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1 Introduction

Miniaturized sensors, known as microsensors, are often actuated such that one or
more component structures are driven to resonance. In macromechanical systems,
resonance is generally avoided for safety of equipment. However, micromachined
resonant sensors are used for high accuracy, long-term stability and quasidigital
output. They are widely used in detection of chemical and biological substances [1],
measurements of rheological properties of fluid [2], energy harvesting [3], measuring
pressure [4] and in many other diverse fields [5]. In order to increase the sensitivity of
the instrument, the dissipation is kept to a very small value. The accuracy of a well-
designed resonator is good enough to use them as gyroscopes, timing references,
frequency filters in cell phones and computers. In the field of metrology, resonators
capable of detecting mass of 1 picogram have been fabricated.

One drawback associated with the resonant devices is that during large amplitude
oscillation, when the system is excited to resonance, the effects of nonlinearities
become pronounced. First, the resonant frequency of the flexible microstructure
depends on the amplitude of excitation (amplitude-frequency effect or A-f effect).
Second, nonlinearities make the interpretation of sensor data difficult. Finally, the
noise characteristics of the device deteriorate as the participation of nonlinear term
increases. Nevertheless, paradoxical though it seems, nonlinearities can sometimes
be helpful. One example is that, the pull-in phenomenon resulted by the presence
of nonlinear terms can be advantageously used in electrostatically driven MEMS
switches [6]. Further, nonlinearities sometimes improve the noise behaviour of the
device.

The study of nonlinear dynamics of resonant microsystems has emerged as an
active field of research because of two reasons: (a) Since the nonlinear terms invari-

G. Chakraborty (B) · N. Jani
Department of Mechanical Engineering, Indian Institute of Technology Kharagpur,
Kharagpur, India
e-mail: goutam@mech.iitkgp.ac.in

© Springer Nature Singapore Pte Ltd. 2021
U. S. Dixit and S. K. Dwivedy (eds.), Mechanical Sciences,
https://doi.org/10.1007/978-981-15-5712-5_3

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5712-5_3&domain=pdf
mailto:goutam@mech.iitkgp.ac.in
https://doi.org/10.1007/978-981-15-5712-5_3


58 G. Chakraborty and N. Jani

ably show themselves up in the system’s response characteristics, an analysis based
only on linear term does not predict correct results. (b) Nonlinear terms can be advan-
tageously exploited to improve system’s performance and also to design new kinds
of devices. Thus, whether good or bad, nonlinearities cannot be ignored altogether.

The effects of nonlinearities on the dynamics of resonant microdevices have been
reviewed by many authors. Notable among them are the ones by Lifshitz and Cross
[7], Rhoads et al. [8], Tiwari and Candler [9]. These reviews have emphasized on
different aspects of nonlinearity. For example, Rhoads et al. [8] have studied effects
of different types of excitation on the nonlinear dynamics of MEMS resonators,
while Tiwari and Candler [9] have studied both types of devices where nonlinearity
is undesirable and where it is to be exploited to the advantage.

The present review aims to provide a comprehensive overview of nonlinear effects
on the response of resonant MEMS devices. Along with the usual sources of non-
linearity in a resonant MEMS, discussion has been made also on different ways by
which nonlinearities are tailored to improve the system’s performance. The benefi-
cial and undesirable effects of nonlinearity have been pointed out bymeans of simple
models, which are valuable tools for getting insight into the design of such systems.
The review is divided into several sections. The basic operating principal of resonant
MEMS has been explained in Sect. 2 restricting to the linear theory. The effects of
nonlinearity on differently excited resonators are discussed in Sect. 3. Only one kind
of nonlinearity, namely, duffing-type nonlinearity has been treated in this section in
order to highlight various roles that the nonlinearities can play in the dynamics of
such systems. The real nature and origin of nonlinearities that appear in resonant
MEMS devices are explained in the next section (Sect. 4). In Sect. 5, we compare the
effects of nonlinearity and discuss the desirable and undesirable effects. In the final
section (Sect. 6), various methods of modifying the nonlinearities of the device have
been outlined.

2 Working Principle of Resonant MEMS Sensor

The working principal of a resonant device can be explained with the help of a
forced single-degree-of-freedom (SDOF) oscillator, whose equation of motion can
be written as

mẍ + cẋ + kx = f (t) (1)

where the symbols have usual significance. In a resonant microsystem, the oscillator
is driven to resonance bymeans of harmonic excitation f (t) = f0 cosωt . The steady-
state response amplitude
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attains a maximum value Xmax = F0/k

2ζ
√

1−ζ2
, when ω = ωn

√
1 − 2ζ2. Usually for

resonant device the damping factor is kept small, so that Xmax ≈ F0/k
2ζ for ω ≈ ωn .

It is customary to specify the damping factor in form of quality factor Q which is
approximately equal to 1

2ζ . For resonant MEMS, the Q factor is very high.
In sensing devices, one of the physical parameters of the oscillator is changed

depending on the external stimuli that need to be estimated. For example, in chemical
gas sensor, the mass is altered when the gas is present near the vibrating body, in a
pressure sensor the stiffness is changed. This change in inertia or stiffness causes the
natural frequency to be shifted. The conditions for resonance of an initially resonating
oscillator now get changed, resulting in significant change in the response amplitude

and phase difference φ = tan−1
(

2ζω/ωn

1−ω2/ω2
n

)
. Measurement of this change can enable

one to quantitatively estimate the change in physical parameter and hence the stimuli.
For example, change of the mass from m to m + �m causes the steady-state

amplitude to decrease by
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or the phase angle is increased by
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If the excitation frequency is tuned then it may be possible to bring the system again

to resonance by changing the frequency from ω = ωn =
√

k
m to ω′ =

√
k

m+�m . The

change in the frequency |�ω| =
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)
can be measured to estimate

�m, provided the values of ωn =
√

k
m and m are known. It may be noted that since

�ω ∝ ωn , the measurement becomes easy as the value of ωn is increased. This
explains why the microscale or nanoscale sensors are better suited for this purpose;
the natural frequency of a system increases as the dimension is reduced.

The efficacy of the above-described sensing scheme depends on the ability of
detecting change in the response amplitude or phase as the natural frequency is
shifted, i.e. on the value of �X

�ωn
, which should be sufficiently large. However, from

(3) it may be easily established that
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It is therefore required to have large excitation amplitude F0 in order to increase the
sensitivity for small value of �m.

