)

Check for
updates

Design and Implementation of Key
Extension and Interface Module
Based on Quantum Circuit

Chengcheng Wang, Jiahao Sun, Zhijin Guan, Jiaging Chen,
and Yuehua Li®™®

School of Information Science and Technology,
Nantong University, Nantong, Jiangsu, China
lyh@ntu. edu. cn

Abstract. Encryption technology that based on quantum circuit is an important
technology in the field of information security and the encryption system
designed by this technology can improve the encryption effect, and its anti-
attack ability is (2" — 1)! times of the traditional method. In order to increase the
complexity of the key that belongs to the encryption system, we propose a
method of constructing the algorithm of key extension based on quantum circuit
and finish the design of the key extension module, in the method, we transform
the nonlinear transformation into linear transformation which can be constructed
by quantum circuit easily, and complete the transformation of operation in
quantum logic which can simplify the generation process while maintaining the
same performance. In order to increase the practicability of encryption system
based on quantum circuit, we analyze the characteristics of the encryption
system and complete the design of the interface module. What’s more, the key
extension module and the interface module are tested under the environment of
QUARTUS and real object, and the validity and correctness of the two modules
are verified.

Keywords: Quantum circuit - Key extension - Interface - Encryption

1 Introduction

With the booming of new information technologies such as cloud computing and 10T,
all kinds of data are expanding rapidly [1]. However, most kinds of emerging tech-
nologies are still in the initial stage of development with the immature information
protection technology, so there will inevitably be security problems such as Informa-
tion theft, tampering and disclosure when a large number of sensitive information is
processed, transmitted and stored on the network. Therefore, reliable and efficient
technology of encryption has become a research hotspot in all walks of life [2].
Encryption technology that based on quantum circuit is an important technology to
protect the security of network. It uses quantum circuit to construct encryption algo-
rithm and realizes it with hardware to form encryption system of quantum circuit, the
encryption system can not only improve the encryption efficiency, but also increase the

encryption complexity by (2" — 1)! times [3].

© Springer Nature Singapore Pte Ltd. 2020
K. Li et al. (Eds.): ISICA 2019, CCIS 1205, pp. 72-86, 2020.
https://doi.org/10.1007/978-981-15-5577-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5577-0_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5577-0_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5577-0_6&domain=pdf
https://doi.org/10.1007/978-981-15-5577-0_6

Design and Implementation of Key Extension and Interface Module 73

Document [3] proposes a construction method of quantum circuit for multiplication
in finite field, and constructs encryption algorithm based on the method, however, it
only completes the hardware design of the encrypted part and the decrypted part based
on quantum circuit. In reference [4], a quantum circuit implementation method is
proposed for S-box transformation in AES algorithm, and the idea of constructing
encryption algorithm based on quantum circuit is proposed. Literature [S] proposes
Quantum fully homomorphic encryption scheme based on universal quantum circuit
and does research on the process of quantum information. In reference [6], authors
describe the advantages and feasibility of applying reversible Logic in cryptography
and coding theory on the basis of confirmatory study. Document [7] proposes a method
of synthesis and optimization for linear nearest neighbor quantum circuits by parallel
processing which can reduce the quantum cost for the design and implementation of
quantum circuits.

The existing literatures provide a theoretical idea for the research of encryption
system based on quantum circuit, and complete the design of encryption and decryp-
tion part. However, the encryption and decryption process of the encryption system
needs the participation of the key. The complexity and security of the key largely
determine the encryption complexity and anti-attack ability of the encryption system,
so the design of the key extension and generation part is particularly important. Fur-
thermore, the encryption system must have an interface to interact with users or devices
in the practical application, so the design of the interface part is also essential.

For the purpose of improving the complexity of key generation in the encryption
system and increasing the security of the key, this paper designed the key extension
module based on quantum circuit. And this module can expand the combination types
of generated key to 2"!, greatly increase the difficulty of cracking. At the same time, in
order to improve the practicability of the encryption system, an interface module is
designed, and the user or device can implement encryption and decryption operations
of information through different interfaces in the module.

