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Abstract. Theatre is a control-based actor system currently developed in Java,
whose design specifically addresses the development of predictable, time-
constrained distributed systems. Theatre, though, can also be used for untimed
concurrent applications. The control structure regulating message scheduling and
dispatching can be customized by programming. This paper describes a novel
implementation pTheatre (Parallel Theatre), whose control structure can exploit
the potential of parallel computingoffered bynowadaysmulti-coremachines.With
respect to the distributed implementation of Theatre, pTheatre is more lightweight
because it avoids the use of Java serialization during actor migration, and when
transmitting messages from a computing node (theatre/thread) to another one. In
addition, no locking mechanism is used both in high-level actor programs and
in the underlying runtime support. This way, common pitfalls related to classic
multi-threaded programming are naturally avoided, and the possibility of enabling
high-performance computing is opened. The paper demonstrates the potential of
the achieved realization through a parallel matrix multiplication example.

Keywords: Actors · Reflective control structure · Theatre · Java · Lock-free data
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1 Introduction

Actors [1] represent a well-established formal computational model for the development
of general concurrent distributed systems. The model is founded on the concept of
an actor, which is a basic, modular, and isolated software entity that shares no data
and communicates with its peers solely by asynchronous message passing. In its basic
formulation, the actor model features one thread per actor and admits an input mailbox
where all the incoming messages get stored. It is the responsibility of the thread that of
extracting, if there any, one message at a time from the mailbox and processing it by
updating the local data status and possibly creating new actors and sending messages
to known actors (acquaintances) including itself. Message processing is atomic and
follows themacro-step semantics [2]: a newmessage can only be processedwhen current
message processing is finished. In the last years, the actor model emerged as a valid
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alternative [3] to classical multi-threaded programming with data sharing and the use of
locks, which are notoriously prone to subtle synchronization errors and deadlocks [4].

Actors are currently supported by such frameworks as Salsa, ActorFoundry,
Scala/Akka, Erlang, CAF, Rebeca, etc. some of which have been experimented in the
construction of large web-based software systems.

Classical actors, though, aremore suited to untimed systemswhere non-determinism
regulates message delivery. Extensions to actors have been defined to allow modelling,
analysis and implementation of distributed time-constrained systems [5–8].

Theatre [6–8] distinguishes from similar actor-based frameworks by its control-
centric character, which in turn favours time predictability and model transformation in
development, thus facilitating a smooth transition from analysis down to design, proto-
typing and final, model compliant, implementation of a system. A general, distributed
implementation of Theatre was achieved in pure Java and it is described in [9]. The
possibility of supporting hybrid actors during modelling and analysis of cyber-physical
systems has recently been shown in [10, 11].

The work described in this paper argues that Theatre can effectively also be used for
parallel untimed applications. The paper specifically proposes Parallel Theatre (pThe-
atre), an original realization of Theatre which optimizes the implementation in [9] so as
to enable high-performance computing on today’s multi-core machines.

The rest of this paper is structured as follows. In Sect. 2, the basic concepts of Theatre
are briefly presented. Then the design and lock-free implementation of pTheatre are
discussed in Sect. 3. Section 4 proposes a scalable application of pTheatre to parallel
matrix multiplication. Section 5 discusses the performance issues of the case study.
Finally, Sect. 6 concludes the paper with an indication of future work.

