation is that food
serves as another source of metabolic fuels that
may energize the heat-generating cells with glu-
cose, fatty acids, and/or amino acids. However,
we observed that only gastric gavage, but not
intraperitoneal injections, of glucose can effi-
ciently slow down hypothermia in mice lacking
CGI-58 in both WAT and BAT (Wang H et al.
unpublished data). This finding strongly supports
a critical role of the gastrointestinal track in
regulating the diet-induced thermogenesis. The
gastrointestinal track is abundantly innervated
and has special endocrine cells that secrete vari-
ous incretins, which are important in local envi-
ronment sensing and whole-body energy
metabolism. Interestingly, secretin, a gut hor-
mone that is derived from the S cells in the duo-
denum and jejunum of small intestine, was shown
to mediate postprandial thermogenesis by
activating its receptor in brown adipocytes to
stimulate lipolysis and energy expenditure and
to subsequently suppress satiation through the
brain [119]. However, mice lacking CGI-58 or
ATGL in BAT are defective in brown adipocyte
lipolysis, yet they are capable of producing heat
after a meal, suggesting that either other
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gastrointestinal factors or non-lipolytic pathways
also mediate the postprandial thermogenesis.
Nonetheless, it would be interesting to test
whether secretin mediates postprandial heat pro-
duction in mice lacking CGI-58 or ATGL in BAT
and, if not, what other gastrointestinal factors are
involved.

CGI-58 deletion in UCP1-positive cells in
mice increases sympathetic innervation in both
BAT and WAT. The animals also exhibit
enhanced WAT browning, especially after cold
exposure or β3-adrenergic receptor activation
[201]. This observation implies that some signals
and/or BATokines (factors secreted by BAT) are
generated as a result of BAT CGI-58 deficiency.
These signals and batokines can somehow be
sensed by the central nervous system in the
brain, thereby increasing the sympathetic outflow
to activate compensatory thermogenic
mechanisms. It is currently unknown what these
signals and batokines are and whether they work
locally or remotely or must be secreted into the
blood circulation, which represents an important
area for future research in BAT biology. It is
important to note that BAT lipolysis deficiency
induced by ATGL deletion in UCP1-positive
cells does not increase WAT browning as
evidenced by unaltered expression levels of
UCP-1 protein in the inguinal subcutaneous fat
[195], suggesting that deficiency of CGI-58’s
ATGL-independent functions in BAT promotes
browning in WAT.

Genetic deletion of BAT CGI-58 in mice
improves several fat-induced metabolic disorders,
such as glucose intolerance, insulin resistance,
and hepatic steatosis [201]. This improvement is
more profound when CGI-58 is deleted in both
BAT and WAT (our unpublished data). ATGL
deletion in whole body or adipose tissue also
protects mice from fat-induced metabolic
abnormalities [4, 87, 194, 239]. These
observations indicate that inhibiting adipose
lipolysis may improve whole-body glucose
handling as a result of failed mobilization of
fatty acids for utilization, which would be consis-
tent with the glucose fatty acid cycle (or the
Randle cycle) theory [173].

13.6.2 Epidermis CGI-58 and Skin
Barrier Function

A major phenotypic distinction of human patients
with CGI-58 mutations from those with ATGL
mutations is ichthyosis (scaly dry skin)
[58, 116]. In mice, whole body ablation of
CGI-58, but not ATGL, causes skin barrier
defects [78, 172]. Using whole body and cell
type-specific transgenic and knockout mouse
models, it was shown that CGI-58 promotes the
biosynthesis of the skin barrier lipids, ω-O-
acylceramides, locally in the keratinocytes of
suprabasal epidermal layers, and such function
is ATGL independent [73]. It was further shown
that CGI-58 interacts directly with PNPLA1 and
recruits PNPLA1 to LDs where it functions as the
coactivator of PNPLA1 for the biosynthesis of
ω-O-acylceramides [102, 154]. Like CGI-58,
PNPLA1 mutations in humans also cause
ichthyosis [69]. Using biochemical approaches,
cell cultures, and tissue-specific PNPLA1 knock-
out mice, several groups have demonstrated that
PNPLA1 has transacylase or acyltransferase
activity, which utilizes TAGs as an acyl donor
and catalyzes the esterification of ω-hydroxy
ceramides with linoleic acid to synthesize ω-O-
acylceramides [73, 84, 102, 153]. Collectively,
these studies strongly suggest that the defective
activation of PNPLA1 is the molecular mecha-
nism underlying CGI-58 mutation-induced
ichthyosis in humans.

