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Abstract Active magnetic bearings (AMBs) offer contact-less functioning and
active vibration control capability while supporting and levitating a rotor. This is
the reason that the AMBs are being progressively researched for novel and chal-
lenging applications in the industry. In application areas, such as ships, airplanes and
space crafts, the rotor is mounted on a moving base, which causes parametric excita-
tion to the system. This, in turn, is generally known to cause stability issues in a rotor
shaft system. The present work thus attempts to conduct stability analysis of a rotor
shaft system supported by an AMB and is parametrically excited due to the presence
of periodically varying base motion. The finite element model for a generic rotor
shaft system mounted on a moving base is first presented, and the time-periodic
state matrix for the system is found. The Floquet–Liapunov method of analyzing
stability of a periodically varying system is used to find the stability boundaries for
the system with two widely used control laws for the AMB. The analysis reveals that
it is important to consider the parametric excitation caused to the system when the
AMBs are being designed for applications involving large base motions.
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1 Introduction

Active magnetic bearings (AMBs) offer some major advantages over conventional
bearings, namely contact-less support and an opportunity to actively control vibra-
tions in the system. This results in lesser vibration and noise levels in the rotor system.
This is also the reason that the AMBs are researched for novel and challenging appli-
cations in the industry. Reference [1] provides an excellent introduction to theAMBs.
A detailed review on recent research advancements in the application areas of the
AMB can be found in [2]. Rotor shaft systems subject to large base motion have been
shown to be parametrically excited [3]. It is also well known that parametric excita-
tion to rotor shaft systems may also lead the system to instability [4]. It is therefore
necessary to conduct a thorough stability analysis of an AMB levitated rotor system,
which is mounted on a moving base.

The issue of stability has been a concern for the researchers in the field of rotor
dynamics for many decades [5–8]. Two major sources of instabilities have been
clearly identified and extensively studied in the literature on rotor dynamics, namely
the instability due to internal material damping and the instability due to rotor–
fluid interaction in the fluid film type-bearings. The varying parameters of a system
for example varying stiffness lead to another type of instability in rotors called the
parametric instability. When the cross section of the rotor shaft is not axisymmetric,
then the bending stiffness of the rotor shaft varies with the rotation of the rotor shaft
and thus leads to parametric instability in such systems [9, 10].

Kamel and Bauomy [11] analyzed the stability of an nonlinear AMB-supported
rigid rotor system with varying stiffness. Investigations into the steady-state stability
with varying parameters were carried out. Bauomi [12] considered a similar system
and studied the effect of cubic and quadratic nonlinearity of the stiffness on the
dynamics of a rigid rotor-AMB system. Duchemin et al. [3] and later Driot et al.
[13] analyzed the dynamics and stability of a rotor shaft system subject to periodic
base motion. The rotor was considered to be simply supported. The equations of
motion for a generic rotor shaft system with base motion were derived. However,
Rayleigh–Ritz method was used to simplify the equations of motion to conduct the
stability analysis. Han andChu [14] conducted the stability analysis of parametrically
excited flexible rotor shaft system with conventional bearings mounted on a base
with periodic angular motion. Stability boundaries were drawn for various cases
of periodic base motion frequency and amplitude. The authors used dynamic state
transition matrix (DSTM) method to find the instability regions of the rotor shaft
system.An interesting problemof stability of an aircraft rotor during themaneuvering
of the aircraft is analyzed byHou et al. [15]. In thework, the bearingsweremodeled as
a Duffing-type nonlinear spring and dampers and the aircraft maneuver was modeled
as a sine wave. The variation in bifurcation diagram for the system with respect to
the aircraft maneuver was reported.

