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Abstract Path planning is one of the widely studied problems in mobile robotics,
which deals in finding an optimal path for a robot. To generate a collision-free path for
a robot in an environment by satisfying certain constraints is a complex task. So, path
planning is an NP-hard problem. In this paper, we present a new formulation of the
path planning problem for a mobile robot by introducing zones which are neighbors
to the static obstacles, through which a robot can pass avoiding the collisions. Our
proposedmodel has an advantage of shrinking the search spacewhich in turns reduces
the computational complexity. We consider the minimization of the travel distance
of a robot as the main objective to find a feasible path. We implement a genetic
algorithm (GA) as a solution technique and compare it with two other well-studied
meta-heuristic algorithms, viz. Tabu Search and Simulated Annealing. Further, we
incorporate a modified mutation operation in all three algorithms to replace a zone
from the reduced search space to generate a new potential solution. The simulations
for different environments and comparative analysis using obtained results show that
GA performs better than the other two approaches.
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1 Introduction

With the advancement in robotics, mobile robots are employed in several domains
like manufacturing, assembling, space exploration, nuclear power plants, and mobile
systems. Path planning is one of the critical issues in the field of mobile robots, which
has attracted many researchers to design efficient solution techniques [1]. Here, the
primary goal is to find the shortest feasible path for a robot, avoiding collisions with
the obstacles in an environment. Therefore, it can be modeled as an optimization
problem subject to certain constraints. The problem becomes very complex with an
increase in the size of the environment which may lead to the formation of several
possible paths. Thus, a collision-free path planning problem belongs to the category
of NP-hard problems [2]. There are many studies on the path planning problem using
various techniques such as random trees, roadmaps, cell decomposition, potential
fields, and grid-based A* algorithm [3]. Each of these techniques has pros and cons
depending upon the type of the domain where it is employed. Most of such methods
bear a limitation of finding only one solution, which may not be optimal or shortest
even for a static environment [4]. Due to the complexity of the problem, traditional
optimization techniques become incompetent and intractable to solve it [2].

Heuristic approaches like evolutionary algorithms (EAs) are proved to be a
powerful tool as they are simple to design robust solution methods for path plan-
ning problems [5]. As a meta-heuristic technique, genetic algorithms (GAs) have
been widely studied for several optimization problems including mobile robot path
planning problem [6]. Manikas et al. [1] proposed a GA-based navigation technique
for an autonomous robot to traverse the path.An environmentwith static and dynamic
obstacles was designed by Mahjoubi et al. [7] and formulated a solution technique
using GA to avoid collisions. Similarly, to design a path for a robot, Song et al. [8]
used a grid representation of an environment to simulate their GA-based solution
technique along with a Bezier curve. A new binary encoded matrix was developed
by Patle et al. [9] for GA to generate a path together with an optimum controller
method. A new selection approach including the robot’s speed into the encoding
of the solution was designed by Wang et al. [10]. They developed a path planning
approach using GA to find a near optimal solution avoiding the obstacles. In [4],
Tuncer et al. integrated a new mutation operator into a GA-based solution to find an
optimal path in a grid-based environment. Despite several studies, the path planning
problem still needs to be formulated efficiently to decrease the complexity of search
space. Further, it also requires a tool to handle the infeasibility of generated solutions
to find a collision-free optimal path for a robot.

In this paper, we formulate the problem of path planning for a robot, creating
zones which are neighbors to the corners of the static obstacles in an environment.
This helps to reduce the search space to design a path. Our formulation is based on
the technique to derive an optimal path, ensuring that a robot travels from its initial
point to a destination point through these zones avoiding the collisions. Further, we
modify themutation operation to produce a solution by strictly substituting a different
zone into the existing solution from the reduced search space. Thus, we proposed a
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GA-based planning method and incorporated the modified mutation operation into
it to tackle the premature convergence. For a fair comparison, we also implement
two other widely studied nature-inspired algorithms for path planning problem, viz.
Simulated Annealing (SA) [11] and Tabu Search (TS) [12] and integrate themodified
mutation operation into their basic framework. Through extensive simulations, we
show that all the three approaches are able to generate feasible solutions, but the
proposed GA-based solution method produces better results with good convergence
compared to SA and TS.

Further, the paper is organized into several sections: Sect. 2 describes the problem
formulation alongwith the environment representation. Section 3 explains the design
and implementation of evolutionary algorithms for the addressed problem. Section 4
provides the experimental results and comparative analysis. Finally, Sect. 5 concludes
the study done in this paper and provides future directions.

