
Chapter 28
A Novel Way to Schedule Flexible
Manufacturing System

Srushti Bhatt, M. B. Kiran, and Jeetendra A. Vadher

Abstract Modeling and scheduling of flexible manufacturing system problems are
yet to be addressed simply to compete in the global manufacture market. Optimizing
the performance measure of the available resources of manufacturing systems is
a key requirement. Many researchers have proposed techniques for solutions like
mathematical programming, heuristic dispatchingmethods, and artificial intelligence
and knowledge base system. In the present work, a combined approach of the Timed
Petri Net and genetic algorithm is used for the modeling power and optimization
capabilities for scheduling flexible manufacturing system. Petrinet plays a vital role
in modeling FMS. The power of Timed Petrinet is used for modeling FMS by using
the advantage of its ability to model a complex system with efficient net structure
and chromosomal representation along with genetic algorithm for optimal solution
needed in scheduling a manufacturing problem. The result obtained by this approach
concludes that the proposed method performsmuch better than the existing methods.
The algorithm is developed for minimizing makespan and the simulation run for
better performance measures.

Keywords FMS · GA · Petri Nets · SPN

S. Bhatt (B)
Department of Mechanical Engineering, Pandit Deendayal Petroleum University, Gandhinagar,
Gujarat 382007, India
e-mail: bhattsrushti12@gmail.com

M. B. Kiran
Department of Industrial Engineering, Pandit Deendayal Petroleum University, Gandhinagar,
Gujarat 382007, India

J. A. Vadher
Department of Mechanical Engineering, Government Engineering College, Palanpur, Gujarat
385001, India

© Springer Nature Singapore Pte Ltd. 2021
A. Sachdeva et al. (eds.), Operations Management and Systems Engineering,
Lecture Notes on Multidisciplinary Industrial Engineering,
https://doi.org/10.1007/978-981-15-6017-0_28

427

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6017-0_28&domain=pdf
mailto:bhattsrushti12@gmail.com
https://doi.org/10.1007/978-981-15-6017-0_28


428 S. Bhatt et al.

Nomenclature

FMS Flexible manufacturing system
GA Genetic algorithm
PN Petri nets
TPN Timed Petri nets

28.1 Introduction

In the present market scenario, to stand in amarket it is very important for a manufac-
turing system to accommodate changes quickly as customer demand changes. Many
Indian industries have adopted FMS for in time production and quality of the product,
but still problems in scheduling still arise. The scheduling problem is nothing but
simply a process of resource allocation to accomplish a specified task [1].

Petri nets are a class of modeling tools, which were originated by Petri [2, 3],
they have a well-defined mathematical foundation and easy to understand the graph-
ical feature. It is a powerful graphical tool for modeling and analyzing concurrent,
parallel, simultaneous, synchronous, distributed, and resource sharing systems with
the advantages like an easy visualization of complex systems can model a system
hierarchically (a top-down fashion at various levels of abstraction and detail) and
can analyze qualitative and quantitative aspects of the system.

The common definition of PNs introduced by Petri is as follows. Petri nets or
place/transition net can be defined as a five-tuple: PN = (P, T, I, O, Mo), where P
and T are finite non-empty sets of places pictured by circles and transitions pictured
by bars, respectively. I: P × T → {0, 1} is an input function that defines the set of
directed arcs from P to T. O: P × T → {0, 1) is an output places which are drawn as
circles represent possible states or conditions of the system while transition, which
is shown in bars or boxes, describe events that may modify the system states. The
relationships between places and transitions are represented by a set of arcs that are
the only connectors between a place and a transition in either direction. The dynamic
behavior of the system can be represented using tokens which graphically appear as
black dots in places. A transition can only fire if it is enabled and having one token
in that place I to the next transition j. A timed Petri net is associated with places or
transitions. Here we consider the time associated with places. The modeling of the
problem data takes place using TPN. TPN is a 7 tuple, TPN = (P, T, I, O,M0,Mr0,
) whereM0 is initial marking,Mr0 is initial vector for remaining processes, is set of
time delays associated with it. The problem data consist of job-based data, operation-
based data, and machine data including processing time or operation time along with
the path of the operation for the given jobs. Different researchers have used different
approaches of Petri nets for simulation and GA for fine-tuning the parameters [2].
Different researchers have identified different criteria for solving FMS scheduling
problem. One of them is performance measures. The list of performance criteria are



