
A Many-Objective Algorithm with
Threshold Elite Selection Strategy

Shaojin Geng, Di Wu, Penghong Wang, and Xingjuan Cai(B)

Complex System and Computational Intelligence Laboratory,
Taiyuan University of Science and Technology, Taiyuan, China

xingjuancai@163.com

Abstract. The study of many-objective evolutionary algorithm
(MaOEA) has become particularly important, especially with the
increasing complex engineering optimization problems. Considering that
the convergence and diversity of the population are two important indi-
cators to measure the performance of the algorithm, a many-objective
evolutionary algorithm with threshold elite selection strategy (MaOEA-
TES) are proposed in this paper. The algorithm adopts the balanceable
fitness estimation strategy and the reference-point based non-dominated
sorting strategy to balance the convergence and diversity of the solution.
An adaptive penalty distance boundary intersection strategy is designed
to dynamically adjust the impact of convergence and diversity on the
algorithm. In addition, a dynamic threshold selection strategy is pro-
posed to ensure that the algorithm emphasizes diversity at an early stage,
emphasizes convergence at a later stage, and ensures that the result
is closer to the real non-dominant front. The DTLZ test suite is used
to evaluate the performance of MaOEA-TES. The experimental results
show that the MaOEA-TES has the best performance comparing with
three other state-of-the-art algorithms on many-objective optimization.

Keywords: Many-objective optimization · Balanceable fitness
estimation · Reference points · Elite selection strategy

1 Introduction

There are many optimization problems in the real society, and these problems
are often composed of multiple objectives that conflict and affect each other,
which are called multi-objective optimization Problems (MOPs) [1]. Since the
early 1960s, MOPs have attracted more and more researchers from different
backgrounds [2,3], and it has very important scientific and practical significance
to solve multi-objective optimization problems. However, with the continuous
development of society, many engineering problems have become more and more
complicated, and the mathematical model is no longer a simple multi-objective
optimization model. The many-objective optimization problems (MaOPs) [4]
(when the objectives of optimization reach four or more) have been appeared in
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real life, such as wing design problem [5], water distribution system [6] and car
engine calibration problem [7].

Whether in scientific research [8] or engineering applications [9], optimization
issues generally involve multiple conflicting objective functions. Therefore, there
are a set of optimal solution sets, which composed of numerous Pareto optimal
solutions in MaOPs. In recent years, many-objectives evolutionary algorithms
(MaOEAs) [10] have been researched by many scholars for MaOPs. And these
evolutionary algorithms can be divided into the following three categories.

(1) Many-objective evolutionary algorithm based on pareto-dominance. For
example, NSGA-III [11], NSGAIII-NE [12], etc. The disadvantage of this
approach is that there are many parameters in the algorithm, which requires
adjust heuristically.

(2) Many-objective evolutionary algorithm based on decomposition [13]. The
main idea is that the algorithm decomposes the complex MaOPs into a series
of sub-problems, and then solves them one by one. This method effectively
overcomes the diversity maintenance difficulties, but it is still in its infancy.

(3) Many-objective evolutionary algorithm based on performance indicators
[14]. For example, a density estimation strategy that uses a simple coordi-
nate transformation to put the solution with poor convergence into crowded
area.

Reference-point based non-dominated sorting strategy uses widely dis-
tributed reference points (one reference direction can be associated with multiple
solutions) to maintain diversity. However, as the number of objective increases,
the pareto-dominance makes the selection pressure of the strategy insufficient.
Therefore, in order to effectively improve the performance of the algorithm, this
paper combines the balanceable fitness estimation strategy and the adaptive
penalty distance boundary intersection strategy to increase the selection pres-
sure. And on this basis, a dynamic threshold selection strategy is proposed. The
specific principle is as follows:

1) Balanceable fitness estimation strategy is used to balance the solution of
convergence and diversity.

2) Reference-point based non-dominated sorting strategy is used to achieve the
goal of distributing the non-dominated solution in the objective space as
uniform as possible.

3) Adaptive penalty distance boundary intersection strategy is designed to
dynamically adjust the impact of convergence and diversity on the algo-
rithm.

4) Dynamic threshold selection strategy is proposed to ensure that the algo-
rithm emphasizes diversity in the early stage and convergence in the late
stage to make sure that the results are closer to the real non-dominant front.

