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Abstract

Global water crisis created due to increasing population and its demands needs to
ascertain proper water management practices. Biofilm, which is a conis the
fundamental unit of atgregation of microbial cells that are irreversibly attached
to the surface and confined within the matrix of polysaccharide material, plays a
major role in water treatment and reuse technology. A biofilm structure has a
specific architecture that consists of microbial cells and extracellular polymeric
substance provided with an ideal environment for the exchange of genetic
material between cells. The growth and attachment process depend on the growth
medium, substratum, and the cell surface. Biofilms are the main component of
membrane bioreactors. The microorganisms present in the biofilms participate
actively in contaminant bioremediation and degrade the organic contaminants of
the polluted water. The planktonic-biofilm transition is a highly regulated and
complex process that depends on the phenotypic characteristics of the bacteria
and environmental factors. The microorganisms that help in biofilm formation
have specific regulatory genes and communicate through quorum sensing which
in turn can initiate certain biofilm processes such as detachment. Recently, studies
have identified the genes and regulatory circuits which are involved in initial cell
surface interactions, biofilm maturation, detachment, and the conversion of
biofilm microbial cells into planktonic mode of growth. This chapter explores
the ways of formation and architecture of biofilms and deals with the ecology of
the surface microbes, their growth control mechanisms, and their role in water
reclamation system.
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1 Introduction

Modern civilizations have witnessed the process of rapid industrialization and
urbanization which have not only affected the individual lifestyle and society but
have also modulated the environment. Unlike the positive drive it has on the
economical and social frames, the impact of both industrialization and urbanization
has adverse effect on nature and its precious resources especially the air and water.
Since water has guided the growth of various epical civilizations, its importance in
structuring a stable society can never be overlooked. However, the discharge of toxic
chemicals and untreated sewages from the rapidly growing industries and cities has
contaminated a large portion of usable water, affecting the water quality and human
heath at the same time. Contaminated water generally consists of industrial, agricul-
tural, and domestic effluents which may be comprised of detergents, fats, oils,
pesticides, and trace metals like lead, cadmium, mercury, nickel, zinc, etc., making
it unfit for drinking. The lack of proper water treatment plants has also contributed to
increased toxicity of water bodies to a large extent. According to the UNESCO
(2017), over 80% of the effluents released worldwide in the water bodies are without
sufficient treatment. Moreover, the WHO has quoted that 40% of the deaths and 30%
of all the diseases have been resulted due to contaminated water (Kantawanichkul
et al. 2009), causing it as a global concerned.

Deterioration of life and health quality due to polluted water and regular assess-
ment of progressive contamination of water bodies by various researchers suggest
the need of focusing toward a necessary cure for the existing situation. Treatment of
contaminated water bodies in an efficient way to remove toxins has gained attention.
The process of water purification starting with the filtration was appreciated due to
its cost-effectiveness and practicability. However, the use of chemical filters or the
contemporary physical methods had many drawbacks. The use of biological knowl-
edge for wastewater treatment was introduced in the year 1893 in England as
trickling filters (Metcalf and Eddy Inc 1991). The concept of utilizing microbial
population for the metabolic degradation of organic wastes and chemicals and
removal of trace metals from the effluents has gradually evolved and is being
commercialized. The pioneering works in this area guided the development of
biofilters and the successful application of biofilms for filtering both polluted air
and water at industrial level.

Initially, the biofilters were developed on slag or rock as filter media; however,
with the latest advancement, an array of filter media are purposefully used for
obtaining requisite biomass preeminent toward metabolic degradation of pollutants.
Progress in the knowledge of biofilms and their effective utilization using array of
support media leads to the development of plastic-based media (bundled plastic
transition to expanded polystyrene units) into various fixed film filtration units in the
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mid-twentieth century (Antonie and Aacken 1971; Antonie 1976). Subsequently, the
advanced biofiltration unit was developed with high treatment efficacy by the
purposeful implication of support media. Further, hybrid (suspended and fixed
film system together) and upgraded fixed film systems were also introduced for
better water treatment (Canler and Perret 1994). However, in biofiltration units, the
optimum operational parameter, which includes pH, temperature, moisture, aeration,
etc., should be properly maintained for better results. Govind (2009) percolated that
biofiltration can effectively remove as high as 5000 ppmv concentration of
contaminants if provided with structural and operational optima.