28 A Novel Way to Schedule Flexible Manufacturing System 429

Table 28.1 Criteria for performance parameters (Reproduced from Filho et al. [4])

S. No. Criteria Code

1 Idle time T idle

2 Length of the AGVs route Route length

3 Number of backtrackings of each AGV Backtrackings

4 Total flow time F

5 Mean flow time F medium

6 Maximum lateness Lmax

7 Makespan Cmax

8 Tardiness T

9 Maximum tardiness Tmax

10 Due date Dd

11 Cost for tardiness and earliness; production cost, penalty cost Cost

12 Throughput T

13 Work in process WIP

14 Machine utilization U

15 Maximum utilization of the machines Umax

as stated in Table 28.1. Here, out of all performance parameters attempt is made to
address the makespan using a hybrid approach combining Petri nets and GA.

28.2 Problem Definition

The makespan minimization problem of a flexible manufacturing system (FMS) has
been recognized as one of the most important planning problems. Job scheduling
problems are referred to as NP-hard problems. And to solve such kind of problem
there are different four types of representation. They are job-based representa-
tion, operation-based representation, priority rule-based, and preference-list-based
representation [1].

In this research, a Genetic Algorithm (GA) based heuristic is proposed to solve
the makespan of a random type FMS. The objective of the problems is to minimize
the system unbalance and maximize the throughput, satisfying the technological
constraints such as availability of machining time, and tool slots. The proposed
GA-based heuristic determines the part type sequence and the operation-machine
allocation that guarantee the optimal solution to the problem, rather than using fixed
predetermined part sequencing rules.

The first objective of the research work is to schedule the given FMS, modeling
with Petri nets and optimizing using genetic algorithm and obtaining results to
conclude with the best option. The makespan minimization problem consists of three
types Job shop scheduling (there are n jobs and m identical stations. Each job should



430 S. Bhatt et al.

Table 28.2 Problem data

Job Operation time Operation path

M/C 1 M/C 2 M/C 3 M/C 1 M/C 2 M/C 3

1 4 3 2 1 2 3

2 1 4 4 2 1 3

3 3 2 3 3 2 1

4 3 3 1 2 3 1

be executed on a single machine), Open shop scheduling (there are n jobs and m
different stations. Each job should spend some time at each station, in a free order),
Flow shop scheduling (there are n jobs and m different stations. Each job should
spend some time at each station, in a predetermined order). To optimize makespan
the system consists of the following:

The system considered is

n = four jobs and m = three machines with the respective operating time. Each
job is processed on every machine at the appropriate time.
The machine can operate only one operation at a time.
All machines are available.
Here one job will leave the machine only after completing the operation and
scheduling is done in the way that no classes with the same job will assign to two
different machines at the same time or vice versa.
Machine setup time is included in the processing time.
The data of n jobs and m machines are as given in Table 28.2.

28.3 Methodology

For the given data will be evaluated into two phases. The first phase gives the system
model and the second gives the optimum result.

Step 1: Creating a systemmodel using Petri net tool usingMATLABEnvironment
Step 2: Identifying the variables (Table 28.3)
Step 3: Simulating the model in the MATLAB environment. Results of system
model simulation.

Figures 28.1 and 28.2 shows the FMS modeling for the given 4 job 3 machine
problem. Once the modeling is created next phase is to check for the structural and
behavioral properties of the net structure. As shown in Fig. 28.1 the model of each
job should spend some time at each station, in a predetermined order. Figure 28.3
shows the property check whether is net structure modeled satisfy all the condition
of the manufacturing system. Net is bounded means there will be no overflows in the
buffer. Liveness shows a complete absence of deadlock in the manufacturing system.
Once the property of the net is checked, next step is to analyze the system. There



