
Fractal Wear Behaviour of Gear Tooth:
A Review

Enesi Y. Salawu, A. O. Inegbenebor, O. O. Ajayi, Stephen A. Akinlabi,
and Esther T. Akinlabi

Abstract Fractal wear behaviour of gears refers to failure mode of gears as a result
of contact mechanics, which occurs while in application. Tooth-to-tooth surface
damage usually ensues as a result of variation in excitation energy of the gear. This
study therefore investigated the nature of fractal wear encountered by gear tooth with
a focus on general fatigue wear, temperature-induced wear and different models for
wear predictions. The result of the study showed that tooth surface damage such
as fatigue, pitting corrosion and scuffing causes gear failure. Failure due to bending
fatiguewas observed to contribute to themaximumdeflection of the gear tooth during
rotation, thus resulting in excessive noise and vibration. Further to this, it was possible
to predict the material removal rate of a failed gear using some of the highlighted
empirical methods in the study. Based on these models, it will be possible to predict
the nature of wear on gear tooth surface and use it during gear design.
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1 Introduction

The wear of gear tooth is regarded as a major factor to overall component failure
and improvement in the mechanical properties of gear tooth to mitigate or reduce
wear, which is important for reliability and availability of machines. Thus, it is
necessary to assess the nature of gear failures in order to improve the design. Tooth
wear in gears has been associated with misalignment at the tooth profile causing
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excessive noise and vibration resulting in eventual failure [1]. Miler et al. [2] noted
that one major cause of the gear tooth misalignment is the variation in the profile
shift, which introduces a stress factor that affects the optimal efficiency of the gear
component. Although the profiles are usually specified and designed into the product
during manufacturing, they pose a significant wear behaviour due to the alterations
during manufacturing in order to meet the satisfaction of the customers [3]. This will
cause radial and hoop stress along the tooth leading to crack initiation on the gear
surface asperities and the tooth roots of the gear [4–6]. Despite numerous efforts by
gear designers to predict wear behaviour of the gears using various tribo-dynamic
models, the variation in speed of gears has remained a major factor to gear designers
[7, 8]. More so, accuracy in wear detection and diagnostic approach has become
a major problem at the initial stage of gear failure, thereby mitigating the use of
numerical and experimental investigations of the increased tooth wear and acoustic
emission monitoring devices [9–11]. Further to this, it was reported by Kumar et al.
[12] that pitting occurred in gears as a result of increased rolling with sliding motion.
The variation in load sharing contributed to gear deflections, which lead to increase
in frictional loss along the gear tooth tip [13, 14]. In turn, the loss in frictional
power can be increased by the surface roughness along the gear surface in mesh,
thus making the oil film less effective in reducing wear [15]. However, there is
an extent to which smooth gear surface is affected by surface roughness and once
the grinding surface roughness is not well guided during production, it affects the
profile of the involute [16, 17]. Based on this statement, it is worthy of noting that
most gear failures are associated with error during the manufacturing process. For
instance, gear shapers pose geometric and kinematic errors during gear shaping
process, which affect the accuracy when compared to standards and cause excessive
mesh stiffness that can affect the dynamic action of the gear system [18–20]. The
variation in the mesh stiffness increases the transmission error between a pair of
gear in mesh, thus increasing the torsional effects at the surface of the gears and
leading to low performance during operation [21–25]. According to Jolivet et al.
[26], the geometry of a finished gear tooth has an effect on the acoustic emission
during operation. This will enable a gear specialist to measure the wear behaviour
of the gear both in lubrication condition and in dry working condition in order to
determine its optimal performance. Inaccurate finishing in tooth geometry causes
excessive noise, vibration and eventual micropits on the surface asperities resulting
in tooth deformation [27–30]. In an attempt to reduce wear and improve on gear
performance, as well as durability, empirical models have been developed to study
the dynamic characteristics of gears in mesh. For instance, Ni et al. [31] employed
a numerical approach to improve the mesh behaviour of a bevel gear. However, the
high-speed motion in bevel gear transmission was not considered and this can result
in reduced bearing capacity of gear tooth surface, but studies have shown that gears
of this type will not function well in some applications, which require high pressure
due to increased frictional loss and scuffing failure [32–34]. In radial loads, lubricant
temperature played a major role in the wear behaviour of the gear system [35]. Many
experimental attempts have been employed in the treatment of gears in order to
reduce wear but still left with great shortcomings. In the light of this, shot peening
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was adopted to improve the fatigue life of steel gears by Lv et al. [36]. However, the
variation in speed and load still remains a major problem during fault detection [37,
38]. Although it was possible to detect faults through the interpretation of the data
obtained from the dynamic signals, validation of the detected faults still remains a
great challenge [39, 40].