Utilization of biofilms for filtration has many advantages over the physical
methods which include cost-effectiveness and filtration efficacy due to metabolic
breakdown of biodegradable pollutants along with environmental benefits. In nature,
microorganisms preferably form consortia for proper utilization of available
nutrients and combat stress. This natural process gradually results in the form of
biofilm which may consist of microbes belonging to different trophic levels. In a
biofilm, complex organic contaminants can be utilized sequentially by various
classes of microbes ultimately resulting into increased biomass and subsequent
biodegradation of contaminants. Therefore, the utilization of biofilms in the mem-
brane reactors and filtration units for the removal of pollutants has great scope.
Today, modern biofilter technology is playing a paramount role over the quintessen-
tial physical methods for water reclamation and reuse processes. Nevertheless, the
increasing demand of water due to rapid rise in the global population and following
depletion of freshwater sources is urging for more efficient biofilters to increase the
mass reuse of available water and prevention of water pollution.

2 Wastewater Treatment

Wastewater treatment is a process through which the contaminants present in the
effluent are removed and converted into reusable form with minimum impact on the
environment. Wastewater treatment can be broadly divided into three categories:
physical treatment, chemical treatment, and biological treatment.

Physical Water Treatment: In this process, solid wastes are removed without
involving any use of chemicals. Processes like screening, sedimentation, and
skimming are used in which the insoluble heavy particles settle down at the bottom
and the pure water is separated. Other effective methods are aeration (providing air
through the water to provide oxygen) and filtration (wastewater is passed through the
filters to separate the contaminants and insoluble particles). Sand filters are mostly
used in this process. The major disadvantage is that not all the contaminants can be
removed by using physical treatments. The particles having smaller size cannot be
removed.

Chemical Water Treatment: This process involves the use of chemicals for water
treatment. Chlorine is widely used for water treatment. Ozone is an excellent
disinfectant and oxidizing agent and is used in water purification. Neutralization
technique is also used where acid or bases are added to neutralize the pH of the
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water. Chemical treatments can check the growth of microorganisms, but its
prolonged use can cause water hardness and make it turbid changing its taste
and odor.

Biological Water Treatment: Biological treatments make use of microorganisms
to break down organic wastes using normal cellular processes. Among the available
treatment processes, application of biological processes is gradually gaining pace as
it involves no chemical use and is ecofriendly, cost-effective, and efficient in lower
level of contamination. It is mainly of two types: suspended and fixed film growth
systems. Suspended growth systems have some definite disadvantages like washout
and low biomass concentration (Metcalf and Eddy 2003). Fixed film systems have
many advantages like:

1. They are closer to natural biofilm systems.
2. Prevent washout of biomass.
3. Increased mean cell retention time.
4. Enhanced biomass loading per unit reactor volume.
5. Easy solid and liquid separation.
6. Surface biodegradation facilitates providing resistance to shock loadings.
7. Higher biodegradation rates.
8. Higher active biomass.
9. Enhanced rates of genetic transfer resulting in stable gene pool.

10. Extensive microbial diversity.
11. Greater efficiency to degrade recalcitrant (Bisop et al. 1995).

The concept of biofilms was followed for the development of biofilters which are
the most recent and promising technique possessing higher efficiency and better
performance for biological wastewater treatment (Cohen 2001).

3 Biofiltration

Biofiltration system involves removal of pollutants through biological degradation
unlike normal filtration technique where physical straining is used (Chaudhary et al.
2003). This breakdown of pollutants is carried out by microorganisms fixed to a
porous medium. The microorganisms including (anaerobic, aerobic, and facultative)
protozoa, bacteria, algae, and fungi suspended beside the medium particles gradually
develop a slime layer known as biofilm over the surface of the filter media. To ensure
large surface area for attachment and increase in nutrient supply, the filter bed
medium consists of relatively inert substances. The potential of a biofilter depends
on the properties and characteristics of the support medium including degree of
compaction, porosity, ability to host microbial populations, and water retention
capabilities. The parameters that determine the performance and successful opera-
tion of biofilters include the medium pH, microbial inoculation, moisture, tempera-
ture, and nutrient content (Devinny et al. 1999). Over the last few decades, fixed film
systems like trickling filters and rotating biological contractors have been used for
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wastewater treatment (Antonie 1974; Pederson 1982; Hinton and Stensel 1994;
Parker and Bratby 2001). The various abatement techniques related to biofiltration
is illustrated in Fig. 1. As the performance of biofilter depends on the microbial
activity, so availability of constant source of substrates is important to maintain and
control a healthy biomass present on the surface of the filter.

