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Abstract Honeycomb sandwich laminates with aluminum and carbon fiber rein-
force polymer (CFRP) face—sheets are widely used in spacecraft structures and
aerospace industries. The damping behavior of such structures is reported to improve
when the granular particles, called damping particles, are inserted in the honeycomb
cells. The discrete element method (DEM) has been successfully used and found
to give a reasonably accurate estimate of the impact damping. In DEM formula-
tion, Newton’s laws of motion are used to obtain the equations of motions of each
damping particle considering the contact forces from immediate neighboring parti-
cles and other sources, if any. The use of DEM for the real structurewhere the number
of particles is of order 108 or more is inefficient and impractical to perform optimiza-
tion. In this paper, a damping model dissipating equivalent energy is presented for a
system consisting of a small honeycomb sandwich coupon filled with damping parti-
cles and has resonance frequencies beyond the bandwidth of the model. The coupon
is subjected to a range of harmonic excitations (varying frequency and amplitude).
The energy dissipated by the damping particles is estimated by DEM. The normal
and tangential components of contact forces are modeled using Hertz’s nonlinear
dissipative and Coulomb’s laws of friction, respectively. Then the parameters of
the equivalent damper are obtained which dissipates the same energy. The damping
model presented incorporates the effect of fill fraction, particle size, and material,
as well as the amplitude and frequency of excitation. The comparisons of the DEM
model for some of the load cases are donewith the experimental data showing reason-
ably good agreement. Themodel presented could be readily incorporated in the FEM
model like zero-stiffness proof-mass actuator, and the effect of impact damping can
be studied without actually solving the DEM governing the motions of the particles.
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1 Introduction

Composite laminates with aluminum/CFRP face sheets and honeycomb core are
widely used in aerospace industries owing to its lightweight and excellent mechan-
ical properties. However, in general, a honeycomb sandwich composite possesses
very small, less than 2%, inherent structural damping, which results in excessive
resonance responses leading to failure of a structure or the mounted subsystems. The
damping characteristic of honeycomb is reported to improve when granular particles
are inserted in the core [1, 2].

This technique of using granular particles to enhance the damping characteristics
of structures is called particle impact damping (PID). The PID is simple, low cost,
and effective in extreme environmental conditions. The damping particles dissipate
energy in the form of heat and sound after acquiring it from the vibrating structures
by momentum exchange. The dissipation is highly coupled and nonlinear depending
mainly on parameters: level and frequency of excitation, density of damping particles,
fill fraction, mass ratio, and location of filling. The large number of parameters
affecting the damping performance of the particles makes it difficult to develop a
model, which could capture the complex interactions taking place. The different
modeling techniques available in the literature can be found in [6, 8, 11, 12]. One of
the methods that is widely used in the particle assemblage simulation is the discrete
element method (DEM) [3]. The DEM alone takes into account the particle-to-
particle level interaction, enabling to study the dependence of energy dissipation on
a large number of parameters. In DEM, equations of motions of damping particles
are obtained using Newton’s laws assuming that only the particles in immediate
neighborhood affect the motion. The contacts of the particle-to-particle and particle-
to-cell walls are modeled using the Hertz’s theory and Coulomb’s law. The energy
dissipation is evaluated for each contact occurring during the vibration. As these
computations, require to solve the coupled dynamics of the particle and structures,
for large structures the number of damping particles runs into millions, and thus the
DEM becomes inefficient. Generally, honeycomb sandwich panels that are used in
spacecraft are large, and thus the number of damping particles required to effect
the damping characteristic is huge. Thus, the use of DEM is computationally very
expensive.

Therefore, the energy dissipation by damping particles filled in a small honey-
comb coupon of size 100 mm x 100 mm under sinusoidal excitation is estimated
experimentally, for some load cases, and using DEM. Furthermore, the dependence
of energy dissipation on the various parameters is studied. Finally, the parameters of
an equivalent viscous damper are estimated, which could be readily integrated like a
proof-mass actuator enabling prediction of structural responses without solving the
actual DEM problem.
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2 Mathematical Formulation