2 Relevant Technology

2.1 Quantum Gate

Quantum gates are basic units of quantum circuits], it can be expressed by matrix or
vector multiplication which means states of quantum bit [8]. Common quantum gates
are CNOT gates and SWAP gates, Fig. 1 shows a CNOT gate, when the control bit B is
1, the target bit A is reversed, and when the control bit B is 0, the target bit A remains
unchanged. Figure 2 shows a SWAP gate, which indicates that two connected quantum
bits A and B will be exchanged, so it is also called a switching gate.

B B' B —X— B
A A' A A

Fig. 1. CNOT gate Fig. 2. SWAP gate

74 C. Wang et al.

2.2 Quantum Circuit

Quantum circuit is a logic circuit with function and is built by a series of quantum gates
[8]. Quantum circuit has 2"! kinds of substitutions for the input of n-bits, its input
number is equal to the output number and it has no heat loss, no fan-in, no fan-out, no
feedback [5]. Figure 3 is a quantum circuit which consists of seven SWAP gates
cascaded with three CNOT gates, it represents the multiply 2 operation on a finite field.

b7 S c7
b6 :L - c6
) c
b4

b3]/ c3
b2 ‘ 2
bl /‘\ —D cl
“ VDG Wy

Fig. 3. Quantum circuit

c5

/
K—
U

c4

i«
D
N

2.3 Encryption Technology and Encryption System of Quantum Circuit

Encryption technology of quantum circuit is to apply the characteristics of non-
feedback and high complexity of quantum circuitry to the field of encryption tech-
nology, it can design encryption algorithms based on quantum circuit [3]. The
encryption system of quantum circuit is designed by encryption technology of quantum
circuit, it consists of four parts: encryption module, decryption module, key extension
module and interface module, Among them, encryption module, decryption module
and key extension module are all constructed based on quantum circuit, meanwhile the
interface module is designed by hardware language which can adapt to the charac-
teristics of quantum circuits and work with encryption and decryption module.

Figure 4 is the framework of the encryption system. The key extension module and
interface module designed in this paper are used to work with the encryption module
and the decryption module to improve the performance of them. The key extension
module is connected to the encryption and decryption module in order to provide the
required keys for them. Similarly, the interface module is connected to the encryption
and decryption module, it can supply convenience for users to exchange information
with them and realize the operation of information encryption or decryption. In addi-
tion, A switch is used in the system to decide whether the information enters the
encryption module or the decryption module, and also decide whether the information
is output by the encryption module or the decryption module.

Design and Implementation of Key Extension and Interface Module 75

— Encrypt Module -T
4
key
s
npu be processed . information utpu
Input {Interface eywllizfﬂ;:lon Interface @
Module Module
key
v

—p Decrypt Module !

Fig. 4. Structural framework of encryption system

3 Design of Key Extension Module Based on Quantum
Circuit

3.1 Key and Key Extension

In cryptography, the key is secret data used to complete cryptographic applications [9].
In the encryption system designed in this paper, the key is used for the encryption and
decryption module to complete the encryption and decryption operations.

Key extension refers to the extension of the initial key with a small number of bits
into the key with large number of bits [9]. In the encryption system designed in this
paper, the initial key has 128 bits, which needs to be extended to 1408 bits, the
extended keys are called round key. The necessities of key extension are as follows:

1. The key extension can eliminate the symmetry and similarity of the generation
methods for different keys, and increase the complexity of the key, thus improving
the encryption complexity of the encryption system.

2. The key extension can expand the difference of the key, therefore, each bit of the
initial key can directly or indirectly affect many bits in the process which will make
key cracking more difficult.

3. The key extension makes the key sufficiently non-linear to prevent that the differ-
ence of the keys completely determined by the initial key, thus the key extended
from the initial key can also affect the other extended keys, and it will expand the
difference of many steps in encryption process to enhance the encryption effect.

