
Chapter 6
GA-Based RBF Neural Network
for Nonlinear SISO System

Radial basis function (RBF) neural network is efficient to model nonlinear systems
with its simpler network structure and faster learning capability. The temperature and
pressure modeling of the coke furnace in an industrial coke equipment is not very
easy due to disturbances, nonlinearity, and switches of coke towers. To construct the
temperature and pressure models in a coke furnace, RBF neural network is utilized to
improve the modeling precision. Moreover, the shortcoming of RBF neural network,
such as over-fitting is overcome. Moreover, the improved RNA-GA, MOGA, and
PCA-based NSGA-II are utilized to optimize both the structure and parameters of
the RBF network. Encoding/decoding, genetic operations, and fitness functions are
designed to obtain satisfying modeling performances. The industrial data sets in the
industrial coke furnace are utilized to construct the RBF neural network model by
using three modeling optimization strategies.

6.1 Introduction

SinceBroomhead andLowe, proposed0Radial basis function (RBF) neural networks
in 1988 [1], RBF networks have attracted a lot of interests to application research in
various fields because of the partial response character of the neuron, better approxi-
mation capability, simpler network structure, and faster learning capability than other
artificial neural networks (ANNs) [2–4]. However, how to design radial basis func-
tions remains a critical issue for RBF networks. The number and parameters of radial
basis functions control the structure complexity and the generalization capability of
RBF networks. A RBF network with too few radial basis functions gives poor gener-
alization on new data because of the limited flexibility, while a RBF network with
too many radial basis functions yields poor generalization since it is too flexible and
may fit the noise in the training data. The best generalization performance can be
obtained via a compromise between the conflicting requirements of reducing predic-
tion error while simultaneously decreasing model complexity [5, 6]. This trade-off
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highlights the importance of optimizing the structure complexity of the RBF network
to improve its generalization capability.

More specifically, the network structure of the RBF network needs to be given
before training other parameters in the neural network. The procedures usually
proceed in two steps: First, the centers of radial basis functions are determined by a
clustering method; second, the final-layer weights are calculated by the least square
method. Usually, an unsupervised method that is separated from the actual objective
of minimizing the modeling error will be executed in the first stage. The structure
optimization in the construction of the network is desirable, however, it is a rather
difficult problem and cannot be easily solved by the standard optimization method
[7].

An interesting alternative for solving this complicated problem can be offered
by the recently developed evolutionary algorithms. Perhaps the most popular and
successful strategies are the genetic algorithms (GAs), which have succeeded in the
structure selection of several kinds of neural networks, such as, Back propagation
(BP) neural networks [8, 9] and recurrent neural networks [10, 11], etc. As for RBF
neural networks, Vesin et al. used a GA to solve the whole optimization problem
of the RBF network, but the centers of the potential nodes were restricted among
the training data set [12]. Esposito et al. employed a GA-based technique for the
determination of the widths of Gaussian radial basis functions [13], while Sarimveis
et al., utilized a GA approach for optimizing RBF network only based on prediction
errors [14].

When RBF networks are used to model the nonlinear system, the learning algo-
rithm of the RBF network to determine its structure and parameters is critical,
because different learning algorithms have a great influence on the performances
of the derived RBF-based models.

Studies on parameter learning algorithm and the network structure optimization
have been developed in-depth. Huang et al., proposed a simple sequential learning
algorithm for RBF neural networks, which is referred to as the RBF growing and
pruning algorithm [15]. Du et al., proposed a multi-output fast recursive algorithm
(MFRA) that formulates the construction of an RBF network as a linear parameter
optimization problem [16]. Han et al., presented a flexible structural radial basis
function (FS-RBF) neural network, which changed its structure dynamically in order
to maintain the prediction accuracy [17]. Most previous algorithms will become
inefficient with too large search space and trap into the local minimum.

Although GA is a global searching algorithm, it is challenged by its weak local-
search capability and premature convergence. As such, some biological operations
at the gene level are effectively adopted in SGA, and the global searching speed
can be largely improved [18, 19]. Moreover, the pruning operation is introduced to
simplify the structure of the RBF neural network. In addition, the fewest process
variables for accurate modeling are often of great interest by means of the most
relevant variables selection, thus, themodeling, control, optimization, andmonitoring
issues for quality improvement of industrial production will be much easier [20–
22]. Hence, it is anticipated that prediction accuracy can be improved by variable
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selection techniques, which will reduce the model complexity and capture the nature
of industrial processes better [23–26].

Research on various variable selection methods for ANNs has been developed
continuously. Huang et al., utilized the least absolute shrinkage operator for the
input variables selection of a multilayer perceptron neural network in nonlinear
industrial processes [27]. A sequential backwardmultiplayer perceptron (SBS-MLP)
was proposed to perform feature selection [28]. Souza et al., have considerably
reduced the computational cost and improved the model accuracy by variable selec-
tion comparing with SBS-MLP [29]. Estévez et al., proposed an improved variable
selection method by introducing the average normalized mutual information for the
measurement of redundancy [30].

The variable selection using principal component analysis (PCA) has also been
studied in recent years [31–33]. However, the principal components are obtained by
the linear combination of all variables, which makes the interpretation of principal
component variable quite difficult. Therefore, a variety of criterion functions, such as
Similarity indices, RM criterion, RV criterion, Generalized Coefficient of Determi-
nation (GCD) criterion have been proposed for subset selection [34]. In addition, the
heuristics algorithm [35], simulated annealing [36], stochastic approximation itera-
tion [37], genetic algorithm [38], etc., have also been applied to select the variables.
Though some variable selection methods are efficient in the literatures [31–35, 37–
39], most of them are not included in system modelling, while the variable selection
in neural network only considered modeling accuracy [27].

Coking is an important process to improve economic benefits and has been widely
used for refineries [40, 41]. A coke unit usually consists of coke furnaces, fraction-
ating towers and coke towers. The temperature control of the coke furnaces is one of
the operation goals in the unit, due to the coke furnaces, fractionating towers and coke
towers in a completed process stream with their dynamic characteristics interacting
with one another, the tasks are complicated. For example, the temperature affects the
coking rate in the tubes of coke towers, which in turn has an impact on the tempera-
ture in the furnace [42]. Modeling is very important for advanced controller design
but is evenmore difficult in term of the nonlinear characteristics, time delay and other
various disturbances, such as feeding quantity, feeding temperature, fuel amount, etc.
One of the most serious disturbances is the switches of coke towers, which disturb
the temperature periodically and cause severe temperature fluctuations.

In this chapter, the structure optimization is included, and the fitness value of each
chromosome is calculated based on the prediction error and the structure complexity
criterion. In order to simplify the optimization of the RBF network, thin-plate-spline
function can be chosen as the radial basis function, which is not required to determine
its widths. However, the Gaussian function may obtain better performance with
suitable centers.Generally, theRBFcenters are determinedbasedon a self-organizing
clustering process, such as k-means clustering, the nearest neighbor clustering. The
application of the above algorithms requires the network structure to be selected
through trial and error, and only the input data is considered. Herein, several RBF
neural network optimization methods are given as follows:
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First, a pruning operator is designed to simplify the RBFNN structure, and a
RNA-GA is first developed to optimize the RBF neural network structure and its
corresponding parameters of radial basis functions to improve the approximation and
generalization performance of RBFNN for temperature modeling in a coke furnace
[7].

Second, the structure of the input and hidden layers, the parameters of theGaussian
basis functions are encoded in a chromosome. The local search operator and the
prolong operator are proposed to obtain multiple RBF neural network structure. And
an improved MOEA is then designed for the RBFNN modeling of the chamber
pressure [43].

Finally, PCA variable selection is combined with ANN for nonlinear system
modeling, and anRVcriterion function of PCA is used to select the effective variables.
Since both RV criterion and modeling accuracy are considered, the multi-objective
evolution algorithm (MOEA) is adopted. Among MOEAs, NSGA-II is adopted due
to its popularity and efficiency in solving ANN optimization and modeling problems
[44, 45]. Here, it is also used to solve the variable selection and ANN modeling
problem.

