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Abstract Military vehicles are generally equipped with hydro-gas suspension
systems that exhibit better shock-absorbing capability over drastic dynamic envi-
ronments compared to linear suspension. In order to implement suspension semi-
active/active control in the future, it is required to develop the mathematical model
of the vehicle using non-linear state space approach by incorporating the hydro-gas
suspension trailing arm dynamics in the governing equations of motion. The present
study formulates the non-linear state space approach which simulates single station
ride dynamics of military vehicles. Incorporating the developed trailing arm kine-
matics and non-linear suspension characteristics, non-linear state space approach has
been used to formulate the sprung and unsprungmass governing equations ofmotion.
Themulti-body dynamicsmodel for the single station is established inMSC.ADAMS
in order to validate the non-linear state space model. The mathematical model is
solved using MATLAB and compares well with the multi-body model simulations.
The entire military vehicle non-linear state space model can also be developed which
would be suitable for carrying out vehicle dynamics control studies with active or
semi-active suspension systems.
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1 Introduction

The military vehicles are generally equipped with hydro-gas suspension systems in
order to have a better shock-absorbing capability over the drastic dynamic environ-
ment compared to that of linear suspension. Therefore, for future implementation
of semi-active or active control system, it is an important pre-requisite to determine
the transmitted vibration levels to the vehicle with passive suspension. Gillespie
[1] provided a detailed overview of the fundamental theory of vehicle dynamics.
Solomon and Padmanaban [2] have proposed a polytropic gas compression model
to describe the spring characteristics and hydraulic conductance model to represent
the damper characteristics of hydro-gas suspension system. The above spring and
damper models have been incorporated in a vehicle dynamic in-plane math model
and carried out simulations for sinusoidal and Axle Proving Ground (APG) terrains
as well as validated with experimental measurements [2]. Dhir and Shankar [3] have
derived the tracked vehicle math model by using the Lagrangian method over a hard
terrain and constant vehicle speed. The track–terrain interaction has been considered
and ride dynamic analysis of an Armoured Personal Carrier vehicle has been carried
out [3]. Rakheja et al. [4] have carried out a comparative ride dynamic studies of
a non-linear vehicle dynamic in-plane model with active and passive suspensions.
However, in [2–4], the trailing arm dynamics for each of the suspension stations have
not been considered. The equivalent vertical stiffness and damping parameters have
been derived from the trailing arm kinematics. The effect of trailing arm dynamic
behaviour will be quite different from the vertical suspension system which requires
to be mathematically formulated. Moreover, the above studies do not include the roll
mode of the vehicle. Sujatha et al. [5] have carried out an experimental ride dynamic
evaluation of a 6 station military vehicle with torsion bar suspension. Accelerations
have been obtained at specified locations over various dynamic environments and
analysed [5]. Balamurugan [6] has developed a finite element model of a highly
mobile military-tracked vehicle over a hard road for estimating the ride characteris-
tics. Hada [7] has derived the dynamic behaviour of a 12 station tracked vehicle with
torsion bar suspension. It is observed that [5–7] does not take into account non-linear
effects of the hydro-gas suspension. Subburaj et al. [8] have described the solution
methodology for structural dynamics problems through implicit procedures with a
detailed description on the solution stability. Paduart et al. [9] have proposed a state
space methodology that deals with Multiple Input and Multiple Output (MIMO)
systems. Reddy [10] provided a detailed overview on the finite element methods and
practice. Banerjee et al. [11] have described the trailing arm suspension dynamics
for a single station of a tracked vehicle. In [2–7], the vehicle dynamics have not
been modelled using non-linear state space approach. It is noteworthy that extensive
research has undergone in the area of vehicle dynamics.

The present study describes the non-linear state space mathematical method for
formulating the military vehicle single station ride dynamics by incorporating the
trailing arm kinematic and dynamic behaviour. Subsequent validation studies have
been carried out with numerical experiments which are based on the developed
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MSC.ADAMS multi-body dynamics model. Reference [11] provided a systematic
approach to bring out the significance of the physical dynamic behaviour of the
trailing arm suspension and effects of inertia coupling between the sprung and
upsprung masses on the ride dynamics. However, in the present paper, the devel-
oped state space model of single station with trailing arm dynamic effects can be
used for implementing semi-active and active control techniques for ride vibration
control unlike the mathematical model described in [11]. The above mathematical
state space ride model when extended for a full military vehicle model would also
serve as a useful input to a driving simulator.