This limitation can be avoided if the oscillator is excited by parametric excitation
rather than direct excitation. For the simplest situation, the following equation of
motion is obtained:

mẍ + cẋ + k (1 + 2ε cos 2ωt) x = 0 (6)

The response in this case shows two distinct behaviour depending on the values
of the parameters ε, ω/ωn and ζ. The amplitude either increases exponentially if
certain inequalities ε > f (ω/ωn, ζ) are satisfied or gets reduced to zero when ε <

f (ω/ωn, ζ). Thus, the system can be conceived to be either in 0-state corresponding
to low amplitude of oscillator or in the 1-statewhich corresponds to high amplitude of
oscillation.When the natural frequency is changed, the systemmay be easily brought
from one state to other. Next by proper adjustment of the excitation frequency ω, the
system can be restored to its original state. The measured value of �ω required for
that purpose is used to obtain the change in the mass or stiffness of the oscillator.

For example, when the excitation frequency ω is nearly equal to the natural fre-
quency ωn , primary parametric resonance in an undamped system (c = 0) occurs,

if 1 −
(

ω
ωn

)2
< ε < 1 +

(
ω
ωn

)2
, i.e. within a narrow frequency zone of width,

1 − ε <
(

ωn
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)2
< 1 + ε or approximately 1 − ε

2 <
(

ωn
ω

)
< 1 + ε

2 . The state of the
oscillator changes when ωn is changed by amount εω

2 ≈ εωn
2 .

3 Nonlinearities in MEMS

The response amplitudes of resonant MEMS devices are generally large and hence
the linear approximations are often insufficient to predict their correct behaviour.
Also nonlinearities are sometimes introduced deliberately to gain some advantages.
Presence of nonlinearities makes the analysis complicated because of two reasons,
(a) themodel becomes quite complex and (b) unlike linear systems there is no generic
behaviour of system response. Every nonlinear system behaves differently depending
on the type of nonlinearity, excitation or initial conditions. Thus, a complete discus-
sion of nonlinear dynamics of MEMS devices will be too lengthy to be considered
in a review of modest length.

Resonant MEMS devices can be broadly classified as shown in Fig. 1.
Nonlinear analysis of the system is different for different subsystem. Further each

of the subsystem can be classified according to themode of excitation in the following
manner:

1. system with direct excitation,
2. system with parametric excitation,
3. system with combined direct and parametric excitations and
4. system with self-excitation.
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Fig. 1 A schematic explaining the classification of MEMS resonators

In the following pages, only one type of nonlinear system, namely, the one which can
be modelled as a single-degree-of-freedom oscillator is considered for discussion.
Further, out of numerous kinds of nonlinear terms that may be present in the system,
only the cubic type of nonlinearity is taken up. Different cases of excitation are now
considered separately.

3.1 System with Direct Excitation

The equation of motion of a harmonically excited system with cubic-type nonlinear
term can be written as

mẍ + kx + cẋ + αx3 = f0 cosωt (7)

This quite simple looking system shows at times unexpected behaviour like sensitive
dependence on initial conditions (chaos), although in most cases the behaviour is
quite predictable. However, the behaviour depends on (i) the relationship between
ω and ωn , (ii) the magnitude of f0, (iii) the sign of α, etc. Three cases can be
distinguished.

Case 1: ω ≈ ωn . This is the case typically encountered in resonant MEMS [10]. The
characteristic behaviour of the nonlinear system is mentioned here.

(a) The frequency response curve for steady-state amplitude bends towards right or
left (see Fig. 2) according to the sign of α is positive(hardening-type nonlinear-
ity) or negative (softening-type nonlinearity). In fact, the natural frequency of
unforced system depends on amplitude of oscillation as ω2

n = k
m + 3

4αa
2, where
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(a) Softening behaviour (b) Hardening behaviour

Fig. 2 Frequency–amplitude curves for forced excitation

a is the amplitude of oscillation. For a forced system, the response curve depends
on the magnitude of f0 and c.

(b) The response amplitude can take any of the three possible values depending on
the initial conditions, when the excitation frequency is within a zone in between
ω1 and ω2 (shown in Fig. 3).
The non-uniqueness in the amplitude gives rise to ‘jump phenomena’ when the
frequency of excitation is quasistatically increased or decreased continuously.
The direction of the jump (upward or downward) as well as its amount depends
on the sign of α. For example, a hardening-type nonlinearity exhibits downward
jump in the frequency sweep up operations while a softening-type nonlinear
system shows upward jump. However, if the frequency is not changed quasistat-
ically, then significant transient oscillation takes place before the amplitude sets
down to a new value.

Case 2:ω ≈ 3ωn . Although the predicted response is small according to linear analy-
sis, the presence of cubic nonlinear term can make it large. The steady-state response
has two frequencies, namely, the excitation frequency ω and the natural frequency
ωn . The phenomena of large amplitude of oscillation is known as ‘subharmonic
resonance’.

Fig. 3 Bifurcation frequency in case of softening and hardening nonlinearities



Nonlinear Dynamics of Resonant Microelectromechanical System (MEMS): A Review 63

Case 3: 3ω ≈ ωn . It is also possible to get large amplitude response because of
‘superharmonic resonance’.
When the oscillator is excited by force with two or more different frequencies then
in addition to above, large amplitude oscillation may take place due to ‘combination
resonance’.

3.2 System with Parametric Excitation

The effect of nonlinear terms in a parametrically excited system is to limit the oscil-
lation amplitude to a finite value when the excitation causes instability to a linear
system. For example, if the nonlinearity is of duffing type as in the following equation
of motion:

mẍ + cẋ + k(1 + 2ε cos 2ωt)x + αx3 = 0 (8)

one or two limit cyclesmay exist depending on the value of ω
ωn

, ζ = c
2
√
mk

and the sign
of α. For a duffing-type nonlinearity, the limit cycle is stable if this is unique. For the
system where two limit cycles exist, the one with higher amplitude of oscillation is
stable. The instability region for a nonlinear system is shown in Fig. 4. The parametric
space is divided into three regions. In the region I, both linear and nonlinear equations
predict the same steady-state response which decays to insignificantly small value.
In region II, the nonlinear equation predicts a stable limit cycle. However, the steady-
state amplitude depends on initial condition in region III. For some initial conditions,
the predictions of the nonlinear equation and the linear equations are identical, while
for a different set of initial conditions a large amplitude of oscillation is predicted
when the nonlinear term is present.

Fig. 4 Regimes for stable
and unstable behaviours of
parametrically excited
system
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3.3 System with Combined Direct and Parametric
Resonances

When the stiffness term in a harmonically excited system is modulated periodically,
the system shows often unexpected behaviour. Consider the following equation of
motion [11]:

mẍ + cẋ + k(1 + 2ε cos 2ωpt)x = f0 cos(ωd t + φ) (9)

Ifωd = ωp, application of harmonic balance method gives the following steady-state
response:

x = A cosωpt + B sinωpt (10)

where A and B satisfy the following equation:

[
k(1 + ε) − mω2

p cωp

−cωp k(1 − ε) − mω2
p

]{
A
B

}
= f0

{
cosφ

− sin φ

}
(11)

At resonance, i.e. ωp = ωn =
√

k
m , the response can be written in the following form

provided the amplitude of parametric excitation remains below the threshold value:

x(t) = fo
√
4ζ2 + ε2

k
(
4ζ2 − ε2

)
{
sin

(
φ − tan−1 ε

2ζ

)
cosωnt + cos

(
φ + tan−1 ε

2ζ

)
sinωnt

}

(12)
As ε = 2ζ, the response amplitude becomes large leading to single amplification.

