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Abstract. To design an effective multi-objective optimization evolu-
tionary algorithms (MOEA), we need to address the following issues: 1)
the sensitivity to the shape of true Pareto front (PF) on decomposition-
based MOEAs; 2) the loss of diversity due to paying so much attention to
the convergence on domination-based MOEAs; 3) the curse of dimension-
ality for many-objective optimization problems on grid-based MOEAs.
This paper proposes an MOEA based on space partitioning (MOEA-
SP) to address the above issues. In MOEA-SP, subspaces, partitioned
by a k-dimensional tree (kd-tree), are sorted according to a bi-indicator
criterion defined in this paper. Subspace-oriented and Max-Min selec-
tion methods are introduced to increase selection pressure and maintain
diversity, respectively. Experimental studies show that MOEA-SP out-
performs several compared algorithms on a set of benchmarks.

Keywords: Multi-objective optimization · kd-tree space partitioning ·
Max-Min method

1 Introduction

Multi-objective optimization problems (MOPs) widely exist in engineering prac-
tice. There is no single optimal solution, but a set of trade-off optimal solutions,
because of the conflict between objectives. Multi-objective evolutionary algo-
rithms (MOEAs), with the ability to obtain a set of approximately optimal
solutions in a single run, have become a useful tool to solve MOPs.

Over the past decades, with the development of evolutionary multi-objective
optimization (EMO) research, domination-based and decomposition-based algo-
rithms have attracted many researchers.
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One of the most classical domination-based MOEAs is the nondominated
sorting genetic algorithm (NSGA-II) [1]. NSGA-II selects offspring according to
elitist nondominated sorting and density-estimation metrics. However, it takes
too many resources on the convergence during evolution, which results in loss of
diversity.

One of the most classical decomposition-based MOEAs is the MOEA based
on decomposition (MOEA/D) [2], which decomposes a MOP into multiple single-
objective subproblems. Although it simplifies the problem, it still suffers several
issues. Decomposition approaches are very sensitive to the shapes of Pareto front
(PF). For example, Weighted Sum (WS) can not find Pareto optimal solutions
in the nonconvex part of PF with complex shape. On extremely convex PF, a
set of solutions obtained by Tchebycheff (TCH) are not uniformly distributed.

To address the sensitivity issue discussed above, some researchers have pro-
posed the grid-based MOEAs, such as the grid-based evolutionary algorithm
(GrEA) [3] and the constrained decomposition approach with grids for MOEA
(CDG-MOEA) [4]. The two grid-based algorithms evenly partition each dimen-
sion (i.e., objective), which is beneficial to maintain diversity. However, with the
increase in the number of objectives, the number of grids will increase exponen-
tially, resulting in the curse of dimensionality.

In this paper, an MOEA based on space partitioning (MOEA-SP) is pro-
posed to address the above issues. In MOEA-SP, subspaces, partitioned by a k-
dimensional tree (kd-tree), are sorted according to a bi-indicator criterion defined
in this paper. The two indicators refer to dominance degree and the niche count
that measure convergence and diversity, respectively. The introduction of histor-
ical archive pushes the population toward the true PF and distributed evenly.

The rest of this paper is organized as follows. Section 2 describes the related
work of MOEAs based on decomposition and grid decomposition. Section 3 gives
the details about MOEA-SP. Section 4 presents the experimental studies. Finally,
Sect. 5 concludes this paper.

2 Related Work

This section discusses related work regarding the improvement of decomposition-
based and grid-based MOEAs.

The weight vector generation method in MOEA/D makes the population size
inflexible, and the distribution of the generated weight vector is not uniform. In
order to address these issues, researchers have proposed some improved methods.
For example, Fang et al. [5] proposed the combination of transformation and
uniform design (UD) method. Deb et al. [6] proposed the two-layer weight vector
generation method, including the boundary and inside layer, where the weight
vectors of the inside layer are shrunk by a coordinate transformation, finally, the
weight vectors of the boundary and inside layer are merged into a set of weight
vectors.

