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Abstract In the presentwork,we studied a sandwich beamwhich ismade of two thin
stiff layers on top and bottom and amicrostretch viscoelastic core in themiddle. Here,
the top and thebottomstiff layers are considered as elastic,while the inner part is taken
as microstretch viscoelastic material. The free vibration of this composite beam is
investigated. Differential transformmethod is used for the solution. The values of the
frequencies obtained for microstretch case are found greater than the classical ones,
as it is expected. Besides, the minimum differences between the classical frequencies
and deviated classical frequencies due to the microstretch core are getting bigger for
the large loss factors.

Keywords Vibration · Sandwich beam · Microstretch · Differential transform
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1 Introduction

Themulti-layered sandwich beams are getting importance to get higher strengthening
and economic structures. They can be also used to reduce unwanted vibrations of
the load-carrying members especially using in automotive industry. In this study,
a three-layered sandwich beam model is constructed with two thin layers made of
more stiff materials for bottom and top, and a microstretch viscoelastic part for the
middle layer. Thus, top and bottom layers sustain the major part of the bending loads,
while the microstretch viscoelastic core absorbs the unwanted vibrations.
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In literature, Kerwin [1] analyzed the flexural damped vibration of sandwich
beams by considering traveling sinusoidal waves for the transverse displacement.
Mead [2] generalized Kerwin’s though to simple supported plates. He showed that
the standing waves or modes are uncoupled, even when damping was admitted in
the core section. But when the beam supported in different ways such as clamped
or free, the natural modes are coupled even for undamped core. Di Taranto [3, 4]
has studied damped sandwich beams with viscoelastic core having a complex shear
modulus with arbitrary boundary conditions. Mead and Markus [5] extended Di
Taranto’s results to fixed-fixed beams. The Rayleigh–Ritz method is used to analyze
the vibration characteristics of a sandwich beam with viscoelastic layer by Fasana
et al. [6], and then Tang et al. analyzed the constrained damping layers, including
normal strain effects [7].

More recently, Arikoglu and Ozkol studied vibration analysis of composite sand-
wich beam with viscoelastic core by using differential transform method. The core
modeled with a complex shear modulus, and governing equations are derived by
using Hamilton’s principle [8].

As it is well known, the material response to the external effects depends on to
the material inner structure, especially for composite materials that possess granular
structure, porous media, micro-damaged materials, etc. For such materials, the clas-
sical theory of elasticity is inadequate in the modeling. Higher order theories which
include the micro-structure of the medium reflect the physical realities much better
than the classical theories. For instance, Eringen’s micropolar [9] theory relies on
the idea that every material particle can make micro-rotation in addition to the bulk
deformation. The microstretch theory [10, 11] is a generalization of the micropolar
theory and based on the assumption that every particle can undergo also volumetric
micro-elongation together with micro-rotation, hence, it is a more convenient tool to
model materials having micro-structures.

The theory of micropolar and microstretch viscoelastic materials are getting more
attention of the researchers in recent years; Kumar and Partap studied vibrations of
a microstretch viscoelastic plate [12, 13]. Ramazani et al. [14] analyzed micropolar
elastic beams in a similar way as in [15]. Shaw used Hamiltonian principle to derive
the governing equations and used Legendre’s transformation to solve the vibration
problem of rectangularmicropolar beams [16], while Svanadze gave the fundamental
solutions of the system of equations of steady vibrations in micropolar viscoelastic
medium [17].

In the present paper, we studied free vibrations of a typical sandwich beam struc-
ture containing two thin stiffer (high-strength) layers on top and bottom sides and a
light (low-average strength) microstretch viscoelastic core in the middle part. Here
the top and bottom stiff layers are considered as a classical elastic material, while
the inner part is modeled as a microstretch viscoelastic material.
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2 Fundamental Equations of Microstretch Viscoelastic
Theory

The constitutive equations for a linear homogeneous and isotropic microstretch
elastic solid are given as [10];

tkl = λ εmm δkl + (μ + κ) εkl + μεlk + λ0 θ̄ δkl,

mkl = α γmm δkl + β γkl + γ γlk,

mk = a0 θ̄,k,

s − t = λ1 θ̄ + λ0 εkk . (1)

where tkl, mkl are the stress and couple stress tensors, mk is the microstretch vector
and s = skk , t = tkk , and the strain tensors are given as

εkl = ul,k + elkmφm, γkl = φk,l, γk = θ̄,k (2)

here, λ, μ are Lamé constant and shear modulus, κ, α, β, γ are the micropolar
constants, λ0, λ1 and a0 are the microstretch constants, ρ is the mass density per
unit volume, j is the micro-inertia, and u, φ and θ̄ are the displacement and the
micro-rotation vectors and the microstretch scalar, respectively.

