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Abstract. The multi-objective optimization problem is an important research
direction in the field of optimization. Because the traditional mathematical
programming method often cannot achieve the optimal global solution, the
researchers introduced the heuristic method into the multi-objective optimization
problem. The heuristic method is a method of searching based on empirical
rules, which can get the optimal solution or solution set of problems in the
limited search space. In this paper, we proposed a multi-objective evolutionary
algorithm based on uniform design and differential evolution, which use the
uniform design table to construct the weight vector and utilize the crossover in
differential evolution and mutation process to replace the simulated binary
intersection and the simulated polynomial variation. Compared with the clas-
sical algorithm, the experimental results show that the improved algorithm is
superior to the original algorithm.

Keywords: Multi-objective optimization � Heuristic method � Evolutionary
algorithm � Uniform design � Differential evolution

1 Introduction

In general, optimization problem with more than one optimization goals need to be
processed at the same time is called multi-objective optimization problem (MOP, [1]).
A typical approach to directly solve a multi-objective optimization problem is to
convert the multi-objective optimization problem into a single-objective optimization
problem in a certain way (aggregation by weight or transformation multiple objectives
into constraint conditions), to obtain an optimal solution. However, this kind of tra-
ditional method can only be applied to a small set of problems and has poor gener-
alization. Secondly, most algorithms can only get a locally optimal solution. If the
neighborhood is enlarged, the complexity of the algorithm will be increased.
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In 1967, Rosenberg proposed that genetic algorithms could be used to solve multi-
objective optimization problems [2]. Eighteen years later, Schafferf proposed a vector-
based fitness calculation method, called Vector Evaluated Genetic Algorithm (VEGA,
[3]), which is an extension of SGA (Simple Genetic Algorithms). A multi-objective
genetic algorithm combined with genetic algorithms is proposed for the first time,
creating a precedent for multi-objective heuristic optimization algorithms. Since 1967,
multi-objective optimization problems have begun to attract the attention of researchers
in various fields. By the end of the 20th century, as a new method to solve multi-
objective optimization problems, the evolutionary algorithm of multi-objective
heuristic optimization algorithms has attracted much attention, and some have suc-
cessfully applied to the project.

Multi-objective optimization algorithms based on evolutionary algorithms are
mostly characterized by non-dominated selection and diversity preservation strategies
based on shared functions. In 1993, Fonseca and Fleming proposed the Multi-Objective
Genetic Algorithm (MOGA, [4]). Srinivas and Deb proposed the Non-Dominated
Sorting Genetic Algorithm (NSGA, [5]). Horn and Nafpliotis proposed the Niched
Pareto Genetic Algorithms (NPGA, [6]), which are commonly called the first-
generation evolutionary multi-objective optimization algorithms. In 2002, Zitzler and
Thiele proposed the Strength Pareto Evolutionary Algorithm (SPEA, [7]). In 2000,
Knowles and Corne proposed the Pareto Archived Evolution Strategy (PAES, [8]), and
in 2002, Deb et al. proposed the NSGA-II, which is still widely used up to now,
obtained by improving NSGA [9]. In 2003, Moore and Chapman proposed the first
method to solve the multi-objective optimization problem using PSO, in which they
introduced the Pareto preference to change records and use individual optimal locations
[10]. Ray et al. introduced the Pareto sorting strategy into PSO to solve multi-objective
optimization problem, and adopted crowding degree to maintain the diversity of par-
ticles [11]. Coello and Lechuga introduced the Pareto archiving evolution strategy into
PSO to obtain MOPSO [12], and based on artificial immunity, they proposed the multi-
objective immune system algorithm (MISA, [13]), which first applied an artificial
immune system to solve the multi-objective optimization problems. Luh, Chueh, and
Liu proposed the multi-objective immune algorithm (MOIA, [14]), in which the
antibody adopts binary string encoding. Based on distributed estimation, Khan et al.
proposed the multi-objective Bayesian optimization algorithm (mBOA, [15]), which
combined the non-dominant selection strategy in NSGA-II with Bayesian Optimization
Algorithm (BOA) to solve the spoofing multi-objective optimization problem. Lau-
manns et al. also proposed a multi-objective optimization algorithm based on Bayesian
optimization, which combined SPEA2 and BOA to solve the multi-objective knapsack
problem [16].