2 Critical Problems Associated with Gear Wear Prediction
Models

The frequent transmission error occurring during gear meshing has necessitated the
application of several engineering models to predict the gear performance and the
wear behaviour. Basically, the variation in impact load between meshing tooth can
result in bending fatigue and pitting on the working surface. Although it was possible
to predict the surfaces or teeth that are missing during operation using some simple
empirical models, however, the failed gear tooth will show some evidence of material
removal causing distortions on the involute profile. Models to predict this material
removal rate are quite not easy to develop [41]. To this end, model development
will need critical analysis of the thermal stress on the contact surface by considering
the various points of acoustic emissions causing pitting at the tooth surfaces, which
make the material susceptible to eventual deformation before adequate prediction of
material removal rate can be ascertained [42–46]. Morales-Espejel and Gabelli [47]
proposed a model for analysing the fatigue life of gears based on the load-carrying
capacity of themachine. Themodel adopted aWeibull method to analyse the strength
of the material and the Lundberg–Palmgren principle to investigate the load-bearing
capacities. However, transmission error reduction requires a good surface finish and
accuratemicrogeometry during gearmanufacturing. The pressure distribution during
contact is also a factor to surface fatigueprediction,whichbecomes amajor challenge,
especially in production of gears that have non-circular shape [48–52]. Technically,
the developed model was possible for backlash reduction, especially on worm wheel
gears, but to what extent would this improve the optimal working efficiency of the
gear remains a major problem, unless the complex nature of the gear tooth kine-
matic geometry is well understood, which is a function of the nonlinear and acoustic
behaviours of the gear system [53–57]. Based on this, Dhamande and Chaudhari [58]
developed a statistical model for diagnosing the vibration of gears on the basis of
speed and load condition in order to predict fatigue on the surfaces of the gear tooth.
This is limited by the type of contact stress causing fatigue failure due to the fact
that it is impossible to identify the stress in real-life situation [59]. More so, studies
have revealed that simulations or experiments would give a better result because the
parameters for vibration monitoring can be controlled overtime; however, in real-life
applications, operation conditions are prone to these errors, thus making it impos-
sible to get the exact point of stress causing incessant fatigue failure. In addition,
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complex mechanism of operation of the gear component limits the chances of funda-
mental fatigue, which causes the fracture of the tooth surfaces [60–63]. A number of
researches have been carried out on the way to predict failures in gears by synchro-
nizing the gear componentswith gearmonitoring devices. For instance, Palermo et al.
[64] suggested that a digital encoder can be integrated into the system to measure
the transmission error during vibration. Besides, Li et al. and Ren et al. [65, 66]
reported that angular displacement of gears during operation causes gear deflection
along the path of travel and this will result in variation in the meshing mechanism
of the gear. The studies further proposed that this problem can be monitored using
angular displacement sensor to detect faults. Obviously, data obtained from angular
signals are limited by variation in the speed of the machine and dynamic responses of
the rotary component [67]. Reduction in degree of freedom and accurate gear mesh
simulation might be of interest in reducing the surface fatigue [68].

3 Temperature-Induced Gear Wear

Heat generation exists at the interface of meshing teeth due to increased torque trans-
mission, which constitutes a temperature zone, which can be referred to as bulk and
flash temperature point on the gear tooth [69]. It was possible to say that the heat
flux distribution along the path of contact induces thermal stress on the material
resulting in thermal failure of the gear tooth [70]. The unsteady state temperature
distribution can result in frictional heat generation and increased temperature rise
on the gear tooth surface, which eventually reduces the transmission efficiency [71].
According to Castro and Seabra [72], the viscosity of the oil is a function of temper-
ature and a coefficient of friction between a pair of gears in mesh. This, however,
affects the scuffing load capacity of the gears. Bulk flash temperature variation is
usually directed to the vertical tooth surface, which reduces transmission efficiency
and increases the thermal deformation at the meshing interface [73, 74]. More so,
the flash temperature at the tooth surfaces of gears can be predicted using a nonlinear
model, which can estimate the temperature of the tooth overtime that can cause the
surface deformation; thus, temperature is suitable for monitoring the performance
of the gear, especially when elastohydrodynamic technique is used [75–80]. Thus,
it was needful to say that temperature formed a dominant parameter in analysing
fatigue failures of gears [81].

4 Conclusion

In the design of power transmissions, themajor factors, which affect the systemwhen
in application, are noise and vibration emission. The variation in the transmission
error distribution has a major impact on the noise behaviour. This study has shown
that the noise emission and temperature flash are associated with transmission error
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due to gear excitation. Further investigation into the material failure of gears, the
chemical composition, strength and surface fracture showed that fatigue is one major
factor, which usually leads to gear tooth failure. Thus, the outcome of this study can
be adopted to improve on the gear tooth design.
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