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Abstract A probabilistic flutter analysis of geometrically coupled cantilever wing
is carried out using first-order perturbation approach by considering bending and tor-
sional rigidities as Gaussian random variables. The unsteadiness in the aerodynamic
flow is modeled using Theodorsen’s thin airfoil theory. The probabilistic response of
the wing is obtained in terms of mean, standard deviation, and coefficient of variation
(COV) of real and imaginary parts of the eigenvalues at various free stream veloci-
ties. The perturbation results are also compared with Monte Carlo simulations. It is
observed that the probabilistic response obtained from the perturbation approach is
very accurate up to 7% COV in bending rigidity but in the case of torsional rigidity,
it starts losing accuracy after 3%.
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1 Introduction

In the design of aircraft, one of the critical failure phenomena, which happens in
the aeroelastic system due to the fact that power pumped by aerodynamic flow is
not completely able to be dissipated by the dissipative mechanism of the aeroe-
lastic system, and the structure fails catastrophically due to diverging large ampli-
tude vibrations. The flow velocity at which there is power balance, is called flutter
velocity. In general, the material properties of the structure is not unique, and it
depends on various factors such as method of manufacturing, method of testing and
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test conditions, human errors in calculation, etc. So the material properties must be
modeled as stochastic parameters in order to get more realistic results.

Pettit [1] showed the importance and challenges of uncertainty quantification in
aeroelasticity and potential future application of uncertainty-based aircraft design
over the conventional factor of safety-based design. Kurdi et al. [2] considered the
box type of Goland wing with spars and ribs, and their thickness and area were
considered as Gaussian random variables. For probabilistic response analysis, a
Monte Carlo Simulation (MCS) approach was used where free vibration and flut-
ter analyses were conducted using MSC-Nastran and ZONA 6 module of ZAERO,
respectively. Khodaparast et al. [3] used Nastran-based doublet lattice method for
aerodynamic modeling to carry out both probabilistic and non-probabilistic flutter
analysis of aircraft wing. The wing with spar, ribs, upper and lower skins, and their
thickness and area were considered as random variables. For probabilistic analysis,
perturbation method and for non-probabilistic analysis, interval and fuzzy logic were
used to determine the bounds on the flutter mode. Borello et al. [4] considered both
isotropic and composite wing with structural uncertainties for flutter analysis, and
the reliability analysis was carried out using various approaches such as First-Order
Reliability Method (FORM), Second-Order Reliability Method (SORM), Response
Surface Method (RSM), and compared with MCS. Cheng and Xiao [5] proposed a
hybrid method based on RSM, Finite Element Method (FEM), and MCS to carry the
probabilistic free vibration and flutter analysis of suspension bridge. Castravete and
Ibrahim [6] investigated the effect of stiffness uncertainties on flutter of a cantilever
wing using MCS and first-order perturbation technique in time domain.

From the literature, it is observed that most of the work reported on probabilis-
tic flutter analysis has been done using commercial software. In the present work,
probabilistic flutter analysis of a cantilever wing is carried out using physics-based
approach in the frequency domain by considering both bending and torsional rigidity
as independent Gaussian random variables. The impetus of the present work is on
modeling two-dimensional Theodorson’s unsteady aerodynamics [7] in a strip theory
approximation containing frequency-dependent terms. In the present first-order per-
turbation approach, the frequency-dependent aerodynamic terms are also modeled
as random variables and their effect on the probabilistic flutter characteristics of the
wing is studied.

2 Mathematical Modeling

The Goland wing is a metallic wing [8] and its schematic diagram is shown in Fig. 1.
In the figure, points F , G, and H are the aerodynamic center, center of mass, and
location of elastic axis at the section, respectively. The dimensionless parameters
a and e (−1 ≤ a ≤ 1 and −1 ≤ e ≤ 1) determine the location of elastic axis and
inertia axis, respectively, at the section.