6.2 The Coke Unit

The whole process flow is shown in Fig. 6.1. It consists of such equipment as one
fractionating tower (T102), three coke furnaces (F101/1, 2, 3), and six coke towers
(T101/1, 2, 3, 4, 5, 6). The detailed flow of each part of the unit is shown in Fig. 6.2,
its main job is to coke residual oil. Take furnace (F101/3) as an example, the process
flow is as follows: The flow of residual oil is divided into two branches (FRC8103,
FRC8105) and sent into the convection chamber of the furnace (F101/3) to be heated
to about 330 °C, then the two branches are combined and flow out of the radiation
chamber of the furnace and go to the fractionating tower (T102) for heat exchange
with gas oil from the coke towers (T101/5, 6). After heat exchange, the heavy part
of both residual oil and the gas oil join together, which is called circulating oil. The
circulating oil is then divided into two branches (FRC8107, FRC8108) by pumps
(102/1, 2, 3) and returned to enter the radiation chamber of the furnace (F101/3) to
be heated to about 495 °C. Finally, the two branches join together and go to the coke
towers (T101/5, 6) to remove coke. This process is called the coking of residues.
The flows of the other two furnaces are the same as that of the furnace (F101/3), but
the corresponding coke towers are different. The coke towers (T101/1, 2) are for the
furnace (F101/1) and (T101/3, 4) for the furnace (F101/2). Each time, only one of
each pair of coke towers works for its corresponding furnace, and when it is full, the
other one replaces it. This replacement is called the switch of coke towers and the
procedure recycles. The switch time of three pairs of coke towers is different. The
heat exchange with gas oil from the coke towers poses a continuous disturbance on
the outlet temperature because of the volume of the gas oil from the coke towers.
During the switch of the coke towers, the outlet temperature of the furnace often
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Fig. 6.1 Overall flow of coke unit

drops and rises sharply because some of the oil in it will become gas oil, and part of
the inlet gas oil flowing into it will be used for the heating of coke towers. What’s
more, the random switch time of three pairs of coke towers adds to this serious
problem.

The outlet pressure, temperature, and relevant variables are sampled using the
experimental equipment CENTUM CS3000 Distributed Control System (DCS), as
shown in Fig. 6.3. The DCS has a database, namely PAI database, for process data
acquisition. To ensure the modeling precision and make the administrator conve-
niently analyze the process data, the sampling period 0.5 s is set in the PAI database,
and 2 digits after the decimal point are retained in the sampling dataset.

6.3 RBF Neural Network

Aschematic of theRBFnetworkwith n inputs and a scalar output is shown in Fig. 6.4.
In the RBF neural network (RBFNN), the function form ϕ(·) and the centers

ci are assumed fixed. Here we denote a set of the inputs x(k) as x(k) =
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Fig. 6.4 Schematic of RBF
network

[y(k − 1), . . . , y(k − n),u(k − 1), . . . ,u(k − m)], u(k) as the selected manipu-
lated variables evaluated by RV criterion of PCA, ŷ as the output of RBFNN, and
ω = [ω1, . . . , ωnr ] as the weights between the hidden layer and the output layer,
where nr is the number of the nodes in the hidden layer. The choices of ϕ(·) and ci

must be carefully considered for the RBF neural network to obtain both the approx-
imation capability and generalization performance. The thin-plate-spline function
and the Gaussian function are two typical choices, both of them have obtained good
approximation capabilities according to the fitting result of RBF networks [44].

Here, φi (x) is the ith neuron output in the hidden layer, which is selected as the
Gaussian function or thin-plate-spline function:

φi (‖x‖) = exp

(
−‖x − ci ‖

σ 2
i

)
or φi (‖x‖) = ‖x − ci ‖2 log‖x − ci ‖, i = 1, 2, . . . , nr

(6.1)

where ‖x − ci‖ is the Euclidean distance between x and ci , ci ∈ �n+m is the center
vector and σi ∈ � represents the spread of radial basis function, respectively.

The prediction of RBFNN, ŷ(k), can be expressed as a linear weighted sum of nr

hidden functions

y(x(k)) =
nr∑

i=1

ωiφi (‖x(k)‖) = ωΦ(k) (6.2)

where � = [φ1, · · · , φnr ]T . Given N1 samples of training data, Y1 =
[y1(1), · · · , y1(N1)] and U = [u(1), · · · ,u(N1)], the weight coefficients can be
calculated by recursive least squares (RLS) method [20]

⎧⎨
⎩

ω(k) = ω(k − 1) + K(k)[ fi (k) − �T (k)ωi (k − 1)]
K(k) = P(k − 1)�(k)[�T (k)P(k − 1)�(k) + μ]−1

P(k) = 1
/

μ[I − K(k)�T (k)]P(k − 1)
(6.3)

where 0 < μ < 1 is the forgetting factor, P(k) is a positive definite covariance
matrix, P(0) = α2I, and I is an (n + m) × (n + m) identity matrix, α is a sufficiently
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large real number set to 105 and ω(0) = ε, and ε is a sufficiently small n + m real
vector as set to 10−3, K(k) is a weight matrix.

6.4 RNA-GA Based RBFNN for Temperature Modeling

By giving a set of the inputs x(t) and the corresponding output y(t) for t = 1 to
N1, the weights of RBFNN can be derived using RLS method in 0.3. However, the
number of neuron nodes in the input and hidden layer will determine the structure
complexity of RBFNN, and the parameter selection of radial basis function is quite
important in order to obtain a good approximation capability. The better modeling
capability with a simpler structure was tried to be obtained by an improved RNA-
GA. Since the encoding/decoding method and the genetic operations will affect the
efficiency of GA, this section is focused on the optimization of the RBF network by
the RNA-GA.

6.4.1 Encoding and Decoding

Select the Gaussian function as the radial basis function, σi , ci , and the number of
hidden nodes of RBFNN of the lth chromosome is shown as follows:

Cl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cl
1,1

cl
1,2 · · · cl

1,n σ1

cl
2,1 cl

2,2 · · · cl
2,n σ2

...
...

. . .
...

...

cl
nr ,1 cl

nr ,2 · · · cl
nr ,n σnr

0 0 0 0 0
...

...
...

...
...

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.4)

where l = 1, 2, . . . N , N is the population size, nr is generated randomly between 1
and D, D is the maximal number of hidden neurons. The rows between [nr + 1, D]
are set to zeros and do not correspond to a center. The number of neurons in the
input layer (n) is generated randomly between 2 and 5. Since the choice of the input
layer is limited, it then uses the enumerated method during the optimization process.
There are entirely D × (n +1) real parameters to be optimized in the RBFNN, which
means one chromosome should represent D × (n + 1) real number. The elements of
Cl are then encoded by 0123/CUAG as shown in Fig. 6.5.

The parameters of the chromosome can be decoded by using the following
equations:
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Fig. 6.5 Quanternary encoding for Cl

ci j = x j,min + x

4L − 1
·
(

x j,max − x j,min

)
, 1 ≤ i ≤ nr , 1 ≤ j ≤ n (6.5)

σ j = x

4L − 1
wmax (6.6)

where x is the integer decoded by quaternary encoding with the encode length L,
x j,min and x j,max are the minimum and maximum values of input variables given
in the problem, wmax is the maximum width of Gaussian basis function.

6.4.2 Fitness Function

The training procedures using the improved RNA-GA (IRNA-GA) are processed
in two steps. First, the network structure and the parameters of radial basis func-
tions are determined by the chromosomes in an individual. Second, the final-layer
weights are calculated by the RLS method, because IRNA-GA is a random search
algorithm, and the constructed RBFNN system maybe ill-conditioned. Hence, the
ordinary least square method cannot be applied in the optimization procedure. At
each generation of IRNA-GA, the calculation of the weights in the output layer
completes the formulation of N RBFNN, which can be expressed by the pairs
(C1, w1), (C2, w2), . . . (CN , wN ).

To obtain good generalization capability of RBF network, the sampled data set
is divided into 3 groups, where one group of data subset (X1,Y1) are used to
calculate the weights of the final layer, the second group (C1,ω1) are utilized to
evaluate the modeling performance of RBFNN at each generation, and the third
group · · · (CN , ωN ) is used to verify the modeling performance of the optimal RBF
network. This scheme incorporates a testing procedure into the training process and
ensures good generalization performance of RBFNN. However, to obtain a better
approximation capability with a simpler structure and avoid neural network over-
fitting, the objective function considering both the approximation capability and
structure complexity is shown as follows:

J (Ci ,wi ) =
N1∑

t=1

|Y1(t) − Ŷ1(t)|2 +
N2∑

t=1

|Y2(t) − Ŷ2(t)|2 + λ(nr + n) (6.7)
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It can be seen that a compromise has been made between the modeling errors and
the complexity of network structure. Here, λ is a coefficient between 0 and 1, and
the bigger λ is, the more complicated the structure of RBFNN.