Domestic researchers have also proposed a variety of multi-objective heuristic
optimization algorithms. In response to the multi-objective optimization problem with
constraints, Prof. Cai Zixing and Dr. Wang Yong from Central South University
proposed a new evolutionary algorithm based on the existing multi-objective
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optimization technology solving the optimization problem with constraints and getting
good results [17]. In the research of multi-objective algorithm based on particle swarm,
Li Xiaodong introduced the non-dominant sorting mechanism of NSGA-II into PSO
and adopted niche strategy to ensure the diversity of solutions, achieving excellent
results [18]. In the research on multi-objective Optimization Algorithm based on
artificial immunity, Prof. Jiao licheng, Prof. Gong Maoguo, and Dr. Shang Ronghua
et al. proposed Immune Dominance Clone Multi-objective Optimization Algorithm
(IDCMA, [19]). In 2008, Prof. Gong Maoguo and Prof. Jiao Licheng et al. presented
the nonsorted neighbor immune algorithm (NNIA, [20]), which used an individual
selection method based on non-dominant neighbors. In the study of multi-objective
optimization algorithm based on density estimation, Zhang Qingfu and Zhou Aimin
et al. proposed Regularity Model based Multi-objective Estimation of Distribution
Algorithm (RM-MEDA) which is a classic algorithm combined with distributed esti-
mation algorithm and multi-objective optimization algorithm [21]. In the study of
multi-objective optimization algorithm based on co-evolution, Liu Jing proposed a
multi-objective evolutionary algorithm based on co-evolution, in which a crossover
operator and three co-evolution operators were designed to maintain the diversity of
individuals in the population and accelerate the convergence rate [22]. Tan Kaichen
et al. proposed a new distributed cooperative co-evolutionary algorithm (DCCEA, [23])
based on the idea of distributed cooperative coevolution. In 2010, Prof. Tan Ying et al.
from Peking University proposed the fireworks algorithm, which is a new idea of
optimization problem study [24]. In 2013, Dr. Zheng Yujun et al. proposed the
application of multi-target fireworks algorithm to the variables in oil crop production
[25]. In 2016, Prof. Xie Chengwang et al. proposed to introduce an elite reverse
learning mechanism into multi-objective fireworks algorithm to make the algorithm
better, which provided a new research direction for multi-objective optimization [26].

This paper proposes MOEA/D based on uniform design and differential evolution.
According to the existing multi-objective heuristic optimization algorithm combined
with existing mathematical knowledge and differential evolution algorithm, the
improvement of MOEA/D algorithm was proposed, and compared with the original
algorithm in experimental analysis.

2 Multi-objective Evolutionary Algorithm

2.1 Problem Formulation of Multi-objective Optimization

In general, the multi-objective optimization problem consists of n decision variables,
M objective functions, and K constraints, which can be formulated as follows.

min y
! ¼ f ð x!Þ ¼ ½f1ð x!Þ; f2ð x!Þ; � � �; fMð x!Þ�

s:t:
gið x!Þ� 0 i ¼ 1; 2; . . .; p

hið x!Þ ¼ 0 i ¼ 1; 2; . . .; q

8>><
>>: ð1Þ
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where x
! ¼ x1; x2; . . .; xnð Þ 2 D is the decision vector; y

! ¼ f1; f2; . . .; fMð Þ 2 Y repre-
sents the target vector; D is the decision space formed by the decision vector; Y

represents the target space formed by the target vector; gi x
!� �

� 0 i ¼ 1; 2; . . .; pð Þ
defines p inequality constraints; hi x

!� �
¼ 0 i ¼ 1; 2; . . .; qð Þ defines q equality

constraints.

Definition 1 (Pareto dominance). If x1; x2 2 Xf is two feasible solutions to the multi-
objective optimization problem (1), then x1 Pareto dominates x2 if and only if

8i ¼ 1; 2; . . .;M; fi x1ð Þ � fi x2ð Þ ^ 9 j 2 1; 2; . . .;Mf g; fi x1ð Þ \ fi x2ð Þ ð2Þ

For short, x1 dominates x2, which can be denoted as x1 � x2, also called compared with
x2, x1 is Pareto dominant.