13.6.3 Muscle CGI-58
in Cardiomyopathy and Insulin
Sensitivity

Patients with CDS accumulate neutral lipids in
their skeletal muscle [138]. Heart murmurs, mus-
cle weakness, and mild myopathy were reported
in some CDS patients [90, 138, 235]. Two
laboratories have generated muscle-specific
CGI-58 knockout mice using MCK-cre trans-
genic mice [242, 263]. MCK-cre transgenic
mice express cre recombinase in both skeletal
and cardiac muscles, thereby deleting a loxP-
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floxed gene in both tissues [21]. Muscle CGI-58
knockout mice display intramyocellular deposi-
tion of neutral lipids in both cardiac and oxidative
skeletal muscles [242, 263], implying that muscle
fat deposition in human patients with CDS likely
results from local CGI-58 deficiency in muscle.
Neutral lipid deposition was not detected in the
glycolytic skeletal muscle fibers in these animals
[242]. The restriction of LD accumulation to the
cardiac and oxidative (soleus) muscles highlights
an essential role of CGI-58 in fatty acid oxidation
in oxidative muscle types, which is consistent
with other studies [10, 72].

CGI-58 deficiency in all muscles induces car-
diac fibrosis, cardiac remodeling, and heart fail-
ure. The similar phenotypes were observed in
muscle ATGL knockout mice [79]. In cardiac
and oxidative skeletal muscles, CGI-58 interacts
with PLIN3 and PLIN5, and this interaction
regulates its association with ATGL [132, 167,
228]. These observations collectively suggest that
CGI-58 may function through ATGL, promoting
intracellular TAG hydrolysis in the muscle fibers.
It was shown that cardiac ATGL-dependent TAG
hydrolysis sustains mitochondrial functions by
activating the PPAR-α pathway through the gen-
eration of endogenous ligands for PPAR-α
[79]. CGI-58 may facilitate this pathway by
activating ATGL in the cardiac muscle. Interest-
ingly, CGI-58 was recently shown to function as a
serine protease to protect heart failure by
generating an N-terminal polypeptide from his-
tone deacetylase 4 (HDAC4) through proteolysis
[94]. The cardiac protective role of the HDAC4’s
N-terminal polypeptide generated by CGI-58 was
not associated with reduction in cardiac TAG
content. Although it is currently unclear whether
similar mechanisms operate in other cell types,
this study nonetheless uncovered a completely
novel function of CGI-58 and emphasized a
future direction for CGI-58 research.

Intramyocellular fat deposition in skeletal
muscle is often associated with systemic insulin
resistance due to accumulation of insulin
signaling-suppressing lipids, such as
diacylglycerols and ceramides that cause
lipotoxicity [186, 222]. Despite intramyocellular
accumulation of neutral lipids, mice lacking

CGI-58 or ATGL in muscle are not glucose intol-
erant or insulin resistant [103, 204, 242]. This
dissociation of cellular lipid deposition from insu-
lin resistance suggests that how versus how much
lipids are accumulated may be more important in
driving tissue insulin resistance, which may be
due to the differences in the molecular species of
lipids deposited. Alternatively, cytosolic LD
deposition, if not extremely excessive, may
sequester insulin signaling-suppressing
metabolites, protecting cells against lipotoxicity.
Such scenario would be consistent with an obser-
vation that unsaturated fatty acids promote TAG
accumulation, yet protect cells against
lipotoxicity [120]. In addition, lipid deposition
in different skeletal muscle fiber types may lead
to different metabolic consequences
[118, 123]. Mice overexpressing diacylglycerol
acyltransferase 2 (DGAT2) in glycolytic (type
II) muscle accumulate TAG in muscle and are
insulin resistant [118]. However, mice
overexpressing diacylglycerol acyltransferase
1 (DGAT1), another TG synthesis enzyme, in
muscle accumulate TAG in the soleus, and these
animals are not insulin resistant [122]. Endur-
ance-trained athletes display increased fat content
in their skeletal muscle, and they have enhanced
insulin sensitivity (“athlete paradox”) [67]. It
seems that fat deposition in the glycolytic muscle
is more problematic than in the oxidative muscle.

