
Chapter 37
Uncertainty Propagation in TELEMAC
2D Dam Failures Modelling
and Downstream Hazard Potential
Assessment
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and Cédric Goeury

Abstract This work addresses uncertainty propagation in Telemac 2D models
with respect to two major types of risks in river hydrodynamics: flood hazard and
dam failures. The studied case is a Telemac 2D model that extends over approx-
imately 14.4 km2 with a river length of 41 km including 3 major tributaries to
the main river and 3 dams. The implementation of the uncertainty propagation
approach would not have been feasible and accomplished without the open source
platform Salome-Hydro and the TelApymodule (PythonAPI) of the Telemac-
Mascaret System. The first step consisted of quantifying uncertain parameters for
the acquired hydraulic model and defining adequate probability distributions based
on expert judgment and previous specific studies that have been provided by EDF.
A sensitivity analysis based on Morris screening method was then carried out to
reduce the number of uncertain factors. Uncertainty propagation algorithms such as
Monte Carlo and Polynomial Chaos expansion were used to estimate the maximum
water depths and velocities, as well as their statistical moments such as the mean and
variance and the Sobol indices of the considered parameters. The use of parallelism
proved to be necessary to optimize the computation time. The final results are then
used to assess the flood casualties and the flood damages. This second estimation is
based on the FloodRisk plugin of QGIS.
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37.1 Introduction

Numerical river hydraulics is based on the discretization of partial differential equa-
tions (Saint-Venant or Navier-Stokes) which include simplifying assumptions, input
data such as rating curves, bathymetry, hydrographs, and parameters including uncer-
tainties that may influence the results. In the current configuration, most parameters
are calibrated a posteriori to ensure a good accuracy and representation of the flow
dynamics. However, if the calibration could not be carried out due to lack of data,
then the validation of the results is based on expert judgment and is subject to high
uncertainties. Thus, uncertainty quantification can prove to be a valuable decision
making tool since it can determine confidence intervals and whether model outputs
will comply with the regulatory requirements (e.g. design requirements) given the
random variation in inputs.

In this thesis, the uncertainty propagation methodology presented in Fig. 37.1 is
followed [1]. Three main steps are identified:

• Step A consists in defining the model, the statistical quantity of interest and the
corresponding criteria (e.g. criteria on failure probability). The model description
is similar to a classical deterministic approach as it defines the inputs and outputs
of the model.

Fig. 37.1 General framework for uncertainty propagation studies [2]
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• Step B consists in quantifying sources of uncertainties on model input parameters
which will be described by adequate probability distributions. The result of this
step is a random vector of all uncertain variables which is represented by the joint
probability distribution of all marginal distributions and a copula that describes
the dependence between the variables.

• Step C consists in propagating uncertainties on the input through the model. In
most cases, a sensitivity analysis (step C´) is required to assess the influence and
the importance of input parameters with respect to the randomness of the output.

One objective of thiswork is to apply the previously defined steps; adopted byEDF
R&D [2], on a Telemac 2D hydraulic model that includes dam failures scenarios
through the conception of user-friendly Python scripts. The main methods tested
in this work are the classical algorithm of Monte Carlo using different sampling
techniques such as Quasi-Monte Carlo with low discrepancy sequences, the Morris
screening method for sensitivity analysis and the Polynomial Chaos Expansion to
build surrogate models.

The model used to test this method of uncertainty propagation is part of an incre-
mental damage study in which submersion waves are simulated for a reference no
dam break scenario and an adverse dam break scenario, increments are calculated
by comparing the results of both scenarios and flood damages are assessed.

37.2 Methodology

37.2.1 Hydraulic Telemac 2D Model

The geographical location of the modeled river is confidential. The river is delimited
by a city downstream which represent a major vulnerability to flood risk in case of
dam breaks. The model extends over approximately 14.4 km2 with a river length
of 41 km and it includes 3 major tributaries to the main river. The mesh contains
approximately 185 000 nodes. The DEM of the model is given in Fig. 37.2.

