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Abstract Bearings are essential component of rotating machines and are often prone
to failure. Early detection of bearing faults thus becomes important for predictive
maintenance strategies. Conventionally, vibration measurement is considered to be
the most reliable and widely used indicator of fault signatures, which are to be
extracted from the raw signal. Traditional signal processing techniques, like envelope
spectrum, are employed for extraction of such features. However, selection of optimal
band and center frequency remains the main objective of research in the field. Use of
spectral kurtosis (kurtogram) is now a standard method for this selection. However,
a benchmark study on Case Western Reserve University dataset shows several non-
diagnosable cases using kurtogram method. The purpose of this study is to quantify
diagnosability in the form of an index and use it as a selection criterion for getting
optimal band and center frequency. The proposed method is validated using non-
diagnosable cases of the benchmark study, and the results are compared with that of
conventional Hilbert transform method and autogram method.
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Nomenclature

BPFI Ball pass frequency inner race
BPFO Ball pass frequency outer race
BSF  Ball spin frequency

HT Hilbert transform

SES  Squared envelope spectrum
DI Diagnosability index
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1 Introduction

Vibration signals are most reliable way of monitoring faults in rotating machinery.
When a fault occurs on either the inner raceway, outer raceway, or on the rolling
element of a bearing, it can be captured using accelerometer sensor located in contact
with the machine. The high-frequency shock signal generated due to impact of fault
is very peculiar and often shows amplitude modulation. The cyclostationary nature
of such signals is well known and of specific interest from signal processing point of
view. Complex nature of these signals and random interfering noise makes it difficult
to model such signals. It is often very difficult to find the optimum resonance band for
filtering out undesired components from the signal. State-of-the-art research focuses
mainly on this aspect of finding the optimum center frequency and bandwidth, and
the various statistical features are used to guide this optimization process. Kurtosis
is one such feature which is very widely used. A study on Case Western Reserve
University dataset uses spectral kurtosis as a benchmark and classifies the cases into
easily diagnosable, partially diagnosable and non-diagnosable [1, 2]. This benchmark
method mainly relies on kurtosis as an indicator of fault in time domain signal and
thus finds optimal band and center frequency by finding the maximum value of
kurtosis. However, there are several cases in which this method fails, and thus, this
method of kurtogram was further modified into infogram [3], sparsogram [4, 5], and
autogram [6].

Different signal processing methods are proposed to extract bearing fault features
such that the size and type of fault is faithfully represented. A detailed analysis
of different cepstral editing methods is discussed in [7]. On the other hand, signal
processing methods based on probability distribution function of the fault signal
are also being explored [8]. Cepstral analysis is used a way of filtering different
than traditional Fourier spectrum based methods [9—13]. A brief history of few such
methods is discussed by Randall in [14]. Out of these, automated cepstral editing
procedure [15] and cepstral prewhitening [11] are important signal preprocessing
methods which try to improve the diagnosability by removing stationary harmonic
component from the signal.

Unlike these methods, the proposed method focuses on features local to each
potential fault frequency. Though, in the benchmark study, the classification of cases
is based on classical fault signatures like fault frequency and harmonics, sidebands,
etc., it is not possible to quantify all of these. Thus, we define diagnosability in
terms of simple quantifiable parameters like amplitude at fault frequency, deviation
of fault frequency from the theoretical value, and number of significant peaks in
the spectrum. The diagnosability index, thus designed, is used as a feature to select
optimum band and center frequency. Cases in which the proposed method performs
better than the benchmark method are discussed.
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2 Diagnosability

A close observation of the CWRU dataset reveals that the fault diagnosis largely
depends on following factors:

Amplitude at fault frequency and its harmonics,

Deviation of peak frequency from theoretical fault frequency,
Number of other significant peaks in the spectrum,
Sidebands in case of inner race and ball fault signals.

Ll

Based on this observation, the diagnosability index is proposed as:
DI = AD.P (1

where, A is the amplitude at the fault frequency, D is derived from the deviation of
fault frequency from its theoretical value, and P is derived from the number of other
significant peaks in the spectrum.