The equations of motion of a microstretch elastic solid with no body forces, body
couples, and body microstretch are given by

(c21 + c23)∇∇ · u − (c22 + c23)∇ × ∇ × u + c23∇ × φ + λ̄0∇ θ̄ = ü

(c24 + c25)∇∇ · φ − c24∇ × ∇ × φ + ω2
0∇ × u − 2ω2

0φ = φ̈

c26θ̄ − c27θ − c28∇ · u = θ̈ , (3)

where

c21 = (λ + 2μ)

ρ
, c22 = μ

ρ
, c23 = κ

ρ
, c24 = γ

ρ j
, c25 = (α + β)

ρ j
,

c26 = 2a0
ρ j

, c27 = 2λ1

3ρ j
, c28 = 2λ0

3ρ j
, ω2

0 = c23
j
, λ̄0 = λ0

ρ
. (4)

To include the effects of viscoelastic character, we replace each one of the
microstretch elastic constants

(λ, μ, κ, α, β, a0, λ0, λ1) (5)

by (λI , μI , κI , αI , βI , aI0, λI0, λI1). By representing each of the microstretch
viscoelastic coefficients by b j I which is a complex value such as b j I = b j (1 + i η),
j = 1, 2, . . . 8. Here, η is the loss factor which also defines the ratio between the
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imaginal and real parts of the square of the nth frequency. With other way of saying
it means the ratio of energy dissipation per cycle to maximum strain energy.

3 Formulation of the Problem

A sandwich beam is considered. The total length of the beam is L, total width is b and
heights of the bottom and top layers are h1 and h3, while the core layer’s height is
h2. The beam is constructed by two thin layers on top and bottom and a microstretch
viscoelastic core in the middle. As it is well known, the top and bottom layers are
assumed to be made of more high-strength material, thus it is supposed that they
can be modeled as classical elasticity theory, while the softer (low-strength) part is
assumed as microstretch viscoelastic to absorb the unwanted vibration.

The beam cross section is assumed to be symmetric with respect to the y-axis.
The microstretch beam theory is constructed based on the following assumptions:

– The beam height and its width are small as compared to the length.
– No slip between layers.
– Deflections are small.
– Layers are incompressible though the thickness.
– Transverse displacements are considered as unchanged between layers.
– No torsion occurs in the beam.
– The shear angle of the top and bottom layers is neglected.
– The stress and the displacement fields do not vary severely across the height.
– The contribution of the core layer is only by transverse shear stress.
– Distributions of the body and surface force, couple and volumetric elonga-

tion, surface couple, strain, wryness, stress, and couple stress components are
independent from y-axis.

In microstretch beam theory, the displacement vector, the micro-rotation vector,
and the microstretch scalar are given as

u = (u(x, z, t), 0, w(x, z, t))T , φ = (
0, φ̄(x, z, t), 0

)T
, θ̄ = θ̄ (x, z, t) (6)

The configuration of the sandwich beam is given in Fig. 1. Thus, the kinematic
relations can be written as follows:

u1(x, z, t) = u0(x, t) − h2
2

ϕ(x, t) −
(
z + h1

2

)
∂w(x, t)

∂x
, −h1

2
≤ z ≤ h1

2
u1(x, z, t)

= u0(x, t) − h2
2

ϕ(x, t) −
(
z + h1

2

)
∂w(x, t)

∂x
, −h1

2
≤ z ≤ h1

2

u2(x, z, t) = u0(x, t) − z ϕ(x, t), −h2
2

≤ z ≤ h2
2
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Fig. 1 Geometry and displacement fields of the beam

u3(x, z, t) = u0(x, t) + h2
2

ϕ(x, t) −
(
z − h3

2

)
∂w(x, t)

∂x
, −h3

2
≤ z ≤ h3

2

wi (x, z, t) = w(x, t) for all i = 1, 2, 3

φ̄(x, z, t) = φ(x, t) and θ̄ (x, z, t) = θ(x, t) (7)

whereϕ(x, t) = �(x, t)+w′(x, t),u0(x, t) andw(x, t) are the total angular displace-
ment, longitudinal, and transverse displacement of the centroid ofmicrostretch elastic
core, respectively. Similarly, ui (x, z, t) andwi (x, z, t) are longitudinal and transverse
displacements of the ith layer for i = 1, 2, 3, while φ̄(x, z, t) and θ̄ (x, z, t) stands
for the nonzero component of the micro-rotation vector and microstretch scalar of
the viscoelastic core.

