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Abstract The flow of goods in supply chains starts from production plants to
regional warehouses to local distribution centers and from these local distribution
centers to point of sale at retail outlets. Uncertainties in global market such as trade
wars and extreme weather conditions disrupt the flow of goods in the global supply
chains. This paper presents a reinforcement learning approach for an autonomous
inventory replenishment planning model that attempts to capture few aspects of the
goods such as market demand, costs associated with the inventory, product life cycle,
and/or seasonality along with a set of inventory policies. The proposed model has
been evaluated using two different time horizons viz., weekly and monthly, and it is
observed from our simulation runs that monthly planning provides around 30% cost
reductions compared with weekly planning, and the algorithm is found to select the
right policy in about 85-95% of the times across the experiments.

Keywords Inventory - Demand uncertainty - Replenishment - Reinforcement -
Learning - Supply chains

1 Introduction

The supply and distribution chains that enable shipment of goods from manufac-
turing source to end customer locations have seen larger transformations over the
last few decades. Supply chains have evolved to enable organizations to manufacture
products with larger product variety to meet individual customer preferences as well
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as act as a catalyst to provide technological innovation as perishability of the goods
is more acceptable irrespective of the nature of the product or the commodity. The
concept of perishability inherently refers to product life cycle dimension rather than
taking it literally for the product perishability definition. Inventory control effec-
tively contributes to significant amount of the total supply chain costs, and over the
last decade, the combination of the factors such as market demand, inventory costs,
changing customer preferences, and many other factors has ensured that many prod-
ucts do have minimal life cycle length of few years rather than decades. Chenetal. [1]
present a case-based multi-criteria ABC analysis including factors such as lead time
and criticality of SKUs that provides more flexibility in classification of SKUs. Jiang
and Sheng [2] present a case-based reinforcement learning algorithm for dynamic
inventory control in a multi-agent-based supply chain system with the premise that
traditional time-triggered and event-triggered ordering policies become inaccurate
causing excessive inventory (cost) or shortage. Kim et al. [3] employed the reinforce-
ment learning algorithm for attaining a satisfactory service level in n-echelon supply
chain. Hsueh [4] explores the effects of product life cycle on inventory control in
manufacturing/re-manufacturing system and determines optimal production lot size,
reorder point, and safety stock during each phase of product life cycle. Sun and
Zhao [5] in their paper model Q-learning algorithm as a reinforcement learning
approach for specifying ordering policies of the supply chain with five stages. In
another work, Mortazavi et al. [6] use an agent-based simulation technique inte-
grated with a reinforcement learning algorithm for a four-echelon supply chain that
faces non-stationary customer demands. Kara and Dogan [7] address the inventory
management problem of perishable products and present a reinforcement learning
which is used in their research work, and the policies are optimized using Q-learning
and Sarsa algorithms.

The markets are connected globally with enhanced visibility and ensuring that
multiple nodes in the supply chain are sufficiently proactive. Push- and pull-based
strategies in supply chain flows help organizations to carve out strategic and tactical
plans based on market needs. A push-based supply chain, where upstream nodes
drive the inventory flows, is used when the products or goods have low demand
uncertainty. Pull-based strategy, where the downstream nodes pull inventories from
upstream node, is used when products have high demand uncertainty. Baryannis
et al. [8] provide a comprehensive review of supply chain literature that addresses
problems relevant to SCRM using approaches that fall within the Al spectrum. Lolli
et al. [9] use supervised classifiers based on the machine learning to perform a
limited exhaustive search to define the best reorder policies per item by presenting
the lowest cost classification of in-sample items. Priore et al. [ 10] employ an inductive
learning algorithm for defining the most appropriate replenishment policy over time
by reacting to the environmental changes in a three-echelon supply chain where the
scenario is defined by seven variables viz., cost structure, demand variability, three
lead times, and two partners’ inventory policy.