13.6.4 Liver CGI-58 in Nonalcoholic
Fatty Liver Disease

Non-alcoholic fatty liver disease (NAFLD) is the
most common liver disease in the United States
and worldwide [254]. Patients with CDS (CGI-58
mutations) almost always display characteristics
of advanced NAFLD, including severe hepatic
steatosis, NASH, fibrosis, and cirrhosis [3, 24,
38, 76, 90, 139, 181, 205, 208, 215]. The
CDS-causative mutations span the entire human
CGI-58 protein sequence (Fig. 13.1). Interest-
ingly, monoallelic mutations in the human CGI-
58 gene are also associated with NAFLD
(Fig. 13.1b). The prevalence of CGI-58
monoallelic mutations that are associated
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NAFLD was estimated to be 1 in 1,131
individuals in a normal population [255]. This
study highlights an important role of CGI-58 in
the pathogenesis of NAFLD in the general popu-
lation. More importantly it was recently
demonstrated that CGI-58 interacts with
PNPLA3 [233, 250], a variant (I148M) of which
is a major risk factor for fatty liver disease in all
populations examined [149, 180, 207, 216]. CGI-
58’s association with PNPLA3 interferes with its
ATGL interaction, thus inhibiting LD lipolysis
[11, 233, 250]. CGI-58 is required for wildtype
PNPLA3 and the PNPLA3(148M) variant to
localize to hepatic LDs and for the overexpressed
PNPLA3(148M) to promote hepatic steatosis
[233]. It was shown that PNPLA3 accumulation
on LDs, not its catalytic activity, is responsible
for PNPLA3(148M)-induced hepatic steatosis
[11]. While these studies provided an important
mechanism for how CGI-58 coordinates with
PNPLA3 and PNPLA2 (ATGL) to control cyto-
solic LD turnover, more research on the
PNPLA3/CGI-58 interaction is needed to address
why PNPLA3, including the PNPLA3(I148M)
variant but not a lipase dead mutant, can substan-
tially reduce LD size when co-expressed with
CGI-58 in the absence of ATGL [32].

Antisense oligonucleotide (ASO)-mediated
knockdown of CGI-58 in adult mice induced
severe hepatic steatosis, though this study cannot
establish a causal relationship between hepatic
CGI-58 and fatty liver disease due to knockdown
of CGI-58 in multiple tissues, including liver,
adipose tissue, and macrophages [19, 28, 127,
129]. Selective inactivation of CGI-58 or ATGL
in the liver of mice causes hepatic steatosis
[75, 237], implying that fatty liver disease seen
in patients with NLSD induced by CGI-58 or
ATGL mutations is likely a local effect of hepatic
CGI-58 or ATGL deficiency. These studies
unequivocally demonstrated an important role of
LD lipolysis in controlling lipid homeostasis in
the liver. Besides TAGs, other species of lipids,
such as DAGs, are also accumulated in mouse
livers lacking CGI-58, especially when a high fat
diet is used [19, 28, 75]. Although hepatic
steatosis is often associated with insulin resis-
tance and DAG accumulation is well-known to

