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Abstract Asartificial intelligencedevelops, it has becomemore andmore concerned
to measure the distance and similarity between different samples, especially in
classification. It is known that AI meets the difficulty to properly describe the
distance between different samples. Metric-learning is one field of machine learning
performed on training samples in order to better describe the distribution of training
samples, thereby improving the performance of classification. This paper proposes
a new triplet constraint and uses the topology information combined with the unla-
beled samples to design the regularizer of the model to ensure that the model meets
the three basic assumptions of semi-supervised learning: smoothness, low density
and manifold. This paper provides a new semi-supervised metric-learning model by
using the new triplet constraint and regular terms. Then, using a gradient descent
algorithm to solve the model, the optimal Mahalanobis matrix is obtained, which
could ensure the Mahalanobis matrix is positive definite and symmetry during the
iterative process. The Mahalanobis matrix solved by the model can be applied in
clustering, classification and many other artificial intelligence fields. In this paper,
the model is used for classification problem as an application. The experimental
results are consistent with the idea of the model, reflecting the advantages of this
model compared to other models, providing a new method to measure the sample
distance in artificial intelligence and machine learning.

Keywords Semi-supervised metric-learning · Artificial intelligence · Machine
learning · Mahalanobis distance · Triplet constraint

1 Introduction

High-dimensional data is inconvenient to process, so dimensionality reduction is
aimed for a suitable lower-dimensional space where computation should be reduced
while retaining sample information. The motivation for metric-learning is to find
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a suitable distance function, which has been applied extensively in fields as text
classification and image-recognition. Traditionally, the Euclidean distance is used,
however, Euclidean distance is evenly distributed where features’ proportion and
relationship are not considered, which affects the ability of characterizing sample
structures.

Xing first proposed to use Mahalanobis distance [1] and solved it with a simple
gradient algorithm. Schultz and Joachims proposed a model for determining the
parameters of the metric matrix and the learning weight diagonal matrix [2]. Later,
Weinberger and Saul designed the LMNN model, combining the idea of neighbor
prediction [3]. The principal component analysis (PCA) is typical in dimension-
ality reduction algorithms [4], which can be regarded as a special metric-learning
algorithm. Another classic dimension reduction method is the multi-dimensional
dimensioning algorithm MDS [5], which converts a distance into the form of the
inner product of the bit matrix. Roweis and Sau proposed local linear embedding by
finding low-dimensional manifolds that maintain high-dimensional spatial neighbor
structures [6]; Tenenbaum proposed ISOMAP algorithm by replacing Euclidean
distances with local geodesic distances. [7]; Belkin and Niyogi proposed the Lapla-
cian characteristic mapping [8]; Donoho and Grimes proposed the Hesse feature
mapping algorithm [9].

In this paper, a new triplet constraint is designed, considering the previous research
of the semi-supervised metric-learning model. The new triplet constraint combines
the advantages of two types of previous triplet constraints, so that the learned matrix
can measure the distance more effectively. In order to make the model meet the three
premise assumptions of semi-supervised learning, a regular term is designed in this
paper using unlabeled samples.

2 Semi-supervised Metric-Learning

2.1 Mahalanobis Distance

Euclidean metric is defined as

d
(
xi , x j

) =
√(

xi − x j
)T (

xi − x j
)

(1)

In Euclidean metric, the proportion of different features of the sample is evenly
distributed, so the coupling relationship between different features is not considered.
Mahalanobis distance is used to improve this limitation and defined as follow.

d
(
xi , x j

) =
√(

xi − x j
)T

A
(
xi − x j

)
(2)
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where A ∈ Rn×n is the metric matrix. As a semi-symmetric positive definite matrix,
A can be decomposed into A = QT Q, and Eq. (2) is rewritten as follow.

dA
(
xi , x j

) =
√(

xi − x j
)T

A
(
xi − x j

) =
√(

xi − x j
)T

QT Q
(
xi − x j

)
(3)

It is naturally required that the distance between similar samples is as small as
possible, and the distance between heterogeneous samples is as large as possible.

If S = {(
xi , x j

): xi , x j ∈ Rn, and of the same class
}

and D ={(
xi , x j

): xi , x j ∈ Rn, and of different class
}
, then a simple metric-learning model

is defined

min
A

∑

(xi ,x j)∈S
d2

(
xi , x j

)
, s.t.

∑

(xi ,x j)∈D
d2

(
xi , x j

) ≥ C (4)

where d
(
xi , x j

) =
√(

xi − x j
)T

A
(
xi − x j

)
, A is a semi-positive symmetric matrix

and C is constant. Many of the later models were derived from this basic model.

