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Preface

Lipid studies present unique challenges to vascular biology and cardiovascu-
lar diseases. Lipid transfer proteins, lipid transporters, and lipid binding
proteins have important impact on in lipid metabolism.

This book brings together in a single volume an updated knowledge about
lipid transfer proteins, such as phospholipid transfer protein (PLTP),
cholesteryl ester transfer protein (CETP) and lipopolysaccharide binding
protein (LBP), and microsomal triglyceride transfer protein (MTP); certain
important lipid transporters, such as ABC binding cassette (ABC) A1,
ABCG1, and ABCG5/ABCG8; certain newly discovered important lipid
binding proteins, such as major facilitator superfamily domain containing 2a
(Mfsd2a); and apolipoprotein M. We will also discuss recent progresses on
modified lipoproteins and their impact on cardiovascular diseases. Moreover,
we will summarize the rare diseases related with lipoprotein metabolism and
re-evaluate preβ1 high density lipoprotein (HDL) as a pro- or anti-
atherosclotic particle.

Our goal in this volume was to compile chapters presenting broad
overviews of proteins with lipid interaction, while emphasizing the relation-
ship between lipid or lipoprotein metabolism and cardiovascular diseases.

We hope you enjoy the volume.

Brooklyn, NY, USA Xian-Cheng Jiang

v



Contents

1 Impact of Phospholipid Transfer Protein in Lipid
Metabolism and Cardiovascular Diseases . . . . . . . . . . . . . . . . 1
Xian-Cheng Jiang

2 Cholesteryl Ester Transfer Protein and Lipid Metabolism
and Cardiovascular Diseases . . . . . . . . . . . . . . . . . . . . . . . . . 15
Helena C. F. Oliveira and Helena F. Raposo

3 Lipopolysaccharide-Binding Protein and Bactericidal/
Permeability-Increasing Protein in Lipid Metabolism and
Cardiovascular Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Yang Yu and Guohua Song

4 Microsomal Triglyceride Transfer Protein: From Lipid
Metabolism to Metabolic Diseases . . . . . . . . . . . . . . . . . . . . . 37
Jahangir Iqbal, Zainab Jahangir, and Ali Ahmed Al-Qarni

5 Circadian Clock Regulation on Lipid Metabolism and
Metabolic Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Xiaoyue Pan, Samantha Mota, and Boyang Zhang

6 ABC Transporters, Cholesterol Efflux, and Implications
for Cardiovascular Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Nan Wang and Marit Westerterp

7 Apolipoprotein M: Research Progress and Clinical
Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Guanghua Luo and Ning Xu

8 Recent Advances in the Critical Role of the Sterol Efflux
Transporters ABCG5/G8 in Health and Disease . . . . . . . . . . 105
Helen H. Wang, Min Liu, Piero Portincasa,
and David Q.-H. Wang

9 Proprotein Convertase Subtilisin/Kexin-Type 9 and Lipid
Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Shoudong Guo, Xiao-dan Xia, Hong-mei Gu,
and Da-wei Zhang

vii



10 LDL and HDL Oxidative Modification and Atherosclerosis . . . 157
Shucun Qin

11 Rare Diseases Related with Lipoprotein Metabolism . . . . . . . 171
Hongwen Zhou, Yingyun Gong, Qinyi Wu, Xuan Ye,
Baowen Yu, Chenyan Lu, Wanzi Jiang, Jingya Ye,
and Zhenzhen Fu

12 Preβ1-High-Density Lipoprotein in Cardiovascular
Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Yunqin Chen and Jibin Dong

13 CGI-58: Versatile Regulator of Intracellular Lipid Droplet
Homeostasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Liqing Yu, Yi Li, Alison Grisé, and Huan Wang

14 Mfsd2a: A Physiologically Important Lysolipid Transporter
in the Brain and Eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Bernice H. Wong and David L. Silver

viii Contents



Impact of Phospholipid Transfer Protein
in Lipid Metabolism and Cardiovascular
Diseases

1

Xian-Cheng Jiang

Abstract

PLTP plays an important role in lipoprotein
metabolism and cardiovascular disease devel-
opment in humans; however, the mechanisms
are still not completely understood. In mouse
models, PLTP deficiency reduces cardiovascu-
lar disease, while its overexpression induces
it. Therefore, we used mouse models to inves-
tigate the involved mechanisms. In this chap-
ter, the recent main progresses in the field of
PLTP research are summarized, and our focus
is on the relationship between PLTP and lipo-
protein metabolism, as well as PLTP and car-
diovascular diseases.

Keywords

Phospholipid transfer protein · Lipoprotein ·
VLDL · HDL · Cardiovascular diseases

Abbreviation

Apo apolipoprotein
BLp apoB-containing-triglyceride-rich

particles
CVD cardiovascular disease
HDL high density lipoprotein

KO gene knockout
PLTP phospholipid transfer protein
VLDL very low density lipoprotein

1.1 Phospholipid Transfer Protein
(PLTP)

PLTP is one of the members of lipid transfer
protein family, which includes bactericidal/per-
meability increasing protein (BPI),
lipopolysaccharide-binding protein (LBP), and
cholesterol ester transfer protein (CETP)
[1]. PLTP has two molecular weight, 55 kDa
and 81 kDa, which could be due to different
glycosylations [2]. PLTP is a nonspecific lipid
transfer protein, and it has ability to transfer
phospholipids, free cholesterol, α-tocopherol,
diacylglycerol, and lipopolysaccharides [3]. Two
forms of PLTP protein mass in human serum
were discovered. ApoA-I-containing lipoproteins
(about 160 kDa in size) is associated with highly
active PLTP, while apoE-containing lipoproteins
(about 520 kDa in size) is associated with inactiv-
ity PLTP [4–6]. So far, the significance for the
existence of active and inactive PLTP in the cir-
culation is unknown. It is quite possible that
PLTP could have activities independent from its
lipid transfer activity. However, no report
indicates that there are two forms of PLTP in the
blood of mice and rabbits.

Almost all tested tissues express PLTP
[2, 7]. Liver, adipose tissues, and macrophages
are the important sites for PLTP expression,
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although their levels are not as high as that of the
placenta, thymus, ovary, and lung [2, 8–
10]. Importantly, PLTP is highly expressed in
human atherosclerotic lesions [11, 12].

The liver is one of the major tissues for lipo-
protein production and PLTP expression. In order
to investigate the effect of liver-derived PLTP on
cholesterol and phospholipid metabolism, we
prepared liver-specific PLTP expressed mouse
model with no PLTP expression in all other
tissues. We found the mice have about 25%
plasma PLTP activity of that of WT mice
[13]. Using Cre-lox system, we prepared liver
PLTP knockout (KO) mice, and we found that
the mice have significantly lower PLTP activity
(about 20%) than that of controls [14]. These
results indicated that liver makes about 20% con-
tribution to blood PLTP activity.

Adipose tissues express much higher PLTP
mRNA levels than that in the liver [7]. PLTP
not only transfers phospholipids but also free
cholesterol [15] which is the major cholesterol
in the adipose tissues [16]. We established adi-
pose tissue PLTP KO mice which have signifi-
cantly lower plasma PLTP activity,
HDL-phospholipid, HDL-cholesterol, and apoA-
I concentrations [17]. In order to investigate the
mechanisms, we used adipose tissue explants to
measure cholesterol efflux, mediated by apoA-I.
We found that exogenous and endogenous PLTP
significantly increases cholesterol efflux
[17]. Therefore, like liver-derived PLTP [14],
adipose tissue-derived PLTP plays an important
role in blood PLTP activity and HDLmetabolism.

The lung is another important tissue for PLTP
expression [18]. In order to explore the impact of
lung-derived PLTP in blood PLTP activity and
lipoprotein metabolism, we treated PLTP-Flox
mice with adenovirus (AdV)-Cre and AdV-GFP
(intratracheally) [19]. We found that lung PLTP
deficiency resulted in significant reductions of
plasma PLTP activity (about 18%), phospholipids
(about 20%), and cholesterol (about 23%).

PLTP also produced by the brain; however, the
function of PLTP in the brain is still not quite
clear [20, 21]. PLTP activity may play an impor-
tant role in maintaining neuron structural integrity
and in conducting signal transduction pathways

[22]. PLTP KO mice have significantly lower
brain vitamin E concentration, and these mice
significantly increase anxiety [23]. Interestingly,
Alzheimer’s disease patients have significantly
higher PLTP levels [20, 21]. PLTP deficiency
increased amyloid-β (Aβ)-associated memory
defect in mice [24]. PLTP mRNA expression
levels were 6.8-fold higher in cerebral vessels
[25] than that in the whole brain. PLTP could be
important in maintaining blood–brain barrier, and
this effect could be mediated by its vitamin E
transfer activity and, thus, regulate cerebrovascu-
lar oxidative stress [26]. It is possible that PLTP
may have an important impact in the brain, phys-
iologically and pathophysiologically.

1.2 PLTP and Cholesteryl Ester
Transfer Protein (CETP)

PLTP and CETP have some similarity in struc-
tural features [1, 27] and sequence [2], but they
have functional overlap. We had prepared CETP
transgenic/PLTP KO mice, and we found that the
expression of CETP can further reduce HDL cho-
lesterol levels on PLTP deficient background
[28]. In fact, PLTP has an interaction with
CETP. Although PLTP has no cholesteryl ester
transfer activity, purified PLTP promotes HDL
cholesteryl ester transfer to VLDL [29]. In addi-
tion, PLTP KO/CETP transgenic mice have sig-
nificantly lower CETP activity than that of CETP
transgenic mice [28].

1.3 Regulation of PLTP

Many factors can regulate PLTP activity and
mRNA levels. Western-type diets upregulate
both PLTP activity and mRNA levels
[7]. Lipopolysaccharide treatment can signifi-
cantly reduce plasma PLTP activity and signifi-
cantly reduce PLTP mRNA levels in the liver and
adipose tissues [7]. Glucose can promote PLTP
activity and expression [30], while insulin has
opposite effect [31, 32]. PLTP activity can also
be regulated by diacylglyceride [33].
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Human and mouse PLTP gene promoter
regions contain multiple AP2 and Sp1 consensus
sequences which are associated with PLTP tran-
scription [34, 35]. Both fenofibrate and
chenodeoxycholic acid can upregulate PLTP
expression, suggesting that peroxisome
proliferator-activated receptor (PPAR) and
farnesoid X-activated receptor (FXR) are
involved in the regulation [34]. We [8] and other
researchers [36] indicated that liver X receptor
(LXR) can upregulate PLTP expression. Both
human and mouse PLTP promoter contain an
LXR response element. LXR/RXR heterodimers
can bind on the element, and LXR/RXR
transient-transfection can activate the expression
[41]. Through activating of SREBP-1,c LXR
agonists can activate triglyceride biosynthesis
and PLTP transcription [37].

We also found that, in LDL receptor KO mice,
profurin (prodomain of furin) overexpression sig-
nificantly attenuates the development of athero-
sclerosis and reduces plasma LDL-cholesterol
[38]. This effect is related with PLTP degradation
in the liver, thus blocking VLDL secretion [39].

1.4 PLTP and HDL

PLTP activity mediates transfer of phospholipids
from apoB-containing-triglyceride-rich lipopro-
tein, such chylomicron and VLDL, into HDL,
and also mediates exchange of phospholipids
among lipoproteins [40, 41]. Moreover, PLTP
can act like a putative fusion factor to influence
the size of HDL particles [42]. PLTP-induced
phospholipid transfer activity seems to be impor-
tant in the enlargement of HDL [43], and triglyc-
eride enrichment in the core of HDL might
promote HDL fusion [44].

Adenovirus and adenovirus-associated virus
(AAV)-mediated overexpression of PLTP in
mouse liver caused a dramatic induction of
plasma PLTP activity [45, 46]. These mice have
a significant reduction in α-HDL but induction in
preβ-HDL levels. Adenovirus-associated virus
(AAV)-mediated PLTP overexpression in mice
resulted in a significant reduction in cholesterol
and HDL cholesterol [46]. We also prepared

PLTP transgenic mice with low level human
PLTP expression and found that the preβ-HDL
is significantly increased [47]. High level of
PLTP transgenic mice was also generated. These
mice showed a significant induction in PLTP
activity in the circulation and a reduction in
plasma HDL cholesterol levels but an induction
in preβ-HDL [48], compared with control mice.
Overall, PLTP overexpression causes a signifi-
cant reduction in plasma HDL but increases
preβ-HDL.

Until now, no PLTP gene deficiency or muta-
tion was found in humans. Using PLTP KO mice,
we learned a lot about PLTP deficiency. The KO
mice show a complete depletion of the transfer
activity for following lipids: phosphatidylcholine,
sphingomyelin, phosphatidylethanolamine, and
phosphatidylinositol. The KO mice also partially
lose their activity for free cholesterol transferring
[15]. In addition, PLTP KOmice have a defect for
[3H] phosphatidylcholine transfer from apoB-
containing lipoprotein to HDL in vivo. On normal
diet, the KO mice significantly decrease HDL and
apoA-I, suggesting that PLTP plays an important
role in transferring surface lipid components
(phosphatidylcholine, sphingomyelin, and free
cholesterol) from triglyceride-rich lipoproteins
into HDL, thus maintaining HDL levels in the
circulation [15]. Moreover, the HDL from the
PLTP KO mice was phosphatidylcholine poor
but protein enriched. PLTP deficiency also
promotes HDL turnover rate [49, 50]. Overall,
PLTP deficiency causes a significant reduction
in plasma HDL cholesterol levels. Interestingly,
both PLTP overexpression and deficiency result
in HDL reduction, and the reason is still
unknown.

We compared HDLs, isolated from PLTP
transgenic, wild type (WT), and PLTP KO mice.
We found that (1) PLTP transgenic mouse has the
largest size of HDL, WT mouse has the middle
range size of HDL, while the PLTP deficient
mouse has the smallest size of HDL [17]; (2) dif-
ferent HDLs have different inflammatory index.
HDL from PLTP transgenic mouse has the
highest inflammatory index, while HDL from
WT mouse is in the middle, and HDL from
PLTP KO mouse has the lowest inflammatory

1 Impact of Phospholipid Transfer Protein in Lipid Metabolism and Cardiovascular Diseases 3



index [17]; and (3) the order of HDL cholesterol
levels is WT> PLTP transgenic> PLTP KO; the
order of HDL total phospholipids is WT > PLTP
transgenic ¼ PLTP KO (Table 1.1). Thus, PLTP
activity influences HDL particle size, inflamma-
tory index, and cholesterol/phospholipid compo-
sition [17]. We also found that hepatocyte PLTP
deficiency causes a significant reduction in HDL
and apoA-I levels [14].

S1P is a potent lipid mediator composed of one
long hydrophobic chain and one phosphoric acid
group. S1P exerts potent physiological effects
through five S1P receptors (S1PR1–S1PR5)
located on cell membranes. S1P is involved in
various diseases including atherosclerosis [51]
and diabetes [52]. On the one hand, S1P has
pro-atherogenic properties. S1P induces inflam-
mation and thrombosis. The S1P gradient
facilitates the egress of lymphocytes from lym-
phoid organs into the circulation and the recruit-
ment of lymphocytes to sites of inflammation
[53]. S1P activates NF-κB [54], promotes chemo-
taxis, and stimulates the production of TNF-α in
macrophages and/or monocytes [55]. S1P has
been shown to augment the thrombin-induced
expression of tissue factor in endothelial cells
[56], and S1P has also been proposed to induce
the expression of plasminogen activator inhibitor-
1 (PAI-1) in adipocytes [57] and hepatocytes
[58], suggesting that S1P has a pro-thrombotic
property. On the other hand, S1P also has anti-
atherogenic properties. S1P promotes the survival
and prevents the apoptosis of endothelial cells
mainly through S1P1 and S1P3 [59]. Many recent
studies have link S1P with HDL, because HDL is
a major carrier of S1P in the circulation. In fact,
HDL-associated S1P regulates a lot of the physi-
ological and pathological effects in cells and

tissues [60–64]. HDL-bound apolipoprotein M
(apoM) is a physiologically-relevant S1P chaper-
one [65]. Despite the potential of the apoM-S1P
axis as an endothelium-protective mechanism, the
effect of apoM-S1P on atherosclerosis is still
controversy [66, 67]. Global apoM deficiency
causes only about 25–45% reduction of plasma
S1P [65, 67]. There must be some other protein
factors that are responsible for assisting the func-
tion of S1P transporters or serving as a S1P car-
rier. PLTP could be one of them. Interesting, we
found that PLTP deficiency causes about 60%
reduction of plasma S1P which is carried by
HDL [68]. Furthermore, PLTP can transfer S1P
from red blood cells to HDL, suggesting PLTP is
one of determiner for plasma S1P, since red blood
cells are the major source for S1P in the circula-
tion. Interesting, PLTP deficiency has no effect
on plasma apoM levels [68].

1.5 PLTP and Reverse Cholesterol
Transport (RCT)

Macrophage highly expresses PLTP, and, thus, it
has been suggested the macrophage PLTP plays
an important role potential in cholesterol efflux.
However, the role of PLTP in RCT (many studies
are mainly based on macrophage cholesterol
efflux) is still controversial. There are reports
indicating that PLTP has no effect [8] or inhibit
[69, 70] or promote [71, 72] cholesterol efflux.
The cause of the discrepancy among these studies
is still unknown; it could be due to the HDL
particles or HDL levels in cell culture medium
used in these efflux experiments.

On the one hand, it has been reported that
exogenous PLTP accelerates HDL-mediated

Table 1.1 The influence of PLTP expression on HDL

PLTP Tg WT PLTP KO

HDL size (nm) 9.65 � 0.15a 9.25 � 0.15b 8.85 � 0.10c

HDL inflammatory index 1.22 � 0.29a 0.52 � 0.13b 0.39 � 0.19c

HDL-cholesterol (mg/dl) 57 � 10a 92 � 8b 35 � 7c

HDL-phospholipid (mg/dl) 79 � 12a 135 � 15b 62 � 8a

Value displayed are means � SD., n ¼ 5. Values labeled with different lowercase letters are statistically different
( p < 0.05). HDL size and HDL inflammatory index were adapted from Jiang H. et al. Arterioscler. Thromb. Vasc. Biol.
2015;35: 316–322
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cholesterol efflux through ABCA1 pathway
[71]. We found that recombinant PLTP (50 ng/
ml) together with 0.8 nmole/ml HDL promotes
HDL-mediated cholesterol efflux (our unpub-
lished result). PLTP interacts and stabilizes
ABCA1 which directly mediates lipid efflux
[14, 71]. It has been shown that PLTP has an
amphipathic helical region of the N-terminal bar-
rel which is critical for ABCA1-mediate choles-
terol efflux [72]. Moreover, Lee-Rueckert et al.
reported that PLTP KO macrophage has an
impairment in cholesterol efflux and that the
defect can be corrected by a stimulation of the
ABCA1-mediated pathway [10]. These results
indicated that PLTP has an ability to help
ABCA1 for macrophage cholesterol efflux and
such an activity might promote RCT [10].

On the other hand, it has been showed that
HDL isolated from PLTP transgenic mice has
impaired effect on macrophage cholesterol efflux,
compared with control [69]. Furthermore, it has
been shown the PLTP might cause the formation
a dysfunctional HDL subfraction, which could
not be a good cholesterol acceptor [73]. The
same group of researchers also found that macro-
phage cholesterol efflux and reverse cholesterol
transport to feces are impaired in PLTP transgenic
mice and that higher systemic PLTP activity
levels might promote the development of athero-
sclerosis by reducing the rate of RCT [70]. Based
on these observations, PLTP could play an impor-
tant role in inhibiting macrophage cholesterol
efflux or RCT. A recent report indicated that
overexpression and depletion of PLTP can reduce
HDL mass and cholesterol efflux capacity but has
nothing to do with macrophage-mediated
RCT [74].

1.6 PLTP and ApoB-Containing-
Triglyceride-Rich Lipoprotein
(BLp) Secretion

Twenty year ago, we found that PLTP KO mice
have a defect in VLDL secretion [75]. Moreover,
it has been reported that PLTP overexpression
promotes liver VLDL overproduction

[76, 77]. Masson et al. [78] found that human
PLTP transgenic rabbits have a significant
increase in plasma LDL but not of HDL. This
observation could be a real situation in humans,
because humans and rabbits are LDL mammals. It
has been reported that the PLTP activity is posi-
tively associated with the triglyceride BLp
incorporation rate [37]. Manchekar et al.
indicated that PLTP has an important effect on
the initiation of BLp assembly in mouse liver
[79]. We also found that the major function of
liver PLTP is to promote VLDL secretion. Based
what we have observed, we proposed a model for
PLTP-related BLp lipidation (Fig. 1.1)
[13, 14]. More importantly, based on human
genome-wide association studies (GWAS),
human PLTP levels are positively associated
with plasma triglyceride and apoB levels [80, 81].

Blocking VLDL secretion, long recognized as
an effective LDL-C lowering strategy, differs
from the use of statins which function through a
reduction in de novo cholesterol synthesis. How-
ever, this approach can have unwanted
consequences. VLDL secretion is a hepatic-
specific defense against the excessive liver tri-
glyceride (TG) accumulation that occurs in
nutritional overload or metabolic syndrome.
Blocking VLDL secretion by inhibition of micro-
somal triglyceride transfer protein (MTP) results
in hepatic lipid accumulation and toxicity in mice
and humans [82]. A similar response occurs in
mice with genetic deletion of methionine
adenosyltransferase [83] or superoxide dismutase
1 [84]. Two drugs targeting apoB and MTP have
been approved only for treatment of extreme
dyslipidemia rather than common lipid disorders
due to hepatotoxicity concern. Thus, targeting
VLDL secretion without causing hepatic lipid
accumulation offers great potential as an alterna-
tive treatment method for milder lipid disorders.
PLTP deficiency in mice did not cause lipid accu-
mulation in the liver [75]. Thus, potentially,
PLTP inhibition in humans could result in reduc-
tion of BLp production with no consequence of
liver lipid accumulation.

PLTP can transfer vitamin E among the
lipoproteins and between lipoprotein and cell

1 Impact of Phospholipid Transfer Protein in Lipid Metabolism and Cardiovascular Diseases 5



transfer. PLTP activity is important for tissue
vitamin E levels. We found that PLTP KO mice
have vitamin E-enriched LDL which is resistant
to cupper-induced oxidation and have much less
activity to induce monocyte chemotactic activity
[50, 85], while LDL from PLTP transgenic mice
has opposite effects [46]. Many results suggested
that the function of PLTP in tissues is different
from its role in the circulation. PLTP-deficient
macrophages accumulate a lot of cholesterol in
the presence of LDL [86]. However, vitamin E
supplementation normalizes the cholesterol levels
in the macrophages [86]. We found that PLTP-
deficient hepatocytes secrete less BLp, and this is
related to BLp premature degradation caused by
vitamin E deficiency-mediated oxidation stress
induction [87]. Thus, a possible effect of PLTP
inside cells might be related with changes in
cellular vitamin E levels and oxidative stress.

1.7 PLTP and Obesity/Insulin
Resistance

PLTP expression is increased in different
pathologies associated with increasing risk of
cardiovascular diseases, such as obesity [88, 89],
insulin resistance [90], and type II diabetes
[91]. We evaluate the effect of PLTP deficiency
on dietary-induced obesity and insulin resistance.
We found that although PLTP KO mice have
normal body weight under chow diet, the KO
mice are protected from high fat diet-induced
obesity and insulin resistance, compared with
control mice. To understand the mechanism, we
evaluated insulin receptor and Akt activation and
found that PLTP deficiency significantly
enhanced phosphorylated insulin receptor and
Akt levels in mouse livers, adipose tissues, and
muscles after insulin stimulation. Moreover, we

Fig. 1.1 A model of PLTP-
involved BLp lipidation.
ApoB-containing
lipoprotein lipidation is
involved in the fusion of
primordial BLp and apoB-
free/TG-rich lipid droplets.
PLTP-mediated PL transfer
or exchange on both
particles’ surface would
fuse two particles. BLp
apoB-containing particles.
(Adapted from Yazdanyar
A and Jiang
XC. Hepatology.
2012;56:576–84)
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found that the PLTP deficiency induced signifi-
cantly more GLUT4 protein in the plasma
membranes of adipocytes and muscle cells after
insulin stimulation. The conclusion is that PLTP
deficiency leads to an improvement in tissue and
whole-body insulin sensitivity [92].

1.8 PLTP and Thrombosis

Klein et al. showed that PLTP KO mice have a
longer blood clotting time than that of control
mice. This phenomenon is related to a reduction
of phosphatidylserine externalization through
vitamin E reduction in red blood cells [93]. Con-
sistent with these results, same group of the
researchers further indicated that PLTP deficiency
can reduce thrombotic response to acute intravas-
cular oxidative stress [94]. Thus, PLTP activity
seems to be related with hypercoagulation. How-
ever, other studies suggested that PLTP has an
anticoagulation effect [95, 96]. Therefore, it is
still unclear whether PLTP is a factor involved
in hypercoagulation or hypocoagulation. Very
recently, we found that PLTP promotes
phosphatidylserine externalization at the plasma
membrane of platelets and accelerates ADP- or
collagen-induced platelet aggregation. This effect
plays an important role in the initiation of throm-
bin generation and platelet aggregation under
sheer stress conditions. Thus, PLTP is involved
in hypercoagulation [97]. Therefore, PLTP inhi-
bition could be a novel approach for countering
thrombosis.

1.9 PLTP and Inflammation

It is still controversial whether PLTP is an anti-
inflammatory or pro-inflammatory factor. PLTP
KO mice reduce plasma interleukin-6 (IL-6)
levels [98, 99] and have less expression of IL-6
and infiltrating macrophages in aortic tissue
[100], compared with control mice. It has been
showed that, in PLTP KOmice, a shift of T helper
(Th) lymphocytes toward the anti-inflammatory
subset Th2 was observed [101]. On the other
hand, other studies (LPS-induced inflammation)

indicated that PLTP has an anti-inflammatory
property [102–104]. LPS administration causes
higher mortality in PLTP deficient mice, com-
pared with WT mice [102]. Decrease in PLTP
expression or activity was also associated with
enhancing inflammatory responses toward LPS
treatment and cigarette smoke exposition [103],
since PLTP has binding and neutralizing LPS
ability which could explain its anti-inflammatory
functions [102, 105]. Moreover, PLTP might also
have an anti-inflammatory properties in
macrophages through an interaction with the
ABCA1 and then JAK2/STAT3 pathway [104].

1.10 PLTP and Cardiovascular
Diseases

More than 10 years ago, we indicated that PLTP
activity is induced in the patients with cardiovas-
cular diseases (CVD) [106]. We proposed that
PLTP could be a target for the treatment of
CVD. In the last 10 years, many human studies
showed that PLTP in the circulation is positively
associated with CVD [81, 107–109]. Using a
PLTP gene score, constructed by a combination
of two PLTP tagging single nucleotide
polymorphisms (SNPs), Vergeerit et al., by
using a PLTP gene score (constructed by a com-
bination of two PLTP tagging single nucleotide
polymorphisms), reported that lower hepatic
PLTP transcription and lower plasma PLTP activ-
ity result in reduction of CVD among 5 cohorts
comprising a total of 4658 cases and 11,459
controls [110]. In a relative recent Framingham
Heart Study (comprised a total of 2679
participants with 187 first events being
ascertained during 10.4 years of follow-up),
Robins et al. showed that higher plasma PLTP
activity is positively associated with a first cardio-
vascular event, defined as fatal or non-fatal coro-
nary heart disease and stroke, among men
[111]. Further, PLTP activity is also positively
associated with left ventricular systolic dysfunc-
tion in human [112, 113]. We examined the long-
term prognostic significance of plasma PLTP
activity levels in a cohort of 170 high-risk dia-
betic men with known or suspected CVD who
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were referred for cardiac catheterization. We
found that plasma PLTP activity levels were a
strong and independent predictor of all-cause
mortality in 5 years and higher PLTP activity
had higher mortality [114]. One potential mecha-
nism relating PLTP-related CVD is that plasma
PLTP activity is positively associated with BLp
levels [80, 81]. Contradictorily, PLTP mass was
lower in a small group of CVD patients compared
to controls [115], although it seems clear that the
plasma PLTP protein concentration does not rep-
resent the preferred marker of PLTP-associated
risk [116, 117]. In addition, reported effects of
PLTP on peripheral artery disease are both lim-
ited and inconsistent [118, 119].

In mouse models, systemic PLTP deficiency
reduces atherosclerosis [75], while its
overexpression shows the opposite effect
[46, 120, 121]. Systemic PLTP deficiency in
mice also is associated with a reduced thrombotic
response [94] and a reduced abdominal aortic
aneurysm [100]. In rabbits, overexpression of
PLTP increases atherosclerotic lesions after a
high-fat diet feeding, compared with controls
[78]. In general, PLTP is a proven risk factor of
atherosclerosis in animal models.

1.11 Conclusion

PLTP plays a role in CVD development, and it
might be related with dyslipidemia, inflammation,
hypercoagulation, type II diabetes, and metabolic
syndrome. However, we still do not have a whole
view for PLTP function intracellularly. More

epidemiological studies are needed to gain
insights into the role of PLTP in human CVD.
After about 20 years work, a question is asked:
could PLTP inhibition be a treatment for
dyslipidemia and CVD? Our answer is “Yes.”
However, we have to be aware of some adverse
effects of such an inhibition, for instance, it could
impairment of LPS neutralization. Anyhow,
based on our knowledge, so far, PLTP inhibition
in human CVD patients should have much more
beneficial effects than unwanted effects (Fig. 1.2).
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Abstract

In this chapter, we present the major advances
in CETP research since the detection, isolation,
and characterization of its activity in the plasma
of humans and several species. Since CETP is a
major modulator of HDL plasma levels, the
clinical importance of CETP activity was
recognized very early. We describe the partici-
pation of CETP in reverse cholesterol transport,
conflicting results in animal and human genetic
studies, possible new functions of CETP, and
the results of the main clinical trials on CETP
inhibition. Despite major setbacks in clinical
trials, the hypothesis that CETP inhibitors are
anti-atherogenic in humans is still being tested.
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2.1 Introduction

Cholesteryl ester transfer protein (CETP) was first
isolated from plasma and characterized in 1978

[1, 2]. Its activity consists of promoting a net
transport of cholesteryl ester (CE) from HDL to
VLDL and LDL in exchange for triglycerides
(TG). This plasma activity was found in many
species, including primates, rabbits, hamsters,
reptiles, and fishes, but it is not present in mice,
rats, and dogs [3, 4]. The protein purification [5]
and cDNA cloning in 1987 [6] and human gene
cloning in 1990 [7] fomented investigations on
CETP. Since then, a growing interest in CETP
research has been observed (Fig. 2.1).

Chemical purification showed that CETP is a
plasma hydrophobic glycoprotein consisting of
476 amino acids with an apparent molecular
weight of 66–74 kDa [5]. Protein purification
and gene cloning allowed for the production of
recombinant protein, antibodies, and transgenic
mouse models that were very important for fur-
ther studies on the structure, function, gene
expression regulation, human polymorphism
screening, and relationship with cardiovascular
diseases [8]. However, it took approximately
30 years after the isolation of CETP plasma activ-
ity to resolve its molecular structure by Qiu and
collaborators in 2007 [9]. This milestone finding
allowed for the elucidation of the CETP mecha-
nism of action and a more refined drug design
targeting CETP inhibition. In fact, the current
view supports the formation of a ternary complex
of CETP with donor and acceptor lipoproteins,
allowing the transfer of neutral lipids through a
hydrophobic tunnel inside its structure [10].
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The human CETP gene is located on chromo-
some 16 (16q13), spans 25 kb, and contains
17 exons. It is conserved in chimpanzees, rhesus
monkeys, chickens, zebrafish, and frogs.
Orthologs of the human CETP gene have been
described in 217 organisms (Gene ID: 1071,
https://www.ncbi.nlm.nih.gov/gene/1071). There
is a major CETP gene alternative splicing product
that may occur at high frequency [11]. The alter-
natively spliced product, missing exon 9, is
in-frame, and the loss of 60 amino acids in the
central region of the protein leads to its inactiva-
tion [12]. Cotransfection of wild-type (full length)
and exon 9-deleted constructs significantly
reduces wild-type secretion and activity [12, 13].

Structurally, CETP belongs to the BPI-like pro-
tein family, which includes bactericidal/permeabil-
ity-increasing protein (BPI), LPS
(lipopolysaccharide)-binding protein (LBP), phos-
pholipid transfer protein (PLTP), and CETP. While
BPI and LBP are known to be involved in innate
immunity against bacteria through their ability to
sense lipopolysaccharides, PLTP and CETP are
characterized by lipid exchange among plasma
lipoproteins [14]. These proteins are also classified
within a large family of extracellular and intracellu-
lar membrane contact site proteins that contain the
tubular lipid binding protein (TULIP) domain [15].

2.2 Reverse Cholesterol Transport

Much of the scientific interest in CETP arises
from the fact that it causes a reduction in HDL
cholesterol plasma levels. A well-documented
negative correlation between plasma
concentrations of HDL and cardiovascular risk
has been established since the late 1970s
[16, 17]. Although the protective mechanisms of
HDL were not known at that time, the concept
that it was the main player in a process called
reverse cholesterol transport (RCT) was
emerging. In this process, first proposed by
Glomset [18], HDL facilitates the uptake of cho-
lesterol from peripheral tissues and its transport to
the liver for catabolism and excretion, thus
avoiding accumulation of cholesterol in the
plasma compartment and hence in the arteries
(Fig. 2.2). In theory, CETP may play a dual role
in RCT. It may add an alternative route for deliv-
ering cholesterol to the liver via LDL receptor and
LDL-receptor related protein (LRP) pathways
(often called indirect RCT). However, if these
pathways are malfunctioning, CETP activity
results in increased LDL cholesterol levels and a
risk of atherosclerosis development (Fig. 2.2).

The engineering of CETP transgenic mice in
the early 1990s [19–21] was very useful to study
its functions, gene expression regulation, and

Fig. 2.1 Number of
scientific publications
through the years with the
keywords cholesteryl-ester-
transfer-protein or CETP
(blue line) and cholesteryl-
ester-transfer-protein
inhibitor or CETP inhibitor
(orange line). PubMed
searches were performed on
January 13, 2020, limiting
the results by the presence
of the keywords in the field:
Title and Abstract
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susceptibility to diseases. In humans, CETP
mRNA is mostly expressed in the liver, spleen,
and adipose tissue [6]. These data are confirmed
in the Human Protein Atlas that analyzed 27 tissue
samples from 95 human individuals [22] and
included lymph nodes and placenta as high
CETP-expressing tissues. Hepatic synthesis is
the major source of CETP found in the plasma
of primates [23], with Kupffer cells being the
predominant source in humans [24]. Human
CETP transgenic mice expressing a natural
promoter-driven CETP minigene reproduced a
similar human pattern of tissue expression
[20]. Thus, it was possible to study gene regula-
tion in this model. For instance, CETP gene
expression was shown to be upregulated by die-
tary cholesterol [20, 25, 26], thyroid hormones

[27], and fish oil and fibrate treatment [28], while
it is downregulated by corticosteroids [29] and
hyperinsulinemia [30]. When CETP is expressed
in hyperlipidemic atherosclerosis-prone models,
such as the LDL receptor knockout mouse or apo
E knockout mouse, an acceleration of diet-
induced atherosclerosis is observed [31–33]. On
the other hand, other experimental mouse model
data support the concept that CETP may have a
protective role against atherosclerosis in
conditions where LDL receptor function is pre-
served. For instance, CETP expression decreased
atherosclerotic lesions in hypertriglyceridemic
mice [34], when cholesterol esterification rates
were high due to LCAT overexpression [35, 36],
in castrated mice [37, 38], in diabetic mice
[39, 40], and in SR-BI knockout mice [41, 42].

Fig. 2.2 Simplified overview of reverse cholesterol trans-
port (RCT). The first step of RCT is the removal of
cholesterol from cell membranes through the interaction
of HDL subspecies with ABCA1/G1 membrane
transporters. Then, the enzyme lecithin cholesterol acyl
transferase (LCAT) esterifies cholesterol on the surface
of HDL, which then enters into the hydrophobic core of
the HDL particle. HDL-cholesteryl ester has two fates: it is
either directly and selectively delivered to steroidogenic

tissues (liver, adrenal, and gonadal) via scavenger receptor
class B type I (SRBI) or it is transferred to VLDL and LDL
(apoB-LP) in exchange for triglycerides (TG) by the action
of CETP. The VLDL + LDL enriched in CE are then taken
up mainly by the liver through LDL receptors (LDLr) and
LDL receptor-related proteins (LRP). The pathway that
includes CETP is termed indirect RCT. Once in the liver,
cholesterol and cholesterol-derived bile acids are secreted
into the bile and excreted from the body via the feces
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2.3 Human Genetic Studies

The importance of plasma CETP in lipoprotein
metabolism was long ago demonstrated by the
discovery of CETP-deficient subjects with
marked hyperalphalipoproteinemia in the Japa-
nese population [43]. Among several mutations
of the CETP gene, two are common mutations in
that population: an intron 14 splicing defect
(Int14 + 1 G --> A) and an exon 15 missense
mutation (D442G). Although elevated levels of
HDL cholesterol are a marker for protection
against atherosclerosis, subjects with CETP defi-
ciency show a variety of abnormalities in the
composition and function of HDL that impair
RCT [44]. Epidemiological studies in Japanese
Americans living in Hawaii and Japanese in the
Omagari area of Japan, where the intron 14 splic-
ing defect is markedly frequent, have shown a
relatively increased incidence of coronary athero-
sclerosis in CETP deficiency [45, 46]. On the
other hand, the TaqIB polymorphism-B2 allele,
with low CETP mass and moderate increases in
HDL cholesterol, has been associated with a
decreased risk for coronary heart disease in
many studies, including the Framingham Off-
spring Study [46, 47]. However, controversy
remains, since subsequent reports of the
Framingham Heart study and Honolulu Heart
Program presented discrepant results [48]. A
more recent meta-analysis confirmed an associa-
tion between the TaqIB polymorphism and the
risk of myocardial infarct. This study suggests
that the B2B2 genotype of the CETP TaqIB poly-
morphism is a protective factor against the devel-
opment of myocardium infarct [49]. However,
not all CETP-reducing polymorphisms are pro-
tective. A large meta-analysis of selected studies
with three common and three uncommon CETP
polymorphisms evaluated the associations of
CETP genotypes, phenotypes, lipid levels, and
coronary risk. The authors concluded that three
CETP genotypes that are associated with moder-
ate inhibition of CETP activity (and, therefore,
modestly higher HDL-C levels) show weak (but
significant) inverse associations with coronary
risk, compatible with the expected reductions in

risk for equivalent increases in HDL-cholesterol
concentration [50]. Another meta-analysis
suggests that two (out of seven) CETP
polymorphisms (rs708272 [C>T] and rs1800775
[C>A]) may contribute to myocardium infarct
susceptibility, especially among Caucasians
[51]. Thus, it seems that the associations between
CETP levels (due to gene polymorphisms) and
cardiovascular diseases may be population-
specific, highly dependent on the phenotype
(level of CETP activity, LDL and HDL concen-
tration/composition), and highly influenced by
environmental factors.

2.4 Possible New Function of CETP:
Anti-inflammatory

Similar to its family members, BPI and LBP,
CETP may have an anti-inflammatory function
that may be relevant not only for atherogenesis
but also for immune responses [8]. Experimen-
tally, inhibition of CETP with torcetrapib did not
reduce atherosclerosis beyond the statin effect but
induced more proinflammatory lesions in
hypertriglyceridemic apoE3Leiden/CETP-
expressing mice [52]. Normolipidemic human
CETP-expressing mice were protected from mor-
tality induced by bacterial lipopolysaccharide
acute infusion [53] or polymicrobial sepsis
induced by cecal ligation and puncture
[54]. Regarding humans, the first large-scale
trial with the CETP inhibitor torcetrapib was
interrupted because of increased mortality due to
several reasons, including infections (22% of
noncardiovascular deaths) [55]. In addition, the
mortality rate of patients with sepsis correlated
with a reduction in plasma CETP concentrations
[56]. However, this issue is still enigmatic. A
recent report described that a gain-of-function
variant (s1800777-A) of CETP promotes a pro-
found reduction in HDL levels and reduced sur-
vival in patients with sepsis when compared with
noncarriers [57]. Therefore, CETP anti-
inflammatory effects may be a direct nonlipid
transporting function or indirectly mediated by
modulation of HDL size, composition, and
concentration [58].
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2.5 Does CETP Have
an Intracellular Function?

As a lipid-binding and transport protein, hypo-
thetically, CETP may play an intracellular
physiological role.

Zhang and collaborators showed that transient
transfection of CETP cDNA into COS-7 cells
induced higher cholesterol efflux compared with
mock-transfected cells, while lipid uptake was not
affected. Conversely, the efflux of free cholesterol
from macrophages obtained from CETP-deficient
subjects was significantly decreased compared
with that from normal subjects [59]. These data
suggest that local intracellular CETP expression
in macrophages plays an anti-atherogenic func-
tion, facilitating the removal of cholesterol from
the cells.

Because the protein product of the major alter-
native splice variant of CETP (exon 9 deleted) is
retained within the endoplasmic reticulum
(ER) [12], Lira and collaborators studied whether
the expression of CETP variants could induce ER
stress [13]. Transient CETP transfections were
performed in a human liposarcoma cell line
(SW872) and a human embryonic kidney cell
line (HEK293S). Surprisingly, not only the alter-
native spliced variants of CETP but also the full-
length protein expression caused an induction of
genes linked to the ER stress response [13]. Thus,
although CETP is a secreted protein, intracellular
CETP plays a complex role in modulating ER
stress or the unfolded protein response.

Morton and collaborators have shown that
CETP expression modulates cholesterol and tri-
glyceride homeostasis in the SW872 human
liposarcoma cell line. They showed that short-
term partial inhibition of CETP in these cells
using antisense oligonucleotides induces a phe-
notype characterized by inefficient mobilization
of CE stores leading to CE accumulation [60]. In
subsequent studies, CETP was chronically
repressed with stably transfected
oligonucleotides. CETP-deficient cells had
decreased CE and TG biosynthesis and inefficient

CETP-mediated translocation of CE and TG from
the ER to their site of storage [61, 62]. On the
other hand, when they stably overexpressed full-
length CETP, SW872 cells accumulated 50% less
TG due to a decrease in TG synthesis and a higher
TG turnover rate, resulting in the formation of
smaller and more metabolically active lipid
droplets [63]. In agreement, Zhou and
collaborators previously showed that transgenic
mice expressing CETP under the control of an
adipocyte-specific promoter (aP2) exhibited
decreased adipocyte lipid content and size
[64]. More recently, Izem et al. showed that
exon 9-deleted CETP (the nonsecreted isoform)
inhibits full-length CETP synthesis and promotes
cellular triglyceride storage [65].

2.6 CETP Inhibition as a Target
to Decrease Cardiovascular
Diseases

From most human and experimental studies, it is
clear that CETP is important clinically and has
been a target for drug development. Dozens of
review articles on CETP inhibition have been
published in the last 5 years, most of them debat-
ing the viability of this strategy because of minor
or no benefits of the tested molecules in reducing
cardiovascular events so far. Despite the setbacks,
the hypothesis that CETP inhibitors are anti-
atherogenic in humans is still being tested. A
summary of the results of the main trials with
CETP inhibitors is presented in Box 2.1 and will
be discussed below.

The concept that in vivo CETP inhibition
could be anti-atherogenic was experimentally
demonstrated in rabbits. CETP was inhibited
with antisense oligodeoxynucleotides against
CETP, reducing CETP mass and increasing
HDL cholesterol (HDL-C), resulting in a reduced
aortic lesion area [66]. In addition, anti-CETP
immunotherapy in rabbits was able to reduce
CETP activity, increase HDL, decrease LDL,
and diminish atherosclerotic lesions [67].
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Box 2.1 Main CETP Inhibitor Trials

Torcetrapib (Pfizer)
Atorvastatin + torcetrapib (vs. atorvastatin
only)
Trial ILLUSTRATE
24-month follow-up
HDL-C increased by 61%
LDL-C decreased by 20%
Increase in systolic blood pressure of
4.6 mm Hg
From small to no favorable effect on
atheroma volume (Nissen et al. 2007) [68]
Trial ILLUMINATE
12-month follow-up
HDL-C increased by 72.1%
LDL-C decreased by 24.9%
Increase in systolic blood pressure
(5.4 mm Hg)
Increase in apo-CIII and aldosterone levels
Increase in mortality by CVD, cancer, and
infections/sepsis (Barter et al. 2007) [55]
Dalcetrapib (Hoffmann-La Roche)
Trial: dal-OUTCOMES
Dalcetrapib (vs. placebo)
31-month follow-up
Increased HDL (25%), blood pressure
(0.6 mm Hg), and C-reactive protein
(hsPCR)
No changes in LDL and aldosterone
No benefits on CVD events/mortality.
Possible benefits in genetically defined
population (ADCY9 gene, adenylate
cyclase, AA allele) (Schwartz et al. 2012)
[69]
Evacetrapib (Eli Lilly)
Trial: ACCELERATE
Evacetrapib (vs. placebo)
28-month follow-up
HDL-C increased by 132%
LDL-C decreased by 37%
Increased cholesterol efflux
Increased blood pressure (1.2 mm Hg) and
hsPCR
No CVD benefits in 28 months (Lincoff
et al. 2017) [70]

Anacetrapib (Merck)
Trial: REVEAL
Anacetrapib (vs. placebo) in patients
receiving intensive atorvastatin therapy
4.1-year follow-up
HDL-C increased by 104% (midpoint)
LDL-C decreased by 41% (midpoint)
Slightly higher blood pressure (0.7 mm
Hg)
No significant differences in the risk of
death, cancer, or other serious adverse
events
Associated with a lower incidence of
new-onset diabetes (11%)
Lower incidence of major coronary events
(10.8 vs. 11.8% CVD events) (HPS3/
TIMI55–REVEAL Collaborative Group,
Bowman L, et al. 2017) [71]
TA-8995 (obicetrapib) – funded by
Dezima and undertaken by Xention
Trial: TULIP
Nine treatments with TA-8995 alone and
combined with statins
Analyses at 12 weeks of treatment
LDL-C reduced by 45.3% (apoB reduced
by 33.7%)
HDL-C increased by 179% (apoA-1
increased by 63.4%)
Combined with statins: decrease in LDL-C
from 39.8% to 50.2% (Hovingh et al.
2015)
Increased preβ-HDL and cell cholesterol
efflux (van Capelleveen et al. 2016) [79]

2.6.1 Torcetrapib

The first pharmacological molecule designed to
inhibit CETP was torcetrapib. In two trials,
ILLUSTRATE and ILLUMINATE, patients
received atorvastatin + torcetrapib or atorvastatin
alone and were followed for 12 or 24 months
[55, 68]. Compared to atorvastatin monotherapy,
torcetrapib + atorvastatin was able to increase
HDL-C (61–72%) and decrease LDL-C
(20–25%). However, an important side effect
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was the elevation of systolic blood pressure by
approximately 5 mm Hg. There was a small or no
favorable effect on atheroma volume
[68]. Because torcetrapib-treated patients showed
an increased number of cardiovascular events and
death from both cardiovascular and noncardio-
vascular causes [55], the clinical trial was
terminated prematurely. The increase in aldoste-
rone levels and blood pressure was considered
off-target toxicity rather than a CETP inhibition
effect per se, increasing expectations for further
generation of CETP inhibitors.

2.6.2 Dalcetrapib

The second molecule to go on to clinical trial was
dalcetrapib (dal-OUTCOMES). Although the
increase in systolic blood pressure was modest,
dalcetrapib was less efficient at increasing
HDL-C and reducing LDL-C, so the risk of
major cardiovascular outcomes was not signifi-
cantly altered. Dalcetrapib is considered a rela-
tively weak inhibitor of CETP, meaning that a
more potent CETP inhibitor could still be effec-
tive regarding clinical benefits in cardiovascular
diseases (CVD) [69].

2.6.3 Evacetrapib

A potent CETP inhibitor, evacetrapib, was then
evaluated in theACELLERATE trial [70]. Indeed,
evacetrapib caused marked favorable changes in
the lipoprotein profile, increasing HDL-C by
approximately 130% and reducing LDL-C by
37% compared to placebo. However, there were
no significant benefits for CVD risks and events,
and the trial was stopped due to futility at
28 months of treatment. Some could raise the
possibility that longer treatment could show
CVD improvements.

2.6.4 Anacetrapib

The most successful CETP inhibitor to date is
anacetrapib. It in fact reduced the incidence of

major coronary events [71]. Anacetrapib was
added to intensive statin treatment in the REVEAL
trial, a much larger and longer trial than the previ-
ous ones. Patients were followed up for 4 years,
and at midpoint, HDL-C was increased by 104%
in the anacetrapib group. The incidence of the
primary outcome was reduced in the anacetrapib
group (10.8% vs. 11.8% in the placebo group).
Although there was no significant difference
between groups during the first year of follow-
up, the incidence of major coronary events after
1 year was significantly lower in the anacetrapib
group (rate ratio, 0.88; 95% CI, 0.81 to 0.95;
P ¼ 0.001). Anacetrapib is a highly lipophilic
drug that accumulates in adipose tissue, explaining
its prolonged elimination profile [72]. No serious
adverse events were identified, and there was only
a slightly higher blood pressure (0.7 mm Hg) in
the group of patients receiving anacetrapib.
Another unexpected good finding of anacetrapib
was its association with a lower incidence of
new-onset diabetes cases. A recent meta-analysis
of CETP inhibitor trials showed that CETP inhibi-
tor therapy was associated with a significant 12%
reduction in the incidence of diabetes and
concluded that the improvement in glucose metab-
olism is at least in part related to the increase in
HDL-C concentration [73].

Although CETP inhibitors are expected to
increase HDL-C levels, their impact on reducing
LDL-C has gained special attention. In the
anacetrapib trial, LDL-C levels were reduced by
40%, as indicated by the “direct method” or by
17% when measured by beta-quantification. This
discrepancy discloses the importance of under-
standing what different methods for LDL choles-
terol quantification truly quantify. It is important
to discover differential inhibitor effects across the
whole spectrum of atherogenic apoB-containing
lipoproteins [74]. CETP inhibition may also
reduce the concentrations of triglyceride-rich
remnant lipoproteins rather than affect size-
specific LDL particles [75]. Regarding the mech-
anism of action, anacetrapib reduces LDL-C
levels by increasing its catabolism, while the
LDL-apoB-100 production rate is
unchanged [76].
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2.6.5 TA-8995 (Obicetrapib)

Another promising CETP inhibitor compound is
TA-8995 (obicetrapib), which is well tolerated
and shows beneficial effects on lipid and apolipo-
protein profiles in healthy subjects and patients
with mild dyslipidemia [77, 78]. TA-8995 was
tested in a randomized, double blind, placebo-
controlled phase 2 trial (TULIP) [78]. The safety
and efficacy of TA-8995 were tested as a
monotherapy and combined with statins. This
CETP inhibitor reduces LDL cholesterol and
apoB levels by 45% and 34%, respectively, con-
ferring an additional decrease in LDL-C in com-
bination with statins. HDL-C and apoA-1
increased up to 179% and 63%, respectively.
TA-8995 also reduces lipoprotein(a) ranging
from 27% to 37% [78]. TA-8995 is now
registered in a new clinical trial (ClinicalTrials.
govidentifier (NCT number): NCT02241772) to
evaluate its effects on subjects with elevated Lp
(a). A subsequent study advanced the possible
mechanisms of TA-8995. Plasma samples from
TULIP trial patients treated with TA-8995 were
shown to dose-dependently increase total and
ABCA1-specific cholesterol efflux capacity from
the J774 macrophage cell line. These findings
suggest that TA-8995 not only increases HDL-C
and pre-Beta1-HDL particle levels but also
promotes the functional properties of these
particles. Whether these changes in HDL particle
composition and functionality have a beneficial
effect on cardiovascular outcome requires formal
testing [79]. Thus, a cardiovascular disease out-
come trial with TA-8995 is still needed to trans-
late these effects into a reduction in
cardiovascular disease events.

2.7 Concluding Remarks

Major advances in understanding CETP biology
were obtained after protein purification, gene
cloning, and molecular structure resolution. Stud-
ies in animal models have elucidated CETP
functions, gene expression regulation, and
relationships with diseases. Apart from its

HDL-reducing systemic action, intriguing reports
raise the possibility that CETP may have relevant
local and novel nonlipid transfer functions. Ani-
mal and human studies suggest that CETP is
important clinically and worthy as a target for
drug development. The pros and cons of
inhibiting CETP were discussed. Despite major
setbacks in clinical trials, the hypothesis that
CETP inhibitors are anti-atherogenic in humans
is still being tested.
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Lipopolysaccharide-Binding Protein
and Bactericidal/
Permeability-Increasing Protein in Lipid
Metabolism and Cardiovascular Diseases
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Yang Yu and Guohua Song

Abstract

Lipopolysaccharide-binding protein (LBP)
and bactericidal/permeability-increasing pro-
tein (BPI) are the main members of BPI-like
family based on the similar protein structure
and conserved gene homology. Both LBP and
BPI participate in lipid metabolism and
thereby involve in pathogenesis of certain car-
diovascular diseases. This chapter describes
four aspects: (1) the loci of BPI and LBP in
genome, (2) the characteristics of the cDNAs
and expression patterns of LBP and BPI,
(3) the structures and functions of LBP and
BPI, and (4) the LBP and BPI in lipid metabo-
lism and cardiovascular research.

Keywords
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Abbreviation

BPI Bactericidal/permeability-increasing
protein

CAD Coronary artery disease
CETP Cholesteryl ester transfer protein
LBP Lipopolysaccharide-binding protein
PLTP Phospholipid transfer protein

Multicellular organisms are unceasingly
challenged by the invasion of microorganisms
that flourish in the surroundings. The innate
immune system is of dominant importance in
keeping such host–microbe homeostasis. Plenty
of bio-macromolecules related with the innate
immune response exactly interrelate with and
responses to the bacterial infection.

Two of the proteins critical to the mediation of
signals from the surface of gram-negative bacteria
(GNB) are lipopolysaccharide (LPS)-binding pro-
tein (LBP) and bactericidal/permeability-
increasing protein (BPI) [1]. LBP and BPI both
bind the Lipid A component of LPS from the
outer envelope of Gram-negative bacteria,
although they are normally considered to have
opposed functions. LBP brings minute amounts
of LPS to trigger the host immune response and
can therefore be described as pro-inflammation,
whereas BPI not only shows LPS neutralization but
also binds ligands from Gram-positive bacteria
(GPB) and thereby enhances the pattern recognition
molecules in GPB infections [2, 3]. The majority of
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the involved inflammatory pathways may finally
determine the host response to infections.

BPI and LBP are belonging to a family named
“tubular lipid-binding protein (TULIP)” based on
the similar protein structure and conserved gene
homology. There is now evidence that TULIP
superfamily includes at least three families:
BPI-like, Takeout-like, and SMP
(synaptotagmin-like, mitochondrial, and lipid-
binding proteins)-like [4]. The genes of LBP,
BPI, and phospholipid transfer protein (PLTP)
are found on chromosome 20. These three
proteins and cholesterol ester transfer protein
(CETP) (which is located on chromosome 16)
are the main members of BPI-like family. The
BPI-like protein family includes LBP, BPI,
PLTP, and CETP according to the similar domain
organization (Fig. 3.1) and similar functions.

3.1 The Gene Loci and Expression
of BPI and LBP

The loci of human LBP and BPI gene cluster were
all at chromosome 20 q11.23 (Fig. 3.2). The exon
number of LBP is 15. Together with BPI, the LBP
expresses in the acute-phase immunologic

response to Gram-negative bacterial infections,
which might be essential for the quick acute-
phase response to LPS. The LBP has restricted
high expression in the liver, with very low-level
expression in the appendix and endometrium
[5]. The BPI gene has 16 exons. The gene of
BPI has restricted expression toward the bone
marrow and associated with neutrophils and
eosinophils [5–7].

3.2 Structures and Functions
of LBP and BPI

The crystal structures of LBP and BPI were reported
in 2013 and 1997, respectively [8, 9]. Both LBP and
BPI have a characteristic, conserved two-domain
“boomerang” structure, with an N-terminal domain
and a C-terminal domain that share little sequence
identity but are very similar in overall architecture
(Figs. 3.3 and 3.4) [10].

LBP, a 60 kDa lipid/phospholipid-binding and
transfer protein, is synthesized principally by
hepatocytes and secreted into the bloodstream
[1, 11]. LBP can extract LPS monomers from
the out membrane of Gram-negative bacteria
(GNB), thereby delivering LPS molecules to

Fig. 3.1 Domain organization of main members in
BPI-like family. Human BPI proteins contain one or two
copies of the TULIP domain and no additional domains.
UniProt entry ID for the proteins shown are LBP

(P18428), BPI (P17213), PLTP (phospholipid transfer
protein) (P55058), and CETP (cholesterol ester transfer
protein) (P11597). The information in the picture was
from Ref. [4] with brief modification
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membrane and soluble forms of CD14 receptors
and promoting the formation of monomeric
LPS-CD14 complex that is a critical intermediate
in transport of LPS to MD-2/TLR4 and TLR4-
dependent inflammatory cell activation, which
markedly increase the host sensitivity to LPS
[12]. In endothelial cells which lack of membrane
CD14, LBP and soluble CD14 extract LPS from
LPS-rich monolayers of GNB to form monomeric
endotoxin–sCD14 complex to activate TLR4(+)/
MD-2(+) cells [13, 14]. Besides the activation
described previously, LBP delivers LPS to
lipoproteins leading to hepatic clearance
[15, 16]. HDL is the primary mediator to play a
major role in the clearance of circulating LPS
[15, 17–19].

The LBP-dependent pro-inflammatory effects
of LPS are acute mobilization of circulating
neutrophils to tissue sites of bacterial infection
[20, 21]. The neutrophils and other poly-
morphonuclear leucocytes play a critical role in

the arrest of proliferation and the seclusion of
bacteria for disintegrated degradation and clear-
ance. Bactericidal/permeability-increasing pro-
tein (BPI), a 55 kD single-chain cationic protein,
has higher affinity for LPS and bacteria, is bacte-
ricidal, and represses inflammation by preventing
LBP from delivering LPS to CD14 [10]. BPI is
found mainly in the granules of neutrophils and
eosinophils. Additionally, BPI has been detected
on the surface of monocytes and colon epithelium,
which is possibly due to the secondary secretion
from activated neutrophils. Sharing a 45% LBP
sequence, the crystal structure of human BPI
revealed a boomerang-like shape and two similar
domains with a polar pocket on their concave side
where phospholipids (or perhaps LPS) can be
bound (Fig. 3.4) [9, 22]. The major target cell of
BPI–endotoxin aggregates are monocytes, while
BPI promotes the CD14-independent delivery of
purified LPS aggregates to host cells without
apparent cell activation [23–25].

Fig. 3.2 The loci of the human LBP and BPI. Human
lipopolysaccharide-binding protein (LBP, gene ID: 3929)
and bactericidal/permeability-increasing protein (BPI,

gene ID: 671) gene cluster on chromosome 20q11.23.
The red arrows indicate the direction of transcription. All
information of the two proteins was from NCBI Gene
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The properties of LBP and BPI described
above suggest that their coordinated function
permits an efficient response to and elimination
of invading GNB and a restore to homoeostasis.
A small number (approximate 100) of GNB inva-
sion may activate the acute inflammatory
response, triggering a quickly mobilization of
pro-inflammatory cells (Fig. 3.5). The vast major-
ity of endotoxin delivered to cells via LBP (and
CD14) is internalized without cell activation
[26]. In fact, if the host cell contains the LPS
deacylase acyloxyacyl hydrolase (e.g.,
macrophages), bulk clearance of LPS is coupled
to partial deacylation and detoxification. LBP is

also believed to play a role in the handling of
LPS, facilitating transport of LPS to lipoproteins,
and regulating monocyte/macrophage activation
and pro-inflammatory cytokine secretion [27].

3.3 LBP and BPI in Lipid
Metabolism
and Cardiovascular Research

3.3.1 LBP

LBP is the primary protein to encounter LPS and
deliver it to target cells. The serum LBP is a

Fig. 3.3 The structure of lipopolysaccharide-binding
protein (LBP) (PDB ID: 4M4D) and its ligand pocket.
The ligand pocket positions of LBP were indicated by
green boxes. (a), The cartoon style of LBP structure. (b),

the licorice style of LBP – the ligands were displayed in
spacefill mode. (c), The view of ligand pocket position of
LBP structure. All information was downloaded from
Protein Data Bank
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useful biomarker that indicates the activation of
innate immune responses in the cardiovascular
system. Lepper et al. investigated the association
of serum LBP level and the risk of coronary artery
disease (CAD) and found that LBP is a significant
and independent predictor of prevalent CAD and
male patients with increased levels of LBP had a
fivefold increase in CAD prevalence [28]. LBP
was reported as a significant and independent
predictor of total and cardiovascular mortality
hazard ratio for all-cause mortality
[29]. Circulating LBP level is significantly and
positively associated with obesity measures,

insulin resistance parameters, glycated hemoglo-
bin, fasting glucose, fasting triglycerides,
LDL-cholesterol, systolic blood pressure, and
inflammatory parameters while negatively
associated with high-density lipoprotein-choles-
terol. Furthermore, circulating LBP is positively
associated with carotid intima media thickness
(CIMT) in the internal carotid segments and
CIMT in overall carotid segments. The findings
reveal that serum LBP is a putative risk factor
related to atherosclerosis [30].

A recent 10-year follow-up study revealed that
individuals with higher serum LBP levels had a

Fig. 3.4 The structure of bactericidal/permeability-
increasing protein (BPI) (PDB ID: 1EWF) and its ligand
pockets. The ligand pocket positions of LBP were
indicated by green boxes. (a), the cartoon style of BPI
structure. (b), the licorice style of BPI structure – the

ligands were displayed in spacefill style. (c), the ligand
view of pocket1 position of BPI structure. (d), the ligand
view of Pocket2 position of BPI structure. All information
was downloaded from Protein data bank
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significantly greater risk of the development of
cardiovascular disease (CVD) in the general Jap-
anese population CVD after adjusting for conven-
tional cardiovascular risk factors
[31]. Furthermore, low-grade endotoxemia
might contribute to the pathogenesis of CVD
through chronic systemic vascular inflammation.
This is the first prospective cohort study to inves-
tigate the association between serum LBP levels
and the incidence of CVD in a general Japanese
population. Further investigations are needed to
elucidate the mechanism underlying the

association between serum LBP levels and car-
diovascular risk. In addition, after assessed by
aortic pulse wave velocity (PWV) in patients
with type 2 diabetes or obstructive sleep apnea,
the serum LBP levels are independently and pos-
itively associated with arterial stiffness
[32, 33]. Patients with rheumatoid arthritis
(RA) have a two- to threefold increased risk of
myocardial infarction compared to the general
population. Charles-Schoeman C’s study found
that HDL proteome is abnormal with the increase
of HDL-associated LBP in active RA patients.