28 A Novel Way to Schedule Flexible Manufacturing System 431

Table 28.3 Description of
timed Petri net model in
Fig. 28.2

P1 Job 1 in queue

P2 Operation 2 of Job 1 on machine 2

P3 Operation 3 of Job 1 on machine 3

P4 Job 1 finish

P5 Operation 1 of Job 2 on machine 2

P6 Operation 2 of Job 2 on machine 1

P7 Operation 3 of Job 2 on machine 3

P8 Job 2 finish

P9 Operation 1 of Job 3 on machine 3

P10 Operation 2 of Job 3 on machine 2

P11 Operation 3 of Job 3 on machine 1

P12 Job 3 finish

P13 Operation 1 of Job 4 on machine 2

P14 Operation 2 of Job 4 on machine 3

P15 Operation 3 of Job 4 on machine 1

P16 Job 4 finish

P17 Loop operation 1 for Job 1

P18 Loop operation 2 for Job 1

P19 Loop operation 3 for Job 1

P20 Loop operation 1 for Job 2

P21 Loop operation 2 for Job 2

P22 Loop operation 3 for Job 2

P23 Loop operation 1 for Job 3

P24 Loop operation 2 for Job 3

P25 Loop operation 3 for Job 3

P26 Loop operation 1 for Job 4

P27 Loop operation 2 for Job 4

P28 Loop operation 3 for Job 4

are different ways of analyzing the net-like coverability tree, incidence matrix, and
simple reduction rules. Here the net is analyzed using matrix equation that governs
the dynamic behavior of the concurrent system as shown in Figs. 28.4, 28.5, and
28.6.

Step 4: Optimizing using GA

GA starts with a set of solutions called population. Chromosomes from the popu-
lation are occupied and used to form a newpopulation. This ismotivated by the desire,
that the new population will be better than the old one in terms of a fitness criterion.
Solutions that are selected to form new solutions (offspring) are selected according to
their fitness—themore suitable they are themore chances theymust reproduce. There



432 S. Bhatt et al.

Fig. 28.1 FMS processing of 4 jobs & 3 M/c

Fig. 28.2 FMS processing of 4 jobs & 3 M/c in MATLAB



28 A Novel Way to Schedule Flexible Manufacturing System 433

Fig. 28.3 Structural properties

are different representation schemes for evaluationwith themakespanobjective.They
are operation-based representation, job-based representation, preference-list-based
representation, priority rule-based representation. In general, GA uses three steps—
selection, crossover, and mutation (4). Selection based on the fitness (makespan in
our case) is the source of exploitation, and crossover andmutation help us to promote
exploration (Fig. 28.7).

A generation of a GA contains a population of individuals, each of which corre-
sponds to a possible solution in the search space. Everyone in the population is
evaluated with a fitness function to produce a value which indicates the goodness of
a solution. Selection helps in bringing forward certain members from the population
to apply crossover and mutation on the given set of problem. Crossover takes pairs
of individuals and uses parts of each to produce new individuals. Random muta-
tions swap parts of an individual to prevent the GA from getting caught in a local
minimum.

Step 4.1: Creation of First Generation/Initialization:



434 S. Bhatt et al.

Fig. 28.4 Incidence matrix part 1

In our problem, we are using the datasets that have been taken from Kumar [6].
This data set has initially four jobs and three machines. The term makespan refers to
the cumulative time to complete all the operations on all machines [7]. It is the time
taken from scheduling the first job submitted until the completion of the last job. The
objective of the problem is to find a valid schedule that yields theminimummakespan.
The initial population can be generated randomly. Each machine has randomly 3–4
jobs placed on them. The total running time for eachmachine is then calculated. Here
the job-based representation is focused out of four. For the same, the chromosome
would be [1 2 0 3]. The first job to be processed is j1 is m1, m2, m3, and processing
time is 4, 3 2 [1]. Similarly, each is processed. The genetic search process starts
with a randomly generated set of chromosomes called the initial population. The
size of the population (pop_size) depends on the solution space. The chromosome
representation of all the representation is as stated in Table 28.4. The outline GA
code is as shown in annexure I. The simple GA structure used to evaluate the system



28 A Novel Way to Schedule Flexible Manufacturing System 435

Fig. 28.5 Incidence matrix part 2

is given below. The population at time t is represented by variable s, with the initial
population of random estimates as s (0).

Procedure GA
t = 0;
initialize s(t);
evaluate s(t);
begin
t = t + 1;
select s(t)from s(t − 1)
reproduce pairs in s(t)
evaluate s(t);

Step 4.2: Population evaluation



436 S. Bhatt et al.

Fig. 28.6 Command window answer

The fitness parameter [fit (c)] considered is the makespan time. The initial
population is evaluated for makespan.