3.2 Introduction of Key Extension Algorithms

Key extension is the process of expanding 128-bit initial key to 1408-bit round key. For
convenience, we regard 128-bit initial key as a matrix with four rows and four columns,
each element of the matrix has 8-bit data. The key extension process is as follows:

1. The four elements in a column of matrix is counted as W([j], it has 32 bits, therefore,
the initial keys are counted as W[0], W[1], W[2], W[3];

2. The extended keys are also expressed in the form of W[j], where j is an integer and
the range of it is [4, 43].

76 C. Wang et al.

3. If j%4 = 0, w[j] = w[j — 4] @ g(w[j — 1]), otherwise, w[j] = w[j — 4] & w[j — 1].
Where “g()” represents g-function and “@©” denotes XOR.

The contents of g-function are as follows:

a. Move the corresponding W[j] cycle to the left by 8 bits;

b. S-box substitution for each byte in the corresponding W[j];

c. XOR the corresponding WI[j] with constants (Rcon[j/4], 0, 0, 0), Rcon is a one-
dimensional array, Rcon[1] = 0 x 01, Rcon[i] = Rcon[i — 1]*(02) (i > 1, “*(02)”
represent multiplication over finite fields).

3.3 Theory of Designing Key Extension Algorithms Based on Quantum
Circuits

Feasibility and Necessity

1. The step (b) of g-function in key extension algorithm involves S-box replacement,
which maps an 8-bit data to another 8-bit data by searching the S-box table. The
traditional way to realize S-box replacement is to store the S-box table in read-only
memory, and then compare the input 8-bit data with the memory to find the cor-
responding 8-bit data. Using quantum circuit to realize S-box replacement does not
need the tedious operation of looking up tables, it evolves the logic of S-box table
into the conversion relationship between finite field and compound field and the
result can be obtained only by conversion between different fields. In the whole
process, only addition on the finite field is involved which can be implemented by
using simple CNOT gates. Therefore, realizing S-box replacement based on
quantum circuits can not only accelerate the replacement rate and reduce the delay
time, but also reduce power consumption and hardware size [10].

2. The step (c) of g-function in key extension algorithm involves XOR, division and
multiplication over finite fields. Traditional methods for hardware to implement
division operation is that they first expand the digits of the dividend, and then
continuously compare the high digits of the dividend with the divisor to determine
the value of quotient until the end of the calculation. The whole process involves
many operations such as comparison, subtraction and shift. If we implement divi-
sion operations with quantum circuits, it generally involves only shift operation
which can be implemented by SWAP gates in quantum circuits. In addition, XOR is
equivalent to addition over finite fields. Document [3] designs a method for
quantum circuits to implement operations over finite fields, and draws a conclusion
that the operation rate is higher. Therefore, the implementation of this step based on
quantum circuits can simplify the process, make the operation faster and reduce the
delay [11].

3. The key extension algorithm contains many operations. The operations of dividing,
XOR and g- function in formulas have been introduced in the preceding article, On
the step of controlling the XOR of two data according to the value of “j%4”, the
traditional methods will design the data selector, when the quantum circuit realizes
it by using the TOFFOLI gates which have double control bits. So the quantum
circuit can realize critical path with high working frequency and reduce the occu-
pancy of resources in hardware.

Design and Implementation of Key Extension and Interface Module 77

Advantages of Designing Key Extension Algorithm Based on Quantum Circuit.
Designing Key Extension Algorithm based on quantum circuit does not change the
algorithm itself and the complexity, what change are the implementation method of the
algorithm. Therefore, the characteristics of quantum circuits will be applied to the
algorithm, add the following three advantages for the key extension:

1. Quantum circuit’s input number is equal to output number, it has no fan-in, no fan-
out, no heat loss [6]. Therefore, using quantum circuit to implement key extension
algorithm can greatly reduce the energy consumption in the process of key
extension, reduce the occupancy rate of hardware resources, and improve the rate at
which the key expands.

2. There are 2"! kinds of reversible networks for input and output vectors of quantum
circuits, and there are 2"! kinds of permutations for input of n-bit data [6]. There-
fore, the implementation of key extension algorithm with quantum circuit can
increase the complexity of the key extension process by (2" — 1)! times and it is
difficult to get all the secret keys from the partially extended keys, as a result, it
greatly increases the security of key extension.