2 The Theatre Actor System

2.1 Programming Concepts

Theatre actors have no internal thread and no local mailbox. Rather, actors execute on
computing nodes said theatres. In a theatre, a reflective control layer (control machine) is
used which, transparently, captures sent messages, buffers them and regulates message
delivery according to a strategy that ultimately depends upon the application require-
ments. The control machine can reason on time (simulated time or real-time). A library
of control machines was developed (see [9]). An Actor is at rest until a message arrives.
Message processing is atomic and cannot be pre-emptednor suspended. In Java, aTheatre
actor is programmed by a normal class that derives from the Actor base class. Selected
methods (said message servers -msgsrv- as in [5]) specify how corresponding messages
will be responded. For initialization purposes (see also Fig. 1), instead of relying on
class constructors, an explicit message like init() can be used. Differently from normal
Java methods, which have a synchronous invocation semantics, message servers can
only be invoked by a non-blocking send operation, which can carry timing information
[8, 9]. Therefore, message servers have an asynchronous invocation semantics. Message
servers can have arguments but have no return type. To return a result, a message server
must send back to its requestor an explicit message with the result as an argument. As
a basic assumption, a message server is expected, normally, to have a negligible time
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duration. The control machine of a theatre provides the execution context (stack frame)
to local actors. Therefore, concurrency, within a theatre, is cooperative not pre-emptive,
and naturally emerges from message interleaving. The control machine repeats a basic
control loop. At each iteration, a pending message is selected and dispatched to its tar-
get actor by invoking a corresponding message server. At message server termination,
the control loop is re-entered, any sent messages scheduled, then the next iteration is
started. The control loop is actually continued until a final condition eventually holds:
for example, in a concurrent application, message exchanges are exhausted; in a simula-
tion application, the assigned simulation time limit is reached. A real-time application,
instead, typically executes in a non-stop way. A time-sensitive control machine ensures
timestamped sent messages are delivered in timestamp order. When messages have the
same timestamp, a Lamport’s logical clock is used (added meta-data in messages) to
deliver messages according to their logical clock (generation time). A concurrent con-
trol machine ultimately delivers messages according to their sending order. Controlling
the message delivery order contributes to the determinism of a Theatre application.

2.2 System-Level Concepts

A distributed Theatre system is a federation of theatres (logical processes, e.g. JVM
instances or address spaces) currently implemented in Java [9]. Each theatre hosts a
transport layer, a control layer (control machine) and a collection of local application
actors. Theatre is based on global time. A time server component can be used (attached to
a given theatre) to ensure global time is kept updated. Theatres (their control machines)
coordinate each other with the time server, to preserve the notion of global time. The
transport layer can be based, in a case, on the TCP transport, thus ensuring sent messages
from a theatre and directed to the same destination theatre are received in first-in-first-out
order. Whereas concurrency in the same theatre is cooperative, actors (message servers)
belonging to distinct theatres, allocated, e.g. to distinct physical processors of a multi-
computer, can be executed in truly physical parallelism. At initial configuration time,
a socket network is established among theatres which, in a case, can be a complete
mesh. Required socket connections are specified in an xml configuration file, which
also declares the control machine type to instantiate on each theatre. A master theatre
is elected which actually supervises the creation of the socket network and bootstraps
system execution by creating and initializing first actors. In a Theatre system, actors
are assumed to have universal names, that is unique system-level identifiers (strings).
Actors are created in a theatre, then they can bemigrated (move() operation) on a different
theatre for load-balancing issues. Inter-theatremessages andmigrated actors use the Java
serialization mechanism. Intra-theatre messages, instead, are normal Java objects. When
an actor is migrated, a proxy version of itself is kept in the originating theatre, which
stores the last known address (theatre URL) of the migrated actor, and acts as a message
forwarder. Dispatching a message to a proxy actor, causes an external message to be
generated and routed to its destination through the transport layer. A local actor table
(LAT) is maintained into each theatre to store information about proxy/actual actors.
When a migrated actor comes back to a theatre where a proxy version of it exists,
the proxy gets replaced by the actual actor along with its full data status. Messages
exchanged by theatres can be control messages or application messages. Application
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messages refer to the core business of the system. They are dispatched and processed
by actors. Control messages, instead, are transparent to actors. They are intended to be
received and processed by the control machine themselves. Control messages are used
to start/stop a federation system, to interact (according to a protocol) with the time server
to keep global time aligned, etc.

3 Implementing pTheatre in Java

pTheatre (Parallel Theatre) represents an optimization of basic distributedTheatre, aimed
at enabling high-performance parallel computing onmulti-coremachines. The following
are some main points about the design and implementation in Java of pTheatre.