The kinetic energy (T ) of the wing is defined as
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Fig. 1 Schematic representation of cantilever wing (Goland wing)

T = 1

2

∫ l

0
Ipα̇

2dy +
∫ l

0
mxαbḣα̇dy + 1

2

∫ l

0
mḣ2dy (1)

where Ip, m, b, and xα(= e − a) are the mass moment of inertia per unit length
about elastic axis, mass per unit length of the wing, semi chord of the wing, and
dimensionless static unbalance respectively. The (̇) over h and α denotes the time
derivatives of heave h(y, t) and pitch displacement α(y, t), respectively.
The potential energy (V ) of the wing is expressed as

V = 1

2

∫ l

0
E I

(
∂2h

∂y2

)2

dy + 1

2

∫ l

0
GJ

(
∂α

∂y

)2

dy (2)

The virtual external work done (δWext ) by the system is given as

δWext = −
∫ l

0
Ldyδh +

∫ l

0
Mdyδα (3)

where L and M = (M1/4 + L(0.5 + a)b) are the lift and moment per unit length,
respectively.
Using Hamilton’s principle, the governing equations of motion of aeroelastic system
can be obtained as

mḧ + mxαbα̈ + ∂2

∂y2

(
E I

∂2h

∂y2

)
+ L = 0 (4)

Ipα̈ + mxαbḧ − ∂

∂y

(
GJ

∂α

∂y

)
− M = 0 (5)

According to thin airfoil theory [7], the lift and moment per unit span at the aerody-
namic center can be represented as
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L = 2πρ∞bUC(k)

(
Uα + ḣ + b

(
1

2
− a

)
α̇

)
+ πρ∞b2

(
ḧ +U α̇ − baα̈

)
(6)

M1/4 = −πρ∞b3
(
1

2
ḧ +U α̇ + b

(
1

8
− a

2

)
α̈

)
(7)

where U is the free stream velocity and C(k) appeared in Eq.6 is the complex
function called Theodorsen’s function in which k(= bω/U , ω is the frequency of
aeroelastic system) is the reduced frequency. Theodorsen’s function is represented
for numerical computation as [12]:

C(k) = 1 + 0.1757

1 + ( 1.099k )
− 0.6724

1 + ( 0.243k )
+

(
2.41

1 + ( 0.214k )
− 2.41

1 + ( 0.156k )

)
i (8)

The weak form of Eqs. 4 and 5 can be obtained after substituting the expressions of
L and M from Eqs. 6 and 7. The elemental Finite Element (FE) equations can be
written as

Msb1{ẅe} + EMab1{ẅe} + Msc1{α̈e} + CMac1{α̈e} + (B1Cac1 + B2Cac1) {α̇e}
+ DCab1{ẇe} + AKac1{αe} + Ksb1{we} = {Fi } (9)

Mst2{α̈e} + RMat2{α̈e} + Msc2{ẅe} + T Mac2{ẅe} + (Q1Cat2 + Q2Cat2) {α̇e}
+ SCac2{ẇe} + PKac2{αe} + Kst2{αe} = {τi } (10)

In Eqs. 9 and 10, {we} and {αe} are elemental bending and torsional degrees-of-
freedom, respectively, and {Fi } and {τi } are the internal load vectors, respectively.
The terms appearing in Eq.9 can be written as

Msb1 = m
∫ yi+1

yi

{Nw}�Nw�dy

EMab1 = πρ∞b2
∫ yi+1

yi

{Nw}�Nw�dy

Msc1 = mxαb
∫ yi+1

yi

{Nw}�Nα�dy

CMac1 = −πρ∞b3a
∫ yi+1

yi

{Nw}�Nα�dy

B1Cac1 = UC(k)πρ∞b2 (1 − 2a)
∫ yi+1

yi

{Nw}�Nα�dy (11)
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B2Cac1 = Uπρ∞b2
∫ yi+1

yi

{Nw}�Nα�dy

DCab1 = UC(k)2πρ∞b
∫ yi+1

yi

{Nw}�Nw�dy

AKac1 = U 2C(k)2πρ∞b
∫ yi+1

yi

{Nw}�Nα�dy

Ksb1 = E I
∫ yi+1

yi

{N ′′
w}�N ′′

w�dy

and the terms in Eq.10 can be written as

Mst2 = Ip

∫ yi+1

yi

{Nα}�Nα�dy

RMat2 = πρ∞b4
(
a2 + 1

8

) ∫ yi+1

yi

{Nα}�Nα�dy

Msc2 = mxαb
∫ yi+1

yi

{Nα}�Nw�dy

T Mac2 = −πρ∞b3a
∫ yi+1

yi

{Nα}�Nw�dy

Q1Cat2 = −UC(k)πρ∞b3
(
1

2
+ a

)
(1 − 2a)