2.2 Improved Triplet Constraint

In this paper, note that L = {x1, . . . , xl} is the labled sample, U = {xl+1, . . . , xn} is
the unlabeled sample, D = L∪U = {x1, . . . , xn} for all sample sets, where xi ∈ Rm .
X = [x1, x2, . . . , xn] is the data matrix containing the whole input samples.

Since it is desirable tominimize the distance between similar samples whilemaxi-
mizing it between heterogeneous ones, under this assumption, the triplet constraints
can be defined as

T = {(
xi , x j , xk

): D2
i j < D2

ik

}
(5)

where D2
i j = (

xi − x j
)T

A
(
xi − x j

)
, xi and x j are in the same group and xi and xk

do not belong to the same group. According to the definition of triplet constraints,
if given the samples xi , x j , and xk , the purpose is to find a semi-positive symmetric
matrix A, and then use the matrix A to calculate the distance between these samples,
maximizing D2

ik − D2
i j is the largest, that is equivalent to minimizing D2

i j − D2
ik .

Based on this requirement, an initial model can be derived:

min
A

∑

T

(
D2

i j − D2
ik

)
, s.t. A ≥ 0 (6)

In the regularized semi-supervised metric-learning (RSSML) [10], in order to
introduce the sample distribution boundary, the RSSML model scales the triplet
constraints and constructs the following form:
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T2 = {(
xi , x j , xk

): D2
i j + 1 < D2

ik

}
(7)

Then, the model can be converted to

min
A

∑

T

[
1 + D2

i j − D2
ik

]
+, s.t. A ≥ 0 (8)

where [z]+ := max{z, 0}.If D2
i j plus a unit distance is still smaller than D2

ik , a hinge
loss function [11] is triggered.

The ability of this triplet constraint is influenced by the distribution of the
sample points. When the distance between the same sample and the distance of
the heterogeneous sample is very close, a judgment error may occur [12, 13].

Therefore, the parameter γ is introduced to avoid such problems, and thus the
triplet constraint is rewritten as follow

T3 = {(
xi , x j , xk

): D2
i j < γ D2

ik

}
(9)

where γ (0 < γ ≤ 1) is used to balance the impact of similar data and different types
of data. γ = 1/

(
1 + D̄−1

)
, where D̄ is the average distance of the data set D. When

the difference between the homogeneous sample and the heterogeneous sample is
very large, D is also very large, in which case γ tends to 1 and T3 is equivalent to T .
The revised model is:

min
A

∑

T3

(
D2

i j − γ D2
ik

)
, s.t. A ≥ 0 (10)

However, when the distance between the similar sample and the heterogeneous
sample is very small, the model imposes too strict restrictions on D2

i j , which causes
some similar samples to be excluded from themodel. In this paper, another parameter
is added to the model. ω = 1 − γ , the triplet constraint is as follow

T4 = {(
xi , x j , xk

): D2
i j < γ D2

ik + ω
}

(11)

Obviously, when γ is 1, T4 is equivalent to T . When T is very small due to the
small D̄, ω acts to relax the constraint, but overall, T4 is still more strict than T2.

The model is revised to:

min
A

∑

T4

(
D2

i j − γ D2
ik − ω

)
, s.t. A ≥ 0 (12)

In the LMNN algorithm [6], the distances are calculated in pairs to minimize
because KNN classifier does not need all samples of one kind clustered into one
family. Only the k-nearest neighbor of each sample is needed.

Define two indicator functions here:
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ηi j =
{
1, xi and x j are neighbours
0, other

(13)

yi j =
{
1, xi and x j belong to the same class
0, other

(14)

The model can be rewritten as:

min
A

l∑

i, j,k

ηi j
(
1 − yi j

)(
D2

i j − γ D2
ik − ω

)
, s.t. A ≥ 0 (15)

And l is the number of labeled samples.

2.3 Regularization Term

Based on neighbor relationships, the following regular term is used in LRML
algorithm to combine unlabeled data.

rg(A) = 1

2

n∑

i, j=1

Si j D
2
i j (16)

where

Si j =
{
1, f i ∈ N ( j) or j ∈ N (i)i �= j
0, other

N (i) = {
x j |x j and xi are neighbour

}
, that is, N (i) represents the neighbor of xi

measured by the Euclidean distance.
According to the smoothinghypothesis, if the samples are neighbors, their distance

in the new space is minimized:
n∑

i=1

∑
j∈N (i) D

2
i j . Introduce the similarity

[
Si j

]
, and

according to the manifold hypothesis:
∑n

i=1

∑
j∈N (i) Si j D

2
i j .