The three decomposition methods of MOEA/D are sensitive to the shapes of
PF, and it is difficult to solve the PF with the shape of nonconvex or extremely
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convex. For Penalty-based Boundary Intersection (PBI), it is also difficult to set
the penalty parameters. The improved methods include inverted PBI (IPBI) [7],
new penalty scheme [8], and angle penalized distance (APD) decomposition
method [9]. Although these methods improve the performance of the algorithms
for some MOPs, they are still sensitive to the shape of PF and difficult to set
the penalty parameters. Besides, to overcome the shortcomings of traditional
decomposition methods, Liu et al. [10] proposed a new alternative decomposi-
tion method, i.e., using a set of reference vectors to divide the objective space
into multiple subspaces and assign a subpopulation to evolve in each subspace.
This method does not need traditional decomposition methods.

The neighborhood could have a significant impact on generating offspring
and environment selection, so the improper definition of the neighborhood rela-
tionship may mislead algorithms. To define the proper neighborhood, Zhao
et al. [11] proposed to dynamically adjust the neighborhood structure according
to the distribution of the current population. To address the issue of the loss of
diversity due to the large update area in the selection of offspring, Li et al. [12]
introduced the concept of the maximum number of a new solution to replace the
old solutions. Zhang et al. [13] proposed a greedy-based replacement strategy,
which calculates the improvement of the new solution for each subproblem, and
then replaces the solutions of the two subproblems with the new solution with
the best improvement.

Although there are many improved methods, they can not fundamentally
overcome the above limitations. In order to overcome the limitations of the
sensitivity for the shapes of PF and loss of diversity in decomposition-based
method, Cai et al. [4] proposed a constrained decomposition approach with
grids for MOEA (CDG-MOEA), which uniformly divides the objective space into
M ×KM−1 (where K is the grid decomposition parameter, and M is the number
of objectives) subproblems, and choose offspring according to a decomposition-
based ranking and lexicographic sorting method. CDG-MOEA has great advan-
tages to maintain diversity. However, with the increasing number of objectives,
the number of subproblems will increase exponentially, resulting in the curse of
dimensionality.

3 MOEA Based on Space Partitioning

This section introduces the design process of the proposed algorithm. The major
idea of MOEA-SP is to partition the objective space into a set of subspaces, then
select offspring according to the rank of subspaces after sorting.

3.1 The Framework of MOEA-SP

Algorithm 1 gives the framework of MOEA-SP in detail. MOEA-SP starts with
initialization, then repeat generate offspring, partition objective space, and select
offspring (i.e., environmental selection) until the termination conditions are sat-
isfied. The environmental selection mainly includes nondominated sorting of the
subspaces, subspace-orient selection, and Max-Min selection.
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Algorithm 1. MOEA-SP
Input:

N : the population size of P ;
K: number of subspace based on kd-tree partitioning method.

Output: A solution set P .

Step 1: Initialization
1.1 Initialize a population P0 =

{
x1, . . . , xN

}
randomly;

1.2 A = P0; // A is historic archive
1.3 Set t = 0.

Step 2: Reproduction
2.1 Update z∗, znad by Pt;
2.2 Build a kd-tree based on objective space formed by [z∗, znad];
2.3 Obtain neighborhood based on kd-tree: N(x), x ∈ Pt ;
2.4 Generate an empty set Qt = Ø;

for all x ∈ Pt do
2.5 Fill mating pools of x

M(x) =

{
N(x) rand < δ and |N(x)| > 3,

Pt otherwise.

2.6 Select three solutions x1, x2 and x3 randomly from M(x), then generate
offspring y by DE operator [12], and put y to Qt.

end for
2.7 A = A ∪ Qt.

Step 3: Environmental selection
3.1 Pt+1 = Ø .
3.2 Find nondominated solutions Ar, and Ad = A\Ar;
3.3

if |Ar| < N then
Pt+1 = Pt ∪ Ar;
Update z∗, znad by A;
Partition the objective space formed by [z∗, znad] with a kd-tree;
R = SSBB (kd-tree); // Algorithm 2
Pt+1 = DSOS (R, Ad, Pt+1); // Algorithm 4
Update A, delete some solutions from each subspace;

else
Update z∗, znad by Ar;
Partition the objective space formed by [z∗, znad] with a kd-tree;
R = SSBB (kd-tree);
Pt+1 = NSOMMS (R, Ar, Pt+1); // Algorithm 5
Update A, this is A = Ar;

end if
3.5 t = t + 1.

