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Abstract Purpose: The dynamic behavior of two-cracked functionally graded (FG)
shaft systemunder thermal environment has been carried out. Thefinite element (FE)-
based formulation is used to model metal-ceramic FG (SS/ZrO2) shaft using Timo-
shenkobeam theory (TBT). Power lawofmaterial gradation is used to derive effective
thermo-elastic properties of radially gradedFGshaft.Methods: Thegoverning system
equations of motion are formulated using Hamilton’s principle. The local flexibility
coefficients (LFCs) are derived as functions of material gradient, temperature, size
and orientation of crack, for the cracked FG circular cross-sectional FG shaft, using
linear elastic fracture mechanics, Castigliano’s theorem and energy method. Results:
Numerical simulations are performed to analyze the effects of geometric,material and
temperature gradient parameters on the natural frequencies of the cracked FG shaft
system.Conclusion: LFCs are functions ofmaterial gradient and temperature besides
crack size. Even though the reduction in eigenfrequencies is decided by crack param-
eters, material gradient and temperature, however, the reduction in eigenfrequencies
is greatly influenced by gradient index and the index may be selected properly to
design FG shafts for high-temperature applications.
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Nomenclature

Symbol

b Crack half-width
E Young’s modulus
I sp and I sd Polar and diametric mass moment of inertia
Lc

/
L Crack location

P1, P2, P5 and P6 Shear forces
P3, P4, P7 and P8 Bending moments
R Radius of the shaft
V Volume fraction
v and w Translational displacements
T Temperature
M,G andK Mass, gyroscopic and stiffness matrix
K Thermal conductivity
k Material gradient index
L Total length
Lc Crack distance

Greek Letter

ν Poisson’s ratio
θ Crack orientation angle
ρ Mass density
� Spin speed of rotor
α Depth of crack
α
/
R Crack size

β and � Rotational displacements
ω Whirling frequency

Subscripts

c and m Ceramic and metal
V and H Vertical and horizontal
t Translational
r Rotational
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Superscripts

s, b and d Shaft, bearing and disc
c Crack
uc Uncrack

1 Introduction

In the improvement of structural performance, FG materials (FGMs) are used as
multifunctional and high-performance materials in which thermo-elastic properties
graded are followed bymaterial gradation laws. FGMs offer numerous superior prop-
erties over laminated composite materials and are usedmainly to reduce interlaminar
stresses and delamination problem. Historically, the concept of gradation was first
proposed [1] in 1972, for composites and polymeric materials. However, the work [1]
was limited impact. FGMs were first introduced [2] in 1980s in Japan. Then, FGMs
are rapidly becomingwell known andwidely used in aerospace, automotive, biomed-
ical and so on. A lot of researches were reported on the behavior of FG structural
systems with great interest during the last few years. Some of the important works in
the directions are presented here. Thermo-mechanical responses of structure made of
FGmaterials are studied by Reddy and Chin [3]. By using TBT, Piovan and Sampaio
[4] developed a composite rotating nonlinear FG beam model accounting for arbi-
trary axial deformations. Gayen and Roy [5] carried out vibration and stability of a
shaft made of FGMs and reported effect of gradient index on dynamic responses.
Boukhalfa [6] studied dynamic responses of a spinning shaft made of FGMs using
TBT.

Transverse cracks in structural members such as shaft and rotor lead danger-
ously to failure associated with economic loss and more importantly human life.
The first studies on cracked rotors were started in the 1970s. Thereafter, several
researchers reported the review works of cracked shaft and rotors [7]. Papadopoulos
and Dimarogonas [8] derived local flexibility matrix and studied the coupled vibra-
tion for a shaft made of homogeneous materials. Jun et al. [9] carried out vibration
characteristics of a cracked rotor based on fracture mechanics approach. Sinou and
Lees [10] carried out dynamic response for a shaft using an alternate frequency/time
domain approach. Coupled vibration responses [11] were reported for a breathing
cracked shaft using nonlinear FE method. However, appearances of more than one
crack in shafts create complication of obtaining the dynamic characteristics. Sekhar
[12] carried out the eigenfrequencies and instability of a rotor systemwith two cracks.
Vibration responses were reported by Darpe et al. [13] for a simple Jeffcott rotor with
two cracks.
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Crack in FG structure has vital role due to their safe performance for high demands
in various engineering sectors. Yang and Chen [14] studied free vibration and buck-
ling analysis of cracked FG Euler–Bernoulli beams. Aydin [15] reported free vibra-
tion of FG beams considering multiple edge cracks with different end conditions.
Gayen et al. [16] modeled an FG shaft based on Euler–Bernoulli beam theory and
studied the free vibration of the FG shaft system.Based on the FE analysis and consid-
ering TBT, a cracked FG shaft modeled and carried out the dynamic responses by
Gayen et al. [17–19].