Step 4.3: Selection of new population

The process of selecting the chromosomes to represent the next generation has
the following steps:

1. Conversion of the fitness parameter values to a new fitness value [new_ fit (c)].
A fitness function considered here, which is suitable for minimization objective
is

new fit(c) = 1 − fit(c)/F (28.1)

where fit (c) = makespan time corresponding to chromosome.
F is the sum of the fitness parameter of all chromosomes.



28 A Novel Way to Schedule Flexible Manufacturing System 437

Fig. 28.7 Flow chart for
GA. Reproduced from
Munibabu et al. [5]

Table 28.4 Chromosome representation for four scheme (Reproduced from [1]

S. No. Representation Generation String length

1 Job-based representation Job to be processed at a
particular instant

Number of jobs

2 Operation-based
representation

An operation that is
context-dependent

Number of operations

3 Priority rule-based
representation

Priority dispatching rule Number of
operations/machine

4 Preference-list-based
representation

A string of symbol with
length of number of jobs

Number of machines



438 S. Bhatt et al.

F =
pop_size∑

c=1

fit(C) (28.2)

To have more copies of chromosomes with the smallest objective function value,
the ratio fit ©/F is subtracted from 1.

2. Conversion of the new fitness parameter to an expected frequency of selection
[p(c)].

P(c) = new_fit(c)/
pop_size∑

c=1

fit(c) (28.3)

3. Calculation of the cumulative probability of survival (cp (c)). A random selection
procedure, which is explained below, generates the next population of the same
size. A random number between 0 and 1 is obtained and a chromosome c is
selectedwhich satisfies the following condition.This selectionprocess is repeated
several times equal to the population size. The method used here is more reliable
in that it guarantees that the fittest individuals will be selected and that the actual
number of times each is selected will be expected frequency ±1. This procedure
enables the first chromosome to have multiple copies and the worst will die off
[1, 5].

The fitness function calculated here is the output from the Gantt chart. Expected
count, new fitness function is given by, 1 − (13/47).

Probability of selection is given by (0.0.7234/2.9999).
The string number here represents the number of job.

Step 4.4: Selection of parents for crossover

Once themakespan is calculated for the different chromosomes, tournament selec-
tion is done to filter out those chromosomes which have better makespan values (in
this case lesser makespan value) and these chromosomes are then selected to undergo
crossover and mutation. In this problem, the tournament size has been taken to be
two. Two chromosomes are randomly chosen from the population and theirmakespan
values are compared, whichever chromosome has a lesser makespan value is deemed
the winner. After the parents have been chosen, crossover is applied to them.

Chromosomes reproduce among themselves according to a predefined crossover
probability. The first child is generated by taking the first portion, from the beginning
of the chromosome until the crossover point, of the first parent and the second portion
of the second parent, from the crossover point until the end of the chromosome.

Step 4.5: Mutation

Generate the random number, for all chromosomes, if r ≤ pmmutate the chromo-
some, where pm is the probability of mutation. Mutation is a diversification strategy



28 A Novel Way to Schedule Flexible Manufacturing System 439

used mostly to avoid the repetition of chromosomes. The mutation followed in this
paper is the order-based mutation (OBM). In this, we pick two loci in the chromo-
some at random and exchange their genes. For example, 3 0 1 2 is mutated as 3 2 1
0.

Step 4.6: Termination

The above process will be repeated for a fixed number of generations.
The working of the genetic algorithm is explained in Step 4. The GA parameters

considered are given in Table 28.5. The parameters used in GA are
Initial population, corresponding fitness values (population evaluation), selection

of chromosomes for the next generation, and chromosomes in the mating pool for the
considered example are given in Table 28.6. The parents selected for crossover from
the mating pool and corresponding offsprings after crossover, chromosomes selected
for mutation, new population after mutation, and fitness values for the considered
example are given in Table 28.7.

Table 28.5 Parameters used in GA

Parameters Particulars Remarks

Population size A fixed number of individual form the GA population 10

Crossover rate The probability for an individual to perform crossover 0.8

Mutation rate The probability for an individual to perform mutation 0.05

Table 28.6 Evaluation and reproduction phase

String
No

Initial
position

Fitness
value

Expected
count

Probability
of selection

Cumulative
probability

Random
No

String
No.