3. In the encryption system, the key extension module is connected with the
encryption and decryption module to work with them, the encryption and decryp-
tion module are constructed by quantum circuits, Therefore, implementing the key
extension algorithm based on quantum circuits can make the key extension module
combine with encryption and decryption module more closely, and improve the
ability of the whole cooperative work.

3.4 Implementation of Key Extension Algorithms Based on Quantum
Circuit

The implementation of the key extension module is mainly divided into two steps,
Firstly, we complete the design of g-function, and then complete the implementation of
key extension according to the formula.

Realization of g-Function

1. Left shift of circulation. Left shift of circulation is to move the W[j] to the left for 8
bits. Since the operation of left shift is only a change of bit’s position, the quantum
circuit can be constructed by using the quantum SWAP gate, when converting it to
hardware circuit we can change the output sequence of circuit layout.

2. S-box replacement. S-box replacement is to replace the four bytes in W[j] with
another four bytes. In the implementation, the data W[j] in the finite domain GF(2®)

is transformed into its composite domain GF((24)2), after inversion in the com-

posite domain, the data is transformed back into the finite domain [10], finally the
reversible affine transformation is carried out and S-box replacement is finished.

3. XOR of Rcon. XOR of Rcon is an operation that realize XOR of W[j] and 32-bit
constant (Rcon[j/4], 0, 0, 0). Since the (Rcon[j/4], 0, 0, 0) is all zero except Rcon,
the first step is to construct the circuit to generate the values of Rcon. In addition,
using different values in Rcon array for XOR is depending on the value of “j/4”, so
it is necessary to construct the circuit to generate the value of “j/4”.

78

C. Wang et al.

(1) Circuit Construction of Generating Rcon Values. Rcon is a one-dimensional

array, Rcon[1] =0 x 01, Recon[i] = Rcon[i — 1]*(02) (i > 1, “*(02)” is the
multiplication over finite fields). Since 128-bit seed keys are expressed as W[0]
to W [3], the extended secret keys are expressed as W[4] to W[43], therefore the
range of 5" in W[j] is [4, 43], and the range of “j/4” is [1, 10], Rcon array only
needs to calculate the values of Rcon[1] to Rcon[10]. The quantum circuits of
generating Rcon value are shown in Fig. 5. It is necessary to prepare quantum
bits with initial state of | 00000001> to initialize the value of Rcon[1], then we
use SWAP gate and CNOT gate to realize multiplication of 2 over finite fields,
the circuit of multiplication is encapsulated as U device, and after Cascading 9
U devices with 8 CNOT gates [3], the construction of quantum circuit is fin-
ished. When Converting it into hardware circuit, we represent quantum auxil-
iary bit | 1 > with high levels, and quantum auxiliary bits | 0 > with low levels,
then cascade them with nine U devices to build hardware circuit. The hardware
circuit in Quartus environment is shown in Fig. 6.

100000001> —@ Reon[1]
[00000000> 4FHU Reon[2]
|00000000> é U Rcon[3]
100000000> > @-. Rcon[4]
100000000> ~rall Reon[5]
{00000000> Y Rcon[6]
100000000> —al Rcon[7]
100000000> — @-. Reon[8]
|00000000> é {Ul-@—— Reon[9]
100000000> é {E’-Rcon[lO]

Fig. 5. Quantum circuit graph of value generation of the Rcon array

(2) Circuit Construction of “j/4” Operation. “j/4” means that j is divided by 4 to

take an integer. The operation of dividing 8-bits data by 4 can be obtained by
shifting the data to the right by two bits, Suppose that the value of “j” is
b7bgbsbsbsb,yb by, then the two digits (b;bg) removed from the low bits are the
remainder, and the value (00b;bgbsbsbsb,) is the integral value divided by four.
When constructing the operation of “j/4” based on quantum circuits, we use
auxiliary bits | 0 > to supplement the two high bits [3] the right-shift operation
can be implemented by SWAP gates. When converting quantum circuits into
hardware circuits, we represent quantum bit |1 > with high level, and quantum
bit | 0 > with low level, the shift operation requires changing position during
layout. Quantum circuit of dividing four operations designed in this paper is
shown in Fig. 7.