suppress insulin signaling [186], liver CGI-58
deficiency-induced hepatic steatosis and DAG
accumulation are not associated with insulin
resistance in mice [19, 28, 75]. One study
demonstrated that this dissociation results from
the sequestration of DAGs to LDs and ER, rather
than the cell membrane, which prevented PKCε
translocation to the plasma membrane to inhibit
insulin-receptor kinase activity [28]. The dissoci-
ation of hepatic steatosis and insulin resistance is
not restricted to the CGI-58 deficiency-induced
fatty liver. For instance, hepatic overexpression of
DGAT2 or liver-specific deletion of histone
deacetylase 3 (HDAC3) in mice induces severe
hepatic accumulation of lipids including TAGs,
DAGs, and ceramides without causing insulin
resistance [141, 212]. In humans, a genetic vari-
ant (I148M) of PNPLA3 confers susceptibility to
NAFLD in multiple populations without affecting
the index of insulin resistance [149, 180, 207,
216]. African-American descendants have signif-
icantly less hepatic steatosis despite a relatively
high prevalence of obesity and diabetes, while
Hispanic-American descendants are the opposite
[175, 193]. The variation in correlation between
hepatic steatosis and insulin resistance among
ethnicities suggests that other factors should also
be considered. It should be emphasized that clini-
cal studies of NAFLD only found the association
between insulin resistance and hepatic steatosis
whereas the relationship between insulin resis-
tance and other liver pathologies, such as NASH
and hepatic fibrosis, has yet to be established.

It is currently unknown how liver CGI-58
deficiency induces NASH and hepatic fibrosis in
addition to hepatic steatosis. The albumin-cre
transgenic mice (Stock #: 003574; The Jackson
Laboratory) used for liver-specific inactivation of
CGI-58 and ATGL can delete a gene floxed by
loxP sites in hepatocytes, biliary epithelial cells
(cholangiocytes), and hepatic stellate cells
[50, 64, 148, 168, 171, 184, 206, 214]. Each of
these cell types has distinct physiological and
pathological functions. For instance, injuries of
hepatocytes and other liver cells stimulate inflam-
matory responses, causing NASH [20, 60]. Liver
damage and inflammation often trigger ductular
reaction (increases in the number of small biliary
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ductules lined by cholangiocytes) that may con-
tribute to hepatic fibrogenesis to some extent
[59, 176, 191]. Hepatic stellate cells increase col-
lagen production after activation by various liver
injuries, and this cell type is well accepted to be
the major source of hepatic fibrosis [81, 82,
142]. Given that liver ATGL deficiency induced
by the same albumin-cre transgenic mouse line
does not cause these advanced pathological
changes in liver [237], the mechanism underlying
liver CGI-58 deficiency-induced NASH and
hepatic fibrosis cannot be the inhibition of
ATGL-mediated LD lipolysis in hepatocytes,
cholangiocytes, or hepatic stellate cells. Consis-
tently, patients with ATGL mutations do not
develop NASH and hepatic fibrosis [6, 25, 58,
166, 197]. CGI-58, therefore, must have ATGL-
independent functions in the liver. One of such
functions may be its interaction with PNPLA3
[233, 250]. Like CGI-58 mutations, the
PNPLA3(I148M) variant is also associated with
NASH [180]. Another distinct function of
CGI-58 is its interactions with almost all
perilipins. This interaction may be needed for
cellular processes, such as autophagy and
lipophagy, besides activation of ATGL. Perilipins
are coat proteins of cytosolic LDs. They are
required for the biogenesis and turnover of cyto-
solic LDs. It has been shown that perilipins play
an important role in the pathogenesis of hepatic
steatosis, NASH, and hepatic fibrosis [29, 30, 34,
35, 61, 88, 91, 145, 162, 231]. Patients with
NAFLD accumulate perilipins in the liver
[61, 162, 209]. While perilipins may passively
accumulate in the steatotic liver due to increased
LDs, they may also actively increase to protect
cells against lipotoxicity of free lipids. Other
CGI-58 functions, such as its newly identified
serine protease activity in the heart [94], may
also exist in the liver and other tissues. This
protease activity of CGI-58, like its lipase
coactivator function, may target multiple proteins
to regulate a variety of cellular processes impor-
tant in lipid and energy metabolism.