Therefore, the present study aims in analyzing the thermo-mechanical behavior
of a multi-cracked rotor system with a shaft made of FGMs, using FE method.
Numerical results are performed at determining the eigenfrequencies to understand
the importance of shaft’s slenderness, number, size, location and orientation of crack,
material gradient and temperature on the vibration responses of cracked FG shaft.

2 Thermo-Elastic Material Model

The effective thermo-elastic materials propertiesC [20] for the FG shaft are obtained
as

C(T ) = C0(C−1T
−1 + 1 + C1T + C2T

2 + C3T
3) (1)

where C0, C−1, C1, C2 and C3 are temperature coefficients for each constituent
materials.

For a shaft made of FGMs, the following power law of material gradation, C [3],
as functions of y and temperature (T ) is obtained

C(y, T ) = Cm(T ) + {Cc(T ) − Cm(T )}Vc(y) (2)

where

Vc(y) = {
(y − Rm)

/
(Rc − Rm)

}k
, Vm(y) = 1 − Vc(y),

Rc ≤ y ≤ Rm, 0 ≤ k ≤ ∞ (3)

Now, for radially graded FG shaft, temperature profile is obtained, using steady-state
one-dimensional heat conduction equation as

d
/
dy

[
yK (y)dT

/
dy

] = 0 (4)

In solving Eq. (4) for a solid shaft, for temperature distribution at the center
(y = Ri = 0), the solution becomes singular. This singularity could be handled
by considering the inner radius Ri = ε � 0. However, the solution depends upon
the proper choice of ε and needs a good amount of study to assure convergence.
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Therefore, a conservative approach is used to compute the eigenfrequencies consid-
ering uniform temperature (T = To, at any y) even though the actual temperature
distribution will not be uniform. But the results could safely be used for the actual
case where the temperature gradient exists.

3 Modeling of FG Shaft System Based on FE Method

Using TBT, an FG shaft is modeled considering two-noded beam element with four
degrees of freedom at each node. Figure 1a–d presents a rotor-disk-bearing system
interconnecting the components such as cracked FG shaft, rigid disk and bearings.

3.1 Cracked Shaft Element Made of FGM

Using Paris’s equations [21] and Castigliano’s theorem, the cross-coupled and direct
LFCs are calculated with the expressions of stress intensity factors (SIFs). The
additional displacement uci due to crack is

Fig. 1 Cracked FG rotor system: a FE discretization, b crack orientation, c general loads, d cross
section of cracked geometry
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uci = ∂

∂Pi
αx∫

0

1

E(y, T )

⎡

⎣

(
4∑

i=1

KIi

)2

+
(

4∑

i=1

KIIi

)2

+ {1 + ν(y, T )}
(

4∑

i=1

KIIIi

)2
⎤

⎦dy (5)

where KI, KII and KIII are SIFs for modes I, II, and III, respectively, and i =
1, 2, 3 and 4 are load indices.

Referring Fig. 1d, the LFCs for fully open crack θ = 180o are obtained

Cc
i j = ∂uci

∂P j
= ∂2

∂Pi ∂P j

b∫

−b

αx∫

0

1

E(y, T )

⎡

⎣

(
4∑

i=1

KIi

)2

+
(

4∑

i=1

KIIi

)2

+ {1 + ν(y, T )}
(

4∑

i=1

KIIIi

)2
⎤

⎦dydz

(6)

In Eq. (6), numerical integrations are performed to derive local flexibility matrix
[Cc(y, T )] and corresponding Kc (cracked stiffness matrix) are derived following
the works of Gayen et al. [17, 18].