Design and Implementation of Key Extension and Interface Module 79

00000001 ~@ Reon[1]
00000000 Reon(2]
00000000 | > Reon[3]
00000000 > Reon[4]

00000000 . Reon($]
00000000 , Reon[6]
00000000 Reon[7]

00000000 L Reon(8]

00000000 l“ Reon[9)]
00000000 Reon[10]

Fig. 6. Hardware circuit graph of value generation of the Rcon array

b0 c0
bl I 1 cl
ok 1

The result of

\[I — dividing 4 into
b4

c4 integers
b5 I \L c5
b6 1 \I” c6
- 1 l

c7

The result of
—p dividing 4 to get
the remainder

0> 1 o

|0> dl

Fig. 7. Quantum circuit graph of the operation of dividing 4

4. Encapsulation of g-Function circuit. The construction of key extension based on
quantum circuits is complex. In order to introduce the construction of subsequent
quantum circuits, we simplify the circuits of g-Function logically, encapsulate the
g-Function circuits in three steps 1, 2 and 3 as G devices, as shown in Fig. 8.

Fig. 8. G device

Overall Design of Key Extension Algorithms

The core content of key extension algorithm is as follows: If j%4 =0, w[j] =
w[j — 4] © g(w[j — 1]), otherwise, w[j] = w[j — 4] @ w[j — 1]; Since the whole
quantum circuit of key extension is complex and every four lines is a construction

80 C. Wang et al.

cycle, we only shows the partial quantum circuit of the key extension in Fig. 9. In the
figure, the left side is the input, the right side is the output, “| 0000... > represents |
0 > auxiliary bits of 32 bits.

When implementing the algorithm, XOR can be implemented by CNOT gates, the
g-function has been realized before which is represented by a G device. After cascading
80 CNOT gates and 10 G devices according to the rules, we finish the overall design of
key extension based on quantum circuit. When converting it to hardware circuit, we
can use logical gate XOR to implement CNOT gate. The partial hardware circuit in the
Quartus environment is shown in Fig. 10, the left side is the input, the right side is the
output, and the “0000...” means O bit which length is 32-bit.

wI[0] WIO]
Wi1] WI1]
w(2] W(2]
w3 —e W3]
[0000...... >%-@ £ i wi4]
[0000...... S I W[5]
[o0o0......> ddh o Wie]
|0000...... é w(7]
|0000......> 5 {G} i W8]
[0000...... A e w[9]
[0000......> 5 i W[10]
[0000...... &4 >i W[11]
[0000...... DG HD— w12

Fig. 9. Quantum circuit diagram of key extension module

wio] wio]
wi w1
wi2] wizl
wiz] @ W3]
0000...... L [e wi)
0000...... > t\ wis]
0000...... — ® wie]
0000...... L\:)—_) L w71
0000...... LD o wis]
0000...... T‘\D:)D £ wi9]
0000...... T—\WD- wiio]
0000...... T_“_\:)DT_W[H]
0000...... 'D— wi12]

Fig. 10. Hardware circuit diagram of key extension module

Design and Implementation of Key Extension and Interface Module 81

4 The Design of Interface Module

In order to make it easier for users to use the encryption module and the decryption
module, we research on the characteristics of the encryption and decryption module
and design the interface module to match them. The interface module has multiple
types of interface, such as UART, SPI, and the different interfaces can meet different
needs of users. The following takes the SPI interface as an example to describe how the
interface module is designed.

4.1 Introduction of the SPI Interface

SPI is a high-speed, full-duplex, synchronous communication bus [13] with four IO
pins: SCLK, MOSI, MISO, CS. When the SPI data is transmitted, the host selects the
slave to communicate according to “CS”, and then sends data according to the clock
“SCLK” via the “MOSI” line, the slave reads the data through the line. After that the
slave sends data from the MISO line, and the host reads data from the same line [13],
this process loops until the data transfer is complete. In addition, the SPI interface
needs to set the phase and polarity, the polarity (CPOL) sets the level of the idle clock
and the phase (CPHA) sets the clock edge for transmission of data. The phase and
polarity of the master and slave must be the same.