Fig. 3.5 Role of BPI and LBP in host responses to Gram-
negative bacteria. Bactericidal/permeability-increasing
protein (BPI) is found mainly in the granules of
neutrophils and eosinophils. Additionally, BPI has been
detected on the surface of monocytes and colon epithe-
lium, which is possibly due to the secondary secretion
from activated neutrophils. BPI has higher affinity for
LPS and bacteria, is bactericidal, and represses inflamma-
tion by preventing LBP from delivering LPS to CD14. The
major target cell of BPI–endotoxin aggregates are
monocytes, while BPI promotes the CD14-independent

delivery of purified LPS aggregates to host cells without
apparent cell activation. Lipopolysaccharide-binding pro-
tein (LBP), synthesized principally by hepatocytes and
secreted into the bloodstream, can extract LPS monomers
from the out membrane of Gram-negative bacteria (GNB),
thereby delivering the LPS molecules to membrane and
soluble forms of CD14 receptors, which trigger the
pro-inflammatory responses mediated neutrophils,
monocytes, and macrophages. Besides the activation
described previously, LBP delivers LPS to lipoproteins
leading to hepatic clearance
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The treatment of RA may lower the LBP level in
HDL fraction, which suggested a decrease in the
pro-inflammatory properties of the HDL particle
[34]. The study indicated that HDL-associated
LBP might be a pro-inflammatory marker of
HDL. Moreover, in hemodialysis patients, serum
LBP is associated with chronic inflammation and
metabolic syndrome [35].

The LPS delivery function of LBP is correlated
with lipoprotein metabolism. HDL is the primary
acceptor of LPS delivered by LBP. In acute phase
of septic shock patients, HDL levels were dramati-
cally decreased with a shift toward large HDL
particles, which may reflect a remarkable dysfunc-
tion of these lipoproteins. The significantly
increased serum LBP level was also observed in
this study [36]. Moreover, Wurfel et al. reported
that the addition of recombinant LBP enabled
prompt binding and neutralization of LPS by
recombinant HDL. Thus, LBP appears capable of
transferring LPS not only to CD14 but also to
lipoprotein particles. In contrast with recombinant
HDL, apoA-I-containing lipoproteins isolated
from plasma by selected affinity immunosorption
on an anti-apoA-I column neutralized LPS without
the addition of exogenous LBP. Therefore LBP
appears to be physically associated with
lipoproteins in plasma; it is positioned to play an
important role in the neutralization of LPS [27].

LBP plays an important role in regulating leuko-
cyte responses to LPS via either augmenting these
responses at low LBP concentrations or inhibiting
them at high concentrations. Richard L. Kitchens
and colleagues’ investigation of the mechanism of
apoA-II activity revealed that LBP promoted the
formation of large LPS aggregates with low bioac-
tivity and that apoA-II inhibited the formation of
these aggregates without binding and directly
inhibiting LPS bioactivity. Their results suggest a
novel pro-inflammatory activity of apoA-II that
may help maintain sensitive host responses to LPS
by suppressing LBP-mediated inhibition [37].

3.3.2 BPI

BPI is the most potent antimicrobial granule pro-
tein identified so far and is especially effective

against Gram-negative bacteria. In addition to
these antimicrobial effects, BPI may play a key
role in limiting endotoxin-triggered systemic
inflammation by binding with high affinity to
the lipid A portion of LPS [25]. Recombinant
BPI is a potent inhibitor of LPS-mediated
responses in cultured bovine brain microvascular
endothelial cells and also inhibited LPS-induced
tumor necrosis factor alpha, interleukin-1 beta,
and interleukin-6 releases from human whole
blood. The findings indicated that BPI treatment
is a potent prevention of endotoxemia or
endotoxic shock [38]. In rat model with burn
and/or sepsis, the recombinant BPI administration
could attenuate myocyte cytokine responses to
septic challenge and improved contractile func-
tion, which suggested that BPI protects myocyte
from post-burn infectious inflammation or dam-
age in septic status [39]. A Proteomics study
revealed that BPI is decreased dramatically in
patients with total coronary atherosclerotic occlu-
sion, suggesting that BPI might be a promising
biomarker for severe atherosclerotic coronary
stenosis [40].

Moreover, BPI is closely related with diabetes,
which is an independent risk factor of atheroscle-
rotic disease. Carme Gubern et al. studied
circulating BPI in healthy subjects, in patients
with glucose intolerance, and in patients with
type 2 diabetes [41]. In subjects with glucose
intolerance, the strong associations were
observed between plasma BPI and central obe-
sity, glucose metabolism, insulin sensitivity, and
components of the metabolic syndrome. Bioac-
tive LPS level was significantly associated with
both BPI and LBP. In patients receiving metfor-
min, the improved insulin sensitivity and raised
circulating BPI were observed in parallel. The
3-UTR BPI gene polymorphism was associated
with both increased BPI and raised insulin sensi-
tivity concomitantly [41]. The decreased
circulating BPI concentrations are associated
with endothelium-dependent vasodilatation, total
LDL, and HDL cholesterol level [42]. In addition,
they found that low BPI was associated with
increased LPS concentration in healthy volunteers.

Both LBP and BPI participate in lipid metabo-
lism and thereby involve in pathogenesis of
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certain cardiovascular diseases. Serum LBP level,
as a biomarker of pro-inflammatory protein, is
highly associated with atherosclerosis, arterial
stiffness, and many chronic metabolic dysfunc-
tion diseases. BPI, a potential bactericidal protein
which fights against infection in vascular system
and beyond, is licensed for human use. The asso-
ciation of BPI and CVD needs more evidence.
Further mechanistic studies are required to
explore the causal relations between LBP/BPI
and CVD pathogenesis.
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Microsomal Triglyceride Transfer
Protein: From Lipid Metabolism
to Metabolic Diseases

4

Jahangir Iqbal, Zainab Jahangir, and Ali Ahmed Al-Qarni

Abstract

Microsomal triglyceride transfer protein
(MTP) was first identified as an endoplasmic
reticulum (ER) resident protein that helps in
the transfer of neutral lipids to nascent apoli-
poprotein B (apoB). Its critical role in the
assembly and secretion of apoB-containing
lipoproteins was identified in abetalipopro-
teinemia patients who have mutations in
MTP and completely lack apoB-containing
lipoproteins in the circulation. It has been
established now that MTP not only is involved
in the transfer of neutral lipids but also plays a
role in cholesterol ester and cluster of differen-
tiation 1d (CD1d) biosynthesis. Besides neu-
tral lipids, MTPmay also help in the transfer of
sphingolipids such as ceramides and
sphingomyelin to the apoB-containing
lipoproteins. MTP is a multifunctional protein,
and its deregulation during pathophysiological
conditions gives rise to different metabolic
conditions. This book chapter discusses the

physiological role and regulation of MTP to
maintain the homeostasis of lipids and
lipoproteins. It also reviews the regulation of
MTP during certain pathophysiological
conditions and provides a brief overview of
therapeutic interventions that can be possibly
used to target its activity or expression to alle-
viate some of these metabolic diseases.
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IRE1β inositol requiring enzyme 1β
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miR microRNA
MTP microsomal triglyceride transfer
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4.1 Introduction

Metabolic syndrome is a group of risk factors that
includes obesity, insulin resistance, glucose intol-
erance, endothelial dysfunction, hypertension,
and atherogenic dyslipidemia [1, 2]. Access
plasma lipids that are carried in apoB-containing
lipoproteins are a major risk factor for atheroscle-
rotic cardiovascular disease and other lipid
disorders [3, 4]. These apoB-containing
lipoproteins require MTP for their assembly and
secretion which is present mainly in the liver and
intestine. Besides traditional risk factors such as
high levels of low-density lipoprotein (LDL) and
low levels of high-density lipoprotein (HDL) cho-
lesterol [5, 6], changes in sphingolipids may con-
tribute to the pathogenesis of these disorders
[7, 8]. Since MTP plays a central role in the
regulation of apoB-containing lipoproteins, it is
important to understand how the expression and
activity of MTP is controlled during physiologi-
cal and pathophysiological conditions which can
help to develop therapeutic interventions to alle-
viate some related metabolic diseases.

4.2 Role of Microsomal
Triglyceride Transfer Protein
in Lipid and Lipoprotein
Metabolism

Hydrophobic properties of the lipids make it dif-
ficult to transport them in the aqueous environ-
ment of the body and tissue fluids. However,
nature has evolved different methods to overcome
this limitation. To facilitate their transport to
enterocyte membranes during dietary absorption,
bile acids solubilize lipids in the intestinal lumen
along with other hydrophobic molecules
[9]. After cellular uptake, several proteins assist
in the transport of these lipids between different
subcellular compartments for further processing.
The absorbed lipids are transported in the extra-
cellular milieu by lipoproteins that possess an
amphipathic surface containing a combination of
phospholipids, free cholesterol, and amphiphilic
proteins surrounded by a hydrophobic core of
neutral lipids such as triacylglycerol and
cholesteryl esters [10].

The intestine and liver are the predominant
tissues that are involved in lipid and lipoprotein
metabolism. These tissues were initially thought
to be the only organs that express MTP. However,
several studies have now revealed that MTP is
also expressed in the heart, kidney, brain, eye,
macrophages, and adipose tissue [11, 12]. Of the
various classes, apoB-containing lipoproteins that
transport large amounts of lipids are widely stud-
ied due to their association with coronary artery
disease and atherosclerosis. Assembly and secre-
tion of these apoB-containing lipoproteins by
various tissues are critically dependent on the
presence of the lipid transfer activity of MTP
[12–18]. MTP exists as a heterodimer consisting
of a ubiquitously expressed chaperone protein
disulfide isomerase (P-subunit) and a unique
M-subunit [19, 20] in the lumen of the
ER. Even though the lipid transfer activity resides
within the M-subunit of MTP complex, the
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P-subunit helps in its structural stabilization and
solubilization. Mutations in the M submit of MTP
in abetalipoproteinemia subjects were the first
indication to suggest that the lipid transfer func-
tion of MTP is critical for apoB-lipoprotein
assembly and secretion [21–23]. Pharmacological
inhibition [24] or missense mutations occurring
naturally in the M-subunit [25, 26] alter lipid
transfer activity of MTP to decrease the secretion
of apoB-containing lipoproteins. Gouda et al.
have shown that MTP -493G > T polymorphism
may be correlated with the risk of nonalcoholic
fatty liver disease and metabolic syndrome
[27]. In addition to lipid transfer function, MTP
is also known to have apoB-binding and mem-
brane association domains [15, 16]. Several
techniques such as yeast two-hybrid, co-immuno-
precipitation, and in vitro binding assays have
been used to demonstrate interaction of MTP
within the N-terminus region of apoB
[28, 29]. The importance of these interactions
for proper apoB-lipoprotein assembly and secre-
tion has been validated by using small molecule
inhibitors against protein-protein interactions in
cell culture models [30].

Besides its ability to transfer triglyceride, cho-
lesterol ester, and phospholipids [31, 32], we
have shown recently that MTP can also transfer
ceramide and sphingomyelin between vesicles
[33]. Our data indicated that MTP plays no role
in plasma hexosylceramide levels but is critical
for determining the plasma ceramide levels and is
partially responsible for sphingomyelin levels.
We have shown that MTP may regulate plasma
ceramide and sphingomyelin levels by transfer-
ring these sphingolipids to
apoB-containing lipoproteins to facilitate their
secretion. The ability of MTP to transfer ceramide
and sphingomyelin to nascent apoB-containing
lipoproteins or lipid droplets in the lumen of the
ER and Golgi to help in their secretion suggests
that MTP might be a general lipid transfer protein
that can recognize nonspecific hydrophobic
motifs [18, 33].

Drosophila MTP ortholog that was shown to
transfer only phospholipids provided some
insights that triglyceride transfer activity of
MTP is not critical for apoB-lipoprotein assembly

and secretion [17, 34–36]. Despite being only
50% as efficient as the human MTP, Drosophila
MTP not only rescued apoB secretion [17] but
also responded to the supplementation of oleic
acid to increase cellular apoB secretion [35]. Fur-
thermore, overexpression of Drosophila MTP in
mouse livers has been shown to assemble very
low-density lipoproteins (VLDL) that resemble
the size of HDL particles [34]. Therefore, the
assembly and secretion of primordial lipoproteins
only require the phospholipid transfer activity of
MTP. However, the presence of triglyceride
transfer activity is necessary to increase the asso-
ciation of neutral lipids with apoB-containing
lipoproteins.

Although, apoB48 and apoB100 are the major
forms used in vivo for lipoprotein assembly,
C-terminally truncated apoB has been used
in vitro to study the role of MTP in the assembly
and lipidation of apoB-containing lipoproteins
[37, 38]. Furthermore, it has been suggested that
the interaction of lipids with the N-terminal
fragments of apoB on the inner leaflet of the ER
membrane may initiate the formation of nucle-
ation sites independent of MTP [13, 39–
41]. MTP renders naturally occurring hydropho-
bic peptides such as apoB48 and apoB100 secre-
tion competent by bringing lipids to these
peptides. The type and amount of endogenous
lipids and the length of the apoB peptide deter-
mine the degree of lipidation of apoB-
lipoproteins, and the absence of MTP renders
these larger peptides to proteasomal degradation
[42, 43]. Furthermore, in the absence of the syn-
thesis of larger apoB, cells abort lipoprotein
assembly and secrete smaller peptides associated
with fewer lipids. Studies have shown that com-
pared to apoB48, secretion of apoB100 is more
sensitive to MTP inhibitors [44]. Similarly, a
study reported that hepatic ablation of MTP
decreased plasma apoB48 levels to a lesser extent
[45]. However, intestine-specific deletion of MTP
has been shown to reduce apoB48 secretion dra-
matically by around 80% by enterocytes
[46]. However, abetalipoproteinemia patients
depicted absence of both apoB100 and apoB48
suggesting that secretion of both peptides
requires MTP.
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A physiological ratio of cholesterol and
phospholipids is necessary to maintain membrane
fluidity in the cellular membrane. However,
excess free cholesterol is toxic to cells, and sev-
eral pathways are involved in regulating its levels
[47]. One of the pathways adapted by cells to
avoid such toxicity is by storing excess free cho-
lesterol in its ester form which is accomplished by
acyl-CoA:cholesterol acyltransferase (ACAT)
enzymes ACAT1 and ACAT2 [48–52]. ACAT1,
expressed ubiquitously [53–56], and ACAT2,
expressed mainly in the intestine and liver
[53, 56–58], are integral ER membrane proteins
with several transmembrane domains [59–
61]. Newly synthesized cholesterol esters are
either transported for storage or transferred by
MTP to apoB-containing lipoproteins for secre-
tion in the intestine and liver. Since MTP is
involved in the transfer of cholesterol esters to
apoB-lipoproteins, it is expected that inhibition/
deficiency of MTP should increase cellular cho-
lesterol esters. However, we have reported that
inhibition or genetic ablation of MTP activity
increases cellular free cholesterol levels by
decreasing microsomal cholesterol ester biosyn-
thesis without effecting ACAT1 and ACAT2
mRNA and protein levels [62]. These
observations suggest that MTP regulates choles-
terol ester biosynthesis by mechanisms indepen-
dent of transcriptional or translational control of
ACAT1 and ACAT2. It is plausible to surmise
that MTP circumvents product inhibition by
removing cholesterol esters from the site of syn-
thesis on ACATs and depositing them into apoB-
lipoproteins. Not only MTP but also apoB48
co-expression in the cells were shown to increase
cholesterol ester biosynthesis and secretion
suggesting that biogenesis of lipoproteins by
MTP and synthesis of apoB acts in concert to
increase the biosynthesis of cholesterol ester.

4.3 Regulation of Microsomal
Triglyceride Transfer Protein

Transcription factors play an important role in
regulating lipid homeostasis. To maintain this
homeostasis, the activity of MTP and the stability

of apoB are important factors [12, 63]. MTP gene
expression is controlled by a variety of cellular
regulators that include several transcription
factors, and these factors are sometimes tissue
specific. Different types of diet also play an
important role in modulating the expression and
activity of MTP. Long-term feeding of high-fat
diet in hamsters increases MTP mRNA in the
liver and intestine [64]. Similarly, a high-fructose
diet increases MTP expression in both the liver
and intestine [65]. In contrast, a sucrose-enriched
diet increases MTP mRNA expression only in the
liver [64], whereas diets rich in saturated fat
[64, 66] and cholesterol [67] increase the expres-
sion of MTP only in the intestine. Sterol response
element binding protein (SREBP)-2 has been
shown to interact directly with the sterol and
insulin response element (SRE/IRE) in the MTP
promoter to decrease MTP expression by sterol
depletion and pravastatin in HepG2 cells
[68]. However, upregulation of MTP by oleic
acid in HepG2 cells does not involve SRE/IRE
[65]. The potential binding to the SRE/IRE ele-
ment in the promoter of MTP by SREBPs to
change its expression by saturated fat and choles-
terol has not been demonstrated in vivo. We have
shown that inositol-requiring enzyme 1β (IRE1β)
may play a role in the regulation of intestinal
MTP during the feeding of high-cholesterol and
Western diets [67]. Deletion of IRE1β in mice
results in increased intestinal expression of MTP
upon Western diet feeding and makes these mice
more prone to develop hyperlipidemia than wild-
type mice. The increased level of intestinal
lipoproteins due to IRE1β deficiency leads to the
development of increased atherosclerotic plaques
in apoE knockout background mice [69]. Even
though macronutrients have been shown to affect
MTP expression, further studies are required to
investigate how they regulate MTP in vitro and
in vivo.

Studies have shown that insulin affects lipo-
protein formation either by regulating the amount
of fatty acids in the circulation [70] or by direct
suppression of the VLDL production [71]. Insulin
reduces VLDL secretion most probably through
the reduction in MTP activity. Expression of
MTP in HepG2 cells is regulated in a dose- and
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time-dependent manner by insulin [72, 73]. Sev-
eral studies have shown that insulin regulates
MTP expression through mitogen-activated pro-
tein kinase and extracellular signal-regulated
kinase (MAPKerk) cascade and not through
phosphatidylinositol 3-kinase (PI3K) signaling
pathway that involves phosphorylation of AKT
[74, 75]. Increased insulin-mediated MTP sup-
pression by MAPKp38 inhibition involves the
MAPKerk cascade by phosphorylating and
translocating extracellular signal-regulated kinase
1/2 (ERK1/2) to the nucleus. Upon translocation,
these proteins activate several transcription
factors that bind to the cis-elements in the pro-
moter regions of various genes [76, 77]. However,
the transcription factors activated by ERK1/2 that
interact with the MTP promoter need to be
identified.

Under a non-phosphorylated state, forkhead
box protein A2 (FoxA2) and FoxO1 transcription
factors are known to bind MTP promoter to
increase its expression [78, 79], and this increased
expression of MTP is prevented by insulin. Insu-
lin signaling activates phosphorylation of FoxA2
and FoxO1 [78, 79] and prevents their transloca-
tion to the nucleus. Furthermore, silencing of
FoxO1 in normal and db/db mice using RNAi
decreased the expression of liver MTP which in
turn reduced VLDL production [79]. These com-
bined studies demonstrate the involvement of
insulin in lipoprotein metabolism through MTP
regulation. Insulin prevents binding of Fox tran-
scription factors to MTP promoter and requires
the SRE/IRE element to mediate suppression of
MTP in cultured hepatoma cell lines. However,
acute administration of insulin into fasted
Apobec1�/� mice that synthesize apoB100 only
did not affect MTP expression but reduced
plasma glucose and hepatic FoxO1 levels after
2 h [80].

Even though MTP expression is negatively
regulated by insulin, the expression is not reduced
in hyperinsulinemic animals. MTP expression is
increased in high-sucrose [64] and fructose-fed
hamsters [81, 82] that are normalized after the
treatment with rosiglitazone by improving insulin
sensitivity [83]. Kuriyama et al. have shown that
Young Otsuka Long-Evans Tokushima Fatty

(OLETF) rats have more hepatic MTP in the
absence of hyperinsulinemia during young stage
that persists in the adult stage after the develop-
ment of hyperinsulinemia [84]. Similarly, ob/ob
mice [85] and Zucker obese ( fa/fa) rats [86] with
hyperinsulinemia have higher MTP expression
levels in the intestine and liver. On the other
hand, intestinal MTP of alloxan-treated rabbits
[87] or streptozotocin-treated rats [88] and mice
[85] is increased with no change in liver MTP
expression. These studies suggest that
hyperinsulinemia is generally associated with
increased MTP expression as a result of insulin
resistance rather than insulin sensitivity. Regula-
tion of hepatic MTP expression by insulin in vivo
remains to be determined, and further studies are
needed to understand the role insulin plays in the
regulation of MTP during insulin resistance.

In one of the studies, we have shown that
intestinal cells express leptin receptors that
respond to leptin signaling to regulate MTP levels
[89]. We used various mouse models to demon-
strate that global deficiency of leptin receptors
decreased intestinal MTP expression but not
hepatic expression. This regulation of intestinal
MTP expression by leptin is independent of cen-
tral leptin signaling in the hypothalamus. The
mechanisms that differentially regulate MTP
expression in intestinal and hepatic cells by leptin
are unknown and need further investigation.

In early development in mice, MTP expression
is initially detected at day 7.5 after gestation
mainly in the liver [90]. However, as the embryo
matures, the intestine expression of MTP
increases and reaches levels higher than the liver
[91]. MTP plays a pivotal role in embryonic
development as the mice deficient globally in
MTP are not viable [92]. Similarly, intestine-
specific MTP knockouts do not result in viable
progeny after crossing MTP-floxed mice with
Villin-Cre transgenic mice [46]. Contrary to
global or intestine-specific MTP knockouts,
liver-specific deletion of MTP using Alb-Cre is
viable [34] which may be due to delayed expres-
sion of albumin during development. As intestine
is important in the transport of dietary lipids only
after birth, it is unclear why intestine-specific
deletion of MTP is critical for embryonic
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development in mice. Similar to global MTP
knockout, apoB knockout mice are also not viable
indicating that these lipoproteins may be critical
during embryonic development and may be used
to nurture the embryo [93]. It is more likely that
apoB-containing lipoproteins are involved in the
development of the embryo since the inner layer
of visceral endodermal cells that line the yolk sac
is derived from the embryo [94]. Survival of
abetalipoproteinemia subjects during embryonic
stage of life suggests that the requirement of MTP
during embryo development differs in vertebrates
since it is required for yolk lipid utilization in
zebrafish larvae [95, 96].

One of the important adaptations that are nec-
essary to uptake dietary fats by the villus cells is
the differentiation of stem cells into villus cells to
acquire the absorptive phenotype [97]. Human
colon adenocarcinoma Caco-2 cells, which can
transform into enterocyte-like cells [98], have
been extensively used to study differentiation
and various intestinal functions [99, 100]. These
cells synthesize and secrete apoB-containing
lipoproteins only when they are differentiated
[99, 101–103] which is dependent on the expres-
sion of MTP, and not apoB synthesis [98]. Dai
et al. showed that during the undifferentiated
stage, cells are inactive due to the binding of
nuclear receptor 2 family 1 (NR2F1) repressor
to the direct repeat 1 (DR1) element of the MTP
promoter, and as the differentiation progresses,
NR2F1 expression declines, leading to increased
expression of MTP [98]. Besides transcriptional
suppression by NR2F1, lower expression of MTP
in undifferentiated intestinal cells is also under a
posttranscriptional suppression involving IRE1β.
Studies have shown that IRE1β cleaves Mttp
mRNA posttranscriptionally to initiate its degra-
dation [67]. IRE1β, a homolog of ubiquitously
expressed IRE1α, is primarily expressed in the
intestine and plays a critical role in unfolded
protein response [104]. Similar to NR2F1 expres-
sion, the level of IRE1β is high in undifferentiated
cells which decline during differentiation. Fur-
thermore in mouse intestine, there is a reciprocal
expression pattern of MTP with IRE1β and
NR2F1 along the jejunum to colon axis and villus
to crypt axis in the jejunum [98]. High-cholesterol

and Western diets have been shown to enhance
the expression of MTP by reducing the expres-
sion of IRE1β in the jejunum [67]. These studies
suggest that induction of MTP expression
involves transcriptional mechanisms that may be
dependent on various factors involved in the dif-
ferentiation of enterocytes. Some studies have
shown that MTP may be regulated by posttran-
scriptional and posttranslational mechanisms
also. Activity and protein levels of MTP were
lower in mice with liver-specific deletion of phos-
phatase and tensin homolog (PTEN) with only
modest reductions in MTP mRNA [105]. Further-
more, lower MTP activity and protein levels were
observed in HepG2 cells overexpressed with a
dominant negative form of PTEN [105]. Pan
et al. have shown that carbon tetrachloride
(CCl4) induces posttranslational ER-associated
proteasomal degradation of MTP after covalently
modifying it through ubiquitination [106]. These
studies indicate that MTP might also be regulated
by posttranscriptional and posttranslational
mechanisms.

Circadian rhythmicity in humans and rodents
maintains a narrow range of plasma lipids by
balancing lipoprotein production and catabolism
[107–111]. These daily variations in plasma
lipids are attributed to synchronized circadian
fluctuations in MTP expression in rats and mice
[112]. These circadian fluctuations in MTP and
plasma lipids were abrogated in Clock mutant
mice. The clock regulates diurnal expression of
MTP by changing the expression of small
heterodimer partner (SHP), a repressor of MTP
[113]. Expression of MTP is also negatively
regulated by bile acids. Chenodeoxycholate has
been shown to increase SHP expression that
results in suppression of HNF-4α activity leading
to a decrease in MTP expression in HepG2 cells
[114]. These studies demonstrate that circadian
regulation and bile acids may affect MTP expres-
sion by modulating the expression of its
repressor.

Degradation of mRNAs by microRNAs
(miRs) has emerged as a novel mode of posttran-
scriptional mechanism to control expression of
genes in the cells. Large arrays of miRs play a
critical role in regulating lipid and lipoprotein
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metabolism by targeting proteins and enzymes
that are involved in these pathways. A recent
study by Soh et al. has shown that miR-30c
targets hepatic MTP mRNA and modulates lipid
substrate availability for VLDL biogenesis
[115]. There is ample evidence to suggest modu-
lation of lipid and lipoproteins by the transcrip-
tional and posttranscriptional regulation of MTP,
with a very little knowledge about its translational
control that needs further investigation.

4.4 Lipids and Lipoproteins
in Metabolic Syndrome

Lipids contribute to the risks associated with the
complex pathogenesis of metabolic syndrome.
Alterations in both atherogenic (VLDL and
LDL) and anti-atherogenic (HDL) lipoproteins
cause lipid abnormalities that lead to dyslipidemia
[116–119] which sometimes may also be caused
by a decrease in the clearance of triglyceride-rich
lipoproteins [120]. Furthermore, increased preva-
lence of sedentary life style and obesity has given
rise to increased incidence of insulin resistance
accompanied with dyslipidemia [121, 122]. Insu-
lin resistance is a critical characteristic of the
metabolic syndrome that leads to the develop-
ment of type 2 diabetes [123, 124] and
abnormalities in lipoprotein metabolism
contributing to increased cardiovascular risk
[123]. Patients with insulin resistance [123]
show lipid abnormalities that mainly originate
from the overproduction of hepatic VLDL
[124, 125] or increased production of
chylomicrons [126]. Increased hepatic VLDL
production is of key importance in the formation
of small dense LDL and is a central feature of
dyslipidemia associated with insulin resistance
and type 2 diabetes [124, 127]. The presence of
small dense LDL particles has been shown to be
associated with increased cardiovascular risk that
precedes diagnosis of type 2 diabetes [128, 129].

The liver plays a major role in the lipid and
lipoprotein metabolism. Under normal physiolog-
ical conditions, insulin suppresses the gene
expression of enzymes involved in triglyceride
biosynthesis and reduces the synthesis and

secretion of VLDL in the liver [130]. Fatty acids
for hepatic lipid and VLDL triglycerides are
either synthesized directly by liver or come from
dietary fatty acids transported via chylomicrons
or plasma non-esterified fatty acid (NEFA) pool
originating from adipose tissue [131]. The uptake
of fatty acids by the liver is not regulated and is
directly related to the concentration of plasma
NEFA [132]. However, in insulin-resistant states,
inefficiency of insulin signaling results in
enhanced lipolysis and flux of fatty acids from
adipocytes for increased triglyceride synthesis
causing excess triglyceride to be secreted as
VLDL [133]. This increased production of
VLDL has been implicated to be the major meta-
bolic defect in atherogenic dyslipidemia [134].

During postprandial state, chylomicrons con-
tribute to the large triglyceride-rich lipoproteins,
which are critically dependent on apoB48 and
MTP [9, 63]. Chylomicrons can accumulate in
the circulation and influence overall lipid and
lipoprotein turnover during metabolic syndrome
[135, 136]. Patients with metabolic syndrome
[135, 136] have a significant delay in the clear-
ance of chylomicron remnants due to abnormal
postprandial lipoprotein metabolism, thereby
leading to impaired glucose and lipid metabolism
[137]. In insulin-resistant patients, free fatty acids
(FFAs) and inflammatory cytokines are mainly
responsible to drive the overproduction of
triglyceride-rich lipoproteins [138]. Furthermore,
increased activity of lipoprotein lipase that
catalyzes the release of fatty acids from the
chylomicrons leads to the increase in the plasma
fatty acid pool [131]. The dietary fat content
determines the overall influence of dietary fatty
acids entering the circulation through
chylomicrons to hepatic triglycerides. The
higher-saturated fatty acid composition in the
diet may lead to obesity and insulin
resistance [139].

Individuals with insulin resistance have ele-
vated levels of several lipid species, but the caus-
ative association between insulin resistance and
accumulation of specific lipid metabolites is con-
troversial [140, 141]. Some studies have
suggested that hepatic fatty acid biosynthesis
pathways are sensitive to the high levels of portal
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insulin flux, and any imbalance in insulin signal-
ing may lead to the development of a fatty liver
[142, 143]. Other studies have shown that hepatic
insulin resistance may be due to inflammation and
suggested that hepatic steatosis and insulin resis-
tance may be separate manifestations of meta-
bolic disorder [144]. During inflammation
various cytokines play an important role in the
development of insulin resistance [145]. Obesity
is characterized as a state of chronic low-grade
inflammation that results in decreased insulin sen-
sitivity [146] and causes lipid accumulation in
adipocytes which activates various molecular
pathways responsible for increased production
of pro-inflammatory cytokines [147].

Insulin resistance in adipose tissue may be an
essential aspect for the pathophysiology of the
metabolic syndrome. The rising incidence of
insulin resistance in the past few decades may
be mainly due to increased prevalence of obesity
[148]. Hyperinsulinemia during metabolic syn-
drome correlates with the abdominal adiposity
[149] and is a cause of increased hepatic VLDL
production that leads to elevated triglycerides in
the circulation [150]. The inability of insulin to
suppress lipolysis and increase mobilization of
FFAs from adipose tissue leads to the increase
of FFA flux [148]. Besides increased supply of
FFAs to the liver, increased MTP expression and
reduced apoB degradation link insulin resistance
to increased VLDL secretion [134]. Majority of
studies have shown that insulin resistance leads to
increased MTP expression [for review, [151]].
Furthermore, insulin-resistant subjects with
hyperinsulinemia show significantly higher
apoB48 levels [152] contrary to decreased
circulating apoB48-containing lipoproteins after
insulin administration [153].

4.5 Therapeutic Intervention
of MTP to Alleviate
Dyslipidemia in Metabolic
Syndrome

Besides obesity and insulin resistance, hyperlip-
idemia is one of the most critical risk factors
contributing to metabolic diseases such as

atherosclerosis and type 2 diabetes. MTP has
been a favorite target to lower production of
apoB-containing lipoproteins and treat lipid
disorders such as hypercholesterolemia and
hypertriglyceridemia and thereby decrease ath-
erosclerosis [154–159]. Several MTP antagonists
that decrease lipoprotein production and plasma
lipids have been identified [24, 158, 160] and
tested in humans after promising preclinical stud-
ies provided proof of concept that inhibition of
MTP may be an effective therapeutic target to
alleviate hyperlipidemia [158–162]. However,
some of the subjects in these studies experienced
elevated hepatic lipids and increased plasma
transaminases [161, 162]. Due to these reasons,
the use of MTP inhibitors has been restricted to
conditions where alternative therapeutic options
to decrease plasma lipids are either not present or
are associated with high risks [163, 164].

Novel strategies need to be developed to
decrease MTP activity without affecting
transaminases in the plasma or lipids in the
liver. A recent study by Wang et al. showed that
metformin improved lipid metabolism in OLETF
rats by reducing the expression of MTP [165]. It
has been suggested that inhibition of MTP specif-
ically in the intestine might be useful to avoid
hepatic toxicity [157, 166]. However, before pro-
moting this approach, long-term consequences
need careful evaluation since intestinal MTP defi-
ciency may be associated with gastrointestinal
disturbances [160]. Several natural compounds
such as flavanoids [167], isoflavones [168], and
garlic extracts [169] have been shown to inhibit
MTP activity and should be explored as an alter-
nate therapeutic treatment to lower lipids in the
plasma. Another option is to specifically inhibit
triglyceride transfer activity of MTP to lower
plasma lipids since phospholipid transfer activity
is sufficient for lipoprotein assembly and secre-
tion [34, 35]. A combined treatment involving
inhibitors that reduce hepatic lipid accumulation
along with MTP antagonists may also be benefi-
cial. The discovery of miRs and their critical roles
in controlling cellular lipid and lipoprotein metab-
olism has opened new possibilities to use miRs or
their inhibitors as potential therapeutic agents to
reduce hyperlipidemia, obesity, diabetes, and
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atherosclerosis [117, 170–172]. Researchers are
now targeting the expression of miRs that
regulates lipid metabolism genes as a therapeutic
intervention to treat metabolic diseases [115, 173,
174]. Due to their multi-targeting essence, miRs
may become a very powerful tool that may influ-
ence the pathophysiological process of metabolic
diseases.

4.6 Conclusions

Over the years, many researchers have made evi-
dent the important role of MTP in the regulation
of lipid and lipoprotein metabolism. In this book
chapter, we have summarized some of the key
functions of MTP and discussed how it is
regulated by various factors involving transcrip-
tional, posttranscriptional, and posttranslational
mechanisms. We also discussed regulation of
MTP and lipoprotein metabolism during patho-
physiological conditions that highlights its role in
the development of certain metabolic diseases.
Pharmaceutical interventions to inhibit MTP to
treat these metabolic conditions have so far been
unsuccessful due to the adverse effects, such as
hepatic steatosis, that are associated with these
treatments. However, efforts are ongoing to find
the alternative approaches that could be success-
fully used in the future to treat lipid and lipopro-
tein metabolism-related disorders. In this respect,
miRNA-based therapies have been envisioned to
serve as a possible novel approach for the treat-
ment of metabolic diseases although further
investigation and refining is necessary.
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Circadian Clock Regulation on Lipid
Metabolism and Metabolic Diseases 5
Xiaoyue Pan, Samantha Mota, and Boyang Zhang

Abstract

The basic helix-loop-helix-PAS transcription
factor (CLOCK, Circadian locomotor output
cycles protein kaput) was discovered in 1994
as a circadian clock. Soon after its discovery,
the circadian clock, Aryl hydrocarbon receptor
nuclear translocator-like protein 1 (ARNTL,
also call BMAL1), was shown to regulate adi-
posity and body weight by controlling on the
brain hypothalamic suprachiasmatic nucleus
(SCN). Farther, circadian clock genes were
determined to exert several of lipid metabolic
and diabetes effects, overall indicating that
CLOCK and BMAL1 act as a central master
circadian clock. A master circadian clock acts
through the neurons and hormones, with
expression in the intestine, liver, kidney,
lung, heart, SCN of brain, and other various
cell types of the organization. Among circa-
dian clock genes, numerous metabolic
syndromes are the most important in the regu-
lation of food intake (via regulation of circa-
dian clock genes or clock-controlled genes in
peripheral tissue), which lead to a variation in

plasma phospholipids and tissue
phospholipids. Circadian clock genes affect
the regulation of transporters and proteins
included in the regulation of phospholipid
metabolism. These genes have recently
received increasing recognition because a
pharmacological target of circadian clock
genes may be of therapeutic worth to make
better resistance against insulin, diabetes, obe-
sity, metabolism syndrome, atherosclerosis,
and brain diseases. In this book chapter, we
focus on the regulation of circadian clock and
summarize its phospholipid effect as well as
discuss the chemical, physiology, and molecu-
lar value of circadian clock pathway regulation
for the treatment of plasma lipids and
atherosclerosis.
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aSMase Acidic SMase
BMAL1 Aryl hydrocarbon receptor

nuclear translocator-like
protein 1

CerS Ceramide synthase
Chkα Choline kinase alpha
CLOCK Circadian locomotor output

cycles protein kaput
ClockΔ19/Δ19 or
Clkmt/mt

Dominant-negative Clock
mutant protein mice

CRY1/2 Cryptochrome 1,2
FA Fatty acid
GSK-3β Glycogen synthase kinase

3 beta
HAT Histone acetyltransferase
HMG-CoA
reductase

3-hydroxy-3-methyl-glutaryl-
CoA reductase

Ldlr�/� Low-density lipoprotein recep-
tor knockout

LDL Low-density lipoprotein
MTTP Microsomal triglyceride trans-

fer protein
NPAS2 Neuronal PAS-containing

protein 2
NPC1L1 NPC1 intracellular cholesterol

transporter 1
nSMase Neutral SMase
PC Phosphatidylcholine
PCSK9 Proprotein convertase subtili-

sin/kexin type 9
PE Phosphatidylethanolamine
Per1/2/3 Period genes 1, 2, 3 (Period1/2/

3)
PPARδ Peroxisome proliferator-

activated receptor delta
Rev-erbα Nuclear receptor subfamily

1, group D, member 1
RGCs Retinal ganglion cells
Rorα RAR-related orphan receptor A
SCN Suprachiasmatic nucleus
SHP Small heterodimer partner
SIRT1 Sirtuin 1
SMase Sphingomyelinase

UBE3A HECT-type E3 ligase
USF2 Upstream Transcription

Factor 2
VLDL Very low-density lipoprotein

5.1 Introduction

Sleep disorders are now a major health threat to
our life, this may result in more than 22 million
Americans suffering from sleep disorder annually
[1–15]. At least 38,000 people die from heart
disease directly complicated by a sleep disorder
[1–15]. A sleep disorder now affects almost every
ethnicity and cultural society, setting an enor-
mous load on the modern healthcare system in
the United States and worldwide. The numerous
complications associated with sleep disorders are
major metabolic syndrome, atherosclerosis,
hypertension, dyslipidemia, obesity, diabetes
mellitus, cardiovascular diseases, several cancers,
and certain types of brain diseases such as
Alzheimer’s disease [1–15]. Emphasizing the
consequences of sufficient lipid buffering, athero-
sclerosis represents, to date, the very high com-
mon cause of lipid-related diseases [16–
20]. According to sleep being a major risk factor
for development of atherosclerosis, ample sleep
achieved by either dieting, lifestyle, pharmacol-
ogy, changes in circadian rhythms,
proinflammatory responses, and metabolic effects
improving sleep quality and pattern have shown,
in numerous preclinical studies, many promising
effects. For example, the ATP-binding cassette
subfamily G member 5/8 (ABCG5/8),
N-terminal Niemann-Pick C1 (NPC1) intracellu-
lar cholesterol transporter 1 (NPC1L1), and
Microsomal triglyceride transfer protein (MTTP)
inhibitor are adequate to indicate significant
improvements in systemic lipid metabolism and
atherosclerosis-linked comorbidities [4, 21–

54 X. Pan et al.



29]. Further emphasizing, the direct relationship
between atherosclerosis and lipid regulation.
Plasma cholesterols reduced by ABCG5/8,
NPC1L1, and MTP inhibitors, which are
regulated by circadian clock genes, most often
result in whole resolution of atherosclerosis, an
opinion that encouraged the American Heart
Association and National Institutes of Health to
recommend such inhibitors under assured
conditions for the treatment of atherosclerosis.
Since the correlation between food intake and
phospholipid regulation is highly confirmed by
several basic research studies, inhibitors to inhibit
food intake intuitively appear promising to
improve phospholipid metabolism [30–
34]. Under this reason, remarkable examples of
such strategies are the administration of MTP
inhibitor, which not only reduces plasma choles-
terol through their MTTP inhibition but also
decreases phospholipid metabolism through
their ability to reduce lipid absorption via circa-
dian rhythm regulation of food intake
[35, 36]. We have shown that the circadian
clock genes can regulate plasma triglycerides
and cholesterol and regulate cholesterol and tri-
glyceride absorption and metabolism [28, 29, 37–
40]. A prominent example of circadian clock gene
regulation is the circadian clock with a mutant
clock gene, which improves body fat mass and
body weight through regulation of intestinal lipid
absorption and adipose lipid metabolism [38, 40–
43]. However, whether circadian clock genes reg-
ulate phospholipid metabolism is not commonly
known.

Phospholipids are polar, ionic compounds
composed of an alcohol that is attached by a
phosphodiester bridge to either diacylglycerol or
sphingosine [35]. There are two classes of
phospholipids: those that have glycerol (from
glucose) as a backbone are called glyceropho-
spholipids and those that have a sphingosine
(from serine and palmitate) are called
sphingophospholipids. Most phospholipids are
synthesized in the smooth endoplasmic reticulum
[35]. From there, they are transported to the Golgi
apparatus and then to membranes of organelles or
the plasma membrane of organelles [44]. They
could also be secreted from the cell by exocytosis.

Phosphatidylcholine (also called PC) and
phosphatidylethanolamine (also called PE) are
the most abundant phospholipids in most eukary-
otic cells [35, 45]. The primary route of their
synthesis uses choline and ethanolamine obtained
either from food intake or from the turnover of the
body’s phospholipids [44]. Sphingomyelin is one
of the principal structural lipids of the membranes
of nerve tissues. It is synthesized from ceramide
(an acyl sphingosine) and phosphatidylcholine.
Sphingomyelin is also hydrolyzed into ceramide
and phosphorylcholine [46]. Ceramide is further
degraded to sphingosine and free fatty acid
(FA) [46]. In this book chapter, we summarized
the regulation of circadian clock genes with a
special focus on their role to control lipid metab-
olism and metabolic diseases. A key central field
will thereby be the topic of whether disordering
the circadian clock genes will regulate transcrip-
tion factors, and will the function of a protein
pathway be of chronotherapeutic value to prog-
ress phospholipid metabolism?

5.2 Origins
of the Mammalian Clock

Several biological, physiological, and behavioral
activities show characteristic recurrence with
24-h intervals related to sunrise and sunset.
Light entrains the central clock present in two
lateral SCNs in the hypothalamus via the
retinohypothalamic tract. The master circadian
clock arises from autoregulatory transcriptional,
translational, and posttranslational feedback
loops of few transcription factors encoded by
“clock” genes, including circadian locomotor out-
put cycles protein kaput (CLOCK), brain and
muscle aryl hydrocarbon receptor nuclear
translocator-like 1 (BMAL1), neuronal
PAS-containing protein 2 (NPAS2), period
genes (Period1/2/3, PER1/2/3), and
cryptochrome genes (CRY1/2) [24, 47–50]. The
BMAL1:CLOCK and BMAL1:NPAS2
heterodimers bind to cis-acting E-box sequences
present in the promoter regions of PER1/2/3 and
CRY1/2 and enhance their expression,
constituting a positive feed-forward loop. Unlike
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CLOCK and BMAL1, PER1-3 and CRY1-2-
protein can dimerize and translocate to the
nucleus and then dimerize the PER1-3:CRY1-
2 complex, inhibiting the activity of CLOCK:
BMAL1 or NPAS2-BMAL1. In the center of
the hypothalamus, circadian clock genes are
localized in the SCN and express neuronally and
hormonally [16, 25, 51]. Zhang et al. have
reported that the liver had the most circadian
genes and then kidney as the 2nd, whereas the
hypothalamus had the fewest (Fig. 5.1) [52]. SCN
is responsible for controlling circadian rhythms,
these circadian clock proteins’ neuronal and hor-
monal activities regulate different body functions
in the 24-hour cycle, such as body temperature,
wake up/sleep, and food intake. To activate
CLOCK:BMAL1 or NPAS2:BMAL1, there are
450 unique protein modifications [52]. Clock
genes also need multiple posttranslational
modifications, including phosphorylation,
ubiquitination, acetylation, and SUMOylation to
regulate various physiological functions [53–
55]. This posttranslational modification of
BMAL1 is regulated by ubiquitin-specific prote-
ase 2 (USP2) [54, 55]. USP2 is essential to
deubiquitinating PER1, CRY1, and CRY2
in vivo [54–57]. This mechanism was
demonstrated by the absence of deubiquitinated
Per1, Bmal1, Cry1, and Cry2 in mice deficient in
USP2 [55].

BMAL1:CLOCK is a heterodimer formed via
CLOCK with 361 amino acids and BMAL1 with
387 amino acids. CLOCK and BMAL1 have the
same one, basic, helix-loop-helix (bHLH) bind-
ing of protein to DNA via recognized E-box sites,
through hydrogen bonding, between serine
residues and DNA. As we know, E-box sites are
about 20 base pairs upstream of genes with a
major 50-CACGTG-300 canonical motif. CLOCK
and BMAL1 or NPAS2 (a paralog of clock) can
not only recruit transcription factors to the E-box
site but also can upregulate transcription of the
target genes such as nuclear receptor subfamily
1, group D, member 1 (NR1D1, Rev-erbα),
D-Box binding PAR BZIP transcription factor
(DBP), peroxisome proliferator-activated recep-
tor alpha (PPARα), small heterodimer partner
(SHP), GATA binding protein 4 (GATA4), and

paired box protein 4 (PAX4) [16, 24, 28, 29, 40,
47–50, 58] (Fig. 5.2). These genes can also,
through recruitment of histone acetyltransferases,
decondense the nucleosome into heterochromatin
allowing transcriptional machinery access to the
DNA, such as mutant CLOCK, which
downregulates upstream transcription factor
2 (USF2). In addition, USF1 serves as a suppres-
sor of the circadian clock mutant, revealing the
nature of the DNA-binding of the Clock:Bmal1
complex in mice [59]. This data also suggests that
USF1 and USF2 are important modulators of
molecular and behavioral circadian rhythms in
mammals. In addition, it is possible that
CLOCK regulates USF2 through the histone
acetyltransferase pathway. However, more
experiments are required to understand this
mechanism.

The reported levels of CLOCK and BMAL
protein do not show dramatic circadian
oscillations in mammalian brain; however,
reflecting the species-related phosphorylation in
circadian clock protein shows clear circadian
oscillations with time-dependent, posttransla-
tional regulation [53]. The degradation of
CLOCK and BMAL1 is more important for tran-
scription activation of clock-controlled genes
through E-boxes in their promoters [60]. For
example, estrogen receptors are regulated by
CLOCK [61]. CLOCK:BMAL1 proteins can
bioaccumulate by proteasome inhibitor MG132
by preventing their protein degradation. MG132
is an inhibitor that decreases E-Box-mediated
transcription by interfering with CLOCK:
BMAL1 regulation cycles in humans. Whereas
in rodents, CLOCK19 protein is
hypophosphorylated to a higher extent than
those of wild-type CLOCK [62]. In vitro studies
have also shown several enzymes (such as casein
kinase I/II, glycogen synthase kinase 3 beta
(GSK-3β), and cyclin-dependent kinase 5) are
responsible for CLOCK:BMAL1 degradation
[63–67]. For example, GSK-3β-catalyzed phos-
phorylation can phosphorylate Ser431 of CLOCK
dependent site Ser427 and Thr21 of BMAL1
dependent site with Ser17, to induce higher activ-
ity of CLOCK and BMAL1 under unstable
conditions. Similarly, protein kinase Ck2 can
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phosphorylate and stabilize BMAL1 by
eliminating BMAL1 polyubiquitination
[66, 67]. Regulation of CLOCK:BMAL1

phosphorylation affects transcription through
alterations in DNA-binding [68]. In addition,
CLOCK:BMAL1 activity is affected not only by
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Fig. 5.1 Number of circadian clock genes detected in
each organ. Circadian expression of protein-coding
genes in different tissues. Blue marks indicate the number
of genes with at least one spliceform detected by
RNA-seq. Orange marks indicate the number of genes

with at least two spliceforms detected by RNA-seq. Blue
numbers to the top of each bar state the percentage of
protein-coding genes with rhythmic expression in each
organ of Zhang et al. publication. Figure modified
according to Zhang et al. publication in PNAS [52]

Fig. 5.2 Clock and clock-collected genes regulate meta-
bolic function. Both light- and food-entrained oscillators
appear to affect the expression of circadian clock genes
and clock-collected genes in the peripheral tissue. In SCN
and peripheral, Clock:Bmal1 heterodimerize to activate
transcription of circadian target genes including the

genes of Per1/2/3 and Cry1/2. Per1/2/3 and Cry1/2 inter-
act and inhibit Bmal1 and Clock. We have shown that
Clock and Bmal1 regulate several transcription factors
such as Shp, Usf2, and Gata4 regulating the expression
of several genes involved in lipid metabolism as well as
other pathways that affect metabolism
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phosphorylation but also by ubiquitination to
induce its transactivation and degradation
[69]. For example, SUMOylation and
O-GlcNAcylation induce ubiquitination of
BMAL1 at Lys259 and at Ser418, respectively,
to increase BMAL1 transactivation and degrada-
tion [69]. In addition, HECT-type E3 ligase can
promote ubiquitination of BMAL1 and CLOCK
[66, 70, 71]. Moreover, there are several studies
showing that sirtuin 1 binds to CLOCK and
BMAL1 and deacetylates BMAL1 at lys537
[71], thus preventing CRY1 recruitment and
restarting the transactivation of the clock gene.
Furthermore, HAT activity required site motif A
of CLOCK and acetylation site of BMAL1 are
required to rescue the cellular clock-controlled
gene rhythm [72, 73]. Histone modifications
were essential for normal clock function [71, 72,
74–77]. CLOCK:BMAL1 heterodimers shuttle
between the nucleus and the cytosol, thus
suggesting that the dimer-protein modulation is
involved in several post-translation and transcrip-
tion levels.

5.3 Physiological Functions
of Circadian Clock

While major studies indicate that most metabolic
functions of circadian clock require transcription
and post-translation levels, there is research
indicating that circadian clock genes have physio-
logically related functions on a body metabolism,
potentially through several pathways that have yet
to be identified. Circadian clock genes respond to
external stimuli, and the one prominent effect of
the circadian clock gene is its ability to diurnally
control food intake. We have shown that circadian
clock genes and lipid transport proteins are
expressed in the small intestinal enterocytes and
respond to food entrainment in wild-type mice
[38]. Dominant-negative Clock mutant protein
mice (ClockΔ19/Δ19 or Clkmt/mt) disrupt the circa-
dian expression and food entrainment of the clock
genes [38, 41]. In addition, the absorption of lipids
was high in Clock mutant mice [38, 40]. Our data
also suggests that Clock plays an important role in
light and food entrainment of intestinal function.

To understand the mechanism of clock genes
regulating lipid absorption and metabolism, we
studied the role of clock gene in the diurnal regu-
lation of plasma triglyceride-rich apolipoprotein
B-lipoprotein and MTTP. Clock mutant mice
showed sustained hypertriglyceridemia and high
MTTP expression. We found that CLOCK knock-
down activated MTTP promoter and reduced
SHP, in the human liver cell line Huh7 cells,
CLOCK temporally interacts with the E-box site
and increases SHP expression, whereas SHP
reduces MTTP expression by differentially
interacting with hepatocyte nuclear factor
4 alpha and the liver receptor homolog-1 [40]. In
Clockmt/mt mice, however, the binding of Clock to
Shp promoter did not show cyclic change, and Shp
mRNA levels were relatively low and did not
change [40]. This data shows that a decreased
interaction of SHP with these transcription factors
is associated with increased MTTP expression.
Therefore, SHP is a clock-controlled gene that
transmits information from CLOCK to MTTP.
Additionally, we showed, for the first time, that
ClockΔ19/Δ19mutant protein enhances plasma cho-
lesterol and atherosclerosis in the low-density
lipoprotein receptor knockout (Ldlr�/�) and apo-
lipoprotein E knockout (ApoE�/�) atherosclerosis
animal models [29]. In addition, Clock mutant
protein affects macrophage function.
Macrophages from ClockΔ19/Δ19 mice took up
more oxidized lipids and were defective in choles-
terol efflux. Molecular studies showed that Clock
regulates ATP-binding cassette subfamily A
member 1 expression and cholesterol efflux in
macrophages via Usf2 [29]. In addition, we
recently showed that global Bmal1-deficient
mice or hepatic-specific Bmal1 knockout mice
also have an impaired cholesterol metabolism,
display hepatic cholesterol efflux into bile,
develop atherosclerosis when fed with an
atherogenic diet, and potentiate the development
of atherosclerotic lesions in the Ldlr�/�

and ApoE�/� atherosclerosis animal models
[28]. Liver-specific inactivation of Bmal1 led to
elevated plasma low-density lipoprotein (LDL)
and very low-density lipoprotein (VLDL) choles-
terol levels as a consequence of the disruption
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of the Pcsk9/Ldl receptor regulatory axis
[22, 28, 78].

Phosphatidylcholine is one of the
phospholipids that occupy 70% of VLDL
phospholipids. Phosphatidylcholine biosynthesis
is known to be required for VLDL secretion
[78]. This has also shown that diurnal variation
of VLDL concentration is linked to the clock-
controlled production of phosphatidylcholine.
Furthermore, Ma et al. have identified two distinct
groups exhibiting rhythmic and nonrhythmic
patterns of gene expression during light-dark
cycles, according to the database of the circadian
regulation of lipid-associated genome-wide asso-
ciation studies (GWAS) candidate genes in
mouse liver [79]. Liver-specific Bmal1 knockout
mice increased plasma Ldl/Vldl cholesterol levels
through disordered Pcsk9/Ldl receptor
expression [79].

In line with this idea, circadian clock genes
affect food intake, body weight, plasma glucose,
and lipids, have protective effects on the adipose
tissue, heart, liver, and intestine, and affect phos-
pholipid metabolism via several pathways [4, 21,
80–82]. In other words, the circadian clock may,
through several mechanisms control phosphati-
dylcholine (phospholipid that makes up 50% of
total cellular phospholipid biosynthesis), as the
phosphatidylcholine phenotype can be copied by
different circadian clock gene mutations
[83]. Wild-type mice in normal light and dark
cycles display a rhythmic accumulation of hepatic
phosphatidylcholine with a peak at Zeitgeber time
(ZT) 22-0. Bmal1-deficient (Bmal1�/�) mice
show elevated phosphatidylcholine levels in the
liver associated with an atherogenic lipoprotein
profile [78]. To investigate whether the circadian
variation of phosphatidylcholine levels is the
result of a circadian regulation of phosphatidyl-
choline biosynthesis, Grechez-Cassiau et al.
found that choline kinase alpha (Chkα) gene is a
clock-controlled gene in the liver [78]. Chkα gene
expression is regulated by the Rev-erbα and
RAR-related orphan receptor A (Rorα) nuclear
receptors [78]. Thus, hepatic phosphatidylcholine
is regulated by the circadian clock gene through a
Bmal1-Rev-erbα-Chkα axis and suggests that an
intact circadian timing system is important for the

temporal coordination of phospholipid metabo-
lism. The Rev-erbα subtype appears to be a key
circadian regulator of phosphatidylcholine metab-
olism in the liver through the rhythmic transcrip-
tional repression of the Chkα gene. Thus, a likely
mechanism by which hepatic phosphatidylcho-
line levels are increased in the Bmal1�/� mice is
that Chkα upregulates by the high total of choline
kinase activity [78]. In addition, there is a low
Rev-erbα gene expression level in the Per1/Per2
double knockout mice [84]. Twenty-four out of
27 phosphatidylcholine species were arrhythmic
by the lipidomic profiling, although 16% of lipid
metabolites were still oscillating in the liver
[84]. These studies suggest that a genetic disrup-
tion of the circadian clock system compromises
phosphatidylcholine homeostasis.

5.4 Preclinical Studies on Diurnal
Rhythm in Phospholipid
Metabolism

Minami et al. found oscillatory peaks of
phospholipids were detected by liquid
chromatography-mass spectrometry (among
these time-indicating metabolites) [85]. Fourteen
oscillatory peaks were identified as various types
of lysophosphatidylcholines with different unsat-
urated FAs [85]. As mentioned above, in mam-
malian cells, phosphatidylcholine is one of the
phospholipids constituting 50% of total cellular
phospholipids [86]; phosphatidylcholine is also
the main circulating phospholipid in plasma,
where it is critical for the assembly and secretion
of lipoproteins by the liver. Hepatic
phospholipids enter in bile salt-mediated micelle
formation in the intestinal lumen, which
facilitates the absorption of lipid-soluble nutrients
from the diet [87]. Several studies have shown
that serum phosphatidylcholine is shown to be
subjected to temporal control that could be
correlated with rest-activity cycles and feeding
[84, 88]. Phosphatidylcholine plays an important
role in mammalian cell signaling [89] as well as in
oncogenic signaling pathways [78, 89–
91]. Numerous studies have evaluated the circa-
dian clock genes’ effect on phospholipid

5 Circadian Clock Regulation on Lipid Metabolism and Metabolic Diseases 59



metabolism. Diurnal rhythm of retinal phospho-
lipid synthetic enzyme has been shown in the
retina of rats [92]. Retinal phospholipid synthetic
enzymes showed daily variations, in retinal gan-
glion cells (RGCs) of chicken when in constant
darkness. [32P]Phospholipids display circadian
oscillations both in in vivo chicken kept in con-
stant light and in cultures of immunopurified
embryonic RGCs [92]. Several distinct enzymes,
lysophospholipid acyltransferases, phosphatidate
phosphohydrolase, and diacylglycerol lipase, in
the pathway of phospholipid biosynthesis and
degradation have shown diurnal variation
[93]. These activities of these enzymes are high
during the subjective day and low at night, as
were the metabolic changes observed in the
in vivo labeling of phospholipid in cultures of
purified embryonic RGCs [93, 94]. In addition,
glycerophospholipid synthesis has also shown
diurnal rhythm in retinal inner nuclear layer
cells [93, 94]. Biosynthesis of phospholipid has
shown the circadian cycle by serum shock in
cultured quiescent NIH3T3 cells; this cycle is
abolished by knock down Per1 gene, suggesting
that the biosynthesis of phospholipid circadian
cycle in cultured fibroblasts depends on the
endogenous circadian clock [94–97]. Ruggiero
et al. showed that the diurnal rhythm of phospho-
lipid phosphatidylserine demarcation of photore-
ceptor outer segments tip is not intrinsic to rod
photoreceptors but requires activities of the reti-
nal pigment epithelium as well [98]. In line with
the circadian cycle of phospholipid or phospho-
lipid biosynthesis in vivo and in vitro, levels of
serum phospholipids such as phosphatidyl-
cholines (18:0/18:1) or 1-stearoyl-2-oleoyl-sn-
glycero-3-phosphocholine are typically regulated
in mice lacking circadian clock-collected gene
PPAR gamma (PPARδ) activity [98]. Serum
phosphatidylcholine (18:0/18:1) can reduce post-
prandial lipid levels, and phosphatidylcholine can
increase FA utilization through muscle PPAR
alpha (PPARα) [98]. When mice were fed with
a high-fat diet, the rhythm of phosphatidylcholine
(18:0/18:1) was diminished. Phosphatidylcholine

(1:0/18:1) administration in db/db mice (a model
for diabetic dyslipidemia) can improve metabolic
homeostasis, suggesting that alterations in diurnal
hepatic PPARδ-phosphatidylcholine (18:0/18:1)
signaling affect metabolic disorders, including
obesity [99]. Obesity can alter circadian rhythms
in multiple tissues. Diet-induced obesity altered
the rhythm pattern of serum phosphatidylcholine
[99, 100]. As a phospholipid outcome, ceramide,
a class of sphingolipids, Jang et al. showed that
the ceramide concentration in WT mice showed a
strong peak at Zeitgeber time 9 (ZT9; 9 h after
lights on time) and ZT21, but no rhythmicity in
ceramide expression was seen in Per1/Per2 dou-
ble KO mice [101]. To understand the mechanism
of diurnal rhythm of ceramide, they also measure
several gene expressions including via
sphingomyelinase (SMase) or by ceramide
synthase (CerS)-mediated synthesis; both are
important for sphingomyelin hydrolysis to cer-
amide. Jang et al. found that CerS2 expression
levels showed a biphasic pattern of expression in
WT mice but no rhythmicity in Per1/Per2 double
KO mice [102]. While the neutral SMase
(nSMase) and acidic SMase (aSMase) mRNA in
WT mice were expressed in a circadian variation,
the correlation between the expression levels of
these SMases with times of day was weak in Per1/
Per2 double KO mice [102]. Collectively, this
study suggests that both SMases and CerS2
mRNA expression are regulated by the presence
of mPer1/mPer2 circadian clock genes in vivo
and imply that ceramide may play a vital role in
circadian rhythms and physiology [102]. How-
ever, the molecular mechanism of circadian
clock genes regulating phospholipid metabolism
is still unclear and limited.

5.5 Clinical Studies on Circadian
Clocks’ Role in Phospholipid
Metabolism

Animal research shows a clear involvement of
membrane-derived phospholipid in circadian
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rhythms. Additionally, 7–20% of metabolites in
human blood have been observed showing circa-
dian variation [85, 103–106]. Under a series of
preclinical studies, the existence of both daily
change and seasonal variations affects the com-
position of phospholipids in human cell
membranes [12, 107, 108]. Over 1 year, in
20 healthy subjects, Ruf et al. found that 11 of
13 phospholipids’ FA content showed significant
daily rhythms and were largely synchronous
among subjects [108]. This data is supported by
several other studies, overall indicating that
human physiology is still dominated by geophys-
ical sunrise and sunset, resulting in a strong daily
cycle [107, 109]. However, seasonal rhythms are
less well defined. FAs derived from
phospholipids also play a role as precursors of
prostaglandins, thromboxanes, and leukotrienes.
A much more likely candidate for such a function
of rhythmicity is the interaction between mem-
brane FAs and transmembrane proteins. It is a
possible explanation for rhythmic alterations of
membrane composition [108]. In particular, a link
between sleep deprivation and phosphatidylcho-
line is also shown by the result that both the
circadian system and plasma lipids display a
reciprocal correlation over the day with a subset
of phosphatidylcholine and triglyceride species in
plasma being high in sleep-deprived 20 total
subjects of young-aged healthy ethnic Chinese
males [110].

Some epidemiological researches comfort the
relationship between the circadian system and the
regulation of diurnal rhythm of phospholipids. A
marked circadian variation was recorded in
plasma total cholesterol, high-density lipoprotein
cholesterol, phospholipid, and total lipid concen-
tration in healthy Indians of different age groups
of 162 total subjects [111]. Plasma phospholipid
concentrations were characterized by a circadian
rhythm in all age groups. Females had numeri-
cally higher values than males. However, the
rhythm peak was significantly changed by age,
reaching a maximum in middle adulthood and
decreasing in the older age group
[111, 112]. This suggests that the diurnal rhythm
of plasma phospholipids is associated with age,
gender, diet, and smoking and affects circulating

plasma lipid components in healthy Indians. In
addition, a 24-hr time series of plasma
metabolites has been simultaneously assessed in
type 2 diabetes, compared with an age- and
weight-matched control group during a controlled
daily routine [113]. Similarly, a total of 100 of
663 metabolites, representing all metabolite
categories, showed diurnal rhythmic
concentrations that exceeded the Bonferroni
threshold, showing that the peak times of all
phospholipids were clustered during the after-
noon to midnight [114, 115].