A small square-shaped coupon of the honeycomb sandwich, shown in Fig. 1, is
considered for assessing the dissipation of energy by damping particles. The coupon
is 100 x 100 × 25.4 mm dimension. The coupon is very stiff; a normal mode anal-
ysis with a free-free boundary condition shows that the first natural frequency is at
6235.2 Hz and the corresponding mode shape is shown in Fig. 2. In this study, we
intend to study the damping behavior of the coupon up to 1000 Hz. The coupon is
assumed to be rigid, and therefore, cells of the honeycomb do not rotate and undergo
deformation. The equations of the cell walls with respect to a local coordinate system,
which is at the geometric center of the cell with an axis parallel to the global axis,
is shown in Fig. 1. The cell walls are defined by Eqs. (1). The x-axis of the global
coordinate system is along the L-direction of the core and the y-axis is along the
W-direction of the core.

z̄ ± h

2
= 0

ȳ ±
√
3

2
R = 0

x̄ + ȳ√
3

± R = 0

x̄ − ȳ√
3

± R = 0 (1)

The damping particles are constrained to move inside the cell as shown in Fig. 3,
when the coupon is vibrated. The damping particles in the cells collide and rub with
the walls of the cells and face sheets, as well as between themselves. The rubbing
and collision result in momentum transfer and energy dissipation. An impact results

Fig. 1 Honeycomb coupon and axis definition
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Fig. 2 First mode of the coupon

Fig. 3 Motion of damping particles in a cell
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in normal and tangential forces, the normal force is modeled by Hertz’s nonlinear
dissipative contact model defined in [9], as

fni j = −
(
kn

(
δni j

)3/2 + α
√
m∗

i j kn
(
δni j

)1/4
δ̇i j

)
ni j (2)

where δ̇ni j is the local indentation velocity and α is the damping constant related to
normal restitution coefficient en[9], defined as.

α = − ln(en)

√
5

ln(en)
2 + π2

(3)

TheHertz’s constant kn can be found in [4], and the equivalent massm∗
i j in Eq. (2),

is defined as

m∗
i j = mim j

mi + m j
(4)

The tangential contact force is modeled the coulomb’s law of sliding friction [4],
given as

f ti j = −μ
∣∣fni j

∣∣ Vt
i j∣∣Vt
i j

∣∣ (5)

where μ is the coefficient of friction and Vt
i j is the relative tangential velocity of

contact points. The change in the velocity and evolution of the forces/moments
during an oblique contact process is given in Figs. 4 and 5. Figure 4a–d present the
velocity and forces/moments when a damping particle collides with a velocity of [0
0.5–0.1] m/s to the plane, z = −h/2. Figure 4c and d show the effect of nonlinear
dissipative terms present in the expression for normal force, due to this dissipative
term, the relative velocity reaches to zero well before the end of the contact process
that can be seen as a small loop at the end of the contact process.

The pre and post-collision velocity and force distributions of the same damping
particle colliding again with the plan: ȳ − √

3/2R = 0 is given in Fig. 5a–d. As it
is known that the Coulomb’s model of friction force, for smaller incidence angles,
typically less than 30o [4], does not predict correctly the post collision velocities.
However, due to its simplicity and speed, it is extensively used by researcher in
vibration problems. One of the consequence of Coulomb’s force is the oscillation of
tangential force; this phenomenon is clearly visible in time-tangential force plot in
Fig. 5d.

The motion of the DPs in the cell can be described by the force and moment
balance equations as [2].
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Fig. 4 Change in velocities of a particle colliding walls of the cells

mpi p̈i = −mpig+
n1∑
j=1

fi j +
n2∑
w=1

fiw

Ii�̈i =
n1∑
j=1

(
ri − δi j

2

)
ni j × fi j +

n2∑
j=1

(ri − δiw)niw × fiw (6)

where the mass of the damping particle is represented bympi , radius ri , and moment
of inertia Ii . The position vector and angular acceleration of the damping particle
is given by pi and �̈i , respectively. ni j and niw are the unit vectors. g represents
the acceleration due to gravity and the contact forces due to neighboring particle
and walls are represented by fi j and fiw, respectively. The local normal indentations
against damping particle and wall are represented by, δi j and δiw, respectively.

The DEM formulation requires a very small time step in the integration of equa-
tions typically an order less than that of the contact period. In this work, a time step



A Simplified Impact Damping Model for Honeycomb Sandwich … 343

Fig. 5 Change in velocities of a particle colliding walls of the cells (2nd collisions)

of 2 × 10−6 s has been used. The selection of time step is crucial for the success
of the DEM, as the new contacts are formed and old contacts are broken leading to
change in differential equations being integrated.