Mating
pool

0 1203 13 0.7234 0.2411 0.2412 0.22 2 3021

1 2130 9 0.8085 0.2695 0.5107 0.02 1 2130

2 3021 14 0.7021 0.234 0.7447 0.36 3 0312

3 0312 11 0.7659 0.2553 1 0.22 2 3021

47 2.9999

Table 28.7 Population cross over

Mating
pool

Random
No.

Selected
over
crossover

Population
after
crossover

Random
mutation

Population
after mutation

Fitness
value

3021 0.8900 Yes 3012 0.5000 3210 16

2130 0.7300 No 2130 0.3214 2130 9

0312 0.6200 No 0321 0.2200 0321 11

3021 0.8900 No 3021 0.0300 3021 14



440 S. Bhatt et al.

The best makespan and corresponding schedule are given below for the example
problem for the job-based representation schemes considered in this example. The
best makespan obtained is 9 and Best schedule: 2-1-3-0.

28.4 Conclusions

The scheduling is one of the important aspects of the smooth functioning of flexible
manufacturing system. In the presentwork combined approachofPetrinet andgenetic
algorithm is used to produce near to optimal result. Here only one performance
parameter is considered that is makespan. Due to good modeling power, Petri net
is used as this feature is required to model a real manufacturing system. Genetic
algorithms are powerful optimization tool and gives better result for combinatorial
problems. Out of the four representations scheme the job-based representation is
addressed for the optimum makespan. The hybrid approach plays a vital role in
scheduling the system and optimizing the makespan.

In the future, the focus must be on a more complex manufacturing system with
different representation schemes and with minimum number of constraints. Also,
the focus on multi-objective optimization with conflicting objectives/performance
measures will be addressed.

Annexure

Population population = new Population();
Individual fittest;
Individual secondFittest;
int generationCount = 0;

public static void main(String[] args) {

Random rn = new Random();

GA demo = new GA();

//Initialize population
demo.population.initializePopulation(10);

//Calculate fitness of each individual
demo.population.calculateFitness();

System.out.println(“Generation: ”

+ demo.generationCount + ” Fittest: ”

+ demo.population.fittest);

//While population gets an individual with maximum
fitness



28 A Novel Way to Schedule Flexible Manufacturing System 441

while (demo.population.fittest < 5) {
++demo.generationCount;

//Do selection
demo.selection();

//Do crossover
demo.crossover();

//Do mutation under a random probability
if (rn.nextInt()%7 < 5) {

demo.mutation();
}

//Add fittest offspring to population
demo.addFittestOffspring();

//Calculate new fitness value
demo.population.calculateFitness();

System.out.println(“Generation: ”

+ demo.generationCount + ” Fittest: ” +
demo.population.fittest);

}

System.out.println(“\nSolution found in generation ” +
demo.generationCount);

System.out.println(“Fitness: ”

+ demo.population.getFittest().fitness);
System.out.print(“Genes: ”);
for (int i = 0; i < 5; i ++) {

System.out.print(demo.population.getFittest().genes[i]);
}

System.out.println(““);

}

//Selection
void selection() {

//Select the most fittest individual
fittest = population.getFittest();

//Select the second most fittest individual
secondFittest = population.getSecondFittest();

}

//Crossover
void crossover() {

Random rn = new Random();

//Select a random crossover point
int crossOverPoint = rn.nextInt



442 S. Bhatt et al.

(population.individuals[0].geneLength);

//Swap values among parents
for (int i = 0; i < crossOverPoint; i ++) {

int temp = fittest.genes[i];
fittest.genes[i] = secondFittest.genes[i];
secondFittest.genes[i] = temp;

}

}

//Mutation
void mutation() {

Random rn = new Random();

//Select a random mutation point
int mutationPoint

= rn.nextInt(population.individuals[0].geneLength);

//Flip values at the mutation point
if (fittest.genes[mutationPoint] == 0) {

fittest.genes[mutationPoint] = 1;
} else {

fittest.genes[mutationPoint] = 0;
}

mutationPoint

= rn.nextInt(population.individuals[0].geneLength);

if (secondFittest.genes[mutationPoint] == 0)

{
secondFittest.genes[mutationPoint] = 1;

} else {
secondFittest.genes[mutationPoint] = 0;

}
}

//Get fittest offspring
Individual getFittestOffspring() {

if (fittest.fitness > secondFittest.fitness) {
return fittest;

}
return secondFittest;