Definition 2 (Pareto optimal). Solution x� 2 Xf is Pareto optimal (or non-dominated),
if and only if

!9 x 2 Xf : x � x� ð3Þ

Definition 3 (Pareto frontier). The target vector corresponding to all Pareto optimal
solutions in the Pareto optimal set Ps constitutes the surface, which can be represented
as:

PF ¼ Fðx�Þ ¼ ðf1ðx�Þ; f2ðx�Þ; � � �; fMðx�ÞÞT j x� 2 Ps
� � ð4Þ

2.2 Multi-objective Evolutionary Algorithm Based on Decomposition
(MOEA/D)

MOEA/D decomposes the multi-objective optimization problem into N scalar sub-
problems, which can be solved simultaneously by evolving the population of solutions.
In each generation, the population is a collection of optimal solutions for each sub-
problem selected from all generations. The degree of association of two adjacent sub-
problem keys is determined by the distance between their aggregation coefficient
vectors. For two adjacent sub-problems, the optimal solution should be very similar.
For each sub-question, it can be optimized with information about its adjacent sub-
problems. The details of MOEA/D are summarized in Algorithm 1.
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3 MOEA/D Based on Uniform Design and Differential
Evolution

3.1 Generate a Weight Vector Using Uniform Design Methods

In MOEA/D, the simplex lattice point design is used to set the weight vector, but the
generated weight vector points are not distributed uniformly, and there are too many
points on the boundary, so that the weight of some targets in the sub-question is zero. We
use a uniform design method to generate uniformly distributed weight vectors. The basic
idea behind uniform design is to make the experimental points in the factor space have
better uniform dispersion, and to minimize some uniformity measure. LetUnðqsÞ denotes
the uniformdesign table,whereU denotes a uniformdesign table, S denotes the number of
factors, q is the number of experimental levels, and n denotes the number of experiments.

In this paper, we use the good lattice point method to construct a uniform design
table UNðNm�1Þ and use the reliable deviation (CD2) as the uniformity measure to
generate N weight vectors with uniform distribution of m dimensions. The use of good
lattice point method to construct a uniform design table involves the following two
definitions. The results of uniform design in this paper are discussed on the basis of the
following definitions.
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Definition 4. If each column element of a n� s matrix U ¼ ðuijÞ is a permutation of a
set f1; 2; . . .; qg, it is called a U – matrix and is denoted as Uðn; nsÞ. Transform uij to

xij ¼ 2uij�1
2n , the matrix consisting of xij is denoted Xu ¼ ðxijÞn�s, the n rows of Xu can be

regarded as n points above Cs ¼ ½0; 1�s, and Xu is the set of points on Cs.
The n points determined by the U-matrix or the corresponding Xu are not neces-

sarily evenly distributed, but finding the most uniform one among them can be used as
a uniform design. In this paper, the centralization L2 – deviation is used to measure the
uniformity of the point set Xu. The centralization L2 – deviation of the point set Xu is
“0”, and the calculation method is

CD2ðXuÞ ¼ 13
12

� �s

� 21�s

n

Xn
k¼1

Xs
i¼1

2þ xki � 1
2

����
����� xki � 1

2

����
����
2

 !
þ 1

n2

"

þ 1
n2
Xn
k;l¼1

Xs
i¼1

1þ 1
2
xki � 1

2

����
����þ 1

2
xli � 1

2

����
����� xki � xlij j

� �1
2
# ð5Þ

Definition 5. The U-matrix U� of size n � s is called a uniform design, if and only if
its corresponding XU� has the smallest CD2 – value in all XU of the same type, and U�

is denoted as UðnsÞ.

3.2 Differential Evolution Method

The evolutionary process of MOEA/D mainly adopts simulated polynomial variation
(PM) and simulated binary crossover (SBX). In this paper, mutation and crossover
strategies in differential evolutionary algorithm (DE) are adopted to evolve population.
The basic idea of differential variability is to randomly select two individuals from the
population to obtain the difference vector, and to weight the difference vector and then
sum the third individual according to certain rules to produce the variant individual.
The basic idea of differential crossing is to mix the mutated individuals with a pre-
determined objective individual to generate test individuals. The specific calculation
method is as follows:

The new solution obtained by DE mutation is u0 ¼ ðu01; u02; . . .; u0nÞ, where the
component u0k is calculated by:

u0k ¼ xr1ðgÞþF � ðxr2ðgÞ � xr3ðgÞÞ; k 6¼ r1 6¼ r2 6¼ r3 ð6Þ

where k ¼ 1; 2; . . .; n, F is the control parameter of the mutation process.
The new solution generated by DE crossover is y ¼ ðy1; y2; . . .; ynÞ, where the

component yk is calculated by:

yk ¼ mk if rand1 \CR; k ¼ rand2;
xik otherwise:

	
ð7Þ
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in which

mk ¼ xik þF � ðxr1k � xr2k Þ ð8Þ

where k ¼ 1; 2; . . .; n, and rand1 2 ½0; 1�, rand2 2 1; . . .; nf g are two random numbers,
and CR is the control parameter of the crossing process.

3.3 Algorithm Description

UDEMOEA/D, like the general idea of MOEA/D, decomposes the multi-objective
optimization problem into sub-problems of n scalars, which solves all sub-problems
simultaneously by evolving a solution population. For each generation of populations,
the population is a collection of optimal solutions for each sub-question selected from
all generations. The degree of association of two adjacent sub-problem keys is deter-
mined by the distance between their aggregation coefficient vectors. For two adjacent
sub-problems, the optimal solution should be very similar. For each sub-question, just
optimize it with information about its neighboring sub-problems. The specific algo-
rithm steps are shown in Algorithm 2.
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In Algorithm 2, Step 1 uses a uniform design method of good lattice points to
construct the weight vector. The specific steps are shown in Algorithm 3.

In Algorithm 3, the mod n½ � mentioned in Step 2 represents the congruence
operation. If ih exceeds n, it is subtracted by an appropriate multiple of n to make the
difference fall in ½1; n�. At the same time, the recursion formula used to generate Uij is:

u1j ¼ hj

uiþ 1j ¼ uij þ hj if uij þ hj � n
uij þ hj � n if uij þ hj [ n

	
i ¼ 1; 2; . . .; n� 1

8<
: ð9Þ

4 Experiment Results

4.1 Experimental Settings

In the experiment, the initial population size is set to 100, the number of iterations is
1000, the simulated binary cross-distribution index used in the process is 15, the
simulated polynomial variation distribution index is 20, the cross-index of differential
evolution is 0.9, the variation index of differential evolution is 0.5. All simulation
experiments were performed on a PC with Intel Core i3-2350M 2.30 GHz and 2G
memory.

To evaluate the performance improvement of UDEMEA/D compared to MOEA/D,
the coverage metric IC is used to evaluate the optimal Pareto solution set. Coverage
metric [7] is a relatively common measure of approximation that is used to quantita-
tively evaluate the dominance of two sets. Assume A and B are the two approximate
Pareto optimal solution sets in the target space, the coverage index ICðA;BÞ is calcu-
lated as follows:

ICðA;BÞ ¼def jb 2 B; 9a 2 A : a . bj
jBj ð10Þ

where . means that Pareto is not inferior, and ICðA;BÞ 2 ½0; 1�, ICðA;BÞ ¼ 1 means that
for all points in the set B, at least one point that is not inferior to it can be found in the
set A. Instead, ICðB;AÞ ¼ 0 means that for all points in the set A, at least one point that
is not inferior to A can be found in the set B. This indicator considers both ICðA;BÞ and
ICðB;AÞ, since ICðA;BÞ is not necessarily equal to 1� ICðB;AÞ.
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a.  DEB b.  SCH c.  KUR

d.  ZDT1 e.  ZDT2 f.  ZDT3

g.  ZDT4 h.  ZDT6 i.  Viennet

j.  DTLZ1 k.  DTLZ2 l.  DTLZ3

m.  DTLZ4 n.  DTLZ6

Fig. 1. The ideal Pareto frontier for 14 multi-target test problems
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4.2 Benchmark Problems

The test functions used in the experiment were selected from the widely used test
functions in the field of multi-objective optimization, including DEB, SCH, KUR, five
ZDT problems, Viennet issues and five DTLZ issues [9]. Among them, the test
functions DEB, KUR and SCH are two-objective optimization problems, and in five
ZDT problems, ZDT1, ZDT2, ZDT3 have 30 decision variables, ZDT4 and ZDT6 have
10 decision variables, and Viennet problem is three-objective optimization problems,
with 2 decisions Variables. The number of decision variables in five DTLZ problems
and targets can be extended to any number. This article will set the value of k and xkj j
according to Deb’s suggestion. For DTLZ1, k = 3, xkj j ¼ 5 For DTLZ2, DTLZ3 and
DTLZ4, k = 3, xkj j ¼ 10; for DTLZ6, k = 3, xkj j ¼ 20. Figure 1 is an ideal Pareto
front for 14 test questions.