Step 4: Termination
If the stopping criterion is satisfied, terminate the algorithm. Otherwise, go to

Step 2.



A Novel Multi-objective Evolutionary Algorithm 131

3.2 Subspace-Oriented Domination and Sorting

In MOEA-SP, the multiple subspaces are obtained after the objective space
is partitioned by kd-tree method. The set of subspaces is denoted as R =
{s1, s2, ... , sn}, where each subspace may contain a number of individuals.
As shown in Fig. 1a, the objective space is partitioned into twenty subspaces,
eleven of them, which contain individuals, are marked with s1, ..., s11.
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(a) Selection in MOEA-SP with Ar < N (b) Selection in NSGA-II

Fig. 1. (a) Selection in MOEA-SP with Ar < N . (b) Selected in NSGAII. Solid circles
represent individuals, where deeper-color circles represent individuals selected. Indi-
viduals connected by dotted lines are the same level of individuals after nondominated
sorting. Note that in (a), there are individuals distributed in the gray subspaces (i.e,
s1, ..., s11), and the total number of individuals in the historical archive is twenty-one.

This paper defines the concept of subspace-oriented: neighborhood N(x),
niche count (nc), dominance ratio (dr), dominance matrix (D) and dominance
degree (dd).

The neighborhood N(x) of individual x is defined as the set of individ-
uals in the neighborhood of the subspace to which it belongs. It is worth
noting that a subspace itself belongs to its own neighborhood. As shown in
Fig. 1a, for x1 of belonging to s2, the neighborhood of subspace s2 are sub-
spaces s1, s2, s5, which contains five individuals: x1, x2, x4, x8, x13, i.e.,
N(x1) = {x1, x2, x4, x8, x13}.
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The niche count (nc) of the subspace is defined as the sum of all individuals in
its adjacent subspaces in historical archive A. The niche count of all subspaces is
recorded as NC = {nc(s1), ..., nc(sn)}. As shown in lines 9 to 12 of Algorithm 2.
For example, the neighborhood of subspace s2 includes subspaces s1, s2, and s5,
and they consist of five individuals with a fold of x1, x2, x4, x8, and x13, so
nc(s2) = 5. In this example, the niche count of all subspaces can be obtained,
i.e., NC = {3, 5, 2, 4, 5, 9, 11, 7, 6, 9, 9}.

The dominance ratio (dr) is defined as

dr(s1, s2) =
NO(s1 ≺ s2) − NO(s2 ≺ s1)

M
. (1)

where NO(s1 ≺ s2) denotes the number of objectives subspace s1 dominates s2,
and M is the number of objectives. dr(s1, s2) denotes the ratio of the difference
between the number of objectives s1 dominates s2 and the number of objectives
s2 dominates s1 to M , obviously, dr(s1, s2) = −dr(s2, s1). For example, sub-
spaces s1 and s3 in the bi-objective MOP shown in Fig. 1a, s1 dominates s3 on
the second objective, and there is no comparability on the first one, so the differ-
ence in objectives number of s1 dominance s3 are 1, so dr(s1, s3) = 1/M = 1/2.
If subspaces s1 and s2 do not dominate each other, then dr(s1, s2) = 0, such as
subspaces s1 and s4 are nondominated; if subspace s1 completely dominates s2,
then dr(s1, s2) = 1, for example, subspace s1 completely dominates s7.