Then, the strain quantities can be obtained from (2) by using (7) as

ε(1)
xx = ∂u0

∂x
− h2

2

∂ϕ

∂x
−

(
z + h1

2

)
∂2w

∂x2
,

ε(3)
xx = ∂u0

∂x
+ h2

2

∂ϕ

∂x
−

(
z − h3

2

)
∂2w

∂x2
,

ε(2)
xz = ∂w

∂x
+ φ, ε(2)

zx = −(ϕ + φ), γyx = ∂φ

∂x
, γx = ∂θ

∂x
. (8)

Thus, the stress–strain relations (1) become as

t (1)xx = E1 ε(1)
xx , t (3)xx = E3 ε(3)

xx ,

t (2)xz = (μ + κ) ε(2)
xz + μ ε(2)

zx , t (2)zx = (μ + κ) ε(2)
zx + μ ε(2)

xz ,

m(2)
xy = γ γ (2)

yx , mx = a0 γx . (9)
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The assumptions used to derive the kinematic relations are taken as in [8]. The
formulation procedure is similar to the one given by Kiris and Inan [18] and based
on Hamilton principle;

T∫

0

(δU − δK )dt = 0, (10)

where U and K show the elastic strain energy and the kinetic energy. For the present
problem it becomes as

T∫

0

L∫

0

h1/2∫

−h1/2

[
t (1)xx δ ε

(1)
xx − ρ1

(
∂w
∂t δ ∂w

∂t + ∂u1
∂t δ ∂u1

∂t

)]
dz dx dt +

T∫

0

L∫

0

h2/2∫

−h2/2

[
t (2)xz δ ε

(2)
xz + t (2)zx δ ε

(2)
zx

+m(2)
x δ γ

(2)
x + (s − t)(2) δ θ − ρ2

(
∂w
∂t δ ∂w

∂t + ∂u2
∂t δ ∂u2

∂t + ∂φ
∂t δ

∂φ
∂t + ∂θ

∂t δ ∂θ
∂t

)]
dz dx dt

+
T∫

0

L∫

0

h3/2∫

−h3/2

[
t (3)xx δ ε

(3)
xx − ρ3

(
∂w
∂t δ ∂w

∂t + ∂u3
∂t δ ∂u3

∂t

)]
dz dx dt = 0.

(11)

Substituting (8) and (9) into (11) and then applying partial integration give both
the governing equations and boundary conditions. For governing equations, onemust
also set the coefficients of each variations, i.e., δu0, δϕ, δw, δφ and δθ to zero and
get,

coeff(δu0) :
(E1h1 + E3h3)

∂2u0
∂x2

+ h2
2

(E3h3 − E1h1)
∂2ϕ

∂x2
+ 1

2

(
E3h

2
3 − E1h

2
1

)∂3w

∂x3

= (ρ1h1 + ρ2h2 + ρ3h3)
∂2u0
∂t2

+ h2
2

(ρ3h3 − ρ1h1)
∂2ϕ

∂x2
+ 1

2

(
ρ3h

2
3 − ρ1h

2
1

) ∂3w

∂t2∂x
,

coeff(h2 δφ) : κ

(
∂w

∂x
+ 2φ + ϕ

)
= −ρ2

∂2φ

∂t2

coeff(h2 δθ) : a0
∂2θ

∂x2
− λ1θ = ρ2

∂2θ

∂t2
(12)

coeff(
h2
2

δϕ) :

(E3h3 − E1h1)
∂2u0
∂x2

+ h2
2

(E1h1 + E3h3)
∂2ϕ

∂x2
+ 1

2

(
E1h

2
1 + E3h

2
3

) ∂3w

∂x3
− 2(μ + κ)(ϕ + φ)

+ 2μ

(
∂w

∂x
+ φ

)
= (ρ3h3 − ρ1h1)