The structural of this paper is organized as follows: Sect. 2 introduces related
works about balanceable fitness estimation and reference-point based non-
dominated sorting strategy. Section 3 describes the proposed algorithm in detail.
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The simulation of several algorithms has been experimented in Sect. 4. Section 5
gives the conclusion of this paper.

2 Related Works

This section describes the balanceable fitness estimation strategy and the
reference-point based non-dominated sorting strategy, which are important com-
ponents of MaOEA-TES.

2.1 Balanceable Fitness Estimation Strategy (BFE)

Balanceable fitness estimation (BFE) [15] is a strategy which combined the diver-
sity and convergence distance to balance the convergence and diversity for each
solution in objective space.

Suppose that the population P = {p1, p2, ..., pN} includes N individuals.
Each individual has the position Xi. For each individual pi, the value of BFE
BFE(pi, P ) is consisted of two components: the diversity distance and the con-
vergence distance, the equation is as follows:

BFE(pi, P ) = α × Cd(pi, P ) + β × Cv(pi, P ) (1)

where Cd(pi, P ) and Cv(pi, P ) represent the diversity and convergence distances
of pi, respectively. Both α and β are the weight factors, when calculating the
value of BFE, each objective of population pi will be normalized firstly by using
the maximum and minimum values of the corresponding objective. This nor-
malization approach helps to eliminate the impact of different amplitudes on
multiple objectives. The normalized objective f ′

k (pi) of pi is obtained with the
following equation:

f ′
k(pi) =

fk(pi) − fkmin

fkmax − fkmin
(2)

where fkmax and fkmin are the maximum and minimum values of the k − th
objective obtained from the non-dominated solutions available in the external
archive, respectively. And the objective f ′

k (pi) is normalized to [0, 1]. Then, the
normalized diversity distance Cd(pi, P ) is showed as follows:

Cd(pi, P ) =
SDE(pi) − SDEmin

SDEmax − SDEmin
(3)

where SDEmax and SDEmin are the maximum and minimum SDE distances
in the population, respectively. SDE(pi) is the original SDE distance defined
in [4], which uses the shifted euclidean distance to the nearest neighbor, the
equation is showed as follow:

SDE(pi) = min
pj∈P,j �=i

√
√
√
√

m∑

k=1

sde(f ′
k(pi), f

′
k(pj))

2 (4)
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sde(f ′
k(pi), f

′
k(pj)) =

{

f ′
k(pj) − f ′

k(pi) if f ′
k(pj) > f ′

k(pi)
0 otherwise

(5)

And the convergence distance Cv(pi, P ) is used to reflect the convergence
ability of f ′

k (pi) ( k = 1, 2, ...,m) with respect to the ideal point z∗. The equation
is calculated as follows:

Cv(pi, P ) = 1 − dis(pi)√
m

(6)

where dis(pi) denotes the euclidean distance from f ′
k(pi)( k = 1, 2, ...,m) to the

ideal point z∗. It can be computed as follows:

dis(pi) = sqrt(
m∑

k=1

f ′
k(pi)

2) (7)

The larger the value of Cd(pi, P ), the further away the neighborhood is
from pi. The larger the value of Cv(pi, P ), the closer the distance between the
f ′
k(pi)( k = 1, 2, ...,m) and the ideal point z∗. To minimize all the objectives,

individuals with larger convergence distances should be prioritized to increase
selection pressure, and selected individuals should move toward ideal points when
external archive are updated. At the same time, in order to balance the diversity
distance and the convergence distance, the two weight factors α and β can be
used to adjust the individual weights adaptively on the basis of their original
diversity distance and convergence distance.

2.2 Reference-Point Based Non-dominated Sorting Strategy (RNS)

In reference-point based non-dominated sorting strategy, the diversity mainte-
nance is achieved by initializing a set of reference points [12]. Supposed that
the initial population is Pt and the size is N (N ≈ H), the offspring popula-
tion is Qt, and the combined population St = Pt ∪ Qt. Then, the population
St selects individuals of different non-domination levels (F1, F2, ..., Fl, ...) at the
same time, the termination condition is that the size of St is equal to or larger
than N . Suppose that the current level is the l− th level. Select Fl−1 individuals
from St and put them into the next generation population Pt+1. The rest individ-
uals N − number(St(Fl−1)) are chosen from Fl by the reference points strategy.
The reference points strategy needs to normalize the objective function values.
Also, the ideal point of the population z∗ is defined as (0, ..., 0) and reference
points just lie on this normalized hyper-plane. Then, the perpendicular distance
between each individual in St with reference line is calculated and the individual
of minimum distance belongs to the niche corresponding to the reference point.
The ones associated with the reference points whose niche counts are small have
better chances to be selected. The procedure is presented in Algorithm 1.