4 Performance Parameters of Biofilters

The parameters that play a crucial role on the performance of a biofilter are briefly
discussed below:

1. Physical factors
(a) Filter media

Filter media or packing is the fundamental unit of attached growth wastewa-
ter treating technology. It provides a surface on which the microbial growth
takes place and forms a biofilm layer. The source and concentration of
pollutants are the basis of selection of biofilter media which makes it crucial
for efficient functioning of biofilters. Porosity, size, density, and resistance to
erosion and chemicals are also important parameters for selection. The
biofilter media should provide suitable and larger surface area for quick
biomass growth and good quality surface texture to withstand shear and
sloughing of biomass. The filter medium should be insoluble, durable, and
resistant to chemicals (Christensson andWelander 2004). The hydrodynamic
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conditions of the support material are affected by the geometry of the reactor,
i.e., surface area and texture, affecting biofilm formation causing inappropri-
ate wastewater treatment (Yu et al. 2008; Matos et al. 2011). A medium that
has high void fraction, resistance to clogging, large passage diameter, high
specific surface area, good mechanical strength, inert material of construc-
tion, flexibility in shape, wettability for better growth of biofilm, light
attenuation, and ease of maintenance and is lightweight and cost-effective
is considered as a good filter medium. Various researchers have reported the
use of different synthetic and natural materials like polypropylene (Khatoon
et al. 2014), polystyrene (Naz et al. 2013), and pebbles (Naz et al. 2015; Khan
et al. 2015) as efficient media. For primary wastewater treatment, blast
furnace slag, granite, and synthetic media can be used as filter media. The
selection of filter media largely depends on the volume of wastewater.
Moreover, for the tertiary wastewater treatment, granular activated carbon
(GAC), filter coal, anthracite, and sand can be used. The use of GAC for the
removal of organic substances from tertiary wastewater is better than using
anthracite or sand as they are non-adsorptive media (Le Chevallier et al.
1992; Wang et al. 1995a, b). The biodegradable components are retained and
adsorbed by GAC, leading to continuous bioregeneration additionally
providing protection from shear loss of biomass. Certain spectroscopic
techniques like X-ray photoelectron spectroscopy and energy-dispersive
X-ray spectroscopy are utilized for the detection and quantification of the
elemental composition of the filter medium.

(b) Filter backwash
Filter backwashing is a very crucial step for the maintenance of the biofilm,
and the backwashing technique should be selected appropriately, or else it
could damage the biomass attached to the surface (Ahmad et al. 1998;
Bouwer and Crowe 1988; Bablon et al. 1988; Graese et al. 1987; Miltner
et al. 1995). The hydrophobic biological particles are attached to filter media
with greater force compared to that of nonbiological clay particle (Ahmad
and Amirtharajah 1998). Backwashing in granular activated carbon biofilter
showed no significant loss in vertical biomass profile (Servais et al. 1991).

(c) Empty bed contact time
The empty bed contact time (EBCT) is the main operating parameter of a
biofilter. The concept dimensionless contact time incorporating EBCT was
given by Zhang and Huck (1996). With the increase in contact time escalates
the organic substance removal until it reaches its optimum value. The
hydraulic loading and filter depth can be amended to enhance the EBCT.
In a rapid filtration unit, organic removal is not affected by hydraulic loading
for a given EBCT (Carlson and Amy 1995).

(d) Temperature
The effect of temperature on the bacterial activity is yet another parameter for
biofiltration. The activities of bacterial community adapted at 10 �C and
20 �C but can increase with the rise in temperature by 10–30 �C.
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2. Biological factors
The formation of microbial biofilm is the fundamental principle of biofiltration
technique. So it is required to understand the mechanism of the biological
processes involved in the formation of biofilms. Microorganisms play a crucial
role in removing anthropogenic contaminants from wastewater. The knowledge
of composition of the microbial consortia, which form the biofilm, is preferably
significant not only to construct highly efficient engineered biofilms but also to
understand the basic mechanism of decomposition performed by them. Although
microbial consortia are responsible for the biofilm formation, the methanogens
are the key players in waste removal. The microbes recovered from anaerobic
bioreactors mostly belong to the Euryarchaeota, Crenarchaeota, Korarchaeota,
and Thaumarchaeota (Riviere et al. 2009; Leclerc et al. 2004; Collins et al. 2006;
Dang et al. 2013). Along with Crenarchaeota, other potential ammonia-oxidizing
organisms, including Nitrosopumilus maritimus, Candidatus, and
Nitrososphaera viennensis, were also isolated from biofilms (Konneke et al.
2005; Tourna et al. 2011). Methanogenic archaea, dominantly consist of
Methanobacteriaceae, Methanosarcinaceae, and Methanosaetaceae, get attached
to the packing support materials carrying out methanogenesis efficiently (Zhang
et al. 2011; Buzzini et al. 2006; Del Nery et al. 2008). Moreover, Leclerc et al.
(2004) reported the consortia of Methanobacterium spp. and Methanosaeta
concilii in the biofilm layer. However, in the stirred tanks and fixed film digesters,
Methanosarcina frisus is the prevalent species, yet, in anaerobic sludge bed,
Methanosaeta spp. is mostly found. Visser et al. (1991) revealed that even after
a rise in temperature from 38 �C to 55 �C, several subpopulations including
Methanobrevibacter smithii, Methanospirillum hungatei, Methanobrevibacter
arboriphilus,Methanobacterium thermoautotrophicum,Methanogenium cariaci,
and Methanosarcina thermophila continue to carry out their activity proficiently.