1. Theatres are mapped onto Java threads (one thread per theatre).
2. A Theatre system coincides with one JVM instance. Therefore, all theatres of a

parallel application share a common address space.
3. Actor universal naming reduces to the use of Java actor references. An actor’s

reference persists when the actor is moved from a theatre to another.
4. The message communication mechanism is lightweight and highly efficient because

transferring a message (or migrating an actor) reduces to transferring a message
object reference. No object serialization is needed.

5. No local actor table (LAT) per theatre is now required. Actors hold in an internal
field the identity of the execution theatre. The move() operation just changes the
running theatre reference in the moved actor.

6. The transport layer of a theatre no longer uses socket connections. It only contains a
lock-free message queue (inputBuffer) managed by a couple of send/receive opera-
tions. The inputBuffer is used by external theatres for sending inter-theatre control
or application messages. The inputBuffer is emptied, one message at a time, if there
are any, at each iteration of the control machine loop. Control messages are directly
managed by the control machine. Application messages get scheduled on the local
message queue of the control machine.

7. Being untimed, a pTheatre application does not need a time server component.
However, a “time server”, implemented as a passive object, is still used as a global
detector of the termination condition of awhole pTheatre application.When a control
machine finds it has no messages in its local message queue, a stop control message
is sent to the theatre hosting the time server. No further stop messages are sent,
provided no new external messages are received. Would an external message arrive,
a subsequent stop message will be re-issued when the message queue empties again.
The stop message carries the control machine counters of sent/received external
messages. The time server holds in two maps the identity of the stop requesting
theatre and the values of its message counters.When all the theatres of an application
have requested a stop and there are no in-transit messages among theatres (the total
number of sent messages is found equal to the total number of received messages),
the time server broadcasts a terminate control message to theatres which then break
the control machine event loop.
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8. Newly developed classes include Theatre, PConcurrent, PCTimeServer, PTransport-
Layer. Theatre extends Thread. Its default run() method just activates the control
machine event loop (the controller() method). The run() method is redefined “on-
the-fly” when the Theatre instance acts as the master theatre which configures and
launches a parallel application (see Fig. 1). PConcurrent is a control machine which
processes messages in the sending order. PCTimeServer implements the protocol
for system termination.

9. Considering that actors have no built-in thread, a whole pTheatre system runs with-
out any use of locks. All of this simplifies and contributes to safe concurrent pro-
gramming, and it has the potential to deliver a high execution performance (see the
example in the next section).

4 An Example Using Parallel Matrix Multiplication

The goal of the following case study is twofold: to illustrate the actual programming style
of pTheatre in Java, and to show the achievable execution performance. The example
is concerned with the Geoffrey Fox dense parallel matrix multiplication algorithm [12,
13], which is one of the most memory efficient algorithms [14]. Two squared matrixes
N ×N of doubles a and b are considered, and their product matrix c calculated. Toward
this, matrixes are decomposed into squared sub-blocks of N√

P
∗ N√

P
elements, where

P is the number of available processors and
√
P is assumed to be an integer number.

Processors are organized into a
√
P ∗ √

P toroidal grid. Each processor Pij is initially
assigned the sub-blocks aij, bij and it is responsible of computing the sub-block cij of
the product matrix. In the practical experiment, P = 4 processors (cores) are assumed.
The Java model is split into three classes: Configurer, Collector and Processor. In the
main() method of the Configurer (see Fig. 1) four theatres are created. Theatre 0 is the
master theatre (it redefines the run() method) and creates actors, initializes them and
activates the parallel system. The Collector actor (not shown for brevity) receives from
the processor actors the computed sub-blocks cij and composes them into the final result
matrix c. The Processor actor class realizes the Fox algorithm. The configurer, as well
as the time server, are allocated to theatre 0. Each separate processor is allocated to a
distinct theatre (core) from 0 to 3.