3 The Proposed Algorithm

In this section, the detailed process of the proposed MaOEA-TES algorithm is
described in Sect. 3.1. And then, designed strategies are given in Sect. 3.2, 3.3.
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Algorithm 1. Selection Operator
1: Input:H structured reference points, Initial population Pt

2: Output: Pt+1

3: While (stop criterion is met)
4: Qt= Crossover (Pt) + Mutation (Pt)
5: St = Pt ∪ Qt

6: (F1, F2, · · · )=Non-dominated sort (St)
7: St = St ∪ Fi

8: Until |St| ≥ N
9: Last front to be included:Fl = Fi

10: If |St| = N , then
11: Pt+1 = St, break
12: else
13: K = N − number(St(Fl−1))
14: Normalize objective function values
15: Choose K members from Fl

16: According to the reference point to construct Pt+1

17: End If
18: End

3.1 Many-Objective Evolutionary Algorithm Based on Threshold
Elite Selection Strategy (MaOEA-TES)

In this section, a many-objective evolutionary algorithm with threshold elite
selection strategy (MaOEA-TES) is proposed. A reference-point based non-
dominated sorting strategy is used to select good individuals. The non-dominated
sorting strategy can be layered according to the level of individual non-
dominated solutions, and the pareto optimal solution can be quickly searched.
Furthermore, based on the reference point and adaptive penalty distance bound-
ary intersection strategy, individuals with uniform distribution in the objective
space can be selected to enhance the diversity of the population, and the con-
vergence information can be combined to ensure convergence and distribution of
the population. Furthermore, the dynamic threshold selection strategy is adopted
to ensure that the BFE method can replace the general environment selection
mechanism in the later stage of the algorithm, so that the algorithm can balance
the convergence and distribution well in the whole group evolution process. The
pseudo code is shown in Algorithm 2.

3.2 Adaptive Penalty Distance Boundary Intersection Strategy
(APDBI)

As shown in Fig. 1, it can be seen that the perpendicular distance between the
individual and the reference line is d2 in the non-dominated sorting strategy
based on the reference point. However, d2 represents the diversity of individ-
uals and does not balance well with the relationship between convergence and
diversity.
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Algorithm 2. The framework of MaOEA-TES
1: Input:H structured reference points, Initial population Pt and calculate the func-

tion minimum Zmin
2: Output: Pt+1

3: t = 0
4: While (stop criterion is met)
5: t = t + 1
6: rhm = rand
7: If rhm > t/100
8: Qt= Crossover (Pt) + Mutation (Pt)
9: St = Pt ∪ Qt

10: (F1, F2, · · · )=Non-dominated sort (St)
11: St = St ∪ Fi

12: Until |St| ≥ N
13: Last front to be included:Fl = Fi

14: If |St| = N , then
15: Pt+1 = St, break
16: else
17: K = N − number(St(Fl−1))
18: Normalize objective function values
19: Choose K members from Fl

20: Calculate the adaptive penalty distance of boundary intersection between each
individuals and references point to construct Pt+1

21: End If
22: Else
23: Ot = BFE(Pt+1, Population)
24: Rt = Crossover(Ot) + Mutation(Ot)
25: Population = BFE(Ot, Rt)
26: According to the reference point to construct Pt+1

27: End If
28: End

Therefore, d(x) = dj,1(x) + θ×dj,2(x) is used to replace d2, and then the value
of θ can dynamically balance adaptive penalty distance of boundary intersect
with the number of iterations increases, which makes the solution closer to PF.