5 Microbial Biofilms

A biofilm is defined as an accumulation of microbial cells that are attached irrevers-
ibly with a surface enclosed in a matrix consisting primarily of polysaccharide.
Biofilm matrix may also contain noncellular materials according to the environment
in which the biofilm has developed. The water system biofilm contains clay material,
corrosion products, filamentous bacteria, and freshwater diatoms making it more
complex. There are multiple biofilm growth modes. They may grow in flat sheets,
discontinuous patches, cluster shape, or columnar form. The mechanism of biofilm
formation is illustrated in Fig. 2.

There are three main biological processes that can occur in a biofilter:

1. Attachment of microorganisms.
2. Growth of microorganisms.
3. Decay and detachment of microorganisms.
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5.1 Attachment of Microorganisms

Attachment is a process in which the microorganisms attach and colonize over the
filter media surface through transportation, initial adhesion, firm attachment, and
colonization (Van Loosdrecht et al. 1990). The microorganisms then get transported
toward the filter media surface further involving four processes: diffusion, convec-
tion, sedimentation due to gravity, and active mobility of the microorganisms.
Depending upon the total interaction energy (sum of van der Waals forces and
electrostatic force), the initial attachment can be reversible or irreversible. Irrevers-
ible adhesion of microorganisms occurs through production of extracellular poly-
meric substances. The polyhydroxyl groups in extracellular polymeric substances
form hydrogen bonding through which bacterial colonization takes place (Kjelleberg
et al. 2007). The process of adhesion of the microorganisms on the filter media
surface stands by the DLVO (Derjaguin-Landau-Verwey-Overbeek) theory. The
influent characteristics and surface properties of the filter media decide the processes
of firm attachment and colonization. The method of surface attachment of
microorganisms is greatly influenced by hydrophobicity of the microorganisms,
steric effects, contact angle, and electrophoretic mobility values.

5.2 Growth of Microorganisms

Following the process of microbial attachment on the filter media surface, the
formation of monolayer microcolonies takes place. The bulk and surface transport
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of other
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Fig. 2 Mechanism of biofilm formation
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phenomenon governs the supply of organic substrate. Once the substrate is
transported to the biofilms from the bulk liquid, it gradually diffuses into the biofilms
initiating the process of metabolism. Transportation of mass substrate to the biofilm,
rate of diffusion of the substrate into the biofilm, and kinetics of its utilization within
the biofilm decide the rate of substrate utilization. A three-dimensional arrangement
is formed by the attachment of the biofilms to debris from the adjacent environment.
Growth yield of the substrate also influences the performance of a biofilm process.
Invasion of new planktonic bacteria also takes place and forms multispecies
consortia.

5.3 Detachment of Biomass

Detachment is a critical phenomenon where matrix-encased and sessile microbial
cells are converted to free planktonic microorganisms that affect the maintenance of
biomass. Some of the important detachment mechanisms are erosion of biomass
(due to the fluid shear), abrasion of biomass (scraping the biocell off the surface by
collision of external particle), sloughing (detachment of large patches of biomass),
predation of protozoa (detachment of biomass on the outer surface of the biofilm),
and filter backwashing. During backwashing, the biomass is affected by expansion
of backwash bed, mode of backwash like filter effluent, chlorinated water, and air
scour (Chaudhary et al. 2001). There is no loss of effective biomass during normal
filter backwash (Ahmad and Amirtharajah 1998). However, it has been also reported
that biomass loss occurs due to shear stress and is stimulated by cell-to-cell signaling
mechanism through quorum sensing (Webb 2007).