The stiffness variation during the crack opening and closure, i.e., the breathing
effect of the cracked rotor, is given following the work [10] as

K(t) = Kuc − f (t)Kc with f (t) = (1 − cos �t)
/
2 (7)

where f (t) is crack opening and closure function.
The equations of motion of the cracked shaft element are given as

(
Ms

t +Ms
r

)
p̈ s(t) − � Gs ṗs(t)+Ks ps(t) = f s(t) (8)

where the elementary matrices are given in the works [17, 18].

3.2 System Equations of Motion and Solution

The resultant system equations of motion including the shaft, rigid disk and bearing
are given

(
Ms

t +Ms
r +Md

t +Md
r

)
p̈ + (

Cb − �Gs − �Gd)ṗ + (
Ks + Kb)p

= {
Fs(t) + Fd(t) + Fb(t)

}
(9)
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For the analysis of natural whirling speeds of the rotor-bearing system with FG
shaft, the force term can be omitted. Then, the final system equations of motion are
given

Mp̈ + Cṗ + Kp = {0} (10)

For Eq. (10), the eigenvalue solution is λn(�) = ξn(�) ± iωn(�), logarithmic
decrement is δn = −2πξn

/
ωn and stability threshold speed is obtained for δn = 0.

4 Results and Discussion

Here, a cracked FG shaft with diameter D = 0.1 m and temperature-dependent
material properties of the constituents of the FG (SS/ZrO2) are considered same as
in [20]. Density for SS and ZrO2 is 8166 and 5700 kg/m3, respectively. The shaft is
discretizedwith 25finite elements; simply supported (S–S) andflexible end condition
is considered for dynamics of shafts. A disk is located at midspan of the shaft with
weight 1.406 kg, I sp and I sd 0.002 and 0.0135 kg-m2, respectively.

Due to lack of appropriate results for dynamic characteristics of FG shafts, the
present crack formulation has been validated in two steps. First, computed natural
frequencies are compared with classical solution and results. Table 1 shows an excel-
lent agreement with the closed-form solutions, thereby validating the FE formulation
of homogeneous beam and developed code.

Second, dimensionless natural frequencies are computed for the first crack size
α1

/
R = 0.2, first crack location Lc1

/
L = 0.35 and L

/
D = 8, varying the second

crack size α2
/
R and location Lc2

/
L . The computed results are listed in Table 2.

The dimension and material properties are used same as in Sekhar [12]. Table 2
shows a good agreement which has been attained, thus validating the multiple cracks
formulation.

Table 1 Evaluation of fundamental frequency (in Hz) for a homogeneous beam

Boundary
condition

Without disk Single disk

Classical Present/FEA % Error Classical Present/FEA % Error

Fixed–free 7.258 7.259 −0.014 5.301 5.430 −2.434

Fixed–fixed 45.846 46.189 −0.748 36.931 36.811 0.325

S–S 20.376 20.375 0.005 16.797 16.908 −0.661
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Table 2 Variation of fundamental frequencies with α2
/
R and Lc2

/
L

Lc2
L α2

/
R = 0.4 α2

/
R = 0.6 α2

/
R = 0.8

Present Sekhar
[12]

% Error Present Sekhar
[12]

% Error Present Sekhar
[12]

% Error

0.15 0.979 0.978 −0.102 0.957 0.960 0.312 0.915 0.926 1.187

0.25 0.968 0.966 −0.207 0.928 0.936 0.854 0.859 0.865 0.693

0.45 0.956 0.952 −0.420 0.899 0.900 0.111 0.810 0.817 0.856

0.85 0.989 0.984 −0.508 0.982 0.975 −0.717 0.969 0.958 −1.148

Fig. 2 Variation of a Young’s modulus and b Poisson’s ratio, as functions of y, k and �T

4.1 Material Properties Variation for an FG Shaft

The variations of temperature-dependent properties E and ν along the radial distance
of the FG (SS/ZrO2) shaft for different values of k are shown in Fig. 2a, b, following
power law distribution and using Eq. (2).