The simulated discharge correspond to a return period of 5 000 years and it
deterministic value is estimated by the Schadexmethod [3]. A factor 10 is considered
by assumption for the return period of the tributaries discharges; i.e. the discharges
considered for the tributaries are associated with a return period of 500 years.

The dams are modeled by prescribing rating curves on the upstream boundaries
and prescribing discharges on the downstream boundaries. A dam failure correspond
to the event of exceeding a dam stability threshold defined based on expert judgment.
The rating curves are switched once the break occurs via TelApy Python script and
user Fortran file. The solution of Ritter is considered to represent the rating curve
associated with the break [4]. The model also includes 7 bridges which are modelled
as drag forces in theFortran subroutineDragfo.Thebridges are consideredunstable
if the water level upstream of the bridge is higher than the bridge deck level.
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Node 72 177

Fig. 37.2 Bathymetry of the 2D model

In terms of computation time, one run of the model takes approximately 1 h
10 min on 56 processors. This was found to be the optimal number of processors for
the studied model.

For this study, the variables of interest are the maximal free surface elevation
and the maximal water level (for the flood damages quantification). The statistical
quantities of interest are the statistical moments; mainly the mean and the variance,
as well as sensitivity measures such as Sobol indices.

37.2.2 Quantification of Uncertain Parameters

The quantification of uncertain parameters is carried out based on the categories of
the model input data:

• Flow discharges: they correspond to the peak flood discharges at the main river
and the 3 tributaries. For this model and based on expert judgment, only the dis-
charges of the main river and one of the tributaries are considered uncertain. Their
probability distribution is the truncated normal distribution with a mean equal to
the deterministic peak flood discharge estimated with the Schadex method. Vari-
ances of approximately 5% and 25% of the means were respectively taken for the
main river and the tributary.

• Strickler coefficients: the hydraulic model is divided into 5 areas with different
Strickler coefficients. All these coefficients are considered uncertain following
a uniform distribution. Since the model was not calibrated, the bounds for these
distributions were estimated based on literature values and are given in Table 37.1.

• Dam failure thresholds: the occurrence of a dam break is defined as the event of
the hydraulic head upstream of the dam exceeding a specific stability threshold.
The latter is considered uncertain following a truncated normal distribution. The
parameters of the probability distributions of dam failure thresholds for the 3 dams
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Table 37.1 Probability
distribution for Strickler
coefficients

Uncertain variable Probability distribution Bounds

Strickler for urban zones Uniform [10, 15]

Strickler for forests Uniform [5, 12]

Strickler for agricultural
zones

Uniform [15, 25]

Strickler for meadows Uniform [20, 30]

Strickler for the riverbed Uniform [28, 32]

included in the model were defined relying on expert judgment and previous EDF
studies. The values of these thresholds are confidential.

• Drag coefficients for bridges: based on expert judgment, one of the seven bridges
is considered stable since the vulnerabilities are located upstream of the bridge.
The other six bridges which are modelled as drag forces, are unstable if the water
level exceeds the bridge deck level. The drag coefficients are then considered
uncertain since they are empirically estimated based on the shape and material of
the bridge. They follow a uniform distribution.

• Dams rating curves coefficients: the equations used to assess the rating curves
include several empirical coefficients that are uncertain and that follow uniform
distributions.

• Ritter coefficient: the dam break is described by the dam break solution of Ritter
with a deterministic value of 0.209 for coefficient of Ritter. It follows a truncated
normal distribution with the value 0.3 (spillway overflow coefficient used in the
deterministic case to represent dam breaks) as maximal bound.

The quantification step resulted in 27 uncertain parameters that are assumed to be
independent.