Liver CGI-58 knockout mice on a regular
low-energy chow diet develop a full spectrum of
pathologies observed in human patients with
advanced NAFLD [75]. The progression of

these pathologies can be substantially facilitated
by challenging the animals with a typical
Western-type diet alone or in combination with
fructose in drinking water (our unpublished data).
Future studies are needed to discern whether
CGI-58 needs to be deleted simultaneously in
hepatocytes, cholangiocytes, and stellate cells or
in a specific cell type to trigger NASH and fibro-
sis in liver. Studies are also needed to identify
CGI-58’s ATGL-independent mechanisms
responsible for fatty liver progression, including
testing the known ATGL-independent functions
of CGI-58. Detailed comparative studies of liver
CGI-58 and ATGL knockout mice may reveal
mechanisms important in the etiology of NASH
and hepatic fibrosis in general and shed light on
novel drug targets against NAFLD progression.

13.6.5 Myeloid CGI-58 in Insulin
Resistance, Inflammation,
and Atherosclerosis

CGI-58 protein is expressed in mouse and human
macrophages [13, 134]. It has been shown that
myeloid cell-specific deletion of CGI-58 in mice
worsens fat-induced tissue/systemic inflamma-
tion, proinflammatory activation of adipose tissue
macrophages, glucose intolerance, and insulin
resistance [134]. CGI-58-deficient macrophages
accumulate cytosolic LDs and show reduced
PPAR-γ signaling [134, 248]. Although the
underlying mechanism remains unknown,
sequestration of free fatty acids in cytosolic LDs
may prevent these endogenous PPAR ligands
from activating PPAR signaling as seen in
ATGL-null cardiomyocytes [79]. As a result of
PPARγ signaling suppression, CGI-58-null
macrophages show mitochondrial dysfunction
and accumulate reactive oxygen species, which
activates NLRP3 inflammasome to promote
secretion of proinflammatory cytokines
[134]. Consistently, overexpression of CGI-58
in macrophages reduces inflammation in vitro
and in vivo [241, 248]. The proinflammatory
(M1-like) phenotype of CGI-58-null
macrophages was also observed in other studies
[65, 135]. In contrast, ATGL-deficient
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macrophages were shown to display the anti-
inflammatory M2-like phenotype [2, 65,
110]. These collective observations indicate that
CGI-58 also has ATGL-independent functions in
myeloid cells, including macrophages.

The anti-inflammatory role of macrophage
CGI-58 is expected to protect against atheroscle-
rosis. One study with CGI-58 overexpression in
macrophages did show such an atheroprotective
role through the promotion of the PPAR/LXR-
dependent cholesterol efflux without altering
blood cholesterol levels [241]. However, the dele-
tion of CGI-58 in myeloid cells of apoE knockout
mice, or simultaneous knockdown of CGI-58 in
multiple cell types including hepatocytes,
adipocytes, and macrophages in LDLR-KO
mice, does not worsen atherosclerosis or alter
plasma cholesterol levels [65]. It is difficult to
assess atherosclerosis risk in patients with
CGI-58 mutations due to the rarity of disease,
existence of other abnormalities, and relatively
young subjects reported. The role of macrophage
CGI-58 in atherogenesis has yet to be clarified.
Macrophage CGI-58 deficiency causes foam cell
formation [134]. Lipopolysaccharide (LPS) and
saturated fatty acids downregulate CGI-58
expression in macrophages [134]. LPS and fatty
acids are atherosclerosis risk factors, and many
studies have shown that they promote foam cell
formation and atherosclerosis [8, 14, 53, 56, 62,
101, 117, 137, 143, 156, 170]. Oxidized (ox)-
LDL, a common atherosclerosis risk factor,
inhibits CGI-58 expression in THP1 human
macrophages (our unpublished data). These
findings suggest a potential role of CGI-58 in
modulating atherosclerosis risk factor-induced
atherogenesis.