This motivation of the research is to study and explore insights into dynamism and
uncertainties in inventory management at various echelons in supply chain consid-
ering various factors such as market demand, costs associated with the inventory
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flow, product life cycle, and/or seasonality along with a set of inventory policies.
The research problem requires use of data and decision support models to foresee
and predict uncertainties, capture the nature of the uncertainties, and provide model-
driven decisions using intelligent learning algorithms to get adaptable answers to
respond to practical needs. Little amount of work has been published in scien-
tific journals/conferences considering combinations of factors related to products
such as seasonality, life cycle, demand behavior, and planning horizon in relation to
autonomous and dynamic selection of inventory policies over time. Dynamic selec-
tion essentially means that the system by itself selects the right inventory policy based
on demand projections without manual intervention using reinforcement learning
approach. The paper proposes replenishment system where manual intervention is
almost minimal or non-existent which is applicable from a warehouse or distribu-
tion center in a supply chain. This same is perfectly applicable for an autonomous
retail store. The paper is organized as follows. Section 2 introduces the inventory
replenishment model detailing replenishment policies, states and actions considered
for our study. The reinforcement learning algorithm based on Q-learning approach
is presented in this section. Section 3 details out the simulation runs and experiments
of our study followed by conclusion and scope for extended research.

2 The Replenishment Model

2.1 Problem Definition

The pull-based supply chain model is defined for our study that necessitates individual
nodes in the supply chain to adopt right set of inventory replenishment policies for
managing inventory flows from upstream supplies to satisfy the demand requirements
downstream in the supply chain. The nodes could be either a central warehouse or
local/regional distribution centers or point-of-sale outlets. Each of these nodes does
handle good amount of products with each of these products having its own demand
behavior, replenishment cycles, minimum and maximum order quantities, product
life cycle, and seasonal or cyclical trends. In this work, we pick up one of the nodes in
the supply chain say a distribution center and study the learning-based replenishment
model considering the following assumptions.

1. Historical customer demand is generated using a compound Poisson process,
where the size of the demand is defined to have the discrete uniform distribution.

2. Future demand data is generated using a time-series forecasting process, and
any impact of market campaigns/promotions is incorporated into future demand
profile.

3. Historical data is used for training the proposed model, and the future demand
data is taken as one of the inputs to the autonomous replenishment model.

4. Order is placed for procurement with an order quantity Q that is defined based
on the nature of the replenishment policy in operation.
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5. Ordering cost or setup costs are incurred every time an order is placed.

6. Order can be replenished fully with an expected lead time L, and the standard
deviation of lead time is defined as .

7. Shortages in inventories are allowed, and the surplus inventories are carried
forward to the next planning period.

8. Backorders are not considered, and shortages are assumed to be lost demand.

9. Joint replenishment between multiple products is not considered.

10. The life cycle of a product could be divided into the following phases: intro-
duction (phase 1), growth (phase 2), maturity (phase 3), and decline (phases 4
and 5).

2.2 Inventory Policies

The following periodic and continuous review policies which are stock based were
adapted and implemented in our simulation model. Stock-based inventory policies
replenish inventory based on inventory levels at the replenishment centers based on
market demand.

i. The periodic (R, S) policy, where every R time units (the review period) an order
is placed to raise the inventory position to level S.

ii. The periodic (R, s, S) policy, where every R time units, an order is placed to raise
the inventory position to level S provided the inventory position has reached or
fallen below the reorder level s.

iii. The periodic (R, s, Q) policy, where every R time units an order of Q units is
placed provided the inventory position is less than or equal to s.

iv. The continuous (s, S) policy, where an order is placed to raise the inventory
position to level § when the inventory position falls to or below level s and

v. The continuous (s, Q) policy, where Q units are ordered when the inventory
position falls to or below level s.

The values of maximum inventory position S are defined for our experiments as the
maximum or average of weekly demands observed over the past historical demand
periods, and Q can be computed using economic order quantity (EOQ) formulae or
can be set to be equal to the expected forecast demand in the future time periods.
EOQ works well when the demand is more or less flat with no trend or seasonality.

2.3 States and Actions

The following set of propositions is introduced to enable the proposed model to learn
and train itself over the historical data in a supervised manner to enable us to set
the algorithmic configuration parameters. These propositions are characterizations
obtained from the above-mentioned five policies to estimate reorder quantity, number
of reorder points, under and overstocking implications, and demand behavior.
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Proposition 1 Increase in inventory holding cost necessitates re-computation of
reorder quantity, i.e., minimization of reorder quantity.

Proposition 2 Increase in set up costs necessitates minimization of number of
reorders which eventually turns out increasing the reorder quantity for each order.