37.2.3 Sensitivity Analysis and Uncertainty Propagation

Given the large number of quantified uncertain parameters, the Morris screening
method is tested in order to reduce the problem dimensionality. This method was first
introduced in [5]with the aim of identifying the subset of non-influent parameters in a
model using a small number ofmodel evaluations (output samples). The input factors
are usually classified according to their effects: negligible, linear and uncorrelated,
non-linear and correlated. It is based on moving the factors of a sample one at a time
(OAT) by a step � in the input physical space. The elementary effects are quantified
using (1). The absolute mean and standard deviation of these elementary effects are
taken as sensitivity measures.
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EEi = Model
(
x1, . . . , xi + �, . . . , xp

) − Model
(
x1, . . . , xp

)

�
(1)

where x1, . . . , xp are the uncertain factors of the model, and EEi is the elementary
effect of parameter xi .

Sobol indices from a polynomial chaos expansion (PCE) of approximately 7 200
Monte Carlo simulations are computed to compare with the results of the Morris
screening method. The PCE is implemented based on a Least Angle Regression
Strategy (LARS) using a corrected Leave-One-Out error [6]. The LARS uses a Least
Square Regression truncation method of the polynomial decomposition.

The classical algorithmofMonteCarlo is implemented to propagate uncertainties.
Convergence of Monte Carlo and Quasi Monte Carlo are studied [7]. The aim is the
computation of statistical moments such as the mean and the variance of the maximal
water depth and maximal velocity which will be used to assess the flood damages.

37.2.4 Dam Break Scenarios

The scenarios considered in this study are:

• Break scenario: total and instantaneous dam breaks triggered by the break of the
1st upstream dam.

• Reference scenario: no dam breaks

37.2.5 Implementation Using the APIs and the Clusters

The sensitivity analysis and uncertainty propagation methods were implemented
using the C++/Python library Openturns [8] designed for the treatment of uncer-
tainties. It coupling with the hydraulic model (i.e. Telemac 2D) is facilitated by the
use of the TelApy module [9] which allows to set and run Telemac instances via
Python.

Since a large number of simulations are going to be executed, the optimization
of the computation time using the available EDF clusters is deemed necessary to
accomplish this study. If the Telemac model only is parallelized, a minimal time
of approximately 48 days 14 h is required for 1 000 simulations. However, if the 1
000 simulations are also parallelized according to Fig. 37.3, then a minimal time of
approximately 23 h 20 min is sufficient for all the simulations.
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Fig. 37.3 Parallelization scheme on Clusters

Table 37.2 Cases ran for the
Morris screening method

Number of
trajectories

Number of
simulations

Minimal
calculation time
on cluster

20 560 ∼ 20 h

40 1 120 ∼ 38 h

60 1 680 ∼ 60 h

100 2 800 ∼ 4days

37.3 Results

37.3.1 Morris Screening Method Results

For the Morris screening method, several numbers of trajectories were tested as
shown in Table 37.2.

The results for the Morris screening method were not coherent with the expert
judgment. In fact, the dam break thresholds and the upstream discharge that were
expected to have the major influence on the results based on expert judgment were
found to have minimal to zero influence. This is due to the constant delta that is cho-
sen for all parameters even though their values and their types differ significantly. A
possible solution to this problem would be to perform an iso-probabilistic transfor-
mation on the set of input parameters before generating the samples. Thus, to reduce
the set of uncertain parameters, we finally used expert judgment.

37.3.2 Uncertainty Propagation and Sensitivity Analysis

37.3.2.1 Convergence

Given the incoherent results of the Morris method, the Monte Carlo algorithm is
performed using random sampling method and Quasi Monte Carlo sampling method
based on low discrepancy Sobol sequences.
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First, the convergence of the dispersion coefficient (σ/μ) and the mean of Monte
Carlo is graphically analyzed. The mean is bounded by its 95% confidence interval.
The dispersion coefficient and the mean of the maximal surface elevation estimated
at node 151 080 (node displayed in Fig. 37.2) and shown in Fig. 37.4 and Fig. 37.5
suggests that the convergence of Monte Carlo is obtained at approximately 7 000
simulations. Quasi Monte Carlo converges more rapidly at approximately 3 500
simulations.

