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Abstract In this paper, a numerical analysis on the dynamics of a multi-degree of
freedom shaft–rotor, supported on bearings, is presented. The system is a shaft with
multiple rotor discs attached to it and supported on double-layer porous journal bear-
ings. The system is modelled using finite element methods. Euler-Bernoulli beam
element theory is used for modelling the shaft. The discs are considered as rigid. The
support bearings are modelled based on linear spring elements for stiffness and linear
damping elements for viscous damping coefficients. The rotor dynamic model of the
system is analysed by incorporating the gyroscopic effects due to the precession of
the offset discs and the bearing stiffness and damping anisotropy. The fluid flow in
double-layer porous film is analysed using Brinkman equations to consider lubricant
additives influences. The pressure gradients with respect to linearized perturbation of
displacements and velocities under dynamic conditions are derived using Reynolds
modified equation for Ocvirk (short) bearing. The dynamic linear and cross-coupled
coefficients (stiffness and damping) dependent on speed are calculated using dynamic
pressure gradients for the double-layer porous journal bearings. The system is repre-
sented in reduced order state-space form, and eigen value problem is solved to calcu-
late its whirl frequencies. The rotor system critical speeds are obtained by plotting
the Campbell diagram. This paper provides the basis for rotor system design with
support bearings, representative of a multi-stage centrifugal pump. The design helps
to identify and prevent rotor vibrations.
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Nomenclature

C Damping
cij, Cij Damping coefficients, Ns/m; Ci j , ci jC3

/
ηR3L; for i = x, y

Cijl, Cijh Nondimensional damping coefficients of double-layer porous and homo-
geneous layer

C Radial clearance, m
E Young’s modulus of the shaft material
g Gyroscopic moment
h, H Film thickness, m; H = h/C
Ia Shaft area moment of inertia
Id Mass moment of inertia of disc
Ipd Polar mass moment of inertia of disc
Ip Shaft polar mass moment of inertia
k Stiffness
ki Permeability of layer in porous regions, m2; Ki = ki/h2; for i = 1, 2
kij, Kij Stiffness coefficients evaluated at equilibrium position, N/m;

Ki j = ki jC3
/

ηωR3L; for i = x, y
Kijl, Kijh Nondimensional stiffness coefficients of double-layer porous and homo-

geneous layer
l Length of the shaft element
l′ Shaft length
M Moments
md Mass of discs
r Shaft radius
R Journal radius, m
w Static load capacity, N; W = wC2

/
ηωR3L

Wl,Wh Double porous and homogeneous layer nondimensional load capacity
Y, x Vertical and horizontal coordinates, m; Y = y/C, X = x/C
Ẏ , Ẋ Journal centre velocity (nondimensional) in y and x direction
ρs Density of shaft material
ε Journal bearing eccentricity ratio
γ i Porous layer thickness ratio; γ i = i/h; for i = 1, 2
η Fluid dynamic viscosity, Ns/m2

μ Mass of the shaft per unit length
θ Coordinate from maximum film thickness
� Coordinate from load line
φ Attitude angle
ω Shaft spin frequency
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Subscripts

s Shaft

Superscript

e Element

1 Introduction

Turbomachinery system often consists of several offset mounted rotors on a shaft,
which in turn is supported on bearings. During run-up and run-down, the system
has to cross through critical speeds. Hence, rotor dynamic analysis of such systems
becomes a preliminary design requirement.

Ruhl and Booker [1] developed a finite element analysis of a turbo rotor system.
The system has distributed mass and stiffness parameters. Consistent matrices are
employed for the finite element model. Free and forced vibration rotor system
responses are obtained. A shaft supported on hydrodynamic bearings is investigated
by Kim and Lee [2]. The finite element model consists of five elements of equal
length. Rao et al. [3] performed rotor dynamic analysis of a synchronous generator
consisting of flywheels, armature, core, fan and a rotor shaft using ANSYS environ-
ment. The bearing oil film is modelled with spring as well as damping coefficients.
Themass unbalance of the rotor system ismodelled in accordancewith ISO1940 stan-
dards. Modal analysis and rotor unbalance calculations are performed. Rotor orbit
whirl plots and Campbell diagram for the rotor system are presented. Shravankumar
and Tiwari [4] presented a comparative analysis of the effects of gyroscopicmoments
on a cantilever rotor system, usingdifferent numericalmethods.Thegyroscopic effect
on simple rotor systems is discussed. Hsu [5] performed experimental and numerical
studies on a turbomolecular rotor pump. The system is a flexible rotor-bearing system
with discrete discs and bearings. The mass and stiffness properties are distributed.
Gyroscopic moments due to disc precession are considered. He et al. [6] analysed
the natural frequencies, critical speeds and unbalance responses for a multi-stage
centrifugal pump. It is observed that the support stiffness has a large influence on
the critical speed of rigid modes, while having less influence on the critical speeds
of the flexible modes.