6.4.3 Operators of RBFNN Optimization

Li et al. has summarized various operations of DNA computing, such as elongation
operation, deletion operation, absent operation, insertion operation, translocation
operation, transformation operation, and permutation operation, etc. [46]. In addition
to selection, crossover, and mutation operators, other appropriate operations of DNA
computing can also be adopted to improve the performances of RBFNN modeling.

(1) Selection operator

A set of individuals from the previous population must be selected for reproduction
depending on their fitness values. Individuals with bigger fitness value have more
probability to survive. There exist several types of selection operators, and Roulette
wheel method is applied to produce the parents of crossover and mutation operators.
The probability of an individual being selected, P(Ci ), is given by

P(Ci ) = f (Ci )

N∑
l=1

f (Ci )

(6.8)

where f Ci is the fitness value of an individual Ci by using reciprocals of Eq. (6.7),
i.e., 1/j (CiWi ). The roulette wheel is placed with N equally spaced pointers. A
single spin of the roulette wheel will simultaneously pick N individuals of the next
population.

(2) Crossover operator

The crossover operator is executed with the crossover probability pc among the
selected individuals, and generates new structure and the parameters of RBFNN.
If the randomly generated number is less than pc, crossover operation is carried out
between the current chosen individualCl and the next individualCl+1, and yields the
offspring chromosomesC′

l ,C
′
l+1. Since the number of input neurons n is fixed during

an optimization process, the procedure is illustrated with an example presented in
Fig. 6.6, which includes a scheme of the multi-point crossover operation, where the
crossover points are generated randomly between 1 and L. The operator is prone to
generate more hidden neurons, e.g., after the crossover of cnr + 1, n of Cl and cnr + 1, n

of Cl+1, the new nonzero chromosomes are generated, and the number of the hidden
nodes in C′

l becomes nr + 1.
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Fig. 6.6 Example of the crossover operation

(3) Mutation operator

To have a better exploration of the search space, the mutation operator is imple-
mented. Because there exist four elements (0123/CUAG) in RNA sequence, the
mutation of the nucleotide base is relatively complex. Three mutation operations
on a single RNA sequence, i.e., reversal, transition, and exchange operations are
adopted. The reversal operator makes 0 ↔ 2, 1 ↔ 3, transition operator makes
0 ↔ 1, 2 ↔ 3, and exchange operator makes 2 ↔ 1, 0 ↔ 3. When the element of an
individual is mutated with a probability pm, three mutation operators are executed
simultaneously. This will generate more than N individuals after mutation operators,
but the population size still remains invariant after selection operator.

The mutation probability is critical and generally small since too large mutation
probability makes RNA-GA become a random search algorithm. At the beginning
stage of the evolution process, larger probability ofmutation is assigned to explore the
larger feasible region. When the region of the global optimum is found, the mutation
probabilities are reduced to prevent better solutions from disruption. Therefore, the
dynamic mutation probability pm is described as follows:

pm = a0 + b0
1 + eaa(g−g0)

(6.9)

where a0 denotes the initial mutation probability of pm , b0 is the variation range of
mutation probability, g is the evolution generation, g0 decides the generation where a
great change of mutation probability occurs, and aa denotes the speed of change. The
coefficients of Eq.(6.9) are selected as follows: a0 = 0.02,b0 = 0.2, g0 = G

/
2,

aa = 20
/

G. Let G be 1000, the probability curve Cl changing with evolution
generation is shown in Fig. 6.7.

After calculating themutation probability in terms of 0.9, L ×N decimal fractions
between0 and1 are produced comparedwith the abovedynamicmutationprobability.
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Fig. 6.7 Mutation
probability decreasing with g
increasing
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If the decimal fraction is less than the corresponding probability in Fig. 6.7, 3 RNA
mutation operators are executed meanwhile, and 3 new individuals will be produced.

(4) Pruning operator

Since the chromosomes are generated randomly, the effectiveness of every hidden
neuron is evaluated in terms of the active firing (AF) of the hidden neurons, which
is described as follows [17]:

A fi = ρe−‖x−ci ‖ φi (x)∑nr
i=1 φi (x)

, i = 1, . . . , nr (6.10)

where Af i is the active firing of the ith hidden neuron, φi (x) is the output of the ith
hidden neuron, ρ > 1 is a positive constant, which is set as 100. When Af i is less
than the activity threshold Af o (0.05 < Af o < 0.3), the hidden neuron i is regarded
as an inactive neuron. The number of the hidden neurons (nr) will be decreased and
the corresponding ci is moved to the last location of cnr, its values of chromosomes
are then set to zeros.

6.4.4 Procedure of the Algorithm

The fitness function evaluation, selection, crossover, mutation, and pruning opera-
tors are described for RNA-GA to be appropriate to optimize RBFNN, the running
procedure is given in the following steps.

Step 1: Generate input layer with n inputs, x(t), which consists of 〈n/2〉 system
input (u) and n–〈n/2〉 previous values of system output (y). Here 〈·〉 is to round the
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elements to the nearest integer. As an example of 3 inputs, 2 inputs u(k), u(k–1) and
1 previous system output y(k–1) are produced, that is, x(t) = [u(k), u(k-1), y(k-1)].

Step 2: Generate randomly N quaternary encoding chromosomes with a length of
D × L in the search space, where N is the population size.

Step 3: Decode and compute the performance J of each individual.
Step 4: Select the chromosomes to generate N new chromosomes as the parents

of the next generation by tournament selection operator. Before selection operator,
the best 〈3 N /4〉 individuals and the worst 〈N /4〉 individuals are derived to make up
of N individuals to keep population diversity.

Step 5: Judge if the crossover probability is satisfied, if yes, select one point
randomly in l quaternary genes, and totally Dn points are generated as shown in
Fig. 6.6, and exchange the codes of Cl and the next individual Cl+1. Repeat this for
all the pc × N/2 pairs of parents produced at step 4.

Step 6: For effectivemutation, execute 3RNAmutation operators once the random
number is less than the dynamic mutation probability in 0.7, and this step may
generate the individuals more than N.

Step 7: If the number of individuals is greater than N, the pruning operator is
performed to improve the quality of RBFNN, else the pruning operator is not carried
out.

Step 8: Repeat steps 3–7 until a termination criterion is met, that is, the maximal
evolution generation (G). Moreover, elitism, the inclusion of the best individual in
the next population is used throughout the optimization procedure.

Step 9: Increase the number of the input nodes and repeat steps 2–8. Choose the
best RBFNN in terms of the value of an objective function using the test data set
(X3, Y3).

6.4.5 Temperature Modeling in a Coke Furnace

Advanced temperature control is critical for the coke unit and the first important issue
to advanced controller design is systemmodeling. In this section, RBFNN optimized
by the IRNA-GA is used to construct the north and south sides of the temperature
models and the main disturbances in the coking furnace.

The experimental data are collected from the industrial coking unit of a refinery
controlled by CENTUM CS3000, which is described in Sect. 6.2. The temperature
is measured by thermocouple with the measuring precision ±1.5°C. The flow rate
is measured by the mass flowmeter. There are totally 1350 data sampled from PAI
database of the control system. Each measurement sample includes four inputs and
four outputs, that is, the north side primary channel model of the outlet tempera-
ture (TRC8105) and the input fuel flow (FRC8105), its disturbance channel model
of the perturbation of FRC8105 and its corresponding temperature perturbation of
TRC8105, the south side primary channelmodel of the outlet temperature (TRC8103)
and the input fuel flow (FRC8103), and its disturbance channelmodel of the perturba-
tion of FRC8103. Four groups of input and output data are plotted from Fig. 6.8a–d,
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Fig. 6.8 a Input FRC8105
and output TRC8105 for
north side primary channel
modeling. b Input FRC8105
perturbation and output
TRC8105 for north side
disturbances modeling.
c Input FRC8103 and output
TRC8103 for south side
primary channel modeling.
d Input FRC8103
perturbation and output
TRC8103 for south side
disturbances modeling
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Fig. 6.8 (continued)
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where the x-axis is the number of samples, y-axis labeling on the left is the system
output, and the right one is the system input.

