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Abstract The best of effective design and practices of constructive methods in the
analysis of rotor excessive vibrationwill yield the solutions for the dynamic problems.
The extensive effusion of the finite element method (FEM) strongly induced in the
area of rotordynamic studies and can give accurate results. Diagnosis of a rotor shaft
with crack for its operating conditions is essential to the dynamic systems design.
This paper carries the analysis of a finite element model of a flexible rotor-bearing
system with a transverse open crack by accounting the various crack depths and
internal damping of the shaft. The effect of transverse crack on the system instability
regions was found out. It is noted that the natural whirl speeds reduce with increase
in crack depths. The system unbalance response and damped natural whirl speeds are
presented with undamped orthotropic bearings. The stability of the rotating shaft-
bearing system with transverse open crack has also been studied for the various spin
speeds and disk eccentricity with the time integration procedure. The phase-plane
portraits and frequency-domain diagrams are drawn to study the dynamic behavior.
Further, the study is yet to be extended to a fully levitated rotor model supported in
active magnetic bearings (AMBs).

Keywords Rotor-bearing system · Transverse crack · Internal damping · Whirl
speeds · Stability

1 Introduction

The growing direction of rotating dynamic systems, steer into a complicated analysis
of design for the smooth operation. Dynamic analysis of rotating systems has had an
extensive investigation over the last few decades. Several methods were developed
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for the study of shaft-disk-bearing systems over the past few decades. Effective
modeling procedures can be split into two significant classes. Finite element method
(FEM) is one among them, in which the rotor elements are subdivided into finite
number of degrees of freedom and the system motions are represented by ordinary
differential equations. Rotating structures are employed broadly through industries
from all around the world for energy generation and power transmission. The large
vibration amplitudes in rotating systems will lead the shaft/rotor to the propagation
of cracks. Followed by these great amplitudes due to cracks allow to unpredicted
shutdown and feasible damage of machine elements. The shaft with an open crack
is one of the vicious havoc situations in rotordynamic systems analysis particularly
in transverse direction.

An important study of the modeling and investigation to get the perfect results
for multi-stepped rotor systems was carried for distributed parameters. In his three
instances, first, the system is validated with FEM analysis. Second a parametric study
in variation of shaft length consists of two different shafts with different diameters.
And finally, an unbalance response analysis was carried out by Hong and Park [1]. A
new approach for extracting the critical speeds of flexible rotor-bearing system with
the transverse shear effect and distributedmass and inertia of the shaftwere presented.
The external loads are considered with bearing mass, damping, and coupling flexi-
bilities. The critical speeds with the effect of coupling flexibilities were investigated
by Joshi and Dang [2]. Modal analysis for continuous rotor-bearing systems for
isotropic and anisotropic natural boundary conditions was analyzed. The backward
and forward whirl speeds, and mode shapes are calculated for varying rotational
speed and boundary conditions by Lee and Jei [3]. The finite element method is used
as a key to extract the eigenvalue and stability investigation of rotors by accounting
distributed stiffness of bearing and damping. For the two models of rotor on cylin-
drical journal bearings, tilting pad journal bearings, offset and three-lobe journal
bearings were analyzed with (i) uniform and (ii) parabolic distributions, followed by
the stability limits were studied by Rao et al. [4]. Sekhar and Dey [5] investigated the
rotor-bearing system with transverse crack for the stability threshold by FEM anal-
ysis by accounting the different crack parameters, internal dampings and geometric
parameters. They found that, the instability is reduced reasonably with an increase
of crack depth.

Analysis of flexible rotor-bearing system with symmetrical single-disk derived
by lump mass method including shaft stiffness and damping, bearing linear oil-
film forces was used to find out the unbalance responses and the feasibilities are
discussed by Sanxing et al. [6]. Nelson and McVaugh [7] presented the dynamic
modeling of the shaft-disk system supported on bearings which gave the basic idea
in this field of rotor dynamics. They suggested a Rayleigh shaft element for modeling
a rotating shaft-disk system. The study of rotor model with finite elements incorpo-
rates the effects of rotatory inertia, axial load, and gyroscopic moments by applying
the consistent matrix method. Natural whirl speeds and unbalance response were
presented for two sets of undamped bearing stiffness. However, it excludes the axial
torque or shear deformation effect. By employing Timoshenko beam theory, the
above approach hypothesizes his previous study to obtain the shape functions by
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Nelson [8]. Dimarogonas [9] has presented a review article for crack in a structural
member as vibration of cracked structures. He had mentioned about the two fami-
lies of subharmonic critical speed. A transient vibration analysis of rotor with crack
which is passing over critical speeds was studied by Sekhar and Prabhu [10]. The
work from the authors shows that the time histories with harmonics and frequency
spectrum of model can be obtained with further analysis. The analysis of asymmetric
cracked rotor shaft systems for stability concern is much interested topic to study
by the rotordynamicists: Some basic cases have been discussed in [11, 12] which
generally gives the parametric instability.