2 State Space Approach for Single Station Representation

Initially, the hydro-gas suspension kinematics which was derived in Sect. 2.1 [11]
has further been simplified for implementation in the state spacematrix. The stiffness
non-linearities which pertain to various charging pressures have been expressed as
binomial series in terms of axle arm angular displacement. The angular motion
behaviour of trailing arm unsprung mass has been expressed with the Taylor series
expansion in terms of axle arm angular displacement for suitable implementation
in state space matrix. Following the above mathematical representations, non-linear
state space domain matrices are formulated and solved in MATLAB. The sprung
mass dynamics responses have been compared and validated with the MBD model
which is subjected to standard terrain excitations.

3 Implementation of Suspension Kinematics in State Space
Matrix

Figures 1 and 2 represent the hydro-gas suspension assembly and kinematic
description of the same.

Referring to Sect. 2.1 [11], the trailing arm suspension kinematic relations can be
expressed as

x = sqrt
(
L2

p −
[
Lc{cos(β + γ ) − cos(β − ϕ + γ )} + L p sin(δ)

]2)

+Lc{sin(β + γ ) − sin(β − ϕ + γ )} − L p cos(δ). (1)

For the convenience of incorporation of suspension kinematics in the non-linear
state space matrix, a factor f is determined from Eq. (1) such that

f = x/ϕ. (2)

Differentiating x in Eq. (2) with respect to time t,
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Fig. 1 Trailing arm suspension model

Fig. 2 Trailing arm
suspension mechanism
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ẋ = dx

dt
= dx

dϕ

dϕ

dt
.

∴ ẋ = f 1 · ϕ̇, (3)

where

f 1 = dx

dϕ
=

[
Lc{cos(β + γ ) − cos(β − ϕ + γ )} + L p sin(δ)

]{Lc sin(β − ϕ + γ )}
sqrt

(
L2

p −
[
Lc{cos(β + γ ) − cos(β − ϕ + γ )} + L p sin(δ)

]2)

+Lccos(β − ϕ + γ ).

It is observed from Eq. (3) that the piston velocity can be related to the axle arm
angular displacement and velocity. Suitable kinematic simplifications are carried
out through Eqs. (2) and (3) for incorporation in the state space matrix. It may be
noted that hydro-gas suspension kinematics have a mild non-linearity. The following
sections describe the method of incorporating non-linearity due to suspension
stiffness in state space matrix domain.

4 Determination of Non-linear Stiffness Characteristics
of Suspension

Referring to Sect. 4.2 [11], the suspension kinematics have been used to determine
the non-linear stiffness characteristics which are highlighted through Eqs. (4)–(6) as

PrebV
n
o = P(Vo − V1)

n, (4)

Fp = Pπd2/4, (5)

T = FpLo. (6)

Due to static angular rotation of the axle arm by ϕst , the actuator piston displace-
ment xst takes place in line with the actuator cylinder axis. The reaction moment
about pivot point ‘O’ is Tst at a statically settled position. Subsequent to the static
settlement, the axle arm rotation is described by ϕl due to terrain excitation. This in
turn causes the reaction moment Tl due to displacement of the actuator piston by x
in line with the actuator cylinder axis.

From Eqs. (4)–(6),

Tst = prebV n
0(

V0 − πd2xst
/
4
)n

π

4
d2L0, (7)
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Fig. 3 Gas restoring force variation with piston displacement for rebound pressures of 11.4 and
13 MPa

Tl = prebV n
0(

V0 − πd2xst
/
4− πd2x

/
4
)n

π

4
d2L0. (8)

Using Eq. (2), Eq. (8) may be written as

Tl = prebV n
0(

V0 − πd2xst
/
4− πd2 f ϕl

/
4
)n

π

4
d2L0. (9)

The non-linear force–displacement characteristics can be derived from the above
equations which are highlighted in Fig. 3 for different rebound gas pressures.

4.1 Taylor Series Approximation of Hydro-Gas Suspension
Spring Restoring Moment

Subsequent to the achievement of the static equilibrium configuration (described
in [11]), the hydro-gas suspension spring restoring moment about the static posi-
tion (Tl − Tst ) is required to be expressed in terms of ϕl in order to facilitate the
transformation of the coupled equations of motion into matrix domain.

From Eqs. (8) and (9), if

Vo
π
4 d

2
− xst = l2 and

prebV n
o(

π
4 d

2
)n

π

4
d2Lo = K ,

Then
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(Tl − Tst ) = K

(l2 − x)n
− K

(l2)
n = K

(l2)
n

[(
1− x/

l2

)−n − 1

]
. (10)

Also, the expression
(
1− x/

l2

)−n
in Eq. (10) may be expanded in binomial series

which is truncated after the fifth term as

(
1− x/

l2

)−n = 1+ nx

l2
+ n(n + 1)

2l22
x2 + n(n + 1)(n + 2)

6l32
x3

+n(n + 1)(n + 2)(n + 3)

24l42
x4 + n(n + 1)(n + 2)(n + 3)(n + 4)

120l52
x5.