To the best of authors knowledge, the existing literature has a shortcoming that
these research activities do not consider the stability analysis of a rotor shaft system
levitated on an AMB and subject to parametric excitation due to large generic base
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motion. Recently, Soni et al. [16] conducted parametric stability analysis of a rotor-
AMBsystem subject to periodic basemotion.However, the stability boundaries of the
system with respect to base motion parameters were not reported. This research gap
has inspired the authors to report the present work. This paper, therefore, conducts
a stability analysis of a flexible rotor system which is levitated by an AMB and
is aboard a moving base. Finite element model governing the motion of a generic
rotor mounted on a moving base is first presented. Mathematical model of the force–
current relationship of an AMB is then discussed. An efficient numerical algorithm
based on the Floquet–Liapunov method of analyzing stability of a periodic system is
introduced [17]. Results pertaining to the stability boundaries of the system are then
presented.

2 Finite Element Model of a Rotor with Moving Base

The equation of motion of a rotor with large generic base motion has been derived
in [18]. The resulting finite element model for such a system is reproduced in this
section. A schematic of a rotor shaft system levitated and supported by an AMBwith
moving base is shown in Fig. 1. Three coordinate frames are defined and are also
shown in Fig. 1. Frame, Fi , is the inertial reference frame, and FAMB(with unit vectors
i A − jA − kA) is the coordinate frame attached to the rotor base at the left AMB,
coordinate frame F attached to the rotor shaft. The global finite element matrices
are given as:

Fig. 1 Rotor disk system supported on AMB with base motion
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where φ̇ is the rotor spin speed and Ωb = Ωb
Xb
iA + Ωb

Yb
jA + Ωb

Zb
kA is the angular

velocity of the frame FAMB with respect to inertial frame Fi .
Equation (1) gives the global mass matrix for the system [M], [D] is the global

damping matrix and [K ] is the global stiffness matrix. From Eqs. (2) and (3), it
is can be seen that global stiffness and damping matrix contain the time-varying
base motion parameters, and this leads to parametric excitation to the system. The
objective of the present work is to study the stability of the system; therefore, the
global force vector acting on the system by the virtue of base motion is not given
here. Details regarding the other matrices are given in the Appendix.

3 Active Magnetic Bearing (AMB)

Active magnetic bearing is a mechatronic device which provides contact-less levita-
tion of a rotor shaft system and has the active vibration control capability. The basic
components of an AMB are the electromagnet pole pairs (radially arranged around
the rotor shaft), proximity displacement sensors, power amplifiers, data acquisition
system and the controller. A schematic of an AMB is shown in Fig. 2.

Linearized expressions for the force exerted by the AMB electromagnet can be
written as [1],

FY = ki icY − kY yAMB; FZ = ki icZ − kZ zAMB (1)

where ki , kY and kZ are constants for an electromagnet and depend upon the bias
current (i0) and the nominal air gap (g0). Expressions for ki , kY and kZ are given
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Fig. 2 Schematic representation of an AMB

in Eq. (5). icY and icZ are the control current provided to the vertical and horizontal
electromagnet pairs. yAMB and zAMB are the corresponding excursions of the rotor at
the location of the AMB proximity sensor (assumed to be collocated with the AMB,
in the present study).

ki = 4kmag
i0
g20

; kY = kZ = ks = −4kmag
i20
g30

(2)

where kmag = μ0ApN 2

4 is a constant for an electromagnetic actuator. Ap is the face
area of the electromagnetic pole (m2), N is number of coil turns and μ0 is magnetic
permeability of air. The control law decides the relationship between the control
current icY and the displacement at the AMB location. For the case of a simple PID
control law,

icY = −(kpyAMB + kI ∫ yAMBdt + kd ẏAMB); icZ = −(kpzAMB + kI ∫ zAMBdt + kd żAMB)

(3)

where kp, kI and kd are the proportional, integral and derivative gains of the PID
control law. Then, the assembled equations of motion for the rotor shaft system
levitated by an AMB and mounted on a moving base can written as,

[M]
{
Γ̈

} + [D]
{
Γ̇

} + [K ]{Γ } + [C]{Γ ] = {0} (4)

where [Γ ] is the global displacement vector and the [C] matrix represents the contri-
bution of force on the rotor shaft due to the AMB. At the AMB node, the elemental
[C] matrix is given as,
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[C]eAMB =

⎡

⎢⎢⎣

ki
(
kp + kI

1
D + kdD

) − kY 0 0 0
0 ki

(
kp + kI

1
D + kdD

) − kZ 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦ (5)

where D is the differentiation operator, equal to d
dt .