Second, a convergence study based on a criteria set on the coefficients of variation
of the mean and the variance of the Monte Carlo samples is performed. The criteria
were defined a priori (based on the precision deemed acceptable for the model at
hand) and are given in (2) and (3).

Criterion 1 : CVmean ≤ 0.00005 (2)

Criterion 2 : CVvariance ≤ 0.01 (3)

The results displayed in Fig. 37.6 and Fig. 37.7 and estimated on 2 nodes: node 151
080 and node 72 177 located on the downstream agricultural floodplain (Fig. 37.2),
confirm that the convergence of Monte Carlo is obtained for approximately 7 000
simulations.

Number of simula on

Fig. 37.4 Convergence of the dispersion coefficient of Monte Carlo
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Fig. 37.5 Convergence of the mean of the surface elevation for Monte Carlo and Quasi-Monte
Carlo sequence

Fig. 37.6 Convergence of the coefficient of variation of the Monte Carlo samples variance using
criterion 1
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Fig. 37.7 Convergence of the coefficient of variation of the Monte Carlo samples variance using
criterion 2

37.3.2.2 Polynomial Chaos Expansion Based on LARS

This method is tested here since it allows the computation of Sobol indices with
smaller samples than Monte Carlo or Saltelli algorithm [10]. The theoretical number
of simulations required to construct a surrogate model of degree 4 is given by:

Nth =
(
p + d
d

)
= (p + d)!

p!d! = 31465 simulations (4)

where p is the number of uncertain parameters and d the degree of the polynom.
This number implies a computation time of approximately 47 days on the EDF

Eole cluster.
Although the available number of Monte Carlo simulations (~7 200) is inferior to

the theoretical number required for a PCE (4), this method was still tested with this
sample. A cross-validation was then performed on the constructed surrogate model
using a validation Monte Carlo sample of size 1 000.

First, all 7 200 simulations were used to construct surrogate models of different
degrees in order to find the optimum precision. The reference values are the mean
and variance of the 7 200.

The differences between the means and the variances are approximately 7.10−3

and 8.10−3 respectively (as shown in Fig. 37.8). These errors are acceptable and the
degree 4 is thus retained for an accuracy study based on the approximation accuracy
coefficient Q2 computed using (5) (Fig. 37.9).
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Fig. 37.8 On the left, estimated mean of the surface elevation on node 151 080 for PCE using
7 200 Monte Carlo simulations; on the right, estimated variance of the surface elevation on node
151 080 for PCE using 7 200 Monte Carlo simulations

Fig. 37.9 Approximation
accuracy coefficient of a
degree 4 PCE using different
sizes for the Monte Carlo
sample

Q2 = 1 − εLOO (5)

Where εLOO is the Leave-One-Out error.
This error is a special case of K-fold error estimate where the number of folds

is chosen equal to the cardinality N of the experimental design X . Let’s denote M̂
the surrogate model of the real model M, M̂−i the surrogate model built from the
experimental design X\{xi} with the i-th sample xi being set aside, and cov(Y )

the empirical covariance of the response sample Y. The Leave-One-Out error can be
calculated using (6).

εLOO =
1
N

∑N
i=1 M

(
xi

) − M̂−i
(
xi

)

cov(Y )
(6)

A cross validation is performed for the PCE surrogate model of degree 4 con-
structed with 400 Monte Carlo simulations using 1 000 samples. Figure 37.10 indi-
cates that the surrogate model gives a good approximation even if the sample size is
less than the required theoretical number of simulations calculated in (4).
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Fig. 37.10 Cross validation of the degree 4 PCE using 1 000 Monte Carlo samples for validation