∫ yi+1

yi

{Nα}�Nα�dy (12)

Q2Cat2 = −Uπρ∞b3
(

−1

2
+ a

) ∫ yi+1

yi

{Nα}�Nα�dy

SCac2 = −UC(k)2πρ∞b2
(
1

2
+ a

) ∫ yi+1

yi

{Nα}�Nw�dy

PKac2 = −U 2C(k)2πρ∞b2
(
1

2
+ a

) ∫ yi+1

yi

{Nα}�Nα�dy

Kst2 = GJ
∫ yi+1

yi

{N ′
α}�N ′

α�dy
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where Nw and Nα are the bending and torsional shape functions, and (′) represents
the derivative with respect to y. Now assembling the elemental form of Eqs. 9 and
10, we get the assembled form of FE equation as

([Ms] + [Ma]) {q̈} + (U [Ca] +UC(k) [Caω]) {q̇}
+ (

[Kb] + [Kt ] +U 2C(k) [Kaω]
) {q} = {0} (13)

In Eq.13, the displacement vector {q} contains all bending and torsional degrees-of-
freedom. [Ms], [Ma], U [Ca], [Kb], and [Kt ] are the structural inertia, aerodynamic
inertia, aerodynamic damping, bending stiffness, and torsional stiffness matrices,
respectively, and UC(k)[Caω] and U 2C(k)[Kaω] are frequency-dependent damping
and stiffness matrices respectively. Let {q} be represented by harmonic function
{q} = {q̄}eλt , where λ = −ζω + iω and in other form λ = λR + iλI , and substitut-
ing it in Eq.13 gives the following expression as

[
λ2 ([Ms] + [Ma])+λ (U [Ca] +UC(k) [Caω])

+ (
[Kb] + [Kt ] +U 2C(k) [Kaω]

) ]
{q̄} = {0} (14)

The above equation can be solved using state-space approach as an eigenvalue
problem.

3 Stochastic Modeling

The stochastic modeling of the geometrically coupled cantilever wing is based
on first-order perturbation approach. In this approach, the random variables are
expanded using Taylor’s series as

β = βo + ∂β

∂r
|r=roδr (15)

where βo is the mean of random variables and r denotes independent random param-
eters. The derivatives of the random variables are evaluated at the mean value of
the random variables. In the present problem, both bending rigidity and torsional
rigidity are considered as Gaussian random variables. The random bending stiffness,
torsional stiffness, eigenvalue, eigenvector, and frequency-dependent Theodorsen’s
function expanded via Taylor’s series truncated to first order term can be written as

[Kb] = [
Ko

b

] + ∂[Kb]

∂r
|r=roδr

[Kt ] = [
Ko

t

] + ∂[Kt ]

∂r
|r=roδr
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λ = λo + ∂λ

∂r
|r=roδr (16)

{q̄} = {q̄o} + ∂{q̄}
∂r

|r=roδr

C(k) = C(ko) + b

U

(
∂C(k)

∂k

∂λI

∂r

)
|r=roδr

Now substituting terms from Eq.16 to Eq.14 and separating zeroth-order and first-
order terms:
Zeroth order:

[
(λo)2 ([Ms] + [Ma]) + λo

(
U [Ca] +UC(ko) [Caω]

)

+ ([
Ko

b

] + [
Ko

t

] +U 2C(ko) [Kaω]
) ]

{q̄o} = {0} (17)

First order:
[
(λo)2 ([Ms] + [Ma]) + λo

(
U [Ca] +UC(ko) [Caω]

)