We previously showed that peptide-like drugs,
H+-peptide cotransporter 1, Pept1, showing diur-
nal rhythm, could influence the pharmacokinetics
of peptide-like drugs [116–118]. Drug statins, a
HMG-CoA reductase inhibitor that is in clinical
evaluation for the treatment of type 2 diabetes and
atherosclerosis, show beneficial effects on plasma
lipids [119–121]. Interestingly, statins were
recommended to be administered in the evening
[119, 121]. However opinions differ on the best
time to take statins. Simvastatin was reportedly
better in the evening too, but simvastatin taken in
the evening was not better than when it was taken
in the morning by a different study group [122–
124]. It remains in clinical evaluation for treat-
ment. Lipidomics can be used to examine
differences in circadian responses to medications
that target lipid pathways, such as statins, and to
better characterize the mode of action of such
drugs. So far, there are collective preclinical and
clinical studies overall suggesting a beneficial
effect of chronotherapeutics. Beyond circadian
clock’s direct phospholipid role, it has to be
noticed that food intake and body weight change
because of circadian clock pathway regulation
might provide a particular potential for second
improvement of phospholipid treatment.

5.6 Conclusion

The circadian clock system has, over the last
20 years, been researched for it’s involvement in
a number of metabolic functions that go well over
their primary classification as a regulator affect-
ing wake up/sleep and food intake. Along with

5 Circadian Clock Regulation on Lipid Metabolism and Metabolic Diseases 61



circadian clock regulation in phospholipid metab-
olism, various studies evaluated the therapeutic
effect of phospholipid modulation. The circadian
clock correlating to phospholipids might offer a
potential treatment for atherosclerosis and obesity
associated with pathological atherosclerosis. Cir-
cadian clock altering of molecular time will be of
chronotherapeutic value to reduce metabolic
disorders, impaired immune function, and
accelerated aging and to improve phospholipid
metabolism and cardiovascular diseases. Impor-
tantly, while disordered circadian clock genes and
sleep disorder are known to affect more than
50 million US residents (https://www.ncbi.nlm.
nih.gov/books/NBK19961/), it is possible that
other physiological functions of circadian clock
are not yet understood.
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ABC Transporters, Cholesterol Efflux,
and Implications for Cardiovascular
Diseases
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Abstract

Most types of cells in the body have no or very
limited capacity of catabolizing cholesterol, so
cholesterol efflux is essential for cholesterol
homeostasis. There are multiple mechanisms
responsible for cellular cholesterol efflux.
Among them, the active efflux pathways are
mediated primarily by the ATP-binding cas-
sette (ABC) transporters ABCA1 and ABCG1.
ABCA1 is essential for cholesterol and phos-
pholipid efflux to apolipoprotein A-I and high
density lipoprotein (HDL) biogenesis.
ABCG1 promotes cholesterol efflux primarily
to HDL particles. Atherosclerotic cardiovascu-
lar disease is a chronic inflammatory disease
characterized by marked macrophage foam
cell accumulation in atherosclerotic plaques
and associated pro-inflammatory responses in
lesional cells. Findings from both animal and
human studies indicate a critical role of dis-
turbed cholesterol homeostasis in
pro-inflammatory responses in these cells, par-
ticularly in lesional macrophages. ABCA1 and
ABCG1 are highly expressed in macrophages,
particularly in response to cholesterol

accumulation, and are essential in maintenance
of cholesterol homeostasis. Functional defi-
ciency of ABCA1 and ABCG1 in macrophage
markedly increases atherogenesis, with
exacerbated inflammatory responses. ABCA1
and ABCG1 also play a critical role in control
of hematopoietic stem and progenitor cell
(HSPC) proliferation and extramedullary
hematopoiesis. Hematopoietic ABCA1 and
ABCG1 deficiencies cause marked HSPC
expansion and extramedullary hematopoiesis,
particularly in hypercholesterolemia, and lead
to marked monocytosis and neutrophilia with
exacerbated pro-inflammatory responses. All
these contribute to atherosclerosis. In this
chapter, we describe these findings and discuss
the current understanding of the underlying
mechanisms. We also discuss other ABC
transporters such as ABCG4, which also
promotes cholesterol efflux to HDL and
controls megakaryocyte proliferation and
platelet biogenesis. By this pathway, ABCG4
also modulates atherogenesis. Therapeutic
approaches targeting the pathways and
mechanisms described also are discussed.
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6.1 Introduction

Cholesterol homeostasis is essential for cell struc-
ture and function, explaining why cells devote a
relatively large portion of transcriptome and
energy to regulation of cellular cholesterol
homeostasis [1]. Cholesterol is an important
lipid component of the cell membrane and
modulates membrane fluidity and permeability
[2, 3]. Thus, cholesterol plays a key role in regu-
lation of membrane protein spatial distribution
and function as well as transmembrane signaling
processes involved in various fundamental
biological activities such as immunity and cell
proliferation [2, 4]. Cholesterol also can modulate
cell signaling by covalent modification of signal-
ing molecules. Cholesterol modification of
Hedgehog and Smoothened is essential for their
spatial distribution and function [5, 6]. In addi-
tion, cholesterol is the precursor of all steroid
hormones, vitamin D and bile acids.

Due to the importance of cholesterol in cell
biology, cells have developed complex
mechanisms to regulate cellular cholesterol
homeostasis. Animal cells acquire cholesterol by
de novo cholesterol biosynthesis and from the
circulation in the form of lipoproteins [1, 7]. In
addition, phagocytes could obtain cholesterol by
phagocytosis of apoptotic cells, damaged cells,
and senescent cells, or via phagocytosis of cells
that have died via other regulated cell death pro-
cesses such as necroptosis, pyroptosis, and
ferroptosis. Cells that rely primarily on endoge-
nous cholesterol synthesis generally do not accu-
mulate excess endogenous cholesterol due to the
homeostatic feedback regulation of cholesterol
biosynthesis at multiple steps. Cells that internal-
ize exogenous cholesterol, from lipoproteins or
phagocytosis of dead cells, repress de novo cho-
lesterol synthesis and low-density lipoprotein
(LDL) receptor expression in response to choles-
terol loading [7]. However, downregulation of
LDL receptor (LDLr) expression alone may not
be sufficient to prevent excess cholesterol accu-
mulation. Most types of cells in the body have no
or very limited capacity of catabolizing choles-
terol. Therefore, cells need to evolve other

mechanisms to prevent accumulation of excess
cholesterol. One mechanism is cholesterol esteri-
fication, which is mediated by the microsomal
enzyme acyl-coenzyme A:cholesterol
acyltransferase (ACAT) [8]. This reaction
converts a potentially highly toxic “free” choles-
terol to cholesterol ester which can be stored in
lipid droplets [8]. However, even this mechanism
appears to be insufficient to prevent excess free
cholesterol accumulation in cells under certain
context. To deal with the pool of accumulated
cholesterol, cells also develop other mechanisms
to remove excess cholesterol from the cell. These
mechanisms involve conversion of cholesterol to
oxysterols and passive or active processes to
remove cholesterol and oxysterols from the cell
[9]. Dysregulation of these processes to maintain
cholesterol homeostasis could lead to excess free
cholesterol accumulation in cells, disrupting
membrane fluidity and transmembrane cell sig-
naling, and could eventually lead to cell death. It
is not surprising that dysregulated cellular choles-
terol homeostasis has been linked to various
chronic metabolic diseases including atheroscle-
rotic cardiovascular disease (ACD), diabetes, and
non-alcoholic hepatic disease [7].

In this chapter, we will discuss the mechanism
of how cellular cholesterol is actively transported
out of the cell, a process belonging to the overall
mechanism of cholesterol efflux, and how this
mechanism regulates cell activity and functions.
We will also discuss how these regulated cell
activity and functions are involved in important
systemic physiology and pathology, particularly
the ones related to ACD. The key molecules
involved in active cellular cholesterol efflux are
ATP-binding cassette transporters (ABC
transporters). Therefore, our discussion will
focus on the role of ABC transporters, while
mechanisms involving other molecules relevant
in regulation of ABC transporter-mediated cho-
lesterol efflux will be discussed as well.
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6.2 ABC Transporters
and Cholesterol Efflux

The first ABC transporter identified to mediate
cholesterol efflux is ABC transporter A1
(ABCA1). Since the hypothesis of HDL as the
major lipoprotein fraction responsible for trans-
port of cholesterol from peripheral tissues to the
liver was proposed [10], studies were started to
characterize the role of HDL particles in promo-
tion of cholesterol efflux from cultured cells. This
led to identification of high density, small HDL
particles as lipoprotein subclasses that potently
promote cholesterol efflux [11]. Follow-up stud-
ies identified specific high-affinity binding of
these HDL particles to the surface of the cell
[12]. Interestingly, these HDL binding sites are
upregulated upon cholesterol loading of the cells
[13]. In addition, the binding of HDL is
associated with removal of cholesterol from an
intracellular pool [14] and apolipoprotein A-I
(apoA-I), the major apolipoprotein component
of HDL, small HDL particles, or apoA-I like
mimetic peptides promote cholesterol efflux.
Importantly, cholesterol efflux promoted by
apoA-I is impaired in fibroblasts derived from
Tangier Disease patients [15]. Tangier Disease is
a rare genetic disorder characterized by extremely
low plasma levels of HDL and apoA-I and depo-
sition of cholesteryl esters in tissues [16]. These
studies link apoA-I binding and cholesterol efflux
to low HDL and tissue cholesterol accumulation
in Tangier Disease. The identity of the specific
cell surface apoA-I binding site remains elusive
until human genetic studies have identified
ABCA1 as the mutated gene in Tangier Disease
[17–19]. This breakthrough links ABCA1 with
potential apoA-I binding and cholesterol efflux.
Follow-up studies provided direct evidence that
overexpression of ABCA1 in cultured cells as a
gain of function model markedly increases apoA-
I binding and cholesterol efflux from the cell
[20]. Direct binding of apoA-I to ABCA1 is
suggested by chemical crosslinking of labeled
apoA-I to cell surface ABCA1 with chemical
crosslinkers with a spacer arm of ~12 angstroms
[20]. Furthermore, single-molecule imaging

using total internal reflection fluorescence
microscopy reveals that a direct interaction
forms between apoA-I and ABCA1 on the plasma
membrane during the initial step of HDL forma-
tion [21]. Together, these studies define ABCA1
as the authentic transporter that mediates cellular
cholesterol efflux to apoA-I and initiates HDL
biogenesis. These studies also led to efforts to
assess whether other ABC transporters are
involved in cholesterol transport and whether
mutations of these ABC transporters cause
genetic disease with disturbed sterol metabolism
and homeostasis. These efforts led to the discov-
ery of ABCG5 and ABCG8 as the mutated genes
in sitosterolemia, a genetic metabolic disease with
marked elevation of plasma plant sterols and
increased risk of ACD [22]. Detailed discussion
of ABCG5 and ABCG8 and their role in sterol
metabolism is presented in another chapter of
the book.

ABCA1 promotes cellular cholesterol efflux to
lipid-poor apoA-I or small HDL particles but not
to large, lipid-rich HDL particles [20, 23]. How-
ever, large HDL particles also potently promote
cellular cholesterol efflux, particularly in combi-
nation with HDL-associated lecithin cholesterol
acyltransferase (LCAT) activity. LCAT converts
cholesterol to cholesterol esters, expanding the
cores of HDL particles and facilitating cholesterol
efflux to HDL. Further studies have identified
ABCG1 and ABCG4 as ABC transporters that
facilitate cellular cholesterol efflux to HDL
particles but not to lipid-poor apoA-I [24]. Like
ABCG5 and ABCG8 but unlike ABCA1,
ABCG1, and ABCG4 are half transporters.
While ABCG5 and ABCG8 form heterodimers
to function, ABCG1 and ABCG4 function mainly
as homodimers to promote cholesterol efflux.
Unlike ABCA1, ABCG1 and ABCG4 do not
bind apoA-I or HDL to facilitate cholesterol
efflux [24].
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6.3 Mechanisms Underlying ABC
Transporter-Mediated
Cholesterol Efflux

Point mutation analysis demonstrates that an
active ATPase activity of ABCA1 is required for
apoA-I-mediated cholesterol efflux, indicating an
active cholesterol efflux process [23]. In addition
to cholesterol, ABCA1 also promotes phospho-
lipid efflux to apoA-I [20], including phosphati-
dylcholine, phosphatidylserine, and
sphingomyelin with a preference for phosphati-
dylcholine [25], a finding consistent with defec-
tive phospholipid efflux from cells of Tangier
Disease patients [26]. While apoA-I binding to
cell surface and to ABCA1 enhanced by ABCA1
activity has been well established, controversy
persists regarding the mechanism by which
apoA-I bound to the surface of cell acquires mem-
brane phospholipids and cholesterol. In the
“direct loading model,” apoA-I acquires lipids
directly from ABCA1, while it is bound to the
transporter [27, 28]. By contrast, apoA-I is pro-
posed to acquire lipids from the specific mem-
brane domains created by ABCA1 in the “indirect
model” [29, 30]. The structure of human ABCA1
revealed by cryo-EM with nominal resolutions of
4.1 angstrom has been described and confirms
ABCA1 as a phospholipid translocase. A “lateral
access” mechanism for ABCA1-mediated lipid
export where the lipid substrate on the inner leaf-
let of the membrane may bind to the transporter
from the lateral membrane has been speculated on
[31]. However, the molecular mechanism for the
lipid substrate delivery from ABCA1 to apoA-I
for nascent HDL formation remains elusive [31],
and the structural information from this study has
been used to support the “direct loading model”
or “indirect model” accordingly [27, 32]. Also,
additional controversy exists over ABCA1-
mediated apoA-I binding to cell surface. While
chemical crosslinking, single-molecule imaging
and mutant ABCA1 studies in some earlier
reports support direct binding of apoA-I to
ABCA1, a more recent study suggests that
ABCA1 has floppase activity for phosphatidy-
linositol (4, 5) bisphosphate (PIP2) [33]. PIP2

directly binds apoA-I, and the increased cell
surface PIP2 functions as a bridge for ABCA1-
mediated apoA-I binding and to promote choles-
terol efflux [33]. Disruption of membrane PIP2
formation led to reduced apoA-I binding and
cholesterol efflux, indicating a critical role of
PIP2 in ABCA1-mediated apoA-I binding and
lipid efflux [33]. While the structural and bio-
chemical findings strongly suggest ABCA1 as a
phospholipid transporter, it is not clear whether
ABCA1 directly transports cholesterol. Some
clues may be gained from structural analysis of
ABCG5/ABCG8 dimers. Electron density map of
human ABCG5/ABCG8 using crystallization in
lipid bilayers has revealed features that may rep-
resent cholesterol. Mutagenesis studies of amino
acid residues that may represent binding surfaces
or entryway for sterols to access the core of the
heterodimer interface confirm the essential role of
these residues in cholesterol transport. Structural
comparison of the transmembrane domains
(TMDs) of ABCA1 and ABCG5/G8 reveals sim-
ilarity in the general structural organization of
TMDs, despite ABCA1 and ABCG5/G8 belong-
ing to different ABC subfamilies and ABCA1
comprising one single polypeptide chain, whereas
ABCG5/G8 is a heterodimer. The TMDs of
ABCA1 and ABCG5/G8 share 14% sequence
identity and 35%–40% similarity, suggesting
evolutionary relevance. Earlier studies showed
that treatment of cells with ABCA1
overexpression by cyclodextrin, a chemical com-
pound that potently promotes cholesterol efflux,
could dissociate phospholipid efflux from choles-
terol efflux to apoA-I [23]. However, recent stud-
ies indicated that trypsin treatment could release
extracellular domains of ABCA1 from cell sur-
face into media in parallel to a rapid release of
phospholipid and cholesterol [27]. This release of
membrane lipids was dependent on the ATPase
activity of ABCA1. Based on these findings, it
has been proposed that phospholipids and choles-
terol transported by ABCA1 are temporarily
sequestered within the extracellular domains of
ABCA1 during lipid efflux and nascent HDL
formation [27]. This model also is consistent, to
some extent, with a concurrent process of phos-
pholipid and cholesterol efflux to apoA-I for

70 N. Wang and M. Westerterp



nascent HDL assembly in murine macrophages
with high ABCA1 expression [34] and with the
finding that ABCA7, a member of ABCA family,
promotes phospholipid but not cholesterol efflux
to lipid-poor apoA-I [35]. Together, these
findings suggest ABCA1 as a direct transporter
for both phospholipid and cholesterol.

The protein ligand for ABCA1 is not highly
specific. In addition to apoA-I, other
apolipoproteins such as apolipoprotein E (apoE)
or even amphipathic α-helical apoA-I mimetic
peptides can serve as ABCA1 ligands for lipid
acceptance [36]. While a major portion of cellular
ABCA1 is localized on the plasma membrane and
promotes cholesterol efflux from the plasma
membrane, a preferred source for
ABCA1-mediated cholesterol efflux is the pool
of cholesterol in late endosomes and lysosomes.
The functional importance of this pathway for
intracellular cholesterol efflux is demonstrated
by the findings that macrophages isolated from
the mice modeled for Niemann-Pick type C1 dis-
ease, a genetic disorder with accumulation of
cholesterol and other lipids in late endosomes
and lysosomes, show marked defect in ABCA1-
mediated cholesterol efflux from late endosomes
and lysosomes [37]. Mechanistically, ABCA1 on
the plasma membrane can be internalized and
traffic to late endosomes and lysosomes [38]. A
PEST sequence mutant ABCA1 shows impaired
internalization and defective cholesterol efflux
from late endosomes, while cholesterol efflux
from cell surface mediated by the mutant
ABCA1 is unaffected [38]. These studies indicate
the functional importance of ABCA1 internaliza-
tion and trafficking in mediating cholesterol
efflux from intracellular cholesterol pools.

Like ABCA1, ABCG1 has been identified on
plasma membrane and in intracellular organelles.
Earlier studies report localization of ABCG1 to
plasma membrane, Golgi, and recycling
endosomes in transfected HEK293 cells [39]. In
macrophage-like cells, activation of liver X recep-
tor (LXR) increases ABCG1 expression and pre-
sentation to the cell surface, in association with
increased cellular cholesterol efflux to HDL
[39, 40]. Follow-up studies indicate that ABCG1
is primarily localized intracellularly and acts to

promote cholesterol transport and traffic from
intracellular sites to plasma membrane for efflux
[41]. Thus, it has been proposed that ABCG1 at
the plasma membrane mobilizes plasma mem-
brane cholesterol and ABCG1 in late endosomes
and lysosomes generates mobile pools of choles-
terol that can traffic by both vesicular and
non-vesicular pathways to the plasma membrane
where it can also be transferred to extracellular
acceptors with a lipid surface [41]. Conceptually,
these two mechanisms are not mutually exclusive,
and both mechanisms may act in vivo. Macro-
phage deficiency of ABCG1 leads to suppression
of Ldlr and Hmgcr expression relative to wild-
type cells and increased cholesteryl ester forma-
tion by ACAT, even in the absence of acceptors
in the media to promote cholesterol efflux
[39]. This suggests redistribution of cholesterol
from plasma membrane to the ER, leading to
suppression of cholesterol biosynthetic genes,
independent of cholesterol efflux. This is consis-
tent with the finding that overexpression of
ABCG1 leads to an increase in the mature form
of SREBP-2 and its target gene expression. While
ABCG1 activity promotes mostly cholesterol
efflux, ABCG1 also facilitates a low magnitude
of phospholipid efflux [42]. However, the precise
structure, substrate, and function of ABCG1 are
still largely unknown.

ABCG4 is the only other ABCG family mem-
ber that has been shown to promote cholesterol
efflux to HDL when overexpressed in cultured
mammalian cells [24]. While even less well stud-
ied, ABCG4 is the most homologous and closest
to ABCG1 in structure and function in ABC
transporters [24]. Thus, it is likely that ABCG4
promotes cholesterol efflux to HDL via a mecha-
nism that is similar to ABCG1.

6.4 Regulation of ABC Transporters

ABCA1 and ABCG1 are essential in cellular
cholesterol homeostasis in multiple tissues and
cell types. Therefore, ABCA1 and ABCG1
expression and function are tightly regulated.
The primary regulation of ABCA1 and ABCG1
expression at a transcriptional level is mediated
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by nuclear receptors liver X receptor (LXR)α and
LXRβ, the master transcription factors regulating
cholesterol homeostasis by regulation of expres-
sion of multiple effectors in cholesterol transport
and metabolism, such as ABCA1, ABCG1, apo-
lipoprotein E (apoE), cholesteryl ester transfer
protein (CETP), and inducible degrader of the
LDL receptor (IDOL) [43]. In phagocytes such
as macrophages, the primary function of LXR in
regulation of cholesterol homeostasis is to pre-
vent excessive cholesterol accumulation. When
unesterified cholesterol accumulates in
macrophages due to uptake of cholesterol-rich
apoB containing lipoprotein particles or phagocy-
tosis of apoptotic cells, production of oxysterols
such as 27-hydroxycholesterol, 25-hydroxycho-
lesterol, 22-hydroxycholesterol, and 24(S),25-
epoxycholesterol is increased. These oxysterols
act as LXR ligands, activate LXR, and upregulate
ABCA1, ABCG1, and apoE transcription
[43]. As a result, cholesterol efflux from the
cells is increased, and this will help to remove
excess cellular cholesterol and maintain choles-
terol homeostasis.

LXRs form obligate heterodimer with retinoic
X receptors (RXRs) to regulate ABCA1 and
ABCG1 expression and RXR agonists such as
retinoic acid increase ABCA1 and ABCG1
expression [44, 45]. Activation of peroxisome
proliferator-activated receptor (PPAR)α and
PPARγ, nuclear receptors with free fatty acids
and eicosanoids as endogenous ligands, also
increases ABCA1 expression [46, 47]. In addition
to the nuclear receptors, ABCA1 and ABCG1
expressions are also regulated by classic signaling
pathways such as cyclic AMP-mediated signaling
pathways. Cyclic AMP analogs are known to
upregulate ABCA1 expression in macrophage or
macrophage-like cells [48]. Conversely, ABCA1
and ABCG1 expression are reported to be
downregulated by multiple signaling pathways
involved in inflammation, particularly pathways
involving NF-kappaB activation [49–51].

Cells also develop mechanisms to regulate
ABCA1 and ABCG1 expression beyond direct
regulation of transcription. As discussed above,
many tissues and cell types develop mechanisms
to upregulate ABCA1 or ABCG1 expression as a

way to prevent excessive cholesterol accumula-
tion. Sterol regulatory element-binding protein
(SREBP)-2 and SREBP-1 are master transcrip-
tion factors in regulation of cholesterol and fatty
acid biosynthesis and homeostasis, as
demonstrated by the seminal discoveries by
Brown and Goldstein [7]. miR-33a or miR-33b,
intronic microRNAs (miRNA) located within the
gene encoding SREBP-2 or SREBP-1, respec-
tively, inhibit the expression of ABCA1 and
ABCG1 [52]. miR-33 antagomirs increase
ABCA1 and ABCG1 expression, plasma HDL
levels, and reverse cholesterol transport
in vivo [52].

6.5 ABC Transporters in HDL
Metabolism and ACD

As the mutated gene in Tangier Disease, ABCA1
is the primary gene product that is essential for
HDL biogenesis, which explains the extremely
low plasma HDL cholesterol (HDL-C) levels in
Tangier Disease patients with homozygous
ABCA1 deficiency [53]. This is recapitulated in
whole body ABCA1 deficient mice. The liver is
the primary organ for HDL biogenesis and
hepatocyte-specific ABCA1 deficiency causes
~70–80% lower plasma HDL-C in rodents
[54]. The second major organ for ABCA1-
mediated HDL biosynthesis is intestine, and
ABCA1 deficiency in enterocytes causes
20–30% decrease in plasma HDL-C levels
[55]. Other tissues also contribute to HDL gener-
ation in an ABCA1-dependent fashion.
Adipocyte-specific ABCA1 deficiency leads to
15% reduction of plasma HDL [56]. While
ABCA1 has an important role in mediating cho-
lesterol efflux from macrophages to lipid-poor
apolipoproteins and maintenance of cellular cho-
lesterol homeostasis, transplantation of bone mar-
row from Abca1�/� mice into wild-type mice or
from wild-type mice into Abca1�/�mice has little
effect on plasma HDL concentrations in the recip-
ient [57, 58], suggesting that myeloid ABCA1
expression has minimal impact on plasma HDL
levels. Since ABCA1 is essential for nascent
HDL biosynthesis, ABCA1 has profound impact
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on HDL metabolism and its function. ABCA1 not
only mediates HDL biogenesis but also
modulates apoA-I turnover. Lipidation of apoA-
I for nascent HDL formation and the subsequent
HDL maturation by acquiring additional lipids
via ABCA1 and other pathways such as
ABCG1- or scavenger receptor class B, type
1 (SR-BI)-mediated cholesterol efflux, CETP, or
PLTP-mediated lipid exchange or LCAT-
facilitated HDL packaging profoundly modulate
apoA-I turnover. In ABCA1 deficiency, lipid-
poor apoA-I due to defective lipidation has
increased clearance rate from plasma, causing
marked decrease in plasma apoA-I levels
[54]. Infusion of reconstituted human HDL into
liver-specific but not whole body ABCA1 defi-
cient mice can restore plasma HDL-C and apoA-I
levels [54]. Together, these studies indicate the
important role of hepatic ABCA1 in generation of
early HDL particles and the essential role of
extrahepatic ABCA1 in further lipidation and
maturation of the early HDL particles [54].

The prominent phenotypes of Tangier Disease
patients include extremely low plasma HDL,
enlarged tonsils with a yellow and orange appear-
ance, splenomegaly, hepatomegaly, and periph-
eral neuropathy, indicating the essential role of
ABCA1 in HDL biogenesis and regulation of
cellular cholesterol efflux and homeostasis, par-
ticularly for cells that accumulate massive
amounts of lipids in the absence of ABCA1,
such as macrophage, other reticuloendothelial
cells, and Schwann cells [59].

Reverse cholesterol transport (RCT), origi-
nally proposed by Glomset [10], is the process
by which cholesterol in peripheral tissues is
transported by HDL to the liver for excretion
into the bile and feces. In this process, the initial
step is cholesterol efflux from peripheral cells to
HDL. Like ABCA1, ABCG1 also is essential in
promoting cellular cholesterol efflux to HDL in
multiple tissues and cell types. Mice that are
deficient in ABCG1 have lipid accumulation in
macrophages within multiple tissues when they
are fed a high-fat, high-cholesterol diet, particu-
larly in the lung [60]. However, ABCG1 defi-
ciency does not affect plasma lipoprotein levels,
indicating a minor role of ABCG1-mediated

cholesterol efflux in HDL metabolism. The lack
of impact of ABCG1 deficiency on plasma lipo-
protein levels may reflect the fact that its expres-
sion in hepatocytes is low, and the low hepatic
expression of ABCG1 may reflect primarily its
expression in Kupffer and endothelial cells
[61]. Nevertheless, ABCA1 and ABCG1 show
additive or synergistic activity in facilitating cho-
lesterol efflux to HDL in macrophages, consistent
with an important role of ABCA1 and ABCG1 in
RCT initiated from macrophages in vivo [62, 63].

As expected, activity of the gene products that
regulate ABCA1 and ABCG1 expression also
regulate ABCA1- and ABCG1-mediated RCT.
LXR agonists promote RCT in vivo in mouse
models and human cells [64, 65]. While LXR
agonists induce hepatic and intestinal expression
of ABCG5 and ABCG8, which likely contributes
to cholesterol excretion into the bile and feces,
enhanced RCT from macrophages in response to
LXR agonists in vivo is likely attributed at least
partly to induced macrophage ABCA1 and
ABCG1 expression as indicated by the increased
cholesterol tracer in the plasma without signifi-
cant change of plasma lipoprotein levels
[64, 65]. Farnesoid X receptor (FXR) also is a
nuclear receptor that regulates lipid metabolism.
FXR activation in liver increases hepatic
miR-144 levels, which in turn lowers hepatic
ABCA1 and plasma HDL levels [66]. This
implies that bile acids regulate plasma HDL
levels via a FXR-miR-144-ABCA1 pathway in
hepatocytes. Interestingly, it has been reported
that selective hepatic ABCA1 deficiency
increases RCT [67], as hepatic ABCA1 promotes
efflux of hepatic cholesterol back to plasma but
not excretion into the bile. Together, these
findings suggest the possibility that bile salts pro-
mote RCT in the postprandial state by
downregulation of hepatic ABCA1 and
upregulation of SR-BI [68] via FXR activation.

It has been well established that plasma
HDL-C levels correlate inversely with the inci-
dence of ACD, suggesting a protective role of
HDL. Efforts have been made to understand the
mechanisms underlying the anti-atherogenic
properties of HDL. ACD is a nonresolving
chronic inflammatory disease, and the
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atherogenic process is thought to be triggered by
the subendothelial retention of apoB-containing,
cholesterol-rich lipoprotein particles at sites of
arterial walls susceptible to blood flow distur-
bance [69]. In response, tissue macrophages
engulf these lipoprotein particles via pattern rec-
ognition receptors selected in evolution for
handling components of microbial pathogens
and also mediating internalization of modified
lipoproteins. Unlike the LDL receptor, the
expression and activity of these scavenger
receptors are not suppressed by increased cellular
content of cholesterol, leading to continued
uptake of lipoprotein particles [69]. Eventually,
the continued cholesterol loading will overwhelm
the cellular mechanisms that act to prevent cho-
lesterol overloading and cause excessive choles-
terol accumulation, leading to increased free
cholesterol content in cell membranes and even
cholesterol microcrystal formation [70]. These
events result in activation of cellular signaling
pathways that promote pro-inflammation
responses such as Toll-like receptor-mediated
response or inflammasome activation with
increased production of pro-inflammatory
cytokines [70], and the molecular mechanisms
will be discussed in detail below. Free cholesterol
accumulation is also potently cytotoxic, leading
to cell death via apoptosis, pyroptosis, or second-
ary necroptosis [69]. Tissue repair and inflamma-
tion resolution require efficient clearance of dead
or damaged cells and phenotypic conversion of
pro-inflammatory macrophages into macrophages
that suppress inflammation and promote healing
[71]. Cholesterol overloading of macrophages not
only induces pro-inflammatory responses but also
leads to defective efferocytosis of dead or dam-
aged lesional cells and impaired resolution of
inflammation [71]. These maladaptive responses
act in a vicious cycle to promote atherosclerosis
progression, exacerbate plaque necrotic core for-
mation, thinning of the fibrous cap, and other
features of plaque instability, and eventually
lead to plaque rupture and atherothrombosis
[72]. Since ABCA1 and ABCG1 are essential in
prevention of cholesterol overloading in
macrophages, it is expected that hematopoietic-
or macrophage-specific ABCA1 and ABCG1

deficiency have profound impact on macrophage
cholesterol homeostasis, inflammatory response,
efferocytosis, and, possibly, the resolution of
inflammation.

6.6 ABCA1- and ABCG1-Mediated
Cholesterol Efflux Pathways
in Inflammation
and Atherogenesis

ABCA1- and ABCG1-mediated cholesterol
efflux suppress the secretion of
pro-inflammatory cytokines from macrophages
and endothelial cells [73, 74], which may contrib-
ute to their atheroprotective effects. Several
pro-inflammatory cytokines and adhesion
molecules, including monocyte chemoattractant
protein-1 (MCP-1) [75], vascular cell adhesion
molecule-1 (VCAM-1) [76], intracellular adhe-
sion molecule-1 (ICAM-1) [77], type I interferons
(IFNs) [78], interleukin-1β (IL-1β) [79], and
IL-18 [80–82], accelerate atherosclerosis in
mice. These pro-inflammatory factors promote
monocyte adhesion to endothelial cells and
monocyte infiltration into the intima, as such
contributing to the initiation and progression of
atherosclerosis [75–78]. The CANTOS
(canakinumab atherothrombosis anti-
inflammatory outcome study) trial has shown
that antibodies to IL-1β suppress recurrent cardio-
vascular events, demonstrating for the first time
that inflammation accelerates atherosclerosis in
humans [83]. Extensive evidence thus shows a
role for inflammation in atherogenesis.
Mechanisms of pro-inflammatory cytokine secre-
tion and the role of ABCA1 and ABCG1 therein
are described below.

Macrophage cytokine secretion is to a large
extent regulated by pathways downstream of
Toll-like receptors (TLRs) [84]. These TLRs are
mostly activated during acute-septic shock,
infections [84], and also in atherosclerosis
[85]. The TLR family consists of at least ten
different TLRs [86]. Of all TLRs, TLR4 has
been described most extensively. One of the
main ligands for TLR4 is lipopolysaccharide
(LPS). LPS is secreted by Gram-negative bacteria
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when they multiply or lyse during infection
[86]. Additional ligands for TLR4, especially of
importance during atherosclerosis, include mini-
mally modified forms of LDL (mmLDL)
[87]. Upon activation, TLR4 dimerizes in lipid
rafts, cholesterol-enriched domains of the plasma
membrane, where it forms a complex together
with its effector protein MD2 [88]. Downstream
of the TLR4-MD2 complex, both myeloid differ-
entiation primary response 88 (MyD88) and TIR-
domain-containing adapter-inducing interferon-β
(TRIF) signaling, is activated, eventually leading
to the activation of nuclear factor (NF)-kB
[86]. NF-kB then induces transcription of several
pro-inflammatory genes, including tumor necro-
sis factor a (TNFa), IL-6, MCP-1, and macro-
phage inflammatory protein-2 (MIP-2)
[86]. Transcription of type I IFNs, including
IFN-α and IFN-β, occurs downstream of TRIF
signaling [86]. Endothelial cells also express
TLRs. Activation of TLR4 in endothelial cells
increases the expression of several adhesion
molecules and chemokines that promote mono-
cyte adhesion, including VCAM-1, ICAM-1, and
MCP-1 [89].

Mechanistic studies have shown that mouse
macrophages deficient in both Abca1 and Abcg1
show increased surface expression of the TLR4-
MD2 complex at the plasma membrane compared
to wild-type macrophages [73]. In line,
macrophages deficient in Abca1 and/or Abcg1
show increased secretion of pro-inflammatory
cytokines compared to wild-type macrophages
upon LPS-induced TLR4 activation [73]. Mem-
brane cholesterol depletion with
methyl-β-cyclodextrin suppresses the
LPS-induced pro-inflammatory gene expression
in macrophages deficient in Abca1 and/or Abcg1
[73]. Collectively, these data show that deficiency
of Abca1 and Abcg1 enhances membrane choles-
terol accumulation, which stabilizes the TLR4-
MD2 complex in lipid rafts, as such increasing
TLR4 surface expression, and downstream secre-
tion of pro-inflammatory cytokines
[73]. Hyperlipidemic mice with deficiency of
Abca1 and Abcg1 in macrophages show increased
plasma levels of pro-inflammatory cytokines and,
importantly, increased inflammatory gene

expression in atherosclerotic plaques [61],
suggesting in vivo relevance. These effects likely
contribute to the increased atherosclerosis
observed in hyperlipidemic mice with macro-
phage Abca1 and Abcg1 deficiency [61].

Deficiency of Abca1 and Abcg1 in endothelial
cells also enhances LPS-induced inflammation
in vitro, as well as monocyte adhesion [74]. Simi-
lar to observations in macrophages, Abca1 and
Abcg1 deficiency likely stabilizes TLR4 surface
expression in cholesterol-enriched domains in
endothelial cells. In addition, endothelial Abca1
and Abcg1 deficiency suppress the activity of
endothelial nitric oxide synthase (eNOS) [74],
which produces NO. NO production suppresses
NF-kB activation and expression of adhesion
molecules in endothelial cells, as well as mono-
cyte adhesion [90]. Hence, endothelial Abca1 and
Abcg1 deficiency enhance endothelial cell inflam-
mation and monocyte adhesion by stabilizing
TLR4 surface expression at the plasma membrane
and decreasing NO production. As a conse-
quence, hyperlipidemic mice with endothelial
Abca1 and Abcg1 deficiency show increased
atherosclerosis [74].

HDL suppresses surface expression of the
TLR4-MD2 complex in wild-type macrophages
and LPS-induced pro-inflammatory cytokine
expression [91]. HDL suppresses this
LPS-response to a significantly larger extent in
wild-type macrophages than macrophages
deficient in Abca1 and Abcg1, suggesting that
cholesterol efflux to HDL is required for its anti-
inflammatory effects [92]. In addition, studies in
humans have shown that ABCA1 heterozygous
mutation carriers, with a ~ 50% decrease in
plasma HDL levels as well as a ~ 50% decrease
in ABCA1 expression in all cells, show increased
plasma levels of pro-inflammatory cytokines and
increased inflammation in the vessel wall
[93]. The latter was shown by a PET-CT scan
that monitors the metabolic activity of cells in
the vessel wall, where high metabolic activity
reflects a high level of inflammation [93]. These
data indicate translational potential of the findings
in animal models and show that HDL and choles-
terol efflux pathways suppress vascular inflam-
mation in humans.
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6.7 Abca1- and Abcg1-Mediated
Cholesterol Efflux Suppress
Monocytosis and Neutrophilia

Elevated levels of monocytes and neutrophils in
blood are associated with increased cardiovascu-
lar disease (CVD) events in humans
[94]. Monocytes and neutrophils mainly originate
from their progenitor cells in the bone marrow
[95]. Macrophage Abca1 and Abcg1 deficiency
increases pro-inflammatory cytokines and, espe-
cially, in hyperlipidemic mice, secretion of mac-
rophage colony-stimulating factor (M-CSF),
MCP-1, and granulocyte colony-stimulating fac-
tor (G-CSF) from monocytes and macrophages
[61]. MCP-1 is the ligand for C-C chemokine
receptor 2 (CCR2) and stimulates egress of
monocytes from the bone marrow [96], while
M-CSF and G-CSF instruct granulocyte-
macrophage progenitors (GMPs) in the bone mar-
row to produce monocytes/macrophages and
neutrophils, respectively [95]. Hyperlipidemic
mice with macrophage Abca1 and Abcg1 defi-
ciency show a twofold increase in monocytes
and neutrophils in blood [61], presumably as a
consequence of increased levels of MCP-1,
M-CSF, and G-CSF in plasma.

Production of GMPs is driven by
hematopoietic stem cells (HSCs), including
Lin�Sca1+cKit+ (LSK) cells. Abca1 and Abcg1
are highly expressed in LSKs [97]. LSKs are also
referred to as hematopoietic stem and
multipotential progenitor cells (HSPCs). Mice
with deficiency of the cholesterol transporters
Abca1 and Abcg1 exhibit a dramatic ~five-fold
increase in blood monocyte and neutrophil
counts, reflected by a ~ five-fold increase in the
HSPC population in the bone marrow [97]. Mech-
anistic studies have shown that Abca1 and Abcg1
deficiency enhance HSPC proliferation due to an
increased surface expression of the common β
subunit of the receptor for granulocyte-
macrophage colony-stimulating factor
(GM-CSF) and interleukin-3 (IL-3) on HSPCs
[97]. This common β subunit is critical for the
expansion of HSPCs and the downstream genera-
tion of progenitor cells and leukocytes. The

common β subunit is localized in lipid rafts [97]
and, similar to the TLR4-MD2 complex in
Abca1�/�Abcg1�/� macrophages, stabilized by
membrane cholesterol accumulation
[97]. Extramedullary hematopoiesis involves
mobilization of HSPCs from the bone marrow
via the blood into the spleen and other organs
[98]. Abca1�/�Abcg1�/� mice also exhibited
splenomegaly and extramedullary hematopoiesis;
Abca1�/�Abcg1�/� mice displayed increased
HSPC mobilization from the bone marrow to the
spleen [99]. The mechanism underlying this phe-
nomenon involves increased IL-23 secretion from
Abca1�/�Abcg1�/� macrophages and dendritic
cells as a result of upregulation of the TLR4 and
TLR3 signaling in these cells [99]. IL-23 is
known to initiate a signaling cascade leading to
enhanced production of IL-17 by T helper
17 cells and G-CSF by bone marrow stromal
cells [100], thus directing GMPs in the bone
marrow toward neutrophil production [95]. This
subsequently decreases the abundance of
osteoblasts and nestin+ mesenchymal stem cells
that express C-X-C motif chemokine
12 (CXCL12), which is a key retention ligand
for C-X-C chemokine receptor type 4 (CXCR4)
on HSPCs [101, 102]. Thus, the bone marrow
niche is altered, decreasing its ability to retain
HSPCs, and HSPCs are mobilized to organs,
including the spleen. Extramedullary hematopoi-
esis likely contributes to monocytosis and
neutrophilia in Abca1�/�Abcg1�/� mice as well
[103]. In summary, cholesterol efflux pathways
mediated by Abca1 and Abcg1 suppress HSPC
proliferation in the bone marrow, extramedullary
hematopoiesis, and inflammatory cytokine secre-
tion by macrophages, as such suppressing
monocytosis and neutrophilia.

Atherosclerosis studies in mice show that defi-
ciency of Abca1 and Abcg1 in hematopoietic cells
leads to a more dramatic increase in atherosclero-
sis (2.7-fold) than deficiency of these transporters
in macrophages alone (~73%) [61]. While inflam-
mation and macrophage cholesterol accumulation
contributed to atherosclerosis in mice with
hematopoietic or macrophage Abca1/Abcg1 defi-
ciency, these data show that monocytosis and
neutrophilia, which is more pronounced in mice
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with hematopoietic than macrophage deficiency
of Abca1 and Abcg1, are clearly pro-atherogenic
[61]. Indeed monocytosis and neutrophilia are
associated with increased CVD in humans [94].

6.8 Role of ABCA1-
and ABCG1-Mediated
Cholesterol Efflux Pathways
in Inflammasome Activation

The CANTOS (canakinumab atherothrombosis
anti-inflammatory outcome study) trial has
shown that antibodies to IL-1β suppress recurrent
cardiovascular events, thus proving for the first
time that inflammation accelerates atherosclerosis
in humans [83]. IL-1β is a main regulator of
inflammation and is secreted by several cell
types including macrophages and dendritic cells.
Its secretion is controlled by a multimeric protein
complex called the inflammasome [104]. Espe-
cially the NLRP3 inflammasome plays a role in
atherosclerosis [79] and controls both IL-1β and
IL-18 secretion. The NLRP3 inflammasome
mandates two signals for activation: a priming
signal and a so-called second signal. The priming
signal leads to activation of NF-κB and occurs
downstream of several receptors including TLR4.
As a consequence, transcriptions of the several
subunits of the NLRP3 inflammasome complex,
including NLRP3, ASC, and pro-caspase-1, are
increased, as is expression of pro-IL-1β. The sec-
ond signal leads to cleavage of pro-caspase-1 into
its active form, which subsequently cleaves
pro-IL-1β and pro-IL-18, required for their secre-
tion [104]. Initial atherosclerosis studies have
shown that accumulation of cholesterol crystals
or free cholesterol in lysosomes leads to lyso-
somal damage [79, 105], which itself serves as a
second signal. While the presence of cholesterol
crystals in atherosclerotic plaques has been called
into question [106], these data [79, 105] do
clearly demonstrate a link between cholesterol
accumulation and inflammasome activation.

Hyperlipidemic mice with deficiency of Abca1
and Abcg1 in macrophages show accumulation of
free cholesterol in lysosomes and activation of the
NLRP3 inflammasomes as evident from

increased IL-1β and IL-18 secretion, as well as
caspase-1 cleavage, which is key to
inflammasome activation [107]. Deficiency of
NLRP3 or caspase-1 suppresses atherosclerosis
in hyperlipidemic mice with Abca1 and Abcg1
deficiency in macrophages [107]. These findings
thus show that macrophage cholesterol efflux
pathways suppress atherosclerosis by decreasing
inflammasome activation [107]. Tangier Disease
patients, who carry a homozygous loss-of-func-
tion for the ABCA1 gene, show increased plasma
levels of IL-1β and IL-18, the products of
inflammasome activation [107], suggesting
human relevance. Similarly, decreased choles-
terol efflux to HDL due to reduced expression of
ABCA1/ABCG1 in blood monocytes as observed
in patients with poorly controlled diabetes
mellitus [108, 109], chronic kidney diseases
[110], or rheumatoid arthritis [111] may contrib-
ute to inflammasome activation and the increased
inflammation in these diseases.

6.9 Abca1- and Abcg1-Mediated
Cholesterol Efflux Suppress
Lupus-like Autoimmunity

Normolipidemic mice deficient in Abca1 and
Abcg1 show enlarged lymph nodes and at
40 weeks of age develop autoimmune glomerulo-
nephritis, suggestive of systemic lupus
erythematosus (SLE). Several immune cell types
play a role in SLE, including B-cells, T-cells,
macrophages, and dendritic cells (DCs). Mice
with deficiency of Abca1 and Abcg1 in DCs, but
not in T-cells or macrophages, show a similar
autoimmune phenotype compared to Abca1�/

�Abcg1�/� mice [112]. DCs present antigens to
T-cells, leading to their activation. However, DC
Abca1/Abcg1 deficiency in vitro or in vivo does
not affect antigen presentation [112]. Instead,
Abca1/Abcg1 deficiency enhances secretion of
pro-inflammatory cytokines from DCs, including
IL-1β and IL-18 [112], accompanied by cleavage
of caspase-1, a hallmark of inflammasome activa-
tion [112]. Presumably, TLR4 signaling and cho-
lesterol accumulation act as signals for NLRP3
inflammasome activation in DC Abca1/Abcg1
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deficiency. Downstream of NLRP3
inflammasome activation in Abca1/Abcg1 defi-
cient DCs, T helper 1 cells, and T helper
17 cells is expanded [112], contributing to the
autoimmune phenotype. Interestingly, NLRP3 or
IL-18 polymorphisms have been associated with
increased SLE risk in humans [113]. Deficiency
of the NLRP3 inflammasome diminishes the auto-
immune phenotype in mice with DC Abca1/
Abcg1 deficiency and decreases the expansion of
the T helper 1 cell population [112], suggesting a
major role of inflammasome activation in autoim-
munity when cholesterol efflux from dendritic
cells is impaired.

Together, cholesterol efflux pathways exert
anti-inflammatory effects by suppressing the acti-
vation of the NLRP3 inflammasome, with down-
stream effects on atherosclerosis and a lupus-like
autoimmune phenotype.

6.9.1 ABCG4 in Platelet Biogenesis
and Atherothrombosis

While ABCA1 and ABCG1 are involved in regu-
lation of HSPC proliferation and HSPC mobiliza-
tion from the bone marrow and extramedullary
hematopoiesis in the spleen, ABCG4 is highly
expressed in megakaryocyte progenitors (MkP),
a type of progenitor cell in megakaryocyte/plate-
let lineage, but not in mature platelets [114]. Inter-
estingly, little ABCA1 or ABCG1 is expressed in
MkPs. ABCG4 promotes cholesterol efflux to
HDL, and ABCG4-deficient MkPs are defective
in cholesterol efflux to HDL, in association with
free cholesterol accumulation, particularly in the
plasma membrane [114]. Hematopoietic ABCG4
deficiency promotes atherosclerosis and
accelerates arterial thrombosis in hypercholes-
terolemic Ldlr�/� mice [114]. Mechanistically,
hematopoietic ABCG4 deficiency increased
platelet counts, reticulated platelets, platelet/leu-
kocyte complexes, and platelet-derived
microparticles [114], all with proven
pro-atherosclerotic and pro-thrombotic
properties. Abcg4�/� MkPs show increased pro-
liferation in response to thrombopoietin (TPO),
the most important growth factor-regulating

megakaryocyte/platelet lineage development
in vivo, in association with increased cell surface
levels of c-MPL, the TPO receptor
[114]. Hematopoietic ABCG4 deficient mice dis-
play increased numbers of megakaryocytes in the
bone marrow and spleen. The increased cell sur-
face c-MPL levels in Abcg4�/� MkPs result from
disruption of the negative feedback regulation of
c-MPL in response to TPO and involve a defec-
tive activation of Lyn kinase and c-CBL E3
ligase. Lyn kinase is a palmitoylated membrane
protein, and membrane association regulates Lyn
kinase activation. Lyn kinase seems to act as a
membrane cholesterol sensor. Increased plasma
membrane cholesterol content in Abcg4�/�

MkPs may increase Lyn kinase association with
the membrane and decrease its tyrosine kinase
activity in response to TPO, causing defective
phosphorylation of c-CBL. This disrupts the neg-
ative feedback regulation of c-MPL, decreasing
its turnover, increasing its expression at cell sur-
face, increasing TPO/c-MPL signaling, and lead-
ing to increased megakaryocyte and platelet
production [114]. These studies link increased
platelet production, initiated from its lineage pro-
genitor cells, to accelerated atherosclerosis and
arterial thrombosis.

6.10 Summary

Studies in the past two decades have identified
ABCA1, ABCG1, and ABCG4 as key
transporters that regulate cholesterol efflux from
various types of cells in vivo. Functional disrup-
tion of these transporters leads to dysregulated
cholesterol homeostasis in cells and in the whole
body. Genetic studies, mostly from animal
models, indicate a role of these transporters in
modulation of atherogenesis, in part via regula-
tion of the production and function of monocytes,
macrophages, dendritic cells, neutrophils, and
platelets, and suggest translational relevance.
HDL and apoA-I are the major lipoprotein
components that promote cholesterol efflux from
these transporters. Large cohort studies reproduc-
ibly show a strong and inverse relationship
between HDL-C levels and the risk of incident
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CVD independent of other lipids [115, 116]. In
contrast, human genome-wide association studies
have called into question the causal relationship
between the SNPs of genes associated with HDL
metabolism and CVD risk [117], and the clinical
trials so far largely provide disappointing results
in efforts to raise HDL-C as therapeutic interven-
tion for CVD [118]. These results have
contributed to the emerging concept that HDL
functionality rather than HDL-C is the more rele-
vant determinant in reducing the risk of CVD.
Consistently, using cholesterol efflux function
assays several studies demonstrate that choles-
terol efflux capacity of human plasma or serum
devoid of apoB containing lipoproteins is
inversely associated with incident CVD events,
often independent of circulating HDL-C or apoA-
I levels [119–122]. In this regard, cholesterol
efflux pathways could be therapeutically targeted,
and one approach is to upregulate ABCA1 and
ABCG1 expression by LXR activators, provided
that their adverse effects on liver triglyceride
metabolism could be circumvented. The other
approach could include infusion of reconstituted
HDL particles. This approach has shown anti-
atherogenic effects in animal models [123, 124]
and, in several small scale human trials,
demonstrated acceptable safety and some
promising effects. More definitive answers may
come from ongoing large-scale clinical trials such
as ApoA-I Event Reducing in Ischemic
Syndromes II (AEGIS-II) trial.
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Guanghua Luo and Ning Xu

Abstract

Apolipoprotein M (apoM) was first identified
and characterized to the apolipoprotein family
in 1999. Human apoM gene is located in a
highly conserved segment in the major histo-
compatibility complex (MHC) class III locus
on chromosome 6 and codes for an about
23 kDa protein that structurally belongs to
the lipocalin superfamily. ApoM is selectively
expressed in hepatocytes and in the tubular
epithelium of kidney. In human plasma,
apoM is mainly confined to the high-density
lipoprotein (HDL) particles, but it may also
occur in other lipoprotein classes, such as in
the triglyceride-rich particles after fat intake. It
has been demonstrated that apoM is critical for
the formation of HDL, notably pre-beta
HDL1. The antiatherogenic function of HDL
is well established, and its ability to promote
cholesterol efflux from foam cells in the ath-
erosclerotic lesions is generally regarded as
one of the key mechanisms behind this protec-
tive function. However, HDL could also dis-

play a variety of properties that may affect the
complex atherosclerotic processes by other
mechanisms, thus being involved in processes
related to antioxidant defense, immune sys-
tem, and systemic effects in septicemia,
which may be partly contributed via its
apolipoproteins and/or phospholipids. More-
over, it has been demonstrated that apoM
functions as a natural carrier of sphingosin-1-
phosphate (S1P) in vivo which may be related
to its antiatherosclerotic and protective effects
on endothelial cell barrier and anti-
inflammatory properties. These may also pro-
vide a link between the diverse effects of HDL.

Keywords
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7.1 Introduction

The antiatherogenic function of high-density
lipoproteins (HDL) is well established, and its abil-
ity to promote cholesterol efflux from foam cells in
the atherosclerotic lesions is generally regarded as
one of the key mechanisms behind this protective
function [5, 63]. However, HDL could also display
a variety of properties that may affect the complex
atherosclerotic processes by other mechanisms,
thus being involved in processes related to
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antioxidant defense, immune system, and systemic
effects in septicemia, which may be partly
contributed via its apolipoproteins and/or
phospholipids [4, 11, 22, 36, 65, 83]. Human apo-
lipoprotein M (apoM) is the latest HDL apolipo-
protein [85] and functions as carrier of sphingosin-
1-phosphate (S1P) in vivo [3, 17, 20, 30, 43, 62, 69]
and has been demonstrated having antiathero-
sclerotic [3, 8, 9, 18, 44] and protective effects on
endothelial cell barrier [79] and anti-inflammatory
properties [6, 17, 29, 30, 43, 76, 78, 81, 103], which
may provide a link between these diverse effects.
ApoM was first identified and characterized to the
apolipoprotein family in 1999 [85]. The human
apoM gene is located in a highly conserved seg-
ment in the major histocompatibility complex
(MHC) class III locus on chromosome 6 and
codes for an about 23 kDa protein that structurally
belongs to the lipocalin superfamily [24, 85, 86]. In
human plasma, apoM is mainly confined to the
HDL particles, but it may also occur in other lipo-
protein classes, such as in the triglyceride-rich
particles after fat intake [85]. ApoM is selectively
expressed in hepatocytes and in the tubular epithe-
lium of kidney [94]. It has been demonstrated that
apoM is essential for the formation of HDL, espe-
cially pre-beta HDL1 [84].Moreover, in transgenic
mouse models, apoM has a strong protective effect
against atherosclerosis [84]. And it has been
demonstrated that the apoM-S1P axis could be
related to lipid metabolism and remodeling endo-
thelial function [20], which may act as the key
physiological function of apoM in vivo. More
recently, it has been reported that overexpression
of apoM could reduce the degree of nephropathy in
mice model with IgA nephropathy [48]. And
hepatic apoM expression may involve in the
non-alcoholic fatty liver diseases [61], and apoM
deficiency could cause an autophagy dysregulation
in the liver [101]. In this review we summarized
research progress and clinical perspective of apoM.

7.2 Identification and Cloning
of Human ApoM

Human apoM was first identified and isolated by
Xu and Dahlback in 1999, from triglyceride-rich
lipoproteins (TGRLP) of the postprandial plasma

[85]. When they performed SDS-PAGE of
delipidated human TGRLP and sequenced pro-
tein bands ranging from 6 kDa to 45 kDa, the
N-terminal sequence of one of the sequences was
characterized as MFHQIWAALLYFYGI. Except
for human expressed sequence tags (EST)
showing similarities to this N-terminal amino
acid sequence, no homologous proteins were
identified in public databases. Based on above
sequences, a full-length cDNA of the novel pro-
tein containing 188 amino acids was obtained
[85] (Fig. 7.1). According to the sequence of the
protein, rabbit antibodies against five mixed syn-
thetic peptides were raised, and the distribution of
the protein among various lipoprotein subclasses
was analyzed by the western blotting using the
pooled antisera. Under reducing conditions, a
26 kDa band was particularly abundant in HDL,
but minor amounts were also observed in
low-density lipoprotein (LDL) and TGRLP
(Figs. 7.2 and 7.3). In addition, a less pronounced
band (approximately 23 kDa), corresponding in
size to a nonglycosylated variant of the protein
[85], was also observed. As the protein is exten-
sively associated with lipoproteins in plasma, it
fulfills the criteria for classification as an apolipo-
protein. This novel protein was therefore named
as apoM, following the last previously identified
apolipoprotein, apoL [25]. The human apoM
gene is located in the MHC class III locus (chro-
mosome 6, p21.31) (Fig. 7.4) and contains six
exons [85]. Both in mouse and human, the
apoM gene is predicted to contain six exons
enclosed in a 1.6 kb genomic region, which is
consistent with the results of Southern blotting.
Southern blot analysis of different species gave
positive signals in all mammalian genomes, but
not in DNA from chicken and yeast (Fig. 7.5)
[85]. The human apoM cDNA (734 base pairs)
encodes for a 188 amino acid residue protein. The
5’-untranslated region was 33 nucleotides and the
3’-untranslated region 120 nucleotides, excluding
the poly(A) tail. The calculated molecular mass of
the protein is 21 256. The amino acid sequences
of human and mouse apoM are 79 % identical
(human and rat apoM: 82 %) (Fig. 7.1a). In man,
mouse, and rat, the apoM gene sequences predict
the presence in the protein of a signal peptide
sequence. Generally, such sequences are split
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Fig. 7.1 Amino acid sequence of human apoM and align-
ment with sequences of mouse apoM and human apoD. (a)
The amino acid sequence of human apoM compared to the
mouse apoM (NG20). The positions of the five introns are
indicated by vertical lines, and the intron types are given

by roman numbers. (b) The human apoM sequence is
aligned with that of human apoD using CLUSTAL W
(1.74) multiple sequence alignment. The bold letters iden-
tify the two areas in apoM and the three in apoD that have
typical lipocalin motifs
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Fig. 7.2 ApoM in different lipoprotein subclasses and in
plasma. (a) Apolipoproteins from TGRLP, LDL, HDL
(5 mg in each lane), and LPDP (5 mg of plasma proteins)
were applied to 4–15% gradient SDS-PAGE under reduc-
ing and nonreducing conditions and detected by Western
blotting with pooled anti-peptide apoM antisera. (b)

Increasing amounts of normal plasma proteins were
applied to 8–18% gradient SDS-PAGE and analyzed by
Western blotting using the pooled anti-peptide antisera.
Lanes 2–7 contain 0.75, 1.25, 2.5, 5, 10, and 20 mg of
plasma proteins, respectively. In parallel, LPDP (10 mg of
protein) was analyzed

Fig. 7.3 ApoM is a minor component of HDL. To eluci-
date the relative amount of apoM in HDL as compared to
the other lipoproteins, 10 mg of delipidated HDL was

applied in duplicate to 10%-PAGE run in the presence of
SDS under reducing conditions
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from extracellular proteins prior to secretion from
the cell of origin. ApoM, however, retains this
signal peptide sequence (about 20 amino acids) in
the mature protein, as the signal peptide sequence
is not followed by a signal peptidase cleavage site
[85]. The amino acid sequence of apoM contains
six cysteines, which may be involved in the for-
mation of three disulfide bridges. There is one
potential site for N-linked glycosylation at
Asn135 (Asn-Glu-Thr), whereas Asn148

(Asn-Arg-Ser-Pro) is less likely to be
glycosylated because Pro-151 follows Ser-150.
Through sensitive sequence searches, it was pro-
posed that apoM is related, like apoD, to the
lipocalin protein superfamily [85]. Lipocalins
are involved in numerous biological functions:
some are enzymatically active, and others bind
signal substances such as pheromones, while still
others are have regulatory functions in cellular
metabolism and immunological responses
[15]. Later, it has been demonstrated that
apoM’s hydrophobic binding pocket could pre-
dominantly carry sphingosine-1-phosphate (S1P)
in plasma [20]. As mentioned above, apoM
retains an uncleaved N-terminal signal peptide;
this hydrophobic sequence most probably serves
to anchor the molecule into the single layer of
amphipathic lipids on the surface of the lipopro-
tein particle [85]. The predominant phospholipid
in HDL is phosphatidylcholine, which has a posi-
tively charged choline group exposed on the sur-
face of the lipoprotein particle. Several isoforms
of apoM have been identified in plasma. These
most probably represent various degrees of gly-
cosylation (there is a glycosylation site at residue
Asn135), sialylation, or phosphorylation.
Karlsson et al., using two-dimensional gel elec-
trophoresis and mass spectrometry, demonstrated
that two isoforms of apoM are present in human
HDL and three isoforms in LDL particles, proba-
bly due to differences in glycosylation or
sialylation [40, 41]. However, there is only one
form of apoM found in VLDL [56].

7.3 Cellular Expression and Plasma
Distribution of ApoM

Northern blot analyses of multiple tissues (includ-
ing spleen, thymus, prostate, testis, ovary, small

Fig. 7.4 ApoM Gene in genomic location: Bands according to Ensembl, locations according to GeneLoc (and/or Entrez
Gene and/or Ensembl if different). https://www.genecards.org/cgi-bin/carddisp.pl?gene¼APOM

Fig. 7.5 Southern blot analysis of DNA from various
species. The Zoo blot contained nine different species.
The positions and sizes of marker DNA (HindIII-digested
lDNA) are indicated at the right
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intestine, colon, leukocytes, heart, brain, placenta,
lung, liver, skeletal muscle, kidney, pancreas,
stomach, thyroid, spinal cord, lymph node, tra-
chea, adrenal gland, and bone marrow) indicated
that apoM was expressed mainly in the liver and
kidney [95]. Human tissue expression array stud-
ies showed that apoM is exclusively expressed in
the liver and in the kidney (Fig. 7.6), while small
amounts were also found in fetal liver and kidney
[94]. To elucidate whether and when apoM is
expressed, Zhang et al. investigated apoM expres-
sion patterns during mouse and human embryo-
genesis [95]. ApoM transcripts were detectable in
mouse embryos from day 7.5 to day 18.5, and
apoM was expressed at low levels at day 7.5 and
then increased up to day 18.5 (i.e., almost to
parturition; Fig. 7.7). ApoM-positive cells
appeared mainly in the livers of day 12 embryos
as detected by in situ hybridization. In day
15 embryos, apoM was expressed in both the
liver and kidney. During human embryogenesis,
apoM was strongly expressed in the livers of 3- to
5-month-old embryos and continued to be so
throughout embryogenesis. In the kidney, apoM
expression was highest in 5- to 9-month-old
embryos (Fig. 7.8). The plasma concentration of
apoM in man has been reported at 20–150 mg/L;
although these estimates are uncertain for meth-
odological reasons, it has been estimated that
apoM constitutes a minor proportion of HDL
apolipoproteins in man (less than 5% of the
concentrations of apoAI) [34, 70]. Like most
other small apolipoproteins, apoM can transfer
between lipoprotein particles [85]. During the
postprandial phase, for example, the
concentrations of apoM in TGRLP increase,
probably as a result of transfer from HDL
particles [85]. Although apoM originally
identified in TGRLP, human apoM is mainly
transported with HDL. Using monoclonal
antibodies and immunoaffinity chromatography,
Christoffersen et al. [19] demonstrated that about
5% of all HDL particles in human plasma contain
apoM; these were defined as HDL-apoM+. Such
apoM+ particles contained more cholesterol than
apoM- particles. ApoM+ HDL is quite heteroge-
neous in protein composition; besides apoAI and
AII, it also contains several other apolipoproteins

such as apoCI, CII, and CIII. In mice, apoM is an
important component of pre-β-HDL
[84]. Observations in genetically modified mice
have added to understanding of the transport of
apoM in plasma. ApoM is thus associated with
HDL-sized particles in wild-type and apoAI-
deficient mice, whereas in LDL receptor-deficient
(hypercholesterolemia) mice, it is found in HDL-
and LDL-sized particles [27]. In apoE-deficient
mice fed a high-fat, high-cholesterol diet, apoM is
found mainly in VLDL-sized particles
[27]. ApoM thus associates primarily with HDL
under normal conditions, but it may also occur in
pathologically increased lipoprotein fractions
regardless of the nature of the lipoprotein
particles. To investigate the impact on plasma
lipoprotein metabolism of primary derangements
in apoM processing, Wolfrum et al. [84]
modulated hepatic apoM expression in mice
through the use of apoM-silencing RNA or
apoM adenovirus. Decreased apoM expression
was accompanied by the accumulation of large
HDL1 particles in plasma, while pre-β-HDL
disappeared. In analogy, HNF-1-α knockout
mice exhibited a lipoprotein pattern similar to
that induced by apoM-silencing RNA; in this
model, the aberrations in HDL fractions could
be reversed by injection of apoM adenovirus
[84]. Taken together, these observations demon-
strate that apoM is critically involved in the for-
mation of HDL, notably pre-β-HDL1.