13.6.6 Intestine CGI-58 in Fat
Absorption and Turnover

A major function of the small intestine is the
absorption of nutrients including fats. Fat absorp-
tion occurs mainly in duodenum and jejunum.
After digestion by pancreatic lipases, in the intes-
tinal lumen, fat (mainly TAGs) becomes free fatty
acids and monoacylglycerols (MAGs), which

then enter the absorptive enterocytes and travel
to the endoplasmic reticulum (ER) for
re-esterification into TAGs for packaging into
chylomicrons. Intestinal fat absorption is a very
efficient process. Chylomicrons are quickly
secreted into the lymphatic system heading to
the blood circulation. Some of absorbed fat may
be temporarily stored in the cytosolic LDs, espe-
cially after ingestion of a high fat diet [31, 164,
178, 262]. The TAGs stored in the cytosolic LDs
have to be hydrolyzed before they can be assem-
bled into primordial chylomicron particles in the
ER lumen. CGI-58 and ATGL are expressed in
the enterocytes. Genetic deletion of CGI-58 in
these cells in mice induced the accumulation of
cytosolic LDs predominantly in the nutrient
absorptive segment of small intestine, regardless
of dietary compositions and nutritional conditions
[106, 240]. These observations demonstrated an
important role of intestinal CGI-58 in mobilizing
intestinal LDs for local and/or systemic utiliza-
tion. Consistently, hepatic steatosis is attenuated
in the intestine CGI-58 single or CGI-58/ATGL
double knockout mice [106, 240]. Using
intestine-specific CGI-58 knockout mice fed a
synthetic diet containing 40% energy from lard
and 0.2% (w/w) cholesterol, our laboratory has
shown that intestinal absorption of total fat and
long-chain fatty acids is significantly reduced,
which is associated with reduced postprandial
TAG section into the blood circulation and
increased plasma concentrations of free and
esterified cholesterol [240]. For reasons currently
unknown, another group did not find similar
changes in their intestine CGI-58 and ATGL sin-
gle or double knockout mice fed a diet containing
60% energy from fat [34% (w/w) crude fat] and
1% (w/w) cholesterol. They instead showed a role
of intestinal CGI-58 and ATGL in the turnover of
lipids derived from the basolateral side of the
absorptive enterocytes [106, 152]. More studies
are clearly needed to address these controversial
findings.
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13.7 CGI-58 and Cancer

Cancer cells often accumulate LDs in the cyto-
plasm [17, 210]. The underlying mechanisms
remain elusive. Sequestration of lipids in cyto-
solic LDs may protect cancer cells from lipotoxic
stress [93]. Mutations in CGI-58 cause LD depo-
sition in cells, which led to the first study explor-
ing the role of CGI-58 in colorectal cancer
development [158]. It was shown that CGI-58
deficiency promotes the epithelial-mesenchymal
transition (EMT) and invasiveness of colorectal
cancer cells by increasing aerobic glycolysis (the
Warburg Effect) [158]. The increase in aerobic
glycolysis in CGI-58-deficient cells may result
from limited availability of fatty acids due to
defective LD lipolysis. In addition, CGI-58 was
shown to promote colorectal tumorigenesis by
impairing Beclin1-mediated autophagy [163]. A
subsequent study with prostate cancer cells was
consistent with the tumor suppressor role of
CGI-58 [37]. However, another group using the
same prostate cancer cell line found that CGI-58
sustains cancer cell growth by inhibiting cell apo-
ptosis and death [140]. CGI-58 was recently
shown to be oncogenic in endometrial cancer
[261]. It was reported that CGI-58 in tumor-
associated macrophages indirectly promotes colo-
rectal cancer growth by suppressing spermidine
synthesis [136]. The same group also reported
that CGI-58 suppresses NFκB-dependent
metalloproteinase production in macrophages to
indirectly inhibit colorectal cancer cell metastasis
[199]. Besides regulating tumorigenesis directly
and indirectly, CGI-58 was reported to inhibit the
sensitivity of colorectal cancer cells to the chemo-
therapy drug fluorouracil [159]. CGI-58 expres-
sion patterns and levels may serve as markers for
differentiating benign and malignant tumors in
some tissues [36, 158]. DNA methylation and
deletion may influence CGI-58 expression in
some cancer types, such as cervical cancer
[198]. CGI-58 is not the only LD-associated pro-
tein that is implicated in cancer development and
progression. It was shown that ATGL mediates
cancer-associated cachexia [42], correlates with
the risk of pancreatic ductal adenocarcinoma [68],