The dominance matrix of the subspaces is defined as Dn×n, where D[i][j] =
dr(si, sj). In this example, as shown in Algorithm 2, the dominance matrix D is
calculated as

D =

⎛
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Algorithm 2. Subspaces Sorting Based on Bi-indicator (SSBB)
Input: A kd-tree (K subspaces).
Output: New sorting of subspaces R.
1: R = {s | ∃ solution x ∈ sth subspace}, n = |R|;

Dominance matrix: Dn×n; Dominance degree: DD = {dd(s1), . . . , dd(sn)};
Neighbor of sth subspace: NR(s); Niche count: NC = {nc(s1), . . . , nc(sn)};
/∗ Calculate dominance degree DD ∗/

2: Calculate Dn×n according to dominance ratio in equation (1)
3: for s = 1 to n do
4: GP (l) = {l|D[s][l] > 0},GN(l) = {l|D[s][l] < 0};
5: vals =

∑n
l∈GP (l) D[s][l];

6: val eds =
∑n

l∈GN(l) D[s][l];

7: dd(s) = vals/val eds;
8: end for

/∗ Calculate niche count NC ∗/
9: for s = 1 to n do

10: NR(s) = {s1, s2, ...};
11: nc(s) =

∑
i∈NR(s) |subspace(s)ind|;

12: end for
13: Rank(s) = Nondominated-sorting(DD, NC); // maximum dd and minimum nc
14: R = sort(R, Rank(s)). // ascending sort R according to rank

The dominance degree (dd) of subspace denotes the degree of convergence,
calculated according to the dominance matrix D. The dominance degree of all
subspaces is recorded as DD = {dd(s1), dd(s2), ..., dd(sn)}. As shown in lines 3
to 8 of Algorithm 2, according to the domination matrix, the dominating value
vals and the dominated value val eds of each subspace can be obtained, i.e.,
vals =

∑n
l∈GP (l) D[s][l] (GP (l) = {l | D[s][l] ≥ 0}), val eds =

∑n
l∈GN(l) |D[s][l]|

(GN(l) = {l | D[s][l] ≤ 0}), and then the dominance degree of the subspace
is calculated by dd(s) = vals/val eds. Note that when val or val ed is 0, dd
is assigned to +1e5 or −1e5, respectively. In this example, val2 = D[2][5] +
D[2][6] + D[2][7] + D[2][8] + D[2][9] + D[2][10] = 7/2, val ed2 = |D[2][1]| = 1/2,
then dd(s2) = val2/val ed2 = 7. Finally, DD can be obtained, i.e., DD =
{+1e5, 7, 10, + 1e5, 4/3, 3/5, 3/7, 2/3, 1/8, 1/9, − 1e5}.

In summary, the dominance degree dd and niche count nc can mea-
sure the convergence and diversity, respectively and push the population to
these two directions. This paper uses the two indicators as two objectives,
i.e.,, maximizing dd, minimizing nc, and then performs nondominated sort-
ing by these two indicators. As shown in lines 13 to 14 of Algorithm 2,
a new sorting subspaces set R is obtained according to the rank value of
nondominated sorting. In this example, according to the DD and NC val-
ues calculated above, the eleven subspaces can be divided into eight ranks,
{s1, s3} , {s4} , {s2} , {s5} , {s8, s9} , {s6} , {s7, s10} , {s11} by nondominated sort-
ing, i.e., R = {s1, s3, s4, s2, s5, s8, s9, s6, s7, s10, s11}.
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3.3 Environmental Selection

This paper uses the historical archive to find the nondominated individuals for
the selection of offspring, where the set of nondominated individuals is recorded
as Ar, and the set of other individuals is Ad.

Algorithm 3. Subspace-oriented Selection (SOS)
Input:

R: Sorted subspaces;
A

′
: A set of candidate solutions;

P : A set of solutions;
num max: The maximum selected from each subspace;

Output:
A set of solutions P ;
The index of subspace s.

1: Let s = 1;
// N denotes the population size

2: while |P | + min {|R(s)inds|, num max} ≤ N do
3: if |R(s)ind| ≤ num max then
4: P = P ∪ R(s)inds;
5: else
6: Nondominated selection (R(s)inds);
7: P = P ∪R(s)inds[1 : (num max)]; // select num max solutions from R(s)inds

8: end if
9: s = s + 1;

10: end while

The environmental selection is divided into two cases according to the size
of |Ar|, as shown in step 3.3 of Algorithm 1. IF |Ar| < N , then besides Ar, N −
|Ar| individuals need to be selected from Ad for the next-generation population;
Otherwise, N individuals of the next-generation population need to be selected
from Ar.