2 Problem Formulation

In this section, we describe the real-space representation as an environment which
comprises the free space and the obstacles. A suitable environment representation is
required to find a feasible path for a robot to reach its destination. Several path plan-
ning methods use the grid-based model [4] where the real-space is divided into grids.
Such a layout can be characterized as a two-dimensional (2D) coordinate planewhich
allows straightforward calculation of the distance between points connecting two
grids. Therefore, we have adapted this model as it can simulate real-world scenarios
and are easy to understand. Here, we formally define the mathematical framework
where the robot has the knowledge about the environment. In the grid-based model,
the whole space is divided into t number of grids which can be expressed as

G = {gi |∀0 ≤ i ≤ t − 1} (1)

where gi is the grid identifier. The grids occupied by the obstacle can be denoted as
O , where O is the subset of G. Therefore, the obstacle-free grids F = G − O from
which Z zones are identified to find the feasible path without any obstacles. This
finally reduces the search space.

An example is shown in Fig. 1 which illustrates the grid model used for our study.
Here, the environment is divided into 10 × 10 grids. Therefore, the environment
consists of 100 grids in total. Each grid is having a length and breadth of 1 unit. The
grids in black color are the static obstacles, and the rest of the grids are free grids
where a robot is free to move. From the set of free grids, we create different subsets
of colored zones which are neighbor grids of the obstacles’ corner as shown in Fig. 2.
Altogether we identified 12 zones which consist of 36 colored grids, i.e., 36% of the
G and 56% of F. This results into reduced search space and less computation time to
generate a feasible and optimized path. For a robot where there are obstacles between
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Fig. 1 Example 10 × 10
grid-based environment 0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

Fig. 2 Example 10 × 10
grid-based environment with
zones

the start position and the goal position, the path is the one closer to the corners of
the obstacle.

Further, we have adapted the coordinate systemmodel for the environment which
enables to calculate the Euclidian distance and check the feasibility of the path easily.
For the grid environment in Fig. 2, the top left corner of the grid g0 is the origin. We
assume the robot travels through the midpoint of each grid. The coordinates of g0
are (0.5, 0.5), g1 are (1.5, 0.5), g2 are (2.5, 0.5), and so on. Assuming g0 (0.5, 0.5)
is the starting point for the robot and the destination is g99 (9.5, 9.5). The X and Y
coordinates of a grid can be calculated as follows:

Xi = modulus(gi , 10) + 0.5 (2)
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Yi = floor(gi/10) + 0.5

0 ≤ i ≤ t − 1 (3)

For a mobile robot, we need to find the shortest path between its starting and destina-
tion point. Therefore, the optimization problembecomes theminimization of distance
to be travelled by the robot avoiding the obstacles. There is a possibility that paths
generated may have obstacles. In order to compute the distance of these infeasible
paths, we impose a penalty based on the number of obstacles on those paths. As
a result, these paths will have a larger distance. The distance function [4] can be
formulated as

D =

⎧
⎪⎪⎨

⎪⎪⎩

n−1∑

b=1
distance(gb, gb+1) for feasible paths

n−1∑

b=1
distance(gb, gb+1) + penalty for infeasible paths

(4)

where a and b are the two consecutive grids in the path and

distance(gb, gb+1) =
√

(xb − xb+1)
2 + (yb − yb+1)

2 (5)

Hence, the objective function can be characterized as:

Min{D} (6)

where D is the total sum of the distance between all connecting grids of the path.
Coordinates of the obstacles are used to generate equations of their edges which
help in checking the feasibility of the path. The determinant is calculated between
the equation of the line joining the grids and the equation of the edges of obstacles.
The obtained determinant value concludes if there is any intersection between these
lines. This helps to determine the feasibility of the path [13, 14].

3 Solution Techniques

We have implemented our solution techniques using three widely studied nature-
inspired approaches, namely GA [4, 15, 16, 17], SA [11, 18] and TS [12, 19] for a
fair comparison. The standard framework of each algorithm is used for the experi-
ments. Further, we have integrated a modified mutation operation into each of these
algorithms to generate a new potential solution. The pseudocodes for working of GA,
SA, and TS developed for the proposed problem model are mentioned in Algorithm
1, Algorithm 2, andAlgorithm 3, respectively. Now,we discuss the basic components
of the algorithms.
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Algorithm 1: The framework of GA 