+ ([
Ko

b

] + [
Ko

t

] +U 2C(ko) [Kaω]
) ]∂{q̄}

∂r

+ ∂λ

∂r

[
2λo ([Ms] + [Ma]) +U [Ca] +UC(ko) [Caω]

]
{q̄o}

+ ∂λI

∂r

[ b

U

∂C(k)

∂k
λoU [Caω] + b

U

∂C(k)

∂k
U 2 [Kaω]

]
{q̄o}

= −
(

∂[Kb]

∂r
+ ∂[Kt ]

∂r

)
{q̄o} (18)

Nowmultiplying Eq.18 by adjoint eigenvector or left eigenvector transpose {X̄ad j }T
[9–11], we get the following equation as:

{X̄ad j }T
[
(λo)2 ([Ms] + [Ma]) + λo

(
U [Ca] +UC(ko) [Caω]

)

+ ([
Ko

b

] + [
Ko

t

] +U 2C(ko) [Kaω]
) ]∂{q̄}

∂r

+ ∂λ

∂r
{X̄ad j }T

[
2λo ([Ms] + [Ma]) +U [Ca] +UC(ko) [Caω]

]
{q̄o}

+ ∂λI

∂r
{X̄ad j }T

[ b

U

∂C(k)

∂k
λoU [Caω] + b

U

∂C(k)

∂k
U 2 [Kaω]

]
{q̄o}

= −{X̄ad j }T
(

∂[Kb]

∂r
+ ∂[Kt ]

∂r

)
{q̄o} (19)
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The eigenvector derivative coefficient matrix in Eq.19 becomes zero. Equation19
can be rewritten as

∂λ

∂r
{X̄ad j }T

[
2λo ([Ms] + [Ma]) +U [Ca] +UC(ko) [Caω]

]
{q̄o}

+ ∂λI

∂r
{X̄ad j }T

[ b

U

∂C(k)

∂k
λoU [Caω] + b

U

∂C(k)

∂k
U 2 [Kaω]

]
{q̄o}

= −{X̄ad j }T
(

∂[Kb]

∂r
+ ∂[Kt ]

∂r

)
{q̄o} (20)

Substituting complex form of eigenvalue (λ = λR + iλI ) in Eq. 20 and solving for
real and imaginary part of eigenvalue derivatives as

∂λR

∂r
= φ(γ − ϕ) − η(ψ + ξ)

ϕ(γ − ϕ) − ξ(ψ + ξ)
(21)

∂λI

∂r
= ηϕ − φξ

ϕ(γ − ϕ) − ξ(ψ + ξ)
(22)

where terms ξ, ϕ, γ, ψ, η and φ can be obtained from the expression given below:

ξ + iϕ = {X̄ad j }T
[
2λo ([Ms] + [Ma]) +U [Ca] +UC(ko) [Caω]

]
{q̄o}

γ + iψ = {X̄ad j }T
[ b

U

∂C(k)

∂k
λoU [Caω] + b

U

∂C(k)

∂k
U 2 [Kaω]

]
{q̄o} (23)

η + iφ = −{X̄ad j }T
(

∂[Kb]

∂r
+ ∂[Kt ]

∂r

)
{q̄o}

The variance of the real part and imaginary part can be obtained as

Var(λR) =
(

∂λR

∂r

)2

Var(r) (24)

Var(λI ) =
(

∂λI

∂r

)2

Var(r) (25)

where variance of λI also represents variance of frequency (ω).
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4 Results and Discussion

First, the mean flutter analysis of the wing is performed using zeroth-order equation
based on pkmethod using themean data given inTable1. Figure2 shows the variation
of mean damping (λo

R) and frequency (λ
o
I ) of the wing at various free stream velocity

U . From the figure, themean flutter velocity is found to be 137.38m/s,whichmatches
well with those given in [12].