7.4 Regulation of ApoM Expression

The hepatic expression of apoM and its concen-
tration in plasma are dependent upon a number of
nuclear transcription factors and also subject to
hormonal and metabolic regulation. Several dif-
ferent regulatory pathways are involved in the
regulation of apoM. Also, it appears that
alterations in apoM metabolism are linked to
clinically important entities such as inflammation,
diabetes, and obesity. Hepatocyte nuclear factor
1α (HNF-1α) belongs to the helix-loop-helix
homeodomain transcription factor family and
was first identified by its interaction with regu-
latory sequences of liver-specific gene promoters.
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It has important roles in development, cell differ-
entiation, and metabolism, primarily in the liver,
intestine, kidney, and exocrine pancreas [21, 37,
57]. HNF-1α protein can bind to the HNF-1 bind-
ing site of apoM promoter in vitro [67], while
HNF-1α in vivo is a potent activator of apoM
gene promoter [67]. Mutant HNF-1α-/- mice thus
completely lack expression of apoM in the liver
and kidney, and apoM is absent from plasma. In
heterozygous HNF-1α+/- mice, serum levels of
apoM are reduced by 50% in relation to wild-type
animals. The HNF-binding site of the apoM pro-
moter, which is highly preserved, has been
identified, and specific mutations to this binding
site abolished transcriptional activation of the
apoM gene [67]. As described in more detail
below, mutations in the HNF-1α gene are closely
related to diabetes, notably to the MODY3

(maturity onset diabetes in the young) type.
These patients have low plasma concentrations
of apoM [67], and serum apoM levels can well
distinguish HNF-1α-MODY and type 1 diabetes
[59]. Peroxisome proliferator-activated receptors
(PPARs) are nuclear transcription factors that
regulate lipid and lipoprotein metabolism, glu-
cose homeostasis, and the inflammatory response
[31, 35, 73]. The PPAR family consists of three
proteins – α, β/δ, and γ – that all display tissue-
specific expression patterns reflecting their
biological functions. PPARα is principally
expressed in tissues exhibiting high rates of
beta-oxidation, such as the liver, kidney, heart,
and muscle, while PPARγ is expressed at high
levels in adipose tissue. PPARβ/δ, however, is
ubiquitously expressed [73]. It has been reported
that the PPARβ/δ antagonist, GSK3787, could

Fig. 7.6 Northern blot analysis of apoM. The human multiple tissue Northern blots were probed at high stringency with
a radiolabeled full-length cDNA of apoM. The positions and sizes of apoM mRNA are indicated at the right

Fig. 7.7 Onset of apoM expression during mouse embryogenesis. Northern blots of total RNA of 4.5- to 18.5-day-old
mouse embryos was hybridized to a randomly primed cDNA probe of apoM
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completely reverse the downregulation of apoM
expression induced by palmitic acid, indicating
that palmitic acid-induced downregulation of
apoM expression is mediated by the PPARβ/δ
pathway [55]. The molecular actions of fibrates
and statins, two of the conventional
hypolipidemic agents, involve the functions of
hepatic PPAR(α) [33]. Exposure of HepG2 and
Hep3B cells to the PPARα activator, gemfibrozil,
resulted in a twofold induction of apoAI mRNA
and a one-third reduction in apoB mRNA but had
no significant effect on apoE mRNA levels
[89]. Ciprofibrate treatment decreases hepatic
apoB mRNA editing and alters the pattern of
hepatic lipoprotein secretion [89]. Linden et al.
reported that the PPARα agonist WY14643 could
decrease the secretion of apoB-100 in VLDL, but
not that of apoB-48, and decreased triglyceride
biosynthesis and secretion from primary rat
hepatocytes [51]. However, there is no data

could be found that PPARα influences expression
of apoM in vivo or in vitro. Xu et al. reported that
PPARβ/δ could inhibit expressions of apoM and
apoB in HepG2 cells, which were regulated by
PI3-kinase pathways [89]. More recently, it has
been demonstrated that treatment with
pioglitazone, a PPARγ agonist, could decrease
both the hepatic and plasma apoM and S1P levels
in obese mice induced by diet [46]. In HepG2
cells, apoM overexpression could increase,
whereas apoM knockdown could suppress
PPARγ activities [46]. These results suggested
that PPARγ regulates the S1P levels by
modulating apoM. When PPARγ was lightly
expressed, the level of apoM/S1P was highest,
and that hepatic apoM/PPARγ axis might main-
tain the homeostasis of S1P metabolism
[46]. Liver X receptors (LXR) are key regulators
of cholesterol and bile acid metabolism in
hepatocytes and also target genes involved in

Fig. 7.8 ApoM expression during human fetal tissues.
The mRNA arrays containing a series of fetal tissues
from different embryonal stages were hybridized to a

randomly primed cDNA apoM probe (panel B). Embryo-
nal stages are indicated as months. Human GAPDH cDNA
probe (panel A) was used as control
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steroid hormone synthesis, growth hormone sig-
naling, and inflammation. The retinoid X
receptors (RXR) bind the biologically active
vitamin A, 9-cis-retinoic acid, and are involved
in a variety of cellular functions including cell
differentiation and fatty acid metabolism. To inte-
grate the cellular responses to various stimuli,
there is excessive “cross-talk” not only between
LXRs and RXR but also with the PPARs
[49, 80]. As part of a microarray study on the
interaction between these receptors, Calayir E
et al. found that LXR agonists could inhibit
apoM expression in vivo [13]. Moreover,
HepG2 cells demonstrated that both LXR and
RXR agonists could regulate apoM expression
in vitro. Both T0-901317 (a LXR agonist) and
9-cis-retinoic acid (a RXR ligand) significantly
inhibited apoM expression, but not apoB expres-
sion, in HepG2 cell cultures [97], indicating that
apoM expression may also be modulated by the
LXR-RXR pathway (Fig. 7.9). Several growth
factors could influence the transcription and
secretion of apolipoproteins in HepG2 cells.
ApoB expression, for example, is markedly
downregulated by transforming growth factor-β
(TGF-β) [87]. In case of apoM, it has been
reported that TGF-β was also able to
downregulate apoM expression and secretion
from HepG2 cells [87]. In addition, estrogen
could also regulate hepatic apoM expression via
the estrogen receptor α-specific binding motif
[82]. Hepatic apoM overexpression could stimu-
late formation of large apoM-/S1P-enriched HDL
in plasma [52]. The unique apoM-/S1P-enriched
HDL may service to deliver S1P to extrahepatic
tissues.

7.5 ApoM-S1P Axis

As mentioned above, the plasma apoM is one of
the most important natural carriers of S1P in
blood [20], and release of S1P from HDL-apoM
probably requires the tight interaction with S1P
receptors [98]. S1P is an important bioactive
lysophospholipid mediator which plays a variety
of physiological functions through S1P receptors
on cell surfaces, such as antiapoptosis [44, 93],

cell proliferation [44, 93], vasorelaxation
[14, 44], and the maintenance of vascular perme-
ability [12]. Plasma S1P is mainly derived from
erythrocytes [74], the activated platelets [1], and
endothelial cells [1]. In terms of the kinetics of
S1P in the circulation, apoM plays a crucial role
in the distribution of plasma S1P compared to
other lysophospholipids. In blood, about
two-thirds of S1P are carried by HDL, and only
one-third by the albumin [1, 2]. The polar tail of
S1P is orientated to the inside of the binding
pocket of apoM, which can prevent the degrada-
tion of S1P by the phosphatase or S1P lyase
[45]. Although S1P is a typical mediator of the
sphingo-lysophospholipid, an analog of S1P,
dihydrosphingosine 1-phosphate (DH-S1P) is
another effective mediator of sphingo-
lysophospholipid. DH-S1P lacks one double
bond at the 4–5 carbon position of S1P and has
a concentration of 20–30% S1P in plasma
[58]. DH-S1P is reported to activate S1P
receptors and has similar biological activity to
S1P [58]. However, although S1P has an intracel-
lular biological effect and agonist properties on
S1P receptors [44], DH-S1P is not reported to act
intracellularly [58]. It has been demonstrated that
S1P receptor-1 (S1P1) signaling in endothelial
cells modulates vascular responses to immune
complex (IC) deposition [12]. S1P1 agonists and
a fusion protein (apoM-constant domain of
immunoglobulins, apoM-Fc) could enhance the
endothelial barrier, limit leukocyte escape from
capillaries, and provide protection against inflam-
matory injury. The S1P/S1P1 axis is thereafter
identified as the target to attenuate tissue
responses to the IC deposition and inhibits organ
damage [12]. Moreover, Terao et al., reported that
albumin-bound S1P could disrupt the barrier
integrity of retinal pigment epithelial cells via
the S1P2, whereas apoM-S1P strengthened this
integrity [77]. Liu et al. [53] reported that apoM
secretion is rate-limiting for hepatocyte S1P
secretion and that its uncleaved signal peptide
delays apoM trafficking out of the cell, promoting
formation of larger nascent apoM- and
S1P-enriched HDL particles that are probably
precursors of larger apoM-/S1P-enriched
plasma HDL.
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7.6 Importance of ApoM
on Inflammation and Immune
Response

Since the apoM gene is located in a highly
conserved region (histocompatibility complex III
(HMC-III) region on chromosome 6) in close
proximity to genes related to the immune
response (i.e., TNF, lymphotoxin B, and BAT3),
it is reasonable to hypothesize that apoM may
also be related to the immune response system
or regulated by cytokines or other inflammatory
factors. In addition, in HepG2 cells, platelet-
activating factor (PAF) could upregulate apoM
expression, whereas lexipafant (a PAF receptor
antagonist) significantly suppressed mRNA
levels and secretion of apoM in a dose-dependent
manner [86]. However, neither tumor necrosis
factor-a (TNF-a) nor interleukin-1a (IL-1a)
influenced apoM expression or secretion in
HepG2 cell cultures [86]. A couple of
observations in more complex models are com-
patible with the idea that apoM may be involved
in tissue defense mechanisms. During local
ischemia-reperfusion injury of the livers in rats,
hepatic apoM mRNA levels increased signifi-
cantly during 1-h ischemia followed by 0.5–3 h
reperfusion, which was similar to what has been

observed for the heat shock protein HSP70
[90]. However, the plasma concentrations of
apoM were not affected by ischemia-reperfusion
injury. More recently, it has been demonstrated
that apoM could regulate immune response via
the apoM-S1P [75]. In septic patients, the reduc-
tion of plasma apoM and S1P reflects the severity
of the disease [43]. A similar degree of disease
severity was observed in baboons that were
dependent on decreases in plasma S1P and
apoM levels. S1P was reduced within 6–8 h of
septic shock, whereas the apoM reduction was
only occurred at 12–24 h, reflecting the almost
complete loss of apoM and S1P in the HDL
[43]. Perhaps, the decrease of S1P may be one
of the reasons for the decrease of endothelial
barrier function in sepsis, and apoM could be a
new biomarker for the diagnosis of sepsis
[17]. Increased endothelial glycocalyx shedding
and vascular permeability are key characteristics
of the sepsis pathophysiology and the organ fail-
ure progression. In a cohort of 184 septic patients
or infected patients without organ failure, levels
of glypican 1, 3, and 4 were significantly higher in
septic patients than in those infected patients
without organ failure [47]. The glypican 1, 3,
and 4 were positively correlated with plasma
levels of the syndecan 1 (glycocalyx degradation

Fig. 7.9 Possible mechanism of different effects of GW3965 and TO901317 on mRNA levels of apoM
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marker) and negatively correlated with plasma
apoM and S1P levels. Some studies have
investigated whether apoM has anti-inflammatory
effects. As an example, apoM knockout mice
exhibited more severe autoimmune encephalo-
myelitis [7]. The characteristics of this model
included an increase in the number of
lymphocytes in the brain parenchyma and a dis-
ruption of the blood-brain barrier. Furthermore, in
a carrageenan-induced local inflammation model
of the paw, apoM knockout mice had more vas-
cular leakage than wild-type mice [16]. ApoM
overexpression in apoM knockout mice could
reverse this phenomenon. In another study,
apoM knockout mice treated with lipopoly-
saccharide (LPS) could result in more severe
acute lung injury than in wild-type mice
[104]. And apoM overexpression could improve
the survival rate of mice exposed to LPS, whereas
the apoM gene knockout or knockdown
decreased survival. In an in vitro study, tumor
necrosis factor-α could reduce the levels of the
vascular adhesion molecule-1 (VCAM-1) and
E-selectin of primary endothelial cells in the pres-
ence of apoM-bound S1P [68]. And in mice,
endothelial-specific S1P1 deletion resulted in
increased ICAM expression of endothelial cells,
whereas ICAM expression was reduced in those
with endothelial-specific S1P1 overexpression
[30]. Moreover, it has been demonstrated that
apoM-induced inhibitory effects against the
inflammatory response probably be mediated via
the S1P1 and 3β-hydroxysterol Δ-24-reductase
(DHCR24) pathways [81]. These existence stud-
ies strongly suggest the apoM/S1P/S1P1 axis
may be a target for attenuating tissue inflamma-
tory responses.

7.7 ApoM in Relation to Diabetes
and Obesity

As mentioned above, there is a strong relationship
between mutations in the HNF-1α gene and spe-
cific types of maturity onset diabetes in the young
(MODY3) [67]. Mutations in the HNF-1α gene
lead to impaired pancreatic β-cell function and
impaired insulin secretion. Because of the

multiple actions of HNF-1α, however, it is not
surprising that such mutations also affect other
critical metabolic functions. HNF-1α is a potent
activator of the apoM promoter. Richter et al.
[67], following up observations in HNF-1-
α-deficient rats with low apoM levels, measured
apoM concentrations in the sera of HNF-1α/
maturity-onset diabetes of MODY3 patients com-
pared to the normal matched control subjects
(HNF-1a+/+) and HNF-4α/MODY1 subjects (car-
rying a mutation in HNF-4α). Serum levels of
apoM were significantly decreased in the
HNF-1α/MODY3 subjects, in relation both to
control subjects and to HNF-4α/MODY1
subjects, which may be partly related to the
hyperglycemia [39, 96]. Serum levels of apoM
may therefore be a useful serum marker for the
identification ofMODY3 patients [67].Moreover,
it was reported that a single-nucleotide polymor-
phism of the apoM proximal promoter region of
the apoM gene (SNP T-778C) is associated with
type 2 diabetes in a Chinese population
[60]. Although it is well established that such
patients develop atherogenic disturbances in lipo-
protein metabolism, including low HDL
concentrations, hypertriglyceridemia, and small
dense LDL, it was not possible to evaluate the
impact of this polymorphism on plasma lipopro-
tein concentrations since the patients were all
under treatment. In another study, the
relationships between plasma apoM, insulin and
leptin levels, and lipoprotein concentrations were
studied in normal and overweight females
[88]. ApoM concentrations were positively
correlated to leptin, BMI, and fasting insulin and
negatively correlated to total cholesterol and
LDL-cholesterol. The correlations between
apoM and cholesterol and between apoM and
leptin remained significant after adjustment for
the influence of BMI. Forward stepwise multiple
regressions showed that cholesterol and leptin
were independent predictors of circulating
apoM. Together, these two parameters explained
about 30% of the variance in apoM. Hence, apoM
is positively correlated to leptin and negatively
correlated to cholesterol levels in humans [88]. In
a mouse obese model, hepatic mRNA level of
Foxa2 and protein mass of apoM were
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significantly decreased, which could be inverted
by the administration of adiponectin [92]. Lee
et al. reported that apoM T-855C and T-778C
polymorphisms were associated with the obesity
by regulating HDL metabolism [50], and Zhang
et al. reported that the polymorphism C-724del in
the promoter region of the apoM gene could
confer the risk of type 2 diabetes among eastern
Han Chinese [99]. More recently, Liu et al.
reported that plasma S1P and apoM
concentrations are inversely and independently
associated with mortality, but not coronary artery
calcium (CAC), in African Americans with type
2 diabetes after accounting for conventional risk
factors [54].

7.8 Modulation of ApoM Levels
Affects the Development
of Atherosclerosis

The circulating lipoproteins are, in turn, closely
bound up with cardiovascular status and the
development of atherosclerotic lesions in the arte-
rial vessel wall. HDL, which carries the predomi-
nant portion of apoM in plasma, is generally
regarded as antiatherogenic, an attribute mainly
ascribed to its role in “reverse cholesterol trans-
port” [5, 63]. In mice, apoM is essential for the
formation of HDL in the liver and its metabolism
in the circulation. Wolfrum et al. [84]
demonstrated that treatment with apoM-silencing
RNA led to the accumulation of large HDL1
particles in plasma at the expense of normal
pre-β-HDL particles, while overexpression of
apoM in HNF-1α knockout mice by treatment
with apoM adenovirus increased the formation
of such pre-β-HDL particles. Moreover, Wolfrum
et al. [84] used LDL receptor knockout mice fed a
cholesterol-rich diet for 12 weeks and then
administered apoM adenovirus, which increased
apoM levels about twofold. After 3 weeks, ath-
erosclerotic lesions were reduced by about 50%
in animals with elevated apoM and pre-β-HDL
levels. The remarkable antiatherogenic effect of
elevated apoM levels may reflect several
mechanisms. As demonstrated by in vitro
experiments, HDL without pre-β-HDL were less

efficient in promoting the efflux of cholesterol
from cultured cells [84], so the concomitant rise
in pre-β-HDL after administration of apoM ade-
novirus may conceivably increase the efficacy of
“reverse cholesterol transport.” To test whether
this mechanism was also relevant, Christoffersen
et al. [19] compared the properties of human HDL
particles that contained apoM with those that did
not. ApoM+ particles were significantly more
efficient in promoting the efflux of cholesterol
from prelabeled THP-1 cells, lending support to
the notion that one mechanism behind the
antiatherogenic effect of apoM reflects a role in
reverse cholesterol transport. However, it is also
possible that apoM interacts with other steps in
the complex formation of atherosclerotic lesions.
Moreover, data [103] indicate that apoMmay also
affect the oxidative processes that increase the
atherogenicity of LDL. Oxidized LDL particles,
which have reduced affinity for LDL receptors,
are instead removed by scavenger receptors in,
for example, macrophages; this is a critical step
for the generation of foam cells and thus of ath-
erosclerotic lesions. ApoM+-HDL was more effi-
cient than apoM-HDL in preventing Cu2+-
induced oxidation of LDL in vitro [26], indicating
that an antioxidative function of apoM may also
contribute to its antiatherogenic effect. Recently it
has been reported that apoM is a new adipokine
which could be upregulated by calorie restriction
and decreased with obesity [72]. ApoM was
expressed in human subcutaneous and visceral
adipose tissues and was released from adipose
tissues into circulation, and plasma apoM
concentrations were correlated to the apoM
mRNA levels in these tissues. In adipose tissues
apoM expression was inversely correlated to the
adipocyte size, was lower in obese people than in
lean individuals, and decreased in patients with
metabolic syndrome and type 2 diabetes. Regard-
less of fat content, adipose tissues and apoM
expression were positively correlated with sys-
temic insulin sensitivity, independently of fat
mass and plasma HDL cholesterol. In human
multipotent adipose-derived stem cell adipocytes,
apoM expression was enhanced by insulin-
sensitizing peroxisome proliferator-activated
receptor agonists and inhibited by TNFα, a
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cytokine causing insulin resistance. In obese
individuals, apoM expression and secretion were
increased by calorie restriction in adipose tissues.

7.9 Hepatic ApoM Expression
and Liver Diseases

It has been demonstrated that the expressions of
most apolipoproteins, including apoM, were
downregulated in HepG2 cells infected with
HBV [32]. And both apoM mRNA levels and
apoM protein mass were significantly lower in
human hepatocellular carcinoma (HCC) tissues
than in there adjacent tissues [38]. Recently
Zhang et al. reported that apoM could play a
key role in normal autophagy activity in the
liver and thereby further regulate the metabolism
of lipids in the liver, particularly triglycerides
[101]. In another study by using microarray anal-
ysis, apoM was found to be involved in the liver
regeneration by regulating proliferation of liver
sinusoidal endothelial cells (LSEC) [91]. LSEC
has anti-fibrotic effect and plays an important role
in liver regeneration after traumatic injury
[23]. And S1P plays a significant role in the
protection of cells from experimentally induced
apoptosis [102] and stimulates hepatocytes prolif-
eration through IL-6 and VEGF signaling
[42]. ApoM knockout mice show a severe vascu-
lar adaptive remodeling of the hepatic sinusoidal
vasculature after either 70% hepatectomy or bile
duct ligation (BDL) [23]. The expression levels of
α-smooth muscle actin and collagen were mark-
edly increased in the liver of animals after BDL,
while the expression levels of that in apoM trans-
genic mice (by 11-fold increased apoM expres-
sion) and control mice were significantly reduced.
Additional experiments in an endothelial cell-
specific S1P1 knockout mouse model confirmed
these findings that S1P1 could be as a key S1P
receptor mediating LSEC recovery and further
liver regeneration. More recently it has been
reported that apoM was related to the
non-alcoholic fatty liver disease (NAFLD)
[61]. NAFLD affects 25% of the population and
can progress to cirrhosis with limited treatment
options. As the liver secretes most of the blood

plasma proteins, liver disease may affect the
plasma proteome. Plasma proteome profiling of
48 patients with and without cirrhosis or NAFLD
revealed six statistically significantly changing
proteins including ALDOB, APOM,
LGALS3BP, PIGR, VTN, and AFM, two of
which are already linked to liver disease, whereas
the importance of apoM in the process of NAFLD
is still unknown [61].

7.10 ApoM and Renal Diseases

The high levels of expression of apoM in proxi-
mal tubular epithelium of the kidney suggest a
physiological role of apoM in excretion or reab-
sorption of metabolites in the urine [28]. Megalin
is a receptor located in tubular epithelial
membranes that strongly binds to various
substances in urine, including lipocalins, thereby
mediating their reabsorption and preservation in
the body [28]. Megalin deficient mice conse-
quently excrete lipocalins (e.g., RBP, MUP-6,
and vitamin D-binding protein) in urine [28]. It
has been demonstrated that megalin has high
affinity for apoM [28], suggesting that tubules-
derived apoM may also be a ligand for megalin. It
is therefore interesting that megalin-deficient
mice (unlike normal mice) excrete apoM in
urine [28]. Deletion of apoM gene in mouse
could induce apoptosis in renal tissues, probably
via the pathways of mitochondrial and endoplas-
mic reticulum stress [64], which causes glomeru-
lar cell damage and eventually glomerular
sclerosis [66]. Plasma apoM levels have been
reported to be lower in patients with chronic
kidney diseases (CKD) at stages 3–5 than in
CKD stages 1 + 2 patients and controls. Plasma
apoM levels were further reduced in CKD
patients with known cardiovascular diseases
(CVD) compared to those without known CVD
[10, 71]. Accordingly, when plasma apoM values
were corrected for HDL-C, a significant differ-
ence persisted only between CKD stage 3 and
stages 1 + 2 patients, whereas difference between
CKD patients with and without known CVD
disappeared. Recently it has been reported that
apoM overexpression could reduce the severity
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of nephropathy in a mouse model of hyper IgA
nephropathy [48]. Conversely, lack of apoM
appears to further accelerate the disease. The
change of S1P-signaling could be one of the
underlying mechanisms. Thus, S1P1 or S1P3
antagonist, but not S1P2-targeting drugs,
reversed the protective effect of apoM
overexpression. As previously reported, the role
of the S1P-albumin complex differs from that of
the S1P-containing apoM particles. S1P-albumin
promotes fibrogenesis, whereas S1P particle
containing apoM could suppress these responses
in vitro. Hence, apoM-S1P complexes could be
used to treat IgA-induced nephropathy. In a study
of patients with diabetic nephropathy, nephropa-
thy patients without diabetes and healthy controls
showed [100] that, surprisingly, patients with dia-
betic nephropathy had higher plasma apoM
concentrations than those nephropathy patients
without diabetes. In addition, this study did not
identify any differences in plasma apoM levels
among CKD stages 1–5. However, a study
including 20 CKD patients showed that the
HDL particles of CKD patients contained
increased S1P but decreased apoM levels com-
pared to controls [10]. The HDL of CKD patients
with elevated S1P has cardioprotective effects
in vitro. However, this beneficial effect of HDL
in CKD has not been confirmed in animal models.
Mild-to-moderate uremia was induced by subtotal
nephrectomy in apoE-deficient mice that were
either apoM-wild-type, apoM knockout, or
apoM transgenic mice [9]. Uremia could increase
plasma apoM by 25% but had no effect on S1P.
ApoM knockout or apoM overexpression had no
effect on uremic atherosclerosis. Together, these
studies demonstrate the complexity of apoM/S1P
in uremia and atherosclerosis.

7.11 Conclusions and Perspectives

Since its identification apoM has been extensively
characterized with regard to gene and protein
structure, while fundamental regulatory
mechanisms have also been identified. Its highly
selective expression, in hepatocytes and in renal
tubular epithelium, indicates that apoM has its

principal roles in hepatic lipoprotein metabolism
and renal function. More recently the lipocalin
structure of apoM has been demonstrated to be a
carrier of S1P. HDL-apoM and S1P
concentrations are inversely associated with ath-
erosclerosis progression in rodents, and plasma
S1P and apoM concentrations were probably
inversely and independently associated with the
mortality with type 2 diabetes mellitus. More
detailed pathophysiological mechanisms behind
apoM-S1P axis on the abnormal lipid metabo-
lism, cardiovascular diseases, liver diseases, and
kidney diseases need further investigations.
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Recent Advances in the Critical Role
of the Sterol Efflux Transporters ABCG5/
G8 in Health and Disease
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Abstract

Cardiovascular disease is characterized by
lipid accumulation, inflammatory response,
cell death, and fibrosis in the arterial wall and
is the leading cause of morbidity and mortality
worldwide. Cholesterol gallstone disease is
caused by complex genetic and environmental
factors and is one of the most prevalent and
costly digestive diseases in the USA and
Europe. Although sitosterolemia is a rare
inherited lipid storage disease, its genetic stud-
ies led to identification of the sterol efflux
transporters ABCG5/G8 that are located on
chromosome 2p21 in humans and chromo-
some 17 in mice. Human and animal studies
have clearly demonstrated that ABCG5/G8
play a critical role in regulating hepatic secre-
tion and intestinal absorption of cholesterol

and plant sterols. Sitosterolemia is caused by
a mutation in either the ABCG5 or the ABCG8
gene alone, but not in both simultaneously.
Polymorphisms in the ABCG5/G8 genes are
associated with abnormal plasma cholesterol
metabolism and may play a key role in the
genetic determination of plasma cholesterol
concentrations. Moreover, ABCG5/G8 is a
new gallstone gene, LITH9. Gallstone-
associated variants in ABCG5/G8 are involved
in the pathogenesis of cholesterol gallstones in
European, Asian, and South American
populations. In this chapter, we summarize
the latest advances in the critical role of the
sterol efflux transporters ABCG5/G8 in
regulating hepatic secretion of biliary choles-
terol, intestinal absorption of cholesterol and
plant sterols, the classical reverse cholesterol
transport, and the newly established
transintestinal cholesterol excretion, as well
as in the pathogenesis and pathophysiology
of ABCG5/G8-related metabolic diseases
such as sitosterolemia, cardiovascular disease,
and cholesterol gallstone disease.
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Abbreviations

ABC ATP-binding cassette (transporter)
ACAT2 Acyl-CoA: cholesterol acyltransferase

isoform 2
APO Apolipoprotein
CSI Cholesterol saturation index
CYP7A1 Cholesterol 7α-hydroxylase
CYP27A1 Sterol 27-hydroxylase
FABPpm Plasma membrane-associated fatty

acid-binding protein
FATP4 Fatty acid transport protein 4
FXR Farnesoid X receptor
HDL High-density lipoprotein
HMGCR 3-Hydroxy-3-methylglutaryl coen-

zyme A reductase
LDL Low-density lipoprotein
LXR Liver X receptor
MTTP Microsomal triglyceride transfer

protein
NPC1L1 Niemann-Pick C1 like 1 (protein)
PPAR-δ Peroxisome proliferator-activated

receptor-delta
QTL Quantitative trait locus
SR-BI Scavenger receptor class B type I
TICE Transintestinal cholesterol excretion
VLDL Very-low-density lipoprotein

8.1 Introduction

It is well-known that cholesterol is essential for all
cells in the body because it is widely used as a key
structural component for cell membranes and as a
central substrate for the synthesis of other
steroids, including bile salts, vitamin D, and sex
hormones such as estradiol, progesterone, andros-
terone, and testosterone, as well as adrenocortical
hormones such as cortisone and aldosterone [1]. It
has been found that the liver and small intestine
are two major organs for cholesterol biosynthesis.
Furthermore, high cholesterol biosynthesis in the
liver leads to more very-low-density lipoprotein
(VLDL) secreted into plasma, which has a signif-
icant impact on plasma total and low-density
lipoprotein (LDL) cholesterol concentrations.
High dietary cholesterol also could contribute an

increase in plasma cholesterol concentrations in
most individuals. Elevated plasma total and LDL
cholesterol levels are an important risk factor for
the development of cardiovascular disease in
humans [2].

Clinical studies and epidemiological
investigations have clearly demonstrated that car-
diovascular disease is a leading cause of death
and disability not only in the USA but also in
European and Asian countries. Therefore, the
National Cholesterol Education Program Adult
Treatment Panel III guidelines [3] along with the
2012 update and the American Heart Association
and American College of Cardiology
recommendations [4–7] have proposed a much
lower target for plasma LDL cholesterol
concentrations (i.e., <100 mg/dL) for individuals
at high risk for adverse cardiovascular events. As
a result, the total number of patients requiring
more aggressive cholesterol-lowering treatment
has significantly increased. Because the choles-
terol carried in LDL particles is derived mainly
from both de novo biosynthesis in the liver and
intestinal absorption from the diet, a better under-
standing of the cellular and molecular
mechanisms of elucidating the regulation of
hepatic cholesterol biosynthesis and intestinal
cholesterol absorption should lead to novel
approaches to the treatment and the prevention
of cardiovascular disease. Despite significant
advances in the treatment of cardiovascular dis-
ease, a large number of residual risks in these
patients are still being fully studied. Based on
the genetic studies on patients with sitosterolemia
[8–10], the ATP-binding cassette (ABC) sterol
efflux transporters ABCG5 and ABCG8, encoded
by the ABCG5 and ABCG8 genes, have been
identified, which are located primarily on the
canalicular membrane of hepatocytes and the api-
cal membrane of enterocytes and play a key role
in hepatic secretion and intestinal absorption of
cholesterol and plant sterols [9, 11–13].

Cholesterol gallstone disease is caused by
complex genetic and environmental factors. It is
one of the most common and costly digestive
diseases worldwide. In Western countries,
15–20% of the populations suffer from
gallstones. At least 20 million Americans (~12%
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of adults) have gallstones, leading to a consider-
able financial and social burden in the USA [14–
19]. The prevalence of gallstones appears to be
rising due to the epidemic of obesity that is
associated with insulin resistance and the meta-
bolic syndrome [16]. It is estimated that there are
approximately 1 million new cases diagnosed
each year [20–22]. Although most patients with
gallstones are asymptomatic, one third of patients
eventually develop clinical symptoms with or
without complications [20]. The estimated
1,000,000 cholecystectomies are performed for
gallstone disease every year. The annual medical
cost of treating gallstones exceeded $6 billion in
2004 and even higher in 2019 [23]. The burden of
gallstone disease is exacerbated by the fact that
laparoscopic cholecystectomy remains the stan-
dard treatment for symptomatic gallstones world-
wide [24]. In addition, unavoidable complications
of gallstones result in 3000 deaths (~0.12% of all
deaths) per year in the USA [14]. In general,
persons with gallstone disease have increased
overall, cardiovascular disease, and cancer mor-
tality [18]. Most importantly, the prevalence of
gallstones is increasing year by year because of
the epidemic of obesity that is associated with
insulin resistance, hyperlipidemia, and the meta-
bolic syndrome.

To reduce the morbidity, mortality, and costs
of health care associated with this disease, it is
imperative to decipher the pathophysiology of
cholesterol gallstone disease. This would facili-
tate the development of a novel, effective, and
noninvasive therapy for patients with gallstone
disease. Compelling evidence from the physical-
chemical, pathophysiological, and genetic studies
shows that cholesterol gallstone disease is deter-
mined by multiple Lith genes, which is a domi-
nant trait. The principal pathogenic factor is
persistent hepatic hypersecretion of cholesterol
into bile, thereby contributing to the formation
of cholesterol-supersaturated gallbladder bile.
Clinical studies have found that cholesterol-
supersaturated bile is an essential prerequisite
for the precipitation of solid cholesterol
monohydrate crystals and the formation of cho-
lesterol gallstones [23]. Although it has been
established that ABCG5/G8 play a key role in

hepatic secretion and intestinal absorption of cho-
lesterol and plant sterols [9, 11–13] and in the
pathogenesis of sitosterolemia in patients [8–10],
the Abcg5/g8 has also been identified as the
mouse gallstone gene, Lith9, on chromosome
17 by quantitative trait locus (QTL) linkage anal-
ysis [25–28]. Subsequently, the ABCG5/G8 was
found to be associated with cholesterol gallstone
disease in patients, and two gallstone-associated
variants in ABCG5/G8 (ABCG5-R50C and
ABCG8-D19H) were identified not only in
Germans and Chileans but also in Chinese and
Indians [29–34]. These findings indicate the
importance of ABCG5/G8 as LITH9 in the patho-
genesis of gallstones not only in mice but also in
humans [14].

In this chapter, we summarize the latest
advances in the critical role of the sterol efflux
transporters ABCG5/G8 in regulating hepatic
secretion of biliary cholesterol, intestinal absorp-
tion of cholesterol and plant sterols, and reverse
cholesterol transport, as well as in the pathogene-
sis and pathophysiology of ABCG5/G8-related
metabolic diseases such as sitosterolemia, cardio-
vascular disease, and cholesterol gallstone
disease.

8.2 Chemistry of Cholesterol
and Plant Sterols

By definition, a steroid is a biologically active
organic compound with four rings arranged in a
specific molecular configuration, including the
sterols, hormones (such as anabolic steroids or
corticosteroids), and glycosides. The steroid core
structure is typically composed of 17 carbon
atoms, bonded in 4 “fused” rings: 3 6-member
cyclohexane rings, called the A, B, and C rings,
and 1 5-member cyclopentane ring, named the D
ring [1]. It is well-known that the basic chemical
structure of steroids has a nucleus containing the
four-ringed carbon skeleton of cyclopentenophe-
nanthrene and the numbering of the carbon atoms
in steroids [1]. Furthermore, sterols are various
solid steroid alcohols that are widely distributed
in human, animal, and plant lipids. It is often
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called cholesterol in humans and animals, as well
as phytosterols, or plant sterols, in plants.

As shown in Fig. 8.1, the basic chemical struc-
ture of the cholesterol molecule includes (i) the
perhydrocyclopentenophenanthrene nucleus with
its four fused rings, (ii) a single hydroxyl group at
C-3, (iii) a double bond between C-5 and C-6,
(iv) an eight-membered branched hydrocarbon
chain attached to C-17 in the D ring, and (v) a
methyl group (C-19) attached to C-10, and a
second methyl group (C-18) attached to C-13.
Furthermore, in the esterified form, a long-chain
fatty acid, usually linoleic acid, is attached by
ester linkage to the hydroxyl group at C-3 in the
A ring. Similar to cholesterol in humans and
animals, phytosterols, which encompass plant
sterols and stanols, are phytosteroids, which
occur in plants and vary only in carbon side
chains and/or presence or absence of a double
bond. Stanols are saturated sterols, having no
double bonds in the sterol ring structure
(Fig. 8.1).

8.3 Discovery of the Sterol Efflux
Transporters ABCG5/G8

The ATP-binding cassette (ABC) transporters are
a family of large proteins in cell membranes.
Using the energy from the ATP hydrolysis,
these ABC transporters can make an active trans-
port of various compounds crossing the cell
membranes against steep concentration gradients
[35]. Hitherto, 48 ABC genes have been found in
the human genome [36]. The major physiological
functions of these ABC transporters are involved
in an active transport of a wide variety of
substrates across extracellular and intracellular
membranes, which include lipids, amino acids,
sugars, vitamins, metals, drugs (xenotoxins) and
drug conjugates, and peptides for antigen presen-
tation or other purposes [37]. Of the 48 human
ABC proteins, a significant number are known to
mediate the extrusion of lipids from membranes
or the flipping of membrane lipids across the

Sitosterol

Sitostanol

Cholesterol
HO

Cholesteryl esters
O(CH2)n

O
CH3 C HO

HO

PlantsHuman and animals

(Fatty acids)

Fig. 8.1 All these substances have a nucleus containing
the four-ringed carbon skeleton of cyclopentenophe-
nanthrene and are known as steroids. The sterols are one
of the steroids and they are widely distributed in humans,
animals, and plants. It is often called cholesterol in humans
and animals and phytosterols (also called plant sterols) in
plants. Notably, the general structural formula for the
sterols includes the designation of the four rings with a
side chain at C-17 and two methyl groups at C-18 and

C-19. Cholesterol is one of the most abundant steroids in
bile. Its hydroxyl group on the third carbon can react with
the COOH group of a fatty acid molecule to form a
cholesteryl ester. Plant sterols (e.g., β-sitosterol and
β-sitostanol) are naturally occurring. Their chemical
structures are very similar to cholesterol but with structural
modifications of the side chain. In addition, stanols are
saturated sterols, having no double bonds in the sterol ring
structure, e.g., β-sitostanol
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bilayer to generate and maintain membrane lipid
asymmetry [38]. For example, the bile salt export
pump, ABCB11, is responsible for hepatic secre-
tion of biliary bile salts. Other members of the
subfamily of ABC transporters such as ABCB4,
ABCG1, ABCC2, and ABCA1 implicated in
lipid transport play important roles in diverse
biological processes involving hepatic phospho-
lipid secretion, cell signaling, membrane lipid
asymmetry, removal of potentially toxic
compounds and metabolites, and apoptosis
[39]. The importance of the ABC lipid
transporters in cell physiology is revealed based
on the finding that mutations in the genes
encoding many of these proteins are responsible
for severe inherited diseases. At least 14 ABC
genes have been found to be associated with a
defined human disease due to genetic defects
[40]. Especially, several ABC transporters are
involved in inborn errors relevant to metabolic
disorders [41]. For example, Tangier disease is
caused by mutations in the ABCA1 gene, which is
associated with defective efflux of cholesterol and
phosphatidylcholine from the plasma membrane
to the lipid acceptor protein, apolipoprotein A-I
(apoA-I) [42]. In addition, relative phospholipid
deficiency is caused mostly by missense
mutations in the ABC subfamily B member
4 (ABCB4) gene, also known as the multidrug
resistance protein 3 (MDR3) gene. The ABCB4
gene encodes for an energy-dependent phospho-
lipid efflux translocator at the canalicular mem-
brane of the hepatocytes, which facilitates the
transport of phospholipids from the inner to the
outer canalicular membrane of hepatocytes for
hepatic secretion into canalicular bile [43–46].

The half-transporters, ABCG5 and ABCGG8,
are found to heterodimerize into a functional
transport. The genes, ABCG5 and ABCGG8,
encoding these transporters are highly expressed
in the liver and small intestine of both humans
and mice [47–49]. The ABCG5/G8 genes are
located on chromosome 2p21 in humans and
chromosome 17 in mice. The two proteins form
heterodimers in the endoplasmic reticulum and
then traffic to the canalicular membrane of
hepatocytes and the apical membrane of
enterocytes where they transport neutral sterols

into bile and into the gut lumen, respectively
[48]. Further cellular and molecular studies
found that ABCG5/G8 play a critical role in
regulating hepatic secretion and intestinal absorp-
tion of cholesterol and plant sterols. Mutations in
either ABCG5 or ABCG8 cause sitosterolemia [8–
10], which is an autosomal recessive disorder
characterized by phytosterolemia, hypercholes-
terolemia, and premature coronary heart
disease [50].

8.4 Physiological Functions
of ABCG5/G8

Many studies have found that almost all the cells
in the body need a continuous supply of choles-
terol. As a result, a series of complex and sophis-
ticated transport, biosynthetic, and regulatory
mechanisms have developed in humans and
animals [51, 52]. Under normal physiological
conditions, cholesterol is obtained from the intes-
tinal absorption of dietary and biliary cholesterol,
as well as the newly synthesized de novo from
acetyl CoA in the body. However, because
human and animal tissues do not possess enzymes
that can degrade the ring structure of this sterol,
cholesterol cannot be metabolized to CO2 and
water in the body. Therefore, to prevent a poten-
tially hazardous accumulation of cholesterol in
the body, excess cholesterol must be metabolized
to other compounds and/or excreted in the feces.
This challenging task is usually accomplished by
chemical modifications of certain substituent
groups on the hydrocarbon tail or on the ring
structure of the cholesterol molecule. Subse-
quently, excess cholesterol is excreted from the
body essentially either as the unaltered molecule
(i.e., in both unesterified and esterified forms) or
after structural modifications to other sterol
products such as bile salts and steroid hormones.

It has been recognized that the cholesterol
molecule is a key lipid component of mostly all
the cell membranes, as well as is the precursor of
various steroid hormones such as the sex
hormones (estrogen, progesterone, and testoster-
one) and corticosteroids (cortisone, corticoste-
rone, cortisol, and aldosterone) [53–
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56]. Moreover, during the biosynthesis of bile
salts in the liver, cholesterol is mainly converted
into bile salts. As a result, large amounts of biliary
cholesterol and bile salts are simultaneously
secreted to bile. This dramatically reduces plasma
cholesterol concentrations and greatly enhances
removal of excess amounts of cholesterol from
the body.

Because cholesterol is virtually insoluble in an
aqueous solution, e.g., water, the mechanisms for
cholesterol solubilization in plasma and bile are
complex. It is well-known that cholesterol is
mainly carried by lipoproteins in plasma and by
micelles and vesicles in bile. If excess cholesterol
is accumulated in the artery wall, it leads to ath-
erosclerosis and causes cardiovascular disease. If
excess cholesterol cannot be dissolved in bile by
bile salts and/or phospholipids, it precipitates as
plate-like solid cholesterol monohydrate crystals,
thus leading to the formation of cholesterol
gallstones in the gallbladder and/or the bile duct.

Based on animal studies [57–59], several
pathways have been identified for elucidating
the net flow of cholesterol through the major
tissue compartments of the human, which
explains how the cholesterol pool in the body is
kept essentially constant. New cholesterol is
added to the pool mainly from two sources: the
absorbed cholesterol from dietary and biliary
origins across the epithelial cells of small intesti-
nal tract and the newly synthesized cholesterol in
a variety of different tissues in the body, predom-
inantly in the liver and small intestine. The avail-
ability of dietary and biliary cholesterol to the
body varies tremendously in different individuals,
and the consumed amounts of dietary cholesterol
also vary dramatically from day to day [57–
68]. The total amount of cholesterol from the
small intestine to the body also depends mainly
on the absorption efficiency of intestinal choles-
terol and the amount of cholesterol that is con-
sumed daily. Additionally, bile cholesterol is
reabsorbed by the small intestine, which provides
about two thirds of the total daily amount of
cholesterol originating from the intestine
[2]. The rate of cholesterol biosynthesis in the
liver varies extremely in different individuals.
The absorbed cholesterol from the small intestine

can regulate hepatic cholesterol synthesis,
depending on the amount of daily food intake,
through a negative regulatory mechanism.

Taken together, the regulatory mechanisms on
cholesterol metabolism must be operative, which
can accurately and sophisticatedly adjust the rate
of cholesterol biosynthesis in the body and the
rate of cholesterol excretion from the body to
accommodate the varying amounts of cholesterol
that are absorbed by the small intestine at differ-
ent times. Basically, these regulatory mechanisms
on cholesterol metabolism work well. Therefore,
there is little net accumulation of excess choles-
terol in the body, and yet sufficient cholesterol is
always available to meet the metabolic needs of
the various cells. However, delicate imbalances
lead to an increase in plasma cholesterol concen-
tration and/or hepatic cholesterol hypersecretion
in humans [69–72]. In the cardiovascular system,
this metabolic abnormality often causes an accu-
mulation of excess cholesteryl esters within the
wall of arteries, leading to clinically apparent
atherosclerosis mainly in the heart and brain and
causing cardiovascular disease [73–80]. In the
biliary system, when an imbalance of cholesterol
metabolism in bile occurs, gallbladder bile
becomes supersaturated with cholesterol, thereby
promoting the precipitation of plate-like solid
cholesterol monohydrate crystals and, eventually,
leading to clinically apparent cholesterol gall-
stone formation [81–91].

Because the sterol efflux transporters ABCG5/
G8 play a key role in the regulation of cholesterol
metabolism in bile and plasma and in the mainte-
nance of cholesterol homeostasis in the body, we
will discuss the regulatory mechanisms of
ABCG5/G8 in (i) hepatic secretion of biliary cho-
lesterol; (ii) intestinal absorption of cholesterol
and plant sterols; (iii) reverse cholesterol trans-
port; and (iv) transintestinal cholesterol excretion.

(a) Hepatic secretion of biliary cholesterol

Bile is composed mainly of water, organic
solutes, and inorganic electrolytes. Cholesterol,
phospholipids, and bile salts are three major
lipid species in bile, which account for approxi-
mate 99% of total lipids by weight. Bilirubin is a
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minor solute and represents less than 1% of bili-
ary lipids. Hepatic secretion of biliary cholesterol
and its degradation product, bile salts, represents
the major route for elimination of cholesterol
from the liver and, eventually, from the body.
After entering the intestinal lumen, bile salts
play an important role in the emulsification of
dietary lipids and the breakdown of large lipid
globules into a suspension of droplets for intesti-
nal absorption. In addition, bile salts promote the
intestinal absorption of cholesterol, fatty acids,
fat-soluble vitamins (A, D, E, and K), and certain
drugs.

Hepatic secretion of biliary lipids is deter-
mined by four members of the family of ABC
transporters on the canalicular membrane of
hepatocytes: ABCB4 for phospholipids,
ABCB11 for bile salts, ABCG5/G8 for choles-
terol, and ABCC2 for bilirubin (Fig. 8.2). Most, if

not all, bile salts enter the canalicular space as
monomers, whereas biliary phospholipids and
cholesterol could enter together as unilamellar
vesicles. Bile salts play a critical role in promot-
ing hepatic secretion of vesicles that are always
found in hepatic bile by quasi-elastic light-scat-
tering spectroscopy and electronic microscopy
with rapid fixation techniques. These imaging
studies have provided clear morphologic evi-
dence of the vesicle formation and secretion on
the outer surface of the canalicular membrane of
hepatocytes during the bile formation.

Although biliary phospholipids are derived
possibly from the cell membranes of hepatocytes,
their compositions differ significantly. The cell
membranes of hepatocytes contain a large amount
of phosphatidylcholine (i.e., lecithin), phosphati-
dylethanolamine, phosphatidylinositol,
phosphatidylserine, and sphingomyelin. The
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Fig. 8.2 This diagram of the hepatocyte shows the
ABCG5/G8-dependent (red solid lines) and the ABCG5/
G8-independent (red dashed lines) pathways for biliary
cholesterol (Ch) secretion, as well as the ABCB4 and
ABCB11 transporters for biliary phospholipid (PL) and
bile salt (BS) secretion, respectively. Abbreviations: ABC
ATP-binding cassette (transporter), ACAT acyl-coenzyme
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remnants, CMRR CMR receptor, CYP7A1 cholesterol 7-
α-hydroxylase, CYP27A1 sterol 27-hydroxylase, HDL
high-density lipoprotein, HMGCR 3-hydroxy-3-
methylglutaryl-coenzyme A reductase, LDL low-density
lipoprotein, LDLR LDL receptor, SR-BI scavenger recep-
tor class B type I, i.e., HDL receptor, VLDL very-low-
density lipoprotein
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major source of the phosphatidylcholine
molecules destined for hepatic secretion into bile
is its synthesis in the liver. However, a fraction of
biliary phosphatidylcholines may also originate
from the surface phospholipid coat of HDL
particles. In the early 1990s, it was first reported
that hepatic phospholipid secretion is a protein-
mediated process because deletion of the Abcb4
gene completely inhibits hepatic phospholipid
secretion in mice [43]. This important study
provided clear evidence for the first time that a
P-glycoprotein member of the multidrug resis-
tance gene family, ABCB4, plays a key role in
regulating hepatic secretion of biliary
phospholipids [43]. Studies from cryoelectron
microscopy with rapid fixation techniques found
that the knockout of the Abcb4 gene in mice
dramatically reduces the formation and secretion
of vesicles on the outer surface of the canalicular
membrane of hepatocytes [92–94]. It is highly
likely that ABCB4 could be responsible for the
translocation or “flip” of phosphatidylcholines
from the endoplasmic (inner) to ectoplasmic
(outer) leaflet of the canalicular membrane
bilayer, and the action of ABCB4 may form
phosphatidylcholine-rich microdomains within
the outer membrane leaflet [95–99]. Notably, the
ectoplasmic leaflet of the canalicular membrane is
composed mainly with cholesterol and
sphingomyelin. However, such chemical struc-
ture is quite resistant to penetration by bile salts.
Thus, bile salts may interact with the canalicular
membrane of hepatocytes and partition preferen-
tially into these areas, enhancing biliary secretion
of phosphatidylcholine-rich vesicles by
destabilizing the membrane because of
detergent-like properties of bile salts. Further-
more, mutations in the ABCB4 gene are the
molecular defect underlying progressive familial
intrahepatic cholestasis, type III in humans [99–
104]. In addition, biliary phospholipids can dra-
matically solubilize excess cholesterol in bile
through a vesicle mechanism. Low
phospholipid-associated cholelithiasis is
characterized mainly by the occurrence of gall-
bladder and intrahepatic microlithiasis in young
adults associated with mutations in the ABCB4
gene [105–107]. To study the pathogenesis of low

phospholipid-associated cholelithiasis, gallstone
phenotypes have been systematically investigated
in the ABCB4 knockout mouse model. It is inter-
esting to find that even on the chow diet
containing trace amounts of (<0.02%) choles-
terol, ABCB4 knockout mice can spontaneously
develop gallstones that are composed mainly of
needle-shaped anhydrous cholesterol crystals
[98]. These anhydrous cholesterol crystals and
gallstones are formed in phospholipid-deficient
gallbladder bile with its relative biliary lipid com-
position that is located in the far left crystalliza-
tion region of the phase diagram [108]. These
studies support the concept that this gene is a
monogenic risk factor for this “peculiar” form of
cholesterol gallstones and a target for novel ther-
apeutic strategies in humans.

After bile salts are secreted into bile and enter
the intestine, approximately 95% of the secreted
bile salts are absorbed through an active transport
mechanism by a specific bile salt transporter,
apical sodium-dependent bile salt transporter
expressed predominantly in the distal ileum
[109–111]. These absorbed bile salts return to
the liver through the enterohepatic circulation.
As a result, the newly synthesized bile salts in
the liver contribute only a small fraction (less than
5%) to biliary secretion, which compensate for
bile salts that escape intestinal absorption and are
lost in the feces. Therefore, there are two sources
for hepatic bile salt secretion, which consist of
those that are newly synthesized in the liver and
those undergoing enterohepatic cycling
[109, 112, 113]. In the late 1990s, the transporter
ABCB11, also called the bile salt export pump,
on the canalicular membrane of hepatocytes, was
discovered to play a key role in hepatic secretion
of biliary bile salts [114–118]. Deletion of the
Abcb11 gene in mice completely impedes hepatic
bile salt secretion. The cellular and molecular
mechanisms by which bile salt secretion is cou-
pled to cholesterol and phospholipid secretion are
still under extensive investigations. Notably,
hepatic secretion of bile salts could directly affect
phospholipid vesicle secretion [119–122]. The
relationship between bile salt secretion and cho-
lesterol secretion has been found to be curvilin-
ear. At a low hepatic bile salt secretion rate
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(<10 μmol/h/kg), more biliary cholesterol is
secreted per molecule of bile salts compared to
that at a higher rate. Although biliary bile salt
secretion is not often low in healthy individuals,
it could be reduced during prolonged fasting,
during the overnight period, and with substantial
bile salt losses such as with a biliary fistula or ileal
resection when the liver cannot sufficiently com-
pensate with increased bile salt synthesis. In con-
trast, at a high bile salt secretion rate, for example,
during and after eating, biliary saturation is less
compared to that during the interprandial period.
Although biliary organic anion secretion does not
influence bile acid secretion, it inhibits hepatic
secretion of biliary phospholipids and cholesterol
because organic anions can bind bile salts within
the bile canaliculi and curtail interactions with the
canalicular membrane of hepatocytes.

Many animal and human studies have found
that bile salts promote vesicle secretion by the
hepatocytes, and these unilamellar vesicles are
always found in freshly collected hepatic bile
[123–128]. In the early 2000s, genetic studies in
patients with sitosterolemia revealed that the
efflux of biliary cholesterol from the canalicular
membrane of hepatocytes to bile is a protein-
mediated process [8, 9, 129–139], which is deter-
mined by the sterol efflux transporters ABCG5/
G8. Mutations in either ABCG5 or ABCG8 signif-
icantly reduce biliary cholesterol secretion in
patients with sitosterolemia. The key role of
ABCG5/G8 in hepatic cholesterol secretion has
been investigated in genetically modified mice
[11, 12, 140–142]. Overexpression of the human
ABCG5/G8 gene in the liver increases the choles-
terol content of gallbladder bile in transgenic
mice. In contrast, hepatic secretion of biliary cho-
lesterol is dramatically reduced in ABCG5/G8
double knockout mice, as well as in ABCG5 or
ABCG8 single gene knockout mice. More inter-
estingly, clinical studies found that sitosterolemia
is caused by a mutation in either the ABCG5 or
the ABCG8 gene alone, but not in both simulta-
neously, and hepatic cholesterol secretion is dra-
matically reduced, but not completely eliminated
in these patients [50, 135, 143, 144]. To further
study the cellular and molecular mechanisms

underlying the key role of ABCG5/G8 in biliary
sterol secretion, biliary cholesterol and sitostanol
secretion is quantified for 6 h in ABCG8 knock-
out mice. Mass transport rate of [3H]sitostanol
from plasma HDL into bile is significantly faster
than that of [14C]cholesterol in wild-type mice;
however, reduced amounts of [14C]cholesterol
and no [3H]sitostanol are detected in bile of
ABCG8 knockout mice [141]. These results indi-
cate that knockout of the Abcg8 gene alone sig-
nificantly reduces but does not eliminate hepatic
cholesterol secretion. In addition, biliary choles-
terol secretion studies uncovered that hepatic cho-
lesterol output is dramatically diminished, but
cholesterol is still secreted into bile in mice with
the targeted deletion of either Abcg5 or Abcg8
alone, or both [11–13, 141, 145]. In agreement
with the human data, these mouse results imply
that an ABCG5/G8-independent pathway could
also be involved in the regulation of hepatic cho-
lesterol secretion in both humans and mice. In
addition, scavenger receptor class B type I
(SR-BI), the HDL receptor, is expressed mainly
in the sinusoidal and, perhaps, in the canalicular
membrane of hepatocytes. In transgenic and
knockout mice, biliary secretion of cholesterol
varies in proportion to the hepatic expression of
SR-BI, and the established contribution of SR-BI
to sinusoidal uptake of HDL cholesterol is destined
for secretion into bile [146–148]. These studies
indicate that SR-BI could play a critical role in
the reverse cholesterol transport in the body.

(b) Intestinal absorption of cholesterol and plant
sterols

Cholesterol is the most abundant steroid in
human and animal tissues and in the intestinal
lumen. It is poorly soluble in an aqueous environ-
ment. In addition to a double bond at C-5 and C-6
nucleus and a hydroxyl group on the third carbon
of the cholestene nucleus (Fig. 8.1), the
β-configuration is connected with the angular
methyl groups at C-10 and C-13, the hydrogen
atom at C-8, and the side chain at C-17. The
hydrogen atoms at C-9 and C-14 are in the
α-configuration [149].
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Phytosterols, also called plant sterols, refer to
sterols that originate from plants. These are abun-
dant in the intestine, but not in human and animal
tissues. As shown in Fig. 8.1, plant sterols are
naturally occurring, and their chemical structures
are very similar to cholesterol, i.e., a Δ5 double
bond and a 3β-hydroxyl group, but with structural
modifications of the side chain. Plant sterols have
the same basic importance in plants as cholesterol
in animals, playing a vital role in cell membrane
function. Sitosterol and campesterol, which are
24-ethyl and the 24-methyl substituted variants
of cholesterol, respectively, are the most abun-
dant plant sterols [149]. They are consumed in the
diet and may be absorbed in the intestine. How-
ever, they are often present only at very low
plasma concentrations in human and animal
tissues due to a poor (<5%) net absorption rate
by the small intestine. Other sterols such as
brassicasterol and isofucosterol may also origi-
nate from shellfish.

As shown in Fig. 8.3, within the intestinal
lumen, the micellar solubilization of cholesterol
and fatty acids facilitates movement through the
diffusion barrier overlying the surface of the
absorptive cells. In the presence of bile salts,
mixed micelles deliver large amounts of the cho-
lesterol molecules to the aqueous-membrane
interface so that the uptake rate is greatly
increased. Human and animal studies have
found that the Niemann-Pick C1 like
1 (NPC1L1) protein, a sterol influx transporter,
is expressed at the apical membrane of the
enterocytes and can actively facilitate the uptake
of cholesterol by promoting the passage of cho-
lesterol across the brush border membrane of the
enterocytes. Moreover, NPC1L1 plays a key role
in the ezetimibe-sensitive cholesterol absorption
pathway [150–154], which is highly likely to
make the influx of cholesterol and likely plant
sterols from the intestinal lumen into the cyto-
plasm of enterocytes. NPC1L1 could mediate
cholesterol uptake via vesicular endocytosis, and
ezetimibe may inhibit cholesterol absorption by
suppressing the internalization of NPC1L1/cho-
lesterol complex. In contrast, ABCG5/G8 are api-
cal sterol export pumps promoting active efflux of
cholesterol and plant sterols from the enterocytes

back into the intestinal lumen for fecal excretion
[8, 9, 12, 47, 48, 131, 141, 155–158]. The com-
bined regulatory actions of NPC1L1 and
ABCG5/G8 play a pivotal role in modulating
the amount of cholesterol that reaches the lymph
from the intestinal lumen. These findings imply
that intestinal cholesterol absorption is a multistep
process that is regulated by multiple genes at the
enterocyte level and that the efficiency of choles-
terol absorption is determined by the net effect
between influx and efflux of intraluminal choles-
terol molecules crossing the brush border mem-
brane of the enterocyte [159]. In addition,
3-hydroxy-3-methylglutaryl coenzyme A reduc-
tase (HMGCR) is the rate-limiting enzyme for
cholesterol biosynthesis in the body [160–
165]. Cholesterol that is synthesized de novo
from acetyl CoA in different organs (i.e., the
liver and small intestine) is the second major
source to the body [166–173]. The absorbed cho-
lesterol molecules, as well as some that are newly
synthesized from acetate by HMGCR within the
enterocytes, are esterified to fatty acids by acyl-
CoA:cholesterol acyltransferase isoform
2 (ACAT2) to form cholesteryl esters. Further-
more, there are three putative pathways for uptake
of fatty acids and their transport across the apical
membranes of enterocytes, either by simple pas-
sive diffusion mostly for short-chain fatty acids or
by multiple transporters and proteins such as fatty
acid transport protein 4 (FATP4), CD36 (also
referred to as fatty acid translocase), and plasma
membrane-associated fatty acid-binding protein
(FABPpm; 43 kDa) largely for medium- and
long-chain fatty acids. Finally, all of these lipids
are used for the assembly of chylomicrons, which
also requires the synthesis of apoB-48 and the
activity of microsomal triglyceride transfer pro-
tein (MTTP). The core of chylomicrons secreted
in lymph contains triglycerides and cholesteryl
esters, and their surface is a monolayer containing
phospholipids (mainly phosphatidylcholine),
unesterified cholesterol, and apolipoproteins
such as apoB-48, apoA-I, and apoA-IV [149].

Although daily intake of cholesterol and plant
sterols from the diet is almost equal, the intestinal
absorption efficiency is significantly lower in the
latter compared to the former. For example, the
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absorption efficiency of sitosterol and
campesterol is 5–8% and 9–18%, respectively
[174], compared with 30–60% of intestinal cho-
lesterol absorption in humans [175–179]. It is
highly likely that most of the plant sterols that
do enter the enterocyte are rapidly pumped back
into the intestinal lumen for excretion, as done by

the actions of ABCG5/G8. In addition to poor net
absorption, plant sterols are more efficiently
secreted into bile compared to cholesterol. These
combined mechanisms maintain plasma plant ste-
rol concentrations at less than 1 mg/dL in
humans. Because plant sterols are insoluble,
they must be esterified and incorporated into
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Fig. 8.3 Molecular and cellular mechanisms of intestinal
cholesterol absorption. Within the intestinal lumen, the
micellar solubilization of sterols facilitates movement
through the diffusion barrier overlying the surface of the
absorptive cells in the small intestine. In the presence of
bile salts, mixed micelles deliver large amounts of the
cholesterol (Ch) molecules to the aqueous-membrane
interface so that the uptake rate is greatly increased. The
Niemann-Pick C1 like 1 (NPC1L1) protein, a sterol influx
transporter, is located at the apical membrane of the
enterocyte and can actively facilitate the uptake of choles-
terol by promoting the passage of cholesterol across the
brush border membrane of the enterocyte. NPC1L1
appears to mediate cholesterol uptake via vesicular endo-
cytosis, and ezetimibe may inhibit cholesterol absorption
by suppressing the internalization of NPC1L1/cholesterol
complex. In contrast, ABCG5/G8 promote active efflux of
cholesterol from the enterocyte back into the intestinal

lumen for fecal excretion. The combined regulatory effects
of NPC1L1 and ABCG5/G8 play a critical role in
modulating the amount of cholesterol that reaches the
lymph from the intestinal lumen. The absorbed cholesterol
molecules, as well as some that are newly synthesized
from acetate by 3-hydroxy-3-methylglutaryl-CoA reduc-
tase (HMGCR) within the enterocytes, are esterified to
fatty acids by acyl-CoA:cholesterol acyltransferase iso-
form 2 (ACAT2) to form cholesteryl esters (CE). All of
these lipids are involved in the assembly of chylomicrons,
which also requires the synthesis of apolipoprotein B-48
(apoB-48) and the activity of microsomal triglyceride
transfer protein (MTTP). The core of chylomicrons
secreted in lymph contains triglycerides and cholesteryl
esters, and their surface is a monolayer containing
phospholipids (mainly phosphatidylcholine), unesterified
cholesterol, and apolipoproteins such as apoB-48, apoA-I,
and apoA-IV
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triglycerides in margarines in order to achieve
high concentrations within the intestine [180]. It
has been found that large amounts of plant sterols
could interfere with intestinal cholesterol absorp-
tion. The basic mechanism of inhibitory action of
these compounds could be that plant sterols are
efficiently incorporated into micelles in the intes-
tinal lumen, displace the cholesterol, and lead to
its precipitation with other, non-solubilized plant
sterols [131, 158, 181–183]. Furthermore, com-
petition between cholesterol and plant sterols for
incorporation into micelles and for transfer into
the brush border membrane could partly explain
the inhibitory effect of large amounts of plant
sterols on intestinal cholesterol absorption. This
reduces both hepatic cholesterol and triglyceride
contents by reducing delivery of intestinal choles-
terol to the liver via chylomicrons. Because cho-
lesterol absorption from dietary and biliary
sources is reduced in the presence of plant sterols,
the unabsorbed cholesterol excreted in the feces is
substantially increased. Overall, plasma total and
LDL cholesterol concentrations are lowered by
two different mechanisms: reduced availability
of cholesterol for incorporations into VLDL
particles and increased expression of LDL recep-
tor in the liver.