In either case of the above, the next-generation population is selected accord-
ing to the sorted subspaces. Algorithm 3 shows subspace-oriented selection in
detail, where num max is the maximum number of individuals selected from
each subspace. Firstly, we select the individuals from the first subspace in R,
and proceed in sequence but not more than N (population size). To maintain
diversity, this algorithm sets the maximum number of individuals (num max)
selected from each subspace. If the number of individuals in a subspace is not
greater than num max, then all the individuals in this subspace are selected;
Otherwise, num max individuals are selected according to the NSGAII [1].

Selection from Dominated Subspaces. In the first case, the number of non-
dominated individuals is smaller than N (|Ar| < N). N − |Ar| individuals need
to be selected from Ad for next-population, as mentioned earlier. The subspaces
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set R sorted was obtained by Algorithm 2. The next step is to select individuals
from Ad distributed in dominated subspaces, the detailed procedure is shown
in Algorithm 4. Note that if individuals in each subspace are not evenly dis-
tributed, the number of selected individuals will be less than N . At this time,
we need to select the remaining individuals from the unselected Ad according to
the NSGA-II [1], as shown in lines 6 to 7 of Algorithm 4.

As shown as Fig. 1a, the result of environment selection for MOEA-SP is
P = {x1, x2, x3, x4, x9}, compared with the result P = {x1, x2, x3, x4, x7}
of NSGA-II in Fig. 1b. From the results of the two selection, the diversity of
MOEA-SP is better than that of NSGA-II during evolution.

Algorithm 4. Dominated Subspaces-oriented Selection (DSOS)
Input:

R: Sorted subspaces;
Ad: A set of candidate solutions;
P : A set of solutions.

Output: A set of solutions P .
1: Let s = 1, num max = 5;
2: (P, s) = SOS (R, Ad, P, num max); // Algorithm 3
3: if (s ≤ |R|)&&(|P | < N) then
4: Nondominated selection (R(s)inds);
5: P = P ∪ R(s)inds[1 : (N − |P |)];
6: else if s > |R|&&|P | < N then
7: Select (N − |P |) solutions from the unselected solution from Ad;
8: end if

∗
7

1

2
4

9

3 6

Fig. 2. Nondominated Subspaces based Max-Min Selection
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Selection from Nondominated Subspaces. In the second case, the number
of nondominated individuals is larger than N (Ar ≥ N). N individuals of next-
generation population need to be selected from Ar. As shown in Fig. 2, |Ar| =
7 > N = 5. In this case, the population normally enters into the late stage of the
evolution. This means diversity should be paid more attention than convergence.

Algorithm 5. Nondominated Subspaces-oriented Max-Min Selection
(NSOMMS)
Input:

R: Sorted subspaces;
Ar: A set of candidate solutions;
P : A set of solutions;

Output: A set of solutions P .

1: Let num max =
⌊

N
|R|

⌋
;

2: P = SOS (R, Ad, P, num max); // Algorithm 3
3: Ar = Ar \ P

/∗ Select lacked individuals by Max-Min method ∗/
4: while |P | < N do
5: Let Dist1×|Ar|, i = 1;
6: for all x ∈ Ar do
7: Dist[i] = miny∈P distance Minkowski(x, y);
8: i = i + 1;
9: end for

10: q = arg maxx∈Ar Dist[xindex];
11: P = P ∪ {q};
12: Ar = Ar \ {q};
13: end while

Different from Algorithm 4, in Algorithm 5, num max is the average number
of individuals in each subspace, which is set to num max =

⌊
N
|R|

⌋
. In this way,

the value of num max will be adaptively adjusted according to the distribution
of the current population. The setting of num max ensures that individuals will
be selected from each nondominated subspace, which is conducive to maintaining
the diversity of the population.