Further, as tan−1
(

ε
2ζ

)
= π

4 when ε = 2ζ, the amplitude becomes small for φ = π
4 .

Amplitude becomes very large when φ = −π
4 . Thus, amplification or quenching of

the signal during resonance depends on the value of the phase difference between
direct and parametric excitations.

Above the threshold level of excitation, the parametrically excited linear system
becomes unstable. In this case, the response can be written as

x(t) = x1(t) + x2(t) (13)

where x1(t) is obtained by the above analysis while x2(t) satisfies the dampedMath-
ieu equation.

When ωd �= ωp, the response can be written as

x(t) = A(t) cosωpt + B(t) sinωpt (14)
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where A(t) and B(t) satisfy the following differential equation:

[
c −2mωp

2mωp c

]⎧⎨
⎩

dA
dt

dB
dt

⎫⎬
⎭+

[
k(1 + ε) − mω2

p cωp

−cωp k(1 − ε) − mω2
p

]{
A
B

}
= f0

{
cos

{
(ωd − ωp)t + φ

}
− sin

{
(ωd − ωp)t + φ

}
}

(15)
It is not difficult to see that if the solution is stable then the response consists of two
harmonic terms, onewith frequencyωd and the otherwith frequency2ωp − ωd .When
the nonlinear term is present, the response becomes generally quite complex. For a
nonlinear oscillator driven by both parametric and external excitations (degenerate
case), the equation of motion becomes [12]

mẍ + cẋ + k(1 + 2ε cos 2ωpt)x + αx3 = f0 cos(ωt + φ) (16)

The steady-state response can be obtained by assuming, as before

x(t) = A cosωt + B sinωt

where A and B are obtained using balancing the harmonics after substituting x(t) into
the governing equation of motion. When the system is driven below the parametric
instability threshold, the system behaviour is the same as that of a duffing oscillator.
When driven above the instability threshold, amplitude-frequency response shows
five branches (unlike three in duffing oscillator) within certain frequency band, three
of which are stable [12]. Two ‘active’ stable resonances are seen in this resonator. It is
interesting to note that the maximum amplitude of the resonator does not depend on
whether the parametric instability threshold is crossed or not. Thus, the parametric
instability threshold is only of minor concern here, unlike in a linear resonator.

3.4 System with Self-Excitation

Some MEMS resonators are excited by itself through positive feedback mechanism
[13]. Such systems are active and, of course, connected to an unlimited energy source.
A simple mathematical model of a linear system with self-excitation is

mẍ − gẋ + kx = 0 (17)

whose response grows exponentially with time. Examples of self-excited MEM res-
onators are optically heated mechanical resonators [14]. Presence of nonlinearity
limits the amplitude of oscillation to a limit cycle. For example, the following equa-
tion exhibits limit cycle:

mẍ − g

(
ẋ − 1

3
ẋ3
)

+ kx = 0 (18)
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This equation can be written in another form, associated with the name of Van der
Pol.

mÿ − g
(
1 − y2

)
ẏ + ky = 0 (19)

by substituting ẋ = y.

If the oscillator is excited by harmonic excitation f0 cosωt , whereω ≈ ω0 =
√

k
m ,

then the steady-state motion becomes periodic with a frequency equal to that of exci-
tation. Thus, the response gets synchronized at ω. An interesting fact is that a small
change in excitation frequency can cause large change in response behaviour. This
happens when the excitation frequency falls outside the band in which ‘entrainment’
takes place.

4 Sources of Nonlinearity

Any vibrating system is generally nonlinear. Only under special operating condi-
tions the effect of the nonlinear terms can be ignored. For example, the system is
adequately modelled as a linear system when the amplitude of vibration is small.
In resonant devices, this is not the case since the amplitude of vibration is kept to
a very high level in order to increase the sensitivity of the device. Furthermore, the
MEMS device is made by interconnecting different subsystems which have their
own dynamics [15]. Hence, modelling the nonlinear terms is a very difficult task
which can be achieved only with a detailed knowledge of the individual subsystems.
In what follows some common sources of nonlinearity are discussed.

The sources of nonlinearity can be broadly classified as following:

1. nonlinearity in mechanical structure,
2. nonlinearity in actuation system,
3. nonlinearity in sensing (measuring) devices and
4. nonlinearity in feedback and electrical circuit.

4.1 Nonlinearity in Mechanical Structure

The nonlinear terms appearing in the equation of motion of the structural component
of the resonant device (for example, beam, plate, wire, etc.) are of following types:

(i) stiffness nonlinearity,
(ii) damping nonlinearity and
(iii) nonlinearity due to external forces.
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4.1.1 Nonlinearity in Stiffness Terms

The stiffness or restoring force term in the equation of motion of the structure can
be nonlinear because of (i) nonlinearity in strain–displacement relationship at large
amplitude (geometric nonlinearity) [16], (ii) nonlinear constitutive relations of the
material (material nonlinearity) and (iii) impact causing sudden change in the system
behaviour [17].

In deriving the equation of motion of a vibrating structure, one needs the rela-
tionship between stress and strain components (constitutive equations) which can be
mathematically expressed as

σi j = σi j (εkl) ; i, j, k, l = 1, 2, 3

Together with the relationship between strain and displacement gradient. In a linear
system, both these are expressed as linear relations, namely,

σi j =
∑
k

∑
l

Ci jklεkl, where Ci jkl = C jikl = Ci jlk = Ckli j

and εi j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
(20)

where ui (i = 2, 3) are the components of displacement field.
However, during large amplitude oscillation, significant deviations from the afore-

said relations occur. Even if the material nonlinearity can be ignored, the nonlinear
relation between εi j and

∂ui
∂x j

terms shows non-trivial effects. For example, the non-
dimensional equation of motion of a MEMS beam fixed at both ends can be written
as [16]

∂2w

∂t2
+ ∂4w

∂x4
−
(
Al2

2I

)
∂2w

∂x2

l∫
0

(
∂w

∂x

)2

dx = 0, 0 ≤ x ≤ l (21)

Here, even if the constitutive relations are assumed to be linear, the nonlinear rela-
tionship between strain and displacement, i.e. εxx = ∂u

∂x + 1
2 (

∂w
∂x )2, where u(x, t) and

w(x, t) are axial and transverse displacements, respectively, couples the longitudinal
and transverse motion of the beam. The net effect is stretching of the neutral axis
of the beam during large deformation, a fact which is often ignored during small
amplitude oscillation.