The processor class is shown in Fig. 2. It is realized as a finite state machine. Each
processor computes its sub-block cij by iterating p times, where p = √

P, three basic
phases expressed as internal states: broadcast, computing and rolling-up. During broad-
cast, only one processor in a row, starting from the diagonal position, broadcasts (by
right piping and toroidally) its sub-block aij to all the remaining processors in the row.
In the BROADCAST state, either a processor is sending its aij sub-block or it is wait-
ing a sub-block from the left (toroidally) processor in the row. Let t be the received
sub-block during a broadcast phase. In the computing phase, each processor updates its
cij sub-block as: cij = cij + t ∗ bij. In the subsequent rolling-up phase, each processor
rolls up in the grid (upper in the column and always toroidally) its bij sub-block. As
the iterations end, the processor sends its cij sub-block to the collector actor through a
“report” message. Due to the asynchronous nature of the algorithm in Fig. 2, in the case
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public class Configurer{ 
 static double[][] block( double[][] m, int d, int i, int j ){…} 
 public static void main( String[] args ){ 
  new Theatre( 3, 4, new PTransportLayer(), new PConcurrent() ); 
  new Theatre( 2, 4, new PTransportLayer(), new PConcurrent() ); 
  new Theatre( 1, 4, new PTransportLayer(), new PConcurrent() ); 
  new Theatre( 0, 4, new PTransportLayer( new PCTimeServer() ), new PConcurrent() ){ 
   public void run() { 
    final int N=…; 
    double[][] a=new double[N][N]; 
    double[][] b=new double[N][N]; 
    //fill values to a and b 
    int P=4; //nr of processors 
    int dim=N/(int)Math.sqrt(P); //sub-block dimension 
    long start=System.currentTimeMillis(); 
    Collector c=new Collector(); 
    c.send( "init",N,P ); c.move(0); 
    int p=(int)Math.sqrt(P); //nr of processors in a row/column 
    Processor[][] grid=new Processor[p][p]; 
    for( int i=0; i<p; ++i ) 
     for( int j=0; j<p; ++j ) 
      grid[i][j]=new Processor(); 
    for( int i=0; i<p; ++i ) 
     for( int j=0; j<p; ++j ){ 
      grid[i][j].send( "init",i,j,p,block(a,dim,i,j),block(b,dim,i,j), 
       grid[i][(j+1)%p] /*right*/, grid[(i-1+p)%p][j] /*above*/, c ); 
      grid[i][j].move(i*p+j); 
     } 
    for( int t=0; t<P; ++t ) Theatre.getTheatre(t).activate(); 
    Theatre.getTheatre( Thread.currentThread().getName() ). 
     getControlMachine().controller(); 
    System.out.println("Parallel WCT="+(System.currentTimeMillis()-start)+" msec"); 
   } 
  }; 
 }//main 
}//Configurer 

Fig. 1. The configurer class for the pTheatre implementation of the Fox algorithm

a processor receives a message which is not expected in the current state, the message
is later postponed by re-sending it to itself.

5 Experimental Analysis

The pTheatre implementation of Fox’s algorithm for parallel matrix multiplication
was executed on a Win 10, Intel Core i7-7700 CPU@3.60 GHz, 32 GB of memory,
by varying the matrix size N from 100 to 3000. The emerged execution time (par-
allel wall clock time P_WCT) was then compared with that (sequential wall clock
time S_WCT) of the classical sequential implementation of the matrix multiplica-
tion based on three nested for loops. Each experiment was repeated five times. The
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public class Processor extends Actor{ 
 private int i, j, p, it=0, broadcastIteration; 
 double[][] a, b, t, c; 
 private Processor right, above; 
 private Collector collector; 
 private static byte CREATED=0,  
  BROADCAST=1, COMPUTE=2,  
  ROLLING_UP=3, STOP=4; 
 private byte cs=CREATED; //current status 