Max-Min selection is described with lines 4 to 13 of Algorithm 5. The major
idea is to select an individual each time that its minimum distance to the set of
selected individuals is the largest. In other words, an individual, who is as far
away as possible from the selected individual, is expected to select. Firstly, the
minimum Minkowski distance between each individual in Ar and individual in
P is calculated and stored in Dist. Then, the individual in Ar corresponding
to the maximum value of Dist is found and selected into P , which proceeds in
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turn until the number of individuals in P reaches N . The method is conducive
to maintaining diversity greatly. Here the Minkowski distance is calculated as

distance Minkowski (x, y) =

(
n∑

i=1

|xi − yi|p
) 1

p

(0 < p < 1). (2)

where n is the dimension of x or y, p is a parameter. The reason why the
Minkowski distance (0 < p < 1) is used is that it can enlarge the difference and
facilitate the comparison of distances.

For example in Fig. 2, num max =
⌊
5
4

⌋
= 1, and individuals x1, x2, x9, x3

are selected from s1, s2, s3, s4, respectively, i.e., P = {x1, x2, x9, x3}. It is nec-
essary to select an individual from {x4, x6, x7} according to the following Max-
Min method because of 5 − |P | = 1. Obviously, individual x7 in {x4, x6, x7} is
the farthest away from all the selected individuals. So individual x7 is selected,
i.e., P = {x1, x2, x9, x3, x7}.

3.4 Historical Archive Update

The reason for introducing the historical archive is that it can guide the direc-
tion of population evolution and facilitate the convergence and diversity of the
population. The historical archive participates in the calculation of the aforemen-
tioned two indicators and environmental selection. In the early stage of evolution,
due to the pressure and information of historical individuals, it promotes the con-
vergence of population and accelerates the evolution speed and efficiency. In the
late stage, it can increase diversity to select offspring from the set of all non-
dominated historical individuals according to the Max-Min method. However,
if the number of historical individuals is too large, computing resources will be
overtaken, so we need to delete some individuals from the historical archive.

The update of the historical archive in this paper is divided into two cases
according to the size of nondominated individuals. In the first case, the number
of nondominated individuals is smaller than the size of the population, which
needs historical individuals to guide algorithm search. Therefore, the historical
archive reserves some representative individuals in each sampled subspace. In
the second case, when the number of nondominated individuals is larger than
the size of the population, the historical archive only preserves nondominated
individuals.

4 Experimental Studies

To verify the validity of the proposed algorithm MOEA-SP, this paper makes
some comparative experiments on a set of benchmarks.
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4.1 Benchmark Functions and Performance Metric

GLT1-GLT6 [14] benchmark problems are used for testing the performance of
algorithms. The shape of these functions has a variety of forms, including con-
vex, nonconvex, extremely convex, disconnected, nonuniformly distributed. The
dimensions of the decision variables of GLT1-GLT6 are set to 10.

In this paper, the Inverted Generational Distance (IGD) is used as a per-
formance metric to measure the quality of a solution set P , which represents
the average distance from a set of reference points P ∗ on true PF to the solved
population P . The IGD metric is defined as

IGD(P ∗, P ) =
∑

v∈P∗ dist(v, P )
|P ∗| . (3)

where dist(v, P ) is the minimum Euclidean distance from the solution v in P ∗

to solution in P . The IGD metric can measure the convergence and diversity
of a set of solutions P , and the smaller the value of the IGD is, the better the
algorithm performs.

4.2 Peer Algorithms and Parameter Settings

The compared algorithms with MOEA-SP are CDG-MOEA [4], NSGA-II [1]
and MOEA/D [2]. These MOEAs belong to grid-based, dominance-based and
decomposition-based methods, respectively. The population size is set to 200.
Here the population size, in MOEA/D, is set to 210 (the closest integer to 200)
for three objective problems because of the same as the number of weight vectors.

The number of evaluations of each test function is: 300,000; δ = 0.9; In
the DE operator: CF = 1, F = 0.5, η = 20, pm = 1/D, where D is the
dimensions of the decision variables. Each of the above four MOEAs runs 30
times independently on each test problem.