All collected 1350 samples are divided into three groups. The first group of 450
samples is selected as the training set, and the intermediate 450 samples are used to
verify the generalization capability of RBFNN, the remaining 450 samples are used
as the final testing set. Based on the three sets of data, the IRNA-GA is employed
to optimize the structure and parameters of RBFNN by minimizing 0.7. Here, the
parameters of the IRNA-GA are set as follows: the population size N is 60, the
maximal evolution generation G is 1000, the individual length L is 3 × D, the
probability of crossover operator pc is 0.6, themutation probability pm is dynamically
changed according to Eq. (6.9), the activity threshold Af o is 0.1, and λ is 0.3. To
examine the generalization capability of the constructed model, the trained RBFNN
is used to predict the coke temperature yield of the testing samples, which are not
included in the training data. In addition, for validation of the effectiveness of the
random optimization algorithm, RBFNN is trained for 10 times. At each time, the
parameters of IRNA-GA and data set are kept invariant. The best results are listed
in Table 6.1, where e1 is Root Mean Squared Error (RMSE) of the testing data.

The IRNA-GA is compared with the k-means method, which is used to train the
centers of the RBF network. The pruning operator is also applied and final-layer
weights are derived using the RLS method, and the number of the input nodes is
the same as the optimized RBFNN. The maximal number of hidden neuron nodes
is set to 38, which is also obtained based on the maximal number of hidden nodes

Table 6.1 The simulation results comparison with 2 methods

Methods TRC8105 TRC8105
disturbances

TRC8103 TRC8103
disturbances

n1 n2 e1 n1 n2 e1 n1 n2 e1 n1 n2 e1

IRNA-GA 4 32 0.0094 3 38 0.0439 4 31 0.0305 3 28 0.0813

k-means 4 38 0.0584 3 38 0.3245 4 38 0.2707 3 38 0.0866
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optimized by IRNA-GA. From Table 6.1, it can be seen that the best results of IRNA-
GA can obtain better prediction precision than using the k-means method in terms of
e1. Moreover, RBFNN using IRNA-GA can obtain smaller errors with fewer hidden
nodes for the four groups of the testing dataset. Though the RMSE of the TRC8103
disturbance model using IRNA-GA is similar to that of the k-means method, the
number of the hidden nodes using IRNA-GA is reduced greatly. All the results in 10
runs are superior to those of the k-means method, because the RBFNN with fewer
hidden nodes gains better generalization capability. The simpler structure of RBFNN
with higher modeling precision is obtained after running IRNA-GA.

To reflect the prediction accuracy of the established RBFNNmodel, the predicted
temperature is compared with the measured temperature on the testing set for the
main channels of the north side and south side (TRC8105, TRC8103) and their
disturbance channels, the comparison results are given in Figs. 6.9, 6.10, 6.11, 6.12,
6.13, 6.14, 6.15, 6.16, 6.17, 6.18, 6.19, 6.20, 6.21, 6.22, 6.23, and 6.24, respectively.

Figure 6.9 shows the predicted yields comparing with measured outputs on the
testing set by IRNA-GA, while the corresponding prediction error is plotted in
Fig. 6.10. Figure 6.12 shows the fitting curve of the prediction outputs and the
measured outputs using the k-means method, and the estimation errors are given in
Fig. 6.11. Comparing Figs. 6.9 with 6.11, it can be seen that the maximal modeling
error obtained by the k-means method is several times larger than that obtained by
IRNA-GA. Similar results can be observed by comparing with the modeling error
of TRC8103 and their disturbance models, which are shown Figs. 6.14, 6.16, 6.18,
6.20, 6.22, and 6.24, respectively, it can be seen from Figs. 6.9, 6.10, 6.11, 6.12, 6.13,
6.14, 6.15, 6.16, 6.17, 6.18, 6.19, 6.20, 6.21, 6.22, 6.23, and 6.24 that the IRNA-GA
optimal RBFNN modeling approach has obtained considerably smaller modeling
error with simpler network structure.
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Fig. 6.9 Modeling error of TRC8105 using IRNA-GA
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Fig. 6.10 RBFNN model output for TRC8105 using IRNA-GA
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Fig. 6.11 Modeling error of TRC8105 using k-means method

6.5 Improved MOEA Based RBF Neural Network
for Chamber Pressure

In Sect. 6.4, RBFNN is optimized by the weighted-sum method in (6.7). In this
section, RBFNN is to be optimized by an improved MOEA (IMOEA) considering
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Fig. 6.12 RBFNN model output for TRC8105 using k-means method
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Fig. 6.13 Modeling error for TRC8105 disturbances using IRNA-GA

two objectives: the smallest modeling error and the simplest structure. The encoding
method and various operators for the RBFNN structure and parameter optimization
are also designed to solve the bi-objective optimization problem.
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Fig. 6.14 RBFNN model output for TRC8105 disturbances using IRNA-GA
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Fig. 6.15 Modeling error of TRC8105 disturbances using k-means method
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Fig. 6.16 RBFNN model output for TRC8105 disturbances using k-means method
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Fig. 6.17 Modeling error of TRC8103 using IRNA-GA

6.5.1 Encoding of IMOEA

Herein, m and n in the input layer, the number of the neurons in the hidden layer
nr and the parameters of the Gaussian functions ci , σi , i = 1, . . . , nr are optimized



6.5 Improved MOEA Based RBF Neural Network for Chamber Pressure 139

0 50 100 150 200 250 300 350 400 450
493.5

494

494.5

495

495.5

496

496.5

497

497.5

Samples

Tr
c8

10
5 

m
od

el
 o

ut
pu

t

 

 
Neural Predictions
Real Values

Fig. 6.18 RBFNN model output for TRC8103 using IRNA-GA
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Fig. 6.19 Modeling error of TRC8103 using k-means method

simultaneously. The encoding for all the parameters is designed similarly to Eq. (6.4),
and the lth chromosome is given as follows:
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Fig. 6.20 RBFNN model output for TRC8103 using k-means method
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Fig. 6.21 Modeling error of TRC8103 disturbances using IRNA-GA
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Fig. 6.22 RBFNN model output for TRC8103 disturbances using IRNA-GA
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Fig. 6.23 Modeling error of TRC8103 disturbances using k-means method
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Fig. 6.24 RBFNN model output for TRC8103 disturbances using k-means method

Cl =

⎡
⎢⎢⎢⎢⎣

c1,1 · · · c1,n 0 c1,Nn+1 · · · c1,Nn+m+1 0 σ1

...
...

...
...

...
...

...
...

...

cnh ,1 · · · cnh ,n0 cnh ,Nn+1 · · · cnh ,Nn+m+10 σnh

0 · · · 0 0 0 · · · 0 0 0

⎤
⎥⎥⎥⎥⎦ (6.11)

where l = 1, 2, . . . N , m, n, and nr are limited to 1 ≤ m ≤ Nm , 1 ≤ n ≤ Nn ,1 ≤
nr ≤ D, respectively. Cl is a D × (Nm+Nn+1) matrix and the rows below nr are
set to zeros. The columns of (n, Nn] and (m + Nn, Nm + Nn] are also set to zeros.
Hence, there are actually nr · (m + n + 1) parameters to be optimized. m, n, and nr

are first generated randomly among the given range. In Sect. 6.4.1, the number of
the input nodes is obtained by using enumeration method, here, it is encoded in Eq.
(6.11) and optimized by the evolution algorithm. The elements in Cl can be obtained
as follows:

ci j =
{

ymin + r(ymax − ymin) 1 ≤ i ≤ nr , 1 ≤ j ≤ n
umin + r(umax − umin) 1 ≤ i ≤ nr , Nn < j ≤ Nn + m

(6.12)

σi = rwmax 1 ≤ i ≤ nh (6.13)

where r is randomly generated between [0.01, 1], umin and umax are the minimal
and maximal values of the system inputs, and ymin and ymax are the minimal and
maximal values of the system outputs. wmax is the maximal width of the Gaussian
basis function that is set to max(umax, ymax).
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Once Cl is generated randomly, the structure and parameters of the RBFNN
are determined and the connecting weight vector can be derived by the RLS algo-
rithm by using the training data. N RBFNNs can then be obtained, denoted as
(C1,ω1), . . . (CN , ωN ).