4.3 Experimental Results

UDEMOEA/D and MOEA/D were evaluated according to coverage index, and Table 1
and Fig. 2 were obtained respectively.

Table 1 shows the minimum, average, and maximum coverage of the solutions
obtained by running the algorithm independently for 30 times. Figure 2 is the coverage
index box graph of the two algorithms, in which MOEA/D represents the coverage of
the solution obtained by MOEA/D for UDEMOEA/D, and UDEMOEA/D represents
the coverage of the solution obtained by UDEMOEA/D to the solution obtained by
MOEA/D. The display in Fig. 2 shows that in DEB, KUR, 5 ZDT problems, Viennet
and 5 DTLZ problems, the box diagram of UDEMOEA/D is higher than the

Table 1. UDEMOEA/D and MOEA/D coverage index evaluation box diagram

Coverage indicator value UDEMOEA/D MOEA/D
Min Average Max Min Average Max

DEB 0 0.1493 0.5000 0 0.0028 0.0500
SCH 0 0.0498 0.2500 0 0.0912 0.2000
KUR 0.0450 0.4360 0.5000 0 0 0
ZDT1 0.4950 0.4997 0.5000 0 0 0
ZDT2 0.5000 0.5000 0.5000 0 0 0
ZDT3 0.5000 0.5000 0.5000 0 0 0
ZDT4 0.5000 0.5000 0.5000 0 0 0
ZDT6 0 0.3665 0.5000 0 0 0
Viennet 0 0.0016 0.0067 0 0.0012 0.0033
DTLZ1 0.3067 0.3321 0.3333 0 0 0
DTLZ2 0.0267 0.0850 0.2600 0 0 0
DTLZ3 0.0033 0.2924 0.3333 0 0.0046 0.1167
DTLZ4 0 0.1439 0.2767 0 0 0
DTLZ6 0 0.2984 0.3333 0 0 0
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a.  DEB b.  SCH

c.   KUR d.  ZDT1

e.  ZDT2 f.  ZDT3

g.  ZDT4 h.  ZDT6

Fig. 2. MOEA/D and UDEMOEA/D cover the coverage index of the 14 test questions
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corresponding box diagram of MOEA/D, only MOEA in KUR/The box diagram of D
is higher than the corresponding box diagram of UDEMOEA/D. At the same time, as
can be seen from Table 1, among the four problems of ZDT1, ZDT2, ZDT3, and
ZDT4, the coverage of the optimal Pareto solution set obtained by UDEMOEA/D for
the optimal Pareto solution set of MOEA/D is 0.5. It can be concluded that under the
same parameter setting, the optimal Pareto solution set obtained by UDEMOEA/D in
solving 13 other test problems except SCH problem is better than the optimal Pareto
solution set obtained by MOEA/D, and the solution set obtained by UDEMOEA/D is
closer to the ideal Pareto frontier. UDEMOEA/D is superior to MOEA/D only con-
sidering approximation performance.

i.  Viennet j.  DTLZ1

k.  DTLZ2 l.  DTLZ3

m.  DTLZ4 n.  DTLZ6

Fig. 2. (continued)
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5 Conclusions

Based on that the distribution of weight vector points generated by the decomposition-
based multi-objective evolutionary algorithm is not uniform, which leads to the fact
that the final solution cannot be close to the ideal Pareto front, this paper proposed to
use the uniform design table to construct the weight vector and utilize the crossover in
differential evolution and mutation process to replace the simulated binary intersection
and the simulated polynomial variation, and an improved algorithm is obtained—a
decomposition-based multi-objective evolutionary algorithm based on uniform design
and differential evolution. After the improved algorithm is implemented, it is compared
with the original algorithm, and the obtained results are calculated to obtain the cov-
erage index between the two algorithms to solve the test problems. By comparing the
minimum, average and maximum of the two algorithms coverage index value, it can be
seen that the improved algorithm is superior to the original algorithm in approximation
performance.
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