∂2u0
∂t2

+ h2
6

(3ρ1h1 + ρ2h2 + ρ3h3)
∂2ϕ

∂t2

+ 1

2

(
ρ1h

2
1 + ρ3h

2
3

) ∂3w

∂t2∂x
,

coeff(δw) :
1

2

(
E3h

2
3 − E1h

2
1

) ∂3u0
∂x3

+ h2
4

(
E1h

2
1 + E3h

2
3

) ∂3ϕ

∂x3
+ 1

3

(
E1h

3
1 + E3h

3
3

) ∂4w

∂x4
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− (μ + κ)h2

(
∂φ

∂x
+ ∂2w

∂x2

)
+ μ h2

(
∂φ

∂x
+ ∂ϕ

∂x

)
= 1

2

(
ρ3h

2
3 − ρ1h

2
1

) ∂3u0
∂t2∂x

− (ρ1h1 + ρ2h2 + ρ3h3)
∂2w

∂t2
+ h2

4

(
ρ1h

2
1 + ρ3h

2
3

) ∂3ϕ

∂t2∂x
+ 1

3

(
ρ1h

3
1 + ρ3h

3
3

) ∂4w

∂t2x2
.

The boundary conditions are

(
N (1)

x + N (3)
x

)
δu0

∣∣L
0 = 0,

h2
2

(
N (3)

x − N (1)
x

)
δϕ

∣∣∣∣

L

0

= 0,

(
Q(2)

x + ∂

∂x
M (1)

x + ∂

∂x
M (3)

x + h1
2

∂

∂x
N (1)

x − h3
2

∂

∂x
N (3)

x

)
δw

∣∣∣
∣

L

0

= 0,

(
h3
2
N (3)

x − h1
2
N (1)

x − M (1)
x − M (1)

x

)
δ
∂w

∂x

∣
∣∣∣

L

0

= 0,

(
a0h2

∂θ

∂x

)
δθ

∣∣∣∣

L

0

= 0, (13)

where the cross-sectional moment and forces are

N (i)
x =

hi/2∫

−hi/2

t (i)xx dz, , Q(i)
x =

hi/2∫

−hi/2

t (i)xz dz, M (i)
x =

hi/2∫

−hi/2

z t (i)xx dz. (14)

And their explicit forms are found from (11) as

N (1)
x = E1

(
h1

∂u0
∂x

− 1

2
h1h2

∂ϕ

∂x
− 1

2
h21

∂2w

∂x2

)
, N (3)

x = E3

(
h3

∂u0
∂x

− 1

2
h2h3

∂ϕ

∂x
+ 1

2
h23

∂2w

∂x2

)
,

Q(2)
x = (μ + κ)h2

(
∂w

∂x
+ φ

)
− μ h2(ϕ + φ), M (1)

x = − 1

12
E1h

3
1
∂2w

∂x2
, M (3)

x = − 1

12
E3h

3
3
∂2w

∂x2
.

(15)

Considering harmonic vibrations, the displacement, micro-rotation and
microstretch fields can be taken as follows:

{u0(x, t), ϕ(x, t), w(x, t), φ(x, t) , θ(x, t)}
= {

Ū (x, ω), �(x, ω), W̄ (x, ω), �(x,w) ,�(x, t)
}
ei ω t (16)

Then, the partial differential Eq. (12) will take the following ordinary differential
equations:

(E1h1 + E3h3)Ū
′′ + h2

2
(E3h3 − E1h1)ϕ̄

′′ + 1

2

(
E3h

2
3 − E1h

2
1

)
W̄ ′′′
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= −ω2
[
(ρ1h1 + ρ2h2 + ρ3h3)Ū + h2

2
(ρ3h3 − ρ1h1)ϕ̄ + 1

2

(
ρ3h

2
3 − ρ1h

2
1

)
W̄ ′

]
,

(E3h3 − E1h1)Ū
′′ + h2

2
(E1h1 + E3h3)ϕ̄

′′ + 1

2

(
E1h

2
1 + E3h

2
3

)
W̄ ′′′ − 2(μ + κ)

(
� + �

)

+ 2μ
(
W̄ ′ + �

) = −ω2
[
(ρ3h3 − ρ1h1)Ū + h2

6
(3ρ1h1 + ρ2h2 + ρ3h3)� + 1

2

(
ρ1h

2
1 + ρ3h

2
3

)
W̄ ′

]
,

1

2

(
E3h

2
3 − E1h

2
1

)
Ū ′′′ + h2

4

(
E1h

2
1 + E3h

2
3

)
�

′′′ + 1

3

(
E1h

3
1 + E3h

3
3

)
W̄ (4),

− (μ + κ)h2
(
�

′ + W̄ ′′) + μ h2
(
�

′ + �
′) = −ω2

[
1

2

(
ρ3h

2
3 − ρ1h

2
1

)
Ū ′

−(ρ1h1 + ρ2h2 + ρ3h3)W̄ + h2
4

(
ρ1h

2
1 + ρ3h

2
3

)
�

′ + 1

3

(
ρ1h

3
1 + ρ3h

3
3

)
W̄ ′′

]
,

κ
(
W̄ ′ + 2� + �

) = −ω2ρ2�,

a0�
′′ − λ1� = −ω2ρ2�. (17)