Proposition 3 Overstocking in inventories results in a need to move from periodic
review policy to continuous review policy.

Proposition 4 Continual shortages in inventories require a shift from periodic review
policy to continuous review policy.

Proposition 5 Change in demand behavior from flat pattern to an increasing or
decreasing trend requires switch to a continuous review policy.

Proposition 6 Change in demand behavior to the flat pattern from increasing or
decreasing trend requires switch from continuous to periodic review policy.

Proposition 7 Demand in maturity phase of the product with flat pattern can be
fulfilled with periodic review policy.

The last two propositions essentially imply that it uses combination of either
surplus or shortages in inventory with demand trend.

2.4 Reinforcement Learning Algorithm

Reinforcement learning (RL) provides an alternative approach to solve difficult
control problems which are impossible to solve using supervised learning and tradi-
tional dynamic programming methods [11]. RL algorithms usually estimate the value
functions of Markov decision process by observing state transition data. Tabular algo-
rithms such as tabular Q-learning and tabular Sarsa-learning have be widely studied.
In tabular RL algorithms, value functions are represented and estimated in tabular
forms for each state-action pair [11]. In our work, we use the combination of short-
ages (avg shortage), frequency of shortages (freq shortage), and surplus (avg surplus)
inventories over the past r periods to trigger the need for evaluation of policy change.
An adaptation of Q-learning algorithm is used in our reinforcement learning process
to select and use the mentioned replenishment policies in our model. The following
notations are defined before presenting the algorithm.
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An array that contains different inventory policies that can
be applied.

The policy index.

The action index.

The associated costs

The state tuple which represents an array containing average
shortage, frequency of shortages, and average surplus during
a time period.

A dictionary that maps an action to a state.

The reward which is the total cost incurred.

An array that keeps track of the states, actions, and their
corresponding rewards.

An array that contains the mean episodic reward for the
specified time period.

An array containing the state-action pairs that have been
visited already. It is used as a caching mechanism.

A factor that is set to 0.9 to ensure that the RL algorithm
places higher weightage on long-term rewards. (Values
closer to 1.0 are used to ‘discount’ the immediate reward)
A factor used to balance exploration and exploitation by
assigning a 20% chance to choose a random inventory
policy.

An array containing the forecasted demand values.

The reward for an episode.

The Q-table which contains the reward for each action taken
in each state

Contains the maximum return corresponding to the best
action for a given state in the Q-table

We use the following symbols:

e {} to refer to dictionaries or key-value pairs.
e () to refer to sets where only unique elements are permitted.

e [] to refer to arrays.
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Reinforcement Learning Algorithm
1. Initialize variables

policy = {},
o=1{,
returns = {},

actions = set of all inventory policies under consideration,
state_action_reward =[],
DISCOUNT FACTOR =0.9,
EPSILON=0.2
2. for time period ¢ in Demand.
a. S,=[avg shortage, freq shortage, avg surplus,)
b. Ifrandom(0, 1) < (1 — EPSILON)
i. action = policy[S]
c. else: action =random(actions)
d. reward=-1Xx cost,
e. ifend of Demand has been reached:
1. state_action_reward.append([S,, null, reward))
ii. break
f. else:
i. state_action_reward.append([S,, action, reward))
g. G =0, state_action_return =[]
h. for state, action, reward in reversed(state_action_reward)[1:]:
i. state_action_return.append([state, action, G))
ii. G=reward+ DISCOUNT FACTOR x G
3. seen_state_action = ()
4. Loop until Q[s] converges:
a. for state, action, G in state_action_return:
i. if [state, action] not in seen_state_action:
1. returns[[state, action]].append(G)
2. Q[s][a] = mean(returns|[state, action]])
3. seen_state action.append([state, action])
b. for s in policy.keys():
i. policy[s] = argmax(Q][s])
5. V={}
6. for s in policy.keys():
a.  V[s]=max(QJ[s])
b. return V, policy

In our implementation, the values of average shortages, frequency of shortages,
and average surplus are pre-estimated based on training data set with a planning
horizon of n periods considering the cost vs benefit trade-off for the mentioned five
policies. The forecast data together with the historical data is eventually used on
the rolling window basis to decide the need for trigger for the policy change. Any
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significant change in the cost data (i.e., ordering costs and holding costs) necessitates
the recompilation of the state-action transition matrix using the historical as well as
forecast data to redefine the selection of policies.