The truncation was based on a trial and error method. Simulations have also been
carried out with higher order terms in the state space matrix; but, an insignificant
difference in results has been obtained. Therefore, the binomial series have been trun-
cated accordingly. This is a reasonable approximation by considering the dynamic
range of angular operation of the axle armwhich is normally limited within 30° from
static equilibrium position. Using the above binomial series and Eq. (2) in Eq. (10),

(Tl − Tst ) = K (ϕl)ϕl , (11)

where

K (ϕl) = K

ln2

[
n f

l2
+ n(n + 1) f 2

2l22
ϕl + n(n + 1)(n + 2) f 3

6l32
ϕ2
l

+n(n + 1)(n + 2)(n + 3) f 4

24l42
ϕ3
l

+n(n + 1)(n + 2)(n + 3)(n + 4) f 5

120l52
ϕ4
l

]
.

Equation (11) relates the spring dynamics restoring moment and rotational angle
of the axle arm.Equation (11) is of non-linear nature in terms of the angular rotation of
axle arm about the static position. This relation may be directly implemented while
transforming the coupled equations of motion into non-linear state space matrix
domain.

5 Formulation of State Space Mathematical Single Station
Ride Model

The model description is similar to Sect. 5 [11]. It may be noted that in practice,
the unsprung mass is distributed partly on the axle arm. However, the axle arm mass
is less compared to that of the road-wheel and track pad. Therefore, the unsprung
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mass has been lumped at the road-wheel centre. However, the present mathematical
formulation may similarly be extended for a distributed unsprung mass.

5.1 Single Station Mathematical Model Using Non-linear
State Space Approach

The governing differential equations of motion which are described in Sect. 5.2
[11] have been transformed into non-linear state space domain for both the sprung
and unsprung masses. The state space approach has been followed subsequent
to the static settlement of the two degree of freedom single station model. The
static equilibrium equations have been derived in Sect. 5.1 [11]. With reference to
Sect. 5.3 [11], the dynamic behaviour of the single station model as well as free
body diagrams for the sprung and unsprung masses are shown in Fig. 4a, b and c,
respectively. The state space mathematical model comprises similar nomenclature
as described in Table 1 [11].

5.2 Sprung Mass Bounce Motion in the State Space Domain

With reference to Sect. 5.3 [11], the sprung mass bounce is described by Eq. (12) as

(M + ml)Ẍ + ml Ẍϕ + kt
(
X + Xϕ − Y

) = 0 , (12)

where

Xϕ = Lcos(ρl) − Lcos(ρl + ϕl); ρl = αl + ϕst ,

Ẍϕ = Lϕ̇2
l cos(ρl + ϕl) + Lϕ̈lsin(ρl + ϕl) = Lϕ̇2

l cos(ρl + ϕl) + Lϕϕ̈l ,

Lϕ = Lsin(ρl + ϕl).

Now, cos(ρl + ϕl) = cos(ρl) cos(ϕl) − sin(ρl)sin(ϕl).

Also, cos(ϕl) and sin(ϕl) may be expanded into the Taylor series as shown below
(neglecting higher order terms),

cos(ϕl) = 1− ϕ2
l

2
+ ϕ4

l

24
,
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Fig. 4 a Application of ground excitation to the single station model, b Sprung mass force
representation, c Unsprung mass moment representation
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sin(ϕl) = ϕl − ϕ3
l

6
+ ϕ5

l

120
.

The truncation of the above trigonometric expressions for ϕl is based on trial
and error method which is explained in Sect. 4.1. Using the above conversions and
expressing trigonometric expressions of variable ϕl as the Taylor series expansion,

kt Xϕ =
[
k1 − k1

{
1− ϕ2

l

2
− ϕ4

l

24

}
+ k2

{
ϕl − ϕ3

l

6
+ ϕ5

l

120

}]
. (13)

∴ kt Xϕ = kt (ϕl)ϕl , (14)

where k1 = kt Lcos(ρl) and k2 = kt Lsin(ρl),

kt (ϕl) =
[
k1

{
ϕl

2
− ϕ3

l

24

}
+ k2

{
1− ϕ2

l

6
+ ϕ4

l

120

}]
.

Therefore, Eq. (14) may be written as

(M + ml)Ẍ + ml Ẍϕ + kt (ϕl)ϕl + kt X = ktY.