The energy dissipated per unit area by the contact forces during the impact as a
result of vibration can be written as

Ed =

Nc∑
k=1

tc∫
0

(
α
√
m∗

i j knδ
1/4δ̇i j δ̇i j + f ti j δ̇i j dt

)
dt

A
(7)

where tc is the contact duration, Nc is the number of contacts, A is the area of
the coupon and Ed is the energy dissipated. The energy dissipated by Hertz’s and
Coulomb’s forces for a single particle collision described above in two events are
given in Fig. 6.
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Fig. 6 Energy dissipation prediction by Eq. 7 (1st and 2nd collision)

3 Criterion for PID Performance

The PID dissipates energy by Collison and friction which results in a damping effect
on the structure as it takes energy from the structures. As the process is highly
nonlinear, the criterion for performance assessment should hold for harmonic, as
well as transient vibrations. Specific damping capacity (SDC) is one such parameter
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which is used for assessment of the performance of a PID [5]. It is defined as

η = �E

E
(8)

where the kinetic energy dissipated per cycle is represented by �E , and E is the
maximum kinetic energy during the cycle. If the structure is subjected to harmonic
excitation of constant acceleration amplitude, then

�E = Ed (9)

and E is given by

E = 1

2ω2
mca

2 (10)

The specific damping capacity is related to the loss factor as η/2π and to the
linear damping as − ln(1 − η)/4π .

4 Specific Damping Computation and Experimental
Validation

The specific damping capacity computation is performed for the acrylic damping
particles. The properties of the damping particles are given in Table 1, and the prop-
erties of the coupon are given in Table 2. The specific damping capacity is studied
with respect to excitation acceleration level, frequency of excitation, and fill fraction
as these are the parameters on which SDC is strongly dependent. It is reported in
the literature that the density of the DP affects the performance but in the context
of the honeycomb structures where it cannot be loaded with metallic particles as it

Table 1 Properties of damping particles

Properties Units Aluminum Acrylic

Radius mm 1 1.25

Density kg/m3 2850 1180

Young’s modulus N/m2 70 × 109 2.84 × 109

Poisson’s ratio – 0.33 0.402

Material pairs Coefficient of sliding friction Normal restitution
coefficient

Aluminum—aluminum – 0.50 0.85

Acrylic—acrylic – 0.096 0.70

Acrylic—aluminum – 0.14 0.70
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Table 2 Properties of honeycomb coupon

Properties Units Face-sheet (AA 2024 T3) Honeycomb core (CR
3/16-5056-0.0007-P-32)

Thickness mm 0.25 25.4

Density kg/m3 2800 32.1

Young’s modulus N/m2 72 × 109 Exx = Eyy = Ezz =
10000

Poisson’s ratio 0.33 νxy = νyz = νxz = 0.3

Shear modulus N/m2 – Gxy = 10000

Gyz = 0.89 × 108

Gxz = 1.85 × 108

Diameter of inscribing circle
of hexagonal cell

mm – 4.76

will drastically increase the weight of the structure nullifying the advantage it offers
due to its lightweight. Therefore, in this study, light particle like acrylic is used and
study with respect to the density of DP is ignored.

5 Experimental Setup

The honeycomb coupon was mounted on a modal shaker (make: M B Dynamics,
model: 2050A, Force rating: 100 N) fixed at the center of the coupon. An impedance
head (make: PCB, model: 288D01) for measuring the input acceleration and force
was fixed between stinger and honeycomb coupon. For measurement of velocity, a
PDV-100 Portable Digital Vibrometer was used. The LMS system was used for all
data acquisitions. The setup is shown in Fig. 7.

5.1 Computing the Loss Factor Using Experimental Data

The loss factor can be computed from the direct measurement of velocity by laser
vibrometer and the input force sensor fixed between the stinger and coupon. Let
the f(t) and v(t) represents the instantaneous signals from the force sensor and laser
vibrometer, respectively, then the complex power Pc can be expressed as [7, 10]

Pc = 1

T

T∫

0

( ∞∑
n=0

fne
j(nωt−φ f )

)( ∞∑
m

vme
j(mωt−φv)

)
(11)
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Fig. 7 Experimental setup

