
A Supplement to “PRE: A Simple,
Pragmatic, and Provably Correct
Algorithm”

Rahibb and S. Sarala

Abstract A partial redundancy elimination (PRE) is a compiler optimization that
eliminates expressions that are redundant on some but not necessarily all paths
through a program. A PRE algorithm called “PRE: a simple, pragmatic, and provably
correct algorithm,” presented by Vineeth Kumar Paleri does not give importance for
eliminating edge splitting, even though the edge splitting is more expensive than
inserting a computation at an existing node of a data flow graph (DFG). The insert
equation of the PRE algorithm does not insert a computation for an expression in
an existing node of a DFG if the node does not compute the expression concerned.
This leads to unnecessary edge splitting. In this paper, the insert equation of the PRE
algorithm is updated to avoid the edge splitting as far as possible, and hence the
algorithm becomes more compact and beautiful.

Keywords Data flow graph · Partial redundancy elimination · Availability ·
Anticipability · Safe partial availability · Safe partial anticipability

1 Introduction

An expression is partially redundant if the value computed by the expression is
already available on some but not all paths in a DFG of a program to that expression.
A PRE algorithm is a method for transforming partial redundancy of an expression
in a DFG into fully redundancy and eliminates the redundancy. A PRE algorithm
based on safe insertions is treated to be optimal if no other PRE algorithm that uses
safe insertions gives a DFG which contains fewer computations (less insertions and
more deletions) in any path.

Rahibb (B) · S. Sarala
Department of Computer Applications, Bharathiar University, Coimbatore, Tamil Nadu, India
e-mail: rahibb007@gmail.com

S. Sarala
e-mail: sarala.bu@gmail.com

© Springer Nature Singapore Pte Ltd. 2020
T. Sengodan et al. (eds.), Advances in Electrical and Computer Technologies,
Lecture Notes in Electrical Engineering 672,
https://doi.org/10.1007/978-981-15-5558-9_8

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5558-9_8&domain=pdf
mailto:rahibb007@gmail.com
mailto:sarala.bu@gmail.com
https://doi.org/10.1007/978-981-15-5558-9_8

78 Rahibb and S. Sarala

Morel and Renvoise (MRA) [1] first proposed a bidirectional data flow analysis
algorithm to eliminate partial redundancies. But it does not really eliminate all partial
redundancies in a program, and it lacks both computational and lifetime optimality as
well. AsMRA fails to split edges, optimization is not possible inmany loops. Though
Dhamdhere [2, 3] through edge placement algorithm (EPA) performs insertions both
in nodes and on edges in a DFG, he cannot completely eliminate redundant code
motion. EPA does not provide lifetime optimality in many cases too.

It is already shown by Vineeth Kumar that the papers [4–7] have one or more
of the problems of redundant code motion, unremoved redundancies, or limited
applicability due to reducibility restriction of the flow graph.

The PRE algorithm developed by Vineeth Kumar [8] does not give much impor-
tance for eliminating edge splitting(s), and the edge splitting is more expensive than
inserting a computation at an existing node of a DFG though. The insert equation
of the PRE algorithm for an expression at a nodei in a DFG returns true only if the
nodei computes the expression concerned, otherwise it returns false. This may lead
to unnecessary edge splitting(s). This paper enriches the insert equation of the PRE
algorithm to avoid the edge splitting as much as possible.

2 PRE Algorithm by Vineeth Kumar Paleri

Vineeth Kumar Paleri, YN Srikant, and Priti Shankar proposed a unidirectional data
flow analysis algorithm for PRE titled “PRE: a simple, pragmatic, and provably
correct algorithm.” As the name suggests the algorithm is really simple and compu-
tationally and lifetime optimal. The algorithm assumes that all local redundancies are
already eliminated by using standard techniques for common subexpression elim-
ination on the basic blocks [9]. The algorithm utilizes the concepts of availability,
anticipability, safe partial availability, and safe partial anticipability.

An expression is available at a program point p, if it is computed along all paths
from the start node to p without a modification to any of its operands since the last
computation, and it is partially available at p if it is computed at least along any
path. An expression is anticipated at p if all paths from p have a computation of that
expression from the values of the operands of the expression available at p, and it
is partially anticipated if it is computed at least along any path from p. A program
point is safe for an expression if it is either available or anticipated at that point.

Safe partial availability needs all points on the path along which the computation
is partially available to be safe, and safe partial anticipability needs all points on the
path along which the computation is partially anticipated to be safe.