Table 1 Properties of Goland wing [12]

Parameters Description Values

E I Span-wise bending stiffness 9.77 × 106 Nm2

GJ Span-wise torsion stiffness 0.988 × 106 Nm2

m Mass per unit span 35.719 Kg/m

xα Dimensionless static
unbalance

0.33

a Elastic axis location parameter −0.2

b Semi-reference chord 0.9144 m

l Span 6.09 m

Ip Mass moment of inertia per
unit span

6.5704 Kgm2/m

ρ∞ Free stream density 1.225 Kg/m3
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−40

−30

−20
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0

10

Velocity (U)

λ Ro

0 50 100 150
40
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λo I
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Mode 2

Fig. 2 Variation of real and imaginary part of mean eigenvalue with free stream velocity (U )
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Table 2 Variation of mean and SD of eigenvalues with free stream velocity for COV of E I = 0.05

Velocity
U (m/s)

Perturbation approach Monte Carlo Simulation (with 10,000 Samples)

Mean
(λoR)

Mean
(λoI )

SD
(λR)

SD
(λoR)

Mean
(λI )

Mean
(λoI )

SD
(λR)

SD (λI )

Mode 1

100 −8.9547 50.5290 0.0276 0.9734 −8.9568 50.5050 0.0275 0.9741

125 −17.0811 57.6563 0.0424 0.9228 −17.0839 57.6268 0.0415 0.9242

135 −26.4397 60.3614 0.0346 0.8351 −26.4374 60.3338 0.0364 0.8369

Mode 2

100 −5.9584 113.8010 0.0928 0.4779 −5.9591 113.8010 0.0927 0.4779

125 −5.9187 96.2131 0.1907 0.5428 −5.9215 96.2191 0.1904 0.5427

135 −1.9540 84.9500 0.2509 0.7361 −1.9678 84.9576 0.2516 0.7346

The probabilistic flutter analysis of cantilever wing is performed by treating E I
and GJ as stochastically independent Gaussian random variables with 5% COV in
E I and GJ . The mean and Standard Deviation (SD) of the first two eigenvalues
obtained using first-order perturbation approach and MCS are shown in Tables2
and 3, respectively. From the tables, it is observed that the mean and SD of eigen-
values obtained using the perturbation approach matches well with MCS at various
free stream velocities which validate the present first-order perturbation approach
for probabilistic analysis. From the tables, it is also observed that there is an increas-
ing trend of SD of damping (real part) for second eigenmode (flutter mode) with
increasing velocity, which indicates that eigenmodes are sensitive to probabilistic
variations which can have an influence on the design of aircraft with proper flutter
margin. Comparing the SD of the real part for both mode 1 and mode 2, the standard
deviation of mode 2 is greater than mode 1 corresponding to a particular velocity

Table 3 Variation of mean and SD of eigenvalues with free stream velocity for COV of GJ = 0.05

Velocity
U (m/s)

Perturbation approach Monte Carlo Simulation (with 10,000 Samples)

Mean
(λoR)

Mean
(λoI )

SD
(λR)

SD (λI ) Mean
(λoR)

Mean
(λoI )

SD
(λR)

SD (λI )

Mode 1

100 −8.9547 50.5290 0.2654 0.1501 −8.9787 50.5406 0.2729 0.1528

125 −17.0811 57.6563 1.5942 0.7578 −17.3649 57.6105 1.7244 0.6612

135 −26.4397 60.3614 3.2967 0.6939 −26.5630 59.9716 3.1417 0.8463

Mode 2

100 −5.9584 113.8010 0.1154 3.6420 −5.9461 113.7181 0.1198 3.6478

125 −5.9187 96.2131 0.7781 4.9591 −5.7294 96.0161 0.9259 4.9599

135 −1.9540 84.9500 2.8628 5.1211 −1.6325 85.2785 2.6318 4.8720
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Fig. 3 COV of real and imaginary part of eigenvalues of various modes for different COV of
bending rigidity at U = 125 m/s a λR of mode 1, b λI of mode 1, c λR of mode 2, and d λI of
mode 2

for the variation in bending rigidity and mode 1 in the case of variation in torsional
rigidity. This means that uncertainty in bending rigidity affects the real part of mode
2 whereas torsional uncertainty affects the real part of mode 1.