6 Factors Promoting Biofilm Formation

The factors that promote the process of biofilm formation are as follows:

(a) Nutrients, pH, and temperature
Nutrient condition is the major factor that plays a pivotal role in microbial
growth in the biofilms. It ranges from enriched media to non-detectable one.
The conversion of microbial cells from planktonic to biofilm state needs dense
nutrient-rich environment, whereas the depletion of nutrients promotes biofilm
cell detachment from surfaces. The microbial community obtains nutrients
through various prominent ways like utilization of waste products from second-
ary colonizers, accumulating trace organic materials through extracellular poly-
meric substances, and biochemical resource pool (Sehar and Naz 2016).

Alteration in pH affects the microbial growth and development. The bacteria
present in the media modify the synthesis and activity of proteins associated
with different cellular processes. Although the formation of polysaccharides and
excretion of exopolymeric substances do not respond to pH variations, the
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optimum pH for the production of polysaccharide is around 7 (Oliveira et al.
1994).

Temperature is yet another factor which is very sensitive for microbial
growth. A healthy growth of microbes needs optimum temperature, or else it
will lead to reduction in bacterial enzyme reaction rates which will result in loss
of bacterial growth efficiency. The optimum temperature for bacterial growth
found in cooling water systems is about 40 �C (Ells and Hansen 2006).

(b) Surface topography
Bacterial adhesion to the surface is greatly governed by surface topography. The
aqueous media with higher flow rate and rough surface reduce the shear force on
microbial cells.

In the initial steps of attachment, a limited surface roughness enhances the
adhesion of microbes by providing it increased surface area for attachment of
cells. The surface exposed to the aqueous medium is coated with polymers
resulting in chemical modifications that affect the rate of microbial attachment.
Furthermore, the process of adhesion is influenced by factors like
hydrophobicity, charge, and elasticity (Prakash et al. 2003)

(c) Hydrodynamics
The zone adjacent to the substratum which experiences negligible turbulent flow
is known as the hydrodynamic boundary layer. The flow velocity in this zone is
insufficient to remove the biofilm layer. The region outside this layer shows high
level of turbulent flow and influences the attachment of the microbes on the
surface. The microbial cells act as particles in a liquid, and the linear velocity of
the liquid is the deciding factor for the rate of association of the cells with the
submerged surface. Association of the cells largely depends on cell motility and
cell size. The thickness of the boundary layer decreases with the increase in
linear velocity. When the magnitude of the linear velocity is less, the cells travel
through the hydrodynamic boundary layer, but as it increases, the boundary
layer decreases. As a result, the microbial cells experience high turbulence level
and mixing (Characklis 1990). Higher linear velocities can be considered the
same as rapid association with the surface until the detachment of the cells
occurs due to shear force caused by high velocities (Rijnaarts et al. 1993; Zheng
et al. 1994). Simoes et al. (2007) showed that physical properties such as
structure, thickness, and mass along with extra polymeric substance production
and metabolic activities of biofilms are influenced by hydrodynamic conditions.

(d) Gene regulation
Initial attachment of the cells with the solid media involves upregulation and
downregulation of a number of genes. Pseudomonas aeruginosa is an important
bacterium which is involved in biofilm formation. Approximately 22% of its
genes are upregulated, and 16% are downregulated during the process
(Steyn et al. 2001). Bacterial alginate functions as extracellular matrix material
which initiates differentiated biofilm formation. Genes like algD, algU, and
rpoS which encode bacterial alginate formation and genes regulating
polyphosphokinase synthesis are also upregulated during the process of biofilm
formation by Pseudomonas aeruginosa (Prakash et al. 2003). In case of
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Staphylococcus aureus, genes responsible for the synthesis of enzymes like
phosphoglycerate mutase, triphosphate, and alcohol dehydrogenase used in
glycolysis or fermentation are also upregulated (Becker et al. 2001)