The identification of defective structures in the
sterol efflux transporters ABCG5/G8 in patients
with sitosterolemia indicates that cholesterol
absorption is a selective process; also the
activities of ABCG5/G8 provide an explanation
for the selectivity against plant sterols so that
plant sterols are absorbed poorly [159]. The
NPC1L1 is also expressed at the apical membrane
of enterocytes and plays a decisive role in the
ezetimibe-sensitive cholesterol absorption path-
way. As discussed above, intestinal cholesterol
absorption is a multistep process that is regulated
by multiple genes at the enterocyte level. The
significant inter-individual differences in choles-
terol absorption efficiency found in humans and
the variations observed in inbred strains of mice
strongly suggest that many additional genes may
be involved in the regulation of intestinal choles-
terol absorption. These differences also provide
opportunities to apply advanced genetic
techniques to identify the responsible genes that

contribute to the regulation of intestinal lipid
absorption. A better understanding of the cellular
and molecular mechanisms whereby cholesterol
and plant sterols are absorbed in the small intes-
tine may provide more molecular targets for
patients who require aggressive cholesterol-
lowering therapy [149].

(c) Reverse cholesterol transport

Many clinical and animal studies have
revealed that there are two major pathways for
the removal of cholesterol from the body [184]. In
humans and animals, hepatic secretion of biliary
cholesterol across the canalicular membrane of
hepatocytes is an important route for removing
cholesterol from the body. Moreover, the choles-
terol molecule can be metabolized to other
compounds such as bile salts, which, in turn, are
excreted from the body through the intestinal tract
and eventually in the feces. Notably, the sterol
efflux transporters ABCG5/G8 on the canalicular
membrane of hepatocytes are responsible for
regulating hepatic secretion of biliary cholesterol
[11, 12, 140, 142, 185], and the bile salt export
pump, ABCB11, plays a critical role in hepatic
secretion of biliary bile salts [186]. These
transporters in the liver has a vital impact on
determining excretion of excess cholesterol from
the body, either as unesterified cholesterol or as
its metabolic products, bile salts.

In the mid-1960, the definition of the reverse
cholesterol transport and the speculated role of
HDL in promoting this process were first pro-
posed [187]. Classically, the reverse cholesterol
transport is a process involved in the removal of
excess cholesterol that is accumulated in the
peripheral tissues (e.g., macrophages in the
aortae) by HDL, transporting it to the liver for
excretion into the feces via the bile (Fig. 8.4). In
the 1980s and 1990s, many results from animal
studies strongly supported the concept that HDL
could play a critical role in protecting against
cardiovascular disease [188–191]. Subsequently,
numerous clinical studies found that plasma HDL
is the smallest lipoprotein particles and contains
the highest proportion of apolipoproteins to lipids
compared to LDL, VLDL, and chylomicrons.
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Although the molecular and genetic mechanisms
underlying its beneficial properties in humans are
not fully understood, HDL is most widely
recognized for its ability to promote cholesterol
efflux from the macrophages and other cells in the
extrahepatic tissues and transport cholesterol
from the periphery to the liver for hepatic secre-
tion and, subsequently, fecal excretion. Obvi-
ously, during the process of the reverse

cholesterol transport, the deposition of cholesterol
in the peripheral tissues, including the aortae, is
greatly reduced [192–194]. Many animal studies
have consistently found that HDL is protective on
several processes that are involved in preventing
atherosclerosis, at least in part by mediating the
removal of cholesterol from lipid-laden
macrophages through the reverse cholesterol
transport [189, 195, 196].
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tein, SR-BI scavenger receptor class B type I, i.e., HDL
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The major HDL-associated apoA-I and apoA-
II are secreted into plasma by the liver and intes-
tine, where they are lipidated to form lipid-poor,
discoidal, nascent HDL. Nascent HDL takes up
cholesterol from cell membranes and other
lipoproteins. Many studies have been performed
to investigate whether an increase in plasma HDL
cholesterol concentrations reduces the risk of
developing cardiovascular disease. Substantial
evidence from epidemiological investigations
and clinical studies has clearly demonstrated that
the level of plasma HDL cholesterol, especially at
average to slightly above average concentrations,
is inversely related to the incidence of cardiovas-
cular disease and its thrombotic complications.
Prospective population studies have found that
humans with HDL cholesterol levels of 6–7 mg/
dL, i.e., higher than average, have a 20–27%
decrease in the risk of developing cardiovascular
disease, and increasing HDL cholesterol levels by
1 mg/dL may reduce the risk of cardiovascular
disease by 2% in men and 3% in women. Increas-
ing plasma HDL cholesterol concentrations has
been found to prevent atherogenesis and protect
against atherosclerosis in mice, rabbits, and
humans. When reconstituted HDL or apoA-I is
provided exogenously, regressive changes in ath-
erosclerotic plaques are found in human studies.
Transgenic expression of the human APOAI gene
increases HDL and suppresses atherosclerosis in
APOE knockout mice, and genetic lowering of
plasma HDL in mice reduces the appearance of
macrophage-derived cholesterol in feces. Collec-
tively, these results from human and animal stud-
ies have led to the idea that increasing plasma
HDL may be a new strategy for the treatment
and the prevention of cardiovascular disease.

Although most published studies attribute the
atheroprotective properties of HDL to HDL2, a lot
of results also reveal that HDL3 may be inversely
related to the risk of developing cardiovascular
disease. More recently, clinical studies of HDL
metabolism have focused mainly on plasma total
HDL cholesterol concentrations, but not on each
HDL subclass. In addition, cardiovascular risk
associated with HDL cholesterol levels is inde-
pendent of plasma LDL cholesterol
concentrations, as well as other lipid parameters

(e.g., triglycerides and total cholesterol), and
non-lipid risk factors. Although the concept has
been proposed for many years that therapeutic
interventions of increasing plasma HDL choles-
terol levels could potentially reduce cardiovascu-
lar mortality [197], pharmacologic interventions
to augment HDL cholesterol concentrations by
delaying HDL catabolism do not translate into a
marked reduction in cardiovascular risk. There-
fore, the inability of therapies of increasing HDL
cholesterol concentrations and new insights into
the complexity of HDL composition and function
have prompted researchers to further explore
whether and how HDL exerts its cardioprotective
functions [198–200]. Nevertheless, systematic
interpretation of HDL metabolism could help
identify therapeutic targets that may increase
plasma HDL cholesterol concentrations and
reduce the risk of developing cardiovascular dis-
ease.

(d) Transintestinal cholesterol excretion (TICE)

For many years, the reverse cholesterol trans-
port is considered as an important route for
transporting excess cholesterol that is
accumulated within peripheral tissues back to
the liver for hepatic secretion into bile and, even-
tually, to intestine for excretion in the feces. Some
studies on patients with hepatobiliary and/or pan-
creatic disorders and several animal models with
obstruction of the bile duct or cholestasis have
found a novel non-biliary transport route likely
for reverse cholesterol transport, independent of
classical pathway of the reverse cholesterol trans-
port through the liver. In the late 1950s, a second-
ary, non-biliary pathway was proposed, which
was defined as the transintestinal cholesterol
excretion (TICE) [201]. It is suggested that the
TICE may contribute a new way to the reverse
cholesterol transport. However, these studies
were greatly criticized about the selection of
patients and animal models because dramatic
diminution or discontinuation of bile flow enter-
ing the small intestine could damage the normal
physiological function of the epithelial cells of
small intestine. Moreover, these alterations
could lead to a remarkable reduction in intestinal
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lipid absorption because of a lack of bile salts.
Such results with a striking increase in fecal neu-
tral sterols were questioned because these studies
were performed under conditions of severe
hepatobiliary disease and inappropriate experi-
mental approaches. Consequently, the TICE was
not accepted even though this new concept
challenged the classical view of the reverse cho-
lesterol transport by showing that the small intes-
tine is also highly likely to be involved in mass
fecal neutral sterol excretion, independent of the
biliary cholesterol excretion route. In the
mid-2000s, using different mouse models with
new experimental methods, some exciting data
were reported that direct transintestinal excretion
of plasma-derived cholesterol might contribute to
the reverse cholesterol transport in mice
[202, 203]. Based on the results from these
mouse experiments, it is estimated that this
non-biliary route may account for �30% of total
fecal neutral sterol excretion under basal
conditions and could be regulated by several
nuclear receptors such as liver X receptor
(LXR), peroxisome proliferator-activated recep-
tor-delta (PPAR-δ), and farnesoid X receptor
(FXR) [204, 205]. Moreover, some results from
animal studies suggest that this non-biliary route
may be a novel therapeutic target to increase
reverse cholesterol transport and, in this manner,
confer protection against cardiovascular disease
[205]. Although in vitro studies for examining the
activity of this transintestinal route have been
reported in explants from human small intestine
mounted in Ussing chambers [206], the existence
and importance of the TICE route in humans have
not been established because of some difficult
technical issues and methodology.

Interestingly, the contribution of TICE to total
fecal neutral sterol excretion is recently studied in
a small number of subjects [207]. Combining a
cholesterol balance approach with stable isotopes
that label cholesterol and bile salt molecules, the
body cholesterol fluxes are analyzed in subjects
with mild hypercholesterolemia. After 4 weeks of
ezetimibe (10 mg/day) treatment for inhibiting the
intestinal cholesterol influx transporter NPC1L1,
the same studies are performed in the subjects
eating a regular meal. Under basal conditions,

the classical reverse cholesterol transport could
contribute approximately 65% of daily fecal neu-
tral sterol excretion, and it is likely that the TICE
accounts for the remainder (~35%), as shown in
Fig. 8.5. More interestingly, ezetimibe-treated
subjects display a fourfold increase in total fecal
neutral sterol excretion most likely through the
TICE. To further confirm the results reported
from human studies, chow-fed ABCG8 knockout
and wild-type mice are treated with ezetimibe at
0 or 8 mg/kg/day for 2 weeks. As a result, most of
the ezetimibe-modulated TICE flux is likely to be
determined by the intestinal sterol efflux
transporters ABCG5/G8. These studies suggest
that TICE may exist in humans, and most of the
ezetimibe-modulated TICE flux may be regulated
by ABCG5/G8. For that reason, the TICE may be
a new therapeutic target to enhance the removal
of excess cholesterol from the body in patients at
risk for cardiovascular disease. It is highly likely
that the TICE may be an alternative route to the
biliary route of the reverse cholesterol transport.
However, it is imperative to explore the cellular
and molecular mechanisms underlying the pivotal
role of the TICE alone in the regulation of reverse
cholesterol transport in humans [208]. More
importantly, it is crucial to decipher whether the
TICE could excrete more cholesterol from the
body in patients with hypercholesterolemia, as
well as how the TICE works together with the
classical biliary route and whether it is fully inde-
pendent from the latter. In addition, it is critical to
elucidate whether there is a striking difference
between the fasting state and the fed condition
for the TICE to regulate plasma cholesterol, HDL,
and LDL metabolism. More studies are also
needed to investigate how the TICE is regulated
in the normal physiological state, as well as under
conditions of high plasma total and LDL choles-
terol concentrations. With new experimental
techniques, it is crucial for exploring whether
the TICE is associated with the absorption effi-
ciency of intestinal cholesterol because it is well-
known that ABCG5/G8 is actively involved in
regulating both the TICE and intestinal choles-
terol absorption. Definitely, it is interesting to
study whether abnormality in the molecular and
genetic regulation of the TICE is associated with
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the prevalence of cardiovascular disease in
humans [208]. Taken together, the TICE might
provide a new target for the prevention and the
treatment of cardiovascular disease.

8.5 Roles of ABCG5/G8
in Pathophysiology
of Lipid-Related Metabolic
Disorders

(a) Sitosterolemia

Sitosterolemia was first reported by
Bhattacharyya and Connor in 1974 based on a
clinical study on two sisters with tendon
xanthomas and with elevated plant sterol
concentrations in plasma [129]. Sitosterolemia is

a rare inherited lipid storage disease characterized
chemically by the accumulation of plant sterols
and 5α-saturated stanols in plasma and tissues
[134]. As analyzed by the sterol balance method,
a large amount of dietary sitosterol is absorbed
from the small intestine, thereby leading to the
plant sterol accumulation in the body of patients
with sitosterolemia. Further genetic studies find
that sitosterolemia is a rare autosomal, recessively
inherited lipidmetabolic disorder [209]. However,
the majority of heterozygous subjects are clini-
cally and biochemically normal, and some
heterozygotes display a slight, but not significant,
increase in plasma sitosterol concentrations com-
pared to normal healthy subjects [210]. Neverthe-
less, plasma sitosterol concentrations are 10- to
20-fold higher in homozygotes than in
heterozygotes [211]. Therefore, the diagnosis of
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sitosterolemia is based mainly on a significant
increase in the concentrations of plant sterols
(sitosterol, campesterol, stigmasterol, and
avenosterol) and 5α-stanols in plasma and tissues
[212]. The clinical presentation in these patients
includes tendon xanthomas, accelerated athero-
sclerosis particularly affecting males at a young
age, hemolytic episodes, arthritis, and arthralgia
[134]. The risk of premature atherosclerosis has
been found in some young male patients who died
because of acute myocardial infarctions
associated with extensive coronary and aortic
arteriosclerosis [139, 213].

Sitosterolemia is caused by a mutation in
either the ABCG5 or the ABCG8 gene alone, but
not in both simultaneously [8, 9, 136, 137,
214]. It is characterized mainly by increased
intestinal absorption of cholesterol and sitosterol
and diminished hepatic secretion of these sterols
into bile [129, 209, 215]. In patients with
sitosterolemia, the intestinal absorption of choles-
terol is augmented by ~30%, from ~46% to
~60%; however, the intestinal absorption of sitos-
terol is dramatically increased by ~800%, from
<5% to ~45% [50, 135, 143, 144]. Therefore,
more cholesterol of intestinal origin, through the
chylomicron pathway, reaches the liver for VLDL
secretion into plasma, thereby increasing risk of
developing cardiovascular disease in patients
with sitosterolemia. Indeed, intestinal cholesterol
absorption efficiency is also significantly
increased in ABCG5/G8, ABCG5, and ABCG8
knockout mice [11–13, 141, 145].

Notably, several human studies on biliary lipid
secretion have found that hepatic cholesterol
secretion is markedly reduced and hepatic secre-
tion of sitosterol and other plant sterols is almost
totally inhibited [50, 135, 143, 144]. As a result,
these patients often display hypercholesterolemia,
tendon and tuberous xanthomas, premature devel-
opment of atherosclerosis, and abnormal hemato-
logic and liver function test results [134]. Further
animal studies show that hepatic cholesterol out-
put is dramatically reduced, but cholesterol is still
secreted into bile in mice with the deletion of
either Abcg5 or Abcg8 alone, or both [11–13,
141, 145]. These results clearly support the con-
cept that the deletion of the Abcg5/g8 double

genes and Abcg5 or Abcg8 single gene signifi-
cantly reduces, but does not eliminate, hepatic
cholesterol secretion. In addition, consistent with
the human results, these mouse data imply that an
ABCG5/G8-independent pathway is also
involved in hepatic cholesterol secretion, as
discussed above.

The cholesterol molecules derived from HDL,
but not LDL or VLDL, are an important source
for hepatic secretion into bile because HDL
promotes reverse cholesterol transport from
peripheral tissues to the liver where the
HDL-derived cholesterol is secreted preferen-
tially into the bile [216]. After intravenous injec-
tion, HDL-derived [14C]cholesterol, but not [3H]
sitostanol, is recovered in hepatic bile of ABCG5/
G8 and ABCG8 knockout mice. This indicates
that the ABCG5/G8-independent pathway is also
able to regulate hepatic secretion of HDL-derived
cholesterol, but not sitostanol. By contrast,
ABCG5/G8 is involved in the regulation of
hepatic secretion of both cholesterol and plant
sterols. These results are consistent with the
finding in sitosterolemic patients in whom only
reduced amounts of cholesterol are found in bile
and hepatic secretion of plant sterols is
completely inhibited, leading to a significant
increase in plasma plant sterol
concentrations [135].

The treatment of sitosterolemia includes bile
salt sequestrants such as cholestyramine,
colestipol, and colesevelam in combination with
the low-sterol diet [217–220]. Bile salt
sequestrants bind bile salts in the intestine and
increase the excretion of bile salts in the feces.
This greatly diminishes the amount of bile salts
returning to the liver and forces the liver to pro-
duce more bile salts to replace the bile salts lost in
the feces. To synthetize more bile salts, the liver
must convert more cholesterol into bile salts, thus
leading to a reduction in plasma total and LDL
cholesterol concentrations in sitosterolemic
patients [221]. Moreover, ezetimibe, a potent
intestinal cholesterol absorption inhibitor, has
been used to treat patients with sitosterolemia
[222–224] because ezetimibe can diminish
plasma LDL cholesterol levels in patients with
hypercholesterolemia by inhibiting the function
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of intestinal NPC1L1, the cholesterol influx trans-
port protein [150, 153, 225–228].

(b) Cardiovascular disease

Atherosclerosis is characterized by lipid accu-
mulation, inflammatory response, cell death, and
fibrosis in the arterial wall, which is the patholog-
ical basis for cardiovascular disease, and the lead-
ing cause of morbidity and mortality in the USA
and other industrialized nations [229]. Major risk
factors for atherosclerosis include high plasma
levels of LDL cholesterol and lipoprotein(a), as
well as low plasma concentrations of HDL cho-
lesterol [230]. Although genetic mechanisms
underlying the pathogenesis of cardiovascular
disease are largely unknown, accumulated evi-
dence from human and animal studies has clearly
demonstrated that cardiovascular disease may be
determined by multiple genes disrupting choles-
terol and lipoprotein metabolism [231–
236]. Because mutations in either ABCG5 or
ABCG8 cause phytosterolemia, hypercholesterol-
emia, and premature coronary heart disease in
patients with sitosterolemia, this strongly
suggests that defect or reduction in the ABCG5/
G8 expression and function may be an important
risk factor for the development of cardiovascular
disease [141, 237–240]. Increased expression of
Abcg5/g8 attenuates Western-diet-induced hyper-
cholesterolemia and atherosclerosis in LDL
receptor knockout mice [241]. However,
overexpression of Abcg5/g8 in the liver, but not
in the small intestine, does not reduce atheroscle-
rosis development in LDL receptor or ApoE
knockout mice fed the Western diet for 6 months
[242]. This suggests that the increased hepatic
secretion of biliary cholesterol could be absorbed
back into the body, thus leading to unaltered
atherosclerosis in these knockout mice. When
these mice are fed ezetimibe, the potent intestinal
cholesterol absorption inhibitor, total plasma cho-
lesterol concentrations, and atherosclerosis are
dramatically reduced in LDL receptor knockout
mice overexpressing the human ABCG5/G8
genes in the liver alone compared to LDL recep-
tor knockout mice [243]. These mouse studies
indicate that deletion of Abcg5/g8 could play a

determinant role in the development of hypercho-
lesterolemia and atherosclerosis in mice fed the
Western diet. In contrast, this suggests that
ABCG5/G8 may be a novel target for the preven-
tion and the treatment of cardiovascular disease.
Furthermore, more studies are needed to explore
whether dysfunction of ABCG5/G8 in the liver,
or small intestine, or both sites is responsible for
increased risk for the development of hypercho-
lesterolemia and atherosclerosis in mice fed the
Western diet.

In addition, it is interesting to investigate
whether polymorphisms in the ABCG5 and
ABCG8 genes are associated with plasma total
and LDL cholesterol concentrations, increasing
susceptibility to cardiovascular disease. Various
polymorphisms (A632V, T400K, D19H,
M429V, and C54Y) in the ABCG8 and ABCG5
(Q604E) genes have been found to be associated
with several facets of cholesterol metabolism,
including baseline cholesterol level, cholesterol
kinetics, and individual responsiveness of plasma
cholesterol to dietary and pharmaceutical
interventions for hypercholesterolemia. For
example, Tyr54Cys and Thr400Lys variations in
the ABCG8 gene may play a role in the genetic
determination of plasma cholesterol levels and
could influence the gender-specific response of
plasma cholesterol levels after dietary changes
[244]. More interestingly, low serum cholesterol
concentrations and intestinal cholesterol absorp-
tion are found to be linked to the D19H polymor-
phism of the ABCG8 gene, and characteristics of
the insulin resistance syndrome in men are linked
with the Q604E polymorphism of the ABCG5
gene [245]. However, an association study
between five common ABCG5/G8
polymorphisms (p.Q604E, p.D19H, p.Y54C, p.
T400K, and p.A632V) and plasma sterol levels
was performed in 245 patients with hypercholes-
terolemia, and no significant associations were
found [246]. Thus, most, but not all, studies
reported that polymorphisms in the ABCG5 and
ABCG8 genes may be associated with increased
total and LDL-cholesterol concentrations
[32]. Furthermore, a meta-analysis that comprised
3,364 subjects from 16 studies was carried out
[246]. This study found that the ABCG8 632V
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variant is associated with a clinically irrelevant
LDL-cholesterol reduction, whereas the 19H
allele correlates with decreased cholesterol
absorption and increased synthesis without affect-
ing the lipid profile [246]. However, it is largely
unknown whether small amounts of phytosterol
exposure over a lifetime cause pathology in
healthy humans with polymorphic variants in
the ABCG5 and ABCG8 genes. Taken together,
polymorphic variants in the ABCG5 and ABCG8
genes could increase or reduce the risk of these
phenotypes, and loss of ABCG5/G8 function
could cause more significant phenotypes, includ-
ing premature atherosclerosis, platelet dysfunc-
tion, and thrombocytopenia, and perhaps,
increased endocrine disruption and liver dysfunc-
tion [239]. Obviously, more studies are strongly
needed to investigate how specific
polymorphisms of the ABCG5 and ABCG8
genes confer to higher risk of these diseases.

Because elevated LDL cholesterol levels are a
major causal factor for cardiovascular disease and
have been a primary target of therapy for more
than 30 years, the potent HMGCR inhibitors,
statins, have been developed to lower plasma
LDL cholesterol levels and reduce the risk of
adverse cardiovascular events [247]. Moreover,
reducing LDL cholesterol levels to below current
guideline targets further inhibits atherogenesis
and decreases adverse coronary events [4, 5,
248]. Many clinical studies have found that
statins can reduce new adverse cardiovascular
events and cardiovascular disease mortality by
~35%, but even aggressive statin therapy can
not completely eliminate cardiovascular risk.
Approximately 65% of the patients treated with
statins still develop adverse cardiovascular
events. Therefore, additional therapeutic
interventions beyond statins are strongly needed
to further reduce the risk of developing cardiovas-
cular disease [249]. Overall, ABCG5/G8 may be
an attractive target for the prevention and the
treatment of hypercholesterolemia, and increas-
ing their expression may reduce the risk of devel-
oping cardiovascular disease in humans.

(c) Cholesterol gallstone disease

Clinical investigations and animal studies have
clearly established that hepatic hypersecretion of
biliary cholesterol is the primary defect in the
pathogenesis of cholesterol gallstone disease
[14]. Hepatic cholesterol hypersecretion into bile
may or may not be accompanied by normal, high,
or low hepatic secretion rates of biliary bile salts
and/or phospholipids [250]. Cholesterol-
supersaturated bile is often defined as a state in
which cholesterol cannot be dissolved in bile by
biliary bile salts or phospholipids at equilibrium
[70]. Therefore, the formation of supersaturated
bile is often caused by (i) hepatic hypersecretion
of biliary cholesterol; (ii) reduced hepatic bile salt
and/or phospholipid secretion with normal biliary
cholesterol secretion; or (iii) a combination of
hepatic cholesterol hypersecretion with
hyposecretion of these solubilizing lipids [251].

Genetic studies have been performed to inves-
tigate Lith genes in different strains of inbred
mice fed the lithogenic diet for 8 weeks [26]. As
shown in Fig. 8.6, Lith9 is localized on mouse
chromosome 17 and is co-localized with a genetic
biomarker D17Mit155 at approximately
55 centimorgans (cM). Genotyping and
phenotyping studies have found that in the Lith9
QTL region, Abcg5/g8 is a strong candidate for
this gallstone gene. Subsequently, Abcg5/g8 is
identified as a new gallstone gene, Lith9, by
QTL studies in mice [25, 252, 253]. Based on
mouse genetic analysis of the Lith genes, a
genome-wide association study in a large cohort
of patients with gallstones and a linkage study in
affected sibling pairs have identified a common
variant (D19H) of the sterol efflux transporters
ABCG5/G8 as a key risk factor for cholesterol
gallstone disease [29]. Indeed, ABCG5/G8 is
found to be associated with gallstones in patients,
proving that it is human LITH9. Other ABCG8
variants (T400K, D19H, A632V, M429V, and
C54Y) and ABCG5 variants (Q604E) have also
been found to be associated with cholesterol gall-
stone disease in humans. Furthermore, many
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research groups have reported that two gallstone-
associated variants in ABCG5/G8, i.e., ABCG5-
R50C and ABCG8-D19H, are involved in the
pathogenesis of gallstones not only in Germans
and Chileans but also in Chinese and Indians [29–
34, 254, 255]. These studies strongly imply that
ABCG5-R50C and ABCG8-D19H could play a
central role in hepatic cholesterol hypersecretion,
thereby leading to the formation of cholesterol-
supersaturated bile in humans.

Because Abcg5/g8 is Lith9 in mice and two
gallstone-associated variants in ABCG5/G8 have
been identified in humans, it is important to fur-
ther investigate whether targeted disruption of the
Abcg5/g8 double genes or the Abcg8 single gene
protects against the formation of cholesterol
gallstones in gallstone-susceptible C57BL/6J
mice fed the lithogenic diet for 8 weeks [256]. It
is surprising to find that despite a significant
reduction in gallstone prevalence in ABCG5/G8

and ABCG8 knockout mice, classical
parallelogram-shaped cholesterol monohydrate
crystals and gallstones are still formed in these
mice during the 8-week period of feeding the
lithogenic diet. As discussed above, although
sitosterolemia is caused by mutations in either
the ABCG5 or the ABCG8 gene alone, but not in
both simultaneously, hepatic cholesterol secretion
is reduced, but not completely eliminated, in
these patients [50, 135, 143, 144]. To explore
the mechanism underlying the effect of ABCG5/
G8 on hepatic cholesterol and plant sterol secre-
tion, biliary cholesterol and sitostanol secretion is
quantified for 6 h in ABCG8 knockout mice.
Mass transport rate of [3H]sitostanol from plasma
HDL into bile is significantly faster than that of
[14C]cholesterol in wild-type mice; however,
reduced amounts of [14C]cholesterol and no [3H]
sitostanol are found in bile of ABCG8 knockout
mice [141]. These results clearly exhibit that the
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Fig. 8.6 As shown in the composite map, the quantitative
trait locus (QTL) region of the Lith9 gene is localized on
chromosome 17 in mice. A vertical line represents chro-
mosome 17, with the centromere at the top; genetic
distances from the centromere (horizontal black lines) are
indicated to the left of the chromosomes in centimorgans
(cM). Chromosomes are drawn to scale, based on the

estimated cM position of the most distally mapped locus
taken from Mouse Genome Database. The gallstone gene,
the Lith9, QTL region is represented by a vertical red bar,
and the Abcg5/g8 gene location is indicated by a horizontal
borrow line. A genetic biomarker, D17Mit155, that is
co-localized with Lith9 is indicated by a horizontal blue
line with the marker symbol to the right
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deletion of the Abcg8 gene alone significantly
reduces, but does not eliminate, hepatic choles-
terol secretion. In addition, biliary cholesterol
studies show that hepatic cholesterol output is
significantly reduced, but cholesterol is still
secreted into bile in mice with the deletion of
either Abcg5 or Abcg8 alone, or both [11–13,
141, 145].

Although ABCG5/G8 display a striking
impact on hepatic cholesterol and plant sterol
secretion, cholesterol is still secreted to bile in
sitosterolemic patients with a defect in either
ABCG5 or ABCG8 and in either ABCG5/G8
double or single gene knockout mice. This
strongly suggests that in the defect of ABCG5/
G8, an ABCG5/G8-independent pathway is
essential for regulating hepatic secretion of biliary
cholesterol, which is independent of the
lithogenic mechanism of the ABCG5/G8 path-
way. To decipher the effect of the ABCG5/G8-
independent pathway on cholelithogenesis, the
biliary and gallstone characteristics are
investigated in wild-type as well as ABCG5/G8
and ABCG8 knockout mice fed the lithogenic
diet or varying amounts of cholesterol, or injected
intravenously with [3H]sitostanol- and [14C]cho-
lesterol-labeled HDL. These studies show that
ABCG5/G8 and ABCG8 knockout mice display
the same biliary and gallstone phenotypes.
Although both groups of knockout mice show a
significant reduction in hepatic cholesterol output
compared to wild-type mice, they still form
gallstones. Especially, the ABCG5/G8-
independent pathway plays an important role in
the regulation of biliary cholesterol secretion, the
transport of HDL-derived cholesterol from
plasma to bile, and the formation of cholesterol
gallstones, which works independently of the
ABCG5/G8 pathway.

It is well-known that the LXR agonist
T0901317 activates hepatic LXR, promoting bili-
ary cholesterol secretion by stimulating hepatic
Abcg5/g8 expression in mice [145, 257,
258]. Additionally, LXR activation by
T0901317 greatly promotes cholesterol crystalli-
zation and gallstone formation in mice fed the
lithogenic diet [259]. However, this is not the
case in ABCG5/G8 or ABCG8 knockout mice.

This clearly implies that the hepatic LXR does not
have an effect on the ABCG5/G8-independent
pathway for regulating biliary cholesterol secre-
tion, which is distinct from the ABCG5/G8 path-
way that is effectively regulated by the hepatic
LXR through a transcriptional mechanism. The
LXR agonist dramatically increases biliary cho-
lesterol secretion and gallstones in wild-type, but
not ABCG5/G8 or ABCG8 knockout, mice.
Taken together, these studies [256] provide clear
evidence in support of the concepts that (i) the
ABCG5/G8-independent pathway accounts for
30% to 40% of hepatic cholesterol output in the
lithogenic state and plays a critical role in the
regulation of biliary cholesterol secretion in
response to high dietary cholesterol; (ii) in the
absence of ABCG5/G8, it determines biliary cho-
lesterol secretion and the formation of cholesterol
gallstones; (iii) it modulates hepatic secretion of
HDL-derived cholesterol, but not sitostanol; and
(iv) its activity in the liver is not regulated by the
LXR agonist through the LXR signaling cascade.
These findings strongly support the existence of
an ABCG5/G8-independent pathway for
regulating hepatic cholesterol secretion. More-
over, these results imply that in the absence of
ABCG5/G8, the ABCG5/G8-independent path-
way is essential for the regulation of hepatic cho-
lesterol secretion and also plays a vital role in
determining the susceptibility to cholesterol
gallstones, working independently of the
ABCG5/G8 pathway in mice. However, further
studies are strongly needed to observe if this
pathway is also operational in humans. Neverthe-
less, both ABCG5/G8-dependent and ABCG5/
G8-independent pathways could be potential
therapeutic targets for cholesterol gallstone
disease.

8.6 Conclusions and Future
Directions

Accumulated evidence has clearly demonstrated
that ABCG5/G8 play a key role not only in
hepatic secretion of biliary cholesterol and plant
sterols but also intestinal absorption of these two
sterols. Moreover, ABCG5/G8 have an important
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impact on the classical reverse cholesterol trans-
port and the TICE pathway. Obviously, mutations
in either ABCG5 or ABCG8 are the major genetic
mechanisms causing sitosterolemia. It is highly
likely that gene therapy is a better option for
curing this genetic disorder by repairing ABCG5
or ABCG8 gene mutations. Lowering plasma total
and LDL cholesterol concentrations is also crucial
to reduce the risk of cardiovascular disease in
patients with sitosterolemia.

Many clinical studies have shown that statins
can reduce the risk of developing cardiovascular
disease; however, other lipid-lowering therapies
are often used adjunctively when statin therapy is
inadequate or as an alternative for patients who
are intolerant of statins. More importantly, inten-
sive lipid and pharmaceutical studies have led to
significant development of new agents that could
work on novel targets in the metabolic pathways
of lipids and lipoproteins and that have the poten-
tial to serve as new alternative or adjunctive
agents to the existing cholesterol-lowering drugs
such as statins. Clinical trials in patients receiving
these new classes of lipid-lowering agents, espe-
cially in individuals with monogenic disorders of
lipid and/or lipoprotein metabolism, will certainly
increase a great opportunity to identify the geno-
type that predicts response to lipid-lowering ther-
apy and thus guides the choice of drug and dose
for high-risk patients and, especially, for patients
with the hardest-to-treat elevated plasma choles-
terol concentrations due to intolerance to any
statins and severe side effects of these drugs.

Although the pharmacogenomics of lipid-
lowering drugs have greatly advanced and a few
consistent trends on the therapy of cardiovascular
disease have emerged, mainly relating to the
genetic determinants of response to statins,
many new cellular, molecular, genetic, and bio-
chemical studies on lipid and lipoprotein metabo-
lism are being extensively explored. Therefore, it
is more interesting to investigate the cellular and
molecular mechanisms of deciphering how
ABCG5/G8 regulate cholesterol and lipoprotein
metabolism in the plasma, liver, and intestine. In
addition, the potential mechanisms underlying the
removal of cholesterol from the body through the
classical reverse cholesterol transport, i.e., the

biliary route, and the TICE, i.e., the non-biliary
routes, are desired to be revealed. Advances in the
elucidation of lipid and lipoprotein metabolism,
as well as the biliary and the non-biliary routes for
removal of cholesterol and plant sterols from the
body, will provide a great opportunity of finding
new lipid-lowering strategies and proving that
they are more effective in the prevention and
therapeutic intervention of cardiovascular disease
that affects millions worldwide.

The gallstone (Lith) gene map has been
updated, which lists all known genetic loci that
confer gallstone susceptibility, as well as candi-
date genes in inbred strains of mice. This would
greatly help identify human LITH genes because
genetic analysis of Lith genes in mouse models
open the way for searching for the orthologous
human LITH genes and for exploring their
cholelithogenic effects in humans. Given that
the ABCG5/G8-dependent and the ABCG5/G8-
independent pathways are essential in the regula-
tion of hepatic cholesterol secretion, both routes
could be potential therapeutic targets for the pre-
vention and the treatment of cholesterol gallstone
disease. Deciphering the molecular and cellular
mechanisms on the formation of cholesterol-
supersaturated bile could be very helpful for
exploring novel therapeutic approaches through
modulating both the ABCG5/G8-dependent and
the ABCG5/G8-independent pathways, thus
greatly reducing the risk of developing gallstones.

More importantly, there should be a great
development of the personalized medicine for
the prevention and the treatment of cardiovascular
disease and cholesterol gallstone disease because
they are highly prevalent not only in the USA but
also in European and Asian countries. The ideal
application of lipid-lowering drugs and bile-
cholesterol-desaturating drugs would be to iden-
tify patients at risk for either a suboptimal
response with respect to efficacy or a marked
adverse response to either a drug class or a spe-
cific drug. For that reason, individuals who would
be predicted to have an unfavorable benefit-to-
risk ratio can be identified and might be obtained
from alternative methods more expeditiously and
without the trial-and-error process that typically
accompanies initiation and maintenance of such
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commonly used treatment. Obviously, it is imper-
ative to understand the cellular and molecular
mechanisms underlying the key role of ABCG5/
G8 in regulating hepatic secretion of biliary cho-
lesterol and plant sterols and intestinal absorption
of these two sterols, as well as in modulating the
classical reverse cholesterol transport and the
TICE pathway, because it could provide novel
insights into strategies for the prevention and the
treatment of sitosterolemia, cardiovascular dis-
ease, and cholesterol gallstone disease.
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Abstract

Plasma levels of cholesterol, especially
low-density lipoprotein cholesterol (LDL-C),
are positively correlated with the risk of car-
diovascular disease. Buildup of LDL in the
intima promotes the formation of foam cells
and consequently initiates atherosclerosis, one
of the main underlying causes of cardiovascu-
lar disease. Hepatic LDL receptor (LDLR) is
mainly responsible for the clearance of plasma
LDL. Mutations in LDLR cause familiar
hypercholesterolemia and increase the risk of

premature coronary heart disease. Proprotein
convertase subtilisin/kexin-type 9 (PCSK9)
promotes LDLR degradation and thereby
plays a critical role in the regulation of plasma
cholesterol metabolism. PCSK9 can bind to
LDLR and reroute the receptor to lysosomes
for degradation, increasing both circulating
LDL-C levels and the risk of cardiovascular
disease. PCSK9 is mainly regulated by sterol
response element binding protein 2 (SREBP2)
at the transcriptional level. Furthermore, many
proteins have been identified as interacting
with PCSK9, regulating plasma cholesterol
levels. Pharmacotherapeutic inhibition of
PCSK9 dramatically reduces plasma levels of
LDL cholesterol and significantly reduces car-
diovascular events. In this article, we summa-
rize the latest advances in PCSK9, mainly
focusing on the structure, function, and regu-
lation of the protein, the underlying molecular
mechanisms, and its pharmacotherapeutic
applications.
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Abbreviations

ADH autosomal dominant
hypercholesterolemia

Apo apolipoprotein
ARH autosomal recessive

hypercholesterolemia
BACE1 β-site amyloid precursor protein-

cleaving enzyme 1
bHLH basic helix-loop-helix
CAP1 cyclase-associated protein 1
CAT catalytic domain
COPII the coat protein complex II
CSF cerebrospinal fluid
CM C-terminal module
CTD C-terminal domain
CVD cardiovascular disease
EGF-A the epidermal growth factor precur-

sor homology domain A
Epac2 exchange protein activated by

cAMP-2
ER endoplasmic reticulum
ERGIC ER-Golgi intermediate compartment
FH familial hypercholesterolemia
GPC3 glypican-3
HDL high-density lipoprotein
HINFP histone nuclear factor P
HMGCR 3-hydroxyl-3-methylglutaryl-CoA

reductase
HNF1 hepatocyte nuclear factor 1
HSPG heparan sulfate proteoglycan
INSIG insulin-induced gene protein
LDL-C low-density lipoprotein cholesterol
LDLR LDL receptor
Lp(a) lipoprotein (a)
miRNA microRNA
PC proprotein convertase
PCSK9 proprotein convertase subtilisin

kexin-like 9
PLTP phospholipid transfer protein
Rap1 ras-related protein-1
RISC RNA-induced silencing complex
S1P site-1 proteinase
S2P site-2 proteinase
SCAP SREBP cleavage activating protein
siRNA small interfering RNA

SREBP-2 sterol regulatory element binding
protein 2

Surf4 Surfeit 4
TLP Toll-like receptor
UTR untranslated region
VLDLR very low-density lipoprotein receptor

9.1 Introduction

Cardiovascular disease (CVD) is the primary
cause of morbidity and mortality worldwide. Ath-
erosclerosis, characterized by the progressive
accumulation of lipid and fibrous deposits in the
vessel wall, is the most important underlying
cause [1]. Plasma levels of cholesterol, especially
low-density lipoprotein cholesterol (LDL-C), are
positively correlated with the risk of atheroscle-
rosis [2]. Cholesterol homeostasis in humans is
regulated by well-balanced mechanisms of intes-
tinal uptake, endogenous synthesis and metabo-
lism, transport in lipoprotein particles, and biliary
excretion. In humans, LDLs are the major choles-
terol transport vesicle in the blood, carrying
approximately 65–70% of plasma total choles-
terol [2]. Elevated plasma LDL-C levels, such as
those in patients with autosomal dominant hyper-
cholesterolemia (ADH), lead to a progressive
buildup of lipids in the inner walls of the arteries,
promoting the formation of foam cells and conse-
quently initiating atherosclerosis [3, 4].

LDL is produced as a metabolic by-product of
very low-density lipoprotein (VLDL), a
triglyceride-rich lipoprotein produced exclusively
by the liver [5]. The LDL receptor (LDLR) in the
liver is the protein primarily responsible for
removal of LDL from circulation [2, 6]. Mutations
in the LDLR cause familial hypercholesterolemia
(FH), an inherited disorder associated with ele-
vated circulating levels of LDL-C, which causes
tendon and skin xanthomas, arcus cornea, and/or
cardiovascular deposits and leads to increased
risk in coronary heart disease and mortality
[2, 6]. FH is the most common ADH and accounts
for approximately 67% of case reports. The
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second most common ADH is caused by
mutations in apolipoprotein B100 (apoB100)
(~14% of case reports), the ligand for LDLR.
ApoB100 is synthesized and lipidated in the
liver and then secreted in plasma as VLDL. It is
the main structural protein on VLDL and LDL.
Recently, a third form of ADH was identified,
which is caused by selected missense mutations
in proprotein convertase subtilisin/kexin type
9 (PCSK9) and accounts for 2.3% of ADH
[7, 8]. Gain-of-function mutations of PCSK9
cause higher plasma LDL-C levels and lead to
accelerated atherosclerosis and premature coro-
nary heart disease [7–10]. Thus, genetic defects
in these three genes contribute to approximately
83.3% of ADH. The causes for the remaining
26.7% have yet to be determined. Interestingly,
unlike defects in LDLR and apoB, certain
mutations in PCSK9 lead to loss of function,
resulting in reduced plasma levels of LDL-C
and enhanced protection from coronary heart dis-
ease [11–13].

9.2 PCSK9 Structure

PCSK9, first known as neural apoptosis regulated
convertase 1 (NARC-1), is a member of the
subtilisin-like serine protease family that includes
seven basic amino acid-specific proprotein
convertases (PC): PC1, PC2, furin, PC4, PC5/6,
PACE4, and PC7; it also includes two members,
site-1 protease and PCSK9, that cleave at the
carboxyl terminus of non-basic residues
[14]. The human PCSK9 gene is located in chro-
mosome 1p32.3 and covers 39.91 kb with
13 exons. PCSK9 is highly conserved among
different species including human, mouse, rat,
hamster, monkey, chimpanzee, S. cerevisiae,
chicken, zebrafish, and frog. It is a 692-amino
acid secretory glycoprotein that consists of a sig-
nal sequence (amino acids 1–30), followed by a
prodomain (amino acids 31–152), a catalytic
domain (CAT, amino acids 153–425), and a cys-
teine- and histidine-rich C-terminal domain
(CTD). The CTD domain contains an exposed
hinge region (residues 422–439) and three repeat
modules: module 1 (CM1: amino acids 457–528),

module 2 (CM2: amino acids 534–601), and
module 3 (CM3: amino acids 608–692)
(Fig. 9.1) [15–17]. PCSK9 is synthesized as a
zymogen (~75 kDa) and undergoes autocata-
lytic cleavage in the endoplasmic reticulum
(ER) at the carboxy terminus of
FAQ152#SIPK site to form the mature form
(~62 kDa) (Fig. 9.1). After autocleavage, the
prodomain is tightly associated with the rest of
the protein.

The crystal structures of PCSK9 reveal that the
overall domain structure of PCSK9 is similar to
other subtilisin-like serine proteases in a wide
range of pH conditions (from pH 5–10) [15, 18–
20]. The prodomain of PCSK9 consists of one
four- to five-stranded antiparallel β-sheet flanked
by two α helices. The catalytic domain contains a
classical serine protease catalytic triad of Asp186,
His226, and Ser386 and shows a similar structure
as other subtilisin-like family members such as
yeast Kexin and mouse furin [21, 22]. It is com-
posed of a seven-stranded parallel β-sheet core
with α helices on each side. However, unlike
other convertases that contain the negatively
charged substrate-binding groove [21], the
substrate-binding pocket in PCSK9 is mostly neu-
tral. The β-sheet of the C-terminal prodomain
associates with the catalytic site tightly through
hydrophobic and electrostatic interactions, which
blocks further substrate accessibility and thereby
shields further catalytic activity [19]. The
C-terminal domain of PCSK9 is connected to
the catalytic domain through a flexible liner
region as well as through hydrogen bonds and
hydrophobicity interaction. The C-terminal
domain is made up of three subdomains, each
containing six antiparallel β-domains without
helices in a similar cylindrical shape secured
through three structurally conserved disulfide
bonds. The C-terminal domain is unique among
the subtilisin-like serine protease family and
displays structural homology to resistin that is
related to type II diabetes [23]. Furthermore, the
C-terminal domain is enriched in cysteine and
histidine residues and contains multiple potential
protein-protein interaction motifs [15].
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9.3 PCSK9 Secretion

PCSK9 is mainly expressed in the liver, intestine,
and, to a lesser extent, in the kidneys, skin, and
brain [24]. PCSK9 is secreted in plasma. How-
ever, the protein is undetectable in plasma of mice
lacking hepatic PCSK9 [25], suggesting that
circulating PCSK9 is mainly secreted from the
liver. The autocatalytic cleavage of PCSK9 is
required for its secretion. The cleaved
N-terminal prodomain is tightly associated with
the catalytic domain, and they are secreted
together from cells [14, 26]. Structurally, it has
been reported that the autocleavage of PCSK9 in
the ER triggers a conformational change of the
N-terminal α helix of the catalytic domain to
permit PCSK9 secretion [15]. Further, the
C-terminal PCSK9 has been implicated in its
secretion. Loss-of-function mutations such as
E498K and S462P located in the C-terminus of
PCSK9 damage its secretion [27–29]. Biochemi-
cal studies reveal that removal of the whole
C-terminus of PCSK9 (amino acids 456 to 692),
the CM2 (amino acid 534 to 601), or the CM2 and
CM3 (amino acids 534 to 692) does not

significantly affect PCSK9 secretion. However,
deletion of either CM1 (amino acids 457–528)
or CM3 (amino acids 608–692) markedly impairs
PCSK9 secretion [16, 17]. In addition, we found
that the hinge region that connects the C-terminal
domain to the catalytic domain played an impor-
tant role in PCSK9 secretion. Deletion of the
hinge region, in whole or in part, dramatically
reduced PCSK9 secretion [30].

Secretion of certain abundant proteins such as
N-acylglycotripeptides and amylase chymotryp-
sinogen is regulated by a default bulk flow path-
way [31, 32]. Even so, there is emerging evidence
suggesting that cargo receptors can facilitate
ER-to-Golgi transport of secretory proteins in
mammalian cells [33–40]. Cargo receptors are
transmembrane proteins containing an ER
lumen-exposed domain that binds cargo proteins
within the lumen and a cytoplasmic domain that
interacts with coat protein II complex (COPII)
components, thereby sorting cargos into COPII
vesicles. Several potential cargo receptors func-
tion as cargo-sorters for transport between the ER
and Golgi: the ER-Golgi intermediate compart-
ment (ERGIC)-53 family, the p24 family, and the

ER

Golgi
Pro Cat CM

CM

Cargo
Receptor

COPII

PCSK9

C

6921 457 527 60142631 153

PRO CAT HIN CM1 CM2 CM3SP

CM Cat
Pro

CM Cat
Pro

CM

CM Cat
Pro

CM

A

B

Fig. 9.1 PCSK9 structure and secretion. (a) Schematic of
PCSK9. SP, signal peptide; PRO, prodomain; CAT, cata-
lytic domain; HIN, hinge region; CM1, CM2, and CM3:
three modules of C-terminal domain. Numbers on the top
of the wild-type PCSK9 indicate the amino acid sequence

of each domain. (b) PCSK9 secretion. PCSK9 undergoes
autocleavage in the ER between the prodomain and the
catalytic domain. The cleaved prodomain is tightly
associated with the catalytic domain and is secreted
together from cells
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Erv family [33, 34]. It has been documented that
the COPII adaptor proteins SEC24A and
SEC24B facilitate the ER-to-Golgi transport of
PCSK9 [41]. However, PCSK9 is located in the
lumen of the ER and is unable to interact directly
with SEC24, which is located in the cytosol.
Thus, a cargo receptor is required. Recently,
Emmer et al. reported that Surfeit locus protein
4 (SURF4) was implicated in PCSK9 secretion
[42]. They found that SURF4
co-immunoprecipitated with PCSK9 and knock-
out of the cargo receptor significantly reduced
secretion of PCSK9 overexpressed in HEK293
cells. SURF4 is a polytopic transmembrane pro-
tein containing seven putative transmembrane
domains with a lumen-exposed N-terminus and
a cytosolic C-terminus [43]. The protein is ubiq-
uitously expressed and mainly localized in the ER
[43]. However, we found that knockdown of
SURF4 expression in cultured human-hepatoma-
derived cell lines, HepG2 and Huh7, increased
endogenous PCSK9 expression and secretion,
indicating a negligible role for Surf4 in PCSK9
secretion in cultured hepatocytes [44]. This dis-
crepancy might be caused by different cell lines
used in the two studies. We investigated the
secretion of PCSK9 endogenously expressed in
HepG2 and Huh7 cells, while Emmer et al. stud-
ied the effect of Surf4 on the secretion of PCSK9
overexpressed in HEK293 cells that do not
express endogenous PCSK9. In addition,
conflicting data on the role of sortilin in PCSK9
secretion has been reported. Gustafsen et al.
observed that plasma levels of PCSK9 were
reduced in sortilin-/- mice but increased in
sortilin-overexpressing mice. Circulating PCSK9
levels were also positively correlated with plasma
levels of sortilin. Thus, the authors argued that
sortilin interacted with PCSK9 in the trans-Golgi
network and then facilitated its secretion
[45]. Conversely, studies from Butkinaree et al.
showed that knockdown of sortilin in cultured
human hepatocytes or knockout of sortilin in
mice had no detectable effect on PCSK9 secretion
[46]. Nevertheless, these conflicting findings
reveal the complexity of the molecular
mechanisms of PCSK9 secretion.

9.4 PCSK9 Function

PCSK9 plays a central role in maintaining choles-
terol homeostasis. Gain-of-function mutations
lead to higher plasma LDL-C levels and acceler-
ate premature coronary heart disease [7–9, 47,
48]. On the other hand, loss-of-function
mutations result in low concentrations of LDL-C
and protection from coronary heart disease [11–
13, 49–53]. Overexpression of recombinant
PCSK9 in mouse liver causes a significant reduc-
tion in hepatic LDLR protein levels without any
effect on its mRNA levels, producing severe
hypercholesterolemia [26, 54, 55]. On the other
hand, knockdown or knockout of PCSK9 expres-
sion in mice leads to increased levels of LDLR
protein in the liver and accelerated LDL clearance
[56, 57]. The natural gain-of-function mutation,
D374Y, has a significantly increased binding
affinity for LDLR and promotes LDLR degrada-
tion much more efficiently than the wild-type
protein [15, 58], leading to a severe form of
hypercholesterolemia [7]. Consistently, the FH
mutation LDLR-H306Y binds PCSK9 with a
higher affinity and exhibits enhanced sensitivity
to PCSK9 as compared to the wild-type receptor
[59]. Taken together, these findings demonstrate
that the role of PCSK9 in homeostatic control of
plasma LDL-C levels depends upon PCSK9-
promoted degradation of LDLR, preventing
clearance of LDL-C by the cells [26, 54–58, 60–
64].

Studies in cultured cells and parabiotic mice
demonstrate that PCSK9 promotes degradation of
LDLR in an adaptor protein autosomal recessive
hypercholesterolemia (ARH)-dependent manner in
hepatocytes and lymphocytes [58, 60, 61, 65]. How-
ever, ARH is not required for PCSK9-promoted
LDLR degradation in fibroblasts [65, 66]. McNutt
et al. [59] showed that PCSK9 caused LDLR deg-
radation primarily through interaction with the
receptor on the cell surface. However,
overexpression of PCSK9 in cultured cells and
mouse liver also induces LDLR degradation intra-
cellularly [55, 67]. For instance, the gain-of-func-
tion mutation R499H enhances PCSK9-promoted
LDLR degradation intracellularly [68]. Similarly,
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mutations D129G and A168E impair PCSK9 secre-
tion but enhance the ability of PCSK9 to induce
LDLR degradation intracellularly, thereby causing
hypercholesterolemia [69]. Poirier et al. [70]
observed that, upon dose and incubation period,
PCSK9 could act both intracellularly and extracel-
lularly to promote LDLR degradation in cultured
cells and mouse primary hepatocytes.

PCSK9’s action on the LDLR is also cell-type
specific. Increased plasma levels of PCSK9 in
mice through infusion of purified PCSK9 or
transgenic overexpression in the kidneys prefer-
entially promoted LDLR degradation in the liver
but not in the adrenal glands [71–73]. Consis-
tently, the adrenal function of a human subject
with no detectable plasma PCSK9 is normal
[74]. Gustafsen et al. [75] recently reported that
the prodomain of PCSK9 bound to the trisulfated
heparan sulfate disaccharide repeats in heparan
sulfate proteoglycans (HSPG) of the liver. Hepa-
rin mimetics such as sulfated oligosaccharides
dextran sulfate and pentosan sulfate can suppress
PCSK9-mediated LDLR degradation in HepG2
cells. The authors proposed that HSPG func-
tioned as a coreceptor for PCSK9, capturing
plasma PCSK9 and then presenting it to hepatic
LDLR for the following degradation process. In
cultured cells, the expression of PCSK9 in some
cell types, such as human hepatoma cells (HepG2
and HuH7), dramatically reduces LDLR levels
[55, 58, 60, 61]. On the other hand, PCSK9
appears to have no effect on LDLR expression
in Chinese hamster ovarian cells (CHO-K1),
monkey kidney cells (COS-7), and rat liver cells
(McArdle RH7777) [55, 58, 60, 76]. The molec-
ular mechanism of the cell type specific action of
PCSK9 on LDLR is unknown. The dissociation
of PCSK9 from LDLR after endocytosis may be
responsible for the inability of PCSK9 to promote
LDLR degradation in human skin fibroblasts
SV-589 [77].

PCSK9-promoted degradation of LDLR
requires binding of PCSK9 to LDLR and inter-
nalization of the receptor but does not require the
proteolytic activity of PCSK9 [58, 60, 78]. Nor-
mally, the extracellular domain of the cell surface
LDLR (neutral pH) adopts an extended linear
open conformation that favors interactions

between the receptor and LDL [79]. Upon ligand
binding to the ligand binding repeats of LDLR,
the receptors are internalized via clathrin-coated
pits and delivered to endosomes [80, 81]. In the
low pH environment of the endosome, LDLR
undergoes a conformational change to form a
close conformation that promotes the release of
the bound LDL that is delivered to lysosomes for
degradation and signals recycling of LDLR to the
cell surface [79].

PCSK9 interacts with the EGF-A of LDLR at
the cell surface, which is different from the LDL
binding site on the receptor. Thus, the binding
sites of PCSK9 and LDL on the receptor are not
in proximity, and the binding of one ligand is
unlikely to block the accessibility of another one
to LDLR. We found that replacement of Leu at
position 318 in the EGF-A of LDLR with Asp as
it is in VLDLRmarkedly reduced PCSK9 binding
to the receptor, indicating the important role of
this residue in PCSK9 binding. Further, we
observed that mutations G293H, D299V,
L318D, and L318H in EGF-A reduced PCSK9
binding to LDLR at a neutral pH, while mutations
R329P and E332G reduced PCSK9 binding at
both neutral pH and acidic pH 6.0. Thus,
EGF-A of the LDLR is critical for PCSK9 bind-
ing at the cell surface (neutral pH) and at the
acidic endosomal environment (pH 6.0), but dif-
ferent determinants contribute to efficient PCSK9
binding in different pH environments [82].

Several lines of evidence demonstrate that
PCSK9/LDLR complex enters cells via clathrin-
coated pits. Knockdown of clathrin heavy chain
markedly reduces PCSK9-promoted LDLR deg-
radation in human hepatoma-derived cell lines,
Huh7 and HepG2 cell [65, 83, 84]. Conversely,
Jang et al. reported that knockdown of clathrin
heavy chain did not affect PCSK9-promoted
LDLR degradation in HepG2 cells; instead, the
authors found that the PCSK9/LDLR complex
entered cells via caveolae-dependent endocytosis
[85]. The reasons for this discrepancy are unclear.
It is of note that different approaches were used in
the two studies. Romagnuolo et al. [83]
overexpressed PCSK9 in HepG2 cells and then
knocked down the expression of clathrin heavy
chain, while Jang et al. silenced the expression of
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clathrin heavy chain and then supplied cells with
various doses of recombinant flag-tagged PCSK9
purified from HEK293 cells overexpressing
PCSK9 [85].

While LDL binds to the receptor that is much
weaker at the acidic endosome compared to that
at the neutral cell surface, PCSK9 binds the recep-
tor with a much higher affinity at the endosomal
pH value than at the neutral pH. Consequently,
the receptor is transported from the endosome to
the lysosome for degradation, rather than being
recycled (Fig. 9.2) [60]. The binding of PCSK9 to
LDLR interferes with the acid-dependent confor-
mational change of the receptor, but disrupting
the pH-dependent conformational change in the
LDLR is not sufficient to trigger LDLR degrada-
tion [61]. We also demonstrated that YWTD
repeats, and a minimum of three ligand-binding
repeats in the LDLR that were not required for

PCSK9 binding at neutral pH were essential for
efficient LDLR degradation induced by PCSK9
[61, 82]. Furthermore, we reported that the
C-terminal domain of PCSK9 was essential for
PCSK9-promoted degradation of LDLR, but was
not required for binding to LDLR at the neutral
pH value [61]. The X-ray crystallographic struc-
ture of PCSK9-LDLR complex shows that
YWTD repeats of LDLR interact with the
prodomain of PCSK9 [86]. Several biochemical
studies indicate that the negatively charged ligand
binding repeats (LR) of LDLR may interact with
the positively charged C-terminal domain of
PCSK9 in the acidic endosomal environment to
enhance PCSK9 binding [87–89]. Consistently,
we found that mutation of Asp at position 172 in
the linker between the LR4 and LR5 of LDLR to
Asn and replacement of Asp at position 203 in the
LR5 to Asn significantly reduced PCSK9 binding

Endosome

Lysosome

LDL
LDLR

LR 1 to 7 EGF-A, B, or C YWTD
O-link TM domainCytoplasmic tail

Lysosome

Endosome
X

PCSK9

Prodomain Catalytic domain C-terminal domain

ER

Golgi

LDLR

PCSK9LDLR

A B

Fig. 9.2 Recycling pathway of the LDLR. (a) LDLR-
mediated LDL uptake. Upon binding LDL, LDLR is
internalized via clathrin-coated pits and delivered to
endosomes, where the bound LDL is released from the
receptor and delivered to lysosomes for degradation.
LDLR recycles to the cell surface. (b) PCSK9-mediated
LDLR degradation. Extracellularly, PCSK9 interacts with
EGF-A of LDLR at the cell surface and enters cells via
endocytosis. The LDLR/PCSK9 complex is then delivered

to the endosome, where PCSK9 binds the receptor with a
much higher affinity in the acidic environment. Conse-
quently, the receptor-PCSK9 complex traffics from the
endosome to the lysosome for degradation, rather than
being recycled. For the intracellular pathway, PCSK9
binds to LDLR in the ER or during the secretory pathway
and then reroutes the receptor to the lysosome for
degradation

9 Proprotein Convertase Subtilisin/Kexin-Type 9 and Lipid Metabolism 143



[90]. This further confirms the important role of
the negatively charged amino acid residues within
the LR in PCSK9 binding to LDLR.

Neither PCSK9 nor LDLR contains a lyso-
somal targeting signal. Removal of the
C-terminal cytoplasmic tail of LDLR does not
damage PCSK9-promoted LDLR degradation
[82, 91, 92]. Thus, it is believed that co-factor(s)
might be required for this process. Recently,
DeVay et al. [93] reported that both amyloid
precursor protein (APP) and amyloid precursor-
like protein 2 (APLP2) co-immunoprecipitated
with the full length but not the C-terminal dele-
tion mutation PCSK9 at pH6.0 (endosomal envi-
ronment), but not at pH7.4 (cytosol environment).
The authors further showed that knockdown of
APLP2 but not APP suppressed PCSK9-
promoted LDLR degradation in HepG2 cells.
This finding indicates that APLP2 binds to the
C-terminus of PCSK9 and thereby targets the
PCSK9/LDLR complex to lysosomes for degra-
dation [93]. However, two independent groups
reported that PCSK9 efficiently promoted LDLR
degradation in Aplp2-/- mice [46, 94]. Butkinaree
et al. [46] further showed that knockdown of
APLP2 in both HepG2 and Huh7 cells had no
significant effect on the ability of PCSK9 to
enhance LDLR degradation. These studies sug-
gest that APLP2 is not required for PCSK9-
promoted LDLR degradation. In addition,
glypican-3 (GPC3) and phospholipid transfer
protein (PLTP) have been shown to interact with
PCSK9 by co-immunoprecipitation and an unbi-
ased mass spectrometry. Silence of either GPC3
or PLTP using their specific short hairpin RNAs
increased LDLR levels in HepG2 cells [95]. Fur-
ther, Jang et al. found that the Src homology
3 binding domain of adenylyl cyclase-associated
protein 1 (CAP1) interacted with the C-terminal
domain of PCSK9. The knockdown of expression
of CAP1 increased LDLR levels in HepG2 cells,
and haploid deficiency of Cap1 in mice led to
increased hepatic LDLR levels and reduced
plasma LDL-C. More interestingly, the author
reported that CAP1 mediated endocytosis of the
PCSK9/LDLR complex in a caveolae-dependent
manner since addition of PCSK9 could not induce
LDLR degradation in caveolin-deficient cells

[85]. This finding contradicts several previous
findings that clathrin is required for PCSK9-
induced endocytosis and subsequent lysosomal
degradation of the receptor [65, 84]. Nevertheless,
presently, the mechanism by which binding of
PCSK9 to LDLR reroutes the receptor to the
lysosome for degradation is not well understood
and is believed to be complex.

In addition to its regulatory role in plasma
LDL-C levels via the LDLR pathway, PCSK9
regulates apoB secretion. The lack of PCSK9 in
the liver of Ldlr-/-/Apobec1-/- mice significantly
reduces apoB100 secretion [96]. Gain-of-function
PCSK9 mutation D374Y markedly increases the
secretion of apoB-containing lipoprotein in trans-
genic mice expressing physiological levels of
PCSK9 [97]. In human PCSK9 transgenic mice,
the expression of microsomal triglyceride transfer
protein (MTP) and lipogenic genes is significantly
increased. Consequently, secretion of apoB48
and production of chylomicrons are increased in
both LDLR-dependent and -independent manners
[73, 98]. On the other hand, lymphatic apoB
secretion is markedly reduced in Pcsk9-/- mice
[99]. Consistently, plasma levels of PCSK9 and
apoB-48 containing lipoproteins are positively
correlated in men with insulin resistance
[100]. Together, these findings suggest an impor-
tant role of PCSK9 in the development of post-
prandial dyslipidemia. PCSK9 has also been
shown to regulate plasma lipoprotein(a) (Lp(a))
levels in a LDLR-dependent manner. Lp(a) is an
LDL-like particle that contains Apo(a) covalently
linked to apoB by a disulfide bond. Several epi-
demiological studies show that (Lp(a)) is an inde-
pendent risk factor for cardiovascular disease
[101–104]. LDLR can mediate but is not required
for the clearance of Lp(a) [105, 106]. PCSK9 is
associated with Lp(a) in human plasma [107], and
inhibition of PCSK9 reduces plasma Lp(a) levels
and cardiovascular events [83, 108, 109].