According to the clustering hypothesis, for the samples in the high-density region,
their distance is minimized by the parameter βi = f (p(xi )) ∈ R+, where p(xi ) is
xi ’s density and f : R → R is a non-negative monotone increasing function, which
gives:

∑n
i=1 βi

∑
j∈N (i) Si j D

2
i j .

Finally, rewrite the regular term as:

rg(A) = 1

4

n∑

i=1

βi

∑

j∈N (i)

Si j D
2
i j (17)
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Combined with the previousmodel, a semi-supervisedmetric-learningmodel was
obtained:

min
A

1

4
c

n∑

i=1

βi

∑

j∈N (i)

Si j D
2
i j + (1 − c)

l∑

i, j,k

ηi j
(
1 − yi j

)(
D2

i j − γ D2
ik − ω

)
(18)

s.t. A ≥ 0

And 0 ≤ c ≤ 1 is a balance parameter used to control the weight between regular
term and loss term.

3 Model Simplification and Algorithm

Consider the convenient for calculation, simplify the model as follow

minctr
(
XLXTA

) + (1 − c)

⎛

⎝tr(MA) −
l∑

i, j

C1
i jω

⎞

⎠, s.t. A ≥ 0 (19)

Where, M = Xl(Dc − C)XT
L ,C = C1 − C0C1 = diag

((
eeT − Y

)
e
)
H„ C0 =

γ diag(He)
(
eeT − Y

)
, Dc = diag(Ce)L = ∑n

i=1 L
(i), L(i) = D(i)

w − W (i) is a

Laplacian matrix,D(i)
w is a diagonal matrix which consists of D(i)

w (k, k) = ∑
j W

(i)
k j .

The optimal solution of the model can be obtained by using the steepest descent
algorithm for the positive definite symmetric matrix (Table 1).

Table 1 Algorithm steps

Gradient descent algorithm for definite symmetric matrix

Input: L ,U, D,

Output: Mahalanobis matrix A

1. Initialize the Mahalanobis matrix A, k (the norm for the nearest neighbor of any sample), α
(step size per learning) and the maximum iterations T

2. For t = 1: T
(1) Calculating the gradient

(2) G(t) = [A(t)]− 1
2 Sym[∇ f (A(t))][A(t)]− 1

2

(3) Update metric matrix A, A(t + 1) = A(t)
1
2 exp(−α(t)G(t))A(t)

1
2
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4 Numerical Experiment

The experiment selected four different data sets (iris, wine, balance, breast cancer)
in the UCI database for numerical experiments. Table 2 gives a brief description of
the four types of data. |L| represents the number of labeled samples, |U | represents
the total number of samples, and |L|/|U | represents the labeling rate of the labeled
samples.

During the experiment, the whole data is randomly divided into two parts: a
labeled set L and an unlabeled set U . Consider each of its 4 neighbors for each
sample and select 10 tag samples for each class. Randomly select 10 samples of each
class as training samples and randomly select 5 samples of each class as a test set.
Experiment was carried out 20 times for each data set and takes the average of 20
experiments as final.

As shown in Fig. 1, according to the average results of 20 experiments, the classi-
fication of these models is much better than the European distance classification. The

Table 2 Descriptive statistics

Data set Sample nNumber Feature number Label number |L| |U | |L|/|D|(%)

Iris 150 4 3 15 135 10

Wine 178 13 3 15 163 8.43

Balance 625 4 3 15 610 2.4

Dermatology 358 34 6 30 328 8.38

Fig. 1 Clustering results



454 F. Gao

Fig. 2 Sensitivity for c

results presented in this paper are better than those tested on each data set. Second,
the average error rate of the proposed method on each data set is the smallest.

When testing the model sensitivity of two parameters, c and v, the values of other
parameters are fixed, and the change step of c is 0.01. For the dermatology and
balance data sets, the range of c is selected as [0, 0.2]; for the wine data set, the range
of c is set to be [0.8, 1]; for the iris data set, the range of c is set to be [0.7, 0.9].
Take the change step of v is 1, the range of change is [1, 15]. Figures 2 and 3 show
the sensitivity for the two parameters, and the error rate of the experiment fluctuated
slightly with the change of c and v.

5 Conclusions

This paper proposes a new semi-supervised metric-learning model, which uses
topology information to construct regular terms to satisfy the three important assump-
tions of semi-supervised learning. For solving the model, a gradient descent method
is used to get themetricmatrix A. Then, we apply A to the KNN classifier and replace
the commonly used Euclidean distance by the Mahalanobis distance calculated by
the matrix to classify some data in the UCI database as a test set. Finally, compare the
results of our model with several existing semi-supervised metric-learning methods.
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Fig. 3 Sensitivity for v

The numerical results illustrate that the classification effect of our model is better
and meets the original design goals.
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