6.5.2 Optimization Objectives of RBFNN Model

Two objectives considering the structure complexity and modeling accuracy of
RBFNN are expressed as follows:

Min

⎧⎪⎨
⎪⎩

f1 =
√

N1∑
k=1

∣∣∣y1(k) − ∧
y1(k)

∣∣∣2 +
√

N2∑
k=1

∣∣∣y2(k) − ∧
y2(k)

∣∣∣2
f2 = (m + n)nr

(6.14)

We denote Y1 = [y1(1), . . . y1(N1)] as the training data set used to calculate
the weight vector ω, Y2 = [y2(1), . . . y2(N2)] as the testing data set, Ŷ1 =
[ŷ1(1), . . . ŷ1(N1)] and Ŷ2 = [ŷ2(1), . . . , ŷ2(N2)] as the prediction outputs of the
RBFNN. Here f1 is the modeling accuracy by using the sum of the root of square
errors (RSE) for Y1 and Y2, in which the generalization capability of the RBFNN is
involved. f2 is the structure complexity of the RBFNN by using the product of the
number of neurons in the input layer and the hidden layer. Y3 is used to choose the
best RBFNN among the Pareto frontier.

6.5.3 Operators of IMOEA for RBFNN

After the Roulette wheel selection of the parents from individuals in terms of the
top N /2 f 1 and the top N /2 f 2, respectively, the crossover and mutation operators are
then implemented to generate the offspring.

(1) Crossover and mutation operators

The crossover operation is performed with probability pc between individuals Cl

and Cl+1, and the offspring C
′
l and C

′
l+1 are produced. The crossover position is

generated between [1, nr] randomly. The number of the input nodes m + n and
the corresponding parameters of the radial basis functions are changed dynamically
with the evolution processes going on. However, the number of the hidden nodes
cannot be changed by crossover operation. In Fig. 6.25, an example of the crossover
operation is given in the genes surrounded by a dotted line, all genes in the dotted
line are exchanged, and obviously, this is a multi-point crossover operator in nature.

For a better exploration, a mutation operator is also designed with the probability
pm. When the mutation operator is implemented, m, n, and nr are first produced in
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Fig. 6.25 Example of the crossover operator

random among the given ranges in Sect. 6.5.1. and the elements of the mutation
individual are replicated according to the Eqs. (6.12)–(6.13). The new structure of
the RBFNN is thus generated.

In addition to the crossover and mutation operators, the local search operator,
prolong and pruning operators are designed to improve the search capability of
MOEA and guarantee the rationality of the RBFNN.

(2) Local search operator

The local search operator is given as follows:

C = α1Cl + (1 − α1)C
′
l (6.15)

C = Cl + α2Cl (6.16)

where Cl is selected randomly from the former N /2 parents, C′
l is chosen randomly

from the latter N /2 parents, and α1 is randomly generated between (0,1) that is to
generate excellent offspring inheriting the gene information of Cl and C′

l . If Cl is
equal to C′

l , 0.146 is utilized to generate the offspring and α2 is generated randomly
between (−1, 1). In order to keep the population diversity and avoid running into
the local optima as the evolution goes on, a similar dynamical probability of 0.9 is
adopted for local search operator. The difference is that the probability is increased
from pl0 to plG with the generation increasing from 1 to G by using minus aa.

(3) Prolong and pruning operators

Since the crossover operator cannot generate new structures of the hidden layer
and the probability of mutation is low, the prolong operator is designed. That is,
the number of the hidden nodes is reproduced randomly between nr and D with
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probability pp. The elements of the newly added node can be calculated according
to Eqs. (6.12)–(6.13).

Because the chromosomes are randomly generated, the crossover and mutation
operations are also of randomness and there may be inactive structures in the popu-
lation. The neuron with ci = 0, i < nr will first be deleted, and each hidden neuron
is evaluated in terms of the active firing (AF) in Sect. 6.4.3, using the same value of
ρ. Here the upper threshold Af o is also selected from [0.05, 0.3]. When the hidden
neuron is judged as inactive, the corresponding hidden neuron is deleted.

(4) Elitism maintaining scheme

The fast non-dominated sorting scheme is adopted and all non-dominated individuals
in the population are regarded as the elitists, which will be found and stored to an
archive. Because the size of the archive will increase with the evolution going on, the
maximum size of the elitist archive is set asNe. If the current size of the elitist archive
is larger than Ne, the maintaining scheme will be performed to keep the evenness
of the elitist population. The fast non-dominated sorting algorithm is implemented
and the dominated individuals will be removed from the archive. If the archive size
becomes less than Ne, the maintaining procedure will not be carried out, otherwise, a
modified adaptive cell density maintaining scheme will be implemented by dividing
the objective spaces into

∏2
i=1 k1 cells, and at most one individual can be kept at

each cell [45]. Matlab code of the maintaining scheme has been given in Chap. 4.
When the maximal number of the individuals distributed at the Pareto frontier is set
as, and

∑2
i=1 ki − 1, and Ne <

∑2
i−1 Ki must be satisfied to keep the evenness

of the population distribution which can refer to the analysis of MOEA in Chap. 4.

6.5.4 The Procedure of IMOEA

The whole procedure of IMOEA can be run by using the following steps.
Step 1: Initialize the population size N, the maximum generations G, the operator

probabilities pc, pm, pl0, plG pp, and Af o, the RBFNN Nm, Nn, D, the number of cells
for the ith objective function Ki, and the maximal archive size Ne, then generate
randomly N chromosomes using 0.11.

Step 2: Calculate the two fitness functions based on 0.14.
Step 3: Implement the non-dominated sorting algorithm in NSGA-II and keep the

elitists in the archive. Execute the elitist maintaining scheme when the size of the
elitist archive is larger than Ne.

Step 4: Select the parent individuals using the Roulette wheel method in terms
of f 1 and f 2, and Pareto Elite individuals are also selected as the parents to produce
the offspring by genetic operators. To keep the individual diversity, Ne is set as not
larger than N/2.

Step 5: Execute the crossover and mutation operators with probability pc and
pm, respectively, then implement the local search operator with dynamic probability,
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prolong operator with probability pp, and pruning operator with probability 1 to
produce the offspring.

Step 6: Repeat steps 2–5 until the maximum generation G is met.
Step 7: Calculate RMSE of an unused data set for determining the final solution,

and the RBFNN model with a minimal value of f 1 is selected as the final optimal
one.

6.5.5 The Chamber Pressure Modeling in a Coke Furnace

This section describes the application of the IMOEA to optimize the RBFNN model
for the chamber pressure in the industrial coke furnace in Sect. 6.2. Herein, the
parameters of the IMOEAare set asN = 60,G = 1000, pc = 0.9, pm = 0.1, pl0 = 0.02,
plG =0.22, andAf o =0.1. Since the prolong operator is used to increase the number of
the hidden nodes, the probability pp is set relatively small as 0.1. The pruning operator
is designed to keep the rationality of the RBFNN structure and its probability is set
as 1. Ki, i = 1, 2, is set to 20 and the archive size Ne is set to 30 to satisfy Ne ≤ N

/
2

and Ne <
∑2

i−1 Ki · Nm, Nn and D are directly related to the model complexity and
can be selected among the following ranges:Nm, Nn ∈ [3, 10], D ∈ [10, 60], where
a little of prior knowledge is required to set suitable values for these parameters.
Note that the simpler the modeled system, the smaller the value is to be set, which
may speed up the convergence of the algorithm. Nm, Nn, and D in this section are set
as 5, 5, 60, respectively.