It has been reported that PCSK9 binds to and
stimulates degradation of several LDLR family
members such as VLDLR and ApoER2 [110], as
well as CD36 [111], but to a far lesser extent
when compared to its binding to LDLR
[60, 82]. PCSK9 can act on CD36 in HepG2
and 3T3-L1 cells, but not on HL-1 or THP-1
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cells. In vivo, the levels of CD36 in the small
intestine and the heart which highly express
CD36 are comparable between wild-type and
Pcsk9-/- mice, while the expression of CD36 in
the liver and mouse adipose tissue is significantly
increased [111]. The lack of PCSK9 in mice also
markedly increases the expression of VLDLR in
perigonadal depots and promotes accumulation of
visceral fat [112]. On the other hand, Liu et al.
reported that PCSK9 cannot promote degradation
of VLDLR and apoER2 in the adult mouse brain
[113]. Additionally, PCSK9 has been shown to
promote LDLR-related protein 1 (LRP-1) degra-
dation in mouse B16F1 melanoma cells [92] but
not in mouse hepatocytes [58]. The expression of
LDLR in CHO cells can suppress PCSK9’s effect
on LRP-1 [92]. Thus, it is possible that the rela-
tive high expression of hepatic LDLR competi-
tively suppresses the effect of PCSK9 on LRP1 in
the liver. Controversial data on the role of PCSK9
in neuron function and pathogenesis of
Alzheimer’s disease has also been reported in
the literature. Knockdown of PCSK9 expression
increases levels of ApoER2 and protects against
apoptosis in cerebellar granule neurons [114], and
silence of PCSK9 alleviates middle cerebral
artery occlusion-induced cerebral histological
injury and neuronal apoptosis in mice fed a high
fat diet, probably through the regulation of
apoER2 expression [115]. These findings indicate
a pro-apoptosis role of PCSK9 in neurons. Con-
sistently, inhibition of PCSK9 reduces Aβ aggre-
gation and neuroinflammation, alleviating
dendritic spine loss in a cardiac ischemic/reperfu-
sion injury rat model [116]. On the other hand,
Jonas et al. showed that PCSK9 promoted degra-
dation of unacetylated β-site amyloid precursor
protein-cleaving enzyme 1 (BACE1). The authors
observed an increase in the levels of Aβ and
BACE1 in the brain of Pcsk9-/- mice
[117]. Thus, further studies are needed to eluci-
date these potential functions of PCSK9.

9.5 Regulation of PCSK9

Transcription of PCSK9 is mainly controlled by
the sterol regulatory element binding protein

2 (SREBP2) that regulates expression of genes
involved in cholesterol metabolism such as LDLR
and 3-hydroxy-3-methylglutaryl-CoA reductase
(HMGCR), the rate-limiting enzyme in the cho-
lesterol biosynthesis pathway
[118, 119]. SREBP2 is a master regulator of
cellular cholesterol homeostasis. It contains an
NH2-terminal transcriptionally active domain
that belongs to the basic helix-loop-helix
(bHLH) class, two transmembrane alpha-helixes,
and a COOH-terminal regulatory domain
[120]. The transcriptional activity of SREBP2 is
strictly regulated by cellular cholesterol levels
[121]. The COOH-terminal regulatory domain
of newly synthesized SREBP2 immediately
forms a complex with SREBP cleavage-
activating protein (SCAP) in the ER. When ER
cholesterol content is lower than 5% of total ER
lipids, SCAP is separated from an ER-resident
protein, insulin-induced gene protein (INSIG),
and escorts SREBP2 to the Golgi, where
SREBP2 is cleaved by S1P and site-2 protease
(S2P) sequentially to liberate the transcriptionally
active form. The active form then travels to the
nucleus, where it recognizes and binds to sterol
regulatory element (SRE) located in the promoter
region of its target genes, promoting their tran-
scription. Conversely, higher ER cholesterol con-
tent (more than the 5% threshold values)
promotes formation of SCAP/INSIG complex,
blocking transport of SREBP2 to the Golgi and
the subsequent processing of SREBP2. Conse-
quently, transcription of SREBP2 target genes is
suppressed [121]. SREBP2 binds to an SRE motif
in the promoter of PCSK9, stimulating its tran-
scription. mRNA levels of Pcsk9 are increased
six- to ninefold in mice transgenic expressing
the active form of SREBP2 but reduced in
Scap-/- mice [118]. Additionally, Li et al. [122]
identified a histone nuclear factor P (HINFP)
recognition motif present within 20 bp upstream
of the SRE motif and found that HINFP func-
tioned as a co-activator for the transcriptional
activity of SREBP2 through promoting the his-
tone H4 acetylation of PCSK9 promoter. Resistin,
a small cysteine-rich protein secreted from
macrophages and adipose tissue, increases
mRNA levels of PCSK9 via SREBP2
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[123]. Fibroblast growth factor 21 can suppress
expression and activity of SREBP2 in mouse liver
and reduce expression of PCSK9 [124].

Hepatocyte nuclear factor 1 (HNF1) also
regulates expression of PCSK9 at the transcrip-
tional level. The promoter region of PCSK9
contains a highly conserved HNF1 binding site
at the upstream of SRE. Berberine, a plant-
derived cholesterol-lowering compound, inhibits
PCSK9 expression mainly through interfering
with the HNF1’s action [125, 126]. Additionally,
stimulation of mTORC1 by insulin reduces activ-
ity of HNF1α and consequently suppresses
PCSK9 expression. An opposite phenotype is
observed when mTORC1 is inhibited by
rapamycin or knockdown of hepatic insulin
receptor [127]. Further, E2F2, a transcription fac-
tor that regulates the G1/S transition during the
cell cycle, binds to the PCSK9 promoter region.
Feeding and high cellular cholesterol levels can
stimulate E2F2 and consequently increase
PCSK9 expression [128]. Tao et al. [129]
reported that forkhead transcription factor
FoxO3 can recruit deacetylase Sirt6 to the proxi-
mal promoter region of PCSK9, which
deacetylates histone H3 and consequently
suppresses PCSK9 expression. These transcrip-
tional factors can regulate the expression of
PCSK9 separately and/or cooperatively since
mutation of the HNF1 site reduces the action of
both HNF1 and SREBP2 on PCSK9 transcription
[125]

At the post-transcriptional level, the 3’-
-untranslated region (UTR) of PCSK9 contains
putative microRNA (miRNA) binding sites for
miR-191, miR-222, and miR-224. Expression of
these miRNAs significantly reduces mRNA and
protein levels of PCSK9 in HepG2 cells
[130]. Posttranslationally, PCSK9 is
N-glycosylated at Asn533 in the C-terminal
domain and sulfated in the prodomain and cata-
lytic domain. However, inhibition of the glyco-
sylation and sulfation has no effect on PCSK9
autocleavage, secretion, and activity [24, 26,
131]. PCSK9 is also partially phosphorylated at
Ser47 and Ser688 in a cell-type-dependent man-
ner [132]. This posttranslational modification,
however, is not necessary for PCSK9 function

since PCSK9 can be efficiently processed and
secreted from HEK293 cells and CHOK1 cells,
in which PCSK9 is either poorly or not
phosphorylated [132]. On the other hand,
PCSK9 is phosphorylated at Ser as positions
47, 666, 668, and 688 by Farm20C in
hepatocytes, and this phosphorylation signifi-
cantly increases PCSK9 secretion and its ability
to stimulate LDLR degradation [133]. These
findings indicate a cell-type specific effect of
PCSK9 phosphorylation relating to its function.
In addition, PCSK9 is cleaved by furin at
RFHR218#QA to generate a truncated form that
can be secreted to an extracellular milieu such as a
culture medium and serum but loses the ability to
promote LDLR degradation [131, 134]. The lost-
of-function mutation A443T shows an increased
susceptibility to furin cleavage [131].

PCSK9-promoted LDLR degradation is
regulated by different cofactors. Circulating
PCSK9 binds to LDL, but not to HDL or
VLDL, through its N-terminal region (amino
acid residues 31 to 52). Kosenko et al. observed
that approximately 40% of plasma PCSK9 stays
in its LDL-bound form [135]. Plasma levels of
LDL are much higher than those of PCSK9. The
reason why more than half of plasma PCSK9
remains as the LDL-free form is unclear. Further,
the physiological significance of this association
is unknown, but the binding of LDL inhibits
PCSK9’s ability to bind and degrade LDLR
[135, 136]. LDL also can suppress PCSK9-
mediated LDLR degradation through a direct
association with cell surface heparin-like
molecules, interfering with HSPG-facilitated
binding of PCSK9 to LDLR [75, 137]. In addi-
tion, GRP94 can bind to the C-terminus of
PCSK9 and block its binding to LDLR in the
ER, protecting the early degradation of LDLR.
The lack of GRP94 in mouse liver leads to a
significant reduction in hepatic LDLR levels and
an increase in plasma LDL-C levels [138]. The
C-terminal domain of PCSK9 also directly
interacts with annexin A2, which subsequently
inhibits the extracellular PCSK9-promoted
LDLR degradation. The high expression of
annexin 2 in fibroblasts and COS-7 cells may
account for PCSK9-resistance in these cells

146 S. Guo et al.



[139]. On the other hand, the progestin and
adipoQ receptor 3 associate with the prodomain
of PCSK9 and the YWTD domain of LDLR
probably in the early endosome, enhancing their
interaction and consequently promoting PCSK9-
mediated LDLR degradation [97]. In addition,
matrix metalloproteinase-2 can associate with
and cleave PCSK9, inhibiting PCSK9-promoted
LDLR degradation [140].

The half-life of circulating PCSK9 is very
short. Approximately 90% of PCSK9 is cleared
from the blood within 15 min in the wild-type
mice with a half-life of five min [71, 73]. Con-
versely, the half-life of PCSK9 in Ldlr-/- mice is
15 min [71]. Ldlr-/- mice also show a tenfold
increase in plasma levels of PCSK9, whereas
LDLR transgenic mice clear PCSK9 much faster
compared to the wild-type mice [73]. We have
shown that the PCSK9/LDLR complex was
delivered to the lysosome for degradation after
endocytosis [61]. Thus, PCSK9 may be quickly
removed from circulation and then delivered for
lysosomal degradation via the hepatic LDLR
pathway. The LDLR-independent mechanism of
PCSK9 clearance is currently unclear. Spotlitu
et al. reported that hepatic glucagon receptor sig-
naling activated the exchange protein activated by
cAMP-2 (Epac2) and the ras-related protein-1
(Rap1) pathway, and then enhanced the lyso-
somal degradation of PCSK9 in a LDLR-
independent pathway [141]. It is also possible
that the other LDLR family members, such as
VLDLR, may mediate PCSK9 clearance when
LDLR is absent.

9.6 Pharmacotherapeutic
Inhibition of PCSK9
and Perspectives

Plasma levels of LDL-C are positively correlated
with the risk of atherosclerosis [2]. Statins reduce
cardiovascular events by 20% to 40%. Evidence
is also mounting that people with severe
dyslipidemia or who are at high cardiovascular
risk fail to achieve LDL-C targets even with high-
intensity statin treatment [142]. Further, 15% of
statin-treated people show statin intolerance

[142]. Thus, there is an urgent need for an alter-
native strategy to reduce plasma LDL-C.

Gain-of-function PCSK9 mutations such as
S127R, F216L, and D374Y are associated with
an increase in plasma levels of mean LDL-C and
the incidence of coronary heart disease
[7, 143]. Conversely, subjects carrying loss-of-
function PCSK9 mutations Y142X or C679X
display a 40% reduction in plasma levels of
mean LDL-C and an 88% reduction in the risk
of coronary heart disease. Loss-of-function muta-
tion R46L reduces plasma levels of LDL-C and
the incidence of coronary heart disease by 21%
and 47%, respectively, as shown in the Athero-
sclerosis Risk in Communities study and
the Dallas Heart Study [11, 49]. Data from the
Copenhagen General Population Study and the
Copenhagen City Heart Study also shows that
loss-of-function PCSK9 mutations R46L,
R237W, I474V, and E670G are associated with
a significant reduction in mean LDL-C (18%) and
cardiovascular mortality [144]. A 15-year follow-
up study of 4232 subjects (2039 men and 2193
women, all 60 years old at recruitment)
demonstrates that serum levels of PCSK9 are
positively associated with the future risk of car-
diovascular disease [145]. Knockout of PCSK9
increases, while overexpression of PCSK9
reduces the development of atherosclerosis in
apoE-/- mice [146]. Further, statins increase
expression of LDLR and PCSK9. Elevated
circulating PCSK9 levels then promote LDLR
degradation, attenuating the lipid-lowering effect
of statins. Plasma PCSK9 levels are increased in
patients treated with atorvastatin, and
Pcsk9-/- mice display hypersensitivity to statin
treatment [56]. Together, these findings strongly
indicate the potential of PCSK9 inhibition as a
lipid-lowering strategy.

Currently, two monoclonal anti-PCSK9 anti-
body therapies, Repatha (evolocumab) and
Praluent (alirocumab), are approved in the USA,
Canada, Europe, and China for patients who have
hereditary high cholesterol such as heterozygous
and homozygous FH patients and high-risk
patients intolerant to statins or experiencing poor
LDL-C-lowering response even with high-
intensity statin therapy. Both antibodies are
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against the catalytic domain of PCSK9 and block
binding of plasma PCSK9 to LDLR, increasing
hepatic clearance of LDL and reducing plasma
levels of LDL-C. Subcutaneous administration of
150 mg alirocumab biweekly lowers plasma
levels of LDL-C approximately 60% in patients
and reduces the rate of main cardiovascular
events from 3.3% to 1.7% [147]. Alirocumab at
a dose of 75 mg once every two weeks also
reduces the incidence of recurrent ischemic car-
diovascular events in patients who have a previ-
ous acute coronary syndrome and are treated with
maximally tolerated statin dosages [148]. Simi-
larly, the FOURIER trial shows that evolocumab
at a dose of 140 mg biweekly or 420 mg monthly
leads to a 60% reduction in plasma levels of
LDL-C and significantly reduces the risk of the
primary end point (9.8% vs. 11.3%) and the main
secondary end point (5.9% vs. 7.4%) as compared
to the placebo group [149]. The two inhibitors do
not show significant major side effects.

Inclisiran (ALN-PCSsc) is a chemically
modified small interfering RNA (siRNA) inhibi-
tor that targets PCSK9 mRNA and suppresses
translation of PCSK9. It reduces hepatic PCSK9
production and plasma PCSK9 levels. A subcuta-
neous injection of 500 mg Inclisiran once every
6 months in patients with atherosclerotic cardio-
vascular disease on high-intensity statin therapy
reduces plasma levels of LDL-C by approxi-
mately 50%. No major side effect has been
reported in both Phase I and II trials [150, 151].

The monoclonal antibodies against PCSK9
show an impressive lipid-lowering effect in het-
erozygous and homozygous FH patients, high-
risk patients intolerant to statins, and patients
with poor LDL-C-lowering response even with
maximally tolerated statin dosages [147, 152,
153]. Furthermore, when adding to the statin
therapy, PCSK9 inhibitors can markedly reduce
cardiovascular events, such as myocardial infarc-
tion and ischemic stroke, with no significant
adverse side effects [147, 152]. However, this
therapy requires injections of large amounts of
antibodies to achieve clinical efficacy, with
extremely high production costs. Given that the
treatment of patients with hypercholesterolemia is
lifelong, and it is predicted that PCSK9 inhibitors

would cost approximately $592 billion but reduce
cardiovascular care costs by only $29 billion on
US health care spending over 5 years if used for
all eligible patients at current pricing [154]; this
treatment will place a high burden on the
healthcare system. Inclisiran might reduce costs
since it requires only two injections per year.
However, siRNAs are small RNA duplexes that
have 20–30 nucleotides. They interact with the
RNA-induced silencing complex (RISC) in the
cytosol. After cleavage of the sense strand by
the endonuclease Argonaute 2 in the RISC, the
antisense strand remains binding to RISC and
guides the complex to the target mRNA for
Argonaute 2-mediated cleavage. siRNAs silence
target genes more specifically as compared to
miRNA, since the antisense strand of siRNA
duplexes theoretically only binds to mRNA that
completely matches to it. However, it has been
reported that siRNA can cause off-target transla-
tional inhibition [155]. In addition, duplex siRNA
can trigger innate immune response in Toll-like
receptor (TLR)-dependent and -independent
mechanisms [156]. Considering the lifelong use
of PCSK9 inhibitors, it is important to monitor
the long-term safety of Inclisiran. Therefore, the
need for more effective, more specific, and more
cost-efficient therapies to lower LDL-C is urgent.

Crystallographic studies of PCSK9-EGF-AB
complex show that the interaction face between
the catalytic domain of PCSK9 and the EGF-A of
LDLR is relatively flat and big, making it impos-
sible to design a specific inhibitor to block the
interaction between PCSK9 and LDLR
[20]. Therefore, mechanistic studies of PCSK9
regulation, its secretion, and its ability to promote
LDLR degradation are necessary. Questions need
to be elucidated including, but not limited to the
following:

1. PCSK9 is a serine proteinase. Currently, the
only physiological substrate of PCSK9 is
itself. Can PCSK9 cleave other proteins?

2. PCSK9 is expressed extrahepatically and most
likely retained inside cells in the kidneys and
the intestine. What are the physiological
functions of PCSK9 in these tissues?
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3. How does circulating PCSK9 preferentially
stimulate degradation of hepatic LDLR?

4. Why is only hepatic PCSK9 efficiently
secreted into circulation? What is the molecu-
lar machinery system that assists PCSK9
secretion?

5. It is believed that PCSK9 needs assistance
from other proteins to efficiently redirect
LDLR to the lysosome for degradation. What
are these co-factors?

6. PCSK9 is expressed in the brain and present in
cerebrospinal fluid (CSF). CSF PCSK9 levels
are increased in patients with AD [157]. What
are the physiological and pathophysiological
roles of brain PCSK9?

Answering these questions will not only
deepen and widen our understanding of the phys-
iological and pathophysiological role of PCSK9
but also provide a foundation for the future devel-
opment of PCSK9-specific small inhibitors that
can lower plasma LDL cholesterol efficiently,
specifically, and cost-effectively.
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LDL and HDL Oxidative Modification
and Atherosclerosis 10
Shucun Qin

Abstract

Low-density lipoprotein (LDL) and high-
density lipoprotein (HDL) are two kinds of
common lipoproteins in plasma. The level of
LDL cholesterol in plasma is positively
correlated with atherosclerosis (AS), which is
related to the complex macromolecular
components, especially the easy oxygenation
of protein and lipid components. However, the
plasma HDL cholesterol level is negatively
correlated with AS, but the results of recent
studies show that the oxidative modified HDL
in pathological state will not reduce and may
aggravate the occurrence and development of
AS. Therefore, the oxidative modification of
lipoproteins is closely related to vascular
homeostasis, which has become a hot research
area for a long time.

Keywords

Lipoproteins · LDL oxidative modification ·
HDL oxidative modification · Atherosclerosis ·
Cardiovascular diseases

10.1 LDL Oxidative Modification

LDL is a compound particle of lipid and protein
in human blood circulation. The mature LDL
particles are composed of hydrophobic core and
hydrophilic outer layer [1]. The lipid hydrophobic
core of LDL consists of triglycerides and choles-
terol esters, mainly cholesterol esters. The surface
lipid phospholipid and free cholesterol are amphi-
philic. The main protein component of LDL is
apoB-100, which contains only one apoB-100 in
each lipoprotein particle [2]. ApoB-100 has a
binding region with LDL receptor, which binds
to apoB-100 through the ligand-binding domain
of LDL receptor on cell membrane, recognizes
and absorbs lipids. LDL granules can contain a
little apolipoprotein E (ApoE) and paraoxonase
(PON). The paraoxonase in lipoproteins is an
antioxidant, which can resist LDL lipid peroxida-
tion. LDL granule is also the main carrier of
lipophilic antioxidant vitamin E, carrying
k-tocopherol and a small amount of
q-tocopherol [3]. However, LDL granules in
plasma have weak antioxidation and anti-
inflammatory ability and are prone to oxidative
modification. This oxidative modification causes
lipid deposition in the vascular intima and triggers
the pathological process of AS.
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10.1.1 LDL Oxidative
Modification Types

LDL oxidative modification types may include
nonenzyme-mediated modification, such as free
radical, proteoglycan, glycosylation, repair of
immune complex; enzyme-mediated modifica-
tion, such as lipase, oxidase, MPO, etc. In addi-
tion, according to the different modified
components, it can also be divided into lipid
component modification and protein component
modification. The physical structure, chemical
properties and biological activity of LDL particles
will be changed after nonenzyme modification
and enzyme modification [4]. The results showed
that endothelial cells, macrophages, and smooth
muscle cell (SMC) could also modify LDL. LDL
is a complex particle with different oxidation
sensitivity. LDL oxidation is a gradual process,
leading to the formation of a continuous oxidation
LDL from mild to extensive, containing various
potentially toxic components of oxidized lipids
and oxidized proteins in different proportions,
i.e., the composition, metabolism and biological
characteristics of oxidized LDL are heteroge-
neous. Lipid aldehyde and sterol and lipid perox-
ide were oxidized and existed in different
proportion. All kinds of bioactive lipids of
oxidized LDL interact with cell molecular targets
through various mechanisms and play physiolog-
ical or pathological roles. So far, many
mechanisms remain unclear [5].

10.1.2 LDL Oxidative Modification
Degree

LDL oxidative modification can occur during
fetal growth, and lipoprotein oxidative modifica-
tion can be observed in human fetal artery
samples [6]. LDL oxidation is a gradual process
from minimum to mild to severe extensive oxida-
tion. The smallest oxidized LDL and mild
oxidized LDL mainly changed in lipid, while
the extensive oxidized LDL showed lipid oxida-
tion and aldehyde carbohydrate modification
[7]. Obviously, LDL oxidation process can be

divided into two stages. The first is the initial
stage of LDL oxidation, at which the consump-
tion of lipophilic antioxidants occurs in LDL
particles, and then the oxidation of polyunsatu-
rated fatty acids of phospholipids. In this stage of
oxidation, LDL particles with low levels of lipid
oxide products and relatively complete apoB-100
are considered as the minimal modified LDL
particles (MM-LDL) [8], which can also be
recognized by LDL receptors. In the stage of
severe modification, the lipid and protein
components of LDL will be further modified by
oxidation, and a large number of lipid
components will be modified to generate alde-
hyde lipid peroxides. ApoB-100 will also be
modified by oxidation. In this stage, the oxidized
LDL will lose the ability to recognize LDL recep-
tor, but it can combine with scavenger receptor
(SR) of macrophages infiltrating into the subcuta-
neous, and then it will be swallowed by cells,
which will lead to macrophages moving to foam
cell transformation.

10.1.3 LDL Oxidative Modified Site

It is still believed that the oxidative modification
of LDL may occur in the arterial wall, specifically
in the subendothelial layer, rather than in the
circulating blood. Endothelial cells retain LDL
in the subendothelial layer through endocytosis,
vesicular transport and particle exocytosis. The
fluorescent labeled LDL was transported to the
subendothelial layer in a scavenger receptor-b1
dependent manner. Small dense LDL (sdLDL) is
more likely to bind to proteoglycan, trapped in
extracellular matrix, where it is susceptible to
oxidative modification. LDL oxidation is unlikely
to occur in plasma because of the high concentra-
tion of antioxidants and proteins chelating metal
ions. Although in vitro experiments show that
transition metal ions can oxidize LDL, it is
unlikely that there are a large number of free
metal ions in vivo, because they are mostly com-
bined with proteins to form ceruloplasmin or
transferrin [9].
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10.1.4 LDL Lipid Oxidative
Modification

10.1.4.1 Nonenzymatic (Free Radical)
Mechanism of Lipid
Peroxidation

The surface lipids of LDL, including
phospholipids and their derivatives and free cho-
lesterol, can undergo enzymatic or nonenzymatic
reactions, and the surface lipids are oxidized to
form modified lipids. Lipid peroxidation may be
caused by oxidants in the vascular system. The
new chemical commonality of as plaque in vivo is
the formation of oxidized LDL [10] through the
mechanism involving free radicals or
lipoxygenase. LDL lipid peroxidation is a free
radical-mediated process involving the peroxida-
tion modification of polyunsaturated fatty acids
(PUFAs) in phospholipids [11]. The phospholipid
components of LDL cause lipid peroxidation
under the action of hydroxyl radicals, which gen-
erate active hydroxyl radicals in the cell system
and react with adjacent lipids as soon as they are
produced. Polyunsaturated fatty acids in lipids
can react with free radicals. The lipid radicals
can react with the neighboring lipid molecules
to form lipid peroxides and lipid hydroperoxides,
which lead to more and more lipid peroxidation.
Lipid hydroperoxides can split under the action of
transition metals and break into various oxygen-
containing products, such as alkanes, olefins,
aldehydes, ketones, and other products. The oxi-
dation reaction is terminated by the depletion of
substrate or the formation of stable lipid peroxide
derivatives (alkanes, alcohols, ketones,
aldehydes, carboxylic acids) [5].

10.1.4.2 Enzyme-Mediated Lipid
Peroxidation of Lipoproteins

LDL can be directly modified by various
enzymes, such as phospholipase,
sphingomyelinase, and lipoxygenase. The cells
of arterial wall contain lipoprotein lipase, choles-
terol esterase, phospholipase A1, phospholipase
A2, phospholipase C and phospholipase D,
lipoxygenase, and cholesterol ester oxidase.

Enzyme modification of LDL lipids may occur
in the arterial wall [4].

10.1.5 LDL Lipid Peroxidation
Products

10.1.5.1 Lysophosphatidylcholine (LPC)
and Lysophosphatidic Acid
(LPA)

The first component of oxidized LDL is LPC,
which also exists in normal LDL, but the concen-
tration is low. A large amount of LPC is continu-
ously produced in plasma through the action of
sn-2 position of LCAT hydrolysis phospholipid.
LPC is the chemokine of monocyte, which can
stimulate the production of superoxide and
inflammatory cytokines, and stimulate the prolif-
eration of lymphocytes. LPA is produced from
LPC by lysophosphatidy esterase D, which is a
known mitogen and plays a role through a spe-
cific G protein coupled receptor.

10.1.5.2 Sn-2 Short-Chain Phosphatide
The position of sn-2 of LPC in LDL may be
changed, and the derivatives obtained by this
change include 1-palmitoyl-2-(5-oxomethyl)-sn-
glycerol-3-phosphocholine (povpc), 1-palmitoyl-
2-glutaryl-sn-glycerol-3-phosphocholine (pgpc),
1-palmitoyl-2-(9oxononyl)-sn-glycerol-3-
phosphocholine (ponpc), and palmitoyl-2-
arachidonol-Sn phosphatidylcholine (PAPC)
[12, 13].

10.1.5.3 Other Lipid Peroxidation
Products

Sn-2 epoxide is generally considered as one of the
most reliable markers of oxidative stress in vivo
[12]; sphingosine-1-phosphate (s-1-p), the metab-
olite of ceramide, can induce the proliferation of
vascular smooth muscle cells, platelet activation,
and endothelial cell stimulation [13]; FFA and its
metabolites 15-hete, 9-hode, and 13-hode can be
further oxidized to form a large number of com-
plex isoprostaglandin (ox-ce) products [12];
arachidonic acid and linoleic acid, as well as
esterified fatty acids, are oxidized to

10 LDL and HDL Oxidative Modification and Atherosclerosis 159



hydroperoxides derivatives, 15-hete, 9-hode, and
13-hode. These modified FFA have been proved
to be ligands of PPARa and PPARG [14]; in lipid
peroxidation products, 27 hydroxycholesterol,
7-ketcholesterol and 5 α, 6 α-epoxide, 5b,
6b-epoxide, and cholesterol-3b, 5A, 6b-triol are
the most abundant oxidized sterols in plasma and
as lesions [15]; CE hydroperoxides and
hydroxides are the main lipid oxidation products
found in human as lesions [14]; 4-hydroxynonene
aldehyde and malondialdehyde (HNE and MDA),
HNE, and MDA are carbonyl compounds and
also the most abundant ones in LDL lipid peroxi-
dation abundant α, β-unsaturated hydroxyene [4].

In short, LDL produces a large number of
different types of lipid peroxidation bioactive
molecules, which promote the occurrence of
local inflammation of endothelium, stimulate the
migration and infiltration of chemotactic inflam-
matory cells and smooth muscle cells through
different mechanisms and molecular pathways,
and constantly promote the slow occurrence and
development of AS.

10.1.6 LDL Protein Oxidative
Modification

10.1.6.1 Protein Modification Caused by
Lipid Peroxidation Products

LDL lipid peroxidation products can react with
apoB-100 amino acid residues. There are
357 lysine residues in apoB-100, of which a con-
siderable part (225 lysine residues) are exposed
on the surface of LDL, and the remaining 132 are
embedded in the lipid part of LDL [16]. Polyun-
saturated fatty acids in LDL oxidize aldehydes,
such as HNE and MDA, which can react with
lysine and other amino acid residues.

10.1.6.2 Modification of ApoB-100 by
Enzyme Mechanism

Exposure of LDL to reagents or enzyme-
catalyzed hypochlorite (HOCl) results in the oxi-
dation of amino acid residues of apoB-100, which
transforms LDL into the high uptake form of
macrophages [16]. Myeloperoxidase is an
enzyme related to inflammation and oxidative

stress. It can catalyze H2O2 and chloride to
form a powerful cytotoxin, HOCl, and then react
with the tyrosine residue of apoB-100.
Chlorinated biomolecules such as
3-chlorotyrosine are considered to be specific
markers of MPO catalyzed oxidation [17]. The
modification of LDL by the active nitrogen pro-
duced by MPO of monocyte transformed
lipoproteins into NO2-LDL with high uptake
and promoted the lipid loading of macrophages
and the formation of foam cells through CD36
pathway [18].

10.1.7 LDL Acetylation and Oxidation

Deacetylation may be the first step in the chain of
as changes caused by LDL particles in the blood
of as patients. LDL is deacetylated firstly,
followed by the loss of free cholesterol and cho-
lesterol ester, phospholipid and triglyceride, the
increase of particle density, and the decrease of
particle size; secondly, the increase of particle
negative charge leads to the formation of electro-
negative LDL part and the appearance of
misfolded apolipoprotein B in large quantities;
in the later stage, the increase of LDL particle
oxidant and the decrease of antioxidant, and the
heavily modified LDL particle can produce
autoantibody [19].

10.1.8 LDL Glycation and Oxidation

LDL glycosylation is a nonenzymatic reaction
between the carbonyl group of reducing sugar
and the amino group of L-lysine residue of
apoB-100. It can also occur in the phospholipid
component of LDL, leading to functional changes
in LDL and increased susceptibility to oxidative
modification [20]. The body can also have non-
enzymatic glycosylation reaction at the normal
blood glucose level, and the carbonyl metabolites
can be eliminated by the body’s enzymes, which
will not cause harm to the human body [21]. But
in diabetes and hyperglycemia, the concentration
of sdLDL increased. It has been reported that
sdLDL apoB isolated from individuals without
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diabetes mellitus is more widely glycosylated
than general LDL granules, and more than 90%
of glycosylated apolipoprotein B in plasma is
present in sdLDL granules. SdLDL may be
more susceptible to glycosylation [22]. The gly-
cosylation and oxidation of LDL are not mutually
exclusive modification of LDL, because the gly-
cosylation itself will produce free radicals. Even
in vitro, glycosylation is accompanied by some
degree of oxidation when molecular oxygen and
oxygen free radical generation processes do not
exist [23].

10.1.9 Cellular Mechanism of LDL
Oxidation on AS

10.1.9.1 Effect of Oxidized LDL
on Endothelial Cells

Endothelial cells play an important role in
maintaining vascular homeostasis. They can syn-
thesize and secrete a large number of enzymes
and cytokines to maintain the balance between
vasodilation and contraction, inhibition and stim-
ulation of smooth muscle cell proliferation and
migration, thrombosis, and fibrinolysis [24]. Car-
diovascular risk factors such as hyperlipidemia,
diabetes, hypertension, obesity, smoking, and
chronic mental stress can lead to endothelial dys-
function and oxidative stress reaction of endothe-
lial cells, and initially aggravate the pathological
process of AS [25]. Endothelial dysfunction can
be manifested as endothelial activation, which
eventually leads to the transformation of arterial
endothelial cells from a resting phenotype to an
inflammatory phenotype involving host defense
response [26]. Under the action of endothelial
cells, or because of its own characteristics,
sdLDL in the circulatory system stays in the
subendothelial space or the extracellular matrix
of the arterial wall. Under the action of free
radicals and enzymes, LDL components are
modified. A large number of LDL-oxidized lipid
components stimulate scavenger receptor (SR),
toll-like receptor, and other receptors of activated
endothelial cells, which lead to NF-kB activation,
and activate a variety of target genes related to
vascular wall pathophysiology, including

cytokines, chemokines, and leukocyte adhesion
molecules, as well as genes regulating cell prolif-
eration and cell survival [27]. Various lipid
components of oxidized LDL participate in the
activation of NF-kB. 13-hpode, oxidized phos-
pholipid of MM-LDL, and LPC can activate
NF-kB and induce the expression of VCAM-1,
ICAM-1, and MCP-1. However, some bioactive
components of oxidized LDL can inhibit NF-kB
activation, indicating that oxidized LDL has
biphasic effect on NF-kB [26].

10.1.9.2 Effect of Oxidized LDL
on Macrophages

In the early pathological changes of AS, oxidized
LDL promotes the activation of endothelial cells
and the activation of inflammatory pathway,
which results in the increase of the expression of
inflammatory factors; under the chemotaxis of
MCP-1 and oxidized lipid components, blood
monocytes enter into the endothelium, derive
into macrophages, and develop into foam cells
through SR recognition and phagocytosis of
oxidized LDL. Oxidative LDL stimulates
macrophages to express a large number of SR,
CD36, LOX-1, SR-A, SR-B1, CD68, etc. and to
recognize and ingest specific oxidative LDL
components. Under normal conditions, the
phagocytized lipids form an endocytosome, and
cholesterol esters (CE) and TG related to lyso-
somal fusion lipoproteins are hydrolyzed by cho-
lesterol esterase with high activity in the acidic
pH of lysosomal lumen [28]. In order to prevent
the potential cytotoxicity caused by excessive
accumulation of free cholesterol (FC), FC can
be re-esterified by ACAT to form CE on the
endoplasmic reticulum, which is stored in the
cytoplasm as lipid droplets. Cholesterol esterifi-
cation is considered as a protective defense mech-
anism, which can avoid excessive accumulation
of cytotoxic FC. Under the background of serious
lipoproteins oxidation, lipid uptake, and choles-
terol esterification increase, while cholesterol out-
flow is insufficient. The final result is excessive
accumulation of CE in macrophages, forming
foam cells. The formation of foam cells depends
on the balance of three main related biological
processes, including fat uptake, cholesterol

10 LDL and HDL Oxidative Modification and Atherosclerosis 161



esterification, and cholesterol efflux. A large
amount of oxidized LDL also promotes
macrophages to absorb modified lipids without
restriction, and it destroys the pathway of choles-
terol outflow, promotes cholesterol storage, and
then the cholesterol esterification mechanism is
also destroyed [29].

In addition, macrophages absorb a lot of
oxidized LDL through SR, which destroys the
normal lipid outflow pathway, and more and
more oxidized lipid and protein components are
trapped in the cytoplasm. These components
interfere with the function of ER modified folding
proteins, resulting in the accumulation of
misfolded proteins in ER and ER stress. In the
case of ERS, the ability of protein folding must be
restored rapidly to meet the needs of protein fold-
ing. In the presence of high levels of misfolded
proteins in the endoplasmic reticulum, an intra-
cellular signaling pathway called UPR induces a
series of transcription and translation events to
restore the homeostasis of the endoplasmic retic-
ulum. Macrophage-derived foam cells engulf a
large number of oxidized lipids, and the FC ester-
ification in the cytoplasm is blocked. A large
number of FC is trapped in the cytoplasm,
which reflects its cytotoxicity and starts the pro-
cess of apoptosis. In the early pathological
changes of AS, the apoptotic foam cells can be
phagocytized by local macrophages, and then be
cleared. This effect is called exocytosis, which
can maintain the stability of early pathological
plaques and reduce the extracellular disintegra-
tion of foam cells, thus causing lipid accumula-
tion under the intima [30]. However, in the
middle and late stage of AS, excessive ERS will
aggravate the lipid phagocytosis and even apo-
ptosis of macrophages, resulting in more
subintimal lipid accumulation, forming a typical
atheroma [31].

10.1.9.3 Effect of Ox LDL on Vascular
Smooth Muscle Cells

In early pathological changes of AS, with the
infiltration of LDL and the function of entering
into the vascular wall, a variety of lipid active
components are activated to diffuse and act on
smooth muscle cells, NADPH oxidase is

activated to produce a large number of oxygen
free radicals; the polarity of smooth muscle cells
changes, from contractile to synmorphic [32]; and
matrix metalloproteinases activated, secreted, and
degraded the matrix components around cells,
making them smooth. Under the action of ox
LDL, smooth muscle cells located in the middle
membrane of blood vessels pass through the inner
elastic layer, migrate into the inner membrane,
proliferate [33], synthesize, and secrete a large
number of extracellular matrix components, and
form fiber caps. In the early pathological process
of AS, the formation of fibrous cap is helpful to
reduce plaque rupture and prevent the occurrence
of vascular embolism. However, when the disease
entered the progressive stage, under the stimula-
tion of ox LDL, smooth muscle cells expressed
LOX-1 and other scavenger receptors, and
phagocytized lipids through scavenger receptors.
In the late stage of AS, the foam cells derived
from smooth muscle cells secrete a large number
of matrix metalloproteinases to degrade the colla-
gen fibers of the fibrous cap, resulting in the
thinning of the fibrous cap. Under the effect of
the blood flow shear force in the vascular cavity,
it is easy to locate in the upstream and down-
stream of the plaque on the lumen surface,
namely, the shoulder rupture, leading to lipid
outflow of plaque, and then to thrombosis, acute
clinical event of vascular stenosis [34].

10.2 HDL Oxidative Modification

10.2.1 Introduction of HDL

High-density lipoprotein (HDL) is a kind of
small, dense, and rich in a variety of lipid and
protein macromolecular components in the blood.
The average size is 8–10 nm, and the density is
1.063–1.21 g/ml [35]. HDL mainly contains polar
lipids and apolipoproteins, in addition to many
other proteins, including enzymes and acute
phase proteins, and may contain a small amount
of nonpolar lipids. HDL can be isomers with
different macromolecule components, which
have different structure, chemical and biological
characteristics. HDL has strong antioxidant
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modification ability in physiological state, but it
also has various modifications in pathological
state [36], such as oxidation [37]. The lipids of
HDL are mainly the surface phospholipids and
the internal cholesterol esters and triglycerides.
Phospholipids are mainly phosphatidylcholine,
accounting for 32–35 mol% of total lipids in
HDL. Another important phospholipid of HDL
is lysophosphatidylcholine, which accounts for
1.4–8.1 mol% of total lipids. Sphingomyelin on
HDL is a kind of structural lipid, which can
enhance the rigidity of surface lipid. It is also
the main sphingolipid in blood circulation,
accounting for 5.6–6.6 mol% of the total lipid. It
is mainly derived from triglyceride rich
lipoproteins, only to a small extent from new
HDL. The cholesterol ester (CE) on HDL is the
result of lecithin cholesterol acyltransferase
(LCAT) catalyzed transesterification of
phospholipids with cholesterol. These high
hydrophobic lipids form the lipid core of HDL,
accounting for 36 mol% of the total lipids of
HDL. A small amount of free sterol is located in
the lipid monolayer on the surface of HDL
particles, which regulates its fluidity.

HDL carries a large number of different
proteins, which can be divided into
apolipoproteins, enzymes, lipid transfer proteins,
acute phase response proteins, complement
components, protease inhibitors, and other pro-
tein components. Apolipoproteins and lipases are
widely considered as the key functional
components of HDL, while the secondary protein
components mainly play the role of complement
regulation, infection prevention and acute phase
response. ApoAI is the main structural and func-
tional component of HDL, accounting for 70% of
HDL protein. Almost all HDL particles are
believed to contain apoAI. The main functions
of apoAI include the interaction with cell
receptor, activation of LCAT, and multiple anti-
atherosclerosis (as) activities of HDL. ApoA II is
the second largest HDL apolipoprotein, account-
ing for 15–20% of the total HDL protein. About
half of the HDL particles may contain ApoA
II [35].

10.2.2 Clinical Evidence
and Pathological Effect
of Oxidative Modification
of HDL

10.2.2.1 Evidence of Oxidative
Modification of HDL In Vivo

There is oxidized HDL (ox HDL) in the human
body [38]. With the specific antibody of Cu2 +
oxidized HDL, the presence of ox HDL was
detected in the intima and endothelial cells of
human abdominal aortic atheroma plaque by
immunohistochemistry. The enzyme-linked
immunosorbent assay (ELISA) based on mono-
clonal antibody can detect ox HDL in hemor-
rhagic plasma sensitively and has reliable
specificity. In addition, ox HDL also exists in
plasma of patients with endogenous hypertri-
glycerides. At present, the oxidation mechanism
of HDL is not clear. In vitro, HDL can be
oxidized by different media, such as metal ions
Cu2 +, Fe2 +, Mn2 +, etc., among which Cu2 +
oxidation is the most commonly used method
in vitro. Hypochlorite (HOCl) can also cause
oxidative modification of HDL, but HOCl and
Cu2 + mediated oxidative modification of HDL
are different in properties and kinetics. In 2004, it
was found for the first time that tyrosine can be
nitrated and chlorinated by myeloperoxidase
(MPO) in plasma and plaque of patients with
coronary heart disease, reducing the cholesterol
reverse transport capacity of HDL granules. HDL
in the intima of aortic atherosclerotic plaque
contains 3-chlorotyrosine, which is the product
of HOCl oxidation, and its content is much higher
than that of HDL in blood [39]; it is also found
that MPO is a component of HDL in plaque, and
MPO can produce HOCl, so it is speculated that
MPO can mediate HDL oxidation through HOCl.
MPO is the only source of 3-chlorotyrosine [40],
which proves that MPO can oxidize HDL in vivo.
Paraoxonase-1 (PON-1) in HDL granules is neg-
atively related to the oxidative susceptibility of
HDL, which can inhibit the oxidative modifica-
tion of HDL mediated by Cu2 +. PON-1 can
inhibit the oxidative modification of HDL in a
dose-dependent manner, and the ability of
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oxidative modified HDL to obtain and stabilize
PON-1 from hepatocytes decreases. The decrease
of PON-1 content makes HDL easier to be
oxidized. In patients with coronary heart disease,
tyrosine at 166 and 192 sites can be nitrated and
chlorinated by MPO, and the modified content is
inversely proportional to the reverse transport
capacity of cholesterol [41]. In vitro studies
have shown that MPO can modify several amino
acid residues of human ApoA1 by producing
nitrite and hypochlorite, such as methionine
residues at 86, 112, and 148, tryptophan residues
at 8, 50, 72, and 108, and tyrosine residues at
192, 236, etc., which can be modified by nitration
or chlorination. The mutation of tryptophan in
ApoA1 to phenylalanine can not only protect, it
can keep HDL normal function and avoid oxida-
tive modification of HDL. The oxidation of spe-
cific areas of ApoA1 was measured by tandem
mass spectrometry with selective reaction moni-
toring mode. It was found that 192 tyrosine
residues of ApoA1 were the main chlorination
sites, and 18 tyrosine residues were the main
nitration sites in human as plaque. 192 tyrosine
residues of ApoA1 in healthy human blood circu-
lation were both the main chlorination sites and
the main nitration sites [42]. Trp72 is a site of
ApoA1 oxidation, and its main mechanism is
mpo-h2o2-cl-system. Trp72 can resist the oxida-
tive modification and functional degradation of
HDL induced by mpo-h2o2-cl-system. Tyrosine
166 is a nitration site of ApoA1, which accounts
for 8% of human atherosclerotic plaque, and its
function is damaged compared with normal
HDL [43].

10.2.2.2 Functional Abnormality After
Oxidative Modification of HDL

In vitro study shows that HDL oxidized by
plasma and MPO hypochlorite system in patients
with coronary heart disease has significantly
reduced reverse transport capacity of cholesterol
and its ability to activate LCAT. Other important
functional molecules in HDL, such as ApoA1,
PON-1, CETP, and so on, are oxidized and
modified to change the structure, which also
causes the reverse transport of cholesterol to be
blocked. For example, ApoA1 as a ligand

mediates the binding of HDL with ATP-binding
cassette transporter (ABCA1) on foam cell mem-
brane, and ABCA1 becomes one of the main
pathways for cholesterol transfer to HDL in
foam cell. The combination of ApoA1 and
ABCA1 is the initial link of cholesterol reverse
transport in AS plaque, but the change of struc-
ture of ApoA1 cannot combine with ABCA1,
which results in the obstruction of cholesterol
outflow in foam cells. It was also found that the
antioxidation and anti-inflammatory ability of
HDL decreased significantly in the plasma of
patients with psoriasis, which may have an impact
on the pathogenesis of psoriasis [44].

10.2.3 Cellular Mechanism of HDL
Oxidative Modification
Impairing Anti-AS Function

10.2.3.1 Effect of HDL Oxidative
Modification
on Endothelial Cells

Vascular endothelial cells (EC) cover the smooth
intima on the surface of blood vessels and main-
tain the state of blood flow. Meanwhile, endothe-
lium is the largest endocrine organ of the body. It
can secrete a variety of bioactive substances,
including vasodilator factor and vasoconstrictor
factor, which are in balance under physiological
state. For vascular endothelial cells, the steady
state of holding cycle plays a very important
role. HDL oxidized by MPO in vitro significantly
reduced the migration ability of endothelial cells.
In the model of electrical injury of carotid artery,
HDL modified in vitro decreased the endothelial
repair ability [45]. Vascular endothelial cell injury
and dysfunction are the early links of AS, which
are manifested in the decrease of endothelial
nitric oxide synthase (eNOS) activity and no pro-
duction. HDL has the functions of activating
eNOS, promoting no production and anti-
endothelial apoptosis. As a gas signal molecule,
NO plays an important role in maintaining normal
vasodilation, inhibiting platelet aggregation and
proliferation of arterial smooth muscle cells, and
inhibiting monocyte and endothelial adhesion. In
addition, NO is also an oxygen free radical
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scavenger in vivo, which can inhibit the oxidation
of lipoproteins. ENOS is the key enzyme of NO
synthesis. Its activity and function directly regu-
late the production and biological function of
NO. The oxidative modification of HDL can
improve the endothelial function and reduce the
ability of anti-endothelial apoptosis [46]. At the
same time, ox HDL can promote the release of
endothelin-1 (ET-1), which can promote the pro-
liferation of smooth muscle cells (SMC), constrict
blood vessels and raise blood pressure, thus
aggravating the injury of EC and promoting the
development of AS.

10.2.3.2 Effect of HDL Oxidative
Modification on Macrophages

As a main feature of advanced atherosclerotic
plaques, macrophage apoptosis promotes enlarge-
ment of the necrotic cores and plaque rupture, and
then leads to cardiovascular complications
[47]. Ox HDL, like ox LDL, also plays a crucial
role in macrophage-derived foam cell formation
and apoptosis. It has been reported that ox HDL
exerts a cytotoxic effect on macrophages and
accelerates atherosclerosis progression
[48, 49]. It has been found that ox HDL prepared
in vitro and HDL isolated from patients with
metabolic syndrome (MS) activated ER stress-
CHOP-mediated apoptotic pathway in
macrophages, which could be blocked by oxida-
tive stress inhibitors, toll-like receptor 4 (TLR4)-
specific small interfering RNA (siRNA), and
TLR4 antibody [50]. HDL exposure to hypergly-
cemic conditions could contribute to the acceler-
ation of atherosclerosis in DM patients. Glycated
HDL may induce macrophage apoptosis through
activating ER stress-CHOP pathway, and ER
stress mediates glycated HDL-induced
autophagy, which in turn protects macrophages
against apoptosis by alleviating CHOP
pathway [51].

10.2.3.3 Effect of HDL Oxidation
on Other Cells

Smooth muscle cell (SMC) is the main cell com-
ponent in as plaque, and its proliferation plays an
important role in the formation of as. As early as
the twentieth century, it has been reported that ox

HDL can promote the proliferation of SMC. In
addition, platelets are also affected by HDL oxi-
dative modification. Under physiological condi-
tion, HDL can inhibit platelet aggregation and
prevent as. The effect of ox HDL on platelets in
pathological state is concerned, although there are
inconsistent reports. For example, HOCl oxidized
HDL can cause inflammation and coagulation by
binding to CD36 on platelets [52]. CD36 belongs
to class B scavenger receptor family and is the
receptor of ox LDL on macrophages. When
CD36 helps to absorb ox HDL, it will increase
foam cell formation [53]. At the same time, ox
HDL will reduce the expression of CD36 mRNA
and protein in human peripheral macrophages
in vitro. CD36 can selectively ingest lipids in
Cu2 + oxidized HDL, but not in ordinary HDL
or LDL [54], which may lead to AS. MPO or Cu2
+ oxidized HDL can bind SR-BI receptor on
platelets, inhibit platelet aggregation, and produce
antithrombotic effect [55]. Adipocyte differentia-
tion is also affected by oxidative modification of
HDL. Ox HDL changes the number and size of
adipocytes through several unknown
mechanisms.

10.2.4 Effect of HDL Oxidative
Modification and Intervention
on Its Anti-AS Function

10.2.4.1 Oxidative Modification of HDL
Protein Components and Its
Effect on Anti-AS Function

There are more than 80 protein components in
HDL, and the modification of some protein
components will also affect the anti-AS function.
The oxidative modification of HDL occurs on the
methionine and aromatic amino acid residues of
apoAI, which leads to the separation of apoAI
from HDL and the decrease of lipid content in
HDL. After oxidative modification, the structure
and function of apoAI changed [56], resulting in
the inability of apoAI to combine with ABCAl,
the loss of the ability to activate LCAT, the failure
of cholesterol esterification, and the obstruction
of cholesterol transfer to LDL, thus affecting the
whole reverse cholesterol transport process. The
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oxidative modification of apoAI by HOCl
resulted in the cleavage of apoAI and apoAI,
which reduced the anti-AS function of HDL.
HDL glycosylation may be a nonenzymatic gly-
cosylation of protein, which mainly occurs on the
lysine of apoAI, thus affecting the cholesterol
outflow, antioxidant, anti-inflammatory, endothe-
lial protection, and other functions of HDL.
PON1 in HDL can resist oxidation, but it can
also be oxidized. PON1 itself is oxidized and ox
HDL can inactivate PON1 [57]. PON1 activity is
negatively correlated with age, and its mechanism
may be related to the decrease of free sulfhydryl
group on the 284th cysteine related to the active
site of lipid peroxidation [58]. The activity of
PON1 in glycosylated HDL decreased, and the
degree of decline was positively correlated with
glucose concentration and incubation time
[59]. Therefore, this modification of PON1 can
affect its activity, thus leading to the decline of
antioxidant function of HDL.

10.2.4.2 Oxidative Modification of HDL
Reduces the Protection of LDL
and Promotes AS

Normal HDL has antioxidant capacity, which can
inhibit the oxidative modification of LDL by
macrophages, endothelial cells, and smooth mus-
cle cells, but the oxidized HDL loses the ability to
inhibit the oxidative modification of LDL. When
macrophages sense that LDL changes into ox
LDL, they enter the endothelium and phagocytize
ox LDL. These macrophages come from plasma
monocytes. Stimulated by chemical factors such
as plasma monocyte chemoattractant protein-1
(MCP-1), monocytes infiltrate into the vascular
wall, recognize, and phagocytize ox LDL specifi-
cally by scavenger receptor, then become
macrophages, and further form foam cells. The
accumulation of a large number of foam cells in
the arterial wall promotes the formation of lipid
striation and early pathological changes of
as. Foam cells are the early signs of the formation
of as lipid striation. It is believed that the inhibi-
tion of LDL oxidation by ox HDL loss is related
to the decrease of PON1 activity in HDL. PON1
is synthesized by hepatocytes, and the ability of
obtaining and stabilizing PON1 from hepatocytes

after HDL oxidative modification decreases,
resulting in the decrease of HDL antioxidant
capacity. There is a negative correlation between
PON1 activity and HDL oxidation in obese
patients [60], which may be related to the
increased risk of cardiovascular disease in obese
patients. In addition, when Cu2 + oxidizes HDL
in vitro, the activity of PON1 in HDL decreases
significantly, and the inactivation mode is incon-
sistent with that of PON1 mediated by Cu2 +,
which indicates that ox HDL promotes PON1
inactivation [61].

10.2.4.3 HDL Modification Intervention
and Its Effect on Anti-AS
Function

HDL function is the result of multiple protein
synergies, and any abnormal component will
affect its function. Therefore, the intervention of
HDL components and its modification may be an
important measure for as prevention and treat-
ment. It was found that antioxidants can inhibit
the oxidative modification of HDL in vitro and
in vivo, and enhance its anti-AS effect. Improving
the level of apoAI can resist the toxic effect of
inflammation. ApoAI mimic peptide d4f can sig-
nificantly reduce the level of oxLDL in serum of
mice fed with high-fat diet, reduce the total area
of aortic root lesions, the percentage of lipid pos-
itive areas, macrophage aggregation and apopto-
sis rate [62]. Omega-3 polyunsaturated fatty acids
modify the lipoproteins containing the apoAI pro-
teome. These protein changes can improve the
function of HDL. After eating foods with high
omega-3 polyunsaturated fatty acids content,
PON1 and apoAI in HDL increase, thus enhanc-
ing its antioxidation and anti-inflammatory ability
[63]. The combination of statins and niacin can
improve the protein function of HDL in patients
with coronary heart disease, increase the expres-
sion of cholesterol reverse transporter, and pro-
mote the anti-AS effect [64]. Animal experiments
and population experiments show that the new
small molecule antioxidant hydrogen molecule
has a clear role in promoting HDL antioxidation
and anti-inflammatory and inhibiting as [65]. In
addition, the anti-AS function of HDL can also be
improved by proper regular aerobic exercise [66].

166 S. Qin



In conclusion, the complexity of HDL struc-
ture and function can maintain its vascular
homeostasis under physiological conditions.
However, in some pathological conditions, the
main component modification changed its anti-
AS function and vascular homeostasis. Further
study on the molecular mechanism of component
modification is beneficial to the precise location
of intervention target and the restoration of
biological characteristics of HDL against AS.
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Rare Diseases Related with Lipoprotein
Metabolism 11
Hongwen Zhou, Yingyun Gong, Qinyi Wu, Xuan Ye,
Baowen Yu, Chenyan Lu, Wanzi Jiang, Jingya Ye,
and Zhenzhen Fu

Abstract

Rare diseases are gathering increasing atten-
tion in last few years, not only for its effects on
innovation scientific research, but also for its
propounding influence on common diseases.
One of the most famous milestones made by
Michael Brown and Joseph Goldstein in
metabolism field is the discovery of the defec-
tive gene in familial hypercholesterolemia, a
rare human genetic disease manifested with
extreme high level of serum cholesterol
(Goldstein JL, Brown MS, Proc Natl Acad
Sci USA 70:2804–2808, 1973; Brown MS,
Dana SE, Goldstein JL, J Biol Chem
249:789–796, 1974). Follow-up work includ-
ing decoding the gene function, mapping-
related pathways, and screening therapeutic
targets are all based on the primary finding
(Goldstein JL, Brown MS Arterioscler
Thromb Vasc Biol 29:431–438, 2009). A
series of succession win the two brilliant
scientists the 1985 Nobel Prize, and bring
about statins widely used for lipid manage-
ment and decreasing cardiovascular disease
risks. Translating the clinical extreme

phenotypes into laboratory bench work has
turned out to be the first important step in the
paradigm conducting translational and precise
medical research. Here we review the main
categories of rare disorders related with lipo-
protein metabolism, aiming to strengthen the
notion that human rare inheritable genetic
diseases would be the window to know our-
selves better, to treat someone more effi-
ciently, and to lead a healthy life longer. Few
rare diseases related with lipoprotein metabo-
lism were clustered into six sections based on
changes in lipid profile, namely, hyper- or
hypocholesterolemia, hypo- or hyperalphali-
poproteinemia, abetalipoproteinemia,
hypobetalipoproteinemia, and sphingolipid
metabolism diseases. Each section consists of
a brief introduction, followed by a summary of
well-known disease-causing genes in one
table, and supplemented with one or two
diseases as example for detailed description.
Here we aimed to raise more attention on rare
lipoprotein metabolism diseases, calling for
more work from basic research and clinical
trials.
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Hypobetalipoproteinemia · Sphingolipid
metabolism diseases · Rare disease

Abbreviations

7-DHC 7-dehydrocholesterol
ABCA1 ATP-binding cassette subfamily A

member 1
ABCG5 ATP-binding cassette subfamily G

member 5
ABCG8 ATP-binding cassette subfamily G

member 8
ABL abetalipoproteinemia
ANGPTL3 angiopoietin-like protein 3
apoB apolipoprotein B
apoC3 apolipoprotein C3
apoE apolipoprotein E
ASCVD arteriosclerotic cardiovascular

disease
ASM acid sphingomyelinase
CDL calvarial doughnut lesions
CESD cholesteryl ester storage disease
CETP cholesteryl ester transfer protein
CMRD chylomicron retention disease
CYP27A1 cytochrome P450 family 27 sub-

family A member 1
CYP7A1 cytochrome P450 family 7 subfam-

ily A member 1
DHCR7 7-dehydrocholesterol reductase
FH familial hypercholesterolemia
FHBL familial hypobetalipoproteinemia
FLD familial LCAT deficiency
HA hypoalphalipoproteinemia
HALP hyperalphalipoproteinemia
HBL hypobetalipoproteinemia
HeFH heterozygous familial

hypercholesterolemia
HoFH homozygous familial

hypercholesterolemia
LALD lysosomal acid lipase deficiency
LCAT lecithin-cholesterol acyltransferase
LDLR low-density lipoprotein receptor
LDLRAP1 low-density lipoprotein receptor

adapter protein 1
LIMA1 LIM domain and actin-binding 1
LIPA lysosomal acid lipase A

LIPC lipase C hepatic type
MTTP microsomal triglyceride transfer

protein
NPA Niemann-Pick disease type A
NPB Niemann-Pick disease type B
NPC1L1 Niemann-Pick C1-like 1
NPD Niemann-Pick disease
PCSK9 proprotein convertase subtilisin/

kexin type 9
PLTP phospholipid transfer protein
PNPLA5 patatin-like phospholipase domain-

containing 5
SAR1B secretion associated ras-related

GTPase 1B
SGMS2 sphingomyelin synthase 2
SLOS Smith-Lemli-Opitz syndrome
STAP1 signal transducing adaptor protein

family 1

11.1 Hypercholesterolemia

Hypercholesterolemia is a disease characterized
by high level of cholesterol in blood [4], and it
could be segregated into two subtypes: (1) poly-
genic hypercholesterolemia, with plasma levels of
LDL-C over 130 mg/dl and high risk of arterio-
sclerotic cardiovascular disease (ASCVD) [5],
and (2) monogenic hypercholesterolemia, famil-
ial hypercholesterolemia (FH) is the most com-
mon, but severe even life-threatening monogenic
hypercholesterolemia [6]. According to the
genetic inherence, FH can be characterized into
two types: (1) heterozygous familial hypercholes-
terolemia (HeFH), in which the loss in
low-density lipoprotein receptor (LDLR) activity
is up to 50%, leading to plasma LDL-C levels 2 to
3 times above average(>190 mg/dl), develop-
ment of xanthomas, and high risk of ASCVD,
and (2) homozygous familial hypercholesterol-
emia (HoFH), in which the LDLR pathway is
almost nonfunctional or markedly defective, lead-
ing to plasma LDL-C levels 4 to 8 times above
average (>500 mg/dl), development of
xanthomas and high risk of ASCVD [5, 7].
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The prevalence of HeFH was traditionally
thought to be 1 in 500 [8]. However, the estimated
overall prevalence of HeFH from the data of
19 studies including 2,458,456 individuals is
about 1 in 250 [9].The prevalence of HoFH has
also been revised upward to 1 in 300,000 (ranging
from 1 in 160,000 to 1 in 1000,000) [8]. FH is
mainly caused by rare dysfunctional mutations
affecting either LDLR (>95%), apolipoprotein
B (apoB) (2 ~ 11%), or proprotein convertase
subtilisin/kexin type 9 (PCSK9) (<1%) [10].

Additionally, low-density lipoprotein receptor
adapter protein 1 (LDLRAP1), cytochrome P450
family 7 subfamily A member 1 (CYP7A1), lyso-
somal acid lipase A (LIPA), apolipoprotein E
(APOE), cytochrome P450 family 27 subfamily
A member 1 (CYP27A1), signal transducing
adaptor protein family 1 (STAP1), patatin-like
phospholipase domain-containing 5 (PNPLA5),
and so on could also result in hypercholesterol-
emia [8, 11, 12]. Mutations affecting
ATP-binding cassette subfamily G member 5 or
8 (ABCG5 or ABCG8) leading to sitosterolemia,
a rare monogenic condition affecting 1 in 2000,00
individuals in the population and is manifested
with increased levels of plant sterols, such as
sitosterol [13].

We summarize information of these patho-
genic genes listed as Table 11.1 below.

Given that hypercholesterolemia caused by
mutations in LDLR, APOB, and PCSK9 have
been thoroughly studied and reviewed elsewhere
[23–26], we are going to discuss some other types
of hypercholesterolemia induced by rare mono-
genic mutations in details.

11.1.1 Lysosomal Acid Lipase
Deficiency

Lysosomal acid lipase deficiency (LALD) is a
rare autosomal recessive lysosomal storage dis-
ease caused by mutations in the LIPA gene
[17]. The LIPA gene encodes lipase A, the lyso-
somal acid lipase, also known as cholesterol ester
hydrolase. It functions in the lysosome to catalyze
the hydrolysis of cholesteryl esters and
triglycerides.

LIPA mutations can result in two distinct
diseases depending on the extent of deficiency:
the severe one, called early-onset Wolman dis-
ease, and the less severe one known as cholesteryl
ester storage disease (CESD) [27]. Wolman dis-
ease, with 1% or less than 1% of residual LAL
activity, often accompanied with hepatosple-
nomegaly, adrenal cortical insufficiency,
vomiting, and malnutrition in the first month of
life [14]. The less severe CESD, with 1% to
approximatively 12% of residual LAL activity,
is often accompanied with increased total choles-
terol, increased LDL-C, decreased HDL-C, pro-
gressive liver steatosis, and a high risk of
contracting coronary heart disease [28, 29].

Liver biopsy, LAL activity, and molecular
sequencing of the LIPA mutations, as well as
the serum transaminase activities and lipid levels
are used to diagnose LALD.