The local data flow property ANTLOCi represents a locally anticipated upward
exposed expression e in nodei, COMPi represents a locally available downward
exposed e in nodei, and TRANSPi reflects the absence of assignments to the
operand(s) of e in nodei. The global properties of availability, anticipability, safe
partial availability, and safe partial anticipability are used to collect global informa-
tion. INSERTi and INSERT(i, j), identify e to be inserted in nodei, and on edge (i, j),

A Supplement to “PRE: A Simple, Pragmatic … 79

respectively, and REPLACEi identifies e to be replaced in nodei with a temporary
variable, say t. The INSERTi and INSERT(i, j) equations of the PRE algorithm are as
follows:

INSERTi = COMPi · SPANTOUTi¬(TRANSPi.SPAVINi). (1)

INSERT(i, j) = ¬SPAVOUTiSPAVIN jSPANTIN j (2)

2.1 An Example

Figure 1a shows a DFG with 6 nodes, and Fig. 1b is a DFG after applying the PRE
algorithm. The algorithm inserts a computation at nodes n1 and n5 with the Eq. (1).
Here, the algorithm fails to insert a computation at the node n2 as it does not contain
the computation a * b. So the algorithm splits the edges (n2, n3) and (n2, n6) for
inserting a node in each edge with the Eq. (2) in order to make the expression fully
redundant along all paths to n4 and n6.

3 A Supplement to PRE Algorithm

As the PRE algorithm inserts a computation at a node only if the node contains a
computation of the expression, it leads to edge splitting as shown in Fig. 1b. Being
the edge splitting is very expensive as compared to inserting a computation at a node
already existing in a DFG, the INSERT equation of the PRE algorithm is modified
by using a program segment code without sacrificing the algorithm’s computational
and lifetime optimality. The program segment is as follows:

INSERTi = ¬ (TRANSPi.SPAVINi) SPANTOUTi(COMPi+ Пsєsucc(i)ANTINs(|PREDs| = 1 +PAVINs)(|PREDs| = 1+PAVINs)
INSERTij= ¬ INSERTi¬SPAVOUTi.SPAVINj.SPANTINj

where j is a predecessor of the nodei, and all other equations of the PRE algorithm
remain the same.

3.1 An Example

Consider Fig. 1a again. Figure 2 is the DFG after applying the new program code.
Note that it has only three insertions and four replacementswithout any edge splitting.

80 Rahibb and S. Sarala

 n1 n2 n5

 n3 n6

 n4

(a) before PRE algorithm

n1 n2 n5

n(2,3) n(2,6)

 n3 n6

n4

(b) after PRE algorithm

a*b a*b

a*b

a*b

t

t

t =a*b

t = a*b
t

t = a*b
t

t =a*b

Fig. 1 Partial redundancy elimination using PRE algorithm

Fig. 2 Partial redundancy
elimination using new
program segment code

n1 n2 n5

 n3 n6

n4

t

t

t = a*b
t

t = a*b
t t = a*b

A Supplement to “PRE: A Simple, Pragmatic … 81

4 Conclusion

The goal of this paper stated in the introduction is to eliminate the edge splitting as
far as possible. As the insert equation of the PRE algorithm by Vineeth Kumar fails
to take care of eliminating the edge splitting much, this paper, by simply updating
the INSERT equation of the PRE algorithm, eliminates the edge splitting of the DFG
of a program as far as possible, and hence the PRE algorithm is now more clever and
attractive without sacrificing the algorithm’s computational and lifetime optimality.

Acknowledgements We are bound to thank Vineeth Kumar Paleri for his sincere, unconditional
and constant guidance for our research work, and we would like to thank the University Grants
Commission too, for awarding Teacher Fellowship for completing Ph.D. in Computer Science
under the Faculty Development Program of the UGC during the XIIth plan period (Letter No. F.
No. FIP/12th Plan/KLCA045 TF07, dated: 10-09-2016).

References

1. Morel E, Renvoise C (1979) Global optimization by suppression of partial redundancies.
Commun ACM 22(2):96–103

2. Dhamdhere DM (1988) A fast algorithm for code movement optimization. SIGPLAN Notices
23(10):172–180

3. Dhamdhere DM (1991) Practical adaptation of global optimization algorithm by Morel &
Renvoise. ACM Trans Program Lang Syst 13(2): 291–294

4. Dhamdhere DM, Rosen DM, Zadeck FK (1992) How to analyze large programs efficiently and
informatively. In: Proceedings of ACM SIGPLAN ’92 conference on PLDI, pp 212–223

5. Dhamdhere DM, Patil H (1993) An elimination algorithm for bi-directional data flow analysis
using edge placement technique. ACM TOPLAS 15(2):312–336

6. Dhamdhere DM, Khedker UP (1993) Complexity of bidirectional data flows. In: Proceedings
of twentieth annual symposium on POPL, pp 397–408

7. Dhamdhere DM, Dhaneshwar VM (1995) Strength reduction of large expressions. J Program
Lang 3: 95–120

8. Paleri VK, Srikant YN, Shankar P (2003) Partial redundancy elimination: a simple, pragmatic,
and provably correct algorithm. Sci Comput Program 48(1):1–20

9. Aho AV, Sethi R, Ullman JD Compilers: principles, techniques, and tools. Addison-Wesley

	 A Supplement to “PRE: A Simple, Pragmatic, and Provably Correct Algorithm”
	1 Introduction
	2 PRE Algorithm by Vineeth Kumar Paleri
	2.1 An Example

	3 A Supplement to PRE Algorithm
	3.1 An Example

	4 Conclusion
	References