4.2 The Design of SPI Interface

The encryption and decryption module perform operations on the data sent by the user,
so the encryption and decryption module is a slave device, and the interface designed in
this paper is an interface of the slave device. Since the encryption and decryption
module perform operations on every 128 bits of data, a cache is needed to temporarily
store data received and to be transmitted from the device. We set the phase and polarity
to zero, in addition, when the operations of encryption and decryption are finished, the
processed information needs to be output, so the interface module is divided into an
input interface module and an output interface module. This article uses the Verilog
language to implement the design of the SPI interface.

Input Interface Module. The users or devices can input data into the encryption or
decryption module through the input interface module. Figure 11 is a logical repre-
sentation of the SPI input interface in the Quartus environment, in the figure,
“SPI_in_8” implements the function of receiving one byte of data and it stores the 8-bit
data received each time into the buffer “Buffer_128”. When the buffer is full of 128-bit
data, the 128-bit data is output to the corresponding encryption module or decryption
module. The main implementation steps are as follows:

82

C. Wang et al.
EE:::::::::::::::::,:_,,:_,;,:,,:_E,:_,:_;,: EEEE s
clk jiami_in[127..0]
rxd_data[7..0] nd_data[7.0] jiemi_in[127.0) ™ gane
XW rst_n xd_flag rst_n rtx_done ——X
586K | CSN key :
Smost | SCK xd_flag
. " MOSI i
;1ins

Fig. 11. Logic diagram of input interface module

. Capture the Trigger Edge. Each step of the SPI must be performed after the trigger

edge of the clock is generated and this article sets the rising edge as the trigger edge.
“sck_rl1” is used to record the high or low of the previous clock, and “sck_r0” is
used to record the high or low of the next clock. If “sck_r1” is low and “sck_r0” is
high, the rising edge is captured.

. Receive and Store 8-bit Data. The first step is to determine whether the user wants

to send data for encryption and decryption, this step can be achieved by determining
whether the selection signal is low level. If the selection signal is low, the value
obtained by the pin “MOSI” will be stored in the register under the clock. When the
rising edge is captured and the select signal is O, the data will be received.
Meanwhile, the number of the received data is recorded and when the number is full
of 8 bits, the value of corresponding flag is set to 1 and it indicates the completion
of data transmission in one byte.

. Setting 128-bit buffer. The data of the register in step 2 will be input into the buffer,

and when the buffer is stored in 128-bit data, the data will be output to the
encryption module or the decryption module. In implementation, we can define
memory data which is 16 bits long and 8 bits wide to store 8-bit data received at a
time. In addition, a switch is needed to determine whether the data in buffer enter
the encryption module or decryption module.

. Data Filling. When the number of bits needed to be encrypted is not a multiple of

128, it is necessary to fill in the data to meet the requirements of data size in buffer.
We record the number of bytes entering the buffer, if the number less than 16, all the
bytes in the vacancy are set at 0-bit. When the data is restored, the original data can
be obtained only by clearing all the parts that is set to O-bit.

Output Interface Module. The data processed by encryption or decryption module is
output by output interface module. The output interface module and the input interface
module are inverse processes and their implementation methods are similar, therefore,
this article does not make a superfluous introduction for it.

Design and Implementation of Key Extension and Interface Module 83

5 Verification and Testing

In order to verify the validity of the key extension module and the interface module, we
verify the key generation of the key extension module and carry out the transmission
test of the interface module. Then the analysis results are obtained.

5.1 Verification of the Key Extension Module

The key extension module expands the original key of 128-bit into the key of 1408-bit
according to the rule, each 32-bit key is a group and there are 44 groups in total. The
process of verification is as follows:

1. The 128-bit original key (hexadecimal) entered is “ 3E 19 3D 71 25 56 6A 49 4F 4B
3F 7C 2A 8C 62 23”.
2. The 1408-bit extended key (hexadecimal) generated is shown in Table 1.