And the equations are showed as follows:

d(x) = dj,1(x) + θ × dj,2(x) (8)

dj,1(x) =

∥
∥
∥(w − F (x))Tσ

∥
∥
∥

‖σ‖ (9)

dj,2(x) = ‖f(x) − (w − d1σ)‖ (10)

θ = σ · eM−1· gen+1
maxgen ·‖wj‖ (11)

where w represents the ideal point, M is the number of objective, gen represents
the current iterations number, and the maximum iterations number is maxgen,
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Fig. 1. The description of APDBI

σ is the reference point and θ is the adaptively defined penalty parameter. Also,
dj,1(x) represents the distance between the point that the individual maps to the
reference line and the ideal point, dj,2(x) is the distance between the individual
and reference line.

3.3 Dynamic Threshold Selection Strategy (DTS)

Because of the different proportions of convergence and diversity in the differ-
ent evolution stages of the algorithm, dynamic threshold selection strategy is
adopted to balance them in the evolution process dynamically. And a threshold
is set to select different strategy in the algorithm. When the condition is met,
the algorithm uses the reference point strategy to select the offspring, otherwise
balanceable fitness estimation strategy is used to select offspring. The equation
for this threshold is as follows:

Thre =
t + 1

MaxIt
(12)

where t represents the current generation, MaxIt represents the maximum gen-
eration, and the threshold Thre increases with the number of iterations. A ran-
dom number rand within [0, 1] is generated. If rand is larger than the threshold,
the reference-point based non-dominated sorting strategy is selected, otherwise,
the balanceable fitness estimation strategy is selected.
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4 Experimental Results and Analysis

This section will evaluate the performance of MaOEA-TES and discuss results.
Firstly, we will describe the test problems DTLZ [16]. Meanwhile, the per-
formance indicator is used in the experiment. Then we will introduce three
most advanced algorithms for comparison and corresponding parameter design.
Finally, the experimental results are discussed. The simulation results of
MaOEA-TES on three to fifteen objective optimization problems are provided.
Seven problems are used as test problems in DTLZ. DTLZ problems are non-
convex, multi-modal, non-connected and non-uniform Pareto front. These bench-
mark issues are challenging to evaluate the performance of MaOEAs.

Table 1. Population size corresponding to different objective numbers

Population size Number of objectives

91 3

210 5

156 8

275 10

135 15

In the evaluation criterion, the inverse intergenerational distance (IGD) [17]
is chose as the performance indicator to evaluate the quality of the solution set,
as a separate measure, which can provide a combination of information about the
convergence and diversity of the obtained solutions. By calculating the average
Euclidean distance and standard deviation between the Pareto optimal solution
set and the obtained optimal solution set (in parentheses), the formulas are as
follows:

IGD(A,Z) =
1

|Z|
|z|
∑

i=1

|A|
min
j=1

d (zi, aj) (13)

where d (zi, aj) = ‖zi − ai‖2. The IGD value is smaller, the solution set obtained
by the algorithm is closer to the PF. If the IGD value is large, it proves that no
solution related to the reference point has been found.

For each algorithm, the number of iterations is 10000 generations, running 30
times independently, and the best, median and worst IGD performance values
are reported. For all algorithms, performance indicators are computed using
the final solution set. Table 1 shows the different population sizes for different
objective sizes.
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Fig. 2. Coordinates of the solutions obtained by five algorithms on DTLZ2 with five
objectives. (a) NSGAIII (b) KnEA (c) SPEA2 (d) MaOEA-TES

It can be seen from Table 2 that the average value of the algorithm MaOEA-
TES is better than other algorithms. The feasibility and accuracy of the algo-
rithm are verified. It can be seen from DTLZ1 that MaOEA-TES is significantly
better than other algorithms. For DTLZ2, the reason of the proposed is slightly
worse than KnEA is that KnEA adopts the inflection point strategy which is
suitable for solving the concave problem. And for DTLZ3, MaOEA-TES receives
the best performance on 8, 10, 15 objectives, which is caused by the balanceable
fitness estimation strategy. At the same time, by comparing the IGD value and
standard deviation (in parentheses) on DTLZ4-7, it can be concluded that the
MaOEA-TES algorithm has a significant role in promoting population conver-
gence and diversity. Observing from the pareto front of the algorithm, and the
results are shown in Fig. 2. It can be seen that the solution set of MaOEA-TES
is at the center of the pareto, which can maintain a better diversity.
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Table 2. IGD comparisons the four algorithms on DTLZ test suite