The hypercholesterolemic phenotype and lipid
accumulated in lysosome in patients with LIPA
gene deficiency can be attenuated by using
HMG-CoA reductase inhibitors such as statins
[27]. Among hypolipidemic agents, fibrates, cho-
lestyramine, and ezetimibe can be used for treat-
ment. In 2015, the US Food and Drug
Administration approved Kanuma (sebelipase
alfa), a recombinant human lysosomal acid lipase,
as the first treatment for LALD [30]. Additionally,
the enzyme replacement therapy was shown to be
successful in animal models, but the clinical trials
for CESD are now underway [31].

11.1.2 Cholesterol-7-Alpha-
Hydroxylase Deficiency

Pullinger et al. firstly reported cases with hyper-
cholesterolemia that existed mutations in
CYP7A1 gene [16]. The CYP7A1 gene encodes
the enzyme cholesterol 7α-hydroxylase, which
catalyzes the first reaction in cholesterol catabo-
lism and classic bile acid synthesis. Deficiency of
CYP7A1 could decrease bile acid production and
may lead to accumulation of cholesterol in the
liver, thus downregulating LDLR expression and
then developing hypercholesterolemia.
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The clinical phenotypes of homozygotes are
prominent with significantly increased total cho-
lesterol and LDL-C levels, evaluated
triglycerides, as well as more than 90% reduction
in fecal bile acid excretion in that patient reported
by Pullinger et al. Consequently, individuals with
CYP7A1 gene variants are associated with
increased risk of myocardial infarction and gall-
stone disease [32].

Patients with CYP7A1 mutation may be resis-
tant to lipid lowering treatments. Sustained

combination of large doses of statins and niacin
could help to bring their plasma cholesterol levels
under control [16]. In addition, it is suggested that
increasing intestinal reclamation of bile acids may
help compensate the decreased biosynthesis [33].

11.2 Hypocholesterolemia

Previous work mainly focused on hypercholester-
olemia for its significant association with

Table 11.1 Summary of genetic causes and characteristics of monogenic hypercholesterolemia

Gene Disease Inheritance Lipid profile Prevalence Clinical features

LDLR Familial
hypercholesterolemia
(Type I)

AD Elevated plasma
levels of
cholesterol,
specifically
LDL-C [14]

1/500 in
HeFH;
1/1000,000
in HoFH [6]

Tendon and skin
xanthomas, arcus corneae
and/or cardiovascular
deposits and leads to
increased risk in ASCVD
and mortality [14]

APOB
(gain of
function)

Familial
hypercholesterolemia
(Type II); familial
defective
apolipoprotein B

AD Elevated plasma
LDL-C levels
with normal
triglyceride levels
[6]

1/1000 in
HeFH;
1/4,000,000
in HoFH [6]

Tendon xanthomas and
premature atherosclerosis
[6]

PCSK9
(gain of
function)

Familial
hypercholesterolemia
(Type III)

AD Elevated plasma
LDL-C levels
[14]

<1/2500 [6] Accelerated atherosclerosis
and premature coronary
heart disease [14]

LDLRAP1 Familial
hypercholesterolemia
(Type IV); ARH

AR Defective LDLR
activity, elevated
plasma LDL-C
levels [6]

<1/
5,000,000
[6]

The presence of planar,
tuberous, tendon
xanthomas, and coronary
artery disease [15]

CYP7A1 Cholesterol 7alpha-
hydroxylase
deficiency

ACD Elevated LDL-C
and triglyceride
levels [16]

N/A Hepatitis, increased risk of
cardiovascular and gallstone
disease [16]

LIPA Lysosomal acid lipase
deficiency; cholesterol
ester storage disease

AR Massive
accumulation of
cholesteryl ester
and triglycerides
[17]

1/
40,000 ~ 1/
300,000
[18]

Elevation of cholesterol,
nausea, vomiting, global
developmental delay,
hepatomegaly,
hypertriglyceridemia, and
abdominal pain [11]

APOE Hyperlipoproteinemia
(Type III)

AD Increased LDL
and triglycerides
levels

1 ~ 7/5000
[19]

Xanthomas and increased
risk of cardiovascular
diseases [20]

ABCG5 or
ABCG8

Sitosterolemia AR Elevated plasma
levels of LDL-C
and defect in
sterol efflux from
cells [6]

<1/
5,000,000
[6]

Xanthomatosis,
hypercholesterolemia and
increased risk of aortic
stenosis and premature
coronary atherosclerotic
disease [6]

CYP27A1 Cerebrotendinous
xanthomatosis

AR Elevated plasma
levels of
cholesterol [21]

<1/20,000
[22]

Xanthelasma, cholesterol
deposition in the brain and
other tissues [21]

AD autosomal dominant, AR autosomal recessive, ACD autosomal codominant
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increased risk of cardiovascular diseases, but little
is known about hypocholesterolemia. In related
studies, it was defined as plasma cholesterol
lower than the 5th percentile of the distribution
in the population adjusted for age and
gender [34].

Sparing no efforts working on hypocholes-
terolemia is of great importance. On the one
hand, hypocholesterolemia due to cholesterol bio-
synthesis defect may manifest as multiple malfor-
mation and developmental disabilities, so it is of
huge necessity to find out therapeutic regimens
for those patients. On the other hand, some natu-
ral occurring mutations causing hypocholes-
terolemia may become novel therapeutic target
candidates for treating hypercholesterolemia.

As we all know, PSCK9 inhibitor and
ezetimibe targeting Niemann-Pick C1-like
1 (NPC1L1) have been widely used in clinical
practice, thus we will review
7-dehydrocholesterol reductase (DHCR7)
associated with congenital malformation and the
newly found LIM domain and actin-binding
1 (LIMA1) in the following parts.

Table 11.2 shows the pathogenic gene, lipid
profiles, prevalence, and clinical features of major
types of monogenic hypocholesterolemia.

11.2.1 Smith-Lemli-Opitz Syndrome

Smith-Lemli-Opitz syndrome (SLOS) is an auto-
somal recessive multiple malformation syndrome
that was firstly described in 1964 by Smith et al.
[48]. This congenital disease is resulted from
deficiency of the DHCR7 gene, which encodes
the enzyme 7-dehydrocholesterol (7-DHC)
reductase and mediates the conversion of
7-DHC to cholesterol. It is reported that SLOS
is more common among northern and central
European population relatively and the preva-
lence was estimated to be 1/70,000 ~ 1/
30,000 [44].

Most patients with SLOS have varied and
complicated clinical manifestations. Microceph-
aly, cleft palate, 2–3 toe syndactyly, growth fail-
ure, intellectual disability, and mental and
behavior abnormalities are frequent in SLOS
patients [44, 49]. Moreover, congenital defects,

including holoprosencephaly, atrial, and ventric-
ular septal defects, intestinal malrotation and
renal hypoplasia or agenesis were also reported
[44, 50–52]. Due to the deficiency of 7-DHC
reductase, cholesterol precursor 7-DHC would
accumulate in the blood and tissues, and total
cholesterol could be decreased, which is an
important basis for diagnosis [49]. If the bio-
chemical indicators are ambiguous, the diagnosis
could be confirmed by testing DHCR7
mutations [44].

Surgical operation could help correct cardio-
vascular, renal, craniofacial, and other anomalies
occurred in SLOS patients [53]. Additionally,
supplementation of cholesterol to some extent
may relieve some symptoms [53]. Statins is also
suggested as possible treatment for SLOS to
reduce abnormally elevated 7-DHC, which was
considered to be potentially toxic, and clinical
studies demonstrated that it could have positive
effects on patients suffered from SLOS [53–56].

11.2.2 LIMA1 Variant
with Hypocholesterolemia
Phenotype

In 2018, Song et.al made great progress in finding
a rare frameshift mutation (K306fs) in LIMA1
encoding LIM domain and actin-binding protein
1 in a Chinese Kazakh family with low plasma
LDL-C and decreased intestinal cholesterol
absorption [47].

LIMA1-K306fs carriers seem to have healthy
phenotype and reduced risk of ASCVD. Their
plasma total cholesterol and LDL-C levels were
remarkably lower than those of wild-type
individuals, while triglyceride, HDL-C and
fasting glucose levels were similar between the
two groups. In addition, the campesterol:
lathosterol ratio (Ca: L ratio) was significantly
lower in LIMA1-K306fs carriers, indicating that
they have reduced intestinal cholesterol
absorption [47].

Moreover, they confirmed the phenotypes in
both intestine-specific Lima1-deficient and
whole-body Lima1 knockout mice. Then they
investigated the potential mechanism that
LIMA1 binds with NPC1L1 and myosin Vb to
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regulate the transportation of NPC1L1 from the
endocytic recycling compartment to the plasma
membrane. Deficiency of LIMA1 may block the
process, leading to decreased intestinal choles-
terol absorption [47].

Just as the application of statins, ezetimibe,
and PCSK9 inhibitors, LIMA1 may have the
potential to be another emerging target for
LDL-C lowering therapy.

11.3 Hypoalphalipoproteinemia

Hypoalphalipoproteinemia (HA) is a group of
disorders of HDL deficiency (Table 11.3). HA
can be caused by many genetic defects including
APOAI, ABCA1, lecithin-cholesterol
acyltransferase (LCAT), and some other genes.
Diagnosis concludes both clinical and biochemi-
cal evaluation after management designed to cor-
rect known secondary causes of low HDL. Low

Table 11.2 Summary of genetic causes and characteristics of monogenic hypocholesterolemia

Gene Disease Inheritance Lipid profile Prevalence Clinical features

PCSK9
(loss of
function)

– – Reduction in
LDL-C levels
[35]

2–2.6%
(African
Americans)
[35]

Normal health,
protective
Decreased prevalence
of ASCVD [35]

APOB
(loss of
function)

Hypobetalipoproteinemia ACD Decreased
LDL-C and apoB
levels [36]

1/1000 ~ 1/
3000
(heterozygotes)
[36]

Rod-cone dystrophy,
ataxia, reduced tendon
reflexes,
acanthocytosis, retinal
degeneration, and
hepatic steatosis [37]

MTP Abetalipoproteinemia AR Low plasma
triglycerides,
cholesterol and
undetectable
levels of LDL-C
and apoB [38].

<1/1000,000
[38, 39]

Malabsorption, ataxia,
muscular hypotonia,
abnormality of retinal
pigmentation, and
reduced tendon
reflexes [37, 38]

ANGPTL3 Familial combined
hypolipidemia

AR Pan-
hypolipidemia
[40]

About 1 /
382,000 [41]

Normal health,
protective
Decreased prevalence
of ASCVD

SAR1B Chylomicron retention
disease/Anderson disease

AR Reduced LDL-C
and HDL-C
Normal
triglycerides [42]

<60 cases Failure to thrive,
diarrhea, steatorrhea,
fat malabsorption,
retinopathy, peripheral
neuropathy [42, 43]

DHCR7 Smith-Lemli-Opitz
syndrome

AR Abnormally
elevated
cholesterol
precursor 7-DHC
Reduced
cholesterol [44]

1/30,000 ~ 1/
70,000 [44]

Intellectual disability,
global developmental
delay, microcephaly,
and malformations of
different organs [44]

NPC1L1
(loss of
function)

– – Low total
cholesterol and
LDL-C levels
[45]

About 1/650
(heterozygotes)
[46]

Normal health,
protective
Decreased prevalence
of ASCVD [46]

LIMA1 Hypocholesterolemia
phenotype

– Significantly
lower total
cholesterol and
LDL-C levels
[47]

First identified
in a Chinese
Kazakh family
[47]

Normal health,
protective
Decreases intestinal
cholesterol absorption
[47]

AR autosomal recessive, ACD autosomal codominant
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serum HDL level (< 40 mg/dl or<1.0 mmol/L in
men and <50 mg/dl or <1.3 mmol/L in women)
is a well-known independent risk factor for
ASCVD and is also common in patients with
hypertriglyceridemia, insulin resistance, obesity,
and diabetes. Patients with significant deficiency
of HDL-C (<20 mg/dl or <0.5 mmol/L) and free
from secondary causes (<1% of the population)
is grouped as HA [57]. To date, HA is defined
according to the following criteria: (1) low
HDL-C level with normal VLDL and LDL-C
levels; (2) without secondary causes to
hypoalphalipoproteinemia; and (3) share a similar
lipoprotein pattern with at least one first-degree
relative [58].

We conclude the major characteristics of HA
interns of pathogenic genes, related disease,
inheritance, lipid profile, prevalence, and clinical
features. Some other genes are mentioned in the
section Hypocholesterolemia.

11.3.1 Familial LCAT Deficiency

Familial LCAT deficiency (FLD) is a rare autoso-
mal recessive disease caused by mutation in the
LCAT gene. About 70 families have been
reported worldwide [59]. LCAT activities can be

detected in different lipoproteins which include
alpha-LCAT activity and beta-LCAT activity.
These two types of LCAT activity are two func-
tional aspects of the same protein. There are two
clinical syndromes that arise out of mutations in
LCAT gene, named FLD and fish-eye disease
(FED).

The main genetic defects of FLD are the
mutations on LCAT gene. Recent studies
identified many rare mutations associated with
FLD, we enumerate some of them as follows:
V333M and M404V mutations [61], P274S
LCAT mutation [62], missense variation c.301
G > A in exon 2 [63], and LCAT G30S mutation
[64]. There are still a lot of genetic loci on LCAT
that needs to be discovered.

The main clinical features include progressive
corneal opacity, mild hemolytic anemia, multiple
impaired lipid-related traits, deterioration in kid-
ney function, and mild thrombocytopenia. FLD is
also associated with an increased prevalence of
ASCVD [62]. FLD patients have very low plasma
HDL-C levels accompanied by some other lipid
metabolism disorders. The diagnosis often relies
on clinical and biochemical parameters, clinical
evaluation, and urine examination. The measure-
ment of LCAT activity and genetic testing can

Table 11.3 Summary of genetic causes and characteristics of hypoalphalipoproteinemia

Gene Disease Inheritance Lipid profile Prevalence Clinical features

APOAI
LCAT

Fish-eye
disease

AR Decreased HDL levels <1/1000000
(worldwide)

Corneal clouding,
splenomegaly,
hepatomegaly, visual
impairment

APOAI
LCAT

Familial
LCAT
deficiency

AR Elevated TG, VLDL-C and LDL
levels, marked HDL deficiency
[59]

<1/1000000
(worldwide)
~ 70 families
have been
reported
worldwide
[59]

Corneal opacities,
hemolytic anemia, kidney
failure [60]

ABCA1 Tangier
disease

AR HDL< 5 mg/dl, apoA-I < 5 mg/
dl, low total plasma cholesterol
(<150 mg/dl), normal or high
plasma triglycerides

<1/1000000
(worldwide)

Dry skin, risk of ASCVD;
very large, yellow-orange
tonsils, enlarged liver,
spleen and lymph nodes;
hypertriglyceridemia,
neuropathy, corneal
clouding, type 2 diabetes.

AR autosomal recessive
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also be helpful in identifying the underlying
mutations [59].

There is no precise treatment or cure for famil-
ial LCAT deficiency so far, but some new treat-
ment targets are under evaluation. Even though,
we can find some ways to manage the clinical
symptoms.

To prevent renal disease in patients with FLD,
recombinant human LCAT infusion may be an
effective therapy as recommended in recent stud-
ies [65, 66]. Both LCAT gene replacement and
enzyme replacement are under development [66].

11.3.2 Tangier Disease

Tangier disease, caused by mutations in ABCA1
gene, is one of the most severe subtype of familial
HDL deficiency. Classic manifestations are
severe plasma deficiency or even absence of
major HDL apolipoprotein (apoA-I) and HDL
particle, thus causing the accumulation of
cholesteryl esters in multiple tissues including
tonsils, the liver, peripheral nerves, intestinal
mucosa, skin, cornea, and immune organs
[67]. Multiple and diverse mutations in
ATP-binding cassette subfamily A member
1 (ABCA1) are linked to Tangier disease, for
example, c.1824delG, c.1881C > G, and
c.4121C > T are notable ABCA1 pathogenic
variants [68–70].

The major clinical signs of this disease are not
limited to hyperplastic yellow-orange tonsils, cor-
neal opacities, neuropathy, hepatosplenomegaly,
thrombocytopenia, anemia, and stomatocytosis.
For individuals, one or few signs would be
presented [67, 69]. The major biochemical signs
of this condition are very low plasma HDL-C
concentration, typically <5 mg/dl (0.125 mmol/
L), rarely 5–10 mg/dl; very low or absent apoA-I
concentration, usually <30 mg/dl (typically
<5 mg/dl); small or absent alpha band on lipo-
protein electrophoresis [71, 72]. Till now, there is
no precise regimen for treating Tangier disease.
Even though cholesteryl ester transfer protein
(CETP) inhibition raises HDL levels, but it has
not been shown to be effective in patients with
Tangier disease [57]. In the future, the possible

goal for a Tangier disease therapeutic strategy
would be aimed to obtain a selective increase in
mature HDL level to restore cholesterol efflux
capacity. To this end, the first attempt could be
applying reconstituted HDL as replacement, until
the access to reliable gene therapy [69].

11.4 Hyperalphalipoproteinemia

Hyperalphalipoproteinemia (HALP) is a condi-
tion of elevated HDL-C level attributed to both
genetic and environmental factors, which is
related coronary stenosis [73].

Familial HALP often coexists with longevity
and that higher HDL-C levels are found among
healthy elderly. The most significant cause of
primary HALP is a genetic deficiency of CETP,
which has been reported mainly in Japanese [74]
and is mainly related with PPAR signaling path-
way. Some studies [75] have shown that hetero-
and homozygotes for CETP gene mutations are
associated with increased risks for ASCVD.

The prevalence of HALP was traditionally
thought to be heterozygous mutation present in
5–7% of the Japanese population [76]. HALP is
mainly caused by dysfunctional rare mutations
affecting the CETP. Additionally, minor genes
such as apolipoprotein C3 (APOC3) [77], lipase
C hepatic type (LIPC) [78], LCAT [79], and so on
could also result in HALP. Moreover, some
low-frequency gene variants have already been
identified in several studies, such as phospholipid
transfer protein (PLTP) [80].

We summarize information of these patho-
genic genes listed as Table 11.4 below, including
related disease, inheritance, lipid profile, preva-
lence, and clinical features.

11.5 Abetalipoproteinemia
and Hypobetalipoproteinemia

Abetalipoproteinemia [ABL; Online Mendelian
Inheritance in Man (OMIM) 200100] and
hypobetalipoproteinemia (HBL) are inherited
lipoprotein disorders defined as absence or low
levels (below the 5th percentile of sex- and
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age-matched individuals in the population) of
apoB and LDL-C in the plasma. HBL represents
a heterogeneous group of diseases, and familial
hypobetalipoproteinemia (FHBL) is the most fre-
quent form, which contains FHBL1 (OMIM
615558) and FHBL2 (OMIM 605019). Less fre-
quently, HBL also includes chylomicron reten-
tion disease (CMRD; OMIM 246700) and
specific dyslipidemia for mutations in PCSK9.

The exact prevalence of ABL and HBL is
unknown, but it is reported by Lee and Hegele
[84] that the incidences of both are less than 1 in
one million. There are unknown gender, racial, or
ethnic preferences for ABL and HBL, but the
disorder is more prevalent in consanguineous
marriages.

ABL is caused by homozygous or compound
heterozygous mutation in microsomal triglyceride
transfer protein (MTTP, aliasMTP) gene on chro-
mosome locus 4q22–24 encoding the protein.
MTTP forms a heterodimer with protein disulfide
isomerase, which facilitates the transfer of triglyc-
eride from cytosol to rough endoplasmic reticu-
lum containing nascent apo B during the
assembly of chylomicron in enterocytes and
VLDL in hepatocytes [85, 86]. Therefore,
mutations in MTTP may disrupt MTTP forma-
tion, affect its ability to transfer lipids [87] and
ultimately impair apoB-containing lipoproteins
processing and secretion.

FHBL1 occurs with an autosomal codominant
mode resulted from mutations in APOB gene on
chromosome locus 2p23–24. ApoB is the major
protein constituent of chylomicron (apoB-48),
VLDL (apoB-100), and LDL (apoB-100). The
gene mutations abolish or interfere with the trans-
lation of full-length apoB and usually give rise to
a truncated apoB protein [88–90], consequently
impairing apoB-containing particles processing
and secretion.

Mutations in angiopoietin-like protein
3 (ANGPTL3) gene on chromosome 1p31 are
associated with FHBL2, a recessive disorder
characterized by global reduction of plasma
lipoproteins [91, 92]. The function of ANGPTL3
appears to be the reversible inhibition of lipopro-
tein lipase activity, and the disruption of

ANGPTL3 production increases lipolysis and
causes familial combined hypolipidemia [93, 94].

CMRD is inherited in an autosomal recessive
pattern and derives from two mutations in secre-
tion associated ras-related GTPase 1B (SAR1B)
gene, the gene product of which is critical for the
fusion of the intestine-specific pre-chylomicron
transport vesicle to the Golgi apparatus [42, 95,
96]. Mutations result in dysfunction of intracellu-
lar trafficking of chylomicron particles.

HBL can also be caused by mutations in
PCSK9 gene, which encodes a serine protease
that binds to LDLR and targets for lysosomal
degradation within hepatocytes [97]. Heterozy-
gous carriers of PCSK9 mutations increase the
number of LDLRs on the cell surface, promoting
the catabolic rate of LDL-C [98] and reducing
circulating LDL and apoB levels.

Clinical manifestations of ABL and HBL usu-
ally become apparent in the neonatal period and
malabsorption is the central feature. Affected
individuals present fatty, foul-smelling stools,
vomiting, abdominal distension, and failure to
grow at the expected rate. Later in life, this con-
dition may progress to neuro-ophthalmological
dysfunction [86]. Typically, neuromuscular
signs present in the first or second decade of
life, and both the central and the peripheral ner-
vous system are involved. Neurological
manifestations include declined muscle coordina-
tion and inability to maintain balance and move-
ment, loss of sensation in the extremities, muscle
weakness or other involuntary movements. Oph-
thalmological findings tend to be variable, with
many patients being asymptomatic until adult-
hood. Loss of night or color vision tends to
occur at early stage in the disease but can progress
to a phase in which the light-sensitive layer
breaks down and consequently results in atypical
retinitis pigmentosa. Additionally, individuals
may have anemia with acanthocytes, hemolysis,
and increased international normalized ratio.
Liver involvement includes hepatic steatosis and
abnormal levels of transaminase, with a high
prevalence of severe fibrosis which can poten-
tially progress to cirrhosis or liver carcinoma
[99, 100].
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Till now, no formal clinical diagnostic criteria
for ABL and HBL have been published. The
diagnoses of the conditions are established in
typical clinical symptoms, lab examinations and
most importantly, the pathogenic variants
identified by molecular genetic testing. If two
mutations in alleles are identified, testing of the
proband’s parents is recommended to investigate
whether the variations originate from two differ-
ent chromosomes.

A framework for clinical management of ABL
and homozygous or compound heterozygous
HBL has been proposed by Lee J and Hegele
RA in 2014 [84], focusing on monitoring growth
in children and preventing complications in all
affected subjects. While for heterozygous HBL,
although there seems to be no obviously adverse
clinical outcomes, several reports of
complications caused by vitamin deficiency and
hepatic injuries due to fat accumulation over a
long period of time suggest that follow-up
assessments and appropriate interventions are
also indispensable [86, 101].

11.6 Sphingolipid Metabolism
Diseases

Sphingolipids are a class of lipids derived from
the aliphatic amino alcohol sphingosine.
Ceramides, sphingomyelins, and glycosphin-
golipids are three main types of sphingolipids,
differing in the substituents on head groups.
Sphingolipid metabolism diseases, termed as
disorders of sphingolipid metabolism, are a class
of diseases mainly occur in neural or even sys-
temic systems, including Niemann-Pick disease
(NPD), Fabry disease, Gaucher disease, Krabbe
disease, Tay-Sachs disease, metachromatic leuko-
dystrophy, and calvarial doughnut lesions (CDL)
with bone fragility [102, 103]. Most sphingolipid
metabolism diseases are inherited in an autosomal
recessive pattern. Sphingolipidoses, caused by
accumulation of lysosomal sphingolipid storage,
occupy the largest part of sphingolipid metabo-
lism diseases. In general, sphingolipidoses have a
prevalence of approximately 1/10,000 [104], but
it is actually higher in certain ethnics such as

Ashkenazi Jewish [105]. Enzyme replacement
therapy is accessible for people with Fabry dis-
ease [106] and Gaucher disease and may help
them live well into adulthood. Unfortunately,
the other types of sphingolipidoses are generally
fatal in infantile stage, but the progression may be
mild if the diseases are onset in juvenile or adult.

We here summarize the table of sphingolipid
metabolism diseases considering gene and related
characteristics as following (Table 11.5).

Generally, sphingolipidoses such as NPD,
Fabry disease, Gaucher disease, Farber disease,
and Krabbe disease are well-known to us caused
by accumulation of different sphingolipids in
lysosomes because of their degradation dysfunc-
tion [108]. However, as important as
sphingolipidoses, disease caused by aberrant
sphingolipid synthesis in cells like CDL is still
elusive. Take sphingomyelin metabolism for an
example, we give a brief summary to two
sphingolipid disorders, NPD and CDL, which
caused by the mutations in enzymes from oppo-
site biological reactions.

11.6.1 Niemann-Pick Disease (NPD)
(Type A and Type B)

11.6.1.1 Introduction and Genetic
Defects

NPD is a classic kind of autosomal recessive
inherited lipid storage diseases. In 1961, Crocker
[109] divided NPD into four subtypes, and the
majority is NPD type A and B (NPA, MIM#
257200 and NPB, MIM# 607616), both caused
by mutations of SMPD1 gene (MIM# 607608),
which located on chromosome
11 (11p15.1–11p15.4), encoding a 631 amino-
acid protein named acid sphingomyelinase
(ASM) in the lysosome [9], a kind of enzyme
catalyzing the hydrolysis of sphingomyelin to
ceramide and phosphorylcholine [110]. So far,
approximately 1200 cases worldwide have been
reported as NPA or NPB. NPA is also known as
the intermediate protracted neurovisceral or the
classic infantile form, and NPB is the visceral
form [111].
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Table 11.5 Summary of genetic causes and characteristics of sphingolipid metabolism diseases

Gene Disease Inheritance
Lipid profile/
dysfunction Prevalence Clinical features

GBA Gaucher disease AR Deficiency of
β-glucocerebrosidase,
glucocerebroside
accumulation,
especially in the bone
marrow, spleen, and
liver

1–9/100000
(Europe)
1–9/100000
(Sweden)

Hepatosplenomegaly,
anemia,
thrombocytopenia,
lung disease, bone
abnormalities,
hepatosplenomegaly,
hematological defects

SMPD1/
3

Niemann-pick
disease, type A/
Niemann-pick
disease, type B

AR Little or no acid
sphingomyelinase
(ASM) (type A 1% or
less, type B 10%);
sphingomyelin
accumulation in the
nerve system, spleen
and liver

1/250,000
(Ashkenazi
Jewish)

Vomiting, diarrhea,
hepatosplenomegaly,
hypotrophy, pain,
respiratory disorder

NPC1/2 NPD, type C1/
NPD, type C2

AR Dysfunction of NPC
intracellular cholesterol
transporter 1/2,
cholesterol (LDL-C,
HDL-C) accumulation
in the nerve system

1/150,000
(C1 95%, C2 5%,
Spanish-
American;
type D, Nova
Scotia)

Characteristic vertical
supranuclear gaze
palsy (VSGP),
psychiatric
disturbances

SCARB2 Deficiency of
lysosomal integral
membrane protein type
2 (LIMP-2) [107],
LDL-C accumulation
in nerve system

GLA Fabry disease X-linked
recessive

Dysfunction of
α-galactosidase A,
intracellular
accumulation of
globotriaosylceramide
(GL-3), particularly in
the vascular tree, nerve
system, kidney, and
heart

1–9/100000
(Sweden)

Episodes of pain,
especially in hands
and feet, clusters of
small,
angiokeratomas,
hypohidrosis, corneal
opacity, progressive
kidney damage, heart
attacks, and strokes

SGMS
1/2

Calvarial doughnut
lesions with bone
fragility (CDL)

AD Dysfunction of
sphingomyelin
synthase 2, increased
phosphatidylcholine,
and decreased
ceramide in the bone
and nerve system

<1/1000000
(worldwide)

Cranial sclerosis and
spondylometaphyseal
dysplasia (CDLSMD)

HEXA Tay-Sachs disease AR Deficiency of
hexosaminidase α,
GM2 ganglioside
accumulation, in the
nerve system (brain
and spinal cord), testes,
and eye

1–9/1000000
(worldwide)

Macrocephaly,
seizures, tremor, and
back pain

ARSA Metachromatic
leukodystrophy

AR Deficiency of
arylsulfatase A,
sphingolipids
(sulfatides)

– Intellectual disability
and seizures

(continued)
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11.6.1.2 Clinical Features, Diagnosis,
and Treatment

Symptoms of NPD are related to the organs in
which sphingomyelin accumulates, including the
peripheral symptoms (hepatosplenomegaly) and
the central symptoms (dementia, dysarthria, dys-
phagia, and ataxia). NPA is different from NPB in
the aspect of decrease of neurological function
[112]. Most NPA patients show severe

neuropathic symptoms and shorter lifespan
(between 1.5 and 3 years) than NPB
[111, 113]. Besides, NPA eventually presents
classic cherry-red spots of the macula of the retina
in all affected children and fatally interstitial lung
diseases, which are characteristics for the differ-
ential diagnosis [113].

The diagnosis is established by demonstrating
the deficiency of acid sphingomyelinase activity

Table 11.5 (continued)

Gene Disease Inheritance
Lipid profile/
dysfunction Prevalence Clinical features

accumulation in the
brain, bone, and bone
marrow

LASS Autosomal
recessive
congenital
ichthyosis (ARCI)

AR Deficiency of ceramide
synthase (CerS3),
decreased ceramide in
the skin, eye, and testes

1–9/1000000
(Europe)

Ichthyosis (abnormal
skin scaling over the
whole body)

SPTLC Neuropathy,
hereditary sensory,
and autonomic,
Type 1

AD Decreased serine
palmitoyltransferase
(SPT),
glucosylceramides
accumulation in nerve
system

– Hearing loss,
dementia, peripheral
neuropathy

GLB1 GM1
gangliosidosis

AR Dysfunction of
galactosidase β1, GM1
ganglioside
accumulation in the
brain, spinal cord, and
bone

1–9/1000000
(Europe), 1–5/
10000 (Malta),
1–9/100000
(Brazil), 1–9/
1000000
(Sweden).

Exaggerated startle
reactions
Hepatosplenomegaly,
skeletal abnormalities,
seizures, intellectual
disability, and the
cherry-red spot

GALC Krabbe disease
(globoid cell
leukodystrophy,
GLD)

AR Deficiency of
galactosylceramidase,
psychosine
accumulation in the
brain, bone, and bone
marrow

1–9/1000000
(United States,
France);
1–9/100000
(Europe,
Sweden)

Irritability, muscle
weakness, feeding
difficulties, fever, stiff
posture, delayed
mental and physical
development, weak
muscles

CERKL Retinitis
pigmentosa

AR Deficiency of ceramide
kinase, decreased
N-acetylcysteine in the
eye, retina, and testes

– Rod-cone dystrophy
and optic disc pallor

ACER3 Leukodystrophy,
progressive, early
childhood-onset
(PLDECO)

AR Deficiency of alkaline
ceramidase
3, abnormal production
of myelin in the brain

– Low-set ears and
intellectual disability

ASAH1 Farber
lipogranulomatosis
(FRBRL)

AR Dysfunction of
N-acylsphingosine
amidohydrolase 1
(ceramidase), ceramide
accumulation in the
liver, skin, and spleen

<1/1000000
(worldwide),
<1/1000000
(Europe)

Hoarse voice,
lipogranulomas,
swollen, painful
joints; difficulty
breathing,
hepatosplenomegaly

AD autosomal dominant, AR autosomal recessive, ACD autosomal codominant
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in white blood cells or cultured skin fibroblasts.
Prenatal diagnosis is possible by measurement of
sphingomyelinase activity or the neonatal screen-
ing panel based on the gene sequencing technic
on uncultured or cultured chorionic villus sam-
pling, or cultured amniocytes [114].

Liver transplantation is more efficient to NPB
patients with severe liver and pulmonary dysfunc-
tion than NPA [115]. Meanwhile, enzyme
replacement therapy, especially in NPB patients,
has been tested worked in clinical trials
[116]. Although nowadays no curable treatment
is available for NPA, recent study [117] has
revealed that cerebellomedullary cistern injection
of adeno-associated viral vector serotype
9 encoding human ASM can effectively recover
the ASM activity in ASM knockout mice, which
indicate possibility of genetic therapy in clinical
trials in NPA as well as other lysosomal storage
brain disorders. Further clinic studies using
enzyme replacement therapy or gene therapy
might be promising in the foreseeable future.

11.6.2 Calvarial Doughnut Lesions
with Bone Fragility (CDL)

CDL (OMIM# 126550), also known as familial
doughnut lesions of skull, is a rare autosomal
dominant disease and occurs in less than
1/1000,000 of the population [118]. Till now,
9 familial cases and 29 sporadic cases have been
reported worldwide [118–123].

Pathogenic variants of sphingomyelin
synthase 2 (SGMS2 OMIM* 611574) is the
main cause of CDL, which located in chromo-
some 4, encoding a key terminal limiting enzyme
in control of sphingomyelin synthesis, presenting
plasma membrane-bound sphingomyelin metab-
olism dysfunction in skeletal homeostasis [118]
and recurrent facial nerve palsy [119].

Several characteristics such as bone mass,
bone microarchitecture are negatively affected
by the SGMS2 mutations [124]. The main char-
acteristic phenotypes are low bone mineral den-
sity, primary sclerotic doughnut lesions in
distinctive X-ray translucencies of the skull,
increased spinal and peripheral fractures, carious

teeth, and other related phenotypes
[118, 122]. However, different from patients’
phenotypes, SGMS2 defective mice were
protected from insulin resistance in diet-induced
obesity, but no evidence of any overt bone defect
[125, 126], which indicates that a bone phenotype
in SMS2 knockout mice may have been
overlooked. Neurotoxicity induced by aberrant
sphingomyelin metabolism is similar to neuronal
damage in ASM deficiency NPD [127].

Bisphosphonate treatment in patients with
SGMS2 mutation brought notable improvement
in back pain and quality of life [124], but long-
term effects still remain unclear. Molecular and
biochemical mechanism exploration may identify
novel therapeutic targets to enhance bone
strength. Moreover, S1P, generated through cer-
amide deacylation as first step and sphingosine
kinases phosphorylation as second step, is
recognized as a fundamental role in bone metab-
olism, especially in coupling osteoblasts and
osteoclasts [128]. Thus, S1P lyase is likely to be
a potential target for osteoporosis therapy [129].
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Preb1-High-Density Lipoprotein
in Cardiovascular Diseases 12
Yunqin Chen and Jibin Dong

Abstract

Serum preβ1-high-density lipoprotein (preβ1-
HDL) was defined by two-dimensional
non-denaturing linear gel electrophoresis and
apolipoprotein A-I immunoblotting. However,
there are still debatable questions for its quan-
tification and coronary artery disease (CAD)
relevance. We have established a novel and
simple method for human serum preβ1-HDL
quantification. We found that human lower
preβ1-HDL is an independent predictor for
severer coronary artery stenosis. In this chap-
ter, we will discuss all these.

Keywords

Preβ1-HDL · Preβ1-HDL measurement ·
HDL · LDL · Cardiovascular diseases

12.1 Regulation of Blood Lipids
and Residual
Cardiovascular Risks

Atherosclerotic cardiovascular disease is a serious
threat to human health [1], but coronary heart

disease can be prevented and controlled by
regulating blood lipids with basic strategies of
reducing the pathogenic effect of risk factors
and enhancing the anti-atherosclerotic effect of
protective factors. For the primary risk factor of
low-density lipoprotein cholesterol (LDL-C),
statins and PCSK9 inhibitors can significantly
reduce LDL-C levels and stabilize plaque and
the incidence of cardiovascular events [2]. How-
ever, even if LDL-C is reduced, it is difficult to
completely inhibit the progress of atherosclerotic
plaque lesions, and the residual risk of cardiovas-
cular disease remains a challenging problem
worldwide currently [3].

As we know, reverse cholesterol transport
(RCT) is the key mechanism for plaque regres-
sion. As a protective factor against atherosclero-
sis, high-density lipoprotein (HDL) transports
excess cholesterol from peripheral cells to the
liver for metabolism [4]. Unfortunately, all previ-
ous clinical trials of drugs that attempted to
increase HDL levels, including cholesteryl ester
transfer protein (CETP) inhibitors, did not
achieve the expected beneficial results
[5]. CETP inhibitors, such as evacetrapib, can
significantly increase large HDL particles but
fail to effectively reduce cardiovascular endpoint
events [6]. Therefore, it is necessary to reconsider
the composition and function of HDL [7, 8]. As
an extracellular receptor, small particles of HDL,
especially nascent HDL (nHDL), promote cellu-
lar cholesterol efflux [9], which is an important
focus of research in this field.
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12.2 Particle Characteristics of nHDL

Owing to differences in the physical and chemical
properties of their constituents, HDL particles
possess a complex heterogeneity [10]. Free apoli-
poprotein A-I (apo A-I) receives cholesterol from
cells and initially produces nHDL [11]. This type
of particle has the smallest diameter of 5 nm.
Because the particle shows preβ1 mobility during
gel electrophoresis, it is also known as preβ1-
HDL. The preβ1-HDL mainly comprises apo
A-I and trace lipids (phospholipids and free cho-
lesterol) at an extremely high density, reaching
1.210 g/mL; in fact this preβ1-HDL particle may
be defined as a kind of very high-density lipopro-
tein (VHDL) [12]. Notably, the lipoprotein
particles comprise apolipoprotein and lipid, with
a hydrophilic phospholipid-coated surface and a
hydrophobic core of lipids such as cholesterol
esters and triglycerides. apo A-I exists mainly in
the form of lipoprotein particles with lipids, as
well as in lipid-free forms, including precursors
[13], monomers, and polymers [14]. Although
lipid-free apo A-I and preβ1-HDL both exhibit
electrophoretic characteristics of preβ1 migration,
there is a fundamental conceptual difference
between them.

12.3 Detection Methods for nHDL

Based on the physical and chemical
characteristics of the particles, the main separa-
tion techniques for preβ1-HDL include gel elec-
trophoresis, ultrafiltration, and chromatography.
The quantitative methods mainly rely on protein
immunity, but quantitative methods of lipid
staining have also been reported recently.

The first detection method is protein immuno-
assay. In 1985, Kunitake [15] obtained
lipoproteins containing apo A-I through
immunoadsorption. After separation using aga-
rose gel electrophoresis, he first reported that the
lipoproteins containing apo A-I exhibited preβ
electrophoretic migration characteristics. In
1988, Castro [16] established a method to separa-
tion and quantitative detection of apo A-I-

containing particles using two-dimensional gel
electrophoresis and Western blotting and reported
that this two-dimensional polyacrylamide gel
electrophoresis could distinguish lipid-free apo
A-I (possibly a precursor or monomer) from
preβ1-HDL. In 1993, Asztalos [17] improved
the two-dimensional electrophoretic separation
and used a radioactive 125I-antibody to quantify
preβ1-HDL, which has since been widely used for
a long time (Boston Heart HDL Map®). In addi-
tion, other methods that take advantage of the
difference in the particle size of the lipoproteins
have been reported in the literature, including
ultrafiltration (membrane pore size 100 kDa)
[18] and high-performance size-exclusion chro-
matography [19] for separation and purification
of small particles of lipoproteins containing apo
A-I (preβ1-HDL or Sm Lp-AI) and quantification
of lipoprotein composition by apo A-I antibody
immunoassay. In 2000, Miyazaki [20] reported
the use of a specific apo A-I monoclonal antibody
(MAb55201) to detect plasma preβ1-HDL via
ELISA. But in another study in 2014 [21], he
found no difference between the electrophoretic
migration of preβ1-HDL purified from plasma
with MAb55201 and lipid-free apo A-I. Based
on the observation that no phospholipid or cho-
lesterol was detected by chemical analysis, this
study confirmed that the preβ1-HDL detected in
the plasma by immunoblotting was a lipid-free
apo A-I monomer. Therefore, to avoid interfer-
ence from lipid-free apo A-I, the prerequisite for
quantitative assessment of preβ1-HDL by protein
immunoassay is to completely distinguish the
lipid-free apo A-I (including monomers and
polymers) or selective recognition through spe-
cific antibodies.

The second detection method is lipid staining.
Recognition of lipoproteins by lipophilic dyes
such as Sudan Black B can completely avoid the
interference of lipid-free apolipoprotein. In a pre-
vious study, we built the MEDLiPO system and
set three layers of polyacrylamide gels at
concentrations of 3.0%, 3.6%, and 7.0% as the
electrophoretic medium. The serum lipoproteins
were prestained by Sudan Black B for electropho-
retic separation, and the HDL with the fastest
electrophoretic migration showed relatively an
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isolated staining band [12]. After analyzing the
particle size, density, charge, and chemical
composition, it was proved that this isolated
fast-moving lipoprotein was the so-called preβ1-
HDL. In the study, Sudan Black B was dissolved
in a mixed solvent of isopropyl alcohol and eth-
ylene glycol in a volume ratio of 4:1, which
improved the stability of lipoprotein staining.
Using BeneScan-1000 scanner customized by
BENEFI and MICROTEK Technology Co., Ltd
(Shanghai, China), the separated gel images and
gray scale of the lipid staining were acquired and
quantitatively analyzed by measuring the optical
density. Then, the absolute content and percent-
age of total lipid staining of preβ1-HDL were
quantified. After repeated experiments, the results
showed that the intra- and inter-assay coefficients
of variation of serum preβ1-HDL were <5%. The
MEDLiPO system was easy to operate and could
meet the actual requirements of clinical testing
with a unique performance.

12.4 nHDL and Coronary Heart
Disease

Most clinical studies have reported an increase in
plasma preβ1-HDL levels in patients with coro-
nary heart disease, with a significantly positive
correlation [22]. Guey et al. [23] reported that
preβ1-HDL was an independent predictor of
myocardial infarction. Sethi et al. [24] showed
that preβ1-HDL levels in patients with ischemic
heart disease (IHD) were twice as high as those in
the control group, and the high preβ1- HDL and
low activity of lecithin cholesterol acyltransferase
(LCAT) were considered risk factors for IHD,
independent of HDL-C. Because preβ1-HDL
exerts a protective effect by promoting choles-
terol efflux from peripheral cells, the main reason
for the increase in preβ1-HDL content in patients
with coronary heart disease is that the
accumulated preβ1-HDL cannot be converted
into large particles of mature HDL, leading to
reverse cholesterol transport disorders. Under
this circumstance, preβ1-HDL accumulates and
increases in patients with Tangier disease
[25]. The pathogenesis of Tangier disease is

owing to a defect in the ATP-binding cassette
(ABC) transporter gene ABCA1 and impaired
efflux of cellular cholesterol. Further, ABCA1
deficiency results in the inability of lipid-free
apo A-I to receive cholesterol from cells, and
theoretically, no preβ1-HDL is formed in this
situation. However, immunoquantitative testing
showed a controversial result. The MEDLiPO
system demonstrated that preβ1-HDL and HDL
were missing in the samples obtained from
patients with Tangier disease [12]. Very few stud-
ies have reported a decrease in plasma preβ-HDL
[26] or preβ1-HDL levels in patients with coro-
nary heart disease [12, 27]. The reasons are more
related to the detection methods and the
differences observed in the included cases.

Using the MEDLiPO system can effectively
avoid the interference of lipid-free apo A-I and
accurately detect preβ1-HDL by quantitative
determination of lipid staining. In 2016, we
reported that the MEDLiPO system detected a
decrease in serum preβ1- HDL levels in patients
with coronary heart disease and the decrease was
independently negatively correlated to the degree
of coronary stenosis [12]. At the beginning of
2018, we fortunately obtained some blood
samples from the ACCENTUATE clinical trial
[28]. And using the MEDLiPO system, we
found that plasma preβ1-HDL was significantly
reduced after treatment with the CETP inhibitor
evacetrapib [29]. These results were completely
contrary to those of previous reports [30]. The
preβ1-HDL reduction could give a clue to under-
stand the failure of CETP inhibitors on cardiovas-
cular outcomes.

12.5 nHDL Particle Reconstruction
and Hypothesis

The ABC transporter family mediates free choles-
terol efflux from cells [31]. As an acceptor,
activated lipid-free apo A-I accepts cell mem-
brane phospholipids and free cholesterol by
ABCA1 to form a nascent type of preβ1-HDL
particle. This process is the initiation of the
reverse cholesterol transport mechanism.
ABCA1-dependent cellular cholesterol efflux is
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Fig. 12.1 Generation and reconstruction of nHDL
particles. Extracellular activated apo A-I receives
phospholipids and free cholesterol under ABCA1-
mediated production of preβ1-HDL. The reconstruction

of preβ1-HDL in blood circulation is in a state of dynamic
equilibrium. The tissue barrier results in a difference in the
composition and metabolism of extracellular fluid and
plasma lipoproteins

Fig. 12.2 MEDLiPO system for lipoprotein detection.
Gel separation and quantification of blood lipoproteins
through staining with Sudan Black B. 2-nitrobenzoic
acid (DTNB), an LCAT inhibitor, inhibits the conversion
of nHDL to mature HDL. The production amount of
preβ1-HDL was calculated using preβ1-HDL content

inhibited by a 37�C water bath for 12 h + DTNB minus
the basic value (0 h). The amount of conversion is the
value of the production amount plus the net content (12 h).
The amount of serum preβ1-HDL produced in the water
bath over the 12 h was less than the amount of transforma-
tion, and its net content decreased
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a key mechanism by which HDL resists athero-
genesis and reverses plaque. If the extracellular
apo A-I or cell membrane ABCA1 is mutated or
modified, it will cause dysfunction of the choles-
terol efflux from the cell and accumulation of the
lipid-free apo A-I, making it difficult to produce
preβ1-HDL. There is a dynamic balance between
production and transformation of preβ1-HDL in
plasma or serum (Fig. 12.1). LCAT promotes the
esterification of free cholesterol, and HDL is
transformed from small particles to large
particles. Hepatic lipase catalyzes the hydrolysis
of lipids, and large particles of HDL are
converted to small particles. Both CETP and
phospholipid transporter are involved in lipid
transfer between lipoprotein particles and in par-
ticle remodeling.

Neonatal umbilical cord blood is rich in preβ1-
HDL. In vitro water bath experiments result in the
inhibition of LCAT, and the metabolic activity of
preβ1-HDL particles remodeling could be
measured by detecting the rate of change in the
production and conversion of preβ1-HDL
(Fig. 12.2). The preβ1-HDL content and meta-
bolic activity in neonatal cord blood are about

twice of those in adults (Fig. 12.3). We speculate
that preβ1-HDL plays a key role in cholesterol
reverse transport and plaque reversal and this
protective effect may diminish with age. It has
been proposed [32] that blood lipid levels in
newborns may be an ideal target for lipid-
lowering therapy in patients with coronary heart
disease. Neonatal blood lipids are characterized
by extremely low LDL-C levels (<1.0 mmol/L)
which is lower than HDL-C [33], whereas preβ1-
HDL levels as newborns are significantly higher
than those in adults. At present, the combined
application of statins and PCSK9 inhibitors can
achieve extremely low LDL-C levels in most
patients with coronary heart disease. Regulating
preβ1-HDL levels in newborns and its function of
promoting cholesterol efflux from cells may be a
promising way to prevent atherosclerotic cardio-
vascular disease and reduce residual cardiovascu-
lar risk in the future.

Fig. 12.3 Reconstruction curve of nHDL particles. The
generation (left) and transformation (right) curves show
that serum nHDL particle reconstruction is in a state of

dynamic equilibrium. After the water bath experiments,
the production and conversion rates of preβ1-HDL were
calculated from the base values
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CGI-58: Versatile Regulator
of Intracellular Lipid Droplet
Homeostasis

13

Liqing Yu, Yi Li, Alison Grisé, and Huan Wang

Abstract

Comparative gene identification-58 (CGI-58),
also known as α/β-hydrolase domain-
containing 5 (ABHD5), is a member of a
large family of proteins containing an
α/β-hydrolase-fold. CGI-58 is well-known as
the co-activator of adipose triglyceride lipase
(ATGL), which is a key enzyme initiating
cytosolic lipid droplet lipolysis. Mutations in
either the human CGI-58 or ATGL gene cause
an autosomal recessive neutral lipid storage
disease, characterized by the excessive accu-
mulation of triglyceride (TAG)-rich lipid
droplets in the cytoplasm of almost all cell
types. CGI-58, however, has ATGL-
independent functions. Distinct phenotypes
associated with CGI-58 deficiency commonly
include ichthyosis (scaly dry skin), nonalco-
holic steatohepatitis, and hepatic fibrosis.
Through regulated interactions with multiple
protein families, CGI-58 controls many meta-
bolic and signaling pathways, such as lipid and

glucose metabolism, energy balance, insulin
signaling, inflammatory responses, and ther-
mogenesis. Recent studies have shown that
CGI-58 regulates the pathogenesis of common
metabolic diseases in a tissue-specific manner.
Future studies are needed to molecularly
define ATGL-independent functions of
CGI-58, including the newly identified serine
protease activity of CGI-58. Elucidation of
these versatile functions of CGI-58 may
uncover fundamental cellular processes
governing lipid and energy homeostasis,
which may help develop novel approaches
that counter against obesity and its associated
metabolic sequelae.

Keywords

CGI-58 · ATGL · Lipid droplet · Lipolysis

13.1 Introduction

The human comparative gene identification-58
(CGI-58) gene was identified through compara-
tive gene identification studies using the
Caenorhabditis elegans proteome and human
expressed sequence tag (EST) nucleotide data-
base [109]. Human CGI-58 gene is located at
the chromosome 3p21.33 locus, spanning about
32kb and producing several splice variants. The
full-length human CGI-58 cDNA is transcribed
from seven exons and encodes a 349 amino acid
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protein of ~39 kDa (Fig. 13.1a). CGI-58 is also
known as α/β hydrolase domain-containing
5 (ABHD5). The ABHD subfamily belongs to a
large protein family defined by an α/β hydrolase
fold [146, 258]. The α/β hydrolase fold has a
highly conserved catalytic triad containing a
nucleophile (serine, cysteine, or aspartic acid),
an acidic residue, and histidine that are close in
3D structure, though apart from each other in
sequence [116, 258]. The ABHD subfamily has
a total of 19 members in humans and 15 members
in mice [128, 202], yet the functions of most
remain unknown. CGI-58 differs from other
members in this subfamily in that the critical
serine in the catalytic triad is substituted by
asparagine [116].

Mutations in the human CGI-58 gene were
identified as the cause of Chanarin-Dorfman syn-
drome (CDS, OMIM 275630) (Fig. 13.1), an
autosomal recessive neutral lipid storage disease
(NLSD) with ichthyosis (thickened dry skin)
[58, 116]. CDS is characterized by the accumula-
tion of triglyceride (TAG)-rich cytoplasmic lipid

droplets (LDs) in most cell types, including
leukocytes (Jordans’ anomaly) [96], hepatocytes,
myocytes, and cells in the epidermis, dermis, and
intestinal mucosa [33, 46, 183, 205]. Patients with
CDS often manifest hepatomegaly (hepatic
steatosis and steatohepatitis), myopathy, micro-
cephaly, cataracts, hearing loss, ataxia, mild men-
tal retardation, and short stature [33, 46, 90,
183]. Since the initial description of the disease
by Dorfman and Chanarin [33, 46], about
130 cases with more than 40 different mutations
spanning the entire protein sequence have been
reported worldwide [7, 49]. Types of mutations
include deletion, insertion, missense, nonsense,
and frameshift mutations (Fig. 13.1b) [1, 3, 5, 7,
9, 12, 22–24, 49, 52, 54, 89, 92, 116, 130, 150,
151, 169, 174, 181, 187, 192, 208, 219, 224, 243,
255]. While loss-of-function mutations cause
CDS (Fig. 13.1), it is currently unknown whether
gain-of-function exists for CGI-58 gene.

CGI-58 is ubiquitously expressed in mammals
[18, 112, 211]. It is predicted to be cytosolic
[116]. Interest in the scientific community

Fig. 13.1 (a) The amino acid sequence of human CGI-58
protein. The amino acids in red circles highlight those
mutated in patients with CDS. Some altered splice donor
or acceptor sites are not highlighted. According to the two
studies using the mouse CGI-58 protein [16, 74], the
amino acids 16–30 in the human CGI-58 protein are likely
required for LD anchoring. (b) CGI-58 mutations reported

in humans before March 2020. Biallelic mutations in red
color are associated with the full phenotypes of CDS,
biallelic mutations in blue color are associated with the
partial phenotypes (no ichthyosis) of CDS, and those in
black color denote monoallelic mutations associated with
nonalcoholic fatty liver disease
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regarding the functions of CGI-58 started in the
early 2000s when three laboratories simulta-
neously reported that CGI-58 localizes at cyto-
solic LDs [121, 211, 244]. This was the time
when biomedical scientists started to appreciate
the cytosolic LD as an organelle that dynamically
regulates energy storage and mobilization, rather
than as an inert liposome-like structure that pas-
sively stores excess energy. The conceptual
innovation placed cytosolic LDs at the center of
cellular energy metabolism whose dysregulation
is a hallmark of metabolic diseases, such as obe-
sity, insulin resistance, type II diabetes, fatty
liver, and cardiovascular disease. It was believed
that excessive deposition of cytosolic lipid
droplets would cause lipotoxicity, a biochemical
mechanism that was widely used to explain
impairments of cellular metabolism, cell signal-
ing transduction, and redox imbalance associated
with overnutrition-driven metabolic diseases
[221]. Mutations in the human CGI-58 gene
were known to cause LD deposition in almost
all cell types examined, which provided the bio-
medical research community an excellent oppor-
tunity to test how LD accumulation promotes
lipotoxicity. Over the past 15 years, we have
learned a great deal about the pros and cons of
cytosolic LDs by studying the biochemistry, cell
biology, and tissue-specific pathophysiology of
CGI-58. This chapter summarizes the current
knowledge about the role of CGI-58 in LD lipol-
ysis (i.e., hydrolysis of TAGs stored in cytosolic
LDs) and discusses how CGI-58-dependent met-
abolic and signaling pathways regulate the patho-
genesis of common metabolic diseases.

13.2 CGI-58 Interacts
with Lipolysis-Regulatory
Proteins

13.2.1 The PAT (Perilipin, Adipophilin,
TIP47) Protein Family

Biochemical and cell biology studies have
demonstrated that CGI-58 binds to cytosolic
LDs and interacts with perilipin 1 (PLIN1),

adipose differentiation-related protein (ADRP,
also known as adipophilin or PLIN2), TIP47
(PLIN3), and muscle LD protein (MldP or
PLIN5) [18, 63, 121, 161, 211, 244, 245]. These
are members of the PAT (perilipin, adipophilin,
TIP47) family that also includes S3-12
(or PLIN4) [105, 126, 133, 236]. The PAT family
proteins share a highly conserved N-terminal
structure. They localize at the surface of intracel-
lular LDs of different lipid compositions and
sizes, regulating energy storage and mobilization
in response to nutritional fluctuations and various
stimuli [126]. Using the two frame shift mutants
(Leu-404fs and Val-398fs) that cause partial
lipodystrophy in humans, Savage and associates
have shown that the C-terminal region of human
PLIN1 is essential for binding to CGI-58, and this
interaction stabilizes CGI-58 localization on the
LDs [63].

13.2.2 The PNPLA (Patatin-Like
Phospholipase Domain
Containing) Protein Family

The process that mobilizes the energy (mainly as
TAGs) stored in intracellular LDs for utilization
is called intracellular lipolysis (Fig. 13.2)
[253]. During LD lipolysis, the three fatty acyl
chains in a TAG molecule are sequentially
cleaved into diacylglycerol (DAG), monoacyl-
glycerol (MAG), and glycerol, releasing a fatty
acid molecule at each step. The first enzyme that
was discovered to catalyze hydrolysis of cytosolic
LD-embedded TAGs is hormone-sensitive lipase
(HSL) [86, 111, 177, 223]. The substrate spec-
trum of HSL appears to be quite broad, including
DAGs, TAGs, MAGs, cholesteryl esters, and
retinyl esters [40, 113, 234]. Monoacylglycerol
lipase (MAGL) was reported, shortly after HSL,
as a lipase that specifically hydrolyzes MAGs
[98, 223]. Both HSL and MGL belong to the
α/β-hydrolase fold family. For years, HSL was
thought to be responsible for hydrolyzing TAGs
in adipocyte LDs. However, HSL-null mice
showed the accumulation of DAGs rather than
TAGs in multiple tissues [77, 157, 179, 227],
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indicating that other enzyme(s) are involved in
the TAG hydrolysis. In 2004, three groups inde-
pendently reported a new lipase possessing abun-
dant TAG hydrolase activity, and the enzyme was
named calcium-independent phospholipase A2ζ
(iPLA2ζ), desnutrin, or adipose triglyceride lipase
(ATGL), respectively [95, 226, 264]. This newly
discovered lipase turned out to be the rate-
limiting enzyme of cytosolic LD lipolysis
(Fig. 13.2), and, thus, the name ATGL became
more popular than the other names. ATGL is also
known as patatin-like phospholipase domain
containing 2 (PNPLA2). The PNPLA protein
family consists of a total of nine members, includ-
ing PNPLA1 through PNPLA9, all of which seem
to be implicated in lipid metabolism through their
phospholipase or lipase activities, or other
functions [104, 144]. Comparative studies of

ATGL and CGI-58 in the context of adipose
lipolysis have resulted in a major breakthrough
regarding the biochemical function of CGI-58. In
2016, Dr. Rudolf Zechner and associates reported
that CGI-58 functions as a coactivator of ATGL
to promote in vitro TAG hydrolysis
[112]. Subsequent studies were consistent with
this original finding [70, 71, 161, 228, 233,
250]. Furthermore, CGI-58 was shown to release
from perilipin proteins following lipolytic stimu-
lation, which allowed CGI-58 to interact with
ATGL and activate TAG hydrolysis [70, 71,
211, 228]. In this scenario, the interaction of
CGI-58 and with perilipins functions as a brake
of lipolysis (Fig. 13.2), though its efficiency may
be cell-type specific due to distinct perilipin
compositions and the different abilities of

Fig. 13.2 Proposed model for CGI-58 regulation of cyto-
solic lipid droplet lipolysis. Lipolysis regulation differs
between basal and stimulated conditions. Under the basal
conditions, CGI-58 binds to PLIN1 in adipocytes or
PLIN5 in oxidative nonadipocytes, preventing its interac-
tion with ATGL. Thus, the lipolytic activity of ATGL is
limited. After stimulation, perilipins are phosphorylated,
resulting in the dissociation of CGI-58 from perilipins.

CGI-58 then interacts with ATGL and substantially
activates ATGL’s TAG hydrolase activity to stimulate
lipolysis, producing DAGs and fatty acids (FAs). The
DAGs are then hydrolyzed to produce MAGs and FAs
by HSL that was phosphorylated and recruited to the LDs
during the lipolytic stimulation. Finally, the MAGs are
hydrolyzed by MAGL to release the last fatty acyl chain
from the glycerol backbone of a TAG molecule
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individual perilipins in sequestering CGI-58 in
various cell types [161].

Although CGI-58 activates ATGL’s TAG
hydrolase activity [112], mutations in CGI-58
and ATGL cause distinct phenotypes in humans
and mice [58, 65, 75, 78, 116, 135, 172, 237]. For
example, human CGI-58 mutations cause NLSD
with ichthyosis [33, 46, 90, 116, 183], whereas
human ATGL mutations cause NSLD without
skin defects but with mild myopathy [58]. Global
CGI-58 knockout mice die ~16h after birth due to
a skin barrier defect [172], yet global ATGL
knockout mice are viable [78]. These phenotypic
differences associated with mutations of the two
genes indicate that CGI-58 must have ATGL-
independent functions. Recently, CGI-58 was
shown to interact with PNPLA1, another member
of the PNPLA protein family, to stimulate
PNPLA1-mediated ω-O-acylceramide production
in skin [102, 154], providing a potential mecha-
nism for skin barrier defect seen in patients with
CDS. CGI-58 was also shown to functionally
interact with the wild-type PNPLA3, the fatty
liver-promoting PNPLA3(I148M) variant [180],
and a lipase dead PNPLA3 mutant [32],
suggesting that CGI-58 may coordinate with
PNPLA3 and other lipases to regulate LD turn-
over independently of PNPLA3’s lipase activity.
Consistent with this scenario, two laboratories
reported that PNPLA3, the fatty liver-causing
PNPLA3(I148M) variant, in particular, competes
with ATGL (PNPLA2) to bind with CGI-58,
reducing TAG hydrolysis in the liver and brown
adipocytes [233, 250]. These observations
provided a mechanism for how the PNPLA3
(I148M) variant promotes fat deposition. How-
ever, such observations cannot explain why
PNPLA3, including PNPLA3(I148M) but not a
lipase dead mutant, retains its ability to reduce LD
sizes when co-expressed with CGI-58 in the
absence of ATGL [32]. It remains possible that
PNPLA3 displays an in vivo lipase or
transacylase activity toward specific substrates
under some pathophysiological or nutritional
conditions. In addition to PNPLA1-3, other
members of PNPLA protein family may also
interact with CGI-58 to fulfill unique functions

under specific pathophysiological and nutritional
conditions.

13.2.3 The Fatty Acid-Binding Protein
(FABP) Family

Another group of proteins that interact with
CGI-58 is the fatty acid binding protein (FABP)
family members [85]. It was hypothesized that
FABP interacts with CGI-58 to promote ATGL-
mediated intracellular lipolysis by serving as an
acceptor of free fatty acids released from TAG
hydrolysis [85]. This was an important finding
because it provided a mechanism for the handling
of lipolytic products. Intriguingly, the lipolytic
product long-chain acyl CoA was shown to bind
CGI-58 and promote CGI-58 interactions with
perilipins to suppress lipolysis [188]. This phe-
nomenon seems to be an end-product feedback
mechanism that fine-tunes hydrolysis of TAGs
stored in intracellular LDs. The interactions of
CGI-58 with LD coat proteins, lipases, and lipids
suggest that CGI-58 likely play a key role in
organizing major components of LD lipolysis
into a functional “lipolysome” [85].

13.3 CGI-58 as a Serine Protease

The latest member of the CGI-58 interactome is
histone deacetylase 4 (HDAC4). Backs and
associates reported that CGI-58 functions
in vitro and in vivo as a serine protease that
cleaves HDAC4 in the heart in response to cate-
cholamine stimulation, generating an N-terminal
polypeptide of HDAC4 (HDAC4-NT) to protect
cardiac functions [94]. This study was
conceptually paradigm shifting, because it was
the first to demonstrate that CGI-58 can function
as a serine protease. CGI-58 was previously
shown to function as a coactivator of a lipase
that promotes lipolysis, and it was never thought
to be a protease that promotes proteolysis. Per-
haps, CGI-58 is a protein of dual function that
promotes both lipolysis and proteolysis. This
novel function of CGI-58 raises many new and
exciting questions regarding the core function of
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the protein. For example, does CGI-58 cleave
other proteins interacting with it? If yes, is this
proteolytic function required for CGI-58 to acti-
vate LD lipolysis? Does a lipase require proteo-
lytic cleavage prior to digesting a lipid molecule?
Answers to these questions are expected to pro-
vide fundamental insights into the molecular and
biochemical bases of lipolysis and its potential
crosstalk with proteolysis.