Lund andThomsen [7] andRao [8] presented calculationmethodology of stiffness
and damping coefficients using linearized perturbation method. Lin and Hwang [9]
evaluated porous bearings stability. The hydrodynamic journal bearings performance
considering the lubricant additive effects is studied using porous and couple stress
media models [10, 11], respectively. Rao et al. [12] evaluated improvement in static
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characteristics of a double-layer porous bearing. Rao et al. [13] presented static and
stability coefficients of double-layer porous (or layers of surface film topped with
porous film) to the conventional journal bearing. Stability characteristics of porous
layered journal bearings are enhanced by lubricant additives properties.

2 Finite Element Modelling

A flexible shaft-bearing system (multi-degree of freedom) with rigid discs modelled
using finite element method is presented. A schematic diagram of the shaft–rotor-
bearing system, along with finite element discretization is shown in Fig. 1.

The primary assumptions for modelling include a flexible shaft, rigid discs and
flexible bearing supports. The shaft–rotor geometry is axisymmetric. The properties
considered for the shaft include distributed mass and stiffness. The disc properties
are concentrated mass, diametric moment of inertia and polar moment of inertia.
Four degrees of freedom (DoFs) are considered for the model, two translational
DoFs along the two transverse directions and two rotational DoFs about the same.
Gyroscopic effects due to shaft and discmass are considered. No effects of unbalance
mass or misalignment between shaft and bearings are considered. Four rigid discs
are mounted along the length of the shaft, and it is assumed for simplicity that centres
of gravity of the rigid discs coincide with that of the elastic shaft. Figure 2a shows
the beam element. The shaft element is a two-node beam element with four degrees
of freedom at each node.

There are two linear displacements ux and uy (along the X and Y axes) and two
rotational displacements θ y and θ x (about the X and Y axes). The elements have
isotropy, and they are also symmetric about the Z axis. Because of the symmetry of
the shaft elements, the same mass matrices and same stiffness matrices result in the
two transverse planes XZ and YZ. The rigid disc element is shown in Fig. 2b.

The Brinkman equations are used to model fluid flow in the double porous
region. These dynamic coefficients correspond to a double-layer porous hydrody-
namic journal bearing (Fig. 3). The stiffness and damping coefficients are represented
using linear spring and damping elements in Fig. 3b–c.

Fig. 1 Rotor system model and discretization into finite elements in yz transverse plane
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Fig. 2 Conventions (positive) for nodal displacements, rotations, forces and moments. a beam
element and b rigid disc element

(b)
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Fig. 3 a Double-layer porous journal bearing, b Linear spring element with positive conventions
for nodal displacements and forces and c Linear damping element with positive conventions for
nodal velocities and forces

2.1 Shaft Model

Euler-Bernoulli theory of bending is used for modelling the shaft finite element.
Mass and stiffness properties of the shaft element are considered, and its internal
damping is neglected. Also, the gyroscopic moments due to the rotation of elemental
shaft masses about the bearing centre lines are considered. The equations of motion
for the shaft element are in Eq. (1).
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2.2 Rigid Disc Model

The discs are modelled as point masses. Also, gyroscopic moments in two transverse
planes exist due to the offset position of these discs on the shaft, which results in a
change of angular momentum and therefore gyroscopicmoment. Any external forces
acting on the discs, such as due to unbalance, are also considered.
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is the elemental mass matrix,
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rigid disc, and
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2.3 Double-Layer Porous Journal Bearing Model

The double-layer porous journal bearings aremodelled using a total of eight dynamic
coefficients which are used at each shaft end to model the fluid film bearings. Using
the principle of superposition

fx = kxx x + kxy y + cxx ẋ + cxy ẏ, fy = kyx x + kyy y + cyx ẋ + cyy ẏ (3)

The load capacity coefficient ratio (Cw) and eight dynamic coefficients for double-
layer porous journal bearing [12, 13] are obtained from the stiffness coefficient ratio
(Ck) and damping coefficient ratio (Cc) as

Cw = wi jl
/

wi jh = 
s
/


p, Ck = ki jl
/
ki jh = 
s

/

p,

Cc = ci jl
/
ci jh = 1

/

p (4)

The journal eccentricity ratio is obtained from Newton–Raphson iterative proce-
dure for the given bearing parameters and operating conditions.