The loss factor can be obtained from the complex power Pc as it is the ratio of the
real and imaginary parts of the complex power given by Eq. (11). The loss factor can
be related to SDC as discussed in Sect. 3. The SDC obtained for some of the load
cases is given in Table 3. Three levels of harmonic input acceleration of constant
amplitudes of [1 5 10]g at frequency points[50 100 500 1000] Hz for varying fill
fractions are computed using the DEM and results are given in Table 3, along with
the measured values. The coupon contains 441 cells and each cell can accommodate
a maximum of 36 damping particles (100% fill fraction). As the DEM takes 12–16 h
of computational time for each load case, and SDC depends on a range of parameters
predominantly on fill fraction frequency of excitation and input acceleration ampli-
tude, a multivariate interpolation function is proposed. The interpolating function is
obtained using the data given in the Table 3, and the values of SDC at intermediate
data points are generated using the interpolation function.
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Table 3 Specific damping capacity

Frequency (Hz) Acceleration (g) Packing ratio Specific damping capacity

(DEM) Experimental

50 1 25 1.5702e−4

50 0.0018 0.10

75 0.0051

90 0.0089

5 25 0.2210

50 0.1856 0.23

75 0.2904

90 0.3490

10 25 0.1150

50 0.2783 0.31

75 0.3914

90 0.4832

100 1 25 2.9705e−4

50 0.0032 0.01

75 0.0109

90 0.0195

5 25 0.1836

50 0.1891 0.21

75 0.3158

90 0.3190

10 25 0.1211

50 0.2648 0.32

75 0.3849

90 0.4321

500 1 25 0.0034

50 0.1443 0.22

75 0.4963

90 0.6503

5 25 0.1965

50 0.5417 0.65

75 0.8044

90 0.8359

10 25 0.0975

50 0.2770 0.35

75 0.4145

(continued)
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Table 3 (continued)

Frequency (Hz) Acceleration (g) Packing ratio Specific damping capacity

(DEM) Experimental

90 0.4756

1000 1 25 0.0505

50 0.6138 0.71

75 0.8078

90 0.8010

5 25 0.1968

50 0.5612 0.63

75 0.8720

90 0.8843

10 25 0.0911

50 0.2886 0.30

75 0.4444

90 0.5305

6 Variation of SDC with Input Acceleration Amplitudes

Figures 8, 9, 10, 11, 12 show the variation of SDC with respect to input acceleration
levels at fill fractions varied from 25%, 50%, 75%, and 90%, respectively. For all the
fill fractions SDC increases as acceleration level increased up to 5 g, and thereafter,
it is seen decreasing till 10 g. The levels computed using DEM and interpolated are
shown in the legend. For low fill fractions, a lower value of SDC can be attributed
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Fig. 8 SDC at 25% fill fraction
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Fig. 9 SDC at 50% fill fraction
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Fig. 11 SDC at 90% fill fraction
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Fig. 12 SDC at 1 g acceleration level

to a lesser number of particles in the cell, and thus less number of collisions, and
therefore, smaller values of SDC. The value of SDC appears almost constant in the
frequency range of study. However, for the fill fractions 50–90%, SDC increased up
to 500 Hz and thereafter remains nearly constant.
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7 Variation of SDC with Varying Fill Fraction

Figures 12, 13, 14 present the variation of SDC with respect to frequency when the
amplitude of harmonic input acceleration is kept constant and the packing ratio is
varied. The SDC is seen increasing with respect to frequency at lower acceleration
levels for all fill fractions. However, the rate of increase with respect to acceleration
level decreases as the acceleration increase. At an acceleration level of 10 g, SDC
appears to be independent of frequency. The likely reason for such behavior could
be the fact that particles remain most of the time in the cavity space and colliding
less frequently with the structure.
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Fig. 13 SDC at 5 g acceleration level
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8 Conclusions

The dissipation of energy by the damping particles filled in a small coupon of honey-
comb is studied with discrete element method and experimentally. The coupon
is vibrated with different levels of constant amplitude harmonic acceleration in a
frequency band of 50–1000 Hz with varying amounts of damping particles in the
cavity. The energy dissipation is estimated in terms of specific damping capacity and
it is found to be dependent on predominantly three parameters: fill fraction, ampli-
tude, and frequency of the input acceleration. A multivariate interpolation model
of SDC is worked out using “pchip” interpolant. Using the interpolation, SDC is
predicted and presented for various combinations of the variables. The interpolation
function developed herewith for SDC can be used for the prediction of the structural
response of any honeycomb structure treatedwith damping particles under harmonic,
transient excitation loads.
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