Two pressure branches, i.e., the main channel and its coupling disturbance should
be modeled here. Then, several sets of step tests are performed for system analysis
and modeling. The input step signal is the set point of the originally designed PID
controller and this signal also poses disturbances on the other side of the chamber
pressure. The experimental data are collected from the same industrial coke unit
equipped with a distributed control system CENTUM DCS3000. And all data are
filtered to reduce the impact of measurement noise. There are totally 4 groups of
1200 input/output samples as plotted in Figs. 6.26 and 6.27. For the main channel of
the chamber pressure PRC8112A/PRC8112B, the input is the valve opening given
by the PID controller and the output is the chamber pressure PRC8112A/PRC8112B.
The output responses of PRC8112A and its coupling disturbance on PRC8112B are
shown in Fig. 6.26 when the set point is set as−0.029 kPa,−0.024 kPa,−0.019 kPa,
and−0.024 kPa, respectively. Figure 6.27 shows the output responses of PRC8112B
and its coupling disturbance on PRC8112A when the set point is set as −0.022 kPa,
−0.016 kPa, −0.02 kPa, −0.026 kPa, and −0.02 kPa, respectively. The sampled
dataset is equally divided into three groups, where the former 1/3 data are selected
as the training data Y1, the intermediate 1/3 data as Y2, and the latter 1/3 data as
Y3. In addition, the RBFNN is optimized by running 10 times and the parameters of
IMOEA remain unchanged at each run.
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Fig. 6.26 Outputs of PRC8112A (main channel) and its disturbance on pressure PRC8112B
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Fig. 6.27 Outputs of PRC8112B (main channel) and its disturbance on pressure PRC8112A

The IMOEA method is compared with NSGA-II, IMOEA with fixed input layer
(IMOEA-Fix), IRNA-GA with WSO method [19], and artificial neural network
with LM algorithm (LMANN). The details of the compared algorithms are given
as follows:

(1) The encoding/decoding method, crossover, mutation, and zero ci deletion of
IMOEA are adopted in NSGA-II, while the individuals in the mating pool are
selected in terms of the non-dominated sorting rank and its spread evenness
information.
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(2) For IMOEA-Fix, all the parameters and operators are the same as those of
IMOEA except for the structure of the input layer, where m is set as 3, n as 2,
and they are fixed during the whole optimization procedure.

(3) Aweighted sum of objectives based on IRNA-GA that has obtained good results
of temperature modeling in Sect. 6.4 is chosen to be compared. The objective
function in Eq. (6.17) for IRNA-GA is similar to Eq. (6.7) and that in Ref. [19],
however, the weight coefficient is decreased to 0.01 by trial and error focusing
on the modeling accuracy.

J = f1 + λ f2 (6.17)

(4) For LMANN, an enumeration method is applied to select the NN structure, i.e.,
the number of the neurons in the input layer (m + n) is enumerated from 2 to
10 and the number of the neurons in the hidden layer (nh) is enumerated from
1 to 60, and there are totally 25 × 60 combinations of ANN.

The selecting criterion in step 7 is used to choose the ultimate RBFNN among
Pareto individuals and also for selecting the best one in 10 runs of IRNA-GA and
LMANN.

To illustrate the population diversity and distribution evenness, the Pareto frontier
with the maximal number of individuals in 10 runs using 3 MOEAs are shown in
Figs. 6.28, 6.29, 6.30,and 6.31, where the modeling error f 1 is in the horizontal coor-
dinate and the structure complexity f 2 is in y-coordinate. Obviously, the objectives
are conflicting with each other; the RBFNNwith simpler structure, that is smaller f2,
has weaker approximation capability, that means larger f1, and vice versa. When f 2
is less than 10, f1 grows quickly because of too simple structure of RBFNN. Since
only zero ci deletion is used to keep the rationality of the RBFNN in NSGA-II, the
value of f2 in NSGA-II is larger than that of IMOEA as shown in Figs. 6.28, 6.29,
6.30, and 6.31. Moreover, in Figs. 6.29 and 6.30, it is obvious that IMOEA is nearer
to the Pareto frontier compared with NSGA-II because the local search operator and
pruning operator are beneficial to produce more individuals and decrease the struc-
ture complexity. In Fig. 6.31, though IMOEA-fix has more individuals, only three
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Fig. 6.29 Pareto frontier for
the disturbance of
PRC8112B
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Fig. 6.30 Pareto frontier for
PRC8112B
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Fig. 6.31 Pareto frontier for
the disturbance of
PRC8112A
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individuals have good modeling accuracy where f1 is less than 0.1. Since the struc-
ture of the input layer is fixed, the performance of the RBFNN is restricted greatly.
Themaintaining scheme of IMOEAhas kept the elitist archive size in a rational range
during the optimization process. However, the number of individuals in the Pareto
frontier in 3 MOEAs is relatively small, i.e., the size of the elitist archive is less
than Ne and the evenness distribution problem is not serious, thus, the maintaining
scheme will not be implemented in most evolution generations.

ThebestRBFNNsoffivemethods are obtained after selecting in termsofmodeling
accuracy and their modeling errors are plotted in Figs. 6.32, 6.33, 6.34, and 6.35.
It is obvious that the errors of IRNA-GA are much larger than those of MOEA
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Fig. 6.32 Errors of best RBFNN for PRC8112A
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Fig. 6.33 Errors of best RBFNN for PRC8112B
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Fig. 6.34 Errors of best RBFNN for the disturbance of PRC8112B
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Fig. 6.35 Errors of best RBFNN for the disturbance of PRC8112A

partly because the structure simplification in Eq. (6.17) is considered during the
optimization processes. As a typical and widely used MOEA, NSGA-II can obtain
satisfactory modeling accuracy as shown in Fig. 6.34. However, by introducing local
search, prolong and pruning operators, IMOEAhas obtained smaller errors than other
GA-based methods. As for IMOEA-fix, if the input layer is not set appropriately
beforehand as shown in Fig. 6.35, its modeling error will be larger than those of
IRNA-GA and NSGA-II. Otherwise, its modeling error of IMOEA-fix is similar to
that of IMOEA.

The statistical results about the structure of the input layer, the number of hidden
nodes of the best RBFNN, and their RMSEs of six methods among 10 runs are
listed in Tables 6.2 and 6.3, respectively. In Table 6.2, LMANN has obtained the best
results of PRC8112B and its disturbance channel using the enumeration method,
however, the average running time is quite long, which depends on the range of m, n,
and nr , and the enumeration method may be impracticable with large variable range.
LMANN-fix used the same structure of the optimalRBFNN’s, however, its results are
worse than those of the enumerated LMANN because the structure, weight learning
algorithm, and radial basis function are quite different between ANN and RBFNN,
and the optimal structure of the RBFNN is not suitable for ANN. Moreover, ANN
will be greatly affected by the initialization of the weight vector that is implemented
automatically by the toolbox, and its average RMSE (RMSE) in Table 6.3 is much
larger than their RMSEs in Table 6.2. The RMSE of IRNA-GA in Table 6.2 is
several times larger than those in three MOEAs except for the disturbance model of
PRC8112A by IMOEA-fix, which is consistent with Fig. 6.34. The variation range
of nr by IRNA-GA in Table 6.3 is relatively smaller than that of MOEA because
the WSO method takes into account the structure simplification in the optimization
process and the average running time (T̄ ) of the single-objective optimization is
relatively shorter. Compared with the implementation of NSGA-II, IMOEA can
obtain better accuracy with simpler structure, because several new operators are
carried out, however, its T̄ is the longest in the MOEAs. As for IMOEA-Fix, the
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Fig. 6.36 Comparison IMOEA RBFNN with LMANN in the case of noisy data a PRC8112A
b PRC8112B c Disturbance of PRC8112B d Disturbance of PRC8112A

complicated input layer structure seems to require more hidden nodes to obtain the
similar modeling precision compared with IMOEA. Moreover, one order higher of
RMSE in Table 6.3 illustrates that m = 3, n = 2 is not appropriate to construct the
chamber pressure model. Hence, the input layer will affect both the model structure
and modeling accuracy greatly.