2 Finite Element (FE) Model of the Shaft-Bearing System

Finite element method (FEM) is predominantly influenced in rotordynamic analysis.
The spinning structures are composed of numerous particles. The equation of motion
of the total particles allows the conclusion in the equilibriumof the system. Structures
with ‘n’ numbers of particles will have the generalized coordinates qi which consists
of nodal translational and nodal rotational displacement variables. Displacement
components of the nodal commonly chosen by order to be translations and followed
by rotations.

2.1 Energy Equations

All rotating particles are part of the structural system, and that it undergoes for elastic
deformations. By implementing the linear stress–strain relationship to the system,
the elastic potential energy of the structure can be derived. The derivative of this
elastic potential energy gives the finite element stiffness matrix of the structure. The
dissipative force which acts on the structure indicates the energy lost in it. The kinetic
energy of these particles is damped by the above-mentioned forces.

2.2 System Configuration and Coordinates

In present work, a typical flexible overhanging rotor-bearing model is analyzed to
understand the system dynamic stability situation. The segment incorporates the
discrete bearing, discrete disks with mass unbalances and incorporates a transverse
open crack in one of the element. The dynamic equations are solved using the implied
time integration procedure, and the stability at different speeds of operation is studied
using phase-plane portraits and frequency response. A simplified rotor system by
finite element can be standardized using Timoshenko beam theory. Figure 1 shows
the typical rotor element model.
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Fig. 1 Turbocharger schematic diagram

Fig. 2 a Rotor-disk finite element system. b Bearing model of the system

The finite element method is used to model the rotor-disk-bearing system. Here,
rotor mass isM and entire length L is divided into n-number of elements along n + 1
total node for the rotor z-axis which shown in Fig. 2a. By considering the bending and
shearing effects, the kinetic energy (Ts) and potential energy (Us) of the elements
(shaft) in rotation are given as:

Ts = 1

2

�∫

0

ρ
{
A(v̇2 + ẇ2) + ID(θ̇2

y + θ̇2
z ) + IP

[
�2 + �(θ̇zθy − θ̇yθz)

]}
ds (1)

Us = 1

2

�∫

0

{
E I (θ ′2

y + θ ′2
z ) + kGA

[
(θy − w′)2 + (θz + v′)2

]}
ds (2)

2.3 Disk Model

The rigid disk with four degrees of freedom is kept in the respective elemental nodes.
Since the disk is rigid, the mass/inertia center of the disks is placed on the particular
node which is connecting two elements as shown in Fig. 2a. The disk kinetic energy
is given as:
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Td = 1
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(3)

The work generated by the disk with eccentricity of mass is:

Wd = mdrdΩ
2(w cosΩt + v sinΩt) (4)

[Md ] =

⎡
⎢⎢⎣
md

md

Jd
Jd

⎤
⎥⎥⎦; [Gd ] =

⎡
⎢⎢⎣
0
0

0 Jp
−Jp 0

⎤
⎥⎥⎦ (5)

2.4 Bearing Model

The bearings considered in this analysis which is in Fig. 2b are restricted to follow
the governing equations. The bearings were linearized and the stiffness alone is taken
into account for the analysis. The stiffness matrix of the bearing elements as follows,

[
Kb

] =
[
kbV V kbVW

kbWV kbWW

]
(6)

2.5 System Modeling

The shaft model is expressed with beam elements of circular in cross section. The
strain energy and kinetic energies are needed to take into account when modeling
a shaft element. The distinctive shaft elemental cross section is estimated with the
following equation(s):

{
v
w

}
= [Nt (s)]{q};

{
θy

θz

}
= [Nr (s)]{q} (7, 8)

where [Nt(s)] and [Nr(s)] are the shape functionalmatrices of translation and rotation.
These shape functions are well-established by Nelson [8]. By using the above set
of equations and by doing the integration along the total length by implementing
Hamilton’s principle, the below equations for the finite system, disk, and bearings
are obtained:
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[Ms]{q̈s} + Ω[Gs]{q̇s} + [Ks]{qs} = {Fs} (9)

[Md ]{q̈d} + Ω[Gd ]{q̇d} = {Fd} (10)

where

[Ms] =
�∫

0

ρA[Nt ]T [Nt ]ds +
�∫

0

ρ Id [Nr ]T [Nr ]ds (11)

[Gs] =
�∫

0

ρ Ip[Nr ]T
[

0 1
−1 0

]
[Nr ]ds (12)

[Ks] =
�∫

0

E I [N ′
r ]T [N ′

r ]ds

+ κGA

�∫

0

{
[Nt ]T [Nt ] + [Nr ]T [Nr ] + 2[Nt ]T

[
0 −1
1 0

]
[Nr ]

}
ds (13)

Considering the effect of damping on the rotor, the system equation of motion is
given as follows:

[M]{q̈} + [[C] + Ω[G]]{q̇} + [K ]{q} = {F} (14)

where

{q} = [ v1 w1 v2 w2 v3 w3 v4 w4 v5 w5 ]T (15)

2.6 Crack Model

The transverse crack model leads the parametric inertia or stiffness excitation to the
system equation. Due to the parametric inertia, it is required to figure out the effect
on the instability regions. Initially, the discrete elements equations of motions of
the rotor system are formed. Further, the transverse open crack is considered into
account for the current analysis as shown in Fig. 3.