and promotes malignancies of breast cancer and
hepatocellular carcinoma [43, 124, 125, 232,
249]. It was reported that ATGL deletion is linked
to the aggressiveness of A549 lung carcinoma
cells [218]. Inhibition of ATGL by the lipolysis
suppressor protein G0S2 or a small molecule
Atglistatin was found to attenuate the growth of
cancer cells [256]. G0S2 was also observed to
suppress oncogenic transformation of
immortalized mouse embryonic fibroblasts
[252]. Interestingly, inhibition of ATGL by
hypoxia-inducible gene 2 (HIG2), unlike G0S2,
was demonstrated to promote survival of colorec-
tal cancer and renal cell carcinoma cell lines in
hypoxia [260]. The role of LD-associated proteins
CGI-58, ATGL, G0S2, and HIG2 in
tumorigenesis may be cell type-specific,
depending on how each cell type handles energy
metabolism and signal transduction under differ-
ent pathophysiological conditions.

13.8 CGI-58 and HCV Infection

A large proportion of patients chronically infected
with hepatitis C virus (HCV) manifest LD depo-
sition in the liver in the absence of other steatotic
factors [147]. It was shown that the HCV nucleo-
capsid core, which is the major structural compo-
nent of HCV virions, localizes at the surface of
LDs to inhibit LD turnover in cultured cells and
mouse livers [80]. The same group further
showed that the HCV core inhibits ATGL-
dependent LD lipolysis, but it unexpectedly
enhances ATGL interaction with CGI-58 and
the recruitment of the ATGL/CGI-58 complex to
LDs [26]. Interestingly, an siRNA-based screen
identified CGI-58 as a host factor that assists
HCV assembly and release without affecting
virus entry and replication [225]. They showed
that several CDS-causing mutants of CGI-58 fail
to localize at the surface of LDs, and those
mutants are unable to support HCV production.
Moreover, they identified a tribasic motif
(KRK233-235) that is required for CGI-58 to
promote lipolysis and HCV production, though
not essential for CGI-58 localization to LDs.
While this study may suggest that it is its lipase
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coactivator function that mediates HCV assembly
and release, it remains unknown whether the
newly identified serine protease function of
CGI-58 is implicated in HCV production [94].

13.9 Concluding Remarks

Patients with CDS accumulate TAG-rich LDs in
all cell types examined. Since the discovery of
CGI-58 gene mutations as the cause of CDS in
2001, enormous interest on the function of
CGI-58 has been generated in the scientific com-
munity of lipid and energy metabolism. It has
been well established that CGI-58 is a
LD-associated protein that promotes intracellular
LD lipolysis by activating ATGL’s TAG hydro-
lase activity. In addition to ATGL, CGI-58
interacts with many other proteins and regulates
LD dynamics and functions in a cell type-specific
manner. Such broad protein-protein interactions
of CGI-58 have provided important insights into
the biochemical basis for its ATGL-independent
functions. Future studies are needed to dissect the
molecular itineraries of these interactions in regu-
lation of intracellular LD biogenesis and turnover.
As a versatile regulator of intracellular LD
homeostasis, CGI-58 plays a central role in
governing cellular and whole-body energy bal-
ance. Genetic deletion of CGI-58 in mice has
uncovered distinct effects of LD deposition in
different cell types on the pathogenesis of meta-
bolic disease. CGI-58 was recently identified to
possess the serine protease activity in the heart. It
is unknown if CGI-58 has this protease activity in
other tissue. If yes, what are the substrates and
functional significance? Is the serine protease
activity of CGI-58 coordinate with its lipase
coactivator function to activate intracellular lipol-
ysis? Clearly, more studies are needed to answer
these exciting new questions.
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