In a cantilever beam, the above-mentioned mid-plane stretching does not take
place but the geometrical nonlinear terms exist. The equation of motion can be
written as [18]

∂2w

∂t2
+ ∂4w

∂s4
+ ∂

∂s

[
∂w

∂s

∂

∂s

(
∂w

∂s

∂2w

∂s2

)]
+ ∂

∂s

⎡
⎣∂w

∂s

s∫
1

∂

∂s

⎛
⎝

s∫
0

∂w

∂s

∂2w

∂s∂t
ds

⎞
⎠ ds

⎤
⎦ = 0

(22)
where s is the distance measured from the fixed end of the beam.
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Fig. 5 Schematic of a
compliant amplitude
restraint

Material nonlinearity does not normally arise in MEMS devices unless spe-
cial material is used. In systems where vibro-impact takes place, for example, the
devices used in switching, positioning and tapping mode atomic force microscopy,
the impacting process generates severe nonlinear behaviour. This kind of system is
usually modelled as piecewise smooth (linear) systemwhose equations of motion are
usually smooth. Specific rules, like Newtonian impact low, apply when the response
crosses the regional boundaries. For example, for a cantilever beamwith a compliant
amplitude restraint (as shown in Fig. 5), the boundary conditions at the free end can
be written as

(i)
∂2w

∂x2
= 0 and

∂3w

∂x3
= 0 when |w(x = l, t)| < δ (23)

(i i)
∂2w

∂x2
= 0 and

∂3w

∂x3
= k

E I
(w − δ) when w(x = l, t) ≥ δ

(i i i)
∂2w

∂x2
= 0 and

∂3w

∂x3
= k

E I
(w + δ) when w(x = l, t) ≤ −δ

This system shows all the behaviour of a hard nonlinear system.

4.1.2 Nonlinear Damping Term

Different mechanisms are responsible for dissipation of energy from the vibrating
structure in a resonant MEMS device. The sources of dissipation of energy can be
broadly classified as follows:

(i) structural/internal damping,
(ii) support damping and
(iii) fluidic and acoustic damping.

Various mechanisms of energy dissipation have been identified within the structure
(bulk dissipation) [19, 20] or on its surface (surface dissipation) [21]. Of the former,
the thermoelastic dissipation is the most dominant. Usually the damping is treated
as linear. A major loss of energy from a resonatory microstructure takes place in
the fluidic medium surrounding the structure. In many situations, the vibrating body
is placed near a static structure. The fluid entrapped between these structure causes
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what is known as squeeze-film damping. As the amplitude of response increases, the
effect of nonlinearity also becomes significant. For example, the equation of motion
of a pined-pined beam vibrating near a fixed plate is

ρA
∂2w

∂t2
+ c

∂w

∂t
+ E I

∂4w

∂x4
− E A

2L

⎡
⎣

l∫
0

(
∂w

∂x

)2

dx

⎤
⎦ ∂2w

∂x2
=

b
2∫

− b
2

p dy (24)

where p(x, y, t) is the pressure distribution on the beam surface which has width b.
The pressure is calculated by solving the nonlinear version of Reynolds’s equation

	 · [w3 p 	 p
] = 12μ

1 + 6K

∂ (pw0)

∂t
(25)

where μ is the viscosity of the surrounding fluid and K is the Knudsen number
(=mean free path of the gas/w).When the amplitude of vibration is small the damping
is usually considered to be linear with damping coefficient,Csqueeze = b3

d3 lμ, where b,
d, l and μ are, respectively, the beam width, gap between plates, length of the plates
and air/fluid viscosity. When the amplitude of vibration increases, the nonlinearity
of damping is modelled by considering the damping coefficient as [16, 22]

Csqueeze = α

(d − w)3
(26)

4.1.3 Nonlinear External Forces

As the dimensions of the structure are reduced, some kinds of interaction forces with
the nearby objects become pronounced which can introduce nonlinearity. For exam-
ple, in scanning probe microscopy, the tip of the microcantilever often experiences
electrostatic interactions or attractive van der Waals forces from the surface under
observation. Most of the interaction forces are highly nonlinear function of the sep-
arating distance between tip and sample [23]. A very general model for tip–sample
interaction force is given by

Ftip =
{ − C

dα , for d > a0

− C
aα
0

+ D(a0 − d), for d ≤ a0
(27)

HereC , D,d anda0 are general attractive force parameters, tip–sample separation and
intermolecular distance at which contact is considered to be initiated. The parameters
C and D are functions of tip radius. The forces are dependent on material of tip and
sample. They are attractive (repulsive) for long (short) range.
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4.2 Nonlinearity in Actuating System

MEMS resonators are excited by different mechanisms. The most common of which
are

(i) electrostatic actuation and
(ii) piezoelectric actuation.

The forces of actuation in an electrostatically actuatedMEMS (also called capacitive
MEMS resonator) is calculated by solving the field equations in an electrostatic
problem. However, under certain assumptions the force can be modelled as

Factuation = εAV 2

2g2

where ε is the permittivity of the space, A is the area of the electrode, V is the voltage
difference between the plates and g is the gap between the plates. For a capacitive
actuation of the beam-type resonator, g = d − w(t), where d is the initial gap and
w is the transverse displacement of the beam. For a DC-driven system,

Factuation = εAV 2
DC

2(d − w)2

However, resonant MEMS are excited by time-varying voltage V = VDC +
VAC cosωt . In this case, the actuation force leads to both ordinary nonlinear terms
and nonlinear parametric excitations [24]. In this case

Factuation = εA

2(d − w)2

((
V 2
DC + V 2

AC

2

)
+ 2VDCVAC cosωt + V 2

AC

2
cos 2ωt

)

(28)
The nonlinearity is usually softening type since

1

(d − w)2
≈ 1

d2

(
1 + 2

w

d
+ 3

(w

d

)2 + 4
(w

d

)3 + − − −
)

Usually in the model, the fourth- and fifth-order nonlinear terms are generally
neglected. However, for very high amplitude oscillation they become effective [25].

In a piezoelectrically actuated resonator, electrical voltage is applied to the piezo-
electric material to induce deformation (strain actuation) within the structure. Linear
assumption provides adequate accuracy to the model as long as the applied electric
field and stress are low. They become, however, increasingly inaccurate as the stress
level and electric field strength increase. Pronounced nonlinearity and hysteresis in
the strain–field relationship are observed in such case. Usually the nonlinearity is
softening type.
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4.3 Nonlinearity in Sensing System

Different response parameters like amplitude, phase, etc. are used in various ways
in a resonant MEMS device. This requires sensing of the pertinent quantity with
the help of suitable sensing device. Often the resolution of the MEMS device gets
limited by the limitation of the sensing device. Different types of sensors are used,
like capacitive sensor, piezoresistive sensor and optical sensor. It is desirable that
the sensor should be linear for wide range of input. In practice they often show
nonlinearity.