∴ (M + ml)Ẍ + ml ϕ̈l Lϕ + ml Lϕ̇2
l cos(αl + ϕst + ϕl) + kt (ϕl)ϕl + kt X = ktY.

(15)

5.3 Unsprung Mass Rotational Dynamics in the State Space
Domain

With reference to Sect. 5.4 [11], unsprung mass rotation is described in Eq. (16) as

ml L
2ϕ̈l + ml Ẍ Lϕ + (Tl − Tst ) + cẋ L0 + (Tt − TY ) = 0, (16)

where

Lϕ = Lsin(ρl + ϕl),

(Tt − TY ) = kt
(
X + Xϕ − Y

)
Lϕ

Xϕ = Lcos(ρl) − Lcos(ρl + ϕl)

Using the previous expressions and Eq. (3), Eq. (16) may be written as
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ml L
2ϕ̈l + ml Ẍ Lϕ + K (ϕl)ϕl + c f 1ϕ̇l L0 + kt1(ϕl)ϕl + kt LϕX = kt LϕY.

∴ ml L
2ϕ̈l + ml Ẍ Lϕ + {K (ϕl) + kt1(ϕl)}ϕl + c f 1ϕ̇l L0 + kt LϕX = kt LϕY, (17)

where

kt1(ϕl) = kt (ϕl)Lϕ.

5.4 Transformation into Non-linear State Space Domain

Equations (15)–(17) can be transformed into state space domain which is highlighted
in Eqs. (18)–(19), respectively.

(M + ml)Ẍ + ml ϕ̈l Lϕ = −ml Lϕ̇2
l cos(ρl + ϕl) − kt (ϕl)ϕl − kt X + ktY. (18)

ml L
2ϕ̈l + ml Ẍ Lϕ = −{K (ϕl) + kt1(ϕl)}ϕl − c f 1ϕ̇l L0 − kt LϕX + kt LϕY. (19)

Define ϕ̇l = u1 and Ẋ = u2
Substituting for ϕ̇l and Ẋ in Eqs. (18) and (19), the following state space matrix

is obtained:

Ż = 1

M1
{A(ϕl)Z+ B(ϕl)U}, (20)

where

Z =

⎡
⎢⎢⎣

u1
u2
ϕl

X

⎤
⎥⎥⎦and U = [Y],

M1 =

⎡
⎢⎢⎣

ml Lϕ (M + ml) 0 0
ml L2 ml Lϕ 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦,

A(ϕl) =

⎡
⎢⎢⎣

−ml Lϕ̇l cos(ρl + ϕl) 0 −kt (ϕl) −kt
−c f 1Lo 0 −{K (ϕl) + kt1(ϕl)} −kt Lϕ

1 0 0 0
0 1 0 0

⎤
⎥⎥⎦
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B(ϕl) =

⎡
⎢⎢⎣

kt
kt Lϕ

0
0

⎤
⎥⎥⎦.

The non-linear state space form of the equations which comprises the non-linear
suspension characteristics is described by Eq. 20. The matricesA(ϕl) andB(ϕl) vary
with ϕl and get updated with every time increment.

5.5 Solution for the Non-linear State Space Model

The solution technique for the single station non-linear state spacemodel is similar to
that described in Sect. 5.5 [11]. Since the matrices are of non-linear nature, therefore,
at every computation time, the matrices get altered as per the change of axle arm
angular rotations about static position which results from base excitation.

6 Single Station Multi-body Dynamics Model

Referring to Sect. 7 [11], the multi-body dynamics model which is developed in
MSC.ADAMS for the non-linear state space model validation has been shown in
Fig. 5. The multi-body model has been solved using a similar approach as described
in [11]. The MBD model can be considered to be a numerical experiment that is
solved through an implicit time integration scheme.

7 Comparative Responses Between State Space
and Multi-body Dynamic Models

The multi-body dynamics model for a single station has been used to validate the
non-linear state space model through simulations over APG profile at vehicle speeds
of 20 and 30 kmph. Generally, the vehicle negotiates APG terrain at average speeds
of 20 and 30 kmph. Therefore, simulations have been carried out at the above speeds.
Similar parameters which are described in Table 2 [11] have been used for the state
space model.
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Fig. 5 MSC. ADAMS single station MBD model

7.1 Dynamics Analysis at 20 Kmph Over APG

The APG (Axle Proving Ground) excitation profile (shown in Fig. 6) is applied to
the single station model at a vehicle speed of 20 kmph. The simulation is carried
out for 20 s. In the present case, suspension charging pressure is 11.4 MPa. The
input has been applied as a vertical base displacement with respect to time. The
time-domain variation is obtained by dividing the spatial distance between terrain
elevation profiles by the corresponding vehicle speed. For the present model, vertical
base displacement input with respect to time has been applied by considering a