Input: , , , population size, maximum iterations
Step1: Population Initialization: initialize a set of individuals of fixed length
Step 2: while termination criterion is not met do

i. Fitness evaluation of the individuals using the objective function.
ii. Selection: the binary tournament selection is used

iii. Crossover: PMX technique is used for crossover 
iv. Modified_mutation: see Algorithm 4
v. Fitness is calculated for the newly generated population 

end while
Output: the feasible path

Algorithm 2: The framework for SA 
Input: , , , initial temperature, population size, maximum iterations
Step 1: Population Initialization: Randomly initialize a set of individuals of fixed 

length
Step 2: Fitness evaluation of the individuals
Step 3: Best solution: Select the individual with the best fitness
Step 4: Set Temperature to the initial temperature
Step 5: while termination criterion is not met do

i. Create neighbour: Modified mutation is used to create the neighbour
ii. Evaluate the fitness of generated individuals
iii. Sort population
iv. Best solution: Select the individual with the best fitness
v. update the temperature 

end while
output: feasible path

Algorithm 3: The framework for TS 
Input: , , , initial temperature, population size, maximum iterations
Step 1: Seed generation: randomly generate an individual of a fixed length and 

store it as the best solution
Step 2: while termination criterion is not met do

i. Generate neighbours to the existing individual
ii. Evaluate the fitness of all individuals
iii. Update the tabu list
iv. Select the best individual among all

end while
output: feasible path
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0 31 62 66 99 

Fig. 3 Encoding of an individual

3.1 Encoding of an Individual

All of the above three algorithms considered for our experiment begin with the
encoding of an individual. An individual is a candidate solution for the path planning
problem. Non-negative integers are used for the encoding of an individual as it takes
lessmemory and less space in optimization than the other encoding techniques [10].A
fixed length of the individual is generatedwhich comprises the grid labels to represent
the path to be travelled by the mobile robot. The elements of an individual consist of
a grid from where the path begins, the grids from the zones and the destination grid
where the path ends. For example, Fig. 3 demonstrates an individual (for the 10×10
grid of Fig. 1) where the path begins at g0 and g31, g62, g63 are zones through which
the path is traced, and g99 is the end point of path. Here, the position of g0 and g99
is fixed at the beginning and end of individual, respectively.

As GA and SA are population-based technique, we generate a fixed size of the
initial population of individuals for the experiments. The pool of individual repre-
sents a variety of solutions. The generated population may contain both feasible and
infeasible paths.

3.2 Fitness Evaluation

We evaluate the fitness of each individual using the objective function defined in
Eq. 6 for all three algorithms. We calculate the fitness value as the total distance
for feasible paths, and for infeasible paths, we take summation of total distance
with penalty, respectively. The penalty must be greater than the maximum possible
distance. Therefore, for our experiments, we took a penalty of 100 units. If there is an
infeasible path between any two elements of an individual, we add 100 every time.

3.3 Selection for GA

We have used the binary tournament selection method which selects the best candi-
date solutions and passes them to the next phase of GA. The idea is to select a better
individual and transfer them to the next generations [20].



270 B. G. Sumanth Bhaskar et al.

3.4 Crossover for GA

The crossover operator is only employed for GA to recombine two selected individ-
uals to create new solutions. For permutation encoding, partially mapped crossover
(PMX) is widely used as it generates an individual without any repetition. This tech-
nique helps the robot not to travel through an already travelled grid again. In PMX,
two crossover points are selected randomly, and respective elements are exchanged
in such a way that there are no repeated elements in the individual [20].

3.5 Modified Mutation for GA and SA

To generate a new solution, we have developed a modified variant of single-point
mutation [15] to ensure that a new grid is chosen specifically from the list of avail-
able zones Z. Algorithm 4 provides the steps followed for modified mutation for
our experiments. An individual is selected randomly from the population. Also, a
mutation point is chosen randomly. Then, a grid of the individual is replaced with
a new grid from the zones without any repetition. This is employed to GA and SA
only during our experiments. This operation helps to avoid premature convergence
and increase the diversity of the population.