13.4 Molecular Basis for CGI-58
Activation of ATGL-Dependent
Lipolysis

The cellular, structural, and biochemical bases for
CGI-58 and ATGL interaction to promote TAG
hydrolysis remain incompletely understood. The
N-terminal amino acids 1–30 of mouse CGI-58
were shown to form a lipophilic tryptophan-rich
stretch, which is essential for CGI-58 to localize
at the LD and activate ATGL in cultured cells
[74]. This tryptophan-rich stretch appears to
anchor CGI-58 to the LD surface through its
three tryptophan residues serving as the left and
right anchor arms [16]. A comparative study of
mouse ABHD5 (CGI-58) and ABHD4, an ABHD
family member that is closely related to ABHD5
but does not activate ATGL, identified R299 and
G328 as essential residues for activating ATGL’s
TAG hydrolase activity. However, these two
amino acids of ABHD5 did not affect ATGL
translocation to LDs or ABHD5 binding to
PLIN1 [189]. These studies collectively suggest
that the LD localization is a prerequisite for a
functional CGI-58 to activate ATGL in vivo.

Studies with ATGL mutants associated with
NLSD have showed that the mutations result in
the expression of either enzymatically inactive
proteins localizing to LDs or active TAG hydro-
lase lacking LD localization [196]. Whereas
CGI-58 was identified as a coactivator of ATGL
[112], G0/G1 switch gene 2 (G0S2) was subse-
quently discovered as an inhibitor of ATGL func-
tion [246, 247]. It was further demonstrated that
G0S2 and CGI-58 do not appear to compete with

each other for binding to ATGL in cultured cells
transfected with tag-proteins [131]. The
254 N-terminal amino acids of mouse ATGL
were reported to be the minimal domain that can
be activated by CGI-58 and inhibited by G0S2
[41]. Interestingly, deleting ~220 amino acids
from the C-terminus of human ATGL protein
increases its interaction and activation by
CGI-58 in vitro in the test tube, despite defective
LD localization in vivo in cultured cells
[196]. This finding indicates that the C-terminal
region of ATGL is required for its targeting to
LDs and plays a regulatory role in ATGL activa-
tion by CGI-58. Considering the newly identified
protease function of CGI-58 [94], it would be
interesting to test whether CGI-58 activates
ATGL by a two-step process. In the first step,
CGI-58 may cleave ATGL to release the suppres-
sive role of ATGL’s C-terminal region on its
enzymatic activity, which would be consistent
with the observation that ATGL protein levels
are often increased in the absence of CGI-58
[75, 242, 263]. The second step may involve
conformational changes of the two proteins,
resulting in tight interactions and correct position-
ing of “lipolysome” components on the surface of
LD for hydrolysis of TAG in vivo.

13.5 CGI-58 Regulation
of Autophagy and Lipophagy

The role of CGI-58 as the coactivator of ATGL to
promote intracellular lipolysis has been
established and reproduced in a series of in vitro
and in vivo studies. ATGL is a cytosolic neutral
lipase that initiates cytosolic/neutral lipolysis by
cleaving a fatty acyl chain from a TAG molecule
stored in cytosolic LDs, thus playing a critical
role in intracellular lipolysis [95, 226, 257,
264]. Recently, the lipid-specific
macroautophagy (lipophagy) was shown to also
digest cytosolic LDs by delivering LD-associated
fat to lysosomes for degradation by lysosomal
acidic lipase (lysosomal/acidic lipolysis)
[203]. Autophagy refers to the “self-eating” of a
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cell in response to starvation or nutrient depriva-
tion for generating energy essential for its sur-
vival [155]. It is also a catabolic pathway for
recycling of excessive or damaged organelles,
such as mitochondria (mitophagy) [217]. In
humans, insulin resistance suppresses CGI-58
mRNA expression in liver [99]. The nutritional
and hormonal regulations of “neutral” lipolysis
and lipophagy (“acidic” lipolysis) are strikingly
similar. Both are induced by nutrient deprivation
[45], and both are activated by glucagon or
inhibited by insulin [45, 57]. It is currently
unknown if CGI-58 promotes fat lipolysis by
mediating lipophagy in addition to activating
ATGL. It was demonstrated that ATGL, a lipase
target of CGI-58, promotes autophagy and
lipophagy in a sirtuin 1 (SIRT1)-dependent man-
ner and that lipophagy is required for ATGL to
promote LD catabolism and associated fatty acid
oxidation in hepatocytes [190]. The crosstalk
between ATGL-dependent lipolysis and
autophagy was also seen in macrophages, though
this crosstalk may be indirect or compensatory
[66]. Some studies appear to suggest a role of
CGI-58 in regulating autophagy and lipophagy.
For example, in C2C12 muscle cells, CGI-58
overexpression increases, whereas CGI-58
knockdown decreases, autophagy and mitophagy
through regulation of AMPK and mTORC1 sig-
naling pathways [259]. CGI-58 was shown to
bind Beclin1, a major regulator of autophagy
[159, 163]. Many autophagy components can
localize to LDs under some conditions [48, 51,
100, 160, 200, 203], though it is not known
whether they interact with CGI-58 or other LD
proteins to specifically regulate lipophagy.
PLIN2, a major LD coat protein interacting with
CGI-58 [244, 245], also binds the heat shock
cognate protein of 70 kDa (Hsc70) for degrada-
tion via chaperone-mediated autophagy (CMA)
[100]. The inhibition of CMA reduces both neu-
tral and acidic lipolysis [100]. Hepatic CMA defi-
ciency, like CGI-58 deletion, induces severe
hepatic steatosis with liver damage and inflamma-
tion [220]. More studies are needed before the
direct role of CGI-58 in the mediation of
autophagy and lipophagy can be established.

13.6 Tissue-Specific Roles of CGI-58
in Energy and Lipid
Metabolism

13.6.1 Adipose CGI-58
in Thermoregulation
and Metabolic Health

CGI-58 is ubiquitously expressed in mammals,
with the highest expression in adipose tissue.
Adipose tissue is classically divided into white
adipose tissue (WAT) and brown adipose tissue
(BAT) that have distinct locations and opposite
functions in energy balance. In general, WAT
stores excess energy as TAGs in the large uniloc-
ular LD of white adipocytes, whereas BAT
dissipates metabolic energy as heat for adaptive
nonshivering thermogenesis in multilocular
LD-containing brown adipocytes.

During prolonged fasting or increased energy
demand, such as exercise and inflammation, the
stored energy in WAT is mobilized via adipose
LD lipolysis for utilization by cell types and
pathways critical in sustaining life, meeting ener-
getic demand, clearing infectious agents, or
resolving inflammation. This process is generally
defined as the stimulated adipose lipolysis,
because it involves activation of a cell membrane
receptor and its downstream signal transduction
by neural and humoral factors in response to
various stimuli [47, 108, 213, 253]. The classical
signal-stimulating adipose lipolysis is the activa-
tion of β-adrenergic receptors by catecholamines
released from the sympathetic nerves innervating
adipose tissue. Binding of a catecholamine to the
β receptor activates adenylate cyclase, which is an
enzyme that uses ATP as the substrate to produce
cAMP [55]. Elevation in cellular cAMP activates
protein kinase A (PKA), which then
phosphorylates several lipolytic components,
such as PLIN1 and HSL, to stimulate lipolysis
(Fig. 13.2) [213]. Thus, any stimulus that
activates PKA or increases cellular cAMP levels
is thus expected to stimulate adipose lipolysis.
Phosphorylation of a perilipin, perhaps together
with phosphorylation of CGI-58 on S239 [185],
causes CGI-58 disassociation from the perilipin
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for CGI-58 to interact with ATGL (Fig. 13.2)
[70, 71, 211, 213, 244, 251]. It was shown that
the in vitro TAG hydrolase activity of ATGL can
be increased up to 20-fold with CGI-58 interac-
tion [112]. The in vivo significance of CGI-58 as
an essential mediator of the stimulated lipolysis
was demonstrated in a study showing that
adipose-specific inactivation of CGI-58 abolishes
the isoproterenol-stimulated increase in plasma
levels of free fatty acids in mice [201].

The nonshivering thermogenesis in BAT is
mainly mediated by uncoupling protein
1 (UCP-1), which resides in the inner membrane
of a mitochondrion, uncoupling chemical energy
from ATP synthesis and dissipating the energy as
heat [27]. Under some environmental and patho-
physiological conditions, such as cold exposure
and β-adrenergic receptor activation, a cell type
with features of both white and brown adipocytes
appears in the classically white fat depots. This
type of adipocytes is named brite or beige
adipocytes that often express UCP-1 and produce
heat [165, 238]. The process that drives the
appearance of brite/beige adipocytes in WAT is
called WAT browning or beigeing [97]. The ori-
gin of beige adipocytes may include mature white
adipocyte transdifferentiation and/or de novo
adipogenesis, depending on the condition that
induces WAT browning [39, 83, 114, 115, 182,
229, 230].

Cytosolic LD lipolysis was thought to be cen-
tral in nonshivering thermogenesis [27]. Several
animal and human studies suggested the essential
role of brown fat lipolysis in thermogenesis,
though the genetic or pharmacological manipula-
tion of adipose lipolysis employed in the studies
inhibited intracellular lipolysis in both BAT and
WAT [4, 15, 44, 78, 107]. We created mice
deficient in CGI-58 in UCP1-positive brown and
beige adipocytes (BAT-KO mice) and mice
lacking CGI-58 in all adipocytes (FAT-KO
mice), which allowed us to directly test the role
of brown adipocyte LD lipolysis in thermoregu-
lation. To our surprise, BAT-KO mice were not
cold sensitive even when food was unavailable
[201]. The mice became cold sensitive only when
the following two conditions were met

simultaneously: (1) deletion of CGI-58 in both
WAT and BAT and (2) removal of food. Similar
phenotypes were observed in mice lacking ATGL
in BAT or the total adipose tissue [195]. When
CGI-58 or ATGL was deleted in the total adipose
tissue in mice, the in vivo lipolysis (fatty acid
release from the tissue to the blood circulation)
stimulated by isoproterenol, a β-adrenergic recep-
tor agonist, was completely abolished in mice
[195, 201]. The results demonstrated the indis-
pensable role of CGI-58 or ATGL in mediating
the stimulated lipolysis in the whole animal.
These two animal studies also demonstrated a
key role of WAT in regulating adaptive
nonshivering thermogenesis, likely by providing
the heat-producing cells with the metabolic fuels
and/or by exposing the temperature sensors in the
body to the thermogenically important adipokines
or signaling molecules. It is currently unclear how
food rescues the cold sensitivity of mice lacking
CGI-58 or ATGL in the total adipose tissue
[195, 201]. A simple explanation is that food
serves as another source of metabolic fuels that
may energize the heat-generating cells with glu-
cose, fatty acids, and/or amino acids. However,
we observed that only gastric gavage, but not
intraperitoneal injections, of glucose can effi-
ciently slow down hypothermia in mice lacking
CGI-58 in both WAT and BAT (Wang H et al.
unpublished data). This finding strongly supports
a critical role of the gastrointestinal track in
regulating the diet-induced thermogenesis. The
gastrointestinal track is abundantly innervated
and has special endocrine cells that secrete vari-
ous incretins, which are important in local envi-
ronment sensing and whole-body energy
metabolism. Interestingly, secretin, a gut hor-
mone that is derived from the S cells in the duo-
denum and jejunum of small intestine, was shown
to mediate postprandial thermogenesis by
activating its receptor in brown adipocytes to
stimulate lipolysis and energy expenditure and
to subsequently suppress satiation through the
brain [119]. However, mice lacking CGI-58 or
ATGL in BAT are defective in brown adipocyte
lipolysis, yet they are capable of producing heat
after a meal, suggesting that either other
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gastrointestinal factors or non-lipolytic pathways
also mediate the postprandial thermogenesis.
Nonetheless, it would be interesting to test
whether secretin mediates postprandial heat pro-
duction in mice lacking CGI-58 or ATGL in BAT
and, if not, what other gastrointestinal factors are
involved.

CGI-58 deletion in UCP1-positive cells in
mice increases sympathetic innervation in both
BAT and WAT. The animals also exhibit
enhanced WAT browning, especially after cold
exposure or β3-adrenergic receptor activation
[201]. This observation implies that some signals
and/or BATokines (factors secreted by BAT) are
generated as a result of BAT CGI-58 deficiency.
These signals and batokines can somehow be
sensed by the central nervous system in the
brain, thereby increasing the sympathetic outflow
to activate compensatory thermogenic
mechanisms. It is currently unknown what these
signals and batokines are and whether they work
locally or remotely or must be secreted into the
blood circulation, which represents an important
area for future research in BAT biology. It is
important to note that BAT lipolysis deficiency
induced by ATGL deletion in UCP1-positive
cells does not increase WAT browning as
evidenced by unaltered expression levels of
UCP-1 protein in the inguinal subcutaneous fat
[195], suggesting that deficiency of CGI-58’s
ATGL-independent functions in BAT promotes
browning in WAT.

Genetic deletion of BAT CGI-58 in mice
improves several fat-induced metabolic disorders,
such as glucose intolerance, insulin resistance,
and hepatic steatosis [201]. This improvement is
more profound when CGI-58 is deleted in both
BAT and WAT (our unpublished data). ATGL
deletion in whole body or adipose tissue also
protects mice from fat-induced metabolic
abnormalities [4, 87, 194, 239]. These
observations indicate that inhibiting adipose
lipolysis may improve whole-body glucose
handling as a result of failed mobilization of
fatty acids for utilization, which would be consis-
tent with the glucose fatty acid cycle (or the
Randle cycle) theory [173].

13.6.2 Epidermis CGI-58 and Skin
Barrier Function

A major phenotypic distinction of human patients
with CGI-58 mutations from those with ATGL
mutations is ichthyosis (scaly dry skin)
[58, 116]. In mice, whole body ablation of
CGI-58, but not ATGL, causes skin barrier
defects [78, 172]. Using whole body and cell
type-specific transgenic and knockout mouse
models, it was shown that CGI-58 promotes the
biosynthesis of the skin barrier lipids, ω-O-
acylceramides, locally in the keratinocytes of
suprabasal epidermal layers, and such function
is ATGL independent [73]. It was further shown
that CGI-58 interacts directly with PNPLA1 and
recruits PNPLA1 to LDs where it functions as the
coactivator of PNPLA1 for the biosynthesis of
ω-O-acylceramides [102, 154]. Like CGI-58,
PNPLA1 mutations in humans also cause
ichthyosis [69]. Using biochemical approaches,
cell cultures, and tissue-specific PNPLA1 knock-
out mice, several groups have demonstrated that
PNPLA1 has transacylase or acyltransferase
activity, which utilizes TAGs as an acyl donor
and catalyzes the esterification of ω-hydroxy
ceramides with linoleic acid to synthesize ω-O-
acylceramides [73, 84, 102, 153]. Collectively,
these studies strongly suggest that the defective
activation of PNPLA1 is the molecular mecha-
nism underlying CGI-58 mutation-induced
ichthyosis in humans.

13.6.3 Muscle CGI-58
in Cardiomyopathy and Insulin
Sensitivity

Patients with CDS accumulate neutral lipids in
their skeletal muscle [138]. Heart murmurs, mus-
cle weakness, and mild myopathy were reported
in some CDS patients [90, 138, 235]. Two
laboratories have generated muscle-specific
CGI-58 knockout mice using MCK-cre trans-
genic mice [242, 263]. MCK-cre transgenic
mice express cre recombinase in both skeletal
and cardiac muscles, thereby deleting a loxP-
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floxed gene in both tissues [21]. Muscle CGI-58
knockout mice display intramyocellular deposi-
tion of neutral lipids in both cardiac and oxidative
skeletal muscles [242, 263], implying that muscle
fat deposition in human patients with CDS likely
results from local CGI-58 deficiency in muscle.
Neutral lipid deposition was not detected in the
glycolytic skeletal muscle fibers in these animals
[242]. The restriction of LD accumulation to the
cardiac and oxidative (soleus) muscles highlights
an essential role of CGI-58 in fatty acid oxidation
in oxidative muscle types, which is consistent
with other studies [10, 72].

CGI-58 deficiency in all muscles induces car-
diac fibrosis, cardiac remodeling, and heart fail-
ure. The similar phenotypes were observed in
muscle ATGL knockout mice [79]. In cardiac
and oxidative skeletal muscles, CGI-58 interacts
with PLIN3 and PLIN5, and this interaction
regulates its association with ATGL [132, 167,
228]. These observations collectively suggest that
CGI-58 may function through ATGL, promoting
intracellular TAG hydrolysis in the muscle fibers.
It was shown that cardiac ATGL-dependent TAG
hydrolysis sustains mitochondrial functions by
activating the PPAR-α pathway through the gen-
eration of endogenous ligands for PPAR-α
[79]. CGI-58 may facilitate this pathway by
activating ATGL in the cardiac muscle. Interest-
ingly, CGI-58 was recently shown to function as a
serine protease to protect heart failure by
generating an N-terminal polypeptide from his-
tone deacetylase 4 (HDAC4) through proteolysis
[94]. The cardiac protective role of the HDAC4’s
N-terminal polypeptide generated by CGI-58 was
not associated with reduction in cardiac TAG
content. Although it is currently unclear whether
similar mechanisms operate in other cell types,
this study nonetheless uncovered a completely
novel function of CGI-58 and emphasized a
future direction for CGI-58 research.

Intramyocellular fat deposition in skeletal
muscle is often associated with systemic insulin
resistance due to accumulation of insulin
signaling-suppressing lipids, such as
diacylglycerols and ceramides that cause
lipotoxicity [186, 222]. Despite intramyocellular
accumulation of neutral lipids, mice lacking

CGI-58 or ATGL in muscle are not glucose intol-
erant or insulin resistant [103, 204, 242]. This
dissociation of cellular lipid deposition from insu-
lin resistance suggests that how versus how much
lipids are accumulated may be more important in
driving tissue insulin resistance, which may be
due to the differences in the molecular species of
lipids deposited. Alternatively, cytosolic LD
deposition, if not extremely excessive, may
sequester insulin signaling-suppressing
metabolites, protecting cells against lipotoxicity.
Such scenario would be consistent with an obser-
vation that unsaturated fatty acids promote TAG
accumulation, yet protect cells against
lipotoxicity [120]. In addition, lipid deposition
in different skeletal muscle fiber types may lead
to different metabolic consequences
[118, 123]. Mice overexpressing diacylglycerol
acyltransferase 2 (DGAT2) in glycolytic (type
II) muscle accumulate TAG in muscle and are
insulin resistant [118]. However, mice
overexpressing diacylglycerol acyltransferase
1 (DGAT1), another TG synthesis enzyme, in
muscle accumulate TAG in the soleus, and these
animals are not insulin resistant [122]. Endur-
ance-trained athletes display increased fat content
in their skeletal muscle, and they have enhanced
insulin sensitivity (“athlete paradox”) [67]. It
seems that fat deposition in the glycolytic muscle
is more problematic than in the oxidative muscle.

13.6.4 Liver CGI-58 in Nonalcoholic
Fatty Liver Disease

Non-alcoholic fatty liver disease (NAFLD) is the
most common liver disease in the United States
and worldwide [254]. Patients with CDS (CGI-58
mutations) almost always display characteristics
of advanced NAFLD, including severe hepatic
steatosis, NASH, fibrosis, and cirrhosis [3, 24,
38, 76, 90, 139, 181, 205, 208, 215]. The
CDS-causative mutations span the entire human
CGI-58 protein sequence (Fig. 13.1). Interest-
ingly, monoallelic mutations in the human CGI-
58 gene are also associated with NAFLD
(Fig. 13.1b). The prevalence of CGI-58
monoallelic mutations that are associated
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NAFLD was estimated to be 1 in 1,131
individuals in a normal population [255]. This
study highlights an important role of CGI-58 in
the pathogenesis of NAFLD in the general popu-
lation. More importantly it was recently
demonstrated that CGI-58 interacts with
PNPLA3 [233, 250], a variant (I148M) of which
is a major risk factor for fatty liver disease in all
populations examined [149, 180, 207, 216]. CGI-
58’s association with PNPLA3 interferes with its
ATGL interaction, thus inhibiting LD lipolysis
[11, 233, 250]. CGI-58 is required for wildtype
PNPLA3 and the PNPLA3(148M) variant to
localize to hepatic LDs and for the overexpressed
PNPLA3(148M) to promote hepatic steatosis
[233]. It was shown that PNPLA3 accumulation
on LDs, not its catalytic activity, is responsible
for PNPLA3(148M)-induced hepatic steatosis
[11]. While these studies provided an important
mechanism for how CGI-58 coordinates with
PNPLA3 and PNPLA2 (ATGL) to control cyto-
solic LD turnover, more research on the
PNPLA3/CGI-58 interaction is needed to address
why PNPLA3, including the PNPLA3(I148M)
variant but not a lipase dead mutant, can substan-
tially reduce LD size when co-expressed with
CGI-58 in the absence of ATGL [32].

Antisense oligonucleotide (ASO)-mediated
knockdown of CGI-58 in adult mice induced
severe hepatic steatosis, though this study cannot
establish a causal relationship between hepatic
CGI-58 and fatty liver disease due to knockdown
of CGI-58 in multiple tissues, including liver,
adipose tissue, and macrophages [19, 28, 127,
129]. Selective inactivation of CGI-58 or ATGL
in the liver of mice causes hepatic steatosis
[75, 237], implying that fatty liver disease seen
in patients with NLSD induced by CGI-58 or
ATGL mutations is likely a local effect of hepatic
CGI-58 or ATGL deficiency. These studies
unequivocally demonstrated an important role of
LD lipolysis in controlling lipid homeostasis in
the liver. Besides TAGs, other species of lipids,
such as DAGs, are also accumulated in mouse
livers lacking CGI-58, especially when a high fat
diet is used [19, 28, 75]. Although hepatic
steatosis is often associated with insulin resis-
tance and DAG accumulation is well-known to

suppress insulin signaling [186], liver CGI-58
deficiency-induced hepatic steatosis and DAG
accumulation are not associated with insulin
resistance in mice [19, 28, 75]. One study
demonstrated that this dissociation results from
the sequestration of DAGs to LDs and ER, rather
than the cell membrane, which prevented PKCε
translocation to the plasma membrane to inhibit
insulin-receptor kinase activity [28]. The dissoci-
ation of hepatic steatosis and insulin resistance is
not restricted to the CGI-58 deficiency-induced
fatty liver. For instance, hepatic overexpression of
DGAT2 or liver-specific deletion of histone
deacetylase 3 (HDAC3) in mice induces severe
hepatic accumulation of lipids including TAGs,
DAGs, and ceramides without causing insulin
resistance [141, 212]. In humans, a genetic vari-
ant (I148M) of PNPLA3 confers susceptibility to
NAFLD in multiple populations without affecting
the index of insulin resistance [149, 180, 207,
216]. African-American descendants have signif-
icantly less hepatic steatosis despite a relatively
high prevalence of obesity and diabetes, while
Hispanic-American descendants are the opposite
[175, 193]. The variation in correlation between
hepatic steatosis and insulin resistance among
ethnicities suggests that other factors should also
be considered. It should be emphasized that clini-
cal studies of NAFLD only found the association
between insulin resistance and hepatic steatosis
whereas the relationship between insulin resis-
tance and other liver pathologies, such as NASH
and hepatic fibrosis, has yet to be established.

It is currently unknown how liver CGI-58
deficiency induces NASH and hepatic fibrosis in
addition to hepatic steatosis. The albumin-cre
transgenic mice (Stock #: 003574; The Jackson
Laboratory) used for liver-specific inactivation of
CGI-58 and ATGL can delete a gene floxed by
loxP sites in hepatocytes, biliary epithelial cells
(cholangiocytes), and hepatic stellate cells
[50, 64, 148, 168, 171, 184, 206, 214]. Each of
these cell types has distinct physiological and
pathological functions. For instance, injuries of
hepatocytes and other liver cells stimulate inflam-
matory responses, causing NASH [20, 60]. Liver
damage and inflammation often trigger ductular
reaction (increases in the number of small biliary

13 CGI-58: Versatile Regulator of Intracellular Lipid Droplet Homeostasis 207



ductules lined by cholangiocytes) that may con-
tribute to hepatic fibrogenesis to some extent
[59, 176, 191]. Hepatic stellate cells increase col-
lagen production after activation by various liver
injuries, and this cell type is well accepted to be
the major source of hepatic fibrosis [81, 82,
142]. Given that liver ATGL deficiency induced
by the same albumin-cre transgenic mouse line
does not cause these advanced pathological
changes in liver [237], the mechanism underlying
liver CGI-58 deficiency-induced NASH and
hepatic fibrosis cannot be the inhibition of
ATGL-mediated LD lipolysis in hepatocytes,
cholangiocytes, or hepatic stellate cells. Consis-
tently, patients with ATGL mutations do not
develop NASH and hepatic fibrosis [6, 25, 58,
166, 197]. CGI-58, therefore, must have ATGL-
independent functions in the liver. One of such
functions may be its interaction with PNPLA3
[233, 250]. Like CGI-58 mutations, the
PNPLA3(I148M) variant is also associated with
NASH [180]. Another distinct function of
CGI-58 is its interactions with almost all
perilipins. This interaction may be needed for
cellular processes, such as autophagy and
lipophagy, besides activation of ATGL. Perilipins
are coat proteins of cytosolic LDs. They are
required for the biogenesis and turnover of cyto-
solic LDs. It has been shown that perilipins play
an important role in the pathogenesis of hepatic
steatosis, NASH, and hepatic fibrosis [29, 30, 34,
35, 61, 88, 91, 145, 162, 231]. Patients with
NAFLD accumulate perilipins in the liver
[61, 162, 209]. While perilipins may passively
accumulate in the steatotic liver due to increased
LDs, they may also actively increase to protect
cells against lipotoxicity of free lipids. Other
CGI-58 functions, such as its newly identified
serine protease activity in the heart [94], may
also exist in the liver and other tissues. This
protease activity of CGI-58, like its lipase
coactivator function, may target multiple proteins
to regulate a variety of cellular processes impor-
tant in lipid and energy metabolism.

Liver CGI-58 knockout mice on a regular
low-energy chow diet develop a full spectrum of
pathologies observed in human patients with
advanced NAFLD [75]. The progression of

these pathologies can be substantially facilitated
by challenging the animals with a typical
Western-type diet alone or in combination with
fructose in drinking water (our unpublished data).
Future studies are needed to discern whether
CGI-58 needs to be deleted simultaneously in
hepatocytes, cholangiocytes, and stellate cells or
in a specific cell type to trigger NASH and fibro-
sis in liver. Studies are also needed to identify
CGI-58’s ATGL-independent mechanisms
responsible for fatty liver progression, including
testing the known ATGL-independent functions
of CGI-58. Detailed comparative studies of liver
CGI-58 and ATGL knockout mice may reveal
mechanisms important in the etiology of NASH
and hepatic fibrosis in general and shed light on
novel drug targets against NAFLD progression.

13.6.5 Myeloid CGI-58 in Insulin
Resistance, Inflammation,
and Atherosclerosis

CGI-58 protein is expressed in mouse and human
macrophages [13, 134]. It has been shown that
myeloid cell-specific deletion of CGI-58 in mice
worsens fat-induced tissue/systemic inflamma-
tion, proinflammatory activation of adipose tissue
macrophages, glucose intolerance, and insulin
resistance [134]. CGI-58-deficient macrophages
accumulate cytosolic LDs and show reduced
PPAR-γ signaling [134, 248]. Although the
underlying mechanism remains unknown,
sequestration of free fatty acids in cytosolic LDs
may prevent these endogenous PPAR ligands
from activating PPAR signaling as seen in
ATGL-null cardiomyocytes [79]. As a result of
PPARγ signaling suppression, CGI-58-null
macrophages show mitochondrial dysfunction
and accumulate reactive oxygen species, which
activates NLRP3 inflammasome to promote
secretion of proinflammatory cytokines
[134]. Consistently, overexpression of CGI-58
in macrophages reduces inflammation in vitro
and in vivo [241, 248]. The proinflammatory
(M1-like) phenotype of CGI-58-null
macrophages was also observed in other studies
[65, 135]. In contrast, ATGL-deficient
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macrophages were shown to display the anti-
inflammatory M2-like phenotype [2, 65,
110]. These collective observations indicate that
CGI-58 also has ATGL-independent functions in
myeloid cells, including macrophages.

The anti-inflammatory role of macrophage
CGI-58 is expected to protect against atheroscle-
rosis. One study with CGI-58 overexpression in
macrophages did show such an atheroprotective
role through the promotion of the PPAR/LXR-
dependent cholesterol efflux without altering
blood cholesterol levels [241]. However, the dele-
tion of CGI-58 in myeloid cells of apoE knockout
mice, or simultaneous knockdown of CGI-58 in
multiple cell types including hepatocytes,
adipocytes, and macrophages in LDLR-KO
mice, does not worsen atherosclerosis or alter
plasma cholesterol levels [65]. It is difficult to
assess atherosclerosis risk in patients with
CGI-58 mutations due to the rarity of disease,
existence of other abnormalities, and relatively
young subjects reported. The role of macrophage
CGI-58 in atherogenesis has yet to be clarified.
Macrophage CGI-58 deficiency causes foam cell
formation [134]. Lipopolysaccharide (LPS) and
saturated fatty acids downregulate CGI-58
expression in macrophages [134]. LPS and fatty
acids are atherosclerosis risk factors, and many
studies have shown that they promote foam cell
formation and atherosclerosis [8, 14, 53, 56, 62,
101, 117, 137, 143, 156, 170]. Oxidized (ox)-
LDL, a common atherosclerosis risk factor,
inhibits CGI-58 expression in THP1 human
macrophages (our unpublished data). These
findings suggest a potential role of CGI-58 in
modulating atherosclerosis risk factor-induced
atherogenesis.

13.6.6 Intestine CGI-58 in Fat
Absorption and Turnover

A major function of the small intestine is the
absorption of nutrients including fats. Fat absorp-
tion occurs mainly in duodenum and jejunum.
After digestion by pancreatic lipases, in the intes-
tinal lumen, fat (mainly TAGs) becomes free fatty
acids and monoacylglycerols (MAGs), which

then enter the absorptive enterocytes and travel
to the endoplasmic reticulum (ER) for
re-esterification into TAGs for packaging into
chylomicrons. Intestinal fat absorption is a very
efficient process. Chylomicrons are quickly
secreted into the lymphatic system heading to
the blood circulation. Some of absorbed fat may
be temporarily stored in the cytosolic LDs, espe-
cially after ingestion of a high fat diet [31, 164,
178, 262]. The TAGs stored in the cytosolic LDs
have to be hydrolyzed before they can be assem-
bled into primordial chylomicron particles in the
ER lumen. CGI-58 and ATGL are expressed in
the enterocytes. Genetic deletion of CGI-58 in
these cells in mice induced the accumulation of
cytosolic LDs predominantly in the nutrient
absorptive segment of small intestine, regardless
of dietary compositions and nutritional conditions
[106, 240]. These observations demonstrated an
important role of intestinal CGI-58 in mobilizing
intestinal LDs for local and/or systemic utiliza-
tion. Consistently, hepatic steatosis is attenuated
in the intestine CGI-58 single or CGI-58/ATGL
double knockout mice [106, 240]. Using
intestine-specific CGI-58 knockout mice fed a
synthetic diet containing 40% energy from lard
and 0.2% (w/w) cholesterol, our laboratory has
shown that intestinal absorption of total fat and
long-chain fatty acids is significantly reduced,
which is associated with reduced postprandial
TAG section into the blood circulation and
increased plasma concentrations of free and
esterified cholesterol [240]. For reasons currently
unknown, another group did not find similar
changes in their intestine CGI-58 and ATGL sin-
gle or double knockout mice fed a diet containing
60% energy from fat [34% (w/w) crude fat] and
1% (w/w) cholesterol. They instead showed a role
of intestinal CGI-58 and ATGL in the turnover of
lipids derived from the basolateral side of the
absorptive enterocytes [106, 152]. More studies
are clearly needed to address these controversial
findings.
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13.7 CGI-58 and Cancer

Cancer cells often accumulate LDs in the cyto-
plasm [17, 210]. The underlying mechanisms
remain elusive. Sequestration of lipids in cyto-
solic LDs may protect cancer cells from lipotoxic
stress [93]. Mutations in CGI-58 cause LD depo-
sition in cells, which led to the first study explor-
ing the role of CGI-58 in colorectal cancer
development [158]. It was shown that CGI-58
deficiency promotes the epithelial-mesenchymal
transition (EMT) and invasiveness of colorectal
cancer cells by increasing aerobic glycolysis (the
Warburg Effect) [158]. The increase in aerobic
glycolysis in CGI-58-deficient cells may result
from limited availability of fatty acids due to
defective LD lipolysis. In addition, CGI-58 was
shown to promote colorectal tumorigenesis by
impairing Beclin1-mediated autophagy [163]. A
subsequent study with prostate cancer cells was
consistent with the tumor suppressor role of
CGI-58 [37]. However, another group using the
same prostate cancer cell line found that CGI-58
sustains cancer cell growth by inhibiting cell apo-
ptosis and death [140]. CGI-58 was recently
shown to be oncogenic in endometrial cancer
[261]. It was reported that CGI-58 in tumor-
associated macrophages indirectly promotes colo-
rectal cancer growth by suppressing spermidine
synthesis [136]. The same group also reported
that CGI-58 suppresses NFκB-dependent
metalloproteinase production in macrophages to
indirectly inhibit colorectal cancer cell metastasis
[199]. Besides regulating tumorigenesis directly
and indirectly, CGI-58 was reported to inhibit the
sensitivity of colorectal cancer cells to the chemo-
therapy drug fluorouracil [159]. CGI-58 expres-
sion patterns and levels may serve as markers for
differentiating benign and malignant tumors in
some tissues [36, 158]. DNA methylation and
deletion may influence CGI-58 expression in
some cancer types, such as cervical cancer
[198]. CGI-58 is not the only LD-associated pro-
tein that is implicated in cancer development and
progression. It was shown that ATGL mediates
cancer-associated cachexia [42], correlates with
the risk of pancreatic ductal adenocarcinoma [68],

and promotes malignancies of breast cancer and
hepatocellular carcinoma [43, 124, 125, 232,
249]. It was reported that ATGL deletion is linked
to the aggressiveness of A549 lung carcinoma
cells [218]. Inhibition of ATGL by the lipolysis
suppressor protein G0S2 or a small molecule
Atglistatin was found to attenuate the growth of
cancer cells [256]. G0S2 was also observed to
suppress oncogenic transformation of
immortalized mouse embryonic fibroblasts
[252]. Interestingly, inhibition of ATGL by
hypoxia-inducible gene 2 (HIG2), unlike G0S2,
was demonstrated to promote survival of colorec-
tal cancer and renal cell carcinoma cell lines in
hypoxia [260]. The role of LD-associated proteins
CGI-58, ATGL, G0S2, and HIG2 in
tumorigenesis may be cell type-specific,
depending on how each cell type handles energy
metabolism and signal transduction under differ-
ent pathophysiological conditions.

13.8 CGI-58 and HCV Infection

A large proportion of patients chronically infected
with hepatitis C virus (HCV) manifest LD depo-
sition in the liver in the absence of other steatotic
factors [147]. It was shown that the HCV nucleo-
capsid core, which is the major structural compo-
nent of HCV virions, localizes at the surface of
LDs to inhibit LD turnover in cultured cells and
mouse livers [80]. The same group further
showed that the HCV core inhibits ATGL-
dependent LD lipolysis, but it unexpectedly
enhances ATGL interaction with CGI-58 and
the recruitment of the ATGL/CGI-58 complex to
LDs [26]. Interestingly, an siRNA-based screen
identified CGI-58 as a host factor that assists
HCV assembly and release without affecting
virus entry and replication [225]. They showed
that several CDS-causing mutants of CGI-58 fail
to localize at the surface of LDs, and those
mutants are unable to support HCV production.
Moreover, they identified a tribasic motif
(KRK233-235) that is required for CGI-58 to
promote lipolysis and HCV production, though
not essential for CGI-58 localization to LDs.
While this study may suggest that it is its lipase
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coactivator function that mediates HCV assembly
and release, it remains unknown whether the
newly identified serine protease function of
CGI-58 is implicated in HCV production [94].

13.9 Concluding Remarks

Patients with CDS accumulate TAG-rich LDs in
all cell types examined. Since the discovery of
CGI-58 gene mutations as the cause of CDS in
2001, enormous interest on the function of
CGI-58 has been generated in the scientific com-
munity of lipid and energy metabolism. It has
been well established that CGI-58 is a
LD-associated protein that promotes intracellular
LD lipolysis by activating ATGL’s TAG hydro-
lase activity. In addition to ATGL, CGI-58
interacts with many other proteins and regulates
LD dynamics and functions in a cell type-specific
manner. Such broad protein-protein interactions
of CGI-58 have provided important insights into
the biochemical basis for its ATGL-independent
functions. Future studies are needed to dissect the
molecular itineraries of these interactions in regu-
lation of intracellular LD biogenesis and turnover.
As a versatile regulator of intracellular LD
homeostasis, CGI-58 plays a central role in
governing cellular and whole-body energy bal-
ance. Genetic deletion of CGI-58 in mice has
uncovered distinct effects of LD deposition in
different cell types on the pathogenesis of meta-
bolic disease. CGI-58 was recently identified to
possess the serine protease activity in the heart. It
is unknown if CGI-58 has this protease activity in
other tissue. If yes, what are the substrates and
functional significance? Is the serine protease
activity of CGI-58 coordinate with its lipase
coactivator function to activate intracellular lipol-
ysis? Clearly, more studies are needed to answer
these exciting new questions.
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Mfsd2a: A Physiologically Important
Lysolipid Transporter in the Brain
and Eye

14

Bernice H. Wong and David L. Silver

Abstract

Lipids and essential fatty acids are required for
normal brain development and continued pho-
toreceptor membrane biogenesis for the main-
tenance of vision. The blood-brain barrier and
blood-eye barriers prohibit the free diffusion
of solutes into the brain and eye so that
transporter-mediated uptake predominates at
these barriers. The major facilitator superfam-
ily of transporters constitutes one of the largest
families of facilitative transporters across all
domains of life. A unique family member,
major facilitator superfamily domain
containing 2a (Mfsd2a) is a lysophosphati-
dylcholine (LPC) transporter expressed at the
blood-brain and blood-retinal barriers and
demonstrated to be the major pathway for
brain and eye accretion of docosahexaenoic
acid (DHA) as an LPC. In addition to
LPC-DHA, Mfsd2a can transport other LPCs
containing mono- and polyunsaturated fatty
acids. Mfsd2a deficiency in mouse and
humans results in severe microcephaly,
underscoring the importance of LPC transport
in brain development. Beyond its role in brain
development, LPC-DHA uptake in the brain
and eye negatively regulates de novo

lipogenesis. This review focuses on the current
understanding of the physiological roles of
Mfsd2a in the brain and eye and the proposed
transport mechanism of Mfsd2a.

Keywords

Major facilitator superfamily (MFS) · Major
facilitator superfamily domain containing 2a
(Mfsd2a) · Lipid transfer activity · Lysolipids ·
Brain · Eye

14.1 Major Facilitator Superfamily

Lipids are organic compounds that are essential in
living cells. Mammalian cell membranes are
largely made up of glycerolipids, phospholipids,
and cholesterol, organized into a lipid bilayer.
The transport of molecules across this hydropho-
bic membrane is vital for cell growth, metabo-
lism, and signal transduction, and are facilitated
by transport proteins such as channels and
transporters. Primary active transporters like
ATP-binding cassette transporters are fueled by
energy released from ATP hydrolysis. Con-
versely, secondary facilitative transporters do
not utilize ATP hydrolysis for transport and can
be generally categorized as facilitative or active
facilitate. The former transports solutes down
their concentration gradients across membranes,
while active facilitative transporters transport
solutes against their concentration gradients
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either as symporters or antiporters. Facilitative
active transporters derive their energy for trans-
port through coupling solute transport with the
transport of ions such as sodium or protons
down their concentration gradients across
membranes [45, 60, 75].

The major facilitator superfamily (MFS) is one
of the largest families of secondary transporters.
The vast majority of characterized MFS
transporters transport minimally polar hydro-
philic substrates such as mono- and disaccharides,
amino acids, and nucleosides [45, 53]. However,
there are three MFS transporters that are
exceptions to this general feature of the MFS
family, namely, Spns2, Mfsd2a, and Mfsd2b
[39, 52, 73]. Spns2 and Mfsd2b are sphingosine-
1-phosphate transporters [39, 73], while Mfsd2a,
the subject of this review article, is a
lysophosphatidylcholine transporter.

MFS proteins have a highly conserved fold
that is composed of 12 transmembrane alpha heli-
ces separated into two 6-transmembrane units that
exhibit a pseudo twofold symmetry about an axis
perpendicular to the membrane plane
[45, 53]. Within each of these 6-transmembrane
domains, the two 3-transmembrane units are
organized as inverted repeats [45, 60, 75].

The majority of crystal structures of MFS
proteins are bacterial proteins, with some
exceptions being human glucose transporters
[26, 27, 75], where the first MFS structures to
be elucidated are that of Escherichia coli Lac-
tose:H+ symporter (LacY) [1] and Escherichia
coli Glycerol-3-phosphate:Pi antiporter (GlpT)
[36]. A common transport mechanism that has
been proposed as a result of these structural and
biochemical studies is that substrates are
transported in a rocker-switch, alternating access
mechanism [75]. The N- and C- terminal domains
rotate about the central substrate binding site and
open exclusively to either the cytoplasm or extra-
cellular space at any one time, rocking between
an inward open or outward open state [1, 36,
45]. The four important transmembrane helices
that surround the central pocket and essential for
transport activity are domains 1, 4, 7, and 10.

Transmembrane domains consisting of 2, 5,
8, and 11 or 3, 6, 9, and 12 are positioned just
outside the core helices and mediate the interfer-
ence between the N- and C- domains and support
the structural integrity of the transporter,
respectively [75].

14.2 Major Facilitator Superfamily
Containing 2a

Major facilitator superfamily domain containing
2a (MFSD2A) was first identified by Angers et al.
as an orphan transporter to be significantly
induced in brown adipose tissue (BAT) of mice
lacking both nuclear receptors retinoid-related
orphan receptor alpha and gamma (RORα and
RORγ) [5]. The Mfsd2a gene is approximately
14.3kb long, with 14 exons and 13 introns. Anal-
ysis of the amino acid sequence indicates it is
most closely related to the bacterial-sodium
melibiose symporter MelB at a 43–37% similarity
[29]. Importantly, amino acid sequence of both
mouse and human MFSD2A proteins is approxi-
mately 85% identical and is highly conserved
from fish to human [11].

Mfsd2a is expressed in the brain, spinal cord,
BAT, liver, kidney, lung, placenta, testes [11],
and eye [74]. mRNA expression of Mfsd2a is
greatly induced in murine liver and BAT during
fasting and follows an oscillatory expression pro-
file consistent with a circadian rhythm, with peak
expression at circadian time 12 [5]. Additionally,
Mfsd2a mRNA was also significantly
upregulated exclusively in BATs by cold expo-
sure and β-adrenergic receptor signaling path-
way [5]. Berger et al. identified Mfsd2a to be
induced by fasting and regulated by both perox-
isome proliferator-activated receptor alpha
(PPARα) and glucagon signaling in the liver,
which turns over rapidly in liver upon refeeding
[11]. While mRNA can be detected in BAT,
Mfsd2a protein level is extremely low
[11]. The function of Mfsd2a in BAT has not
been determined.
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14.3 Lipids and Essential Fatty Acids
Are Important for Brain Growth

The brain is made up of glycerophospholipids,
cholesterol, and sphingolipids, making it one of
the most lipid-rich organs in the body [41]. Prena-
tal brain development is a complex developmen-
tal process that begins with the development of
the neural tube, which ultimately differentiates
into the brain and spinal cord. This is also the
time where hundreds of specialized cell types
come together, organizing a network of synaptic
connectivity and a functioning blood-brain barrier
(BBB) (Fig. 14.1) [6, 24, 61]. The BBB separates
the brain from blood and serves to maintain a
tightly controlled environment where toxins and
pathogens are prevented from freely entering or
leaving the brain by diffusion. The BBB is
governed by tight junctions of endothelial cells
of blood vessels, supported by astrocytes and
pericytes [6, 24]. This is followed by postnatal
brain growth, which is accompanied by the pro-
liferation of astrocytes and oligodendrocytes
[14, 28, 42] and myelination of axons and
synaptogenesis [8, 28, 51]. Massive amounts of
membrane phospholipids are therefore required
for brain growth, where it has been postulated
that lipids are derived exclusively from de novo
biosynthesis within cells of the brain.

De novo lipogenic gene expression is con-
trolled by sterol regulatory element-binding
proteins (Srebp-1 and Srebp-2). In support of the
vital role of de novo lipogenesis in brain develop-
ment, the genetic deficiency of Scap, an essential
chaperone protein for Srebp, in neurons in the
developing central nervous system resulted in
microcephaly and early postnatal lethality
[65]. In addition, deficiency of Scap in mature
astrocytes and oligodendrocytes have profound
effects on myelination [71].

14.4 LPC-DHA Transport into
the Brain

Docosahexaenoic acid (DHA) is an omega-3 fatty
acid composed of 22 carbons and 6 double bonds.

DHA can be synthesized by the liver through
chain extension and desaturation of the essential
fatty acid linolenic acid. DHA is highly enriched
in brain phospholipids, particularly in the
phosphatidylethanolamine (PE), phosphati-
dylserine (PS), and to a lesser extent, phosphati-
dylcholine (PC) pools within membranes, and
comprises up to 15% or more of the total fatty
acid composition of the prefrontal cortex
[13, 50]. In humans, DHA is rapidly taken up as
early as the end of the second trimester,
coinciding with the development of the BBB
where considerable amounts of membrane
phospholipids are required for the growing brain
[17, 38, 61]. DHA is continuously acquired from
early postnatal days until approximately 2 years
of age [23, 47, 66]. While DHA supplementation
studies in term infants or pregnant and lactating
women have been inconclusive for enhancing
cognitive development [25, 31, 55], DHA supple-
mentation in preterm infants has shown some
benefit to cognitive development, presumably
because preterm infants might have lower brain
DHA levels [7, 18]. Likewise, decreased levels of
DHA in the developing brain have been
associated with negative effects on cognitive
function [33, 49] and neurodevelopmental
disorders [19, 35, 48]. Importantly, DHA itself
cannot be de novo synthesized and must be
transported across the BBB into brain.

The form by which DHA gets taken up into
brain, either as unesterified DHA or DHA
esterified as lysophosphatidylcholine-DHA
(LPC-DHA), has been a point of debate. LPCs
circulate in blood bound to albumin [20, 56, 67]
where it was first shown by Illingworth and
Portman to be taken up and reacylated readily in
brains of squirrel monkeys [37]. As early as 1965,
it was hypothesized by Switzer and Eder that
plasma LPCs serve as precursors for the renewal
of cellular membranes [67]. Importantly, Thiès
et al. reported a preference for unsaturated fatty
acids esterified as 2-acyl-LPC in young rat brains
where LPC-DHA was transported 12-fold more
than unesterified DHA, suggesting that LPCs
might be an efficient delivery of polyunsaturated
fatty acids (PUFAs) into the developing brain
[69, 70]. Moreover, Lagarde et al. was the first
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to propose that LPC is the preferred carrier of
PUFAs like DHA or arachidonic acid (AA) to
the brain [43]. As will be further discussed
below, Mfsd2a is the LPC transporter that
explains the LPC transport activity first described
by Lagarde and co-workers. More recently, it was
demonstrated that supplementing adult mice with
dietary LPC-DHA, but not unesterified DHA,
were able to increase brain DHA levels twofold
[64]. Collectively, these findings support the con-
clusion that LPC-DHA, and not unesterified
DHA, is the primary carrier of DHA delivery to
the brain. However, Mfsd2a KO mice have resid-
ual phospholipid containing DHA in the brain
and eye, indicating the possibility of either com-
pensatory de novo biosynthesis, other transport
mechanisms, or acquisition of DHA during
embryogenesis in the brain and eye prior to
blood-barrier formation. It is important to note
that single cell sequencing projects and bulk
RNA-seq of the blood-brain barrier in mice
[68, 72, 79] have shown that mRNA expression
for proteins proposed to be involved in the uptake
of unesterified DHA by the BBB endothelium,
such as LPL, and its essential chaperone
GPIHBP1 [78], CD36, and FATP1-6

(Slc27a1-6), and ACSL6 are not expressed
by the endothelium of the BBB.

14.5 Mfsd2a Deficiency in the Brain

Importantly, Nguyen et al. and Ben-Zvi et al.
discovered Mfsd2a to be highly expressed at the
endothelium of the BBB [10, 52]. Through
targeted lipidomic analysis, Mfsd2a was found
to be the major pathway for brain DHA accretion,
where a significant 60–70% reduction in steady-
state levels of total percentage DHA-containing
phospholipids was observed in brains of 2aKO
mice relative to wild-type controls [15, 52]. Con-
versely, brains of 2aKO mice had a modest 35%
increase in steady-state levels of total percentage
AA-containing phospholipids [52], a phenome-
non commonly observed in rodent models of
DHA deficiency [62].

More recently, using endothelial-specific and
inducible endothelial-specific Mfsd2a deletion
mouse models, Chan et al. showed that Mfsd2a
deficiency results in a unique form of postnatal
microcephaly, with DHA deficiency preceding
the onset of microcephaly [15]. Only adult

Fig. 14.1 Blood-brain barrier. The BBB is governed by tight junctions (TJ) of endothelial cells (EC) of blood vessels,
supported by astrocytes (A) and pericytes (P)
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2aKO mice exhibit a minor loss of Purkinje cells
in the cerebellum and a decrease in neuronal cell
density in the CA1 and CA3 regions of the hip-
pocampus [52]. Because the brains of 2aKO
embryos are deficient in DHA but are not micro-
cephalic until postnatal life, these cell loss
phenotypes are secondary events. These findings
also indicate that DHA deficiency is an unlikely
cause underlying microcephaly, but rather the
absence of bulk LPC transport, where LPCs are
phospholipid membrane building blocks.

Recently, transcriptomic and lipidomic analy-
sis in Mfsd2a deficiency mouse models was used
as a tool to understand how the brain adapts to
DHA deficiency, thus revealing functions of
DHA in the brain [15]. It was discovered that
Mfsd2a deficiency resulted in a de-repression of
the Srebp1 and Srebp2 pathways leading to an
increase in de novo synthesis of unsaturated fatty
acids in phospholipids. It was shown that Mfsd2a
is expressed in neural stem cells (NSCs) isolated
from early postnatal mice and that NSCs treated
with LPC-DHA and other LPC-PUFAs can
acutely downregulate Srebp1 and Srebp2 target
gene expression in an Mfsd2a-dependent fashion
and that the mechanism is in part through inhibi-
tion of Srebp-1 receptor processing [15]. More-
over, Mfsd2a itself is regulated by Srebp, forming
a negative feedback loop on Srebp processing that
can balance de novo lipogenesis with exogenous
uptake of LPC-DHA. The regulation of brain
Srebp function by LPC-DHA transported by
Mfsd2a might serve the purpose of fine-tuning
membrane phospholipid saturation and hence
biophysical properties during brain
development [15].

Another reported feature of Mfsd2a deficiency
in the brain and eye is that Mfsd2a knockout mice
have increased transcytosis resulting in increased
BBB permeability [4, 10]. It has been suggested
that the microcephaly and DHA deficiency in
2aKO mice could be due to a leaky BBB, but it
is unclear how a leaky BBB would result in less
DHA uptake and not more relative to wild-type
(WT) mice. Nonetheless, this issue has been
resolved in that BBB permeability, but not

microcephaly and DHA deficiency, can be
completely rescued in Mfsd2a-deficient mice by
genetic deficiency of Cav1 [4]. Andreone et al.
generated a transporter-dead Mfsd2a knockin
mouse model bearing a D96A aspartate to alanine
point mutation, a conserved residue with D97 in
the human Mfsd2a constituting the sodium bind-
ing site, and showed that consistent with the lack
of transport activity, Mfsd2aD96A/D96A mice
exhibited microcephaly and DHA deficiency in
the brain [4]. These findings indicate that micro-
cephaly and DHA deficiency are primary
phenotypes of Mfsd2a deficiency, and not a result
of a leaky BBB [4], and that LPC transport via
Mfsd2a is essential for DHA accretion and post-
natal brain growth. Of note, the increased
transcytosis phenotype in the BBB or blood-
retina barrier of 2aKO mice reported by the Gu
lab [4, 10, 16] has not been observed in other
studies [46, 74].

14.6 Mfsd2a Deficiency in the Eye

The retina is a highly organized structure, with
photoreceptors (PR), extensive retinal glial net-
work, and retinal pigment epithelium (RPE)
organized into distinct layers. Rods and cones
are the two types of PR found in mammalian
eyes, which make up 70% majority of cells in
the retina. DHA, localized with rhodopsin [30],
is found primarily in phospholipids of membrane
discs that make up rod PR outer segments (OS),
making the retina a tissue with the highest con-
centration of DHA per unit area in the body
[58]. With daily daylight exposure, OS discs
which are photosensitive, accumulate photo-
damaged proteins and lipids [9] and must be
synthesized continuously throughout one’s life-
time for the maintenance of healthy vision
[63, 77]. The villi-containing apical membrane
of the RPE is particularly important for this
renewal process, where through its interaction
with the distal ends of the OS (Fig. 14.2)
facilitates the daily phagocytosis of OS discs
that make up one-tenth of the OS length. This
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process of phagocytosis is balanced with an equal
rate of disc regeneration, so that the OS length is
maintained [76], thus highlighting the importance
of lipids and essential fatty acids for membrane
biogenesis and turnover.

Similar to the BBB of the brain, the eye
contains cellular barriers that prevent the
diffusion of blood-borne material or lipids from
entering the retina freely. The eye contains two
blood-eye barriers (Fig. 14.2), the inner blood-
retina barrier (inner BRB) that is established by
tight junctions between retinal endothelial cells,
supported by the pericytes, astrocytes, and Müller
cells [22, 59] and the outer BRB that is governed
by tight junctions of the RPE [21].

Mfsd2a is expressed at the endothelium of the
BRB and RPE. The RPE is the major site of
Mfsd2a expression and is quantitatively impor-
tant for DHA accretion into the retina via
LPC-DHA transport [74] (Fig. 14.3). Whole-
body Mfsd2a-deficient (2aKO) mice displayed a
unique form of a slow, progressive retina degen-
eration [46, 74]. However, a 40% deficiency in

phospholipids containing DHA in eyes of 2aKO
mice did not result in the expected severe and
rapid retinal degeneration nor significant visual
dysfunction [46, 74]. Like the brain, upregulation
of de novo lipogenesis pathways was observed in
eyes of 2aKO mice which might serve, as a com-
pensatory mechanism to synthesize new OS discs
in the absence of Mfsd2a [46, 74]. In addition, the
BRB was found to be intact in 2aKO mice
[46, 74], which is inconsistent with a report that
Mfsd2a is required to suppresses transcytosis for
the development and maintenance of a functional
BRB [16]. This discrepancy is not due to strain-
specific differences as the strain used in the
Lobanova study was the same as reported by
Chow et al. [16]. The most remarkable finding
from studying 2aKO retinas is that
phototransduction tested by electroretinography
[74] or light evoked potential recordings of single
rods [46] indicated that phototransduction in
2aKO and WT was indistinguishable. These
findings might suggest that the compensatory
changes in lipid composition in 2aKO retinas of

Fig. 14.2 Blood-retinal barrier. The BRB is made up of
the inner BRB, formed by tight junctions (TJ) of the
endothelium of retinal capillaries (EC), supported by
pericytes (P), astrocytes (A) and Müller cells (MC). The
outer BRB is governed by TJ of the retinal pigment epi-
thelium (RPE). DHA is found primarily in phospholipids
of the outer segment (OS) discs of rod and cones and
interact closely with the apical membrane villi of the

RPE. As photo-damaged discs need to undergo a constant
renewal process for the maintenance of vision, inner
segments that contain metabolic machinery synthesize
new membrane discs that move along the length of the
OS where they are eventually phagocytosed by the RPE.
CB cell body, IS inner segments, OS outer segments, AM
apical membrane, RPE retinal pigment epithelium, BI
basal infoldings, Ch choroid
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increased monounsaturated fatty acids and
arachidonic acid in phospholipid pools might
compensate for the severe reduction in DHA.

14.7 Inactivating Mutations
of MFSD2A in Humans

To date, four unrelated consanguineous families
with homozygous non-synonymous inactivating
mutations in MFSD2A have been identified that
presented with severe microcephaly and intellec-
tual impairments [2, 32, 34]. The first two
families, one from Libya and the other from
Egypt, harbored a p.Thr159Met or p.Ser166Leu
protein change [32]. Mutant Mfsd2a proteins
were stably expressed and localized to the plasma

membrane when expressed in HEK 293 cells,
comparable to WT Mfsd2a, but had complete
inactivation of transport activity [32]. The third
family from Pakistan was a large pedigree, with
ten affected family members harboring a p.
Ser339Leu protein change that presented with
severe non-lethal microcephaly [2]. Again,
mutant Mfsd2a proteins were stably expressed
and had proper membrane localization when
expressed in HEK 293 cells but exhibited a partial
inactivation of transport activity relative to WT
protein [2]. A fourth family was identified in
Israel that harbored a p.Pro402His protein
change, with complete inactivation of transport
activity, and presented with severe non-lethal
microcephaly [34]. Consistent with reduced or
complete inactivation of transport activity that

Fig. 14.3 MFSD2A transports LPC-DHA across the
BBB and BRB. DHA can come preformed from the diet
or its precursor linolenic acid, conjugated to LPC in the
liver, and transported in blood plasma bound to albumin.
At the BBB, Mfsd2a translocates LPC-DHA across the

endothelial plasma membrane into the brain. Mfsd2a is
expressed at both the inner and outer BRB, but Mfsd2a at
the RPE is the major route by which LPC-DHA gets into
the eye. IS inner segments, OS outer segments, RPE retinal
pigment epithelium, Ch choroid
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would be expected to reduce brain and eye LPC
uptake, increased plasma LPC levels have been
observed in all affected family members [2, 32,
34]. In further support of this explanation for
increased plasma LPC in patients with
inactivating mutations in Mfsd2a, plasma LPC
levels were also found to be increased by 40%
in 2aKO mice, consistent with 85–90% reduction
in LPC transport in the brain and eye using tracer
studies [32, 52, 74].

Both p.Thr159Met and p.Ser166Leu
mutations were found on transmembrane
domain 4 of Mfsd2a, p.Ser339Leu was found on
transmembrane domain 8, while p.Pro402His was
found on the extracellular loop between trans-
membrane 10 and 11. A molecular explanation
for the loss-of-function caused by Ser166Leu and
Pro402His is not known. However, Thr159met is
homologous to Thr121 in MelB, which is essen-
tial for establishing a hydrogen bond with
conserved aspartate residues at the sodium bind-
ing pocket. Therefore, it can be predicted that
Thr159Met inactivity is a consequence of absence
of sodium binding [32].

14.8 Proposed Transport
Mechanism of Mfsd2a

Mfsd2a does not transport unesterified PUFAs,
but PUFAs esterified as a LPC [52]. It was deter-
mined through structure-activity relationship
studies that lysophospholipid with a minimal
acyl chain length of 14 carbons and a zwitterionic
headgroup (e.g., PC, PE, and PS) is essential for
transport by Mfsd2a [52]. More recently, Quek
et al. showed that the acyl-carnitines can also be
transported by Mfsd2a, again underscoring the
importance of a zwitterionic headgroup and not
strictly a phosphorylcholine headgroup as a nec-
essary feature for lysolipid transport [57]. Nota-
bly, Mfsd2a has a higher transport capacity for
LPCs having unsaturated fatty acids like DHA
relative to LPCs with saturated fatty acids like
palmitate [52]. This latter finding is important,
because it indicates that LPC transport capacity
is inversely correlated with the physiological
levels of LPCs in human plasma, where

LPC-palmitate is the most abundant [2, 32,
56]. Presumably, this preference for LPC-PUFA
by Mfsd2a would allow the brain to obtain the
lower abundant essential fatty acids diluted in a
larger milieu of LPCs containing non-essential
fatty acids.

Using homology modeling based upon crystal
structures of MelB and LacY, and further refine-
ment by site-directed mutagenesis and biochemi-
cal transport analysis, Quek et al. identified the
following four important structural features of
human Mfsd2a: a sodium binding site, a hydro-
phobic cleft, a lipid phosphate headgroup binding
residue (Lys436), and ionic locks [57]. The
hydrophobic cleft is likely involved in LPC acyl
chain binding, while the Lys436 is involved in
coordinating the LPC phosphate headgroup inter-
action. The ionic locks are presumably involved
in stabilizing the outward open conformation dur-
ing the transport cycle as previously proposed for
similar ionic locks identified on MelB [29]. This
proposed model of transport co-opts the standard
rocker-switch model, with the exception that
LPCs bound to albumin would first bind to the
outer leaflet of the plasma membrane and diffuse
laterally into Mfsd2a facing the outward open
conformation until hydrophobic forces position
the acyl chain of the LPC into the hydrophobic
cleft and headgroup binding to Lys436
(Fig. 14.4). Sodium binding to its binding site
comprising residues Asp93, Asp97, and Thr159
would drive a conformational change to an
inward-open conformation that would push the
LPC-DHA down along the hydrophobic cleft
and flip over to the inner lipid leaflet, where it
exits the transporter by diffusing laterally along
the inner membrane [57]. This “flipping” activity
would in theory allow LPCs to bypass the tight
junctions of the BBB endothelium [12]. Once
LPCs reach other cells at the BBB such as
astrocytes, it could be converted to PC-DHA
through activity of the LPCATs [44].

14.9 Concluding Remarks

Mfsd2a is a sodium-dependent lysophosphati-
dylcholine co-transporter highly expressed at the
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blood-brain barrier and blood-eye barriers that is
essential for normal human brain development.
Mfsd2a shows high specificity for the transport of
LPCs with long chain and unsaturated fatty acyl
chains. LPC-DHA in particular negatively
regulates Srebp activity during brain develop-
ment, and this function is likely important to
maintain proper membrane phospholipid satura-
tion. An important question that remains to be
answered is a determination of the transport
mechanism of LPCs by Mfsd2a. This determina-
tion awaits the development of new biochemical
assays to reconstitute transport on purified
Mfsd2a and the determination of atomic resolu-
tion structures. Interestingly, Mfsd2a is expressed
by other cell types and tissues such as liver and a
determination of the function of Mfsd2a outside
of the brain and eye will likely reveal new biology
into the function of LPCs. For example, Piccirillo
and others have shown that Mfsd2a is required for
the maintenance of memory T cells [54], perhaps
in part through TOX, which might regu-
late Mfsd2a [3, 40]. Lastly, a word of caution,
many recent papers have been published using
non-validated Mfsd2a antibodies that are likely

leading to erroneous conclusions on the regula-
tion of, site of, expression of, and involvement of
Mfsd2a in particular biological and pathophysio-
logical processes. It is critical that Mfsd2a
antibodies be validated using both cell-based
overexpression and Mfsd2a deficiency cell
or mouse models.
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