Table 1. 1408-bit Extended key

Group name | Group data Group name | Group data
WI[O0] 3BE193D 71 |W[22] 3A 9E 49 5B
WI[1] 2556 6A 49 | W[23] 79 93 58 98
WI[2] 4F 4B 3F 7C | W[24] 02 A2 09 5F
W3] 2A 8C 62 23 | W[25] CA 6F 2F 42
W[4] C8 B6 CC E9 | W[26] FO F1 66 19
WI5] ED EO A6 A0 | W[27] 89 62 3E 81
Wi[6] A2 AB 99 DC | W[28] ED FB 77 Cl1
W[7] 88 27 FB FF | W[29] 27 94 58 83
W8] 03 16 DO 72 | W[30] D7 65 3E 9A
WI[9] EE F6 76 D2 | W[31] SE 07 00 1B
WI[10] 4C 5D EF OE | W[32] BC FB BB A0
W[11] C4 7A 14 F1 | W[33] 9B 6F E3 23
W[12] D7 8F F3 A8 | W[34] 4C 0A DD B9
WI[13] 3979 85 7A | W[35] 12 0D DD A2
W[14] 7524 6A 74 | W[36] 46 03 95 0A
WI[15] B1 SE 7E 85 | W[37] DD 6C 76 29
WI[16] BE OE 80 48 | W[38] 91 66 AB 90
WI[17] 87770532 | W[39] 83 6B 76 32
W[18] F2 53 6F 46 | W[40] AF B9 07 8A
W[19] 43 0D 11 C3 | W[41] 72 D5 71 A3
W[20] 4f BA 23 2F | W[42] E3 B3 DA 33
W[21] C8 CD 26 1D | W[43] 60 D8 AC 01

84 C. Wang et al.

The above keys are shown in hexadecimal form, every two characters represents
hexadecimal number of 8-bit. The extended keys in Table 1 represent a set of 32-bit
keys from top to bottom, the first list shows W[0] to W[21], the second list shows W[22]
to W[43]. The number of output key is 1408 bits, and the content of them conforms to
the logic of the key extension algorithm, therefore Verification passed.

5.2 Transfer Test of Interface Module

Taking SPI interface as an example, this paper builds a communication environment
including master device and slave device to verify the correctness of the interface.

Test Preparation.

1. SPI Upper Computer. The upper computer is the host equipment, which is used to
communicate with the slave interface designed in this paper. The right of Fig. 12
shows a USB-to-SPI device, Users can set the length of transmission data and see
the data sent and received through the corresponding software.

2. SPI Lower computer. The SPI lower computer is a slave device, which can com-
municate with the upper computer. Firstly, we connect the two output pins of the
input module directly with the corresponding input pins of the output module, so
that the information received by the input module will be directly transmitted to the
output module for output, which is convenient for testing. Secondly, the connected
lines are burned into the core board of the FPGA which is shown in the left of
Fig. 12, and after setting the pin parameters, the FPGA has the function of SPI
interface designed in this paper [14], which is used as the lower computer.

3. Connection of Upper and Lower Computer. Connecting the prepared upper com-
puter with the lower computer in the way shown in Fig. 12 when the upper com-
puter connects the PC.

§ Upper fr;achiné:

Fig. 12. Physical connection diagram of upper and lower machine

Testing Process

1. Input the data to be transmitted. As shown in Fig. 13, we input hexadecimal data of
8-bit in each address, totaling 16 addresses, so the total length is 128 bits.

Design and Implementation of Key Extension and Interface Module 85

Data Written from MOSI

s | o]l 1| 2| 3| &| s| 6|l 7| 8| 9| 10] 11| 42| 13| 14| 15] 16
ox 3E 19 30 71 25 56 6A 49 4F 48 3IF 7C 2A 8C 62 23

Fig. 13. Input data

2. Receive the data returned by the lower computer. The data read by the host
computer from MISO is shown in Fig. 14.

Data Read from MISO

w | ol 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 11| 12| 13| 14| 15/ 16
ox 3E 19 30 71 25 5 6A 49 4F 4B 3IF 7C 2A 8C 62 23

Fig. 14. Received data

As can be seen from the above two graphs, the data transmitted from the host
computer to the FPGA is exactly the same as the data received from the FPGA, and the
verification is successful.