(e) Extracellular polymeric substances
Extracellular polymeric substances are voluntarily secreted by microbial
biofilms in nature which are, generally, composed of high-molecular-weight
polymers, like polysaccharides, proteins, glycoproteins, DNA oligomers,
phospholipids, and humic acids, comprising of 50% to 90% of the total organic
carbon of the biofilms ((Flemming and Wingender 2010; Flemming et al. 2000).
The uronic acids (D-galacturonic, D-glucuronic, and D-mannuronic acids) or
ketal-linked pryruvates (Sutherland 2001) provide it the negative charge that
facilitated their association with divalent cations causing cross-linking of the
polymeric strands that provides greater binding force in the biofilm (Flemming
et al. 2000). The extracellular polymeric substances are also highly hydrated by
large amounts of water into their structure due to hydrogen bonding. The
extensive hydrophobic interactions along with its bridging with multivalent
cations aggregate the bacterial cell in the gel-like network. However, extracel-
lular polymeric substances are not essentially required for the sustainability of
microbial life, yet their provenance has significantly influenced the increased
survival, plasticity, adaptability. and their metabolic efficacy. Although extra-
cellular polymeric substances are considered as the secreted metabolic wastes,
they crucially secure the biofilm attachment and facilitate organization of each
microbial cell in the consortium. The extracellular polymeric substances, thus,
not only enable the increase in the efficiency of biofilm for entrapping and
gradual degradation of organics and nutrients from the surrounding but also
increase cell-to-cell exchanges and signaling (Zhao et al. 2013; Decho and
Gutierrez 2017). Moreover, it causes flocculation and granulation and further
protects bacteria against environmental stresses (Zhao et al. 2013). The
properties and primary characteristics of biofilm can be determined by the
compositional and structural variations of the extracellular polymeric
substances, since it is not uniform and rather alters on the basis of microbial
composition along the spatial and temporal scales. Nevertheless, the extracellu-
lar polymeric substance production in microbial community is affected by
nutrient status, where excess availability of carbon and limitation of nitrogen,
potassium, or phosphate promote extracellular polymeric substance synthesis
(Sutherland 2001). Retardation in bacterial growth also promotes extracellular
polymeric substance production, likely, as a mechanism of tolerance. Further, it
also contributes toward antimicrobial resistance of biofilms by slowing down
the bulk transfer and exposure of antibiotics through the biofilm by binding
directly to these agents (Donlan 2000). Notably, the increasing age of biofilms
promotes the biosynthesis and secretion of extracellular polymeric substances
significantly (O’Toole 2011).

(f) Extracellular DNA
Extracellular DNA serves very crucial role in various stages of biofilm forma-
tion including initial adhesion of bacterial cells followed by aggregation and
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microcolony formation promoting wastewater treatment. It is an integral part in
production of extracellular polymeric substances (Bockelmann et al. 2006). It
also provides strength to biofilms along with protecting the biofilms from
antibiotics, physical stress, and detergents (Das et al. 2013). Currently, it is
also prominently used in engineered biofilms for environmental pollutant reme-
diation and production of electricity or fuel in bioelectrochemical systems or
bioreactors.

(g) Divalent cations
Divalent cations are abundant in aquatic environments and are involved in
bacterial growth in biofilms. The extracellular DNA chelates divalent cations
which results in amendment of surface properties of microbial cell providing
resistance against detergents and antimicrobial agents (Mulcahy et al. 2008).
Calcium which is a divalent cation contributes in initial attachment by chelating
anionic sites on extracellular polymers between microbial aggregates of anaero-
bic sludge granules, activated sludge flocs, and biofilms (Kerchove and
Elimelech 2008). Calcium also influences cellular and extracellular product
formation, cell signaling, alginate regulation, and biofilm virulence (Sarkisova
et al. 2005). Cations like sodium, calcium, lanthanum, and ferric ions cause
reduction in the repulsive forces created between the negatively charged micro-
bial cells and the surfaces of attachment (Fletcher 1988). Introduction of diva-
lent cations enhances the thickness of the biofilms making it denser and
mechanically more stable (Das et al. 2014).

7 Biofilm Ecology

The microcolonies are the fundamental unit of biofilm structure. The compaction
and proximity of the microcolonies provide an ideal condition for exchange of
genes, quorum sensing, and creation of nutrient gradients. The cycling of various
nutrients like nitrogen, carbon, and sulfur occurs through redox reactions. Microbial
interactions like predation and competition also take place in the biofilm.

(a) Gene transfer
Gene transfer among the bacterial communities occurs through horizontal gene
transfer (HGT) events which generally includes the exchange of plasmid DNA.
HGT events confer the transfer of novel properties like antibiotic resistance,
hydrocarbon degradation, or stress tolerance among bacterial communities;
however, the lower rate of such interactions due to spatial separation of plank-
tonic cells is a prime barrier. In contrast, the biofilm provides an ideal niche for
such genetic exchanges as cells are more or less spatially fixed in the space
(Ehlers and Bouwer 1999; Roberts et al. 1999; Hausner and Wuertz 1999). The
consensus established that the HGT in the biofilm mostly proceeds with the
phenomenon of conjugation as the biofilm structure allows cell-to-cell contact
requisite for it. Thus, biofilms are considered as HGT “hot spots” due to high
frequency of plasmid exchanges (Van Elsas and Bailey 2002; Aminov 2011;
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Fux et al. 2005; Madsen et al. 2012). Nevertheless, the several abiotic factors,
nutrient status, and biofilm compositions influence the frequencies of conjuga-
tion. Conjugation takes place with conjugative pilus, encoded by the tra operon
of the F plasmid that facilitates as adhesion factor between donor and recipient
cells, forming three-dimensional biofilm (Ghigo 2001). Additionally, effective
and enhanced conjugation may be obtained in the biofilm as a consequence of
closer cell-to-cell contact facilitating minimal DNA shearing. The recipient
organisms which lack plasmid only produce microcolonies without any further
development, but plasmid-carrying donor strains convert them into biofilm
forming organisms through plasmid transfer.