4.2 LFCs Variation

Using Eq. (6) along with Eq. (2) and uniform temperature distribution (i.e., T =
To at all y), LFCs are obtained as non-dimensional quantities such as C11 =
C11/πEssR, C22 = C22/πEssR, C33 = C33/πEssR3, C34 = C34/πEssR3 and
C̄44 = C44/πEssR3. Figure 3a shows the variation of C11 as functions of α

/
R and k

for�T = 0 K and θ = 180◦. It has been seen that the LFC increases in magnitude as
k decreases due to the decrease in the metallic content. Figure 3b shows the variation
of C11 as a function of �T and θ for k = 5.0 and α

/
R = 0.8. With the increase

in �T , it has been seen that the LFC increases as material becomes softer. It is also
noticed that the magnitude of LFC increases as the crack gradually opens. Similar
kinds of trends are observed for other LFCs.
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Fig. 3 Variation of C11: a α
/
R for different k and b θ for different �T

Table 3 Frequency parameters �n of FG shaft for α
/
R = 0.6 and Lc

/
L = 0.5

Modes k = 0.5 k = 3.0

�T = 0 K �T = 300 K �T = 600 K �T = 0 K �T = 300 K �T = 600 K

1st 2.6237 2.5105 2.4153 2.5945 2.5287 2.4018

3rd 6.3202 6.0231 5.7956 6.2273 6.0352 5.7300

5th 8.4184 8.0313 7.7270 8.3027 8.0590 7.6515

4.3 Importance of ΔT and k on Natural Frequencies

A non-spinning simply supported cracked shaft made of FGM (L
/
D = 12.5,

Lc
/
L = 0.5, k = 3.0 and α

/
R = 0.6) is considered and dimensionless natural

frequencies �n(�
4
n = ρSSAL4ω2

/
ESS I ) is computed for different values of �T .

Computed results are listed in Table 3 and show that for a certain α
/
R,�n decreases

with the increase in �T . Table 3 also shows the reduction in �n with �T which is
more for lower value of k.

4.4 Influence of Material Gradient Index on Whirling
Frequencies

Here, the FG shaft (L
/
D = 12.5) is supported by isotropic undamped bearings

with stiffness coefficients K b
vv = K b

ww = 1.7513 × 107 N
/
m and K b

vw = K b
wv = 0

for obtaining the whirling frequencies of the cracked rotor systems. Figures 4a, b
show the variation of whirling frequencies ω with � of the uncracked FG shaft
with �T = 0 K for different magnitudes of k. From Fig. 4a, b, it is seen that with
the increase in �, forward whirling (FW) frequencies increase while decrease the
backward whirling (BW) frequencies. It is also observed that with the increase in
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Fig. 4 Campbell diagram for an uncracked shaft system with k: a first mode and b second mode

k, FW and BW frequencies decreases. Therefore, for an FG shaft system, whirling
frequencies are kept within a desired limit by choosing an appropriate k.

4.5 Influences of θ and ΔT on Whirling Frequencies

The fundamental frequencies associatedwith the plane of verticalω 1V and horizontal
ω 1H are computed for two-cracked FG shaft with α1

/
R = α2

/
R = 0.8, Lc1

/
L =

0.34, Lc2
/
L = 0.5 and θ1 = 180◦, while θ2 is varied and the influences of �T on

the natural frequencies are carried out for L
/
D = 12.5 and k = 5.0. The results

are presented in Fig. 5a, b which show that with the increase in �T , % reduction in
�1V,1H decreases, and for θ1 = θ2 = 180◦, maximum reduction occurs. It is also
seen that for lower magnitudes of �T , % reduction in �1V,1H will be higher even
though the difference is not significant.

Fig. 5 Percentage reduction of � for FG cracked shaft system with θ2 and �T : a �1V and b �1H
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5 Conclusions

The present work studies the eigenfrequencies analysis of a functionally graded shaft
with two cracks, considering thermo-elastic material properties gradation followed
by power law of material gradation law. The LFCs are evaluated using linear elastic
fracture mechanics and energy method. The validations are performed in various
steps using developed FE code in MATLAB, and using this developed code, the
importance of size of cracks, material gradient and temperature on the computation
of LFCs and eigenfrequencies is discussed. It is observed that in the case of two
cracks of different depths, the larger crack has the more significant effect on the
eigenfrequencies. The naturalwhirling frequencies decreasewith increase inmaterial
gradient and temperature.However, reductions in FWandBWfrequencies are greatly
influenced by material gradient index. Hence, the material index could be chosen
properly to design shafts made of FGMs for high-temperature applications. The
present FE formulations and determination of LFCs may be helpful to the design of
FG shafts following other material gradation laws such as exponential and sigmoidal.
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