 @Msgsrv 
 public void init( Integer i, Integer j,  
     Integer p, 
     double[][] a, double[][] b,  
     Processor right, Processor above,  
     Collector collector){ 
  this.i=i; this.j=j; this.p=p; this.a=a;  
  this.b=b; this.right=right;  
  this.above=above; 
  this.collector=collector; 
  this.c=new double[a.length][a.length]; 
  broadcastIteration=(i-j+p)%p; 
  if( it==broadcastIteration )  
   send( "broadcast", a, i, j ); 
  cs=BROADCAST; 
 }//init 

 @Msgsrv 
 public void broadcast( double[][] a,  
  Integer i, Integer j ){ 
  if( cs!=BROADCAST )  
   send( "broadcast", a, i, j ); 
  else{ 
   this.t=a; 
   if( j!=(this.j+1)%p )  
    right.send( "broadcast", a, i, j ); 
   send( "compute" ); cs=COMPUTE; 
  } 
 }//broadcast 

 @Msgsrv 
 public void compute(){ 
  if( cs!=COMPUTE ) send( "compute" ); 
  else{ 
   update(); it++; 
   above.send( "rollingUp", b );  
   cs=ROLLING_UP; 
  } 
 }//compute 

 @Msgsrv  
 public void rollingUp( double[][] b ){ 
  if( cs!=ROLLING_UP )  
   send( "rollingUp", b ); 
  else { 
   this.b=b; 
   if( it==p ){ send( "stop" ); cs=STOP; } 
   else{ 
    if( it==broadcastIteration ) 
     send( "broadcast", a, i, j ); 
    cs=BROADCAST; 
   } 
  } 
 }//rollingUp 
 @Msgsrv 
 public void stop(){ 
  collector.send( "report", c, i, j ); 
 }//stop 
 private void update(){ 
  //c=c+t*b 
  for( int row=0; row<t.length; ++row ) 
   for( int col=0; col<t.length; ++col ){ 
    double tmp=0.0D; 
    for( int k=0; k<t.length; ++k ) 
     tmp+=t[row][k]*b[k][col]; 
    c[row][col]+=tmp; 
   } 
 }//update 
}//Processor 

Fig. 2. The processor actor implementing Fox’s algorithm

speedup of the parallel implementationwas then calculated, for each experiment, as best-
case(S_WCT)/worst_case(P_WCT), to smooth out Operating System dependencies.
Experimental results are collected in Table 1.

As one can see from Table 1, for low values of the matrix size, the speedup is low
because the sequential implementation outperforms the more complex parallel imple-
mentation. Some super speedups emerge when a matrix size of 900–1500 is adopted.
A speedup value close to the ideal value of 4 (according to the Amdahl law, when 4
cores are used) occurs for N = 2000. Obviously, such values are the result of complex
combinations of hardware features (cache contents) with the efficient implementation of
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Table 1. Speedup of parallel versus sequential program (4 cores)

Matrix size N S_WCT (ms) P_WCT (ms) Speedup

100 3 33 0.09

200 10 40 0.25

300 36 63 0.57

400 88 81 1.1

500 170 98 1.73

600 296 152 1.95

700 506 213 2.38

800 858 252 3.4

900 1827 448 4.07

1000 5364 812 6.61

1500 30,445 6352 4.79

2000 81,972 20,907 3.9

2500 205,064 55,237 3.71

3000 350,438 106,753 3.28

pTheatre.On the other hand, similar super speedupswere reported, for the Fox algorithm,
also in [14].

6 Conclusions

This paper proposes pTheatre, an original, efficient, and totally lock-free Java imple-
mentation of the Theatre actor system [6–9]. pTheatre mission is that of supporting
high-performance computing on modern multi-core machines. The potential of pThe-
atre was demonstrated in the paper by an actor-based, asynchronous implementation of
the Geoffrey Fox parallel matrix multiplication algorithm [12, 13].

Prosecution of the research is directed to the following:

• Improving the implementation of pTheatre and applying it to complex parallel
algorithms.

• Completing a specialization of pTheatre for high-performance agent-based mod-
elling and simulations over multi-core machines, according to a conservative
synchronization strategy.

• Porting pTheatre over the GPU, for supporting massive, data-parallel applications.
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