For example, in capacitive-type sensing scheme, the change in capacitance is
measured to detect the displacement of the movable plate of parallel-plate capacitor
[26]. As the capacitance of such a capacitor is given by

C = εA

d − w

one gets
dC

dw
= εA

(d − w)2
≈ εA

d2

(
1 + 2

w

d
+ 3

(w

d

)2 + · · ·
)

. (29)

Nonlinear terms in the aforementioned expression can be ignored ifw 
 d. For large
value ofw, appreciable errors have been found outwhile using the linear relationship.

Apart from the sources of nonlinearity described above, the nonlinearities are
deliberately introduced into the system by various mechanisms, like feedback, etc.
Some of these methods are discussed later (see Sect. 6). In what follows the roles
played by the nonlinearity are discussed. It will be seen that nonlinear terms some-
times enhance the performance measures of the device, while at other cases they play
negative roles.

5 Effect of Nonlinearity on MEMS Performance

As mentioned earlier, nonlinearity can be the cause of performance degradation, or
it can help to improve the device performance. Different effects of nonlinearities are
discussed below.

5.1 Undesirable Effects of Nonlinearity

The following are the undesirable effects due to the presence of nonlinearities in the
device:

a. Frequency stability
The resonant frequency (the frequency at which the amplitude becomes highest)
of a nonlinear oscillator depends on the amplitude of the excitation forcebreak [9,



72 G. Chakraborty and N. Jani

27]. This dependance of resonant frequency or amplitude limits the performance
of the device where they are required to resonate at a particular frequency, for
example, time device, frequency filters, resonant accelerometers, resonant energy
harvesters, gravimetric sensors, etc.

b. Noise performance
High amplitude of response is preferred in resonant devices for increasing the
signal-to-noise (S/N ) ratio. However, the presence of nonlinear term limits the
amplitude of oscillation for a given excitation level.
To assess the noise performance of the oscillator, a block diagramof the open-loop
system is used as shown in Fig. 6.
In Fig. 6 N1(t), N2(t) are the noise in excitation and transducer, respectively, and
y(t) is the measured output from the transducer. The maximum energy stored in
the linear oscillator is

Emax = 1

2
k1X

2
max

While the maximum power that could be extracted from the oscillator is equal to

Psig = �E

2π/ω
= ωEmax

Q

The noise in y(t) is generated by two main sources, namely, the noise generated
from excitation and the thermal noise generated due to motion resistance. With a
properly designed excitation mechanism the contribution of the first term can be
minimized. The thermal noise power can be written approximately as [28]

pmech
noise = 4kbT

(
ω0

2Q�ω

)2

where ω0 is the centre frequency and δω is the offset from the former. The phase
noise spectrum is obtained as

L (�ω) = pmech
noise + pN2

2psig
= 2kbT

psig

(
ω0

2Q�ω

)2

+ pN2

2psig
(30)

where pN2 is the noise in the transducer. In the simplified analysis, the effect of
1/ f noise has not been considered.
It is seen from the above equation that a large value of Emax is required for
improving the noise performance of the oscillator. However, the presence of
the nonlinear term limits the value of Emax and hence decreases the S/N ratio.
The limitation on amplitude of response due to nonlinearities puts a limit to the
drive current that can be applied resulting in a far-from-carrier-phase noise. Also
the frequency-amplitude dependence converts amplitude noise into phase noise
[9, 29].
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Fig. 6 Block diagram of a MEMS resonator considering the noise in excitation and detection

c. Quality factor
Nonlinearity often decreases the quality factor of the resonator in MEMS device.
This affects adversely the sensitivity of the instrument [15, 30]. Also amplitude
of response during parametric excitation gets limited to a low value if nonlinear
terms are significant.

d. Sensing
Nonlinear terms introduce complexity in the sensing process [26, 31]. It is desir-
able to design and fabricate the resonator to drive in the linear regime. Nonlinear
terms, for example, in capacitive sensing, affect the performance of the resonator.
In optical sensing also the nonlinear effects are observed.
Apart from the general effects of the nonlinearities present in almost all MEMS
devices, some kinds of nonlinearities may degrade the quality of some special
devices. For example, in dynamic atomic force microscopy, where near-resonant
response of cantilever is measured to estimate topography of the sample, the
nonlinear interaction strongly influences the resonant characteristics of the can-
tilever. Amplitude jump and hysteresis take place during forward and backward
frequency sweeps. Transition between attractive-repulsive regime also leads to
chaotic response. These effects have been found to affect the quality of image of
the sample surface [32].

5.2 Desirable Effects of Nonlinearity

The desirable effects of nonlinearities are now listed below.

a. Phase noise
In the previous section, it has been pointed out how the phase noise increases
because of nonlinearities present in the system. However, it has been found that
if nonlinearity is judiciously introduced then the phase noise can be reduced [33].
It has been found, contrary to the conventional phenomenological wisdom, that
there exist a special region in the parameter space, lying above the nonlinear
threshold, where the phase noise is reduced. By operating the oscillator in this
region the signal level can be increased to large value without degrading the
oscillator performance. However, to achieve this objective a feedbackwith a phase
delay is required. By properly selecting the gain and phase delay the nonlinear
frequency shift is made comparable to the linear resonance line width, but small



74 G. Chakraborty and N. Jani

compared to the resonant frequency. This scheme is also known as phase feedback
oscillator. Similar noise reduction has been experimentally demonstrated for a 2
DOF-coupled nonlinear oscillator [34].

b. Frequency stability
In timingdevices,where stability of the output frequency is of greatest concern, the
change in frequency, caused by increase in amplitude (i.e. amplitude-frequency,
A-f effect), is a problem.However, the nonlinearity can help in achieving tempera-
ture compensation in siliconmicromechanical resonator [35]. Themain challenge
in Si resonator is that Si has a temperature coefficient of frequency (TCF) near
to 30ppm/◦C, which is large compared to that of a quartz oscillator (18ppm/◦C
at 25 ◦C). With increasing temperature, both the resonant frequency and quality
factor increase as follows:

fr = f0 (1 + TCF(T − T0)) ,

Qr = Q0 (1 + TCQ(T − T0)) , (31)

where f0 and Q0 are the resonant frequency and quality factor at 12.5 ◦C and TCQ
is the temperature coefficient of quality factor. In the linear regime, operating at
resonance, the amplitude is proportional to the quality factor, i.e.