6 Summary

This paper designs and implements the key extension module based on quantum circuit
and interface module based on logic language, it also verify the correctness and validity
of the two modules. This design can be used in the encryption system of quantum
circuit to improve the encryption complexity, cracking difficulty and practicability. In
the further work, we will design the two modules into the encryption system even
better, and construct a complete encryption system to protect the hot technologies in
urgent need of security, such as narrowband Internet of Things.

Acknowledgements. This work was partially supported by National Natural Science Founda-
tion of China (NO. 61402244), Natural Science Foundation of Jiangsu Province (NO.
BK20151274) and Next Generation Project of Technology Innovation for CERNET Internet
(NO. NGII20180310).

References

1. Xu, L., Jiang, C., Wang, J.: Information security in big data: privacy and data mining. IEEE
Access 2, 1149-1176 (2014)

2. Natalia, M., Alexander, T.: Internet of Things: information security challenges and solutions.
Cluster Comput. 22, 103-106 (2018)

3. Chen, J., Guan, Z., Chen, X.: Design and hardware implementation of quantum reversible
logic encryption algorithms. J. PLA Univ. Sci. Technol. (Nat. Sci. Ed.) 0(0), 1-3 (2018)

86

10.

11.

12.

13.

14.

C. Wang et al.

. Liu, Y., Zhu, F.: Quantum circuit implementation of S-Box transform in AES. Inf. Secur.

Commun. Secrecy 5, 92-94 (2008)

. Liang, M.: Quantum fully homomorphic encryption scheme based on universal quantum

circuit. Quantum Inf. Process. 14(8), 2749-2754 (2015)

. Datta, K., Sengupta, I.: Applications of reversible Logic in cryptography and coding theory.

In: International Conference on VIsi Design and International Conference on Embedded
Systems, pp. Ixvi-Ixvii. IEEE Computer Society. Washington DC (2013)

. Zhang, Z., Guan, Z., Zhan, H.: A method of synthesis and optimization for linear nearest

neighbor quantum circuits by parallel processing. Quantum Inf. Comput. 18(13), 1095-1114
(2018)

. Li, Z., Chen, S., Song, X.: Quantum Circuit synthesis using a new quantum logic gate library

of NCV quantum gates. Int. J. Theor. Phys. 56(4), 1023-1038 (2017)

. Du, Z., Xu, Q., Zhang, J.: The design of a key extension algorithm based on dynamic

dislocation counts. In: 11th International Conference on Computational Intelligence and
Security (CIS), pp. 345-349. IEEE, Shenzhen (2015)

Guan, Z., Chen, J., Chen, X.: Implementation method of quantum byte replacement
hardware module for AES hardware encryption system: CN108322305A[P], 24 July 2018
Nayak, A., Sen, P.: Invertible Quantum Operations and Perfect Encryption of Quantum
States. Quantum Inf. Comput. 7(1-2), 103-110 (2012)

Bossuet, L., Datta, N., Mancillas-Lopez, C.: ELmD: a pipelineable authenticated encryption
and its hardware implementation. IEEE Trans. Comput. 65(11), 3318-3329 (2016)

Wei, P., Zhang, C., Huang, X.: Design of a high-performance and dynamic reconfigurable
SPI IP core with master and slave mode. Appl. Electron. Tech. 44(3), 15-18 (2018)

Xie, Z.: A design of PCI target interface based on FPGA. Adv. Mat. Res. 186, 342-347
(2011)

	Design and Implementation of Key Extension and Interface Module Based on Quantum Circuit
	Abstract
	1 Introduction
	2 Relevant Technology
	2.1 Quantum Gate
	2.2 Quantum Circuit
	2.3 Encryption Technology and Encryption System of Quantum Circuit

	3 Design of Key Extension Module Based on Quantum Circuit
	3.1 Key and Key Extension
	3.2 Introduction of Key Extension Algorithms
	3.3 Theory of Designing Key Extension Algorithms Based on Quantum Circuits
	3.4 Implementation of Key Extension Algorithms Based on Quantum Circuit

	4 The Design of Interface Module
	4.1 Introduction of the SPI Interface
	4.2 The Design of SPI Interface

	5 Verification and Testing
	5.1 Verification of the Key Extension Module
	5.2 Transfer Test of Interface Module

	6 Summary
	Acknowledgements
	References