In order to illustrate the generalization capability of the optimization methods,
10% of noise levels are added to the sampled data, and other parameters are kept
unchanged. The modeling errors of IMOEARBFNN are compared with the enumer-
ated LMANN and plotted in Fig. 6.36. The RMSEs of enumerated LMANN are
5.10e − 4, 3.83e − 4, 1.26e − 4, 1.67e − 5, while the IMOEA RBFNN’s are 6.70e
− 5, 2.32e − 4, 1.178e − 4 and 1.39e − 4, respectively. Though small RMSEs of
PRC8112B and its disturbance of PRC8112B have been derived by the enumerated
LMANN in Table 6.2, much larger error has been observed from the noisy data as
shown in Fig. 6.36 and reflected in their RMSEs, whichmay be caused by overfitting.
IMOEA based RBFNN is more robust than LMANN in the aspect of generalization
capability. It can be concluded that IMOEA is superior to the other four methods
with respect to the smaller errors inmodel accuracy and simpler structure of RBFNN,
however, the algorithm is more complicated and its running time is longest.

6.6 PCA and INSGA-II Based RBFNN Disturbance
Modeling of Chamber Pressure

6.6.1 RV Criterion in PCA Variable Selection

The key variables are important to be found for multiple variables system modeling,
the RV criterion in principal component analysis has been utilized to measure the
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similarity of the selected subset. If the value of RV criterion is the largest among all
possible subsets, the optimal subset will be obtained. In order to calculate the RV
criterion, the following augmentation of notation has been listed in Table 6.4.

The optimal solution for a given subset, P, is equivalent to maximize the RV
criterion as follows [22]:

f1 =
√

tr((S−1
P [S2]P)2)

tr(S2)
(6.18)

If all variables are selected, the maximum value of f1 reaches 1. Since f1 is to be
maximized, the objective is then changed into theminimization problemby reciprocal
operation of Eq. (6.18), shown as follows:

J1=1
/

f1. (6.19)

Once the selected variables are determined in terms of J1, they are used as the inputs
of the system model.

When the RBFNN model is constructed and its parameters are trained, its
modeling accuracy can be evaluated according to the sum of RMSEs of the training
and testing data

J2 =
√√√√ N1∑

k=1

|y1(k) − ŷ1(k)|2
/

N1 +
√√√√ N2∑

k=1

|y2(k) − ŷ2(k)|2
/

N2 (6.20)

The two objectives J1, J2 can be optimized simultaneously. The encoding method
and various operators in an improved NSGA-II for variable selection, RBFNN struc-
ture, and parameter optimization are then designed to solve this multi-objective
optimization problem.

Table 6.4 Notation for RV criterion

Parameters Description

X an N × M data matrix for N objects measured on M variables

X(P) the N × p vector of X for the selected variables in P

S the covariance matrix for the full data matrix, X

S2 the product of the covariance matrix and itself, S2 = SS

SP the p × p submatrix of S corresponding to the selected variables in P

[S2]P the p × p submatrix of S2 corresponding to the selected variables in P
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6.6.2 Encoding of RBFNN

For simplicity, n in the input layer is set as 2, while m for one input variable is set
as 1, here, there are at most six disturbance variables according to prior knowledge
of coke furnace, m is then limited to [1, 6]. Once the key variables are selected, the
input nodes are then determined. The number of the hidden neurons (nr ) and the
parameters of Gaussian functions ci , σi , i = 1, . . . , nr , 1 ≤ nr ≤ D, with D being
the maximal number of the hidden nodes, are to be optimized. The encoding for
different variables selection and RBFNN is then designed, and the ith chromosome
is shown as follows:

Ci =

⎡
⎢⎢⎢⎢⎢⎣

c11 c21 c31 · · · c81 σ1
...

...
...

...
...

...

c1nr c2nr c3nr · · · c8nr σnr

0 0 0 · · · 0 0
0 0 1 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦ (6.21)

Here 1 ≤ i ≤ N, (m + n) ∈ [3, 8] and the elements in rows [1, nr ] can be obtained
as follows: ⎧⎨

⎩
ci j = ymin + r(ymax − ymin) 1 ≤ i ≤ 2 1 ≤ j ≤ nr

umin + r(umax − umin) 3 ≤ i ≤ 8 1 < j ≤ nr

σ j = rwmax 1 ≤ j ≤ nr

(6.22)

where r is randomly generated in [0.01,1], umin, umax ymin, ymax, and wmax are the
same as those in Eqs. (6.12)–(6.13).

The last row in Ci delegates which variable of columns 3–8 will be selected, thus
it is encoded by binary encode, and the valid bits are located at [3 8], for example

cD+1 = [0 0 0 0 1 1 0 1 0 0] (6.23)

It means that u3, u4, u6 are selected, and columns c5, c6, c8 are valid centers of the
Gaussian functions.

Once Ci is obtained, both the structure and the parameters of RBFNN can be
determined, and the weight w can be further calculated by RLS based on the training
data.

6.6.3 Operators of INSGA-II

(1) Selection operator

When the NSGA-II is implemented, the rank and crowding distance of individuals
can be obtained. The individuals with rank 1 are regarded as the elitists and chosen as
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the parents. The individuals at each frontier from rank 1 are selected into the parent
population one by one until exceeding the population size N. Then, the crowing
distance in the current frontier is compared by sorting in descend and the individuals
with larger crowing distance are selected into the parent population. If the size is still
less than the population size, the Roulette wheel selection operator is implemented
to select half of the rest of the population in terms of J1 and the other half of the rest
of the population in terms of J2.

(2) Crossover and mutation operators

The crossover and mutation operators are carried out among the selected population
to produce the offspring.

In Fig. 6.37, the crossover operator with probability pc is executed between the
individuals Ci and C′

i , and the location is randomly generated between [1 9]. The
parameters of the radial basis function are changed and the selected variables are
also changed in the offspring. Note that the number of the hidden nodes cannot be
changed by using this crossover operator.

The element in Eq. (6.21) is mutated with the probability pm. When the mutation
operator is implemented, the elements are produced in terms of Eq. (6.22) and the
elements in Eq. (6.23) performs a logic NOT operation, that is, 1 to 0 and 0 to 1. The
new structure of RBFNN and different key variables can be obtained.

In addition to crossover and mutation, the prolong and pruning are also designed
for improving the searching capability of NSGA-II and keeping the rationality of
RBFNN.

(3) Prolong and pruning operators

Due to the fact that the number of the hidden nodes is not changed and some irrational
structure may be produced by random operators, the prolong and pruning operators
are then designed. If the number of the hidden neuron is less than 2, the prolong

Fig. 6.37 Example of the crossover operator



158 6 GA-Based RBF Neural Network for Nonlinear SISO System

operator is executed, i.e., a random number between [1, D-2] is produced randomly
as the newly added neuron and the elements of the new neuron are calculated in
terms of Eq. (6.22). If the neuron has only one nonzero element in ci, the pruning
operator is implemented. Here, the neuron will be deleted and the number of the
hidden neuron is reduced.

6.6.4 The Procedure of Improved NSGA-II

The whole procedure of the INSGA-II applied for RBFNN optimization is shown as
follows:

Step 1: Initialize the population sizeN, themaximumgenerationsG, the operators’
probabilities pc, pm, the system parameters umin, umax, ymin and ymax, then generate
N chromosomes randomly.

Step 2: Select variables in terms of Eq. (6.18) and calculate J1.
Step 3: Construct the RBFNN and calculate the value of J2.
Step 4: Implement INSGA-II and select the parent population in terms of the front

rank, crowing distance, and Roulette wheel selection operator.
Step 5: Implement the crossover and mutation operators with pc and pm, then the

prolong and pruning operators are carried out for the offspring.
Step 6: Repeat steps 2–5 until G is met.

6.6.5 Main Disturbance Modeling of Chamber Pressure

The chamber pressure operation in the coke furnace is critical to guarantee burning
security. However, its system model for advanced control is a highly complex task
because nonlinear characteristics, time delay, and a lot of disturbances such as fuel
volume, the coupling of pressures, etc., coexist in the unit. The input variable of
the main channel is known, but the main disturbance model is especially difficult
to be obtained because of the above various disturbances. How to select the key
disturbance variables and construct its disturbance model is still challenging.

The pressure PRC8112A coupled with the pressure PRC8112B, the temperature
in the chamberTR8109A,TR8109B, the oxygen contentAR8102,ARC8101, and the
external flow XLF103, are sampled. Meanwhile, the other side pressure PRC8112B
with similar disturbance variables is also collected and stored in the PAI database.
Since the values of different variables in Figs. 6.38a and 6.39a vary considerably
large, they are normalized to [0, 1] and shown in Figs. 6.38b and 6.39b. It is obvious
that the dynamic response is complex, and accurate disturbance modeling is difficult.