3 Simulation Runs and Experiments

The objective of our experiments is to ensure that the demand is satisfied at stated
service levels, and shortages are avoided as much as possible with simultaneous
minimization of total costs. Total cost comprises total annual ordering costs and
annual inventory holding costs. The following three demand patterns are simulated
to experiment and validate the proposed model:

1. Demand being flat and increasing.
2. Demand decreasing and turns flat.
3. Considering the complete product life cycle with four phases.

Demand forecast is assumed to be given on daily basis for the next one year
planning period using historical data for the last three to five years. Inventory holding
cost is assumed to be defined at 5% of the product cost. Product cost is assumed to be
$10 for our experimental runs using simulated data for training out models. Ordering
costs are defined as 10% of the cost of the reorder quantity. Experiments for policy
definitions are performed at weekly and monthly planning horizon granularity levels.
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Table 1 Evaluation of costs Demand Total costs Average Average deficit
at weekly run

profile surplus

Flat and 2702554.18 187.98 43.23

increasing

Decreasing 3942057.90 229.19 42.25

and flat

Full product 1234665.63 170.20 83.53

life cycle
Table 2 Evaluation of costs Demand Total costs Average Average deficit
at monthly run

profile surplus

Flat and 2006172.33 1069.73 34.76

increasing

Decreasing 2489461.39 1187.54 34.90

and flat

Full product 1849730.37 1063.63 77.81

life cycle

The three presented scenarios (Fig. 1) have been extracted from the historical
profiles of the products from consumer product company supply chain at the local
distribution center that receives supplies on either weekly or monthly basis, while the
deliveries to different retail outlets happen on daily basis based on the orders received
from the retail outlets across a major metropolitan city in India. The reinforcement
learning algorithm together with inventory models and policies is implemented in
Anacondo Phython 3.7 programming language and PostgreSQL. Tables 1 and 2
presents the total annual costs (includes ordering cost and inventory carrying cost),
average daily surplus, and average daily deficit for weekly and monthly planning
models with the average of the results presented over 10 simulation runs for three
selected product profiles over an yearly planning cycle. The cumulative demand for
each demand profile is kept constant for with respect to each one of the demand
profiles and their corresponding simulation runs.

Figures 2 and 3 present the computation of surplus and shortages for the three
demand profiles over weekly and monthly planning horizon for one simulated
demand scenario. The results are presented for service levels 95% service levels. The
inventory carrying costs are computed on daily basis, while ordering cost is defined
for each order placed for procurement. Average surplus and shortages presented in
the tables are computed using the end of the week/month surpluses and shortages in
inventory. We found that the proposed algorithm is observed to select 85-95% of the
times the right policy in our experiments and in those cases where the selection was
a mismatch got corrected within a period length of 2 weeks in the worst case.

The proposed approach looks into the future demand profile and revises the order
quantities placed with the upstream supplier based on surplus and shortages in inven-
tory on-hand. It was observed from our experiments that when the demand is flat
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over a period of time (R, §), policy was found to be working well. (R, s, S) or (R, 5, Q)
was found to be working good under the conditions of demand uncertainty, and (s,
S) or (s, Q) is found to be working well under conditions of increasing or decreasing
demand.

The higher service levels introduced in our experimentations resulted in higher
surplus scenarios during the periods of increasing and decreasing demand profiles.
It is found that weekly planning model is cost effective for all the demands profiles.
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4 Conclusions

In this work, we attempt to introduce a replenishment model using a supervised
learning-based approach that reflects the characteristics of the inventory operations
in a typical supply chain and validate the results against three demand scenarios that
are quite evident in real life. The proposed model considers multiple factors such as
product life cycle, demand behavior and seasonality, planning horizon granularity
along with set of replenishment policies to cost effectively plan and define replen-
ishment cycles, and order quantities considering lead time variations. This essen-
tially automates the replenishment process to a good extent and enables operations
of autonomous warehouses in supply chains or motivates to run autonomous retail
stores. The presented work limits the study for evaluation of replenishment model
with no back orders, and shortages are allowed which need not be true in many
practical scenarios. The research can be further extended considering perishable
products, joint replenishment options, as well as policies considering back orders,
supply variations, market campaigns, etc.
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