Algorithm 4: _  ( , ) 
begin 

Select an individual  randomly  
A  is chosen randomly from  
Select a new grid  from  randomly 
Replace the value at  with  

end 

4 Experiments and Results

This section describes the experimental setup and analyzes the results obtained. We
have used two different sized datasets for our experiments, one with 10 × 10 grids
(see Fig. 2) and other with 20×20 grids (see Fig. 4). We have implemented GA, SA,
and TS as a solution technique to solve the proposed model. We take a population
size of 10 for both GA and SA to experiment with the datasets. For GA, we use
tournament selection with tournament size 2 and set the probability of crossover to
0.5. Mutation plays a vital role in generating better solutions and helps to escape out
of local minima. Therefore, we set the probability of mutation in GA and mutation
rate in SA to 0.8. Further, for SA, we set the values of a number of sub-iterations,
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Fig. 4 20 × 20 grid-based environment

number of neighbors, initial temperature, and temperature reduction rate to 5, 3, 0.1,
and 0.99. We keep the standard parameter settings for TS [12, 19]. The termination
criterion for all three algorithms is kept as 100 maximum iterations.

We have conducted 50 independent runs of each algorithm using both datasets.
We recorded the objective values of the best individual found at each generation.
We also note the running time taken by each algorithm to its complete execution.
In order to evaluate the efficiency of algorithms in terms of solutions generated, we
have calculated the variance over the obtained results. For comparative study, the
average values of 50 runs of each algorithm are summarized in Table 1 for 10 × 10
and 20× 20 datasets. We can witness that all the three algorithms have been able to
generate feasible and varied solutions. It can be observed that the GA-based solution
approach has produced much better results compared to SA and TS. Figures 5 and
6 present the graph plot of average fitness versus iteration for 10 × 10 and 20 × 20

Table 1 Comparative results for 10 × 10 and 20 × 20 grids

10 × 10 20 × 20

Algorithms Best fitness Variance Running time Best fitness Variance Running time

GA 14.204 0.0249 2.2555 29.451 0.0183 5.1117

SA 14.724 0.1703 6.2706 29.883 0.1141 15.8222

TS 15.68 3.5309 0.3612 30.682 0.5838 1.2295
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Fig. 5 Average best fitness
over varying iterations for
10 × 10

Fig. 6 Average best fitness
over varying iterations for
20 × 20

datasets, respectively. The convergence of GA is much better and faster compared to
SA and TS. Thus, we can conclude that GA has outperformed SA and TS in terms
of solution generations.

To evaluate the significant difference,we have also conducted anANOVA testwith
a confidence level of 95% using the best fitness values obtained at the last generation
of each 50 runs of the algorithms. The graphs for comparison of significance differ-
ence of means for 10× 10 and 20× 20 are represented in Figs. 7 and 8, respectively.
Here, GA, SA, and TS are represented by 1, 2, and 3, respectively, on Y-axis of the
graphs. From Fig. 7, we can see that there is no significance difference in the means

Fig. 7 Comparative results
of ANOVA test for 10 × 10
using GA, SA, and TS
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Fig. 8 Comparative results of ANOVA test for 20 × 20 using GA, SA, and TS

(a) Graphical illustration (b) Start of simulation (c) Instance during simulation

Fig. 9 Generated solution for 10 × 10 grid environment simulated on Webots for GA

of GA and SA. On the other hand, mean of TS is significantly different and larger
than the means of GA and SA. From the analytical study of Fig. 8, we can conclude
that the means of all three algorithms are significantly different. Here, again TS has
produced a solution with larger variation and poor fitness values compared to GA
and SA. For both of the datasets, GA has been able to generate a better solution with
good convergence. We further simulated both the environments in Figs. 2 and 4 on
Webots R2019a version 2.0 simulator for a six-wheeled robot. In Fig. 9, the leftmost
image illustrates a feasible path generated by GA, and the two screenshots on the
right demonstrate the simulation of the obtained path for 10× 10 grid environment.
The video of this simulation can be seen at the link provided in [21]. Here, the brown
boxes with alphanumeric characters are obstacles, black grids are the zones given by
GA, and green grid is the target position.

5 Conclusion

In this study, we have proposed a technique to design the path between grids for
a robot using the zones. This helps to reduce the search space and find an optimal
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path for a robot, avoiding the collisions with the static obstacles. In order to increase
diversity, we have incorporated a modified mutation technique to ensure a selection
of grids from the available zones without any repetition. For a fair comparison, we
have implemented three different solution techniques using GA, SA, and TS and
check the efficiency considering two differently sized datasets. The comparative
analysis and significance test of the algorithms are done using the results obtained.
All three algorithms have been able to generate feasible solutions, but the GA-based
technique has shown better performance in terms of solution generations. We have
also performed the simulation of solutions obtained in Webots simulator using a
mobile robot. Further, we will design an environment for a manufacturing process
using multiple mobile robots and identify other critical objectives of the problem.
We will also formulate the multi-objective path planning problem and solve it with
other multi-objective EAs.
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