37.3.2.3 Sobol’ Indices Using PCE Surrogate Models

The surrogate models that have been built using polynomial chaos expansion can
also be used to perform a sensitivity analysis by computing Sobol indices. In fact,
first order Sobol indices have been calculated using a PCmodel of degree 4 built with
all 7 200 Monte Carlo samples. In Fig. 37.11, the conveyance coefficients of dam j
are denoted QZ ji , i = 1, . . . , n j , where n j is the number of conveyance coefficients
of dam j. The drag coefficients of bridges are denoted drag, the Strickler coefficients
are denoted CFi , i = 1, . . . , 5 and the surface elevation dam failure thresholds are
denoted Breaki , i = 1, 2, 3. Qmain and Qtrib refer respectively to the discharges
of the main river and the tributary. The results shown in Fig. 37.11 are more coherent
with the expert judgment than those of the Morris method. The Strickler coefficient
of forest areas stands out as the most influential parameter. This could be explained
by the location of the node used for the computation of these indices (node 151 080)
or by the fact that the surrogate model still needs to be refined.
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Fig. 37.11 First order Sobol’ indices estimated from a degree 4 PCE

37.3.2.4 Post-treatment and Damages Assessment

Statistical moments such as the mean and the variance of the maximal water depth of
theMonteCarlo output sample havebeen computed. For visualizationpurposes, these
moments are integrated in a result MED file using Hermes APIs, MEDCoupling
and MEDLoader [11]. An example of the addition of the mean of the maximal
surface elevation from 7 200 Monte Carlo simulations to the results file is given in
Fig. 37.12.

Fig. 37.12 Integration of the mean of surface elevation to the MED result file
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Downstream flood damages were quantified using 2 methods:

• Ramsbottom or Flood risk to People method [12]: used to quantify casualties
based on a danger factor.

• Floodrisk plugin of Qgis [13]: used to evaluate economic damages based on
depth-damage curves.

Fig. 37.13 Vulnerabilities map at the downstream area for total instantaneous dam failures scenario

The Floodrisk plugin was used to quantify the damages downstream of the last
dam using 7200 simulations. The resulting vulnerability map is given in Fig. 37.13.
The vulnerabilities are mainly concentrated downstream of the last dam.

37.4 Perspectives and Limitations

The results presented here remain indicatory of the prospects uncertainty propagation
and sensitivity analysis methods can provide. In fact, a 2nd scenario describing total
and consecutive dam breaks (any dam can be the first to fail) is considered and its
results still need to be post-treated. Monte Carlo was not exploited yet to calculate
Sobol indices since it requires a larger number of simulations [10]. Other nodes, for
which the samemethods can be applied, located along the streamline or the floodplain
can be taken into account. Hence, maps of Sobol indices can be created. Another
perspective is the quantification of casualties using the Ramsbottom method, as well
as automating the Floodrisk method without using the Qgis interface.

As for the limitations of the study, the convergence criteria were defined for the
specific model at hand. Hence, one should modify and adapt these criteria based on
expert judgment and regulatory requirements.

37.5 Conclusions

The implementation of the uncertainty propagation approach would not have been
feasible and accomplished without the open source platform Salome-hydro,
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OpenTURNS and the TelApy module (Python API) of the Telemac-Mascaret
system. Themain difficulty -which is generally common to probabilisticmodels that
treat uncertainty propagation - remains the optimization of computation time with
respect to the number of simulations considered and the run-time of the Telemac
case; whether it is in parallel or sequential mode.

The main objective of this study; which were the application of the uncertainty
propagationmethods on a hydraulicmodel at an engineering scalewas accomplished.
From an engineering point of view, the quantification of sources of uncertainties and
their representation with suitable probability distributions is the step that takes the
longest time to complete since it mostly relies on expert judgment.

Uncertainty propagation method allowed to criticize deterministic results and
permit to explore extensively the surface response of a model. A probabilistic model
is then more reliable. In the case presented in this paper, the results showed that
deterministic model was more pessimistic than the mean probabilistic result.
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