Problem N M D NSGA-III KnEA SPEA2 MaOEATESS

DTLZ1 91 3 7 2.3058× 10−1

(2.23× 10−1)−
1.5470× 10−1

(1.83× 10−1)=
1.5804× 10−1

(1.80× 10−1)=
1.2757× 10−1

(1.43× 10−1)

210 5 9 1.6254× 100
(4.81× 10−1)−

7.0935× 10−1

(3.22× 10−1)=

1.5155× 100

(7.72× 10−1)−
8.6358× 10−1

(3.43× 10−1)

156 8 12 2.0535× 100

(8.89× 10−1)−
3.9979× 100

(2.04× 100)−
9.5366× 101

(2.97× 101)−
6.0595× 10−1

(3.14× 10−1)

275 10 14 4.2252× 100

(1.77× 100)−
2.6308× 100

(1.30× 100)−
9.7740× 101

(2.68× 101)−
1.8022× 100

(1.11× 100)

135 15 19 1.5061× 100

(8.52× 10−1)−
7.2083× 100

(6.51× 100)−
1.5876× 102

(4.03× 101)−
7.4380× 10−1

(5.14× 10−1)

DTLZ2 91 3 12 5.4957× 10−2

(1.67× 10−4)+

7.5937× 10−2

(4.64× 10−3)=

5.7424× 10−2

(6.21× 10−4)+

7.7083× 10−2

(2.51× 10−3)

210 5 14 1.8553× 10−1

(4.04× 10−3)−
1.7727× 10−1

(3.72× 10−3)+
2.3063× 10−1

(1.05× 10−2)−
1.8270× 10−1

(3.55× 10−3)

156 8 17 3.9090× 10−1

(7.00× 10−2)−
3.7864× 10−1

(1.01× 10−2)−
1.4962× 100

(1.75× 10−1)−
3.6421× 10−1

(2.85× 10−2)

275 10 19 5.9934× 10−1

(9.67× 10−2)−
4.5085× 10−1

(1.48× 10−2)=
1.4107× 100

(1.49× 10−1)−
4.6149× 10−1

(6.32× 10−2)

135 15 24 7.5601× 10−1

(5.93× 10−2)−
6.1126× 10−1

(1.39× 10−2)+
2.4955× 100

(2.57× 10−2)−
6.3724× 10−1

(4.61× 10−2)

DTLZ3 91 3 12 1.0504× 101

(3.13× 100)−
6.4702× 100

(3.22× 100)=

9.0596× 100

(5.26× 100)=

6.5991× 100

(3.50× 100)

210 5 14 5.8276× 101

(1.03× 101)−
3.2447× 101

(8.71× 100)+

5.0996× 101

(1.39× 101)−
4.0504× 101

(1.12× 101)

156 8 17 8.4808× 101

(2.54× 101)−
1.2374× 102

(3.40× 101)−
7.9994× 102

(1.21× 102)−
3.0523× 101

(9.66× 100)

275 10 19 1.5685× 102

(3.89× 101)−
1.1612× 102

(3.52× 101)−
8.6838× 102

(1.43× 102)−
8.3597× 101

(2.42× 101)

135 15 24 1.5216× 102

(5.28× 101)−
2.8794× 102

(1.66× 102)−
1.4128× 103

(2.04× 102)−
2.7982× 101

(1.09× 101)

DTLZ4 91 3 12 2.3080× 10−1

(2.63× 10−1)−
2.0242× 10−1

(2.34× 10−1)=

2.9428× 10−1

(2.92× 10−1)−
2.1563× 10−1

(2.17× 10−1)

210 5 14 1.9176× 10−1

(5.55× 10−3)−
1.9539× 10−1

(3.99× 10−2)=
2.4515× 10−1

(1.16× 10−2)−
1.9132× 10−1

(4.19× 10−2)

156 8 17 4.2521× 10−1

(7.39× 10−2)−
4.4162× 10−1

(2.85× 10−2)−
1.3066× 100

(1.22× 10−1)−
3.9986× 10−1

(6.80× 10−2)

275 10 19 5.6600× 10−1

(5.14× 10−2)−
5.3957× 10−1

(7.12× 10−3)−
1.2556× 100

(8.95× 10−2)−
4.6221× 10−1

(3.50× 10−2)

135 15 24 8.0334× 10−1

(8.61× 10−2)−
6.4400× 10−1

(7.42× 10−3)+
2.4389× 100

(2.17× 10−1)−
6.6414× 10−1

(2.74× 10−2)