The block diagram of the proposed method is shown in Fig. 1. As the fault signal is
modulated, the conventional method of band-pass filtering and demodulating is used
to find the squared envelope spectrum (SES) of the vibration signal. Full-tree wavelet
packet transform (WPT), with dbl as mother wavelet, is applied to decompose the
signal without reducing the length of the signal. The decomposed signal is then
Hilbert transformed to find its envelope. To find out this values of A, D and P, the
value of fault frequency has to be known. As the fault frequencies of inner race
fault, outer race fault and rolling element fault are different, three different values of
diagnosability index DI_I, DI_O and DI_R are calculated respectively.

The values of fault frequencies are theoretically calculated based on the geometry
of the bearing using following formulae [16].
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Fig. 1 Block diagram of the proposed method
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where f; is the rotational speed in Hz, N, is the number of rolling elements, By is
the diameter of rolling elements, Py is the pitch diameter, @ is the contact angle, and
Jors fir» Jre are the fault frequencies of outer race fault, inner race fault, and rolling
element fault (BPFI, BPFO, and BSF), respectively.

2.1 Amplitude (A)

To ensure that the diagnosability index (DI) has a value in the interval [0,1], each
feature is scaled in this interval by simple linear transformation. The amplitudes of
spectral peaks are scaled by dividing each value by the maximum value. This feature
tells how significant the peak at the fault frequency is and it directly affects diagnosis,
in a sense, that if there is a large peak at the fault frequency, then it signifies presence
of fault.

Though the theoretical value of the fault frequency is known, it is often observed
that the actual value of fault frequency is slightly different. This is because of two
main reasons—first, the uncertainty and error associated with the speed sensor and
second, the cyclostationary nature of the signal. As mentioned by Randall et al. [16],
this deviation is generally 1-2%. Considering this, we have introduced a tolerance
of £2 Hz, and taken the maximum peak in the frequency interval of [ f — 2, f + 2].

2.2 Deviation (D)

As the fault frequency is bound to have some uncertainty in its value, it is very
difficult, especially cases where the fault signal is submerged in noise, to pinpoint
this frequency in the spectrum. With the introduction of tolerance band, there is a
possibility of choosing a wrong value of frequency. To avoid this, the proposed index
linearly penalizes the deviation of frequency from its theoretical value assuming that
large deviation from the theoretical value means that it is unlikely to be the fault
frequency. This difference in theoretical and actual frequencies is also scaled to [0,1]
interval.
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Fig. 2 Case Western
Reserve University
experimental set-up

2.3 Peaks (P)

It is quite clear that the amplitude of fault peak alone is not sufficient to quantify
diagnosability. It has to be observed in relation to other significant peaks in the
spectrum. If the number of significant peaks other than the fault harmonics is more,
then that case is either partially or not diagnosable. Thus, the third feature to calculate
DI is selected to be number of other significant peaks in the spectrum. This feature
has inverse relation with diagnosability and is thus calculated similar to Eq. (2), that
is, number of significant peaks is subtracted from a tolerance value and then divided
by the same value to scale it down to [0,1].

It should be noted that, significance is a relative term and for the purposes of this
study, it is assumed to be 20% of the maximum spectral amplitude.

3 Bearing Fault Data

To substantiate the importance of the proposed method, we have used a standard
dataset on bearing faults provided online by Case Western Reserve University [17].
The dataset contains vibration signals from a 2 hp electric motor setup as shown
in Fig. 2 with 6205-2RS JEM SKF deep groove ball bearing at the drive end and
6203-2RS JEM SKEF deep groove ball bearing at the fan end.

4 Results

The diagnosability index (DI) is first verified using a benchmark study on CWRU
dataset [1]. In this study, each signal is classified into easily diagnosable, partially
diagnosable, and non-diagnosable case. Figure 3 shows DI values for easily diag-
nosable and non-diagnosable cases of inner race, outer race, and rolling element
faults. It can be observed from the figure that, barring few cases, the diagnosable
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Fig. 3 Diagnosis based on
diagnosability index 1
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and non-diagnosable cases are fairly separable from each other based on the diag-
nosability index. Also, the value of proposed diagnosability index (DI) is larger for
easy diagnosis as compared to non-diagnosable cases.