The time-varying stiffness functions of the cracked element are taken as [13],

k j
oc(t) = k

j
o1 + k

j
o2 cos(2(Ωt + ϕ)) (16)
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Fig. 3 Finite model of the
rotor-disk system with open
crack

2.7 Final Rotor System Model with Crack

The overall equation of motion of the cracked rotor system is given as,

[MS]{q̈ S(t)} − Ω[GS]{q̇ S(t)}
+

(
[K S] + [K̃ (t)]

)
{qS(t)} = {QS}4n ×1 (17)

where
[
MS

]
,
[
GS

]
,
[
K S

]
, and

[
K̃ (t)

]
are the global mass, gyroscopic, stiffness, and

cracked elemental matrices having dimensions in 4(n + 1) × 4(n + 1). The constant
spin speed (�) brings the equation ofmotion of the system in the time-varying second
order periodic differential equation with the open crack frequency of 2�.

3 Theoretical Results and Discussions

The rotor-bearing-disk system with crack is distributed as 4 elements and the disk
with mass unbalance as given in Fig. 3. The values of the mechanical and phys-
ical properties are listed in Table 1. The finite element equations are solved with
MATLAB. The equations compute the nodal degrees of freedom by the defined
number of elements. Hence, in the beginning stage it calculates the natural frequen-
cies of the system and subsequently gives the Campbell diagram. However, need to
give the value of bearing stiffness coefficients manually to avoid further calculations.
This procedure helps to verify the system assembly.

The cracked shaft (open crack) equation of motion incorporates the stiffness
matrix as constant (K − Kc) in the investigation part. Unbalance mass of mu = 10−6

kg m is considered for the fully opened crack condition at t = 0. The result in Fig. 4a
shows the unbalance response and critical speed of the rotor-bearing-disk system at
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Table 1 Mechanical and physical properties of the shaft elements and rigid disk

Properties Values Properties Values

Density of shaft material
(kg/m3)

7810 MOI of disk,
(kg mm2)

41,750 & 168,100 (Iy y = Izz)

Young’s modulus, E (GPa) 197 83,500 & 336,200 (Ixx)

Shear modulus, G (GPa) 80 Bearing stiffness
coefficients (N/m)

3.503 × 107 (kxx = kyy)

Radius of shaft (m) 0.016 −8.756 × 108 (kxx= kyy)

Length of shaft (m) 0.526 Bearing clear. (micr.) 20

Radius of disk, (m) 0.156 Mass unbalance, mu
(kg m)

10−6

Mass disk, md (kg) 4.4783

Fig. 4 a UBR of finite
system with crack.
b Campbell plot with �cr of
1Xhamonic
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Table 2 List of first six natural frequencies (f n) with non-dimensional crack depth (μ) at (Lcrack
= 0.4235 m)

Freq.
(Hz)

Uncracked
(Hz)

μ Freq.
(Hz)

Uncracked
(Hz)

μ

0.1 0.2 0.3 0.1 0.2 0.3

1st 15.01 14.62 14.39 14.05 4th 63.91 63.31 62.19 61.87

2nd 15.09 14.61 14.40 13.98 5th 170.17 169.94 169.39 169.74

3rd 63.57 63.34 63.18 63.92 6th 170.33 169.86 169.05 169.29

3859 and 4904 rpm with crack. The natural frequencies for various non-dimensional
crack depth μ, [14] are listed in Table 2.

For an open crack at element 3, the natural whirl speeds were plotted for the non-
dimensional crack depth μ = 0.1, 0.2, and 0.3 which shown in Fig. 4b. It clarifies
the action of cracked rotor system responds for backward whirl when the crack
begins to look at very minimum crack depths, and it can be also understood that
the amplitude change with an increase in crack depth values for critical forward and
backwardwhirling speeds. The frequency spectrumof themodelwith crack influence
is plotted in Fig. 5a which shows the disturbed frequencies due to the stiffness of the
rotor. For the displacements at disk nodes for both the disk at � = 1200 rpm were
plotted and shown in Fig. 5b.

The phase portraits for the system with open crack, behave as periodic with a
little unstable center at � = 1200 rpm which shown in Fig. 6a, b. This effect also
can be observed from the disturbed frequency response curves with crack which is
shown in Fig. 5a. The viscous damping factors of 0.01 and shear coefficient of 0.65
are considered in the system modeling.

4 Conclusions

This study carries well-organized methods to solve and understand the behavior of
the rotor shaft-bearing-disk systemwith crack. The general solution of the rotor shaft
systemwith open crack has been included in the study to understand the behavior. The
outcome from themethodwhichwas followed gives the important observations of the
natural whirls, cracked unbalance vibration amplitudes, displacements at disk nodes,
and phase-plane diagrams. The behavior of the cracked rotor-bearing-disk system for
various crack depths with specific speeds was carried. Hence, the approach helps to
predict the changes with rotor orbit shapes in specific rotor critical speeds considered
at very minimum crack depths.
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Fig. 5 a Frequency
spectrum of the system.
b Displacements at disk 1 &
2 at � = 1200 rpm
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