(continued)



Threshold Elite Selection Strategy 177

Table 2. (continued)

Problem N M D NSGA-III KnEA SPEA2 MaOEATESS

DTLZ5 91 3 12 1.1778× 10−2

(1.11× 10−3)+
2.5055× 10−2

(1.50× 10−2)−
5.4912× 10−3

(2.54× 10−4)+
1.4119× 10−2

(3.09× 10−3)

210 5 14 2.1423× 10−1

(4.67× 10−2)−
2.8699× 10−1

(1.26× 10−1)−
2.2368× 10−1

(4.63× 10−2)−
1.0968× 10−1

(3.12× 10−2)

156 8 17 2.6442× 10−1

(1.09× 10−1)=

3.9955× 10−1

(1.11× 10−1)−
1.0693× 100

(2.82× 10−1)−
2.2965× 10−1

(5.01× 10−2)

275 10 19 2.1507× 10−1

(5.10× 10−2)=
3.8203× 10−1

(1.02× 10−1)−
1.0059× 100

(2.41× 10−1)−
2.2076× 10−1

(6.34× 10−2)

135 15 24 3.2934× 10−1

(6.20× 10−2)+
5.7370× 10−1

(1.39× 10−1)−
1.5772× 100

(5.17× 10−1)−
4.1069× 10−1

(1.03× 10−1)

DTLZ6 91 3 12 1.8179× 10−2

(3.07× 10−3)−
1.8622× 10−2

(1.05× 10−2)=
4.6313× 10−3

(5.99× 10−4)+
1.5668× 10−2

(2.80× 10−3)

210 5 14 3.6214× 100

(7.13× 10−1)−
1.3820× 100

(4.53× 10−1)−
4.3482× 100

(8.94× 10−1)−
9.3977× 10−1

(5.54× 10−1)

156 8 17 5.5482× 100

(8.34× 10−1)−
3.1498× 100

(5.49× 10−1)−
9.3170× 100

(2.42× 10−1)−
1.0758× 100

(7.27× 10−1)

275 10 19 6.8329× 100

(5.60× 10−1)−
3.1085× 100

(6.03× 10−1)+

8.9506× 100

(3.95× 10−1)−
4.3246× 100

(9.61× 10−1)

135 15 24 6.9227× 100

(6.49× 10−1)−
3.9146× 100

(6.34× 10−1)−
9.6993× 100

(1.15× 10−1)−
1.7440× 100

(5.82× 10−1)

DTLZ7 91 3 22 9.4297× 10−2

(8.27× 10−3)+

1.1232× 10−1

(1.00× 10−1)=

8.6602× 10−2

(5.28× 10−2)=

1.4807× 10−1

(1.35× 10−1)

210 5 24 7.5161× 10−1

(1.33× 10−1)−
4.1326× 10−1

(1.16× 10−1)+

5.0430× 10−1

(5.84× 10−2)=

5.1477× 10−1

(1.07× 10−1)

156 8 27 5.1510× 100

(1.06× 100)−
2.4092× 100

(1.19× 100)+
3.5575× 100

(1.12× 100)=
3.2171× 100

(1.51× 100)

275 10 29 1.3637× 101

(1.47× 100)−
8.7958× 100

(2.16× 100)+
7.9420× 100

(2.05× 100)+
1.0206× 101

(1.36× 100)

135 15 34 1.7003× 101

(1.97× 100)−
1.8376× 101

(3.22× 100)−
1.2369× 101

(2.99× 100)=
1.3221× 101

(2.13× 100)

+/−/= 4/29/2 8/18/9 4/25/6 —

5 Conclusion

Due to the non-dominated sorting strategy based on the reference-point lacks the
pareto selection pressure and the diversity maintenance mechanism is insufficient
in the late stage of algorithm. In order to solve this problem, a many-objective
evolutionary algorithm with threshold elite selection strategy MaOEA-TES is
proposed in this paper. The proposed algorithm combines balanceable fitness
estimation with reference-point based non-dominated sorting strategy. Mean-
while, dynamic threshold selection strategy is designed to better balance the
diversity and convergence of population. The experiment results show that the
proposed MaOEA-TES is superior to other advanced algorithms.
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