(b) Quorum sensing
Among all the chemical signals required for the formation and regulation of
biofilms, quorum sensing is the most common one that facilitates biofilm
homeostasis through regulated cell attachments and detachments. This mecha-
nism of quorum sensing not only maintains the microfloral density but also
modulates toxin productions, bioluminescence, secondary metabolite secretion,
etc. (Harmsen et al. 2010). Microbiota densely packed in extracellular polymeric
substances matrix release a density-dependent chemical signal that mediates the
growth and development of biofilms on different surfaces via quorum sensing.
Quorum sensing uses the transcriptional activator protein which acts with small
autoinducer signaling molecules to stimulate expression of target genes, only
after its significant accumulation, resulting in changes in physiochemical behav-
ior (Xiong and Liu 2010). The cell-to-cell signaling systems in Pseudomonas
aeruginosa, namely, lasR-lasI and rhlR-rhlI, are involved in biofilm formation
(Davies et al. 1998). Biofilm differentiation is initiated when these signals reach
their optimum concentrations required for the activation of genes. The microbes
with double mutant although produce a biofilm lack typical biofilm architecture
with much thinner cell layer and more densely packed cells. Moreover, the
mutant biofilms are easily removed from surfaces. Quorum sensing mediates
induction of genetic competence, i.e., enabling the uptake and incorporation of
exogenous DNA by transformation in S. mutans, and increases it up to 10–600-
fold than planktonic cells (Yung-Hua et al. 2001). The mechanism by which the
bacterial communication is interrupted is known as quorum quenching. It
enhances the bacterial dispersal across membrane during the early development.
It suppresses the growth of specific microbial species (e.g., Acinetobacter). It
also influences the community dynamics affecting correspondingly the ecologi-
cal selection and dispersal processes (Jeong et al. 2020).

(c) Predation and competition
The microbial biofilms due to localized cell concentration are subjected to
predation by protozoa, bacteriophage, Bdellovibrio sp., and polymorphonuclear
leukocytes (PMNs). Murga et al. (2001) reported colonization of heterotrophic
biofilms leading to predation by a free-living protozoon, Hartmannella
vermiformis. McLaughlin-Borlace et al. (1998) demonstrated Acanthamoeba
sp. as a predatory organism in contact lens storage case biofilms.
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Competition is also a regular phenomenon observed within biofilms. James
et al. (1995) noted that in spite of the notable count of Hyphomicrobium sp. in
Hyphomicrobium biofilm, the invasion of Pseudomonas putida always results in
the dominance of Pseudomonas putida. Biofilms containing Klebsiella
pneumoniae and Pseudomonas aeruginosa show consortial growth in stable
community, but when it comes to mixed culture biofilms, the growth of Pseu-
domonas aeruginosa is dominated by Klebsiella pneumonia (Stewart et al.
1997). Pseudomonas aeruginosa grow primarily as a base biofilm, but Klebsi-
ella pneumoniae form localized microcolonies that are advantageous as they
may have greater access to nutrients and oxygen. Pseudomonas aeruginosa
compete by rapidly colonizing the surface, thereby establishing a long-term
competitive advantage, but they are outcompeted by Klebsiella pneumoniae as
they grow more rapidly by attaching themselves to the surface layer of Pseudo-
monas aeruginosa biofilm.

8 Use of Biofilms in Biofiltration

Biofilm system is an advanced technology that is used in biofiltration for the
wastewater treatment. Here, solid media is provided to the suspended growth
reactors which act as attachment surface for biofilms. The solid media increase
microbial concentration which leads to enhancement in contaminant degradation.
Besides from that, biofilm system also involves many processes like biodegradation,
bioaccumulation, biosorption, and biomineralization (Pal et al. 2010). Along with
the degradation of different pollutants, the microorganisms present in the biofilm
break down the trapped pathogens present in the wastewater. The treated water after
biofiltration is then reused for other recreational purposes. The mechanism of water
treatment using microbial biofilm technology is schematically shown in Fig. 3.