2.4 Boundary Conditions and Assembly

The system shown (Fig. 1) is discretized into seven numbers of elements with four
degrees of freedom at each node. This gives the size of the assembled matrices are
28× 28. Then, the fixed boundary conditions are considered at one end of the spring
and damper elements which represent the two journal bearings. With the application
of these boundary conditions, the size of the assembled matrices reduces to 24 ×
24. In matrix form, the assembled system equations of motion are represented as in
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Eq. (5).

[M]
{
Ü

} + [G]
{
U̇

} + [C]
{
U̇

} + [K ]{U } = {F}.. (5)

[M], [G], [C] and [K ] are the assembled mass, gyroscopic, damping and stiffness
matrices of the rotor-bearing system.

2.5 Rotor Dynamic Analysis

Equation (5) is solved as an eigen value problem to obtain the whirl frequencies. The
homogenous equation of Eq. (5) is reduced into first-order differential equations of
size 2n times. This is called as state-space reduction and is given in Eq. (6). The eigen
values and eigen vectors of Eq. (6) are calculated using QZ algorithm or Cholesky
factorization in MATLAB environment.

{
u̇
v̇

}
=

[
[0] [I ]

−[[
M−1

]
[K ]

] −[[
M−1

]
[(C + ωG)]

]
]{

u
v

}
. (6)

The eigen values obtained are complex quantities, because of the viscous damping.
These eigen values can be used to identify the damped critical speeds of the rotor
system.

3 Results and Discussion

In this section, numerical simulation is carried out to obtain the following: the
dynamic coefficients of the bearing as a function of the rotor spin frequency; whirl
frequencies of the system. Table 1 gives the various geometric andmaterial properties
of the shaft–discs–bearings, required to carry out the numerical analysis.

The bearing stiffness and damping with spin speed of the rotor are shown in
Fig. 4a–b. It can be observed fromFig. 4b, the stiffness coefficient kyx (cross-coupled)
is negative for the entire speed range.

Figure 5 shows the Campbell diagram for the rotor-bearing system under study.
The natural frequencies in the Campbell diagram are split into two: a slow one where
the whirl is opposed to the spin, and a fast one where their directions are the same.
The split in the natural frequencies indicates the forward whirl and reverse whirl. In
this system, this split is due to the gyroscopic effect as well the asymmetric nature of
the bearing stiffness coefficients in the two transverse directions. Each rotor mode
consists of forward precession and reverse precession. The 1× straight line in Fig. 6
represents the synchronous frequency, which is representative of anymass unbalance
exciting the rotor.



72 C. Shravankumar et al.

Table 1 Geometric and
material properties of the
rotor system with double
porous layer bearing

Symbol Value Symbol Value

l′ 1.5 m L/D 0.5

r 12.5 mm K1 10−4

ρs 7810 kg/m3 K2 10−5

Ip 0.0048 kg m2 γ 1 0.08

Ia 3.067 × 10−7 m4 γ 2 0.02

E 2 × 1011 N/m2 η 0.02 Pas

md 10 kg R 0.025 m

rd 60 mm C 0.025 mm

Id 0.009 kg m2 ω 10–300 rad/s

Ipd 0.018 kg m2
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Fig. 4 a Bearing stiffness coefficients versus spin speed and bBearing damping coefficients versus
spin speed

The critical speeds of the rotor system for synchronous whirl condition are given
by υ = ω. These critical speeds can be used in the design of the rotor to decide
the operating speed range as well as the vibration prone spin speeds. Figure 7 shows
variation of systemdampingwith spin frequency for rotors supported on double-layer
porous journal bearings. The negative real part of the lowest eigenvalues is plotted
versus spin frequency. The rotor system on double porous bearings (Fig. 7a–b) is
stable over the entire spin frequency range.
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Fig. 5 Campbell diagram in
the operating speed range of
10–300 rad/s

Fig. 6 Intersection of
forward and reverse
precession modes with order
lines ranging from 1× to 10
× for calculation of critical
speeds
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(a) γ1=0.08, γ2=0.02 (b) γ1=0.2, γ2=0.02
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Fig. 7 Variation of system damping with spin frequency. a γ 1 = 0.08, γ 2 = 0.02. b γ 1 = 0.2, γ 2
= 0.02

4 Conclusions

This study presents finite element method modelling of dynamics of a shaft–rotor
system, with multiple rotor discs and supported on double-layer porous journal bear-
ings. The whirl frequencies and system damping are evaluated for a lubricant film
double porous layer with porous layer II (low permeability) over porous layer I
(bearing surface adsorbent high permeability layer). The whirl frequencies obtained
for various spin speeds using speed dependent eight dynamic coefficients of double
porous layer journal bearing are plotted as a Campbell diagram. The design of a rotor
system of a multi-stage centrifugal pump with support bearings helps to identify the
operating speed range as well as prevent the rotor vibration spin speeds.
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