4 Parametric Stability Analysis of Periodic Systems

The assembled equations of motion of the rotor-AMB system in Eq. (4) can be
transformed into the state space form as follows,

ẋ(t) = A(t)x(t) (6)

which represents a time-varying linear system. For the case of periodic base motion,
the state matrix A(t) is also periodic with A(t + T ) = A(t) and T is the funda-
mental time period of the state matrix. Efficient numerical method for ascertaining
the stability of periodic system has been described by Friedmann et al. [17]. The
method can be considered as a numerical counterpart to the Floquet–Liapunov’s
theory of stability of linear periodic systems. The method is based on the eigen-
values of the state-transition matrix of the system. However, for a complex system,
it may not be always possible to find the state-transition matrix; therefore, in this
numerical method an estimated state-transition matrix is found. The method to find
the estimated state-transition matrix is outlined in Fig. 3.

After the estimated state-transition matrix has been deduced, the stability regions
can be found using the eigenvalues of the estimated state-transition matrix. The
system is considered to be in a stable state if the following condition is satisfied,

max(|σ + jω|) < 1 (7)

where σ + jω is the eigenvalue of the estimated state-transition matrix of the system.

5 Results and Discussion

5.1 System Details

An overhung rotor shaft system is considered for the stability analysis in this work
[19]. The details of the rotor shaft system and the AMB used for simulation in this
work are given in Table 1. Finite element discretization of the rotor shaft system is
depicted in Fig. 4. The periodic base motion analyzed in this work is (a) periodic
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Fig. 3 Steps to find the
estimated state-transition
matrix

Table 1 Rotor shaft disk and
AMB details

Rotor shaft disk details AMB details

Shaft length 1.5 m Pole face area,
Ap

500 mm2

Shaft
diameter

0.03 m Current
stiffness, ki

177.4 N/A

Disk
diameter

0.5 m Displacement
stiffness, ks

−1.388
kN/mm

Disk
thickness

0.07 m Bias current, i0 5 A

Young’s
modulus of
elasticity

211 GPa Radial air gap,
g0

2.5 mm

Density 7810 kg/m3 AMB node
location

1.5

Rotor spin
speed

1000 rev/min
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Fig. 4 Overhung rotor shaft AMB system with finite element discretization

pitch motion of the base (AP—amplitude, ωP—frequency), (b) periodic roll motion
of the base (AR—amplitude, ωR—frequency) and (c) periodic yaw motion of the
base (AY—amplitude, ωY—frequency).

5.2 Parametric Stability Boundaries

Figure 5 shows the stability boundaries for the overhung rotor system levitated by
an AMB and subject to periodic base pitching. The condition of stability as per the
Floquet–Liapunov method detailed in the previous section is that the maximum of
absolute eigenvalue of the estimated state-transition matrix must be less than one
(see Eq. 7). Therefore, it can be seen from Fig. 5, that for the case of periodic base
pitching, the rotor shaft becomes unstable at the lowest frequency of around 15 rad/s
for 0.4 rad base amplitude. Similar plots for the case of periodic base roll and yaw
motion are shown in Figs. 6 and 7, respectively. For the case of base roll motion,
the rotor-AMB system becomes unstable for a base roll frequency value as low as
3 rad/s for a 0.25 rad amplitude.

5.3 Free Vibration Response

To validate that estimated eigenvalue correctly predicts the stability of the rotor-AMB
system, response due to initial conditions (free vibration) is simulated. To this end,
an initial displacement of 1 mm in both horizontal and vertical directions is imposed
at the rotor disk, and consequent response of the rotor disk is numerically simulated
using the Newmark-beta method. The free vibration plot for the case of periodic
base pitching with a frequency of 24.5 rad/s and an amplitude of 0.3 rad is shown in
Fig. 8. As predicted by the value of the approximate eigenvalue (refer Fig. 5), unstable
response at the rotor disk is observed. It must be noted the rotor-AMB system has
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Fig. 5 Stability regions for case of base pitching

Fig. 6 Maximum absolute eigenvalue for periodic roll base motion
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Fig. 7 Maximum absolute eigenvalue for periodic yaw base motion

Fig. 8 Free vibration unstable response at the rotor disk due an initial displacement
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been considered to be reasonably balanced, and only, the parametric excitation to the
system is considered.