X = X0 (1 + TCQ(T − T0))

where X0 is the amplitude of MEMS at T0. From the above equations, we get

� fT =
(

f0
X0

TCF

TCQ

)
�X

or
� fT
f0

= TCF

TCQ

�X

X0
(32)

i.e. there exists a linear relationship between fr and X . When nonlinearity is
present the A-f dependence due to duffing-type nonlinearity can be written as

� fD
f0

= 3α/4(X0 + �X)2

2π f0
≈ 3α

4

X2
0

2π f0
+ 3α

4π

X2
0

f0

�X

X0
(33)

When both the effects are considered

� f

f0
= � fT

f0
+ � fD

f0
= 3

4

αX2
0

2π f0
+ �X

X0

(
TCF

TCQ
+ 3αX2

0

4π f0

)
. (34)

The effect of temperature variation can be nullified if X0 is selected for (α < 0) in
such away that the last term gets cancelled out. Thus, the temperature dependence
of frequency is minimized. Further, electrostatic tuning is also used to suppress
the temperature-frequency drift [36].
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c. Sensing devices
Nonlinearity can be useful in many sensing devices. Some examples are given
below:

(i) The pull-in phenomena of electrostatically driven MEMS, which is due to
nonlinear nature of the interacting force, is desirable in MEMS switches for
reducing switching voltage [6].

(ii) Jump phenomena (Bifurcation) in a nonlinear system have been advanta-
geously used in mass sensing. In a linear system, sweeping of excitation
frequency is carried out to detect resonant frequency. Performance of the
sensor depends on the quality factor or damping. Further, the minimum
detectable mass is also limited by noise. The strategy of exploiting bifurca-
tion phenomena has been found giving better results. It has been found to
be applied in different ways.
(a) One way is exciting microresonator at set point A′ (shown in Fig. 7a),

close to the critical point, so that an addition of mass will cause a shift
in the resonance frequency and also in the bifurcation frequency. If
the change in bifurcation frequency is large enough, then it will cause
saddle node bifurcation (jump to A) [10]. From the difference between
set point and bifurcation frequency, minimum possible value of mass
detected can be calculated. Such device has been used for switch-type
operation, whether the minimum value of measurand is detected (1) or
not (0).

(b) Another way found in literature is bifurcation tracking through sweep-
ing a parameter [37]. Parametrically excited systems contain stable and
unstable regimes. As shown in Fig. 7b, excitation frequency is swept
towards the separating boundary of these regions. At critical point,
amplitude of oscillations goes up. On mass detection, boundary will
shift towards lower frequency and finding the shift, amount of mass
detected can be calculated. Noise will be a dominating factor for uncer-
tainty in sensing. Rate of frequency sweeping is an important factor
for getting results with maximum precision [38]. If the rate is too fast,
then bifurcation will happen after critical point, and, if it is too low,
then noise activated jump can occur. Even influenced by noise, sensor
based on bifurcation tracking has been found giving better results than
resonant sensing.

(c) For continuous sensing, resonator has to be reset at low amplitudes,
and again sensing can be carried out, which can be time-consuming.
One technique was found very useful, which works on the phenomena
of noise squeezing [39]. While approaching critical point, just before
bifurcation, phase noise gets squeezed to a very small value.Considering
it as sign of bifurcation gas sensing has been done with faster rate.

(iii) Nonlinear parametric resonance with broad driving range is useful in
increasing the sensitivity of MEMS gyrosensor [40]. In a study, it has been
demonstrated that by adjusting the electromagnetic and mechanical nonlin-
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Fig. 7 a Utilizing jump phenomena for sensing purpose. b Tracking the bifurcation frequency in
parametrically excited systems

earities, a reduction in angle random walk (ARW) and bias instability is
possible.

(iv) Nonlinear coupling between two modes of a micromechanical resonatory
disc gyroscope introduces the parametric amplification of the Coriolis force
without the need of externally applied parametric pumping [41]. The ampli-
fication increases the rate sensitivity of vibrating gyroscope.

(v) As described in previous section, large displacement reduces the sensor
performance and detecting the displacement also becomes difficult. To limit
the displacement, nonlinearity is introduced in the excitation loop [42]. In
some of the mass-sensing strategies, microcantilever is operated in self-
excitation loop. Tip deflection of cantilever beam is detected and (as shown
in Fig. 8) base displacement is given as cubic polynomial function of the
sensor output [43]. Self-excitation strategy has also been utilized for creating
parametric resonance [15]. Here, the introduced nonlinearity will not cause
any jumps in amplitude while sweeping of the excitation frequency.

d. Memory devices
In memory elements, bistability is introduced into the system to generate two
states in the response amplitude, namely, 0 and 1 states, which correspond to
the low and high values of the amplitude, respectively. Such bistability, through
which amplitude is switched from one state to the other, is possible only because
of nonlinearities [44].

6 Tailoring Nonlinearity in MEMS Resonator

It is seen that adjustment of nonlinearity either by reducing it or enhancing may be
required in MEMS resonator. Special arrangements are made to modify the nonlin-
earity in the existing microstructures. Some are listed below:
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Fig. 8 Block diagram for self-excited MEMS resonator with induced nonlinearity in feedback

(i) Microbeams with initially curved shape have been fabricated to utilize the
bistable and snap through behaviour of arch beam [45]. Initially, curved shape
causes softening quadratic nonlinearity in the governing equation of motion
(Fig. 9).

(ii) Nonlinearity may not be present due to geometric or actuation method, but
for desirable results (as aforementioned in the previous section), it has been
induced in artificial ways through applying nonlinear feedback [46]. Here,
desired softening or hardening behaviour can be achieved via properly selecting
feedback parameters.

(iii) Adding or removing material at location (as shown in Fig. 10), where slope in
the mode shape of resonator is maximum, cubic nonlinearity due to geomet-
ric effect can be increased or decreased, respectively. The coefficient has been
increased or decreased up tomore than 2.5 and 3 times, respectively, via varying
the thickness of microbeam [47]. Here γ is the coefficient for cubic nonlinear-
ity. That influences the frequency-amplitude behaviour, by either broadening
nonlinear resonance regime or making it nearly linear. Varying beam thickness,
natural frequency also gets changed comparing to uniform beam.

(iv) Electrostatically actuated comb drives are widely used in MEMS. Electrostatic
force is dependent on distance separating electrodes and electrode surface area.
Via shaping comb fingers, coefficients for nonlinear terms in governing differ-
ential equation can be changed [48]. Linear electrostatic force–displacement
behaviour can also be achieved.

(v) There is no mid-plane stretching in cantilever, but the stretching in the beam
has been induced through a polymer attachment and similar effect is generated
[49].