Fig. 6 Representation of the APG terrain
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spatial variation on the left side of the APG terrain. The vertical displacement input
due to APG at 20 kmph is shown in Fig. 7. The comparative sprung mass bounce
displacement and acceleration responses are shown in Figs. 8 and 9, respectively.
The maximum vertical accelerations over APG at 20 kmph which are obtained from
the MBD and mathematical state space models are about 26.7 m/s2 and 28.8 m/s2,
respectively. The RMS of vertical accelerations over APG at 20 kmph which are
obtained from MBD and mathematical state space models are about 4.7 m/s2 and
5.2 m/s2, respectively. The dynamic responses from state space model compare well
with the MBD model. Figure 10 shows the frequency-domain comparison of the
sprung mass bounce acceleration response.

Fig. 7 Vertical displacement input due to APG at 20 kmph

Fig. 8 Sprung mass bounce displacement response at CG for 20 kmph
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Fig. 9 Sprung mass bounce acceleration response at CG for 20 kmph

Fig. 10 Frequency spectrum for sprung mass bounce acceleration response at CG for 20 kmph
vehicle speed

7.2 Dynamics Analysis at 30 Kmph Vehicle Speed Over APG

Comparative dynamic simulations havebeen carriedout overAPGat 30kmphvehicle
speed. The simulations have been performed for 14 s. The suspension characteristics
and the displacement input procedures are similar to those described in Sect. 7.1. The
vertical displacement input which pertains to 30 kmph vehicle speed over APG has
been shown in Fig. 11. Figures 12 and 13 highlights the comparative sprung mass
bounce displacement and acceleration responses. The maximum vertical accelera-
tions over APG at 30 kmph which are obtained from MBD and mathematical state
space models are about 32.1 m/s2 and 29.1 m/s2, respectively. The RMS of vertical
accelerations over APG at 30 kmphwhich are obtained fromMBD andmathematical
state spacemodels are 6.3m/s2 and 5.8m/s2, respectively. The sprungmass dynamics
responses which are obtained over APG at 30 kmph show good comparison with the
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Fig. 11 Vertical displacement input due to APG at 30 kmph

Fig. 12 Sprung mass bounce displacement response at CG for 30 kmph

Fig. 13 Sprung mass bounce acceleration response at CG for 30 kmph
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Fig. 14 Frequency-domain variation for sprung mass CG bounce acceleration response for 30
kmph speed

MBD model. Also, sprung mass responses obtained from the models over APG at
30 kmph are comparatively higher than that at 20 kmph. The frequency spectrum
which pertains to the sprung mass comparative bounce acceleration response at CG
is shown in Fig. 14.

The above simulations have also been carried out by using higher order terms
in the non-linear state space model. However, insignificant difference is observed
in the results with higher order terms when compared to those highlighted above.
One of the reasons for possible deviations in response is due to differences in solvers
(numerical solution and interpolation techniques) which are used in math and Adams
models. Very marginal response difference may also be attributed to the dropping of
higher order terms during the Taylor series and binomial expansions. Irrespective of
the above deviations, there is a close agreement in response between the state space
model and MBD model.

8 Conclusions

The non-linear state space mathematical model for the single station incorporates
the kinematics and dynamics effects of the trailing arm suspension. The non-linear
equations for the single station in state space matrix domain are reformulated so that
it is directly feasible for future control related studies without compromising much
on accuracy. The maximum vertical accelerations over APG at 20 kmph which are
obtained from the MBD and mathematical state space models are about 26.7 m/s2

and 28.8 m/s2, respectively. The RMS of vertical accelerations over APG at 20
kmph which are obtained fromMBD and mathematical state space models are about
4.7 m/s2 and 5.2 m/s2, respectively. The maximum vertical accelerations over APG
at 30 kmph which are obtained from MBD and mathematical state space models
are about 32.1 m/s2 and 29.1 m/s2, respectively. The RMS of vertical accelerations
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over APG at 30 kmph which are obtained from MBD and mathematical state space
models are 6.3 m/s2 and 5.8 m/s2, respectively. The sprung mass peak and RMS
vertical acceleration responses which are obtained at 30 kmph speed are more when
compared to that at 20 kmph. From the above results, it is observed that the non-linear
mathematical state space model shows a close agreement with Adams MBD model.
The entiremilitary vehicle non-linear state spacemodelwhich involvesmany degrees
of freedom can also be derived from the present model. The present non-linear state
space model provides the design and development motivation for semi-active and
active suspension system in the military vehicles.
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