The boundary conditions for clamped end are

Ū = 0, � = 0, W̄ = 0, � = 0, ,� = 0, (18)

and for free end, they are

2(E1h1 + E3h3)Ū
′ + h2(E3h3 − E1h1)�

′ +
(
E3h

2
3 − E1h

2
1

)
W̄ ′′ = 0,

2(E3h3 − E1h1)Ū
′ + h2(E1h1 + E3h3)�

′ +
(
E1h

2
1 + E3h

2
3

)
W̄ ′′ = 0,

12(μ + κ)h2
(
W̄ ′ + �

) − 12μ h2
(
� + �

) + 6
(
E1h

2
1 − E3h

2
3

)
Ū ′′ − 3h2

(
E1h

2
1 + E3h

2
3

)
�

′′

− 4
(
E1h

3
1 + E3h

3
3

)
W̄ ′′′ = 0,

6
(
E3h

2
3 − E1h

2
1

)
Ū ′ + 3h2

(
E1h

2
1 + E3h

2
3

)
�

′ + 4
(
E1h

3
1 + E3h

3
3

)
W̄ ′′ = 0,

a0h2�
′ = 0. (19)

4 Solution Method

To solve the governing differential equations, we used Differential transformmethod
[19]. The method based on Taylor Series expansion of the main variables and coeffi-
cients, but is different fromhigher order seriesmethod.Differential transformmethod
provides an iterative procedure between different order derivatives which ends with
less computational work. The basic definition is given as

W (k, h) = 1

k! h!
[
∂k+hw(x, y)

∂xk ∂yh

]

(0,0)

, (20)
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where w(x, y) is the original function and W (k, h) is the transformed function. The
differential inverse transform of W (k, h) is defined as

w(x, y) =
∞∑

k=0

∞∑

h=0

W (k, h) xk yh . (21)

Using above transformation in the governing Eq. (17) and the boundary conditions
(18) in non-dimensional form gives an iterative procedure for the numerical solution.

(E1h1 + E3h3)2Uk+2 + h2(E3h3 − E1h1)ϕk+2 + 3
(
E3h

2
3 − E1h

2
1

)
Wk+3

= −ω2
[
(ρ1h1 + ρ2h2 + ρ3h3)Uk + h2

2
(ρ3h3 − ρ1h1)�k + 1

2

(
ρ3h

2
3 − ρ1h

2
1

)
Wk+1

]
,

(E3h3 − E1h1)2Uk+2 + h2(E1h1 + E3h3)ϕk+2 + 3
(
E1h

2
1 + E3h

2
3

)
Wk+3

− 2(μ + κ)(�k + �k ) + 2μ
(
Wk+1 + �k

)

= −ω2
[
(ρ3h3 − ρ1h1)Uk + h2

6
(3ρ1h1 + ρ2h2 + ρ3h3)�k + 1

2

(
ρ1h

2
1 + ρ3h

2
3

)
Wk+1

]
,

3
(
E3h

2
3 − E1h

2
1

)
Uk+3 + 3h2

2

(
E1h

2
1 + E3h

2
3

)
�k+3 + 8

(
E1h

3
1 + E3h

3
3

)
Wk+4,

− (μ + κ)h2
(
�k+1 + Wk+2

) + μ h2
(
�k+1 + �k+1

) = −ω2
[
1

2

(
ρ3h

2
3 − ρ1h

2
1

)
Uk+1

−(ρ1h1 + ρ2h2 + ρ3h3)Wk + h2
4

(
ρ1h

2
1 + ρ3h

2
3

)
�k+1 + 2

3

(
ρ1h

3
1 + ρ3h

3
3

)
Wk+2

]
,

κ
(
Wk+1 + 2�k + �k

) = −ω2ρ2�k ,

2a0�k+2 − λ1�k = −ω2ρ2�k (22)

and the clamped boundary conditions (18) at x = 0 give

U0 = 0, �0 = 0, W0 = 0, W1 = 0, �0 = 0, ,�0 = 0. (23)

and the free boundary conditions (19) at x = L are given as in the followings:

N∑

k=0

2(E1h1 + E3h3)kUk L
k−1 + h2(E3h3 − E1h1)k�k L

k−1 + (
E3h

2
3 − E1h

2
1

)
k(k − 1)WkL

k−2 = 0,

N∑

k=0

[
2(E3h3 − E1h1)kUk L + h2(E1h1 + E3h3)k �k L + (

E1h
2
1 + E3h

2
3

)
k(k − 1)Wk

]
Lk−2 = 0,

N∑

k=0

[
12(μ + κ)h2L

2(kWk + �k ) − 12μ h2L
2(�k + �k ) + 6

(
E1h

2
1 − E3h

2
3

)
Lk(k − 1)Uk

−3h2
(
E1h

2
1 + E3h

2
3

)
Lk(k − 1)�k − 4

(
E1h

3
1 + E3h

3
3

)
k(k − 1)(k − 2)Wk

]
Lk−3 = 0, (24)

N∑

k=0

[
6
(
E3h

2
3 − E1h

2
1

)
LkUk + 3h2

(
E1h

2
1 + E3h

2
3

)
Lk�k + 4

(
E1h

3
1 + E3h

3
3

)
k(k − 1)Wk

]
Lk−2 = 0,
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N∑

k=0

a0h2k�k L
k−1 = 0. (25)

The iterative governing Eqs. (22) and the end conditions (23) and (24) gives the
following eigenvalue problem:

A(ω)D = 0 (26)

where the matrix A depends on to the frequencies and the material coefficients. The
vector D contains Uk,�k,Wk, �k,�k for k = 1, 2, . . . , N . Here, the maximum
number of terms is taken as N = 6. To find nontrivial solution, we write

Det(A(ω)) = 0. (27)

5 Results and Conclusions

In the Eq. (27), the material properties are taken as in [8] for the classical constants,
and as in [18] for microstretch part. They are all given in Table 1.

The obtained frequencies for the cantilever beam are given in Table 2. Here it must
be noted that there are also additional frequencies between the classical frequencies
due to the microstretch character of the core. For example for the loss factor η = 0.6,
the spectrum of the frequencies are obtained as follows:

0, 65.108, 65.214, 65.225, 65.241, 65.255, 297.504, 297.472,

297.548, 297.552, 297.564, 740.741, 740.741, 740.731, 740.761,

740.779, 1384.684, 1384.652, 1384.710, 1384.738, 1384.763,

2243.823, 2243.897, 2243.919, 2243.931, 2243.944, 3316.421,

3316.456, 3316.507, 3316.507, 3316.528

But only the frequencies which give the minimum difference (given in Table 3)
from the classical case given by [8] are assumed as deviated classical frequencies
due to the microstretch effects. These frequencies are given in Table 2. The rest of
the frequencies are considered as the additional frequencies due to the microstretch
character.

The minimum differences between the classical frequencies given by [8] and the
frequencies assumed as deviated classical frequencies are given in Table 3.

As we see, the values of the frequencies obtained for microstretch case are always
greater than the classical ones as it is expected. Besides, the minimum differences
between deviated classical frequencies due to the microstretch case and classical
frequencies given in Table 3 are getting bigger for the large loss factors which is
often used as a measure of damping in linear viscoelastic material.
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Table 2 The natural frequencies for clamped-free beam

Loss factor, η Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0.1 63.627 294.253 738.049 1382.948 2242.680 3315.311

0.2 63.789 294.552 738.280 1383.083 2242.794 3315.591

0.3 64.046 295.053 738.717 1383.414 2243.099 3315.687

0.6 65.241 297.552 740.761 1384.738 2243.931 3316.507

1.0 67.363 302.463 745.237 1387.371 2245.854 3317.840

1.5 69.995 310.146 753.498 1392.398 2249.512 3320.511

Table 3 The minimum differences between deviated classical frequencies due to the microstretch
character and classical frequencies

Loss factor, η Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0.1 0.013 0.017 0.021 0.036 0.074 0.085

0.2 0.023 0.026 0.033 0.046 0.105 0.309

0.3 0.035 0.053 0.105 0.169 0.27 0.311

0.6 0.059 0.145 0.205 0.387 0.357 0.635

1.0 0.112 0.156 0.236 0.484 0.548 0.822

1.5 0.179 0.291 0.337 0.780 0.918 1.330
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