6 Conclusion

The following conclusions are drawn from this work:

1. Base motion in a rotor shaft bearing system causes parametric excitation to the
system, which may result in excessive vibrations even in a reasonably balanced
rotor.

2. While designingAMBs for the applications involving basemotion, an exhaustive
parametric stability analysis of the system must be conducted.

3. Depending upon the type of base motion, the rotor shaft system levitated on an
AMB may become unstable at lower combinations of amplitude and frequency
of the base motion. For example, for the case of periodic base rolling motion, the
rotor-AMB system becomes unstable for frequency values as low as 3 rad/s and
amplitude 0.25 radians.

Appendix

Details of the matrices used for finding the global matrices given in Eqs. (1)–(3).

Shaft Inertia matrix: [M]eS = l∫
0
m[ψ(x)]T [ψ(x)]dx + l∫

0
id

[
ψ ′(x)

]T [
ψ ′(x)

]
dxwhere

[ψ] is the shape function matrix, gyroscopic matrix: [G]eS =
l∫
0
i p

[
ψ ′]T

[
0 −1
1 0

][
ψ ′]dx ; [H ]eS = l∫

0
i p

[
ψ ′]T

[
0 0
1 0

][
ψ ′]dx bending stiffness

matrix: [KB]eS = l∫
0
E I

[
ψ ′′]T [

ψ ′′]dx ;
[
ψ ′′] = d2[ψ(x)]

dx2 .

Circulatory matrix: [KC ]eS = l∫
0
E I

[
ψ ′′]T

[
0 −1
1 0

][
ψ ′′]dx

Coriolis matrix: [C]eS = l∫
0
m[ψ(x)]T

[
0 −1
1 0

]
[ψ(x)]dx +

l∫
0
id

[
ψ ′(x)

]T
[
0 −1
1 0

][
ψ ′(x)

]
dx

Parametric stiffness matrix due to base motion:

[
Kp11

]e
S = l∫

0
m[ψ(x)]T

[
1 0
0 0

]
[ψ(x)]dx + l∫

0
i p

[
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]T
[
0 0
0 1
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ψ ′(x)

]
dx
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[
Kp22

]e
S

= l∫
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m[ψ(x)]T

[
0 0
0 1

]
[ψ(x)]dx + l∫

0
i p

[
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1 0
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ψ ′(x)
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[
0 1
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]
[ψ(x)]dx + l∫

0

(
i p − id

)[
ψ ′(x)

]T
[
0 1
1 0

][
ψ ′(x)

]
dx

Rotor disk finite element matrices

Inertia matrix: [M]D =

⎡

⎢⎢⎣

mD 0 0 0
0 mD 0 0
0 0 Id 0
0 0 0 Id

⎤

⎥⎥⎦;

Gyroscopic matrix: [G]D =

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 −Ip
0 0 Ip 0

⎤

⎥⎥⎦;

Coriolis effect matrix: [C]D =

⎡

⎢⎢⎣

0 −mD 0 0
mD 0 0 0
0 0 0 −Id
0 0 Id 0

⎤

⎥⎥⎦; Parametric stiffness

matrix:
[
Kp11

]
D

=

⎡

⎢⎢⎣

mD 0 0 0
0 0 0 0
0 0 Ip 0
0 0 0 0

⎤

⎥⎥⎦; [
Kp22

]
D

=

⎡

⎢⎢⎣

0 0 0 0
0 mD 0 0
0 0 0 0
0 0 0 Ip

⎤

⎥⎥⎦;
[
Kp12

]
D

=

⎡

⎢⎢⎣

0 mD 0 0
mD 0 0 0
0 0 0 Ip − Id
0 0 Ip − Id 0

⎤

⎥⎥⎦
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