4.3 Experimental Results

Table 1 gives the mean and standard deviation of the IGD-metric values of the
four algorithms (i.e., MOEA-SP, CDG-MOEA, NSGA-II, and MOEA/D) on
GLT1-GLT6 test problems in 30 independent runs, where the IGD-metric value
with the best mean for each test problem is highlighted in boldface. MOEA-
SP performs the best on GLT5 and GLT6 test problems, compared with the
other three MOEAs. For GLT1-GLT4 test problems, the other three MOEAs
have their own strong points. NSGA-II performs the best on GLT2 and GLT3.
CDG-MOEA and MOEA/D perform the best on GLT1 and GLT4, respectively.

The reason for the best performance of CDG-MOEA on GLT1 is that the grid
partitioning is very favorable for GLT1 with the linear shape of PF, compared
with the kd-tree partitioning in the MOEA-SP. Although NSGA-II performs
the best on GLT3 with the extremely concave PF, MOEA-SP does not perform
poorly. As shown in Fig. 3, we give the distribution of the nondominated solutions
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Table 1. The IGD-metric values comparisons of the MOEA-SP with the other three
MOEAs on GLT test problems in terms of the mean and standard deviation values,
where the IGD-metric value with the best mean for each test problem is highlighted in
boldface.

MOEA-SP CDG-MOEA NSGA-II MOEA/D

GLT1 mean 4.30E-03 1.55E-03 1.76E-03 1.78E-03

std 7.25E-04 6.45E-04 1.71E-04 5.58E-06

GLT2 mean 3.64E-02 1.03E-01 1.66E-02 1.45E-01

std 1.54E-03 6.63E-02 4.41E-04 1.83E-02

GLT3 mean 5.96E-03 1.03E-01 5.48E-03 9.18E-03

std 5.16E-04 8.45E-02 6.22E-03 1.42E-04

GLT4 mean 1.91E-02 6.59E-03 9.79E-03 4.78E-03

std 4.06E-02 3.56E-03 3.37E-02 8.17E-06

GLT5 mean 2.91E-02 2.52E-01 4.18E-02 7.86E-02

std 5.05E-04 1.18E-01 1.87E-03 3.98E-04

GLT6 mean 2.93E-02 1.90E-01 2.97E-02 4.56E-02

std 5.32E-03 4.88E-02 1.65E-03 5.21E-04

Fig. 3. The final nondominated solution set obtained by the four algorithms on GLT3
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sets obtained by the four algorithms on GLT3. In terms of the uniformity, the
distribution of the nondominated solutions set obtained by MOEA-SP is better
than MOEA/D. The performance of MOEA-SP on GLT5 and GLT6 is superior
to the other three MOEAs. The reason is that, in MOEA-SP, the subspace
sorting and the subspace-oriented selection increase selection pressure and are
conducive to solving GLT5 and GLT6 with three objectives. As shown in Fig. 4,
we give the distribution of the nondominated solutions sets obtained by the four
algorithms on GLT6. The distribution of nondominated solutions set obtained
by MOEA-SP on GLT6 is superior to the other three algorithms in terms of
both the convergence and diversity.

Fig. 4. The final nondominated solution set obtained by the four algorithms on GLT6

5 Conclusion

This paper proposes a novel MOEA based on space partitioning (MOEA-SP).
The proposed MOEA-SP transforms a MOP into a bi-objectives optimization
problem to sort the subspaces, then selects offspring by the subspace-oriented
selection, which simplifies the complexity of the problem. The kd-tree space
partitioning method overcomes the limitation of shape sensitivity to PF and
the curse of dimensionality. The subspaces sorting and the Max-Min selection
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are used for pushing the population convergence and maintaining the diver-
sity, respectively, which has great potential to solve MaOPs. MOEA-SP is com-
pared with three MOEAs on GLT test suite. The experimental results show that
MOEA-SP outperforms the compared algorithms in some benchmarks.

Although MOEA-SP overcomes some of the above issues, it still faces great
challenges. If the number of partitioning subspaces and the value of num max
are not set properly, the performance of the algorithm will be affected to some
extent. In addition, the definition of the bi-indicator criterion needs to fine-tune
to the more accurate description of the convergence and the diversity. Adaptively
adjusting the num max and furtherly modifying the definition of the bi-indicator
criterion what needs to be done in the future.
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