(vi) Electrostatic force is a highly nonlinear function of the distance between
electrodes and this electrical nonlinearity has been used advantageously for
cancelling mechanical nonlinearity or tuning the overall nonlinear behaviour
[50, 51].
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Fig. 9 Microbeam with initially curved shape (arch beam)

Fig. 10 Modifying the cubic nonlinearity coefficient through varying the thickness

7 Conclusion

Different aspects of nonlinearities on the overall dynamics of MEMS resonators
have been reviewed. Both desirable and undesirable effects of nonlinearities are
discussed with the help of simple mathematical models. Although many facts of
nonlinearities are dealt with, an exhaustive study is impossible because, unlike linear
system, there is no general solution of nonlinear equation of motion. Consequently,
different excitations have different effects. Furthermore, only one type of system,
namely, the one which can bemodelled as single-degree-of-freedom system has been
considered here. Coupled array of micromachined oscillators or the MEMS where
multiple modes interact due to nonlinearity has not been discussed. Any meaningful
discussion of the dynamic behaviour of such system will make the size of the article
too large to be within the limit.

References

1. Lavrik, N.V., Sepaniak, M.J., Datskos, P.G.: Cantilever transducers as a platform for chemical
and biological sensors. Rev. Sci. Instrum. 75(7), 2229–2253 (2004)

2. Zhao, L., Hu, Y., Wang, T., Ding, J., Liu, X., Zhao, Y., Jiang, Z.: A mems resonant sensor
to measure fluid density and viscosity under flexural and torsional vibrating modes. Sensors
16(6), 830 (2016)

3. Todaro, M.T., Guido, F., Mastronardi, V., Desmaele, D., Epifani, G., Algieri, L., De Vittorio,
M.: Piezoelectric mems vibrational energy harvesters: advances and outlook. Microelectron.
Eng. 183, 23–36 (2017)



Nonlinear Dynamics of Resonant Microelectromechanical System (MEMS): A Review 79

4. Hasan, M.H., Alsaleem, F.M., Ouakad, H.M.: Novel threshold pressure sensors based on non-
linear dynamics of MEMS resonators. J. Micromech. Microeng. 28(6), 065007 (2018)

5. Brand, O., Dufour, I., Heinrich, S., Heinrich, S.M., Josse, F., Fedder, G.K., Korvink, J.G.,
Hierold, C., Tabata, O.: Resonant MEMS: Fundamentals, Implementation, and Application.
Wiley (2015)

6. Zhang, W.-M., Yan, H., Peng, Z.-K., Meng, G.: Electrostatic pull-in instability in
MEMS/NEMS: a review. Sens. Actuators A: Phys. 214, 187–218 (2014)

7. Lifshitz, R., Cross, M.: Nonlinear dynamics of nanomechanical and micromechanical res-
onators. Rev. Nonlinear Dyn. Complex. 1, 1–52 (2008)

8. Rhoads, J.F., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro-and
nanoresonators. In: ASME 2008 Dynamic Systems and Control Conference, pp. 1509–1538.
American Society of Mechanical Engineers Digital Collection (2009)

9. Tiwari, S., Candler, R.N.: Using flexural mems to study and exploit nonlinearities: a review. J.
Micromech. Microeng. 29(8), 083002 (2019)

10. Kumar, V., Yang, Y., Boley, J.W., Chiu, G.T.-C., Rhoads, J.F.: Modeling, analysis, and experi-
mental validation of a bifurcation-based microsensor. J. Microelectromech. Syst. 21(3), 549–
558 (2012)

11. Mahboob, I., Yamaguchi, H.: Piezoelectrically pumped parametric amplification and Q
enhancement in an electromechanical oscillator. Appl. Phys. Lett. 92(17), 173109 (2008)

12. Rhoads, J.F., Shaw, S.W.: The impact of nonlinearity on degenerate parametric amplifiers.
Appl. Phys. Lett. 96(23), 234101 (2010)

13. Yabuno, H.: Self-excited oscillation for high-viscosity sensing and self-excited coupled oscil-
lation for ultra-senseitive mass sensing. Procedia IUTAM 22, 216–220 (2017)

14. Ramos, D.,Mertens, J., Calleja,M., Tamayo, J.: Phototermal self-excitation of nanomechanical
resonators in liquids. Appl. Phys. Lett. 92(17), 173108 (2008)

15. Prakash, G., Raman, A., Rhoads, J., Reifenberger, R.G.: Parametric noise squeezing and para-
metric resonance of microcantilevers in air and liquid environments. Rev. Sci. Instrum. 83(6),
065109 (2012)

16. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics, vol. 20. Springer Science &
Business Media (2011)

17. Zhang, W., Zhang, W., Turner, K.L.: Nonlinear dynamics of micro impact oscillators in high
frequency mems switch application. In: The 13th International Conference on Solid-State
Sensors, Actuators andMicrosystems, 2005. Digest of Technical Papers. TRANSDUCERS’05,
vol. 1, pp. 768–771. IEEE (2005)

18. Delnavaz, A.,Mahmoodi, S.N., Jalili, N.,Mahdi Ahadian,M., Zohoor, H.: Nonlinear vibrations
of microcantilevers subjected to tip-sample interactions: theory and experiment. J. Appl. Phys.
106(11), 113510 (2009)

19. Park, Y.-H., Park, K.: High-fidelity modeling of mems resonators. Part I. Anchor loss mecha-
nisms through substrate. J. Microelectromech. Syst. 13(2), 238–247 (2004)

20. Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro-and nanomechanical systems.
Phys. Rev. B 61(8), 5600 (2000)

21. Sader, J.E.: Frequency response of cantilever beams immersed in viscous fluids with applica-
tions to the atomic force microscope. J. Appl. Phys. 84(1), 64–76 (1998)

22. Younis, M.I., Alsaleem, F.M., Miles, R., Su, Q.: Characterization of the performance of capac-
itive switches activated by mechanical shock. J. Micromech. Microeng. 17(7), 1360 (2007)

23. Hu, S., Raman, A.: Analytical formulas and scaling laws for peak interaction forces in dynamic
atomic force microscopy. Appl. Phys. Lett. 91(12), 123106 (2007)

24. Rhoads, J.F., Shaw, S.W., Turner, K.L.: The nonlinear response of resonant microbeam systems
with purely-parametric electrostatic actuation. J. Micromech. Microeng. 16(5), 890 (2006)

25. Sobreviela, G., Vidal-Álvarez,G., Riverola,M.,Uranga,A., Torres, F., Barniol, N.: Suppression
of the af-mediated noise at the top bifurcation point in a mems resonator with both hardening
and softening hysteretic cycles. Sens. Actuators A: Phys. 256, 59–65 (2017)

26. Trusov, A.A., Shkel, A.M.: Capacitive detection in resonant mems with arbitrary amplitude of
motion. J. Micromech. Microeng. 17(8), 1583 (2007)



80 G. Chakraborty and N. Jani

27. Antonio, D., Zanette, D.H., López, D.: Frequency stabilization in nonlinear micromechanical
oscillators. Nat. Commun. 3, 806 (2012)