The INSGA-II is used to select the main disturbances and optimize both the
structure and the parameters of RBFNN such that the nonlinear dynamic behavior
of the disturbance of chamber pressure can be captured. The population size N is set
to 60, the maximal evolution generation G is 1000, and the operator probabilities pc
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Fig. 6.38 a Original variables sampled in the PAI database for PRC8112A, b normalized variables
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Fig. 6.39 a Original variables sampled in the PAI database for PRC8112B, b normalized variables

and pm are set to 0.9 and 0.1, N1, N2 of the training data (Y1) and the testing data
(Y2) are set as 400, 400, N, M in X are 6 and 800, respectively. The maximal number
of the hidden nodes (D) is set to 30, [umin, umax] is [0, 1] and [ymin, ymax] is [0, 1].
The optimization result for PRC8112A and PRC8112B is a group of Pareto optimal
solutions and shown in Figs. 6.40 and 6.41, respectively.

It can be seen in Figs. 6.40 and 6.41 that the RMSE of RBFNNmodel J2 becomes
larger with the value of RV criterion J1 close to 1, where the number of the selected
variables has been changed from 1 to 6. Though the RMSE becomes larger, the
difference between the maximal and minimal values of J1 in the Pareto frontier is
not large, e.g., PRC8112A’s is 0.18 and PRC8112B’s is 0.35. J2 is then used to
select the final solution. The individual with the minimal value of J2 is chosen as the
final solution, i.e., the individuals where (J1, J2) is (1.18, 0.071) in Fig. 6.40, and
(J1, J2) is (1.18, 0.071) in Fig. 6.41, are chosen. In the selected individual, cD+1 is
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[00100000], which means PRC8112B is the main disturbance for PRC8112A and
PRC8112A is the main disturbance for PRC8112B. Therefore, the input vector of
RBFNN is [y(k −1), y(k −2), u1(k)]. The model output and its modeling errors for
PRC8112A and PRC8112B are plotted in Figs. 6.42 and 6.43.
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Fig. 6.42 Outputs and errors of RBF disturbance model for PRC8112A by proposed method
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Fig. 6.43 Outputs and errors of RBF disturbance model for PRC8112B by proposed method

We also selected several methods to select the key variables and construct the
disturbance model, which are PCA variable selection method [47] with RBFNN
optimized by an improved GA [7] aimed at minimizing J2 (PCAGA RBF), simu-
lated annealing for variable selection in terms of RV criterion [23] and RBFNN
modeling (SAPCA RBF), and the multilayer perceptron (MLP) neural network with
least absolute shrinkage and selection operator to select the input variables (LASSO
NN) [27].

In the PCAGA RBF method, the component with small eigenvalue, usually less
than 0.7, is of less importance. Consequently, the variable that dominates it should
be superfluous. Here, the eigenvector is [19.6760, 9.3106, 6.1678, 3.8346, 3.3994,
1.2042] for PRC8112A and [17.7668, 10.5847, 8.3911, 6.6600, 4.7317, 3.2693]
for PRC8112B, obviously, all values in the eigenvector are larger than 0.7, thus,
the disturbances need to be kept. The parameters of the radial basis function and
the number of the hidden nodes are derived after optimization. The errors of the
constructed RBFNN disturbance models for PRC8112A and PRC8112B are shown
in Fig. 6.44.

When using SAPCA RBF method, the third disturbance and the fifth disturbance
are selected as the main disturbance for PRC8112A and PRC8112B, respectively.
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Fig. 6.44 The modeling errors of PRC8112A and PRC8112B by PCARBF method

The input vector of theRBFNN for the two-side disturbancemodel is [y(k−1), y(k−
2), u3(k)] and [y(k − 1), y(k − 2), u5(k)], respectively. The modeling error of the
RBFNN for PRC8112A and PRC8112B are plotted in Fig. 6.45.

When applying the LASSONNmethod, the MLP neural network is first obtained
by the Levenberg-Marquard learning algorithm, then the LASSO is applied to select
the variables. Three main disturbances [u1(k), u2(k), u5(k)] for PRC8112A and four
variables [u1(k), u2(k),u4(k),u5(k)] for PRC8112B are obtained, and their modeling
errors are given in Fig. 6.46.

It can be seen from Figs. 6.42, 6.43, 6.44, 6.45, and 6.46, that the INSGA-II
method has obtained the best modeling accuracy. In order to be convenient to show
the different performances of the above methods, RMSEs of the training data and
test data, which are denoted as RMSE1 and RMSE2, the parameters of the RBFNN,
the running time, and the RV criterion are listed in Table 6.5.

In Table 6.5, the number of disturbances is only one with the less similarity RV
value for the INSGA-II method, while the PCA eigenvalue analysis method selected
all disturbance. For the SAPCA RBF method, larger RV value is obtained than
the proposed method because the RV criterion is optimized independently by SA.
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Fig. 6.45 The modeling errors of PRC8112A and PRC8112B by SAPCA RBF method
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Fig. 6.46 The modeling errors of PRC8112A and PRC8112B by LASSO NN method

Table 6.5 The comparison results of 4 methods

Methods Plant No. of
disturbances

No. of
input
nodes

No. of
hidden
nodes

RMSE1 RMSE2 Running
time (s)

RV

Proposed PRC8112A 1 3 7 0.019 0.020 5035 0.847

PRC8112B 1 3 6 0.0154 0.0213 5106 0.739

PCAGA
RBF

PRC8112A 6 8 20 0.032 0.043 2096 1

PRC8112B 6 8 22 0.0145 0.0258 2198 1

SAPCA
RBF

PRC8112A 1 3 6 0.0235 0.0356 606 0.953

PRC8112B 1 3 4 0.0427 0.0477 609 0.767

LASSO
NN

PRC8112A 3 5 15 0.0542 0.0599 3.92 0.991

PRC8112B 4 6 15 0.0829 0.0422 3.89 0.996

However, the final RMSE1 and RMSE2 of the disturbance models are inferior to the
INSGA-II’s. Besides, the number of the hidden nodes of PCAGA RBF is the largest
because of the complicated input structure by using eight inputs. Since the compu-
tation of INSGA-II is complicated, the running time of INSGA-II is the longest
among the four methods, while the running time of the LASSO NN method without
using the random search algorithm is the shortest. In summary, the multi-objective
optimization method considering the RV criterion coordinated with modeling accu-
racy can gain a group of solutions to be selected for specific purposes. The values
of RMSE1 and RMSE2 using the INAGA-II method are the smallest with a simple
structure of using less input and hidden nodes. The modeling method is efficient in
key variable selection, such as the disturbances selection, and complex systemmodel
construction.
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6.7 Summary

In this chapter, temperature, pressure, and its disturbance models of coke furnace
are constructed using RBF Neural Network and improved GA. All data sets were
gathered from the same industrial equipment.

(1) To improve the approximation and generalization performance, an improved
RNAGA is first developed to optimize the RBF neural network structure and its
corresponding parameters of radial basis functions. A pruning operator is also
designed to simplify the RBFNN structure. The simulation results show that the
constructed RBFNNmodel optimized by IRNA-GA can obtain good prediction
accuracy with a relatively simple network structure.

(2) An IMOEA is used for the RBFNN modeling of the chamber pressure. The
encodingmethod is designed for the structure of the input layer, the hidden layer,
and the parameters of the Gaussian basis function. The local search operators
are helpful to improve the search capability, and the prolong and pruning oper-
ators are beneficial to change the hidden layer structure. The adaptive archive
maintaining is applied to retain the elitists and maintain their evenness. It is
efficient and easy to be implemented in industrial processes with a little prior
knowledge.

(3) The disturbance selection using the RV criterion of principle analysis and
RBFNN modeling for nonlinear processes are optimized by using an INSGA-
II, where the RV criterion and modeling error are optimized simultaneously.
In addition, the encoding, prolong, and pruning operators are adopted to make
NSGA-II suitable for RBFNN optimization. Among a set of Pareto solutions,
RMSE value is used to choose the final result in the Pareto frontier. The main
disturbance can be selected successfully and the RBFNN has established the
disturbance model with satisfactory accuracy.
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