}

//Replace least fittest individual from most fittest

offspring
void addFittestOffspring() {

//Update fitness values of offspring
fittest.calcFitness();
secondFittest.calcFitness();



28 A Novel Way to Schedule Flexible Manufacturing System 443

//Get index of least fit individual
int leastFittest

Index = population.getLeastFittestIndex();

//Replace least fittest individual from most fittest

offspring
population.individuals[leastFittestIndex] =

getFittestOffspring();
}

}

//Individual class
class Individual {

int fitness = 0;
int[] genes = new int[5];
int geneLength = 5;

public Individual() {
Random rn = new Random();

//Set genes randomly for each individual
for (int i = 0; i < genes.length; i ++) {

genes[i] = Math.abs(rn.nextInt() % 2);
}

fitness = 0;
}

//Calculate fitness
public void calcFitness() {

fitness = 0;
for (int i = 0; i < 5; i ++) {

if (genes[i] == 1) {
++fitness;

}
}

}

}

//Population class
class Population {

int popSize = 10;
Individual[] individuals = new Individual[10];
int fittest = 0;

//Initialize population
public void initializePopulation(int size) {

for (int i = 0; i < individuals.length; i ++) {
individuals[i] = new Individual();

}



444 S. Bhatt et al.

}

//Get the fittest individual
public Individual getFittest() {

int maxFit = Integer.MIN_VALUE;
int maxFitIndex = 0;
for (int i = 0; i < individuals.length; i ++) {

if (maxFit <= individuals[i].fitness) {
maxFit = individuals[i].fitness;
maxFitIndex = i;

}
}
fittest = individuals[maxFitIndex].fitness;
return individuals[maxFitIndex];

}

//Get the second most fittest individual
public Individual getSecondFittest() {

int maxFit1 = 0;
int maxFit2 = 0;
for (int i = 0; i < individuals.length; i ++)

{
if (individuals[i].fitness > individuals[maxFit1].

fitness) {
maxFit2 = maxFit1;
maxFit1 = i;

} else if (individuals[i].fitness >
individuals[maxFit2].fitness) {

maxFit2 = i;
}

}
return individuals[maxFit2];

}

//Get index of least fittest individual
public int getLeastFittestIndex() {

int minFitVal = Integer.MAX_VALUE;
int minFitIndex = 0;
for (int i = 0; i < individuals.length; i ++) {

if (minFitVal >= individuals[i].fitness) {
minFitVal = individuals[i].fitness;
minFitIndex = i;

}
}
return minFitIndex;

}

//Calculate fitness of each individual
public void calculateFitness() {

for (int i = 0; i < individuals.length; i ++) {
individuals[i].calcFitness();

}
getFittest();

}

}



28 A Novel Way to Schedule Flexible Manufacturing System 445

References

1. Ponnambalam, S.G, Aravindan, P., Sreenivasa Rao, P.: Comparative Evaluation of Genetic
Algorithms for Job-Shop Scheduling, Vol. 12(6), pp. 560–574. Taylor & Francis (2010)

2. Murata, T.: Petri nets: properties, analysis, and application. IEEE 77(4), 541–580 (1989)
3. Zurawski, R., Zhou, M.: Petri nets and industrial applications: a tutorial. IEEE. Trans. Ind.

Electron. 41(6), 567–583 (1994)
4. Filho, M.G., Barco, C.F., Neto, R.F.T.: Using genetic algorithms to solve scheduling problems

on flexible manufacturing systems (FMS): a literature survey, classification and analysis. Flex.
Serv. Manuf. J. 26, 408–431 (2014)

5. Muni Babu, P., Himasekhar Sai, B.V., Sreenivasulu Reddy, A.: Optimization of make-span and
total tardiness for flow shop scheduling using genetic algorithm. Int. J. Eng. Res. Gen. Sci. 3(3)
(2015)

6. Kumar, O.C.: Scheduling of flexible manufacturing system using timed Petri nets. In:
International Conference on Automation, Indore (1995)

7. Vadher, J., Patel, M.B.: Dynamic scheduling of manufacturing system with stochastic timed
petrinet: a genetic algorithm approach. In: Proceedings of ISECON, Vol. 25 (2008)


	28 A Novel Way to Schedule Flexible Manufacturing System
	28.1 Introduction
	28.2 Problem Definition
	28.3 Methodology
	28.4 Conclusions
	Annexure
	References