28. Kaajakari, V., Mattila, T., Oja, A., Seppa, H.: Nonlinear limits for single-crystal silicon
microresonators. J. Microelectromech. Syst. 13(5), 715–724 (2004)

29. Lee, S., Nguyen, C.T.-C.: Phase noise amplitude dependence in self limiting wine-glass disk
oscillators. In: Solid State Sensor, Actuator, and Microsystems Workshop (2004)

30. Yie, Z., Miller, N.J., Shaw, S.W., Turner, K.L.: Parametric amplification in a resonant sensing
array. J. Micromech. Microeng. 22(3), 035004 (2012)

31. Thormann, E., Pettersson, T., Claesson, P.M.: How to measure forces with atomic force
microscopy without significant influence from nonlinear optical lever sensitivity. Rev. Sci.
Instrum. 80(9), 093701 (2009)

32. Hu, S., Raman, A.: Chaos in atomic force microscopy. Phys. Rev. Lett. 96(3), 036107 (2006)
33. Sobreviela, G., Zhao, C., Pandit, M., Do, C., Du, S., Zou, X., Seshia, A.: Parametric noise

reduction in a high-order nonlinear mems resonator utilizing its bifurcation points. J. Micro-
electromech. Syst. 26(6), 1189–1195 (2017)

34. Zhao, C., Sobreviela, G., Pandit, M., Du, S., Zou, X., Seshia, A.: Experimental observation
of noise reduction in weakly coupled nonlinear MEMS resonators. J. Microelectromech. Syst.
26(6), 1196–1203 (2017)

35. Defoort, M., Taheri-Tehrani, P., Horsley, D.: Exploiting nonlinear amplitude-frequency depen-
dence for temperature compensation in silicon micromechanical resonators. Appl. Phys. Lett.
109(15), 153502 (2016)

36. Chen, D., Wang, Y., Chen, X., Yang, L., Xie, J.: Temperature-frequency drift suppression via
electrostatic stiffness softening in mems resonator with weakened duffing nonlinearity. Appl.
Phys. Lett. 114(2), 023502 (2019)

37. Turner, K.L., Burgner, C.B., Yie, Z., Holtoff, E.: Using nonlinearity to enhance
micro/nanosensor performance. In: 2012 IEEE Sensors, pp. 1–4. IEEE (2012)

38. Burgner, C., Miller, N., Shaw, S., Turner, K.: Parameter sweep strategies for sensing using
bifurcations in MEMS. In: Solid-State Sensor, Actuator, and Microsystems Workshop, Hilton
Head Workshop (2010)

39. Li, L.L., Holthoff, E.L., Shaw, L.A., Burgner, C.B., Turner, K.L.: Noise squeezing controlled
parametric bifurcation tracking of mip-coated microbeam mems sensor for tnt explosive gas
sensing. J. Microelectromech. Syst. 23(5), 1228–1236 (2014)

40. Oropeza-Ramos, L.A., Burgner, C.B., Turner, K.L.: Robust micro-rate sensor actuated by
parametric resonance. Sens. Actuators A: Phys. 152(1), 80–87 (2009)

41. Nitzan, S.H., Zega, V., Li, M., Ahn, C.H., Corigliano, A., Kenny, T.W., Horsley, D.A.: Self-
induced parametric amplification arising from nonlinear elastic coupling in a micromechanical
resonating disk gyroscope. Sci. Rep. 5, 9036 (2015)

42. Endo, D., Yabuno, H., Yamamoto, Y., Matsumoto, S.: Mass sensing in a liquid environment
using nonlinear self-excited coupled-microcantilevers. J. Microelectromech. Syst. 27(5), 774–
779 (2018)

43. Yabuno, H.: Review of applications of self-excited oscillations to highly sensitive vibrational
sensors. ZAMM-J. Appl. Math. Mech./Z. für Angew. Math. und Mech. e201900009 (2019)

44. Hafiz, M., Kosuru, L., Ramini, A., Chappanda, K., Younis, M.: In-plane mems shallow arch
beam for mechanical memory. Micromachines 7(10), 191 (2016)

45. Younis, M.I., Ouakad, H.M., Alsaleem, F.M., Miles, R., Cui, W.: Nonlinear dynamics of mems
arches under harmonic electrostatic actuation. J. Microelectromech. Syst. 19(3), 647–656
(2010)

46. Bajaj, N., Sabater, A.B., Hickey, J.N., Chiu, G.T.-C., Rhoads, J.F.J.: Design and implementation
of a tunable, duffing-like electronic resonator via nonlinear feedback. J. Microelectromech.
Syst. 25(1), 2–10 (2015)

47. Li, L.L., Polunin, P.M., Dou, S., Shoshani, O., Scott Strachan, B., Jensen, J.S., Shaw, S.W.,
Turner, K.L.: Tailoring the nonlinear response of mems resonators using shape optimization.
Appl. Phys. Lett. 110(8), 081902 (2017)



Nonlinear Dynamics of Resonant Microelectromechanical System (MEMS): A Review 81

48. Jensen,B.D.,Mutlu, S.,Miller, S.,Kurabayashi,K.,Allen, J.J.: Shaped combfingers for tailored
electromechanical restoring force. J. Microelectromech. Syst. 12(3), 373–383 (2003)

49. Asadi, K., Li, J., Peshin, S., Yeom, J., Cho, H.: Mechanism of geometric nonlinearity in a
nonprismatic and heterogeneous microbeam resonator. Phys. Rev. B 96(11), 115306 (2017)

50. Chen, D., Wang, Y., Guan, Y., Chen, X., Liu, X., Xie, J.: Methods for nonlinearities reduction
in micromechanical beams resonators. J. Microelectromech. Syst. 27(5), 764–773 (2018)

51. Agarwal, M., Chandorkar, S.A., Candler, R.N., Kim, B., Hopcroft, M.A., Melamud, R., Jha,
C.M., Kenny, T.W., Murmann, B.: Optimal drive condition for nonlinearity reduction in elec-
trostatic microresonators. Appl. Phys. Lett. 89(21), 214105 (2006)


	 Nonlinear Dynamics of Resonant Microelectromechanical System (MEMS): A Review
	1 Introduction
	2 Working Principle of Resonant MEMS Sensor
	3 Nonlinearities in MEMS
	3.1 System with Direct Excitation
	3.2 System with Parametric Excitation
	3.3 System with Combined Direct and Parametric Resonances
	3.4 System with Self-Excitation

	4 Sources of Nonlinearity
	4.1 Nonlinearity in Mechanical Structure
	4.2 Nonlinearity in Actuating System
	4.3 Nonlinearity in Sensing System

	5 Effect of Nonlinearity on MEMS Performance
	5.1 Undesirable Effects of Nonlinearity
	5.2 Desirable Effects of Nonlinearity

	6 Tailoring Nonlinearity in MEMS Resonator
	7 Conclusion
	References