Figure3 shows the variations in the real and imaginary part of eigenvalues for
different COV of E I at velocity 125 m/s and a very good agreement with MCS is
observed. The COV follows a linear relationship for most of the cases except for λR

of the first mode, which starts significantly deviating after 7% COV of E I .
Figure 4 shows the variation in the real and imaginary part of eigenvalues at a

free stream velocity of 125 m/s for different COV of GJ . From the figure, it can be
observed that the COV of λR of mode 1, mode 2, and λI of mode 1 are accurate
up to 3% of COV of GJ , and λI of mode 2 is accurate for all value of COV of GJ .
A linear relationship between COV of eigenvalues up to 3% COV of GJ can be also
observed.

Figure 5 shows the COV of real and imaginary part of eigenvalues at various free
stream velocities due to variation in E I and GJ . From the figure, it can be observed
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Fig. 4 COV of real and imaginary part of eigenvalues of various modes for different COV of
torsional rigidity at U = 125 m/s a λR of mode 1, b λI of mode 1, c λR of mode 2, and d λI of
mode 2

that the COV of λR for mode 2 has very high value near to flutter velocity due to
variation in E I andGJ . It is also observed that the COV of λI due to bending rigidity
uncertainty is low for mode 2 in comparison with torsional rigidity uncertainty. This
may be due to the fact that eigenvalues are more sensitive due to variation in torsional
rigidity near to flutter velocity. Sincemode 2 is the fluttermode,we further investigate
the probability density function (pdf ) of second mode at various velocities.

Figure 6 shows the pdf of real and imaginary part of eigenvalues for COV of E I
(= 0.05) at 125 m/s and 137 m/s obtained from MCS with 10,000 simulations. From
the figure, it is observed that the pdf of λR of mode 2 at velocity 137 m/s is slightly
skewed than at velocity 125 m/s. It is also observed that λI of mode 2 at velocity 137
m/s shows a wider band than at velocity 125 m/s.

Figure 7 shows the pdf of real and imaginary part of eigenvalues for COV of GJ
(= 0.05) at 125 m/s and 137 m/s obtained fromMCSwith 10,000 simulations. From
the figure, it is observed that the pdf of λR of mode 2 at velocity 137 m/s shows a
wider band than at velocity 125 m/s. The pdf of λR at velocity 137 m/s indicates
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Fig. 5 COV of real and imaginary part of eigenvalues at various free stream velocities due to a
COV of E I = 0.05, b COV of GJ = 0.05
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Fig. 6 pdfs of real and imaginary part of eigenvalue of mode 2 for COV
of E I = 0.05 a λR at U = 125 m/s, b λI at U = 125 m/s, c λR at
U = 137 m/s, and d λI at U = 137 m/s
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Fig. 7 pdfs of real and imaginary part of eigenvalue of mode 2 for COV
of GJ = 0.05 a λR at U = 125 m/s, b λI at U = 125 m/s, c λR at
U = 137 m/s, and d λI at U = 137 m/s

that there is a chance of occurrence of flutter due to uncertainties in the bending
and torsional rigidities as seen in Figs. 6c and 7c (+ ve region under pdf of λR).
The figures also indicate that chances of occurrence of flutter is high in the case of
variation in GJ as compared to E I due to large positive area under pdf of λR of
mode 2.

5 Conclusions

The probabilistic flutter analysis of geometrically coupled cantilever wing has been
carried out using first order perturbation approach considering bending rigidity and
torsional rigidity as Gaussian random variables. The probabilistic response of the
wing has been obtained in terms of mean and SD of the real and imaginary part
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of eigenvalues for different COV of random variables at a particular velocity using
the perturbation approach. The results are compared with MCS and found to be in
very good agreement for variation in E I for all COV considered. In the case of the
variation in GJ , the results show accuracy up to 3% COV in GJ beyond which
it loses its accuracy, which limits the applicability of perturbation approach. From
the results obtained, we can conclude that the COV of λR of the flutter mode near
the flutter velocity starts increasing, and theoretically becomes infinite at the flutter
velocity. The pdf of λR for flutter mode shows that there are chances of occurrence
of flutter at lower velocities in the presence of uncertainties. Hence, consideration of
uncertainties is very important in the design of the aircraft for proper flutter margin.
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