Bed media

Anaerobic

Aerobic

Waste water Treated water

Air CO2

Biofilm
Filter
medium
grain

Dissolved 
organic 
matter

Other oxidised products

Microbial
slime
layer

Fig. 3 The mechanism of water treatment using microbial biofilm technology
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Membrane filtration technology is used in membrane bioreactors (MBR) in pilot
plants. Its working principle is based on the combination of two basic processes, i.e.,
biological degradation and membrane separation. The biodegradation is done by the
suspended solids and microorganisms, and the treated water is separated by a
membrane filtration unit (Manem and Sanderson 1997). As a result of this, the
slow-growing microorganisms and the particulate matters get accumulated, leading
to the enhancement of recalcitrant organic treatment. Moreover, it causes retention of
most pathogens which act like disinfectant. All biological solid wastes are trapped in
the system, and the excess growth is removed as waste activated sludge reducing the
turbidity as well as the suspended solids. Subsequently, the inorganic nutrients like
nitrogen and phosphorous are also reduced (Di Giano et al. 2004).

Traditionally, membrane filtration is used in reverse osmosis process for water
treatment. Reverse osmosis membrane filtration is more popular because it reduces
the cost of desalination process using various improvements in the technology which
decreases the energy consumption making the process more robust and cost-
effective (Veerapaneni et al. 2007). Besides this, it can be used in water softening
process also (Conlon et al. 1990). Instead of other traditional processes in water
treatment like coagulation, sand and activated carbon filtration, or ion exchange,
membrane filtration can be used without addition of chemicals to the water
preventing the formation of harmful by-products. The main limitation of membrane
applications is excessive biofouling which is prevailed by the use of reverse osmosis
and nano-filtration (Vrouwenveldera et al. 2009). The advantages of using biofilm
systems include low-space requirements, resilience to changes in the environment,
operational flexibility, reduced hydraulic retention time, high active biomass con-
centration, increased biomass residence time, enhanced ability to degrade recalci-
trant compounds, slower microbial growth rate, and lower sludge production. Over
the year, biological membrane-based system has shown a great success in converting
alternative water sources into potable water.

9 Research Status

Recent research works focus on exploiting the natural theory behind the microbial
biofilm formation for wastewater treatment technology in pilot plants. Odegaard
et al. (1994) reported the use of moving bed biofilm reactor for the first time in
Norway during late 1980s and early 1990s. Later on, he also added that designing the
biofilm carriers with increased specific surface area to escalate the future treatment
capacity excludes the requirements of additional reactors (Odegaard 2000). Further,
Maurer et al. (2001) used two types of biofilm carriers, sponge cubes and plastic
tubes, while studying denitrification in a full-scale pilot plant. Laboratory models
were also built with both attached growth biological reactor and suspended growth
biological reactor to study the effect of combined reactors. It was deduced that
combined reactors showed better oxygen transfer rate (Karamany Hesham 2001).
Borghei and Hosseini (2004) pioneered the use of moving bed biofilm reactors in
domestic and industrial wastewater treatment. The role of aeration system in rapid
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biodegradation was justified by Ahl et al. (2006). Biofilm reactors with freely
moving carrier media were also operated on activated sludge treatment process
(Odegaard 2006). Studies on organic phosphorus and nitrogen removal process
have been examined in synthetic wastewater on a laboratory scale (Kermani et al.
2009). Sombatsompop et al. (2011) deduced the fact that when organic load is
increased, the moving bed batch reactor showed more efficiency than conventional
batch reactors. Yang et al. (2012) studied biosolids dynamics and explained biofilm
growth and detachment, suggesting innovative design of reactors in membrane
bioreactors which drew attention of researchers.

10 Future Research Prospects

Progressive application of microbial biofilm for enhancing not only water quality but
also various fields has gained significant attention among the researches and
industries. However, the lack of knowledge in understanding the molecular aspects
and gene-dependent phenomenon of biofilm-associated organisms and their ecolog-
ical interactions has somehow remained unappreciated. Microbiologist should focus
on the dynamics of microbial interactions and also elucidate the genetic factor
influencing such versatile phenotypes persisting among different biofilms. Recent
researchers are escalating toward understanding the intrinsic and extrinsic factors
that have driven versatility among the biofilm phenotypes. Nevertheless, it is crucial
to explore the scope of utilizing biofilms in pathogenic resistance and treatment of
chronic diseases as well. It is a matter of acknowledgment for the microbiologist as
the pharmaceutical industries are embracing this novel biofilm-based approaches
that may have potential benefits for the mankind.
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