Figure 4 shows the performance of conventional Hilbert transform, the proposed
method and the autogram method for three non-diagnosable cases of the benchmark
study.

Case 1 is a case of drive end bearing with an outer race fault located opposite to
the load zone with fault size of 7 mil, under 1 hp load. The accelerometer is located
at the baseline of the setup, and it captures the raw vibration of the setup sampled
at 12,000 Hz. This case is classified as a non-diagnosable case by the benchmark
study because even after the decomposition, the envelope spectrum shows no classical
spectrum features, like the peaks at the fault frequency and its harmonics. The location
of the fault frequency and its harmonics are shown by arrows in Fig. 4. The autogram
method also fails, as seen in Fig. 4c. This means that the optimum level (7) and
corresponding optimum node (111) selected by the autogram method fails to enhance
the fault features. The proposed method, however, chooses level 3 and node 4 of
wavelet decomposition, and significant fault peaks can be observed in the envelope
spectrum of the decomposed signal in Fig. 4b.
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Fig.4 Envelope spectrums for Case 1 using a conventional Hilbert transform, b proposed method,
¢ autogram method
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Case 2 is a case of drive end bearing with a rolling element fault of 7 mil, under
2 hp load. The accelerometer is located at the baseline of the setup, and it captures
the raw vibration of the setup sampled at 12,000 Hz. The cases of rolling element
faults are difficult to diagnose, because the rolling element fault behaves very similar
to Gaussian noise in terms of its distribution. The distribution in such cases does not
show peakedness and thus kurtosis-based methods, like kurtogram and autogram,
seem to fail. From Fig. 5b, it can be observed that the proposed method identifies
the optimal band as (7, 44), and the envelope spectrum of the decomposed signal
shows significant fault features compared to the Hilbert transform and the autogram
methods.

Case 3 is a 14 mil outer raceway fault at drive end bearing, in the load zone, and
the data is collected at the baseline accelerometer. The autogram method chooses
the optimum level-node pair as (7, 126) which clearly removes the fault harmonics
from the spectrum as shown in Fig. 6¢. The optimum node chosen by the proposed
method is (7, 54). At this node, we can observe maximum peak at 1X fault frequency
and small peaks at second and third harmonics as shown in Fig. 6b. This result is
evidently better compared to the conventional Hilbert transform, as the fault peaks
are not submerged in other peaks as shown in Fig. 6a.

As the selection of optimum node depends on maximum value of the diagnos-
ability index, the resultant spectrum should have more peak amplitude and less
number of other peaks. This can be observed in all the three representative cases.
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Fig. 5 Envelope spectrums for Case 2 using a conventional Hilbert transform, b proposed method,
¢ autogram method
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Comparison of conventional Hilbert transform spectrum and proposed method spec-
trum reveals that the fault peaks become more prominent compared to other peaks
in the spectrum.

5 Conclusions

Current research in bearing fault diagnosis focuses mainly on the objective of finding
optimum band and center frequency so that the raw vibration signal can be decom-
posed to show prominent fault features in the envelope spectrum. The benchmark,
kurtogram method, and its modification, the autogram method, use kurtosis to guide
the selection of this optimum band. However, in various non-diagnosable cases, these
methods fail. To overcome this problem, the proposed method looks at local spectrum
features like the fault peak amplitude, its deviation from the theoretically calculated
fault frequency, and number of other significant peaks in the spectrum. A diagnos-
ability index is designed using these parameters such that its value is larger for easily
diagnosable cases than for the non-diagnosable cases. This index is used to guide
the selection of optimum band. With the help of three non-diagnosable cases, the
improvement in fault features is demonstrated using the proposed method over the
autogram method. The diagnosability index can be improved, in future, to provide
improved classification between the easily diagnosable and non-diagnosable cases
and also to incorporate the partially diagnosable cases.
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